

May 28, 2025

Michael Buchanan New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Eleventh Annual Groundwater Monitoring Report State M Lease (AP-72) Incident Number: NCS2215955789 Lea County, New Mexico

Mr. Buchanan

Equus Environmental, LLC (Equus), on behalf of our client Expand Energy Corporation, formerly Chesapeake Energy Corporation, is pleased to submit to the New Mexico Oil Conservation Division (NMOCD) in electronic format the *Eleventh Annual Groundwater Monitoring Report* (Report) detailing the eleventh year of groundwater monitoring and remediation activities conducted at the State M Lease (AP-72) located in the SE-SW-SE of Section 18, Township 17 South, Range 36 East, Lea County, New Mexico. These activities were conducted in accordance with the Stage 2 Abatement Plan for the Site approved by the NMOCD on June 27, 2013.

If you have any questions or comments regarding this Report, please do not hesitate to contact me at (918) 289-1405.

Sincerely, Equus Environmental, LLC MADH. Mugne

Matthew N. Mugavero, P.G. Senior Hydrogeologist/Project Manager

Enclosure: Eleventh Annual Groundwater Monitoring Report

xc: Patrick McMahon - Heidel, Samberson, Newell, Cox & McMahon Dana Drury - Chesapeake Energy

l/leqserver/Main/PROJECTS\Chesapeake-Expand Energy\CHKSTATM\H24001\03_Report\Date_DocTitle\20250528_11thAnnGMRpt_StateM_XMLtr.docx

Equus Environmental, LLC • 1923 South 44th West Avenue, Tulsa, OK 74107 • (918) 921-5331 www.equusenv.com

ELEVENTH ANNUAL GROUNDWATER MONITORING REPORT EXPAND ENERGY CORPORATION STATE M LEASE (AP-72) LEA COUNTY, NEW MEXICO

Prepared for:

Expand Energy Corporation

6100 North Western Avenue Oklahoma City, Oklahoma 73118 (405) 935-3938

Prepared by:

Equus Environmental, LLC

1923 South 44th West Avenue Tulsa, Oklahoma 74107 (918) 921-5331

May 28, 2025

TABLE OF CONTENTS

LIST C	F TAB	LESii
LIST C	of Figu	IRESii
LIST C	F APP	ENDICESii
1.0	INTRO	DUCTION1
2.0	REME	DIATION
	2.1	SVE SYSTEM
	2.2	MW-1R LNAPL RECOVERY5
3.0	QUAR	TERLY GROUNDWATER MONITORING6
	3.1	DEPTH-TO-GROUNDWATER MEASUREMENTS6
	3.2	GROUNDWATER SAMPLING METHODS7
	3.3	GROUNDWATER LABORATORY ANALYTICAL RESULTSERROR! BOOKMARK NOT
		DEFINED.
	3.4	FORTY-FIRST QUARTERLY GROUNDWATER SAMPLING RESULTS7
	3.5	FORTY-SECOND QUARTERLY GROUNDWATER SAMPLING RESULTS7
	3.6	FORTY-THIRD QUARTERLY GROUNDWATER SAMPLING RESULTS7
	3.7	FORTY-FOURTH QUARTERLY GROUNDWATER SAMPLING RESULTS8
4.0	CONC	LUSIONS9
5.0	RECO	MMENDATIONS

Page 4 of 250

LIST OF TABLES

- 1 Summary of SVE System Field Readings
- 2 Summary of Laboratory Analytical Results for Discharge Air Samples
- 3 Summary of Liquid Level Measurements
- 4 Summary of Laboratory Analytical Results for Chloride in Groundwater Samples
- 5 Summary of Laboratory Analytical Results for BTEX in Groundwater Samples

LIST OF FIGURES

- 1 Site Location and Topographic Features
- 2 Site Base Map
- 3 SVE System VOC Discharge Concentrations Versus Time
- 4 Groundwater Potentiometric Surface, March 20, 2025
- 5 Isopleth of Chloride Concentrations in Groundwater, March 20, 2025
- 6 Chloride Concentration Trend Graphs

LIST OF APPENDICES

- A Stage 2 Abatement Plan
- B NMOCD Approval of Stage 2 Abatement Plan
- C Laboratory Analytical Reports and Chain-of-Custody Documentation
- D NMOCD Correspondence, dated June 11, 2024

ELEVENTH ANNUAL GROUNDWATER MONITORING REPORT EXPAND ENERGY CORPORATION STATE M LEASE (AP-72) LEA COUNTY, NEW MEXICO MAY 28, 2025

1.0 INTRODUCTION

Expand Energy Corporation (Expand), formerly Chesapeake Energy Corporation (Chesapeake), has retained Equus Environmental, LLC (Equus) to perform impacted groundwater monitoring and light non-aqueous phase liquid (LNAPL) hydrocarbon remediation at the former Chesapeake State M Lease site (Site) located in Lea County, New Mexico. The Site is located approximately 8 miles south-southwest of Lovington, New Mexico in the SE-SW-SE of Section 18, Township 17 South, Range 36 East, Lea County, New Mexico (coordinates 32.828061° latitude, -103.391012° longitude). The Site location and topographic features are shown on **Figure 1**. A production tank battery for oil and gas was formerly located at the Site. Chesapeake began abandonment and environmental investigation activities at the Site in 2007.

Initial Site investigation activities were conducted in May 2007. These investigation activities consisted of conducting EM-31 and EM-34 ground conductivity surveys, the collection of soil samples from nine boreholes, and the installation and sampling of seven groundwater monitoring wells. Following the investigation in August 2007, Chesapeake submitted to the New Mexico Oil Conservation Division (NMOCD) a Stage 1 Abatement Plan for the Site. In May 2010, the NMOCD responded to Chesapeake that the agency was not adequately staffed to review the abatement plan in a timely manner and advised Chesapeake that they could proceed with abatement operations at risk. In July 2010, Chesapeake notified the NMOCD of their intent to proceed with the Stage 1 Abatement activities. On March 20, 2012, following implementation of these activities, Chesapeake submitted the Stage 1 Abatement Report for the Site.

On March 27, 2012, Chesapeake submitted to the NMOCD the *Stage 2 Abatement Plan* (Plan) for the Site. A copy of the Plan is provided in **Appendix A**. In this Plan, Chesapeake proposed the following abatement activities at the Site:

• Excavate and remove the near-surface soils at the Site containing concentrations of chloride exceeding 1,000 milligrams per kilogram (mg/kg),

Eleventh Annual Groundwater Monitoring Report State M Lease (AP-72), Lea County, New Mexico Page 6 of 250

- Excavate and remove the near-surface soils at the Site containing concentrations of TPH exceeding 1,000 mg/kg,
- Install clay liners in areas where chloride and/or TPH concentrations exceed 1,000 mg/kg at depths greater than five feet below ground level (BGL),
- Install one additional groundwater monitoring well downgradient of the Site,
- Monitor the groundwater at the Site until the concentrations of chloride and benzene are below the New Mexico Water Quality Control Commission (WQCC) standards.

On March 7, 2013, NMOCD notified Chesapeake that the Plan was administratively complete and that Chesapeake should proceed with public notice of the Plan. On March 30, 2013, Chesapeake published a notice of the proposed activities in the Albuquerque Journal, the Hobbs-Daily News Sun and the Lovington Leader. In addition, written notification of the Plan submittal was sent to all surface owners of record within a 1-mile radius of the Site. On June 27, 2013 upon completion of the notification activities, the NMOCD approved the Plan for the Site. A copy of the NMOCD correspondence approving the Plan is included in **Appendix B**.

The soil remediation activities outlined in the Plan were conducted at the Site during the period January 15, 2014 through March 27, 2014. The soil remediation activities were summarized in the document titled *Soil Remediation Summary Report*, submitted to the NMOCD on August 6, 2014.

This *Eleventh Annual Groundwater Monitoring Report* (Report) summarizes the groundwater monitoring activities conducted at the Site during the following quarterly sampling events:

- Forty-First Event June 18, 2024,
- Forty-Second September 6, 2024,
- Forty-Third Event November 21, 2024,
- Forty-Fourth Event March 20, 2025.

2.0 **REMEDIATION**

2.1 SVE SYSTEM

As documented in the *First Annual Groundwater Monitoring Report*, dated May 19, 2015, during the period May 12-14, 2014, a soil vapor extraction (SVE) remediation system (System) was installed and made operational at the Site. The System is comprised of 8 SVE wells connected through a manifold system constructed of two- and three-inch Schedule 80 PVC piping and plumbed to a 10-horsepower 3-phase SVE Regenerative Blower housed within the System Building. The location of the SVE wells and the System Building are shown on attached **Figure 2**. Within the System, soil vapor from the SVE wells is drawn through a moisture knock out/separator and a particulate filter prior to reaching the blower. An air-flow meter is installed downstream of the blower in the air-exhaust line and an air sample port is located on the air-exhaust line at a location upstream of its exit from the System Building.

System start-up was conducted on June 6, 2014. Routine checks of the System are conducted to record the blower run times, discharge rate and volatile organic compounds (VOC) concentration of the discharge-air stream. VOC concentrations are measured with a photo-ionization detector (PID) data in the field. These PID data are then entered into to a spreadsheet to calculate both the VOC discharge rate and approximate total pounds of VOCs removed by the System. The approximate total VOC discharges for each quarter are then summed to provide a cumulative VOC discharge total. These data are summarized in **Table 1**. Through March 20, 2025, the field PID data suggests that approximately 15,238.95 pounds of VOCs have been removed from the subsurface and discharged from the System.

In addition to the collection of field data, discharged-air samples are collected quarterly using laboratory provided Suma canisters and shipped under chain-of-custody control to Eurofins TestAmerica, Pittsburgh, Pennsylvania. Discharged-air samples are then analyzed for VOC compounds and total VOCs as hexane by Method TO-15. The discharged-air analytical data are used to compute a correlation factor for the field PID readings to more accurately calculate the total VOCs discharged.

During the forty-first quarter, discharge-air sample 20240618 M-1 was collected on June 18, 2024. On this date, the System had been running for a total of 84,522 hours, was operating at 484 CFM and had a field reading of 11.3 PPM from the discharge air stream. Laboratory analytical results for this discharge-air sample indicated a total VOC as Hexane concentration of 3,200 PPB V/V (3.2 PPM V/V).

During the forty-second quarter, discharge-air sample 20240906 M-1 was collected on September 6, 2024. On this date, the System had been running for a total of 86,438 hours, was operating at 492 CFM and had a field reading of 30.0 PPM from the discharge air stream. Laboratory analytical results for this discharge-air sample indicated a total VOC as Hexane concentration of 2,800 PPB V/V (2.8 PPM V/V).

During the forty-third quarter, discharge-air sample 20241121 M-1 was collected on November 21, 2024. On this date, the System had been running for approximately 88,261 hours, was operating at 474 ACFM and had a field reading 12.4 PPM from the discharge air stream. Laboratory analytical results for this discharge-air sample indicated a total VOC as Hexane concentration of 1,900 PPB V/V (1.9 PPM V/V).

During the forty-fourth quarter, discharge-air sample 20250320 M-1 was collected on March 20, 2025. On this date, the System had been running for a total of 91,119 hours, was operating at 438 ACFM and had a field reading of 2.1 PPM from the discharge air stream. Laboratory analytical results for this discharge-air sample indicated a total VOC as Hexane concentration of 3,000 PPB V/V (3.0 PPM V/V).

A summary of the laboratory analytical results for the discharged-air samples is presented in **Table 2**, and complete copies of the laboratory analytical reports and chain-of-custody documentation are provided in **Appendix C**.

Field PID instrument readings are typically lower than laboratory analysis for total VOCs. To compensate for the low field PID readings, a correlation factor is calculated based upon the ratio of the laboratory analytical value versus the field PID value. The correlation factor is then used to multiply the field PID readings and calculate the total pounds of VOCs discharged from the System. To accurately reflect the total pounds of VOCs discharged from the System <u>during a given period</u>, **Table 1** also includes the unique correlation factor is then utilized to calculate the total pounds of VOCs discharged for each quarterly air-discharge sampling event. This unique correlation factor is then utilized to calculate the total pounds of VOCs discharged from the System for the period in which that particular air-discharge sample was collected. Utilizing the noted correlation factors, approximately 15,238.95 pounds (7.71 tons) of VOCs have been removed from the subsurface at the Site.

Figure 3 presents a graph of the VOC concentrations observed in the discharge air stream versus time. As can be seen on this figure, the levels of VOC observed in the air discharge stream have decreased dramatically since startup. These data indicate that the System is effective at

Page 9 of 250

removing hydrocarbon vapors from the subsurface. Removal of hydrocarbon vapors coupled with the influx of oxygen drawn into the impacted area by the System enhances biodegradation of the hydrocarbon impacts observed in this area.

2.2 MW-1R LNAPL RECOVERY

As documented in the *First Annual Groundwater Monitoring Report*, dated May 19, 2015, to enhance LNAPL recovery in the MW-1R area, 2-inch diameter monitoring well MW-1 was plugged and replaced with 4-inch diameter monitoring well MW-1R. On June 5, 2014, a QED Environmental Genie LNAPL recovery pump was placed and made operational in monitoring well MW-1R.

The observed LNAPL thicknesses in MW-1R during this reporting period ranged from 0.05-feet to 0.25-feet. The volume of LNAPL observed within monitoring well MW-1R is outside of the recovery range for the LNAPL recovery pump. To facilitate LNAPL recovery, Chesapeake began deploying hydrophobic LNAPL absorption socks within MW-1R on June 21, 2022. These socks are changed out as necessary.

During the operation of the Genie LNAPL recovery pump, approximately 15 drums (822.5 gallons) of LNAPL have been removed from the subsurface.

Eleventh Annual Groundwater Monitoring Report State M Lease (AP-72), Lea County, New Mexico

3.0 QUARTERLY GROUNDWATER MONITORING

This Report describes the findings from four quarterly groundwater sampling events conducted at the Site from June 18, 2024 through March 20, 2025. The constituents of concern (COC) at the Site consists of chloride and benzene, toluene, ethylbenzene, and xylenes (BTEX). The laboratory analytical results for chloride and BTEX from these sampling events are screened against *the New Mexico Administrative Code (NMAC) 20.6.2, Standards for Groundwater of 10,000 mg/L TDS Concentration or Less*, as issued by the WQCC. The applicable cleanup standards presented in *NMAC 20.6.2* consist of the following: chloride (250 mg/L), benzene (5 μ g/L), toluene (1,000 μ g/L), ethylbenzene (700 μ g/L), and total xylenes (620 μ g/L), herein referenced to as the Limit(s). According to the remediation goals set in the Plan, each Site monitoring well is required to exhibit eight consecutive monitoring events where chloride is less than the Limit. In addition, the same applies for BTEX constituents in monitoring well MW-1R, only.

Monitoring well MW-4 is the only well that continues to exhibit concentrations of chloride that are greater than the Limit of 250 mg/L. The remaining groundwater monitoring wells at the Site have met the criteria for exhibiting eight consecutive monitoring events with chloride concentrations less than the Limit. Expand continues to collect groundwater samples for chloride analysis from monitoring well MW-4.

Monitoring well MW-1R met the remediation goals for BTEX constituents at the end of the 2023 monitoring period and therefore was not sampled during this 2024 reporting period. On June 11, 2024, the NMOCD approved the suspension of monitoring well MW-1R from the sampling program, stating that BTEX has been demonstrated to be below the WQCC human health standards for eight consecutive monitoring events. A copy of this correspondence is provided in **Appendix D**.

3.1 DEPTH-TO-GROUNDWATER MEASUREMENTS

Prior to collecting groundwater samples during each quarterly event, Equus gauged the 8 monitoring wells (MW-1R through MW-8) at the Site using an electronic interface probe to determine the depth-to-water (DTW) and LNAPL thickness within each well. The locations of these monitoring wells are shown on **Figure 2**. DTWs were measured from the surveyed top-of-casing (TOC) of each well and converted to elevations relative to mean sea level. These data are presented in **Table 3**. A potentiometric surface map was constructed utilizing groundwater elevation data from the March 20, 2025 monitoring event to illustrate the

Page 11 of 250

within the chellow groundwater overteen beneath the Site. This

groundwater flow direction within the shallow groundwater system beneath the Site. This potentiometric surface map is presented on **Figure 4**. As can be seen on **Figure 4**, groundwater flow at the Site is, in general, from the northwest to the southeast.

3.2 GROUNDWATER SAMPLING METHODS

Upon completion of DTW measurement activities, Equus field personnel collected groundwater samples per the Plan. Groundwater samples were collected from monitoring wells MW-4 for chloride utilizing EPA approved low-flow purging/sampling methodologies. Field parameters consisting of pH, specific conductivity, temperature, and dissolved oxygen (DO) were measured during field activities utilizing a multi-parameter meter and air-tight flow-through cell. Upon stabilization of the field parameters, the groundwater sample was collected into laboratory prepared containers, labeled as to source and contents, placed on ice for preservation, placed under chain-of-custody control and shipped via overnight courier to the analytical laboratory (Eurofins, Edison, New Jersey). As per the Plan, groundwater samples collected from these monitoring wells were analyzed for chloride by EPA Method 300.0. A summary of the laboratory analytical results for chloride and BTEX analyses are presented in **Tables 4** and **5**, respectively. Complete copies of the laboratory analytical reports and chain-of-custody documentation are provided in **Appendix C**.

3.3 FORTY-FIRST QUARTERLY GROUNDWATER SAMPLING RESULTS

The forty-first groundwater sampling event was conducted at the Site on June 18, 2024. As can be seen in **Table 4**, the groundwater sample collected from monitoring well MW-4 exhibited a concentration of chloride (374 mg/L) that exceeds the Limit of 250 mg/L. During the forty-first quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 0.25 feet.

3.4 FORTY-SECOND QUARTERLY GROUNDWATER SAMPLING RESULTS

The forty-second quarterly groundwater sampling event was conducted at the Site from September 6, 2024. As can be seen in **Table 4**, the groundwater sample collected from monitoring well MW-4 exhibited a concentration of chloride (361 mg/L) that exceeds the Limit of 250 mg/L. During the forty-first quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 0.07 feet.

3.5 FORTY-THIRD QUARTERLY GROUNDWATER SAMPLING RESULTS

The forty-third quarterly groundwater sampling event was conducted at the Site on November 21, 2024. As can be seen in **Table 4**, the groundwater sample collected from monitoring well

Page 12 of 250

MW-4 exhibited a concentration of chloride (345 mg/L) that exceeds the Limit of 250 mg/L. During the forty-third quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 0.04 feet.

3.6 FORTY-FOURTH QUARTERLY GROUNDWATER SAMPLING RESULTS

The forty-fourth quarterly groundwater sampling event was conducted at the Site on March 20, 2025. As can be seen in **Table 4**, the groundwater sample collected from monitoring well MW-4 exhibited a chloride concentration (290 mg/L) that exceeds the Limit of 250 mg/L. During the forty-fourth quarterly groundwater sampling event, LNAPL was not observed in monitoring well MW-1R.

Figure 5 presents an isopleth map depicting chloride concentrations in groundwater at the Site. The data used to prepare this isopleth map includes the most recent chloride concentration detected in monitoring well MW-4 (March 20, 2025), and chloride concentrations from the last reported sampling date for each of the remaining Site monitoring wells. As can be seen in **Figure 5**, a relatively small areal extent of chloride impacted groundwater remains at concentrations greater than 250 mg/L Limit.

Figure 6 presents chloride concentration trend graphs for each of the monitoring wells sampled at the Site. The decreasing trends shown on these graphs indicate that the soil remediation activities conducted in the first quarter of 2014 have removed the continuing source of chloride causing impacts to the groundwater at the Site. Source removal has facilitated the physical natural attenuation mechanisms of dispersion and dilution on remnant chloride concentrations present in Site groundwater.

4.0 CONCLUSIONS

Based upon the data presented herein, the following conclusions are presented:

- Groundwater beneath the Site is encountered at depths ranging from 47.75 to 49.25 feet from the surveyed top-of-casing of the Site monitoring wells.
- The direction of groundwater flow at the Site is, in general, from the northwest to the southeast.
- The SVE System is operating as designed and has removed approximately 15,238.95 pounds of VOCs since start-up on June 6, 2014.
- Monitoring well MW-4 is the only remaining well exhibiting concentrations of chloride greater than the Limit of 250 mg/L. During this latest reporting period, chloride concentrations in monitoring well MW-4 ranged from 290 mg/L to 374 mg/L.
- During the reporting period, LNAPL continues to be removed from monitoring well MW-1R with hydrophobic absorbent socks. Apparent LNAPL thicknesses measured in monitoring well MW-1R have been on a decreasing trend and ranged from 0.00-feet to 0.25-feet during this reporting period.
- Monitoring well MW-1R has exhibited BTEX concentrations less than the applicable cleanup Limits for eight straight quarterly monitoring events and has been removed from the sampling protocol.

Page 14 of 250

5.0 **RECOMMENDATIONS**

Based upon a review of the data presented within this report, the following recommendations have been developed:

- Operation of the LNAPL skimmer-pump within monitoring well MW-1R has been stopped as the apparent LNAPL thickness observed within this well is too thin to be recovered utilizing this technology. Hydrophobic absorption socks should continue to be placed in MW-1R to remove intermittent, thin films of LNAPL, when present. These socks should continue to be changed out during each quarterly event.
- The SVE system should continue to be operated for volatile organic vapor removal from the vadose zone.
- The collection of groundwater samples from monitoring well MW-1R has ceased, as dissolved-phase BTEX constituents have been reported to be below the New Mexico Water Quality Control Commission Limits of 5 µg/L, 1,000 µg/L, 700 µg/L, and 620 µg/L, respectively, for eight consecutive quarters.
- The groundwater within monitoring well MW-4 should continue to be monitored on a quarterly basis for chloride until eight consecutive quarterly sampling events result in chloride levels less than the New Mexico Water Quality Control Commission standards. The next groundwater monitoring event at the Site is scheduled to be conducted in June 2024.

•

TABLES

Released to Imaging: 6/17/2025 9:46:51 AM

Received by OCD: 6/4/2025 10:09:49 AT able 1 : Summary of SVE System Field Readings Expand Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

		Run	Operating	Hours	Discharge	Readings		VOC Disc	harge		Calculated
Date	Time	Time	since					lbs since last	Tota	ıl	Correlation
		Reading	last reading	Total	PPM	CFM	lbs/Hr	Reading	lbs	Tons	Factor
06/07/14	8:00	4131.73	19.73	20	596	519	2.281	44.99	44.99	0.02	
06/08/14	7:10	4154.69	22.96	43	398	483	1.416	32.50	77.50	0.04	
06/08/14	9:15	4156.94	2.25	45	5000	489	18.021	40.55	118.05	0.06	
06/12/14	12:40	4256.45	99.51	144	1817	120	1.607	159.92	277.96	0.14	
06/12/14	12:43	4259.65	3.20	148	1561	117	1.346	4.31	282.27	0.14	
06/13/14	7:15	4274.90	18.45	163	1804	122	1.622	29.93	307.89	0.15	
06/13/14	7:17	4276.27	1.37	164	3390	121	3.023	4.14	312.03	0.16	
06/13/14	7:18	4277.08	0.81	165	2301	120	2.035	1.65	313.68	0.16	
06/19/14	12:05	4422.02	144.94	310	1153	120	1.020	147.81	461.49	0.23	
06/19/14	13:30	4423.74	1.72	312	1117	107	0.881	1.52	463.00	0.23	
06/19/14	16:00	4426.00	2.26	314	1448	121	1.291	2.92	465.92	0.23	0.98
06/24/14	12:05	4543.27	117.27	431	1440	120	1.274	149.36	615.28	0.31	0.98
06/26/14	12:40	4591.01	165.01	479	1970	127	1.844	304.28	919.56	0.46	
06/26/14	12:42	4593.20	2.19	481	1968	120	1.741	3.81	923.37	0.46	
07/03/14	9:35	4755.92	162.72	644	1650	126	1.532	249.34	1172.71	0.59	
07/03/14	9:37	4757.95	2.03	646	1318	126	1.224	2.48	1175.20	0.59	
07/09/14	11:40	4901.77	143.82	790	875	126	0.812	116.80	1292.00	0.65	
07/09/14	11:42	4903.69	1.92	792	795	124	0.727	1.40	1293.39	0.65	
07/17/14	12:33	5094.48	190.79	982	790	124	0.722	137.75	1431.15	0.72	
07/17/14	12:34	5095.13	0.65	983	790	127	0.739	0.48	1431.63	0.72	
07/17/14	12:36	5097.75	2.62	986	790	127	0.739	1.94	1433.56	0.72	
08/01/14	11:00	5452.10	354.35	1,340	1078	139	1.104	391.35	1824.91	0.91	
08/01/14	11:42	5454.03	1.93	1,342	938	150	1.037	2.00	1826.91	0.91	
08/01/14	11:44	5456.32	2.29	1,344	2314	14	0.239	0.55	1827.46	0.91	
10/10/14	13:00	7118.38	1662.06	3,006	130	51	0.049	81.70	1909.16	0.95	
10/10/14	13:02	7120.15	1.77	3,008	216	58	0.093	0.16	1909.32	0.95	1.86
10/31/14	13:00	7622.85	502.70	3,511	161	48	0.057	28.63	1937.95	0.97	
10/31/14	13:04	7624.49	1.64	3,512	78	54	0.031	0.05	1938.00	0.97	
12/11/14	13:50	8607.53	983.04	4,496	352	131	0.340	334.10	2272.11	1.14	
01/15/15	10:11	9441.32	833.79	5,329	47	131	0.045	37.60	2309.70	1.15	
01/15/15	10:12	9442.31	0.99	5,330	173	152	0.194	0.19	2309.89	1.15	
01/15/15	10:15	9445.26	2.95	5,333	388	136	0.389	1.15	2311.04	1.16	
01/29/15	11:50	9778.04	332.78	5,666	240	54	0.095	31.49	2342.53	1.17	0.21
01/29/15	11:52	9780.13	2.09	5,668	239	50	0.088	0.18	2342.72	1.17	0.21
02/26/15	11:00	10448.98	668.85	6,337	72	137	0.073	48.63	2391.35	1.20	
02/26/15	11:02	10450.10	1.12	6,338	178	155	0.204	0.23	2391.57	1.20	
03/12/15	10:15	10780.66	330.56	6,669	483	155	0.552	182.40	2573.97	1.29	
04/28/15	8:30	11901.34	1120.68	7,789	126	114	0.106	118.86	2692.84	1.35	
04/28/15	8:36	11907.42	6.08	7,795	132	126	0.123	0.75	2693.58	1.35	
05/14/15	9:05	12285.12	377.70	8,173	96	55	0.039	14.68	2708.26	1.35	1.10
05/14/15	9:10	12290.05	4.93	8,178	105	58	0.045	0.22	2708.48	1.35	1.10
05/28/15	11:30	12623.70	333.65	8,512	6	150	0.006		2710.55	1.36	
06/11/15	10:39	12650.70	27.00	8,539	318	172	0.403	10.88	2721.43	1.36	
07/02/15	11:00	13154.04		9,042	85	112	0.070	35.32	2756.75	1.38	0.76
09/03/15	8:00	14662.17	1508.13	10,550	249	104	0.191	287.85	3044.60	1.52	0.76
12/10/15	13:00	17015.28	2353.11	12,903	162	95	0.113		3311.52	1.66	0.86

Received by OCD: 6/4/2025 10:09:49 A Table 1 : Summary of SVE System Field Readings Expand Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

		Run	Operating	Hours	Discharge	Readings		VOC Disc	harge		Calculated
Date	Time	Time	since					lbs since last	Tota	l	Correlation
		Reading	last reading	Total	PPM	CFM	lbs/Hr	Reading	lbs	Tons	Factor
03/10/16	12:00	17899.58	884.30	13,788	209	105	0.162	143.03	3454.55	1.73	1.78
06/29/16	8:00	20558.59	2659.01	16,447	156	101	0.116	309.58	3764.13	1.88	3.77
07/27/16	12:30	21232.43	673.84	17,120	126	103	0.095	64.20	3828.33	1.91	
08/25/16	11:00	21927.96	695.53	17,816	115	270	0.229	159.45	3987.78	1.99	1.55
09/22/16	10:20	22596.81	668.85	18,485	169	220	0.274	183.07	4170.85	2.09	
12/08/16	9:30	24443.73	1846.92	20,332	109	220	0.177	327.03	4497.88	2.25	6.59
01/10/17	12:23	24758.20	314.47	20,646	173	233	0.297	93.37	4591.25	2.30	
01/25/17	10:56	25115.43	357.23	21,003	206	179	0.271	96.95	4688.20	2.34	3.06
02/22/17	10:35	25786.27	670.84	21,674	248	214	0.391	262.30	4950.50	2.48	5.00
03/09/17	11:04	26146.82	360.55	22,035	321	209	0.495	178.51	5129.01	2.56	
04/05/17	11:55	26792.33	645.51	22,680	454	113	0.378	244.08	5373.09	2.69	
05/16/17	7:00	26967.77	175.44	22,856	61	198	0.089	15.69	5388.79	2.69	5.78
06/07/17	13:00	27495.83	528.06	23,384	54	221	0.087	46.02	5434.80	2.72	
09/07/17	11:36	29698.50	2202.67	25,587	62	200	0.091	201.31	5636.11	2.82	
09/22/17	11:30	30057.43	358.93	25,945	56	211	0.087	31.26	5667.37	2.83	
10/04/17	10:15	30344.40	286.97	26,232	57	198	0.083	23.87	5691.24	2.85	0.81
11/02/17	13:00	31042.78	698.38	26,931	58	185	0.079	55.23	5746.48	2.87	0.01
12/01/17	12:30	31739.31	696.53	27,627	59	192	0.083	58.16	5804.63	2.90	
12/06/17	12:40	31859.62	120.31	27,748	6	270	0.011	1.36	5806.00	2.90	
12/18/17	15:00	32149.36	289.74	28,037	60	208	0.092	26.65	5832.65	2.92	
01/09/18	10:00	32672.25	522.89	28,560	52	189	0.072		5870.52	2.94	
01/26/18	10:15	33080.48	408.23	28,968	48	172	0.061	24.84	5895.36	2.95	
02/09/18	13:10	33416.85	336.37	29,305	32	220	0.052	17.45	5912.82	2.96	0.19
02/23/18	11:15	33753.60	336.75	29,642	34	186	0.047	15.70	5928.51	2.96	
03/07/18	10:55	34040.75	287.15	29,929	52	227	0.087	24.98	5953.50	2.98	
03/16/18	13:03	34251.67	210.92	30,140	48	195	0.069		5968.05	2.98	
04/13/18	9:15	34970.90	719.23	30,859	46	200	0.068	48.77	6016.82	3.01	
04/30/18	13:16	35332.87	361.97	31,221	46	200	0.068		6041.36	3.02	
05/15/18	13:34	35692.17	359.30	31,580	48	200	0.071	25.42	6066.78	3.03	
05/29/18	14:20	36028.04	335.87	31,916	48	200	0.071	23.77	6090.55	3.05	0.65
06/04/18	16:30	36169.50	141.46	32,058	71	200	0.105	14.81	6105.35	3.05	
06/20/18	14:30	36556.30	386.80	32,444	48	200	0.071	27.37	6132.72	3.07	
07/03/18	10:30	36865.13	308.83	32,753	56	520	0.215	66.28	6199.01	3.10	
07/19/18	10:40	37249.27	384.14	33,137	46	486	0.165	63.30	6262.30	3.13	
08/09/18	12:30	37754.97	505.70	33,643	58	386	0.165	83.45	6345.75	3.17	2.13
09/06/18					36						
09/19/18	12:00	38730.31	975.34	34,618	46	405	0.137	133.93	6479.67	3.24	
10/04/18	15:30	39093.45		34,981	73	425	0.227		6562.14	3.28	
10/18/18	13:00	39428.14		35,316	42	261	0.081		6589.19	3.29	
10/31/18	13:40	39716.90		35,605	52	317	0.121	35.08	6624.27	3.31	
11/16/18	8:00	39983.80		35,872	68	156	0.078		6645.14	3.32	1.19
11/16/18	9:54	39985.70		35,874	77	264	0.149		6645.42	3.32	
12/11/18	14:20	40585.95	600.25	36,474	90	150	0.099		6704.95	3.35	
12/27/18	13:40	40965.57	379.62	36,854	72	310	0.165	62.45	6767.40	3.38	

Received by OCD: 6/4/2025 10:09:49 A Table 1 : Summary of SVE System Field Readings Expand Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

		Run	Operating	Hours	Discharge	Readings		VOC Discl	narge		Calculated
Date	Time	Time	since					lbs since last	Tota	ıl	Correlation
		Reading	last reading	Total	PPM	CFM	lbs/Hr	Reading	lbs	Tons	Factor
01/24/19	14:58	41636.05	670.48	37,524	63	275	0.128	85.62	6853.01	3.43	
02/05/19	12:02	41919.95	283.90	37,808	48	251	0.088	25.08	6878.09	3.44	
02/21/19	12:00	42303.95	384.00	38,192	26	218	0.042	16.10	6894.20	3.45	
03/07/19	7:00	42632.85	328.90	38,521	80	208	0.122	40.29	6934.48	3.47	0.97
03/22/19	11:09	42986.51	353.66	38,875	47	177	0.062	21.78	6956.26	3.48	
04/03/19	15:00	43277.65	291.14	39,166	58	440	0.186	54.29	7010.55	3.51	
04/18/19	12:00	43634.32	356.67	39,522	105	450	0.348	124.21	7134.76	3.57	
05/17/19	13:30	44330.99	696.67	40,219	39	365	0.104	72.34	7207.11	3.60	
06/12/19	17:00	44952.75	621.76	40,841	6	170	0.008	4.67	7211.78	3.61	
06/25/19	11:00	45283.69	330.94	41,172	23	445	0.075	24.97	7236.75	3.62	
07/09/19	13:30	45573.87	290.18	41,462	27	360	0.072	20.79	7257.53	3.63	
07/22/19	14:00	45906.56	332.69	41,795	27	425	0.083	27.62	7285.15	3.64	0.87
08/05/19	11:30	46239.45	332.89	42,127	37	462	0.126	41.94	7327.09	3.66	
08/19/19	11:00	46575.01	335.56	42,463	23	533	0.090	30.32	7357.41	3.68	
09/03/19	15:15	46937.77	362.76	42,826	31	455	0.104	37.71	7395.12	3.70	
09/05/19	7:30	46980.41	42.64	42,868	79	227	0.133	5.65	7400.77	3.70	
09/16/19	11:30	47242.95	262.54	43,131	21	372	0.058	15.12	7415.89	3.71	
09/30/19	11:00	47576.43	333.48	43,464	24	355	0.063	20.94	7436.83	3.72	
10/16/19	12:00	47958.94	382.51	43,847	22	280	0.045	17.37	7454.20	3.73	
10/28/19	11:45	48246.61	287.67	44,135	16	326	0.038	11.06	7465.26	3.73	
11/11/19	11:00	48581.38	334.77	44,469	35	488	0.127	42.56	7507.82	3.75	
11/11/19	12:10	48582.46	1.08	44,470	27	188	0.037	0.04	7507.86	3.75	0.88
11/26/19	11:20	48916.78	334.32	44,805	16	284	0.033	10.95	7518.82	3.76	
11/26/19	11:50	48917.34	0.56	44,805	26	472	0.089	0.05	7518.87	3.76	
12/11/19	10:30	49294.17	376.83	45,182	30	214	0.047	17.79	7536.65	3.77	
12/22/19	11:00	49558.50	264.33	45,447	16	462	0.054	14.40	7551.05	3.78	
12/30/19	14:00	49631.20	72.70	45,519	30	462	0.102	7.43	7558.48	3.78	
01/12/20	13:00	49682.50	51.30	45,571	19	282	0.039	2.01	7560.49	3.78	
02/10/20	11:00	49806.20	123.70	45,694	19	145	0.021	2.55	7563.04	3.78	
03/05/20	12:40	50000.00	193.80	45,888	38	197	0.055	10.66	7573.71	3.79	0.69
03/09/20	12:10	50070.44	70.44	45,958	23	250	0.041	2.92	7576.62	3.79	
03/23/20	11:45	50083.25	12.81	45,971	25	323	0.060	0.76	7577.39	3.79	
04/06/20	10:30	50139.34	56.09	46,027	26	316	0.060	3.34	7580.73	3.79	
04/20/20	10:30	50225.20	85.86	46,113	19	408	0.056		7585.57	3.79	
05/05/20	11:00	50540.55	315.35	46,429	61	311	0.140	44.17	7629.74	3.81	1.06
05/18/20	12:30	50840.55	300.00	46,729	36	506	0.132	39.72	7669.46	3.83	
06/06/20	10:10	51279.56	439.01	47,168	47	340	0.118	51.71	7721.16	3.86	
06/20/20	13:20	51616.41		47,504	34	322	0.081		7748.35	3.87	
07/06/20	10:44	51998.22	381.81	47,886	0.5	425	0.002		7748.94	3.87	
07/19/20	11:10	52309.12		48,197	29	470	0.099		7779.75	3.89	
08/09/20	17:30	52819.74		48,708	28	428	0.087		7824.20	3.91	0.51
09/14/20	18:30	53480.00	660.26	49,368	25	421	0.076		7874.40	3.94	
09/24/20	13:20	53703.31		49,591	47	410	0.143		7906.25	3.95	
11/15/20	13:00	54664.23	960.92	50,552	38	418	0.116		8017.86	4.01	
12/11/20	8:27	55250.13	585.90	51,138	67	380	0.187		8127.48	4.06	1.36

Received by OCD: 6/4/2025 10:09:49 A Mable 1 : Summary of SVE System Field Readings Expand Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

		Run	Operating	Hours	Discharge	Readings		VOC Dis	charge		Calculated
Date	Time	Time	since					lbs since last	Tota	I	Correlatio
	-	Reading	last reading	Total	PPM	CFM	lbs/Hr	Reading	lbs	Tons	Factor
02/28/21	10:00	56876.10	1625.97	52,764	37	410	0.112	181.80	8309.28	4.15	
03/02/21	14:05	56926.31	50.21	52,814	6.4	355	0.017	0.84	8310.12	4.16	0.36
04/21/21	14:11	58101.61	1175.30	53,990	2.9	391	0.008	9.82	8319.94	4.16	
05/13/21	13:42	58654.06	552.45	54,542	3.2	490	0.008	6.38	8326.32	4.16	0.07
											0.07
06/08/21	12:30	59275.70	621.64	55,164	31.0	460	0.105	65.34	8391.66	4.20	
09/09/21	12:50	60240.17	964.47	56,128	91.7	422	0.285	275.08	8666.74	4.33	1.53
09/24/21	12:30	60600.84	360.67	56,489	28.4	415	0.087	31.33	8698.07	4.35	
10/24/21	14:20	61323.92	723.08	57,212	23.7	312	0.055	39.41	8737.48	4.37	
11/19/21	14:11	61946.79	622.87	57,835	26.1	402	0.077	48.17	8785.65	4.39	0.27
12/07/21	12:30	62377.93	431.14	58,266	6.0	350	0.015	6.67	8792.32	4.40	
01/23/22	10:49	63503.18	1125.25	59,391	15.4	295	0.033	37.68	8830.00	4.42	
02/16/22	11:30	64080.45	577.27	59,968	17.2	396	0.050	28.98	8858.98	4.43	1.38
03/09/22	12:01	64561.31	480.86	60,449	16.7	383	0.047	22.67	8881.65	4.44	1.50
03/27/22	9:05	65012.44	451.13	60,900	17.4	372	0.048	21.52	8903.17	4.45	
04/24/22	11:59	65684.16	671.72	61,572	14.1	317	0.033	22.13	8925.30	4.46	
05/23/22	7:45	66388.40	704.24	62,276	17.1	205	0.026	18.20	8943.50	4.47	0.42
06/21/22	12:15	67077.58	689.18	62,966	23.7	261	0.046	31.42	8974.92	4.49	
07/28/22	7:45	67970.01	892.43	63,858	16.5	217	0.026	23.55	8998.47	4.50	
08/28/22	9:11	68705.43	735.42	64,593	18.3	248	0.033	23.55	9023.07	4.51	0.0002
08/28/22	9:26	69088.00	382.57	64,976	60.0	248	0.103	39.42	9062.49	4.53	0.0002
				•							
09/15/22	8:23	69135.64	47.64	65,024	14.2	241	0.025	1.20	9063.69	4.53	
10/29/22	11:02	70194.13	1058.49	66,082	19.2	240	0.034	35.95	9099.64	4.55	0.51
11/27/22	11:11	70889.70	695.57	66,778	18.2	265	0.036	24.73	9124.37	4.56	
12/07/22	11:40	71129.09	239.39	67,017	17.2	224	0.028	6.80	9131.16	4.57	
01/29/23	11:00	72398.93	1509.23	68,287	16.5	255	0.031	46.80	9177.97	4.59	0.72
03/07/23	11:15	73288.13	889.20	69,176	23.7	250	0.044	38.83	9216.80	4.61	•=
04/22/23	11:24	74390.53	1102.40	70,279	12.4	488	0.045	49.17	9265.97	4.63	
05/28/23	10:00	75276.92	886.39	71,165	12.3	453	0.041	36.40	9302.37	4.65	0.55
06/13/23	15:05	75641.00	364.08	71,529	23.7	471	0.082	29.95	9332.32	4.67	
07/20/23	16:52	76531.81	890.81	72,420	14.8	489	0.053	47.52	9379.84	4.69	
08/20/23	11:00	77271.00	739.19	73,159	14.8	425	0.046	34.27	9414.11	4.71	0.81
09/06/23	12:30	77660.23	389.23	73,548	4.2	465	0.014	5.60	9419.71	4.71	
10/22/23	11:08	78783.33	1123.10	74,671	16.2	460	0.055	61.69	9481.40	4.74	
11/12/23	10:15	79266.48	483.15	75,154	13.1	441	0.043	20.57	9501.97	4.75	0.81
12/12/23	13:10	79989.39	722.91	75,877	4.7	462	0.016	11.57	9513.54	4.76	0.01
01/13/24	11:00	80755.57	766.18	76,644	13.3	389	0.038	29.22	9542.76	4.70	
01/13/24	10:00	81595.21	839.64	77,483	13.5	427	0.038	35.67	9578.43	4.77	0.68
02/17/24 03/12/24	10:00					427	0.042		9578.43	4.79	0.08
		82172.95		78,061	6.2						
04/27/24	9:00	83247.60	1074.65	79,136	10.5	485	0.038		9629.54	4.81	
05/27/24	10:00	83992.91	745.31	79,881	9.4	508	0.035	26.23	9655.77	4.83	0.97
06/18/24	14:00	84522.36	529.45	80,410	11.3	484	0.040		9677.11	4.84	
07/28/24	8:15	85473.92	951.56	81,362	9.4	494	0.034	32.57	9709.68	4.85	
08/31/24	11:15	86293.03	819.11	82,181	9.3	485	0.033	27.23	9736.91	4.87	0.09
09/06/24	11:00	86438.11	145.08	82,326	30.0	492	0.109	15.78	9752.69	4.88	
10/13/24	11:05	87324.86	886.75	83,213	8.7	421	0.027	23.94	9776.63	4.89	
11/10/24	10:30	87997.33		83,885	6.7	480	0.024	15.94	9792.57	4.90	0.00
11/21/24	12:10	88261.66		84,150	12.4	474	0.043		9804.02	4.90	
12/27/24	10:30	89125.09	863.43	85,013	10.5	395	0.031	26.39	9830.42	4.92	
01/26/25	9:48	89844.55	719.46	85,733	9.9	434	0.031	20.33	9853.20	4.93	
02/10/25	8:18	90203.22	358.67	86,091	8.1	421	0.025		9862.22	4.93	1.43
	12:30	91119.22	916.00	87,007	2.1	421	0.023	6.21	9868.43	4.93	
03/20/25											

Notes:

1. Color shading indicates air sampling period with a unique correlation factor.

2. During the June 24 & July 17, 2014 site visit the field readings were not recorded. The italicized values presented above for these dates are conservative estimated values based upon last known readings.

		SVE	Canister #34000823		Canister #8408		CANISTER #34000512									
	Sample ID:	SVE	Serial C8528 2014-12-11	CANISTER #C8522	2015-06-11 Air Sample	Batch #320- 14155 9-3-15	BATCH ID #320- 15930	STATE M-1 LEASE	20160629 M SVE	20160922 M SVE	20161208 M SVE	20170309 M SVE	20170607M SVE	20170907 M SVE	20171206 -M- SVE	20180307-M- SVE
Parameters	Sample Date:	1-Aug-14	11-Dec-14	12-Mar-15	11-Jun-15	3-Sep-15	10-Dec-15	10-Mar-16	29-Jun-16	22-Sep-16	8-Dec-16	9-Mar-17	7-Jun-17	7-Sep-17	6-Dec-17	7-Mar-18
Volatile Organic Compounds (VOC	s) by TO-15															
Acetone	ppb v/v	<2000	<615	<965	<860	<615	<370	<915	<280	<175	<106	<203	<76.0	<116	<20.0	5.67
Benzene	ppb v/v	8,820	2,960	533	3,630	312	194	1,070	2,600	853	373	550	180	143	1.77	24.5
Benzyl chloride	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4	<12.2	<18.5	<3.20	<0.800
Bromodichloromethane	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	103.5	<6.33	<12.2	<4.56	<6.93	<1.20	<0.300
Bromoform	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400
Bromomethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4	<12.2	<18.5	<3.20	<0.800
2-Butanone (MEK)	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4	<12.2	178	<3.20	<0.800
Carbon disulfide	ppb v/v	1,800	272	<154	<138	<98.4	<59.2	<146	177	<27.9	<16.9	<32.4	<12.2	<18.5	<3.20	<0.800
Carbon tetrachloride	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4	<12.2	<18.5	<3.20	<0.800
Chlorobenzene	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	<10.5	<6.33	<12.2	<4.56	<6.93	<1.20	< 0.300
Dibromochloromethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400
Chloroethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4	<12.2	<18.5	<3.20	<0.800
Chloroform	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	<10.5	<6.33	<12.2	<4.56	<6.93	<1.20	< 0.300
Chloromethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4	<12.2	<18.5	<3.20	<0.800
1,2-Dibromoethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4	<12.2	<18.5	<3.20	< 0.800
1,2-Dichlorobenzene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	< 0.400
1.3-Dichlorobenzene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	< 0.400
1.4-Dichlorobenzene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	< 0.400
Dichlorodifluoromethane	ppb v/v	1,980	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	< 0.400
1,1-Dichloroethane	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	<10.5	<6.33	<12.2	<4.56	<6.93	<1.20	< 0.300
1.2-Dichloroethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4	<12.2	<18.5	<3.20	0.881
1.1-Dichloroethene	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4	<12.2	<18.5	<3.20	< 0.800
cis-1.2-Dichloroethene	ppb v/v	<160	<49.2	84.5	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400
trans-1,2-Dichloroethene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400
1,2-Dichloropropane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400
cis-1,3-Dichloropropene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400
trans-1,3-Dichloropropene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	< 6.08	<9.24	<1.60	<0.400
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400
Ethylbenzene	ppb v/v	13,500	3,830	799	2,890	731	723	446	2,530	1,390	531	908	229	219	4.75	25.4
4-Ethyltoluene	ppb v/v	974	533	164	2,050	256	186	<73.2	660	497	135	263	58.5	45.1	2.38	3.74
Hexachlorobutadiene	ppb v/v	<800	<246	<386	<344	<246	<148	<366	<112	<69.8	<42.2	<81.0	<30.4	<46.2	<8.00	<2.00
2-Hexanone	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400
Methylene Chloride	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	< 6.08	<9.24	<1.60	0.540
4-Methyl-2-pentanone		<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	< 6.08	<9.24	<1.60	<0.400
	ppb v/v					<49.2	<29.6		<22.4	<14.0	-	1				
Styrene	ppb v/v	<160	<49.2	<77.2	<68.8			<73.2			<8.44	<16.2	<6.08	<9.24	<1.60	<0.400
1,1,2,2-Tetrachloroethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	41.1	<14.0	<8.44	20.0	<6.08	<9.24	<1.60	<0.400
Tetrachloroethene	ppb v/v	<160	71.9	<77.2	<68.8	<49.2	<29.6	92.9	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	< 0.400
Toluene	ppb v/v	4,020	1,040	228	1,480	<49.2	<29.6	120	975	380	164	193	68.4	49.2	<1.60	6.92
1,2,4-Trichlorobenzene	ppb v/v	<800	<246	<386	<344	<246	<148	<366	<112	<69.8	<42.2	<81.0	<30.4	<46.2	<8.00	<2.00
1,1,1-Trichloroethane	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	<10.5	<6.33	<12.2	<4.56	<6.93	<1.20	< 0.300
1,1,2-Trichloroethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400
Trichloroethene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	< 0.400
Trichlorofluoromethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400

Parameters	Sample ID: Sample Date:	SVE 1-Aug-14	Canister #34000823 Serial C8528 2014-12-11 11-Dec-14	CANISTER #C8522 12-Mar-15	Canister #8408 2015-06-11 Air Sample 11-Jun-15	Canister #5451 Batch #320- 14155 9-3-15 3-Sep-15	CANISTER #34000512 BATCH ID #320- 15930 10-Dec-15	STATE M-1 LEASE 10-Mar-16	20160629 M SVE 29-Jun-16	20160922 M SVE 22-Sep-16	20161208 M SVE 8-Dec-16	20170309 M SVE 9-Mar-17	20170607M SVE 7-Jun-17	20170907 M SVE 7-Sep-17	20171206 -M- SVE 6-Dec-17	20180307-M- SVE 7-Mar-18
VOCs by TO-15, continued																
1,1,2-Trichloro-1,2,2-trifluoroethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400
1,2,4-Trimethylbenzene	ppb v/v	2,020	648	299	774	<98.4	355	<146	968	740	228	411	85.9	50.3	7.35	9.05
1,3,5-Trimethylbenzene	ppb v/v	821	385	172	353	73.0	247	<73.2	727	541	192	397	53.6	45.5	6.18	5.81
Vinyl acetate	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4	<12.2	<18.5	<3.20	<0.800
Vinyl chloride	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.8	<14.0	<8.44	<16.2	<6.08	<9.24	<1.60	<0.400
m,p-Xylene	ppb v/v	12,700	4,680	1,110	3,920	1,140	1,380	609	5,050	2,550	870	1,510	322	330	10.3	48.7
o-Xylene	ppb v/v	4,520	1,190	286	1,120	164	194	107	720	419	177	337	98.4	96.4	2.54	15.6
Total VOC as Hexane (C6-C12)	ppb v/v	1,060,000	655,000	99,400	351,000	190,000	140,000	371,000	590,000	262,000	117,000	167,000	54,500	40,900	4,630	9,930

		-														
		20180604-M-	20180906-M-		20190307 M	20190905 M	20200122 M1-	20200305 M	20200606-M-	20200924M1SV						
	Sample ID:	SVE	SVE	2018121-M-SVE	SVE	SVE	SVE	SVE	SVE	E	20201211 M-1	20210302 M-1	20210608 M-1	20210908 M-1	20211207M-1	20220308 M-1
Parameters	Sample Date:	4-Jun-18	6-Sep-18	11-Dec-18	7-Mar-19	5-Sep-19	22-Jan-20	5-Mar-20	6-Jun-20	 24-Sep-20	11-Dec-20	2-Mar-21	8-Jun-21	9-Sep-21	7-Dec-21	8-Mar-22
											-					
Volatile Organic Compounds (VOC							. –									
Acetone	ppb v/v	<78.0	<124	<178	<22.3	<84	<17	<78	<34	<29	<110	<7.8	16	92	8.6	30
Benzene	ppb v/v	87.9	112	137	40.1	140	3.7	42	48	18	80	<0.78	<0.71	71	<0.75	<1.6
Benzyl chloride	ppb v/v	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6
Bromodichloromethane	ppb v/v	<4.68	<7.43	<10.7	<1.34	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6
Bromoform	ppb v/v	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6
Bromomethane	ppb v/v	<12.5	<19.8	<28.4	<3.56	<84	<17	<78	<34	<29	<110	<7.8	<7.1	<8.0	<7.5	<16
2-Butanone (MEK)	ppb v/v	<12.5	<19.8	<28.4	5.97	<34	<6.7	<31	<34	<11	<43	<3.1	<2.8	11	<3.0	<6.2
Carbon disulfide	ppb v/v	<12.5	<19.8	<28.4	<3.56	<34	<6.7	<31	<34	<11	<43	<3.1	<2.8	11	<3.0	<6.2
Carbon tetrachloride	ppb v/v	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6
Chlorobenzene	ppb v/v	<4.68	<7.43	<10.7	<1.34	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6
Dibromochloromethane	ppb v/v	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6
Chloroethane	ppb v/v	<12.5	<19.8	<28.4	<3.56	<34	<6.7	<31	<34	<11	<43	<3.1	<2.8	<3.2	<3.0	<6.2
Chloroform	ppb v/v	<4.68	<7.43	<10.7	<1.34	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6
Chloromethane	ppb v/v	<12.5	<19.8	<28.4	<3.56	<84	<17	<78	<34	<29	<110	<7.8	<7.1	<8.0	<7.5	<16
1,2-Dibromoethane	ppb v/v	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6
1,2-Dichlorobenzene	ppb v/v	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6
1,3-Dichlorobenzene	ppb v/v	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6
1.4-Dichlorobenzene	ppb v/v	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6
Dichlorodifluoromethane	ppb v/v	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6
1,1-Dichloroethane	ppb v/v	<4.68	<7.43	<10.7	<1.34	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6
1.2-Dichloroethane	ppb v/v	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6
1,1-Dichloroethene	ppb v/v	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	< 0.80	<0.75	<1.6
cis-1.2-Dichloroethene	ppb v/v	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	< 0.80	<0.75	<1.6
trans-1.2-Dichloroethene	ppb v/v	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	< 0.80	< 0.75	<1.6
1,2-Dichloropropane	ppb v/v	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	< 0.78	<0.71	< 0.80	< 0.75	<1.6
cis-1,3-Dichloropropene	ppb v/v	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	< 0.80	<0.75	<1.6
trans-1,3-Dichloropropene	ppb v/v	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	< 0.80	<0.75	<1.6
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ppb v/v	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	< 0.78	<0.71	< 0.80	<0.75	<1.6
Ethylbenzene	ppb v/v	250	334	363	284	270	33	120	150	56	180	< 0.78	<0.71	88	< 0.75	5.2
4-Ethyltoluene	ppb v/v	42.7	89.2	76.7	167	180	25	100	130	64	170	0.82	<0.71	140	< 0.75	27
Hexachlorobutadiene	ppb v/v	<31.2	<49.5	<71.0	<8.90	<34	<6.7	<31	<34	<11	<43	<3.1	<2.8	<3.2	<3.0	<6.2
2-Hexanone	ppb v/v	<4.68	<9.91	<14.2	<1.78	<34	<6.7	<31	<34	<11	<43	<3.1	<2.8	<3.2	<3.0	<6.2
Methylene Chloride	ppb v/v	<6.24	<9.91	<14.2	<1.78	<84	<17	<78	<34	<29	<110	<7.8	<7.1	<8.0	<7.5	<16
4-Methyl-2-pentanone	ppb v/v	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6
Styrene	ppb v/v	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6
1,1,2,2-Tetrachloroethane	· · · · ·															
Tetrachloroethene	ppb v/v ppb v/v	<6.24	<9.91 <9.91	<14.2 <14.2	<1.78 <1.78	<8.4 <8.4	<1.7	<7.8 <7.8	<8.4 <8.4	<2.9	<11 <11	<0.78	<0.71	<0.80	<0.75	<1.6 <1.6
Toluene	ppb v/v	34.4	44.3	41.0	38.8	30	3.1	<7.8	11	3.1	<11	<0.78	<0.71	<0.80	<0.75	<1.6
1,2,4-Trichlorobenzene		34.4 <31.2	44.3 <49.5	41.0 <71.0	38.8 <8.90	<30 <34	<6.7	<31	<34	3.1 <11	<43	< 3.1	<2.8	<3.2	<3.0	<6.2
1,1,1,1-Trichloroethane	ppb v/v	<31.2	<7.43	<10.7	< 1.34	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6
1,1,2-Trichloroethane		<4.68	<7.43	<10.7	<1.34	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6
	ppb v/v															
Trichloroethene	ppb v/v	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	20	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6
Trichlorofluoromethane	ppb v/v	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6

Parameters	Sample ID: Sample Date:	20180604-M- SVE 4-Jun-18	20180906-M- SVE 6-Sep-18	2018121-M-SVE 11-Dec-18	20190307 M SVE 7-Mar-19	20190905 M SVE 5-Sep-19	20200122 M1- SVE 22-Jan-20	20200305 M SVE 5-Mar-20	20200606-M- SVE 6-Jun-20	20200924M1SV E 24-Sep-20	20201211 M-1 11-Dec-20	20210302 M-1 2-Mar-21	20210608 M-1 8-Jun-21	20210908 M-1 9-Sep-21	20211207M-1 7-Dec-21	20220308 M-1 8-Mar-22
VOCs by TO-15, continued																
1,1,2-Trichloro-1,2,2-trifluoroethane	ppb v/v	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6
1,2,4-Trimethylbenzene	ppb v/v	71.3	134	124	83.0	75	10	59	60	38	79	<0.78	<0.71	100	0.80	9.7
1,3,5-Trimethylbenzene	ppb v/v	46.2	88.6	102	67.0	69	9.1	43	50	31	77	1.0	1.3	110	1.3	14
Vinyl acetate	ppb v/v	<12.5	<19.8	<28.4	<3.56	<8.4	<6.7	<31	<34	<11	<43	<3.1	<2.8	<3.2	<3.0	<6.2
Vinyl chloride	ppb v/v	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78	<0.71	<0.80	<0.75	<1.6
m,p-Xylene	ppb v/v	376	501	544	442	440	66	210	280	110	380	<0.78	<0.71	260	<0.75	20
o-Xylene	ppb v/v	107	133	158	137	120	55	50	63	25	83	<0.78	<0.71	55	<0.75	4.0
Total VOC as Hexane (C6-C12)	ppb v/v	46,500	76,600	107,000	77,900	69,000	14,000	26,000	50,000	24,000	91,000	2,300	2,100	140,000	1,600	24,000

	Sample ID:	20220621 M-1	202209 M-1	20221207 M-1	20230307 M-1	20230613M-1	20230906M-1	20231212 M-1	20240312M-1	20240618M-1	20240906 M-1	20241122M-1	20250320M-1
Parameters	Sample Date:	21-Jun-22	13-Sep-22	7-Dec-22	7-Mar-23	13-Jun-23	6-Sep-23	12-Dec-23	12-Mar-24	18-Jun-24	6-Sep-24	22-Nov-24	20-Mar-25
Volatile Organic Compounds (VOC	s) by TO-15												
Acetone	ppb v/v	<74	<7.1	<7.0	<32	16	9.3	9.9	10	<13	<10	<9.4	<8.4
Benzene	ppb v/v	<7.4	<0.71	1.1	<3.2	<1.6	<0.85	1.8	<0.76	<1.3	<1.0	<0.94	1.2
Benzyl chloride	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84
Bromodichloromethane	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84
Bromoform	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84
Bromomethane	ppb v/v	<74	<7.1	<7.0	<32	<16	<8.5	<8.0	<7.6	<13	<10	<9.4	<8.4
2-Butanone (MEK)	ppb v/v	<29	<2.8	<2.8	<13	<6.5	<3.4	<3.2	<3.0	<5.3	<4.2	<3.8	<3.4
Carbon disulfide	ppb v/v	<29	<2.8	<2.8	<13	<6.5	<3.4	<3.2	<3.0	<5.3	<4.2	<3.8	<3.4
Carbon tetrachloride	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84
Chlorobenzene	ppb v/v	<7.4	0.71	<0.70	<3.2	<1.6	< 0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84
Dibromochloromethane	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	< 0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84
Chloroethane	ppb v/v	<29	<2.8	<2.8	<13	<6.5	<3.4	<3.2	<3.0	<5.3	<4.2	<3.8	<3.4
Chloroform	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	< 0.85	<0.80	< 0.76	<1.3	<1.0	< 0.94	< 0.84
Chloromethane	ppb v/v	<74	<7.1	<7.0	<32	<16	<8.5	<8.0	<7.6	<13	<10	<9.4	<8.4
1,2-Dibromoethane	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	< 0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84
1,2-Dichlorobenzene	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	< 0.85	<0.80	< 0.76	<1.3	<1.0	< 0.94	<0.84
1,3-Dichlorobenzene	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	< 0.94	<0.84
1.4-Dichlorobenzene	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	< 0.94	<0.84
Dichlorodifluoromethane	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84
1.1-Dichloroethane	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84
1.2-Dichloroethane	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84
1,1-Dichloroethene	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84
cis-1,2-Dichloroethene	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84
trans-1,2-Dichloroethene	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84
1,2-Dichloropropane		<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84
cis-1,3-Dichloropropene	ppb v/v ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84
· · · · · ·		<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84
trans-1,3-Dichloropropene	ppb v/v			<0.70		<1.6	<0.85	<0.80			-		<0.84
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ppb v/v	<7.4 <7.4	< 0.71	<0.70	<3.2 <3.2			0.80	<0.76	<1.3	<1.0 <1.0	<0.94	
Ethylbenzene	ppb v/v		< 0.71			<1.6	< 0.85		< 0.76	<1.3			<0.84
4-Ethyltoluene	ppb v/v	31	<0.71	7.9	18	10	3.7	1.9	2.0	2.0	1.7	< 0.94	1.1
Hexachlorobutadiene	ppb v/v	<29	<2.8	<2.8	<13	<6.5	<3.4	<3.2	<3.0	<5.3	<4.2	<3.8	<3.4
2-Hexanone	ppb v/v	<29	<2.8	<2.8	<13	<6.5	<3.4	<3.2	<3.0	<5.3	<4.2	<3.8	<3.4
Methylene Chloride	ppb v/v	<74	<7.1	<7.0	<32	<16	<8.5	<8.0	<7.6	<13	<10	<9.4	<8.4
4-Methyl-2-pentanone	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	< 0.80	< 0.76	<1.3	<1.0	<0.94	<0.84
Styrene	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84
1,1,2,2-Tetrachloroethane	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84
Tetrachloroethene	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	< 0.94	<0.84
Toluene	ppb v/v	<7.4	<0.71	0.94	<6.5	<3.2	<1.7	2.6	<1.5	<2.7	<2.1	<1.9	<1.7
1,2,4-Trichlorobenzene	ppb v/v	<29	<2.8	<2.8	<13	<6.5	<3.4	<3.2	<3.0	<5.3	<4.2	<3.8	<3.4
1,1,1-Trichloroethane	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84
1,1,2-Trichloroethane	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84
Trichloroethene	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84
Trichlorofluoromethane	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84

Parameters	Sample ID: Sample Date:	20220621 M-1 21-Jun-22	202209M-1 13-Sep-22	20221207 M-1 7-Dec-22	20230307 M-1 7-Mar-23	20230613M-1 13-Jun-23	20230906M-1 6-Sep-23	20231212 M-1 12-Dec-23	20240312M-1 12-Mar-24	20240618M-1 18-Jun-24	20240906 M-1 6-Sep-24	20241122M-1 22-Nov-24	20250320M-1 20-Mar-25
VOCs by TO-15, continued													
1,1,2-Trichloro-1,2,2-trifluoroethane	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84
1,2,4-Trimethylbenzene	ppb v/v	19	<0.71	6.1	11	6.2	2.6	1.1	1.2	<1.3	1.1	<0.94	<0.84
1,3,5-Trimethylbenzene	ppb v/v	16	<0.71	6.5	17	9.3	4.3	1.6	2.0	2.0	1.6	<0.94	1.3
Vinyl acetate	ppb v/v	<29	<2.8	<2.8	<13	<6.5	<3.4	<3.2	<3.0	<5.3	<4.2	<3.8	<3.4
Vinyl chloride	ppb v/v	<7.4	<2.8	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84
m,p-Xylene	ppb v/v	7.9	<0.71	2.1	5.8	3.6	1.2 J	2.0	<1.5	<2.7	<2.1	<1.9	3.4
o-Xylene	ppb v/v	<7.4	<0.71	<0.70	<3.2	<1.6	<0.85	<0.80	<0.76	<1.3	<1.0	<0.94	<0.84
Total VOC as Hexane (C6-C12)	ppb v/v	10,000	14	8,800	17,000	13,000	3,400	3,800	4,200	3,200	2,800	1,900	3,000

	l op of	Depth to				
Monitoring Well	Casing Elevation (AMSL-Feet)	Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwater Elevation (AMSL-Feet)
MW-1R	3888.97	06/03/14	44.57	49.89	5.32	3839.08
	3888.97	09/22/14	44.87	48.91	4.04	3840.06
	3888.97	12/10/14	45.80	46.30	0.50	3842.67
	3888.97	03/11/15	45.12	46.83	1.71	3842.14
	3888.97	06/10/15	45.54	46.31	0.77	3842.66
	3888.97	09/02/15	45.81	47.37	1.56	3841.60
	3888.97	12/09/15	45.22	49.07	3.85	3839.90
	3888.97	03/09/16	45.30	47.18	1.88	3841.79
	3888.97	06/28/16	45.75	47.02	1.27	3841.95
	3888.97	09/21/16	46.10	46.38	0.28	3842.59
	3888.97	12/07/16	46.13	46.88	0.75	3842.09
	3888.97	03/08/17	46.14	46.57	0.43	3842.40
	3888.97	06/06/17	45.82	48.86	3.04	3840.11
	3888.97	09/08/17	46.30	46.63	0.33	3842.34
	3888.97	12/04/17	46.36	46.77	0.41	3842.20
	3888.97	03/05/18	46.47	46.81	0.34	3842.16
	3888.97	06/05/18	46.56	46.93	0.37	3842.04
	3888.97	09/05/18	46.31	48.81	2.50	3840.16
	3888.97	12/11/18	46.34	49.11	2.77	3839.86
	3888.97	03/06/19	46.48	49.20	2.72	3839.77
	3888.97	06/04/19	46.58	48.84	2.26	3840.13
	3888.97	09/04/19	47.88	48.67	0.79	3840.30
	3888.97	12/06/19	47.13	47.43	0.79	3841.54
	3888.97	03/05/20	47.11	47.68	0.57	3841.29
	3888.97	06/06/20	47.21	47.45	0.37	3841.52
	3888.97	09/24/20	47.44	47.60	0.24	3841.37
	3888.97	12/10/20	47.51		0.18	3841.28
		03/02/21	47.48	47.69		
	3888.97			47.58	0.10	3841.39
	3888.97	06/08/21	47.52	48.30	0.78	3840.67
	3888.97	09/08/21	47.73	48.00	0.27	3840.97
	3888.97	12/07/21	47.87	48.03	0.16	3840.94
	3888.97	03/08/22	47.84	47.98	0.14	3840.99
	3888.97	06/21/22	48.06	48.11	0.05	3840.86
	3888.97	09/13/22	48.23	48.53	0.30	3840.44
	3888.97	12/07/22	48.38	48.52	0.14	3840.45
	3888.97	03/07/23	48.44	48.52	0.08	3840.45
	3888.97	06/13/23		48.45	0.00	3840.52
	3888.97	09/06/23		48.66	0.00	3840.31
	3888.97	12/12/23	48.98	48.99	0.01	3839.98
	3888.97	03/12/24	49.18	49.23	0.05	3839.74
	3888.97	06/18/24	49.73	49.98	0.25	3838.99
	3888.97	09/06/24	49.80	49.87	0.07	3839.10
	3888.97	11/21/24	49.56	49.60	0.04	3839.37
	3888.97	03/20/25		49.51		3839.46

Monitoring Well	Top of Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwater Elevation (AMSL-Feet)
MW-2	3890.51	06/03/14		47.23		3843.28
	3890.51	09/22/14		46.37		3844.14
	3890.51	12/10/14		45.91		3844.60
	3890.51	03/11/15		46.03		3844.48
	3890.51	06/10/15		46.38		3844.13
	3890.51	09/02/15		46.44		3844.07
	3890.51	12/09/15		46.51		3844.00
	3890.51	03/09/16		46.61		3843.90
	3890.51	06/28/16		46.70		3843.81
	3890.51	09/21/16		46.80		3843.71
	3890.51	12/07/16		46.82		3843.69
	3890.51	03/08/17		46.88		3843.63
	3890.51	06/06/17		46.98		3843.53
	3890.51	09/08/17		47.06		3843.45
	3890.51	12/04/17		47.11		3843.40
	3890.51	03/05/18		47.22		3843.29
	3890.51	06/05/18		47.31		3843.20
	3890.51	09/05/18		47.36		3843.15
	3890.51	12/11/18		47.46		3843.05
	3890.51	03/06/19		47.51		3843.00
	3890.51	06/04/19		47.61		3842.90
	3890.51	09/04/19		47.76		3842.75
	3890.51	12/06/19		47.81		3842.70
	3890.51	03/05/20		47.91		3842.60
	3890.51	06/06/20		49.98		3840.53
	3890.51	09/24/20		48.14		3842.37
	3890.51	12/10/20		48.21		3842.30
	3890.51	03/02/21		48.25		3842.26
	3890.51	06/08/21		48.31		3842.20
	3890.51	09/08/21		48.41		3842.10
	3890.51	12/07/21		48.51		3842.00
	3890.51	03/08/22		48.58		3841.93
	3890.51	06/21/22		48.72		3841.79
	3890.51	09/13/22		48.82		3841.69
	3890.51	12/07/22		48.90		3841.61
	3890.51	03/07/23		49.00		3841.51
	3890.51	06/13/23		49.00		3841.33
	3890.51	09/06/23		49.18		3841.28
	3890.51	12/12/23		49.23		3840.98
		03/12/24				
	3890.51			49.74		3840.77
	3890.51	06/18/24		50.18		3840.33
	3890.51	09/06/24		50.01		3840.50
	3890.51	11/21/24		50.10		3840.41
	3890.51	03/20/25		50.12		3840.39

	Lop of Casing	Depth to Liquid	Depth to	Depth to	LNAPL	Groundwater	
Monitoring Well	Elevation (AMSL-Feet)	Measurement Date	LNAPL (Feet-TOC)	Groundwater (Feet-TOC)	Thickness (Feet)	Elevation (AMSL-Feet)	
MW-3	3889.34	06/03/14		46.35		3842.99	
	3889.34	09/22/14		46.49		3842.85	
	3889.34	12/10/14		46.08		3843.26	
	3889.34	03/11/15		46.28		3843.06	
	3889.34	06/10/15		46.51		3842.83	
	3889.34	09/02/15		46.60		3842.74	
	3889.34	12/09/15		46.68		3842.66	
	3889.34	03/09/16		46.72		3842.62	
	3889.34	06/28/16		46.85		3842.49	
	3889.34	09/21/16		46.96		3842.38	
	3889.34	12/07/16		47.02		3842.32	
	3889.34	03/08/17		47.11		3842.23	
	3889.34	06/06/17		47.13		3842.21	
	3889.34	09/08/17		47.23		3842.11	
	3889.34	12/04/17		47.28		3842.06	
	3889.34	03/05/18		47.44		3841.90	
	3889.34	06/05/18		47.48		3841.86	
	3889.34	09/05/18		47.55		3841.79	
	3889.34	12/11/18		47.60		3841.74	
	3889.34	03/06/19		47.68		3841.66	
	3889.34	06/04/19		47.80		3841.54	
	3889.34	09/04/19		47.95		3841.39	
	3889.34	12/06/19		48.00		3841.34	
	3889.34	03/05/20		48.03		3841.31	
	3889.34	06/06/20		48.16		3841.18	
	3889.34	09/24/20		48.34		3841.00	
	3889.34	12/10/20		48.42		3840.92	
	3889.34	03/02/21		48.42		3840.92	
	3889.34	06/08/21		48.50		3840.84	
	3889.34	09/08/21		48.60		3840.74	
		12/07/21					
	3889.34 3889.34			48.71		3840.63	
		03/08/22		48.74		3840.60	
	3889.34	06/21/22		48.89		3840.45	
	3889.34	09/13/22		49.02		3840.32	
	3889.34	12/07/22		49.10		3840.24	
	3889.34	03/07/23		49.22		3840.12	
	3889.34	06/13/23		49.27		3840.07	
	3889.34	09/06/23		49.45		3839.89	
	3889.34	12/12/23		49.77		3839.57	
	3889.34	03/12/24		50.00		3839.34	
	3889.34	06/18/24		50.42		3838.92	
	3889.34	09/06/24		50.20		3839.14	
	3889.34	11/21/24		50.31		3839.03	
	3889.34	03/20/25		50.36		3838.98	

Monitoring Well	Top of Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwater Elevation (AMSL-Feet)
MW-4	3888.90	06/03/14		46.38		3842.52
	3888.90	09/22/14		46.50		3842.40
	3888.90	12/10/14		46.14		3842.76
	3888.90	03/11/15		46.35		3842.55
	3888.90	06/10/15		46.49		3842.41
	3888.90	09/02/15		46.57		3842.33
	3888.90	12/09/15		46.68		3842.22
	3888.90	03/09/16		46.75		3842.15
	3888.90	06/28/16		46.87		3842.03
	3888.90	09/21/16		46.94		3841.96
	3888.90	12/07/16		47.03		3841.87
	3888.90	03/08/17		47.08		3841.82
	3888.90	06/06/17		47.15		3841.75
	3888.90	09/08/17		47.24		3841.66
	3888.90	12/04/17		47.29		3841.61
	3888.90	03/05/18		47.38		3841.52
	3888.90	06/05/18		47.50		3841.40
	3888.90	09/05/18		47.53		3841.37
	3888.90	12/11/18		47.62		3841.28
	3888.90	03/06/19		47.72		3841.18
	3888.90	06/04/19		47.80		3841.10
	3888.90	09/04/19		47.98		3840.92
	3888.90	12/06/19		48.00		3840.90
	3888.90	03/05/20		48.07		3840.83
	3888.90	06/06/20		48.20		3840.70
	3888.90	09/24/20		48.32		3840.58
	3888.90	12/10/20		48.39		3840.51
	3888.90	03/02/21		48.44		3840.46
	3888.90	06/08/21		48.55		3840.35
	3888.90	09/08/21		48.60		3840.30
	3888.90	12/07/21		48.72		3840.18
	3888.90	03/08/22		48.80		3840.10
	3888.90	06/21/22		48.92		3839.98
	3888.90	09/13/22		49.02		3839.88
	3888.90	12/07/22		49.06		3839.84
	3888.90	03/07/23		49.17		3839.73
	3888.90	06/13/23		49.17		3839.63
	3888.90	09/06/23		49.27		3839.47
	3888.90	12/12/23		50.02		3838.88
	3888.90	03/12/24		50.02		3838.81
	3888.90	06/18/24		50.54		3838.36
		09/06/24				
	3888.90			50.30		3838.60
	3888.90	11/21/24		50.41		3838.49
	3888.90	03/20/25		50.44		3838.46

Monitoring Well	Top of Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwater Elevation (AMSL-Feet)
MW-5	3890.41	06/03/14		46.56		3843.85
	3890.41	09/22/14		46.70		3843.71
	3890.41	12/10/14		46.29		3844.12
	3890.41	03/11/15		46.44		3843.97
	3890.41	06/10/15		46.69		3843.72
	3890.41	09/02/15		46.79		3843.62
	3890.41	12/09/15		46.85		3843.56
	3890.41	03/09/16		46.90		3843.51
	3890.41	06/28/16		47.08		3843.33
	3890.41	09/21/16		47.13		3843.28
	3890.41	12/07/16		47.14		3843.27
	3890.41	03/08/17		47.23		3843.18
	3890.41	06/06/17		47.32		3843.09
	3890.41	09/08/17		47.40		3843.01
	3890.41	12/04/17		47.27		3843.14
	3890.41	03/05/18		47.54		3842.87
	3890.41	06/05/18		47.66		3842.75
	3890.41	09/05/18		47.72		3842.69
	3890.41	12/11/18		47.80		3842.61
	3890.41	03/06/19		47.85		3842.56
	3890.41	06/04/19		47.98		3842.43
	3890.41	09/04/19		48.15		3842.26
	3890.41	12/06/19		48.17		3842.24
	3890.41	03/05/20		48.23		3842.18
	3890.41	06/06/20		48.33		3842.08
	3890.41	09/24/20		48.51		3841.90
	3890.41	12/10/20		48.60		3841.81
	3890.41	03/02/21		48.60		3841.81
	3890.41	06/08/21		48.66		3841.75
	3890.41	09/08/21		48.76		3841.65
	3890.41	12/07/21		48.90		3841.51
	3890.41	03/08/22		48.90		3841.51
	3890.41	06/21/22		49.09		3841.32
	3890.41	09/13/22		49.09		3841.22
	3890.41 3890.41	12/07/22 03/07/23		49.28 49.38		3841.13 3841.03
	3890.41	03/07/23		49.38		3841.03
	3890.41	09/06/23		49.64		3840.77
	3890.41	12/12/23		49.84		3840.57
	3890.41	03/12/24		50.12		3840.29
	3890.41	06/18/24		50.52		3839.89
	3890.41	09/06/24		50.39		3840.02
	3890.41	11/21/24		50.42		3839.99
	3890.41	03/20/25		50.49		3839.92

Monitoring Well	Top of Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwater Elevation (AMSL-Feet)
MW-6	3888.25	06/03/14		46.25		3842.00
	3888.25	09/22/14		46.39		3841.86
	3888.25	12/10/14		46.09		3842.16
	3888.25	03/11/15		46.23		3842.02
	3888.25	06/10/15		46.32		3841.93
	3888.25	09/02/15		46.48		3841.77
	3888.25	12/09/15		46.57		3841.68
	3888.25	03/09/16		46.62		3841.63
	3888.25	06/28/16		46.74		3841.51
	3888.25	09/21/16		46.81		3841.44
	3888.25	12/07/16		46.90		3841.35
	3888.25	03/08/17		46.93		3841.32
	3888.25	06/06/17		47.08		3841.17
	3888.25	09/08/17		47.12		3841.13
	3888.25	12/04/17		47.21		3841.04
	3888.25	03/05/18		47.30		3840.95
	3888.25	06/05/18		47.36		3840.89
	3888.25	09/05/18		47.43		3840.82
	3888.25	12/11/18		47.52		3840.73
	3888.25	03/06/19		47.60		3840.65
	3888.25	06/04/19		47.71		3840.54
	3888.25	09/04/19		47.81		3840.44
	3888.25	12/06/19		47.90		3840.35
	3888.25	03/05/20		47.98		3840.27
	3888.25	06/06/20		48.08		3840.17
	3888.25	09/24/20		48.23		3840.02
	3888.25	12/10/20		48.28		3839.97
	3888.25	03/02/21		48.33		3839.92
	3888.25	06/08/21		48.48		3839.77
	3888.25	09/08/21		48.50		3839.75
	3888.25	12/07/21		48.60		3839.65
	3888.25	03/08/22		48.67		3839.58
	3888.25	06/21/22		48.82		3839.43
	3888.25	09/13/22		48.91		3839.34
	3888.25	12/07/22		49.01		3839.24
	3888.25	03/07/23		49.06		3839.19
	3888.25	06/13/23		49.00		3839.08
	3888.25	09/06/23		49.17		3838.95
	3888.25	12/12/23		50.21		3838.04
	3888.25	03/12/24		50.21		3838.18
	3888.25	06/18/24		50.62		3837.63
		09/06/24		50.62		3838.02
	3888.25					
	3888.25	11/21/24		50.42		3837.83
	3888.25	03/20/25		50.51		3837.74

Monitoring Well	Top of Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwater Elevation (AMSL-Feet)
MW-7	3889.23	06/03/14		45.94		3843.29
	3889.23	09/22/14		46.08		3843.15
	3889.23	12/10/14		45.70		3843.53
	3889.23	03/11/15		45.36		3843.87
	3889.23	06/10/15		46.08		3843.15
	3889.23	09/02/15		46.14		3843.09
	3889.23	12/09/15		46.24		3842.99
	3889.23	03/09/16		46.30		3842.93
	3889.23	06/28/16		46.42		3842.81
	3889.23	09/21/16		46.52		3842.71
	3889.23	12/07/16		46.59		3842.64
	3889.23	03/08/17		46.65		3842.58
	3889.23	06/06/17		46.73		3842.50
	3889.23	09/08/17		46.80		3842.43
	3889.23	12/04/17		46.88		3842.35
	3889.23	03/05/18		46.96		3842.27
	3889.23	06/05/18		47.04		3842.19
	3889.23	09/05/18		47.11		3842.12
	3889.23	12/11/18		47.20		3842.03
	3889.23	03/06/19		47.27		3841.96
	3889.23	06/04/19		47.37		3841.86
	3889.23	09/04/19		47.50		3841.73
	3889.23	12/06/19		47.58		3841.65
	3889.23	03/05/20		47.66		3841.57
	3889.23	06/06/20		47.72		3841.51
	3889.23	09/24/20		47.90		3841.33
	3889.23	12/10/20		47.96		3841.27
	3889.23	03/02/21		48.02		3841.21
	3889.23	06/08/21		48.06		3841.17
	3889.23	09/08/21		48.14		3841.09
	3889.23	12/07/21		48.26		3840.97
	3889.23	03/08/22		48.33		3840.90
	3889.23	06/21/22		48.44		3840.79
	3889.23	09/13/22		48.58		3840.65
	3889.23	12/07/22		48.70		3840.53
	3889.23	03/07/23		48.75		3840.48
	3889.23	06/13/23		48.83		3840.40
	3889.23	09/06/23		48.97		3840.26
	3889.23	12/12/23		49.55		3839.68
	3889.23	03/12/24		49.64		3839.59
	3889.23	06/18/24				3839.12
		09/06/24		50.11		3839.12
	3889.23			49.80		
	3889.23	11/21/24		49.96		3839.27
	3889.23	03/20/25		49.98		3839.25

Monitoring Well	l op of Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwater Elevation (AMSL-Feet)
MW-8	3887.06	06/03/14		44.94		3842.12
	3887.06	09/22/14		45.11		3841.95
	3887.06	12/10/14		44.79		3842.27
	3887.06	03/11/15		44.94		3842.12
	3887.06	06/10/15		45.22		3841.84
	3887.06	09/02/15		45.21		3841.85
	3887.06	12/09/15		45.29		3841.77
	3887.06	03/09/16		45.35		3841.71
	3887.06	06/28/16		45.56		3841.50
	3887.06	09/21/16		45.67		3841.39
	3887.06	12/07/16		45.64		3841.42
	3887.06	03/08/17		45.68		3841.38
	3887.06	06/06/17		45.78		3841.28
	3887.06	09/08/17		45.82		3841.24
	3887.06	12/04/17		45.91		3841.15
	3887.06	03/05/18		46.03		3841.03
	3887.06	06/05/18		46.12		3840.94
	3887.06	09/05/18		46.16		3840.90
	3887.06	12/11/18		46.26		3840.80
	3887.06	03/06/19		46.33		3840.73
	3887.06	06/04/19		46.42		3840.64
	3887.06	09/04/19		46.53		3840.53
	3887.06	12/06/19		46.62		3840.44
	3887.06	03/05/20		46.71		3840.35
	3887.06	06/06/20		46.79		3840.27
	3887.06	09/24/20		46.95		3840.11
	3887.06	12/10/20		47.02		3840.04
	3887.06	03/02/21		47.06		3840.00
	3887.06	06/08/21		47.21		3839.85
	3887.06	09/08/21		47.25		3839.81
	3887.06	12/07/21		47.36		3839.70
	3887.06	03/08/22		47.41		3839.65
	3887.06	06/21/22		47.55		3839.51
	3887.06	09/13/22		47.66		3839.40
	3887.06	12/07/22		47.75		3839.31
	3887.06	03/07/23		47.82		3839.24
	3887.06	06/13/23		47.92		3839.14
	3887.06	09/06/23		48.11		3838.95
	3887.06	12/12/23		48.75		3838.31
	3887.06	03/12/24		48.80		3838.26
	3887.06	06/18/24		49.25		3837.81
	3887.06					
		09/06/24		48.93		3838.13
	3887.06	11/21/24 03/20/25		49.07		3837.99
	3887.06	03/20/23		49.11		3837.95

Notes:

1. TOC : Measured from top of casing.

2. LNAPL : Light non-aqueous phase liquid.

3. ---: Denotes not measured.

4. AMSL : Denotes above mean sea level (AMSL).

Table 4 : Summary of Laboratory Analytical Results for Chloride in
Groundwater SamplesExpand Energy Corporation, State M Lease (AP-72)
Lea County, New Mexico

	Chloride (mg/L)											
	June 2014	Sept. 2014	Dec. 2014	March 2015	June 2015	Sept. 2015	Dec. 2015	March 2016	June 2016	Sept. 2016	Dec. 2016	
MW-1R		51.4	116	39.0	24.6	21.6	23.5	34.8	24.9	28.5	44.8	
MW-2	17.7	17.4	18.3	16.6	16.8	16.6	15.4 *	13.5	18.9	17.6	18.2	
MW-3	59.7	59.7	58.9	57.0	57.1	56.3	50.5 *	49.3	51.5	52.0	55.1	
MW-4	586	534	535	543	556	567	546 *	525	527	569	605	
MW-5	28.6	27.3	27.9	26.1	26.2	25.8	22.4 *	22.4	26.1	26.2	27.8	
MW-6	282	263	268	261	253	277	197 *	150	128	128	125	
MW-7	42.7	29.6	36.0	39.7	36.2	35.2	28.8 *	27.7	36.0	38.2	39.6	
MW-8	409	442	463	485	558	327	499	504	539	490	768	

Notes:

1. mg/L : milligrams per liter.

2. < : Analyte not detected at the laboratory reporting limit (RL).

3. All analyses performed by TestAmerica Laboratories in Nashville, Tennessee.

4. Cells shaded in blue indicate results that are above the laboratory RL.

 Cells with text bolded indicate results that exceed the New Mexico Administrative Code (NMAC) 20.6.2.3103, Standards for Groundwater: 10,000 mg/L total dissolved solids (TDS) and 250.0 mg/L chloride.

6. --- : Analysis not performed.

7. * : Analysis performed outside of holding time.

8. December 2016 results for MW-1R and MW-8 were confirmed by laboratory reanalysis.

9. Sample MW-1R was collected in December 2017 under sample ID MW-R1 as shown on the COC and in the field book.

10. Beginning with the September 2019 sampling event, Eurofins (Edison, NJ) became the Project Laboratory.

Table 4 : Summary of Laboratory Analytical Results for Chloride in
Groundwater SamplesExpand Energy Corporation, State M Lease (AP-72)

					Lea County, I	New Mexico								
		Chloride (mg/L)												
	June 2017	Sept. 2017	Dec. 2017	March 2018	June 2018	Sept. 2018	Dec. 2018	March 2019	June 2019	Sept. 2019	Dec. 2019			
MW-1R	28.6	29.3	29.0	33.7										
MW-2	15.9	15.2	16.2	16.6										
MW-3	53.7	49.5	58.1	64.3										
MW-4	493	465	492	484	413	387	373	617	392	404	421			
MW-5	24.7	20.4	25.4	25.9										
MW-6	86.3	79.3	71.8	64.7										
MW-7	23.8	24.0	27.7	31.6										
MW-8	531	573	570	587	539	398	474	308	283	223	198			

Notes:

1. mg/L : milligrams per liter.

2. < : Analyte not detected at the laboratory reporting limit (RL).

3. All analyses performed by TestAmerica Laboratories in Nashville, Tennessee.

4. Cells shaded in blue indicate results that are above the laboratory RL.

 Cells with text bolded indicate results that exceed the New Mexico Administrative Code (NMAC) 20.6.2.3103, Standards for Groundwater: 10,000 mg/L total dissolved solids (TDS) and 250.0 mg/L chloride.

6. --- : Analysis not performed.

7. * : Analysis performed outside of holding time.

8. December 2016 results for MW-1R and MW-8 were confirmed by laboratory reanalysis.

9. Sample MW-1R was collected in December 2017 under sample ID MW-R1 as shown on the COC and in the field book.

10. Beginning with the September 2019 sampling event, Eurofins (Edison, NJ) became the Project Laboratory.

Table 4 : Summary of Laboratory Analytical Results for Chloride in
Groundwater SamplesExpand Energy Corporation, State M Lease (AP-72)

Lea County, New Mexico

	Chloride (mg/L)											
	March 2020	June 2020	Sept. 2020	Dec. 2020	March 2021	June 2021	Sept. 2021	Dec. 2021	March 2022	June 2022	Sept. 2022	
MW-1R												
MW-2												
MW-3												
MW-4	443	429	430	475	437	528	438	404	387	414	412	
MW-5												
MW-6												
MW-7												
MW-8	118	97.4	88.8	73.5	63.9	92.5	65.4	56.2	29.6			

Notes:

1. mg/L : milligrams per liter.

2. < : Analyte not detected at the laboratory reporting limit (RL).

3. All analyses performed by TestAmerica Laboratories in Nashville, Tennessee.

4. Cells shaded in blue indicate results that are above the laboratory RL.

 Cells with text bolded indicate results that exceed the New Mexico Administrative Code (NMAC) 20.6.2.3103, Standards for Groundwater: 10,000 mg/L total dissolved solids (TDS) and 250.0 mg/L chloride.

6. --- : Analysis not performed.

7. * : Analysis performed outside of holding time.

8. December 2016 results for MW-1R and MW-8 were confirmed by laboratory reanalysis.

9. Sample MW-1R was collected in December 2017 under sample ID MW-R1 as shown on the COC and in the field book.

10. Beginning with the September 2019 sampling event, Eurofins (Edison, NJ) became the Project Laboratory.
Table 4 : Summary of Laboratory Analytical Results for Chloride in
Groundwater SamplesExpand Energy Corporation, State M Lease (AP-72)
Lea County, New Mexico

		Chloride (mg/L)								
	Dec. 2022	March 2023	June 2023	Sept. 2023	Dec. 2023	March 2024	June 2024	Sept. 2024	Nov. 2024	March 2025
MW-1R										
MW-2										
MW-3										
MW-4	398	376	356	402	362	339	374	361	345	290
MW-5										
MW-6										
MW-7										
MW-8										

Notes:

1. mg/L : milligrams per liter.

2. < : Analyte not detected at the laboratory reporting limit (RL).

3. All analyses performed by TestAmerica Laboratories in Nashville, Tennessee.

4. Cells shaded in blue indicate results that are above the laboratory RL.

 Cells with text bolded indicate results that exceed the New Mexico Administrative Code (NMAC) 20.6.2.3103, Standards for Groundwater: 10,000 mg/L total dissolved solids (TDS) and 250.0 mg/L chloride.

6. --- : Analysis not performed.

7. * : Analysis performed outside of holding time.

8. December 2016 results for MW-1R and MW-8 were confirmed by laboratory reanalysis.

9. Sample MW-1R was collected in December 2017 under sample ID MW-R1 as shown on the COC and in the field book.

10. Beginning with the September 2019 sampling event, Eurofins (Edison, NJ) became the Project Laboratory.

Table 5 : Summary of Laboratory Analytical Results for Groundwater SamplesChesapeake Energy Corporation, State M LeaseLea County, New Mexico

	Cleanup		MW-1R	MW-1R	MW-1R	MW-1R
Parameters	Levels	Sample Date:	21-Jun-22	13-Sep-22	7-Dec-22	7-Mar-23
Volatile Organic Compounds (VOCs)		Units				
Benzene	5	μg/L	3.71	3.80	2.55	1.59
Toluene	1000	μg/L	0.902	0.955	<0.500	<0.500
Ethylbenzene	700	μg/L	215	211	75.4	23.0
Xylenes, Total	620	μg/L	261	235	76.0	18.2

Notes:

1. μ g/L : micrograms per liter.

2. All analyses performed by Eurofins (formerly TestAmerica Laboratories).

3. < : Analyte not detected at the laboratory Reporting Limit (RL).

4. Cells shaded in blue indicate results that are above the laboratory Reporting Limit (RL).

5. Cleanup Criteria obtained from New Mexico Administrative Code (NMAC) 20.6.2.3103, Standards for Groundwater of 10,000 milligrams

per liter (mg/L) Concentration or Less: benzene (5 µg/L), toluene (1000 mg/L), ethylbenzene (700 mg/L), and xylenes (620 mg/L).

•

FIGURES

Released to Imaging: 6/17/2025 9:46:51 AM

Released to Imaging: 6/17/2025 9:46:51 AM

www.EQUUSENV.com

DOCUME	NT TITLE ELEVENTH ANNUAL GROUNDWATER MONITORING REPORT		FIGU	RE TITL
CLIENT	EXPAND ENERGY CORPORATION			
	OKLAHOMA CITY, OKLAHOMA	DESIGNE	D BY	MM
LOCATION STATE M LEASE (AP-72)		APPROVE	D BY	MM
	SEC. 18, T17S, R36E, LEA COUNTY, NEW MEXICO	DRAW	/N BY	SK

APPENDICES

- A Stage 2 Abatement Plan
- B NMOCD Approval of Stage 2 Abatement Plan
- C Laboratory Analytical Reports and Chain-of-Custody Documentation

APPENDIX A

STAGE 2 ABATEMENT PLAN

Mr. Glenn Von Gonten New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Subject: State M-1 AP-072 Stage 2 Abatement Plan

Dear Mr. Von Gonten:

On behalf of Chesapeake Energy Corporation, ARCCADIS U.S. Inc. respectfully submits the enclosed Stage 2 Abatement plan for the State M-1 site (AP-072). A Stage 1 Abatement Plan Report was submitted on March 20, 2012. Your review and approval of this Abatement Plan will be appreciated. The landowner, Darr Angell, is anxious for us to complete soil remediation at this site.

If you have any questions please do not hesitate to contact Bradley Blevins at (575) 391-1462 or via e-mail at bblevins@chkenergy or me at (432) 687-5400, e-mail address shall@aracdis-us.com.

ARCADIS U.S., Inc. 1004 North Big Spring Street Suite 300 Midland Texas 79701 Tel 432 687 5400 Fax 432 687 5401 www.arcadis-us.com

ENVIRONMENT

Date: March 27, 2012

Contact: Sharon Hall

Phone: 432 687-5400

Email: shall@aracdis-us.com

Our ref: MT001088

ARCADIS U.S., Inc. TX Engineering License # F-533

Sincerely,

ARCADIS U.S., Inc.

Sham E. Hael

Sharon E. Hall Associate Vice President

^{Copies:} <mark>Bradley Blevins- C</mark>hesapeake, Hobbs

Imagine the result

g:\aproject\chesapeake\m-1 stage 2 plan\transmitall letter.doc

Received by OCD: 6/4/2025 10:09:49 AM

Imagine the result

Chesapeake Energy Corporation

State M-1 AP-072 Stage 2 Abatement Plan Proposal

Hobbs, New Mexico

March 27, 2012

State M-1 AP-072

Stage 2 Abatement Plan Proposal

Prepared for: Chesapeake Energy Corporation Hobbs, New Mexico

Prepared by: ARCADIS U.S., Inc. 1004 North Big Spring Street Suite 300 Midland Texas 79701 Tel 432 687 5400 Fax 432 687 5401

Our Ref.: MT001088.0001.00001

Date: March 27, 2012

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Sharon Hall Associate Vice President

i

Table of Contents

1.	INTRODUCTION 1					
2 .	SUMMARY OF STAGE 1 ABATEMENT ACTIVITIES 1					
3.	STAGE 2 ABATEMENT PLAN PROPOSAL 2					
	3.1	Soil Re	emediation	2		
	3.2	Ground	dwater Remediation and Monitoring	3		
		3.2.1	Chlorides	4		
		3.2.2	Hydrocarbons	4		
4.	PUBLIC NOTIFICATION					
5.	REMEDIATION WORK SCHEDULE 4					
6 .	REFERENCES 5					

Figures

Figure 1 Soil and Groundwater Analyte Concentrations

Figure 2 Proposed Excavation

Appendices

Appendix A Multi-Med Model Inputs and Outputs

State M-1 AP-072

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

1. INTRODUCTION

ARCADIS

The subject site is a former tank battery site located east of Buckeye, New Mexico. The site was purchased by Chesapeake Energy Corporation (Chesapeake) in April 2004. Chesapeake did not operate the tank battery or the associated well field and began the process of facility abandonment in 2007.

Seven monitor wells and nine soil borings have been drilled at the site. Elevated chloride concentrations and limited hydrocarbon compounds were detected in soil samples collected from soil borings and monitoring wells. Elevated chlorides were detected in the down gradient monitor wells and light non-aqueous phase liquid (LNAPL) occurs in monitoring well MW-1. LNAPL recovery activities have been piloted at the site and will commence again upon completion of surface reclamation activities.

2. SUMMARY OF STAGE 1 ABATEMENT ACTIVITIES

Initial site investigation activities were conducted in May of 2007 following abandonment of the tank battery. Stage 1 Abatement activities were conducted during the period of May 2007 through September 2011. Stage 1 Abatement activities included drilling and soil sampling of nine boreholes, drilling and sampling of seven monitor wells, EM 31 and EM 34 surveys, conversion of one monitoring well into a recovery well and recovery of phase-separated hydrocarbons from the recovery well.

New Mexico Oil Conservation Division (NMOCD) was notified of impacts to groundwater at the site via e-mail on May 30, 2007. NMOCD notified Chesapeake in a letter dated June 19, 2007 that a Stage 1 Abatement Plan was required for the site in accordance with Rule 19.

The Stage 1 Abatement Plan was submitted to NMOCD on August 22, 2007. The plan summarized site activities taken to date. The plan proposed the drilling and sampling of a minimum of three additional soil borings and installation and sampling of nine groundwater monitoring wells.

BBC contacted NMOCD via email on April 24, 2010 to inquire about the status of the Stage 1 Abatement Plan approval and Chesapeake's desire to conduct the proposed Stage 1 Abatement Plan activities. On May 27, 2010, NMOCD responded via email that the State was not staffed to review the Abatement Plans (APs) in a timely manner. On June 23, 2010, BBC contacted NMOCD via email to request a waiver of the Public Notice requirement and inform NMOCD that Chesapeake and the landowner were

State M-1 AP-072

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

ARCADIS

anxious to move forward with the proposed AP activities. NMOCD replied via email on June 23, 2010 stating they were still understaffed to review the AP and could not waive the Public Notice requirement. They advised BBC that Chesapeake could proceed "at risk." On July 12, 2010 BBC informed NMOCD by registered letter that Chesapeake was planning to start the Stage 1 Assessment on or about August 23, 2010. They further informed NMOCD they would be submitting the required Public Notices, a copy of which was attached to the letter. NMOCD did not respond to the registered letter.

The public notices were published in the Hobbs News-Sun and Lovington Leader on July 22, 2010 and the Albuquerque Journal on July 24, 2010. No comments were received from the public or NMOCD during the 30-day comment period and Chesapeake proceeded with the proposed Stage 1 Abatement Plan activities on August 26, 2010. Copies of correspondence and Public Notice are included in Appendix A.

A detailed description of site activities and results can be found in the report submitted to NMOCD dated March 20, 2012 entitled State M-1 AP-072, Stage 1 Abatement Report (Site Assessment Investigation). Analytical results for soil and groundwater sampling are summarized on Figure 1.

3. STAGE 2 ABATEMENT PLAN PROPOSAL

After review of various remedial options, we propose the following Stage 2 Abatement Plan. The plan addresses soil and groundwater remediation.

3.1 Soil Remediation

The selected remedial option will be the excavation of near-surface soils and installation of clay liners. The anticipated extent and depth of excavation is based on assessment activities (laboratory analysis and visual observation) and is shown in Figure 2. Near surface soils (to a depth of 5 feet below ground surface) with chloride concentrations in excess of 1,000 milligrams per kilogram (mg/kg) and a Total Petroleum Hydrocarbons (TPH) concentration in excess of 1,000 mg/kg will be excavated and disposed. Excavated soils will be disposed at Lea Land Landfill.

Areas where chloride or TPH concentrations are expected to exceed 1,000 mg/kg at depths greater than 5 feet below ground surface soils will be excavated to a depth of 5

g:\aproject\chesapeake\m-1 stage 2 plan\m-1 stage 2 abatement plan final report.doc

ARCADIS

State M-1 AP-072

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

feet below ground surface. Soils will be screened in the field for chlorides using chloride field test kits and for TPH using a photoionization. Critical samples (samples used to delineate the excavations) will be submitted for laboratory analysis of chlorides and/or TPH. Following excavation, a 12-inch compacted clay layer that meets or exceeds a permeability of equal to or less than 1×10^{-8} centimeters per second will be installed in the excavations. The lined excavations will be backfilled with four feet of locally obtained native soil. All of the excavated areas will be re-seeded with native vegetation. Areas that are supporting vegetation will not be disturbed.

Use of the USEPA Multi-Med model demonstrates that the clay liners will mitigate the leaching of chlorides to groundwater. The model predicts that after 7000 years of infiltration through the liner the maximum concentration of chlorides in groundwater will be 221.8 milligrams per liter (mg/L). The Multi-Med inputs and outputs are included in Appendix A.

3.2 Groundwater Remediation and Monitoring

One additional groundwater monitoring well will be installed downgradient of the site. The monitoring well will be designated MW-8.

Groundwater samples will be collected from all of the monitoring wells and analyzed for chlorides using USEPA method 9056 for each of four quarters. Based on sample results for one year (four quarters), sampling frequency will be reviewed and may be revised.

Sampling will be discontinued when eight quarters of sample results indicate chloride concentrations are below New Mexico Water Quality Control Commission, Title 20, Chapter 6, Part 2 standards. Sample results will be submitted to the NMOCD annually on June 15.

Following removal of LNAPL from MW-1, groundwater samples will be collected from MW-1 and analyzed for benzene, toluene ethylbenzene and xylenes (BTEX) using USEPA method 8260B for each of four quarters. Based on sample results for one year (four quarters), sampling frequency will be reviewed and may be revised.

Sampling of MW-1 for BTEX will be discontinued when eight quarters of sample results indicate BTEX concentrations are below New Mexico Water Quality Control Commission, Title 20, Chapter 6, Part 2 standards. Sample results will be submitted to

g:\aproject\chesapeake\m-1 stage 2 plan\m-1 stage 2 abatement plan final report.doc

State M-1 AP-072

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

ARCADIS

the NMOCD annually on June 15. Proposed groundwater remediation is presented in Sections 3.2.1 and 3.2.2.

3.2.1 Chlorides

Chloride concentrations in groundwater exceed New Mexico Water Quality Control Commission standards in two wells (MW-1 411mg/L and MW-4 472mg/L).

Removal of near-surface soils that are a potential source of chlorides and BTEX in groundwater and lining of excavations with chloride and TPH concentrations in excess of 1,000 mg/kg will mitigate leaching of chlorides to groundwater. Considering the relatively low concentrations of chlorides in groundwater and the fact that soil removal and clay liner infiltration barrier installation will be conducted at this site, we propose monitoring the site for a period of two years before considering pumping of groundwater at this site. With the proposed source removal and mitigation and the severe drought conditions being experienced in this area, we believe it prudent to evaluate if chloride mass removal by pumping is warranted at this site.

3.2.2 Hydrocarbons

A pilot LNAPL recovery test will take place over a three week period and will be used to develop long-term recovery procedures. LNAPL will be recovered from MW-1 and disposed in a NMOCD approved facility. Additionally, two soil vent borings equipped with wind turbines will be installed in the area near MW-1.

4. PUBLIC NOTIFICATION

Written notification of submittal of the Stage 2 Abatement Plan Proposal and site activities will be sent to all surface owners of record within a one-mile radius of the site. NMOCD will be supplied with a list of parties to be notified. Publication of notice of activities will be published in a state-wide circulated newspaper, the Albuquerque Journal, and two county newspapers, the Hobbs-Daily News Sun and the Lovington Leader.

5. REMEDIATION WORK SCHEDULE

Soil remediation activities are expected to be completed in 15 working days (Monday through Friday). Groundwater remediation activities will be ongoing. An estimated completion date for groundwater remediation is not available.

State M-1 AP-072

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

6. REFERENCES

Groundwater Handbook; United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Research Information; 1992

New Mexico Water Quality Control Commission, Title 20 Chapter 6, Part 2, Subpart I

State M-1 AP-072 Stage 1 Abatement Report (Site Assessment Investigation); ARCADIS; March 2012

State M-1Salt Water Disposal Tank Battery, Stage 1 Abatement Plan (Ap-072), BBC International; August 2007

New Mexico Water Quality Control Commission, Title 20 Chapter 6, Part 2, Subpart I

Page 57 of 250

.

Appendix A

Multi-Med Model Inputs and Outputs

Chesapeake State M-1 Chesapeake Energy Corporation Buckeye, Lea County, New Mexico Multimed Model Input and Output (With Liner)

MOD	EL INPUT	AND OUT	PUT			MODEL	RANGE
	VPUT PAF	RAMETERS	S			Minimum	Maximum
	U	nsaturated	d Zone Flo	w Parameters			
Depth of Unsaturated Zone	m	45	feet	13.7 m		0.000000001	None
Hydraulic Conductivity	cm/hr	2	ft/day	2.54 cm	i/hr 👘	0.00000000001	10,000
Unsaturated Zone Porosity	fraction	0.05	fraction	0.05 frac	ction	0.000000001	0.99
Residual Water Content	fraction	0.01	fraction		ction	0.000000001	1
	Uns	aturated Z	one Trans	port Parameters	\$		
Thickness of Layer	m	45	feet	13.7 m		0.000000001	None
Percent of Organic Matter	%	2.6	%	2.6 %	197	0	100
Bulk Density	g/cm ³	1.35	g/cm ³	1.35 g/ci	m ³	0.01	5
Biological Decay Coefficient	1/yr	0	1/yr	0 1/yı		0	None
		Aqu	lifer Paran	ieters			
Aquifer Porosity	fraction	0.25	fraction		ction	0.000000001	0.99
Bulk Density	g/cm ³	1.35	g/cm ³	1.35 g/ci	m ³	0.01	5
Aquifer Thickness	m	50	ft	15.24 m		0.000000001	100,000
Hydraulic Conductivity	m/yr	2	ft/day	223 m/y	yr	0.0000001	100,000,000
Hydraulic Gradient	m/m	0.007	m/m	0.007 m/n	m	0.00000001	None
Organic Carbon Content	fraction	0.00315	fraction	0.00315 frac	ction	0.000001	1
Temperature of Aquifer	°C	14.4	°C	14.4 °C	99 - 99 L	0.00000001	None
рН		6.2		6.2	en Neels	0.3	14
x-distance Radial Distance from							
Site to Receptor	m	1	m	1 1	m	1	None
		Sou	rce Param	eters			
Infiltration Rate from the Facility	m/yr	0.124	in/yr	0.00315 m/y		0.0000000001	10,000,000,000
Area of Waste Disposal Unit	m ²	46,800	ft ²	4348 m ²		0.01	None
Length Scale of Facility	m	240	feet	73:2 m		0.000000001	10,000,000,000
Width Scale of Facility	m	195	feet	59.4 m		0.000000001	10,000,000,000
Recharge Rate into the Plume	m/yr	16.71	in/yr	0.4244 m/y	/1	0	10,000,000,000
Duration of Pulse	yr	8,000	yr	8000 yr	1.1.1	0.00000001	None
Initial Concentration at Landfill	mg/L_	6,000	mg/L	6,000 mg/	/L	0	None
		Addit	ional Para	meters			
Method				Gaussian		Gaussian	Patch
Name of Chemical Specified				Chloride			

MODEL OUTPUT Final Concentration at Landfill mg/L 221.8 mg/L

	MODEL OUTPUT		
Concentration at Landfill	0.0 mg/L	Time	1 yr
	0.0 mg/L		10 yr
	0.0 mg/L		20 yr
	18.9 mg/L		50 yr
	36.6 mg/L		70 yr
	45.4 mg/L		80 yr
	61.8 mg/L		100 yr
	123.4 mg/L		200 yr
	154.1 mg/L		300 yr
	166.3 mg/L		400 yr
	178.5 mg/L		500 yr
	190.7 mg/L		600 yr
	204.8 mg/L		800 yr
	211.1 mg/L		1,000 yr
	220.4 mg/L		2,000 yr
	221.6 mg/L		3,000 yr
	221.8 mg/L		4,000 yr
	221.8 mg/L		5,000 yr
	221.8 mg/L		6,000 yr
	221.8 mg/L		7,000 yr

Chesapeake State M-1 Chesapeake Energy Corporation Buckeye, Lea County, New Mexico

TABLE 6-3. TOTAL POROSITY OF VARIOUS MATERIALS

	No. of		Arithmetic	
Material	Analyses	Range	Mean	
Igneous Rocks			······································	
Weathered granite	8	0.34-0.57	0.45	
Weathered gabbro	4	0.42-0.45	0.43	
Basalt	94	0.03-0.35	0.17	
Sedimentary Materials				
Sandstone	65	0.14-0.49	0.34	
Siltstone	7	0.21-0.41	0.35	
Sand (fine)	243	0.26-0.53	0.43	
Sand (coarse)	26	0.31-0.46	0.39	
Gravel (fine)	38	0.25-0.38	0.34	
Gravel (coarse)	15	0.24-0.36	0.28	
Silt	281	0.34-0.61	0.46	
Clay	74	0.34-0.57	0.42	
Limestone	74	0.07-0.56	0.3	
Metamorphic Rocks				
Schist	18	0.04-0.49	0.38	

Sources: From Mercer et al. (1982),

McWhorter and Sunada (1977),

Original reference Morris and Johnson, (1967).

Texture	Bulk Density g/cm^3	Average Wilting Point	Plant Available Water Inches/Ft
Sandy loam	1.6	0.057	1.66
Silt Loam	1.45	0.119	2
Loam	1.5	0.097	2.4
Sandy clay loam	1.45	0.137	1.66
Clay loam	1.45	0.157	1.9

TABLE 6-8. MEAN BULK DENSITY (g/cm3) FOR FIVE SOIL TEXTURAL CLASSIFICATIONSa,b

Mean Value	Range Reported	
1.32	0.86 - 1.67	
1.3	0.94 - 1.54	
1.49	1.25 - 1.76	
1.22	1.02 - 1.58	
1.42	1.16 - 1.58	
1.35	0.86 - 1.76	
	1.32 1.3 1.49 1.22 1.42	1.32 0.86 - 1.67 1.3 0.94 - 1.54 1.49 1.25 - 1.76 1.22 1.02 - 1.58 1.42 1.16 - 1.58

a Baes, C.F., III and R.D. Sharp. 1983. A Proposal for Estimation of Soil Leaching Constants for Use in Assessment Models. J. Environ. Qual. 12(1):17-28 (Original reference).

b From Dean et al. (1989)

TABLE 6-2.	DESCRIPTIVE STATISTICS FOR SATURATED HYDRAULIC CONDUCTIVIT	Y
(cm i	าr-1)	

	Hydraulic (Conductivity	/ (Ks)*			
Soil Type	x	s	CV	n		
Clay**	0.2	0.42	210.3	114	cm/hr	17.52
Clay Loam	0.26	0.7	267.2	345	cm/hr	22.776
Loam	1.04	1.82	174.6	735	cm/hr	91.104
Loamy Sand	14.59	11.36	77.9	315	cm/hr	1278.084
Silt	0.25	0.33	129.9	88	cm/hr	21.9
Silt Loam	0.45	1.23	275.1	1093	cm/hr	39.42
Silty Clay	0.02	0.11	453.3	126	cm/hr	1.752
Silty Clay Loam	0.07	0.19	288.7	592	cm/hr	6.132
Sand	29.7	15.6	52.4	246	cm/hr	2601.72
Sandy Clay	0.12	0.28	234.1	46	cm/hr	10.512
Sandy Clay Loam	1.31	2.74	208.6	214	cm/hr	114.756
Sandy Loam	4.42	5.63	127	1183	cm/hr	387.192

* n = Sample size, = Mean, s = Standard deviation, CV = Coefficient of variation (percent)

** Agricultural soil, less than 60 percent clay

Sources: From Dean et al. (1989), Original reference Carsel and Parrish (1988).

Saturated water content is the maximum volumetric amount of water in the soil when all pores are filled with water. Very often it is assumed that saturated water content equals the porosity n. However, in many cases qS is smaller than n due to the fact that small amounts of air will be trapped in very small pores. Residual water content can be defined as the asymptote of the pF-curve when h gets very high negative values. Usually qR is very small - on the order of 0.001--0.02 for coarse soils but gets as high values as 0.15..0.25 for heavy clay soils. Air entry point ha is

Soil texture. Fine-textured soils can hold much more organic matter than sandy soils for two reasons. First, clay particles form electrochemical bonds that hold organic compounds. Second, decomposition occurs faster in well-aerated sandy soils. A sandy loam rarely holds more than 2% organic matter.

The recharge rate in this model is the net amount of water that percolates directly into the aquifer system outside of the land disposal facility. The recharge is assumed to have no contamination and hence dilutes the groundwater contaminant plume. The recharge rate into the plume can be calculated in a variety of ways. One possibility is to use a model, such as HELP (Hydrologic Evaluation of Landfill Performance) (Schroeder et al., 1984), without any engineering controls (leachate collection system or a liner) to simulate the water balance for natural conditions.

The infiltration rate is the net amount of leachate that percolates into the aquifer system from a land disposal facility. Because of the use of engineering controls and the presence of non-native porous materials in the landfill facility, the infiltration rate will typically be different than the recharge rate. However, it can be estimated by similar

Most soils contain 2-10 percent organic matter. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production. http://www.fao.org

APPENDIX B

NMOCD APPROVAL OF STAGE 2 ABATEMENT PLAN

From:	Chase Acker
То:	Bruce McKenzie
Subject:	FW: Stage 2 Abatement Plan Approval: AP-72 Former State M-1 Tank Battery located in Unit Letter O of Section 18 in Township 17 South, Range 36 East, NMPM in Lea County, NM
Date:	Monday, April 14, 2014 1:56:01 PM

From: Griswold, Jim, EMNRD [mailto:Jim.Griswold@state.nm.us]
Sent: Thursday, June 27, 2013 5:14 PM
To: Larry Wooten
Cc: Hall, Sharon; Chase Acker
Subject: Stage 2 Abatement Plan Approval: AP-72 Former State M-1 Tank Battery located in Unit Letter O of Section 18 in Township 17 South, Range 36 East, NMPM in Lea County, NM

Mr. Wooten,

The Oil Conservation Division (OCD) has reviewed the Stage 2 Abatement Plan for the abovereferenced site submitted on your behalf by Arcadis and dated 3/27/12. That plan has substantially met the requirements of 19.15.30 NMAC and is hereby approved. Please proceed with field activities.

Be advised this approval does not relieve Chesapeake of responsibility should the situation continue to pose a threat to groundwater, surface water, human health, or the environment. Furthermore, this approval does not relieve your responsibility for compliance with any federal, state, or local laws and/or regulations. Please retain a copy of this email for your files, as no hardcopy will be sent. If you have any questions, please feel free to contact me at any time.

Jim Griswold

Senior Hydrologist EMNRD/Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505 505.476.3465 email: jim.griswold@state.nm.us

This email (and attachments if any) is intended only for the use of the individual or entity to which it is addressed, and may contain information that is confidential or privileged and exempt from disclosure under applicable law. If the reader of this email is not the intended recipient, or the employee or agent responsible for delivering this message to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender immediately by return email and destroy all copies of the email (and attachments if any).

APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

Received by OCD: 6/4/2025 10:09:49 AM

Environment Testing

ANALYTICAL REPORT

Page 69 of 250

PREPARED FOR

Attn: Chase Acker Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154 Generated 7/3/2024 11:21:23 AM

JOB DESCRIPTION

CHK STATE M Property ID: 891077

JOB NUMBER

180-176226-1

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh PA 15238

See page two for job notes and contact information

Eurofins Pittsburgh

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

PA Lab ID: 02-00416

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Pittsburgh Project Manager.

Authorization

Kunth Hay

Generated 7/3/2024 11:21:23 AM

Authorized for release by Ken Hayes, Project Manager II Ken.Hayes@et.eurofinsus.com (615)301-5035

Eurofins Pittsburgh is a laboratory within Eurofins Environment Testing Northeast LLC, a company within Eurofins Environment Testing Group of Companies 7/3/2024

Page 2 of 31

Laboratory Job ID: 180-176226-1 SDG: Property ID: 891077

2

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Definitions/Glossary	5
Sample Summary	6
Method Summary	7
Subcontract Data	8
Chain of Custody	25
Receipt Checklists	31

Case Narrative

Client: Chesapeake Energy Corporation Project: CHK STATE M

Job ID: 180-176226-1

Job ID: 180-176226-1

Eurofins Pittsburgh

Job Narrative 180-176226-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 6/27/2024 11:24 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice.

Subcontract Work

Method TO 15: This method was subcontracted to Eurofins Air Toxics, Inc. The subcontract laboratory certification is different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

Page 72 of 250

Eurofins Pittsburgh
Definitions/Glossary

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Job ID: 180-176226-1 SDG: Property ID: 891077

Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	

- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

Page 73 of 250

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Job ID: 180-176226-1 SDG: Property ID: 891077

.ab Sample ID	Client Sample ID	Matrix	Collected	Received	
180-176226-1	20240618M-1	Air	06/18/24 10:17	06/27/24 11:24	

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Job ID: 180-176226-1 SDG: Property ID: 891077

Method	Method Description	Protocol	Laboratory
TO-15	TO-15	EPA	Eurofins

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

Eurofins = Eurofins Air Toxics, 180 Blue Ravine Road, Suite B, Folsom, CA 95630

Eurofins Pittsburgh

Received by OCD: 6/4/2025 10:09:49 AM

6 7 8

Air Toxics

7/3/2024 Mr. Ken Hayes Eurofins Environment Testing 301 Alpha Dr.

Pittsburgh PA 15238

Project Name: State-M Project #: Workorder #: 2406615

Dear Mr. Ken Hayes

The following report includes the data for the above referenced project for sample(s) received on 6/20/2024 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Brian Whittaker at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Brian Whettake

Brian Whittaker Project Manager

Eurofins Air Toxics, LLC

180 Blue Ravine Road, Suite B Folsom, CA 95630 T 916-985-1000 F 916-351-8279 www.airtoxics.com

1 2 3 4 5 6 7 8

Air Toxics

WORK ORDER #: 2406615

Work Order Summary

CLIENT:	Mr. Ken Hayes Eurofins Environment Testing 301 Alpha Dr. Pittsburgh, PA 15238	BILL TO:	Mr. Ken Hayes Eurofins Environment Testing 301 Alpha Dr. Pittsburgh, PA 15238
PHONE:		P.O. #	180-176226-1
FAX:		PROJECT #	State-M
DATE RECEIVED:	06/20/2024	CONTACT:	Brian Whittaker
DATE COMPLETED:	07/03/2024		

			RECEIPT	FINAL
FRACTION #	NAME	TEST	VAC./PRES.	PRESSURE
01A	20240618M-1	TO-15	17.3 "Hg	1.9 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA
04AA	LCSD	TO-15	NA	NA

CERTIFIED BY:

lay Lera

DATE: <u>07/03/24</u>

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP – 209222, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP – T104704434-22-18, UT NELAP – CA009332022-14, VA NELAP - 12240, WA ELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) CA300005-017 Eurofins Environment Testing Northern California, LLC certifies that the test results contained in this report meet all requirements of the 2016 TNI Standard.

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (016) 085 1000

(916) 985-1000

Page 2 of 17 Page 9 of 31

Air Toxics

LABORATORY NARRATIVE EPA Method TO-15 Eurofins Environment Testing Workorder# 2406615

One 6 Liter Summa Canister sample was received on June 20, 2024. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

The Chain of Custody was missing method information. The laboratory proceeded with the analysis as per the original contract or verbal agreement.

The Chain of Custody (COC) was not relinquished properly. A signature, date and time were not provided by the field sampler.

Sample 20240618M-1 was received with significant vacuum remaining in the canister. The residual canister vacuum resulted in elevated reporting limits.

Analytical Notes

A single point calibration for TVOC (Total Volatile Organic Compounds) referenced to Hexane was performed for each daily analytical batch. Recovery is reported as 100% in the associated results for each CCV.

TVOC (Total Volatile Organic Compounds) referenced to Hexane includes area counts for peaks that elute from Hexane minus 0.08 minutes to Naphthalene plus 0.08 minutes and quantitating the area based on the response factor of Hexane.

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page.

The presence of a closely eluting non-target peak in sample 20240618M-1 is interfering with the quantitation mass ion for 4-Ethyltoluene. The reported 4-Ethyltoluene concentration is flagged with a "CN" flag to indicate a high bias due to matrix contribution.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

- N The identification is based on presumptive evidence.
- M Reported value may be biased due to apparent matrix interferences.

Air Toxics

CN - See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: 20240618M-1

Lab ID#: 2406615-01A

Compound	Rpt. Limit (ppmv)	Amount (ppmv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
4-Ethyltoluene	0.0013	0.0020 CN	6.6	10 CN
1,3,5-Trimethylbenzene	0.0013	0.0020	6.6	9.7
TVOC Ref. to Hexane	0.027	3.2	94	11000

eurofins Air Toxics

Client Sample ID: 20240618M-1 Lab ID#: 2406615-01A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	91070113 2.67	Date of Collection: 6/18/24 10:17:00 AM Date of Analysis: 7/1/24 04:33 PM		
Compound	Rpt. Limit (ppmv)	Amount (ppmv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	0.013	Not Detected	32	Not Detected
Benzene	0.0013	Not Detected	4.3	Not Detected
alpha-Chlorotoluene	0.0013	Not Detected	6.9	Not Detected
Bromodichloromethane	0.0013	Not Detected	8.9	Not Detected
Bromoform	0.0013	Not Detected	14	Not Detected
Bromomethane	0.013	Not Detected	52	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.0053	Not Detected	16	Not Detected
Carbon Disulfide	0.0053	Not Detected	17	Not Detected
Carbon Tetrachloride	0.0013	Not Detected	8.4	Not Detected
Chlorobenzene	0.0013	Not Detected	6.1	Not Detected
Dibromochloromethane	0.0013	Not Detected	11	Not Detected
Chloroethane	0.0053	Not Detected	14	Not Detected
Chloroform	0.0013	Not Detected	6.5	Not Detected
Chloromethane	0.013	Not Detected	28	Not Detected
1,2-Dibromoethane (EDB)	0.0013	Not Detected	10	Not Detected
1,2-Dichlorobenzene	0.0013	Not Detected	8.0	Not Detected
1,3-Dichlorobenzene	0.0013	Not Detected	8.0	Not Detected
1,4-Dichlorobenzene	0.0013	Not Detected	8.0	Not Detected
1,1-Dichloroethane	0.0013	Not Detected	5.4	Not Detected
Freon 12	0.0013	Not Detected	6.6	Not Detected
1,2-Dichloroethane	0.0013	Not Detected	5.4	Not Detected
1,1-Dichloroethene	0.0013	Not Detected	5.3	Not Detected
cis-1,2-Dichloroethene	0.0013	Not Detected	5.3	Not Detected
trans-1,2-Dichloroethene	0.0013	Not Detected	5.3	Not Detected
	0.0013	Not Detected	6.2	Not Detected
1,2-Dichloropropane				
cis-1,3-Dichloropropene	0.0013	Not Detected	6.0	Not Detected
trans-1,3-Dichloropropene	0.0013	Not Detected	6.0	Not Detected
Freon 114	0.0013	Not Detected	9.3	Not Detected
Ethyl Benzene	0.0013	Not Detected	5.8	Not Detected
4-Ethyltoluene	0.0013	0.0020 CN	6.6	10 CN
Hexachlorobutadiene	0.0053	Not Detected	57	Not Detected
2-Hexanone	0.0053	Not Detected	22	Not Detected
Methylene Chloride	0.013	Not Detected	46	Not Detected
4-Methyl-2-pentanone	0.0013	Not Detected	5.5	Not Detected
Styrene	0.0013	Not Detected	5.7	Not Detected
1,1,2,2-Tetrachloroethane	0.0013	Not Detected	9.2	Not Detected
Tetrachloroethene	0.0013	Not Detected	9.0	Not Detected
Toluene	0.0027	Not Detected	10	Not Detected
1,2,4-Trichlorobenzene	0.0053	Not Detected	40	Not Detected
1,1,1-Trichloroethane	0.0013	Not Detected	7.3	Not Detected
1,1,2-Trichloroethane	0.0013	Not Detected	7.3	Not Detected
Trichloroethene	0.0013	Not Detected	7.2	Not Detected

Air Toxics

Client Sample ID: 20240618M-1 Lab ID#: 2406615-01A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	91070113 2.67	Date of Collection: 6/18/24 10:17:0 Date of Analysis: 7/1/24 04:33 PM		
Compound	Rpt. Limit (ppmv)	Amount (ppmv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.0013	Not Detected	7.5	Not Detected
Freon 113	0.0013	Not Detected	10	Not Detected
1,2,4-Trimethylbenzene	0.0013	Not Detected	6.6	Not Detected
1,3,5-Trimethylbenzene	0.0013	0.0020	6.6	9.7
Vinyl Acetate	0.0053	Not Detected	19	Not Detected
Vinyl Chloride	0.0013	Not Detected	3.4	Not Detected
m,p-Xylene	0.0027	Not Detected	12	Not Detected
o-Xylene	0.0013	Not Detected	5.8	Not Detected
TVOC Ref. to Hexane	0.027	3.2	94	11000

CN =See Case Narrative explanation

Container Type: 6 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	96	70-130	
1,2-Dichloroethane-d4	101	70-130	
4-Bromofluorobenzene	101	70-130	

Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2406615-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	91070106c 1.00		of Collection: NA of Analysis: 7/1/2	4 11:04 AM
Compound	Rpt. Limit (ppmv)	Amount (ppmv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	0.0050	Not Detected	12	Not Detected
Benzene	0.00050	Not Detected	1.6	Not Detected
alpha-Chlorotoluene	0.00050	Not Detected	2.6	Not Detected
Bromodichloromethane	0.00050	Not Detected	3.4	Not Detected
Bromoform	0.00050	Not Detected	5.2	Not Detected
Bromomethane	0.0050	Not Detected	19	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.0020	Not Detected	5.9	Not Detected
Carbon Disulfide	0.0020	Not Detected	6.2	Not Detected
Carbon Tetrachloride	0.00050	Not Detected	3.1	Not Detected
Chlorobenzene	0.00050	Not Detected	2.3	Not Detected
Dibromochloromethane	0.00050	Not Detected	4.2	Not Detected
Chloroethane	0.0020	Not Detected	5.3	Not Detected
Chloroform	0.00050	Not Detected	2.4	Not Detected
Chloromethane	0.0050	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	0.00050	Not Detected	3.8	Not Detected
1,2-Dichlorobenzene	0.00050	Not Detected	3.0	Not Detected
1,3-Dichlorobenzene	0.00050	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.00050	Not Detected	3.0	Not Detected
1,1-Dichloroethane	0.00050	Not Detected	2.0	Not Detected
Freon 12	0.00050	Not Detected	2.5	Not Detected
1,2-Dichloroethane	0.00050	Not Detected	2.0	Not Detected
1,1-Dichloroethene	0.00050	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.00050	Not Detected	2.0	Not Detected
trans-1,2-Dichloroethene	0.00050	Not Detected	2.0	Not Detected
1,2-Dichloropropane	0.00050	Not Detected	2.3	Not Detected
cis-1,3-Dichloropropene	0.00050	Not Detected	2.3	Not Detected
trans-1,3-Dichloropropene	0.00050	Not Detected	2.3	Not Detected
Freon 114	0.00050	Not Detected	3.5	Not Detected
Ethyl Benzene	0.00050	Not Detected	2.2	Not Detected
4-Ethyltoluene	0.00050	Not Detected	2.4	Not Detected
Hexachlorobutadiene	0.0020	Not Detected	21	Not Detected
2-Hexanone	0.0020	Not Detected	8.2	Not Detected
Methylene Chloride	0.0050	Not Detected	17	Not Detected
4-Methyl-2-pentanone	0.00050	Not Detected	2.0	Not Detected
Styrene	0.00050	Not Detected	2.1	Not Detected
1,1,2,2-Tetrachloroethane	0.00050	Not Detected	3.4	Not Detected
Tetrachloroethene	0.00050	Not Detected	3.4	Not Detected
Toluene	0.0010	Not Detected	3.8	Not Detected
1,2,4-Trichlorobenzene	0.0020	Not Detected	15	Not Detected
1,1,1-Trichloroethane	0.00050	Not Detected	2.7	Not Detected
1,1,2-Trichloroethane	0.00050	Not Detected	2.7	Not Detected
Trichloroethene	0.00050	Not Detected	2.7	Not Detected

eurofins

Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2406615-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	91070106c 1.00	Date of Collection: NA Date of Analysis: 7/1/24 11:04 AM		4 11:04 AM
Compound	Rpt. Limit (ppmv)	Amount (ppmv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.00050	Not Detected	2.8	Not Detected
Freon 113	0.00050	Not Detected	3.8	Not Detected
1,2,4-Trimethylbenzene	0.00050	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.00050	Not Detected	2.4	Not Detected
Vinyl Acetate	0.0020	Not Detected	7.0	Not Detected
Vinyl Chloride	0.00050	Not Detected	1.3	Not Detected
m,p-Xylene	0.0010	Not Detected	4.3	Not Detected
o-Xylene	0.00050	Not Detected	2.2	Not Detected
TVOC Ref. to Hexane	0.010	Not Detected	35	Not Detected

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	102	70-130
4-Bromofluorobenzene	95	70-130

Air Toxics

Client Sample ID: CCV Lab ID#: 2406615-03A EPA METHOD TO-15 GC/MS FULL SCAN

		GC/MS FULL SCAN	
File Name:	91070103	Date of Collection: NA	
Dil. Factor:	1.00	Date of Analysis: 7/1/24 09:51	AM
Compound		%Recovery	
Acetone		92	
Benzene		96	
alpha-Chlorotoluene		100	
Bromodichloromethane		96	
Bromoform		100	
Bromomethane		96	
2-Butanone (Methyl Ethyl Ketone)		92	
Carbon Disulfide		92	
Carbon Tetrachloride		94	
Chlorobenzene		98	
Dibromochloromethane		99	
Chloroethane		96	
Chloroform		90	
Chloromethane		108	
1,2-Dibromoethane (EDB)		98	
1,2-Dichlorobenzene		100	
1,3-Dichlorobenzene		101	
1,4-Dichlorobenzene		100	
1,1-Dichloroethane		92	
Freon 12		101	
1,2-Dichloroethane		89	
1,1-Dichloroethene		93	
cis-1,2-Dichloroethene		92	
trans-1,2-Dichloroethene		93	
1,2-Dichloropropane		92	
cis-1,3-Dichloropropene		93	
trans-1,3-Dichloropropene		97	
Freon 114		101	
Ethyl Benzene		106	
4-Ethyltoluene		110	
Hexachlorobutadiene		101	
2-Hexanone		100	
Methylene Chloride		90	
4-Methyl-2-pentanone		97	
Styrene		111	
1,1,2,2-Tetrachloroethane		98	
Tetrachloroethene		102	
Toluene		97	
1,2,4-Trichlorobenzene		112	
1,1,1-Trichloroethane		93	
		98	
1,1,2-Trichloroethane Trichloroethene		98	
memoroethene		32	

Air Toxics

Client Sample ID: CCV Lab ID#: 2406615-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	91070103 1.00	Date of Collection: NA Date of Analysis: 7/1/24 09:51 AM
Compound		
Compound		%Recovery
Freon 11		98
Freon 113		102
1,2,4-Trimethylbenzene		109
1,3,5-Trimethylbenzene		106
Vinyl Acetate		94
Vinyl Chloride		104
m,p-Xylene		110
o-Xylene		105
TVOC Ref. to Hexane		100

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	92	70-130
4-Bromofluorobenzene	103	70-130

٦

🛟 eurofins

Air Toxics

Client Sample ID: LCS Lab ID#: 2406615-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	91070104 1.00	Date of Collec Date of Analys	tion: NA sis: 7/1/24 10:14 AM
		Date et Andrye	Method
Compound		%Recovery	Limits
Acetone		95	70-130
Benzene		96	70-130
alpha-Chlorotoluene		101	70-130
Bromodichloromethane		93	70-130
Bromoform		96	70-130
Bromomethane		97	70-130
2-Butanone (Methyl Ethyl Ketone)		94	70-130
Carbon Disulfide		96	70-130
Carbon Tetrachloride		94	70-130
Chlorobenzene		99	70-130
Dibromochloromethane		96	70-130
Chloroethane		95	70-130
Chloroform		90	70-130
Chloromethane		105	70-130
1,2-Dibromoethane (EDB)		99	70-130
1,2-Dichlorobenzene		101	70-130
1,3-Dichlorobenzene		101	70-130
1,4-Dichlorobenzene		103	70-130
1,1-Dichloroethane		92	70-130
Freon 12		96	70-130
1,2-Dichloroethane		91	70-130
1,1-Dichloroethene		91	70-130
cis-1,2-Dichloroethene		92	70-130
trans-1,2-Dichloroethene		92	70-130
1,2-Dichloropropane		93	70-130
cis-1,3-Dichloropropene		96	70-130
trans-1,3-Dichloropropene		98	70-130
Freon 114		97	70-130
Ethyl Benzene		107	70-130
4-Ethyltoluene		108	70-130
Hexachlorobutadiene		105	70-130
2-Hexanone		106	70-130
Methylene Chloride		90	70-130
4-Methyl-2-pentanone		101	70-130
Styrene		110	70-130
1,1,2,2-Tetrachloroethane		100	70-130
Tetrachloroethene		102	70-130
Toluene		96	70-130
1,2,4-Trichlorobenzene		120	70-130
1,1,1-Trichloroethane		94	70-130
1,1,2-Trichloroethane		98	70-130
Trichloroethene		93	70-130

Air Toxics

Client Sample ID: LCS Lab ID#: 2406615-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	91070104 1.00	Date of Collection: NA Date of Analysis: 7/1/24 10:14 AM	
Compound	1.00	%Recovery	Method Limits
Freon 11		96	70-130
Freon 113		96	70-130
1,2,4-Trimethylbenzene		110	70-130
1,3,5-Trimethylbenzene		106	70-130
Vinyl Acetate		151 Q	70-130
Vinyl Chloride		101	70-130
m,p-Xylene		108	70-130
o-Xylene		105	70-130
TVOC Ref. to Hexane		Not Spiked	

Q = Exceeds Quality Control limits.

Container Type: NA - Not Applicable

21 11		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	93	70-130
4-Bromofluorobenzene	104	70-130

1

 f	
eurof	ins

Air Toxics

Client Sample ID: LCSD Lab ID#: 2406615-04AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name:		te of Collection: NA
Dil. Factor:	1.00 Dat	te of Analysis: 7/1/24 10:38 AM
Compound	%Recovery	Method Limits
Acetone	94	70-130
Benzene	96	70-130
alpha-Chlorotoluene	104	70-130
Bromodichloromethane	94	70-130
Bromoform	99	70-130
Bromomethane	96	70-130
2-Butanone (Methyl Ethyl Ketone)	95	70-130
Carbon Disulfide	94	70-130
Carbon Tetrachloride	92	70-130
Chlorobenzene	100	70-130
Dibromochloromethane	98	70-130
Chloroethane	98	70-130
Chloroform	89	70-130
Chloromethane	104	70-130
1,2-Dibromoethane (EDB)	101	70-130
1,2-Dichlorobenzene	102	70-130
1,3-Dichlorobenzene	104	70-130
1,4-Dichlorobenzene	105	70-130
1,1-Dichloroethane	92	70-130
Freon 12	96	70-130
1,2-Dichloroethane	91	70-130
1,1-Dichloroethene	90	70-130
cis-1,2-Dichloroethene	93	70-130
trans-1,2-Dichloroethene	92	70-130
1,2-Dichloropropane	92	70-130
cis-1,3-Dichloropropene	95	70-130
trans-1,3-Dichloropropene	99	70-130
Freon 114	96	70-130
Ethyl Benzene	112	70-130
4-Ethyltoluene	112	70-130
Hexachlorobutadiene	107	70-130
2-Hexanone	109	70-130
Methylene Chloride	89	70-130
4-Methyl-2-pentanone	102	70-130
Styrene	113	70-130
1,1,2,2-Tetrachloroethane	100	70-130
Tetrachloroethene	103	70-130
Toluene	96	70-130
1,2,4-Trichlorobenzene	123	70-130
1,1,1-Trichloroethane	93	70-130
1,1,2-Trichloroethane	99	70-130
Trichloroethene	92	70-130

Air Toxics

Client Sample ID: LCSD Lab ID#: 2406615-04AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	91070105 Date of Collection: NA 1.00 Date of Analysis: 7/1/24 10:38 A		
Compound		%Recovery	Method Limits
Freon 11		94	70-130
Freon 113		96	70-130
1,2,4-Trimethylbenzene		113	70-130
1,3,5-Trimethylbenzene		107	70-130
Vinyl Acetate		150 Q	70-130
Vinyl Chloride		100	70-130
m,p-Xylene		110	70-130
o-Xylene		108	70-130
TVOC Ref. to Hexane		Not Spiked	

Q = Exceeds Quality Control limits.

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	92	70-130
4-Bromofluorobenzene	105	70-130

1 2 3 4 5 6 7 8 9

Seurofins | Air Toxics

Method : TO-15 (Sp)-Eurofins TA (CEC, OK)

67-64-1 Actione 5.0 71-43-2 Benzene 0.50 75-27-4 Bromodichloromethane 0.50 75-25-2 Bromodichloromethane 0.50 75-25-3 Bromomethane 0.50 74-83-9 Bromomethane 0.50 74-83-9 Bromomethane 0.50 75-15-0 Carbon Disulfide 2.0 56-23-5 Carbon Disulfide 0.50 124-48-1 Dibromochloromethane 0.50 124-48-1 Dibromochloromethane 0.50 76-00-3 Chlorobenzene 0.50 78-73 Chlorobenzene 0.50 78-73 Chlorobenzene 0.50 95-50-1 1.2-Dichlorobenzene 0.50 95-50-1 1.2-Dichlorobenzene 0.50 75-34-3 1.1-Dichlorobenzene 0.50 75-34-3 1.1-Dichlorobenzene 0.50 75-71-8 Freon 12 0.50 75-71-8 Freon 12 0.50 75-75 1.2-Dichloroperpane 0.50 106-60-5 trans-1,2-Dichloroperpane 0.50 </th <th>CAS Number</th> <th>Compound</th> <th>Rpt. Limit (ppbv)</th>	CAS Number	Compound	Rpt. Limit (ppbv)
100-44-7 alpha-Chlorotoluene 0.50 75-27-4 Bromodichloromethane 0.50 74-83-9 Bromomethane 0.50 74-83-9 Bromomethane 5.0 74-83-9 Bromomethane 5.0 74-83-9 Bromomethane 5.0 78-15-0 Carbon Disulfide 2.0 56-23-5 Carbon Totrachloride 0.50 108-90-7 Chloroberzene 0.50 124-48-1 Dibromochloromethane 0.50 78-00-3 Chloroberzene 0.50 74-87-3 Chloroform 0.50 74-87-3 Chlorobenzene 0.50 95-50-1 1.2-Dichlorobenzene 0.50 95-50-1 1.2-Dichlorobenzene 0.50 75-34-3 1.1-Dichlorobenzene 0.50 75-34-3 1.1-Dichlorobenzene 0.50 75-34-3 1.1-Dichlorobenzene 0.50 75-34-3 1.1-Dichlorobenzene 0.50 107-06-2 1.2-Dichlorobenzene 0.50 107-06-2	67-64-1	Acetone	5.0
75-27-4 Bromodichloromethane 0.50 75-25-2 Bromonethane 5.0 74-83-9 Bromomethane 5.0 78-93-3 2-Butanone (Methyl Ethyl Ketone) 2.0 75-10 Carbon Disulfide 2.0 56-23-5 Carbon Tetrachloride 0.50 108-90-7 Chlorobenzene 0.50 75-00-3 Chlorobenzene 0.50 75-00-3 Chloromethane 2.0 67-66-3 Chloromethane 5.0 106-93-4 1,2-Dichlorobenzene 0.50 95-50-1 1,2-Dichlorobenzene 0.50 95-50-1 1,2-Dichlorobenzene 0.50 75-43 1,1-Dichlorobenzene 0.50 75-34-3 1,1-Dichlorobenzene 0.50 75-35-4 1,2-Dichlorobenzene 0.50 75-35-4 1,1-Dichlorobenzene 0.50 75-35-4 1,2-Dichlorobenzene 0.50 76-371-8 Freen 12 0.50 76-35-5 1,2-Dichlorobenzene 0.50 76-36-5 trans-1,2-Dichloroptene 0.50 78-87-5	71-43-2	Benzene	0.50
75-25-2 Bromoform 0.50 74-83-9 Bromomethane 5.0 78-93-3 2-Butanone (Methyl Ethyl Ketone) 2.0 75-15-0 Carbon Disulfide 2.0 56-23-5 Carbon Tetrachloride 0.50 108-90-7 Chlorobenzene 0.50 124-48-1 Dibromochloromethane 0.50 78-73 Chlorobenzene 0.50 74-87-3 Chloromethane (EDB) 0.50 75-71-1 1,2-Dichlorobenzene 0.50 75-71-2 1,2-Dichlorobenzene 0.50 75-71-3 1,2-Dichlorobenzene 0.50 75-71-4 Freon 12 0.50 75-71-8 Freon 12 0.50 107-06-2 1,2-Dichloroethane 0.50 107-06-2 1,2-Dichloroethane 0.50 156-50-2 cis-1,2-Dichloroethane 0.50 1066-05 trans-1,2-Dichloroptopane 0.50 1066-05 trans-1,2-Dichloroptopane 0.50 10061-01-5 cis-1,3-Dichloroptopane 0.50 10061-01-5 cis-1,3-Dichloroptopane 0.50	100-44-7	alpha-Chlorotoluene	0.50
74-83-9 Bromomethane 5.0 78-83-3 2-Butanone (Methyl Ethyl Ketone) 2.0 75-15-0 Carbon Disulfide 2.0 56-23-5 Carbon Tetrachloride 0.50 124-48-1 Dibromochloromethane 0.50 75-00-3 Chlorobenzene 0.50 76-03-3 Chloroform 0.50 74-87-3 Chlorobenzene 0.50 74-87-3 Chlorobenzene 0.50 95-50-1 1.2-Dichlorobenzene 0.50 541-73-1 1,3-Dichlorobenzene 0.50 541-73-1 1,3-Dichlorobenzene 0.50 75-34-3 1,1-Dichlorobenzene 0.50 75-34-3 1,1-Dichloroethane 0.50 75-35-4 1,2-Dichloroethane 0.50 75-35-5 1,2-Dichloroethane 0.50 176-62 1,2-Dichloroethane 0.50 156-60-5 trans-1,2-Dichloroptene 0.50 156-60-5 trans-1,3-Dichloroptoppene 0.50 10061-01-5 cis-1,2-Dichloroptoppene 0.50 10061-02-6 trans-1,3-Dichloroptoppene 0.50	75-27-4	Bromodichloromethane	0.50
78-93-3 2-Butanone (Methyl Ethyl Ketone) 2.0 75-15-0 Carbon Disulfide 2.0 56-23-5 Carbon Tetrachloride 0.50 108-90-7 Chlorobenzene 0.50 124-48-1 Dibromochloromethane 2.0 67-66-3 Chlorobenzene 0.50 75-00-3 Chloromethane 5.0 74-87-3 Chloromethane 5.0 95-50-1 1,2-Dibromoethane (EDB) 0.50 95-50-1 1,2-Dibromoethane (EDB) 0.50 95-50-1 1,2-Dibromoethane 0.50 75-34-3 1,1-Dichlorobenzene 0.50 75-71-8 Freon 12 0.50 75-75-4 1,1-Dichloroethane 0.50 75-75-5 1,2-Dichloroptene 0.50 76-62 1,2-Dichloroptene 0.50 76-76-8 trans-1,2-Dichloroptene 0.50 156-59-2 cis-1,3-Dichloroptene 0.50 10061-01-5 cis-1,3-Dichloropropane 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10041-04 Hethyl Henzene 0.50 <	75-25-2	Bromoform	0.50
75-15-0 Carbon Disulfide 2.0 56-23-5 Carbon Tetrachloride 0.50 108-90-7 Chlorobenzene 0.50 124-48-1 Dibromochloromethane 0.50 75-00-3 Chlorobenzene 0.50 74-87-3 Chloromethane 5.0 106-93-4 1,2-Dibromoethane (EDB) 0.50 95-50-1 1,2-Dichlorobenzene 0.50 541-73-1 1,3-Dichlorobenzene 0.50 75-34-3 1,1-Dichlorobenzene 0.50 75-34-3 1,1-Dichlorobenzene 0.50 75-34-3 1,1-Dichloroethane 0.50 75-35-4 1,1-Dichloroethane 0.50 107-06-2 1,2-Dichloroethane 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 1066-10-15 cis-1,3-Dichloroptopene 0.50 10061-01-5 cis-1,3-Dichloroptopene 0.50 10061-02-6 trans-1,3-Dichloroptopene 0.50 10061-01-5 cis-1,3-Dichloroptopene 0.50 10061-02-6 trans-1,3-Dichloroptopene 0.50 100-41-4 Ethyl Benzene	74-83-9	Bromomethane	5.0
56-23-5 Carbon Tetrachloride 0.50 128-90-7 Chlorobenzene 0.50 124-48-1 Dibromochloromethane 0.50 75-00-3 Chlorotethane 2.0 67-66-3 Chloromethane 5.0 106-93-4 1,2-Dichorobetnare (EDB) 0.50 95-50-1 1,2-Dichlorobenzene 0.50 95-50-1 1,2-Dichlorobenzene 0.50 106-93-4 1,2-Dichlorobenzene 0.50 95-50-1 1,2-Dichlorobenzene 0.50 106-64-7 1,4-Dichlorobenzene 0.50 106-64-7 1,4-Dichloroethane 0.50 107-06-2 1,2-Dichloroethane 0.50 107-06-2 1,2-Dichloroethane 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroppane 0.50 10061-01-5 cis-1,3-Dichloroppane 0.50 10061-02-6 trans-1,3-Dichloropropane 0.50 10061-02-6 trans-1,3-Dichloroptopane 0.50 10061-02-6 trans-1,3-Dich	78-93-3	2-Butanone (Methyl Ethyl Ketone)	2.0
108-90-7 Chlorobenzene 0.50 124-48-1 Dibromochloromethane 0.50 75-00-3 Chloroform 0.50 74-87-3 Chloroform 0.50 74-87-3 Chloromethane (EDB) 0.50 95-50-1 1,2-Dichlorobenzene 0.50 95-50-1 1,2-Dichlorobenzene 0.50 106-46-7 1,4-Dichlorobenzene 0.50 107-64-7 1,4-Dichlorobenzene 0.50 107-06-2 1,2-Dichloroethane 0.50 107-06-2 1,2-Dichloroethane 0.50 107-06-2 1,2-Dichloroethane 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 10061-01-5 cis-1,3-Dichloropropane 0.50 10061-02-6 trans-1,3-Dichloropropane 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-14-4 Ethyl Benzene 0.50 100-26 trans-1,2-Dichloroethene 0.50 100-42-5 Styrene <t< td=""><td>75-15-0</td><td>Carbon Disulfide</td><td>2.0</td></t<>	75-15-0	Carbon Disulfide	2.0
124.48-1 Dibromochloromethane 0.50 75-00-3 Chloroethane 2.0 67-66-3 Chloromethane 5.0 106-93-4 1,2-Dibromoethane (EDB) 0.50 95-50-1 1,2-Dichlorobenzene 0.50 541-73-1 1,3-Dichlorobenzene 0.50 75-34-3 1,1-Dichlorobenzene 0.50 75-71-8 Freon 12 0.50 75-74-8 Freon 12 0.50 75-74-8 Freon 12 0.50 75-75-4 1,1-Dichlorobenzene 0.50 75-74-8 Freon 12 0.50 75-75-4 1,2-Dichloroethane 0.50 75-75-4 1,2-Dichloroethene 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroptopene 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloroptopene 0.50 10061-01-5 cis-1,3-Dichloroptopene 0.50 10061-02-6 trans-1,3-Dichloroptopene 0.50 10061-02-6 trans-1,3-Dichloroptopene 0.50 <td>56-23-5</td> <td>Carbon Tetrachloride</td> <td>0.50</td>	56-23-5	Carbon Tetrachloride	0.50
75-00-3 Chloroethane 2.0 67-66-3 Chloroform 0.50 74-87-3 Chloromethane 5.0 106-93-4 1.2-Dibromoethane (EDB) 0.50 95-50-1 1.2-Dichlorobenzene 0.50 541-73-1 1.3-Dichlorobenzene 0.50 75-34.3 1.1-Dichlorobenzene 0.50 75-34.3 1.1-Dichloroethane 0.50 75-71-8 Freon 12 0.50 107-06-2 1.2-Dichloroethane 0.50 75-35-4 1.1-Dichloroethane 0.50 156-59-2 cis-1.2-Dichloroethene 0.50 156-60-5 trans-1.2-Dichloroptpane 0.50 1061-01-5 cis-1.3-Dichloroptpane 0.50 10061-02-6 trans-1.3-Dichloroptpane 0.50 10061-02-6 trans-1.3-Dichloroptpane 0.50 10061-02-6 trans-1.3-Dichloroptpane 0.50 10061-02-6 trans-1.3-Dichloroptpane 0.50 100-14-4 Ethyl Benzene 0.50 622-66-8 4-Ethyltoluene 2.0 75-09-2 Methyl-2-pentanone 0.50	108-90-7	Chlorobenzene	0.50
67-66-3 Chloroform 0.50 74-87-3 Chloromethane 5.0 106-93-4 1,2-Dibromoethane (EDB) 0.50 95-50-1 1.2-Dichlorobenzene 0.50 541-73-1 1,3-Dichlorobenzene 0.50 106-46-7 1.4-Dichlorobenzene 0.50 75-71-8 Freon 12 0.50 107-06-2 1,2-Dichloroethane 0.50 107-06-2 1,2-Dichloroethene 0.50 107-06-2 1,2-Dichloroethene 0.50 107-06-2 1,2-Dichloroethene 0.50 107-06-2 1,2-Dichloroethene 0.50 106-60-5 trans-1,2-Dichloroethene 0.50 10661-01-5 cis-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloroptopene 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 2.0 591-78-6 2-Hexanone 2.0 591-78-6 2-Hexanone 0.50	124-48-1	Dibromochloromethane	0.50
74-87-3 Chloromethane 5.0 106-93-4 1,2-Dibromoethane (EDB) 0.50 95-50-1 1,2-Dichlorobenzene 0.50 541-73-1 1,3-Dichlorobenzene 0.50 106-46-7 1,4-Dichlorobenzene 0.50 75-34-3 1,1-Dichloroethane 0.50 75-71-8 Freon 12 0.50 75-35-4 1,1-Dichloroethane 0.50 107-06-2 1,2-Dichloroethane 0.50 75-35-4 1,1-Dichloroethene 0.50 156-69-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroptene 0.50 1061-01-5 cis-1,3-Dichloropropane 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 87-68-3 Hexachlorobutadiene 2.0 87-68-3 Hexachlorobutadiene 2.0 91-78-6 2-Hexanone 2.0 91-78-6 2-Hexanone 0.50 100-42-5 Styrene 0.50 <t< td=""><td>75-00-3</td><td>Chloroethane</td><td>2.0</td></t<>	75-00-3	Chloroethane	2.0
106-93-4 1,2-Dibromoethane (EDB) 0.50 95-50-1 1,2-Dichlorobenzene 0.50 541-73-1 1,3-Dichlorobenzene 0.50 106-46-7 1,4-Dichlorobenzene 0.50 75-34-3 1,1-Dichloroethane 0.50 75-71-8 Freon 12 0.50 107-06-2 1,2-Dichloroethane 0.50 75-35-4 1,1-Dichloroethene 0.50 156-69-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 10061-01-5 cis-1,3-Dichloropropane 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 100-41-4 Ethyl Benzene 0.50 100-41-4 Ethyl Ibene 1.0 109-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 108-10-1 4-Methyl-2-pentanone	67-66-3	Chloroform	0.50
95-50-1 1,2-Dichlorobenzene 0.50 541-73-1 1,3-Dichlorobenzene 0.50 106-46-7 1,4-Dichlorobenzene 0.50 75-34-3 1,1-Dichloroethane 0.50 75-71-8 Freon 12 0.50 107-06-2 1,2-Dichloroethane 0.50 75-35-4 1,1-Dichloroethene 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 10061-01-5 cis-1,3-Dichloropropane 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10041-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 591-78-6 2-Hexanone 2.0 591-78-6 2-Hexanone 2.0 591-78-6 2-Hexanone 0.50 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50	74-87-3	Chloromethane	5.0
541-73-1 1,3-Dichlorobenzene 0.50 106-46-7 1,4-Dichlorobenzene 0.50 75-34-3 1,1-Dichloroethane 0.50 75-71-8 Freon 12 0.50 107-06-2 1,2-Dichloroethane 0.50 75-35-4 1,1-Dichloroethane 0.50 75-35-4 1,1-Dichloroethene 0.50 166-60-5 trans-1,2-Dichloroethene 0.50 1061-01-5 cis-1,3-Dichloropropane 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 10061-01-6 trans-1,3-Dichloropropene 0.50 10061-01-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 100-41-4 Ethyl Benzene 0.50 100-41-5 Siyrene 0.50 108-10-1 4-Ethyl Benzene 0.50 109-178-6 2-Hexanone 2.0 591-78-6 2-Hexanone 2.0 108-10-1 4-Methyl-2-pentanone 0.50 <	106-93-4	1,2-Dibromoethane (EDB)	0.50
106-46-7 1,4-Dichlorobenzene 0.50 75-34-3 1,1-Dichloroethane 0.50 75-71-8 Freon 12 0.50 107-06-2 1,2-Dichloroethane 0.50 75-35-4 1,1-Dichloroethane 0.50 75-35-4 1,1-Dichloroethene 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroptopane 0.50 10061-01-5 cis-1,3-Dichloroptopene 0.50 10061-02-6 trans-1,3-Dichloroptopene 0.50 10061-02-6 trans-1,3-Dichloroptopene 0.50 10061-02-6 trans-1,3-Dichloroptopene 0.50 10041-44 Ethyl Benzene 0.50 100-41-4 Ethyl Benzene 0.50 87-68-3 Hexachlorobutadiene 2.0 91-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 108-10-1 4-Methyl-2-pentanone 0.50 108-45 Styrene 0.50 104-42-5 Styrene 0.50 102-42-5 Styrene 0.50 10	95-50-1	1,2-Dichlorobenzene	0.50
75-34-3 1,1-Dichloroethane 0.50 75-71-8 Freon 12 0.50 107-06-2 1,2-Dichloroethane 0.50 75-35-4 1,1-Dichloroethene 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 10061-01-5 cis-1,3-Dichloropropane 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10041-4 Ethyl Benzene 0.50 100-41-4 Ethyl Benzene 0.50 87-68-3 Hexachlorobutadiene 2.0 91-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 100-42-5 Styrene 0.50 102-42-5 1,1,2,2-Tetra	541-73-1	1,3-Dichlorobenzene	0.50
75-71-8 Freen 12 0.50 107-06-2 1,2-Dichloroethane 0.50 75-35-4 1,1-Dichloroethene 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 10061-01-5 cis-1,3-Dichloropropane 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 591-78-6 2-Hexanone 0.50 100-42-5 Styrene 0.50 102-82-1 1,2,2-Tetrachloroeth	106-46-7	1,4-Dichlorobenzene	
75-71-8 Freen 12 0.50 107-06-2 1,2-Dichloroethane 0.50 75-35-4 1,1-Dichloroethene 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 10061-01-5 cis-1,3-Dichloroptopane 0.50 10061-01-5 cis-1,3-Dichloropropane 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10041-02-6 trans-1,3-Dichloropropene 0.50 10041-02-6 trans-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 100-41-4 Ethyl Benzene 0.50 100-41-4 Ethyl Benzene 2.0 591-78-6 2-Hexanone 2.0 591-78-6 2-Hexanone 5.0 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50	75-34-3	1,1-Dichloroethane	0.50
75-35-4 1,1-Dichloroethene 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloropropane 0.50 78-87-5 1,2-Dichloropropane 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-10-26 trans-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 75-09-2 Methylene Chloride 5.0 108-10-1 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0.50 102-82-1 1,2,2-Tetrachloroethane 0.50 102-82-1 1,2,4-Trichloroethane 0.50 102-82-1 1,2,4-Trichloroethane 0.50 179-55-6 1,1,1-Trichloroethane 0.50	75-71-8	Freon 12	
75-35-4 1,1-Dichloroethene 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloropropane 0.50 78-87-5 1,2-Dichloropropane 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-102-6 trans-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 75-09-2 Methylene Chloride 5.0 108-10-1 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50 120-82-1 1,2,2-Tetrachloroethane 0.50 127-18-4 Tetrachloroethane 0.50 108-88-3 Toluene 1.0 120-82-1 1,2,4-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50	107-06-2	1,2-Dichloroethane	
156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroptopene 0.50 78-87-5 1,2-Dichloropropene 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10041-02-6 trans-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 91-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 108-10-1 4-Methyl-2-pentanone 0.50 107-42-5 Styrene 0.50 107-42-5 Styrene 0.50 127-18-4 Tetrachloroethane 0.50 128-88-3 Toluene 1.0 120-82-1 1,2,4-Trichlorobenzene 2.0 71-55-6 1,1,1-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-01-6 Trichloroethane 0.50 79-01-6 Trichloroethane 0.50 <t< td=""><td>75-35-4</td><td>1,1-Dichloroethene</td><td></td></t<>	75-35-4	1,1-Dichloroethene	
156-60-5 trans-1,2-Dichloropethene 0.50 78-87-5 1,2-Dichloropropane 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 951-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 108-10-1 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0.50 108-88-3 Toluene 1.0 120-82-1 1,2,2-Tetrachlorobethane 0.50 120-82-1 1,2,4-Trichlorobenzene 2.0 79-00-5 1,1,2-Trichloroethane 0.50	156-59-2	cis-1,2-Dichloroethene	
10061-01-5cis-1,3-Dichloropropene0.5010061-02-6trans-1,3-Dichloropropene0.5076-14-2Freon 1140.50100-41-4Ethyl Benzene0.50622-96-84-Ethyltoluene0.5087-68-3Hexachlorobutadiene2.0591-78-62-Hexanone2.075-09-2Methylene Chloride5.0100-42-5Styrene0.50100-42-5Styrene0.50107-88-3Toluene1.0120-82-11,2,2-Tetrachloroethane0.50108-88-3Toluene1.0120-82-11,2,4-Trichloroethane0.5079-00-51,1,2-Trichloroethane0.5079-01-6Trichloroethene0.5079-04-6Trichloroethene0.5079-69-4Freon 110.50	156-60-5	trans-1,2-Dichloroethene	
10061-02-6trans-1,3-Dichloropropene0.5076-14-2Freon 1140.50100-41-4Ethyl Benzene0.50622-96-84-Ethyltoluene0.5087-68-3Hexachlorobutadiene2.0591-78-62-Hexanone2.075-09-2Methylene Chloride5.0108-10-14-Methyl-2-pentanone0.50100-42-5Styrene0.50100-42-5Styrene0.50108-88-3Toluene1.0120-82-11,2,4-Trichlorobenzene2.071-55-61,1,1-Trichloroethane0.5079-00-51,1,2-Trichloroethane0.5079-01-6Trichloroethene0.5075-69-4Freon 110.50	78-87-5	1,2-Dichloropropane	0.50
76-14-2 Freon 114 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 108-10-1 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0.50 79-34-5 1,1,2,2-Tetrachloroethane 0.50 108-88-3 Toluene 1.0 120-82-1 1,2,4-Trichlorobenzene 2.0 71-55-6 1,1,1-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-01-6 Trichloroethene 0.50 79-04 Freon 11 0.50	10061-01-5	cis-1,3-Dichloropropene	0.50
100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 100-42-5 Styrene 0.50 102-42-5 Styrene 0.50 100-42-5 1,1,2,2-Tetrachloroethane 0.50 127-18-4 Tetrachloroethane 0.50 108-88-3 Toluene 1.0 120-82-1 1,2,4-Trichlorobenzene 2.0 71-55-6 1,1,1-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-01-6 Trichloroethene 0.50 75-69-4 Freon 11 0.50	10061-02-6	trans-1,3-Dichloropropene	0.50
622-96-84-Ethyltoluene0.5087-68-3Hexachlorobutadiene2.0591-78-62-Hexanone2.075-09-2Methylene Chloride5.0108-10-14-Methyl-2-pentanone0.50100-42-5Styrene0.5079-34-51,1,2,2-Tetrachloroethane0.50127-18-4Tetrachloroethene0.50108-88-3Toluene1.0120-82-11,2,4-Trichlorobenzene2.071-55-61,1,1-Trichloroethane0.5079-01-6Trichloroethene0.5075-69-4Freon 110.50	76-14-2	Freon 114	0.50
622-96-84-Ethyltoluene0.5087-68-3Hexachlorobutadiene2.0591-78-62-Hexanone2.075-09-2Methylene Chloride5.0108-10-14-Methyl-2-pentanone0.50100-42-5Styrene0.5079-34-51,1,2,2-Tetrachloroethane0.50127-18-4Tetrachloroethene0.50108-88-3Toluene1.0120-82-11,2,4-Trichlorobenzene2.071-55-61,1,1-Trichloroethane0.5079-01-6Trichloroethene0.5075-69-4Freon 110.50	100-41-4	Ethyl Benzene	0.50
87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 108-10-1 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0.50 79-34-5 1,1,2,2-Tetrachloroethane 0.50 127-18-4 Tetrachloroethene 0.50 108-88-3 Toluene 1.0 120-82-1 1,2,4-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-01-6 Trichloroethene 0.50 79-01-6 Trichloroethene 0.50 75-69-4 Freon 11 0.50	622-96-8	4-Ethyltoluene	
75-09-2 Methylene Chloride 5.0 108-10-1 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0.50 79-34-5 1,1,2,2-Tetrachloroethane 0.50 127-18-4 Tetrachloroethene 0.50 108-88-3 Toluene 1.0 120-82-1 1,2,4-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-01-6 Trichloroethene 0.50 75-69-4 Freon 11 0.50	87-68-3	Hexachlorobutadiene	2.0
108-10-1 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0.50 79-34-5 1,1,2,2-Tetrachloroethane 0.50 127-18-4 Tetrachloroethene 0.50 108-88-3 Toluene 1.0 120-82-1 1,2,4-Trichloroethane 0.50 79-00-5 1,1,1-Trichloroethane 0.50 79-01-6 Trichloroethene 0.50 75-69-4 Freon 11 0.50	591-78-6	2-Hexanone	2.0
100-42-5Styrene0.5079-34-51,1,2,2-Tetrachloroethane0.50127-18-4Tetrachloroethene0.50108-88-3Toluene1.0120-82-11,2,4-Trichlorobenzene2.071-55-61,1,1-Trichloroethane0.5079-00-51,1,2-Trichloroethane0.5079-01-6Trichloroethene0.5075-69-4Freon 110.50	75-09-2	Methylene Chloride	5.0
100-42-5Styrene0.5079-34-51,1,2,2-Tetrachloroethane0.50127-18-4Tetrachloroethene0.50108-88-3Toluene1.0120-82-11,2,4-Trichlorobenzene2.071-55-61,1,1-Trichloroethane0.5079-00-51,1,2-Trichloroethane0.5079-01-6Trichloroethene0.5075-69-4Freon 110.50	108-10-1	4-Methyl-2-pentanone	0.50
79-34-5 1,1,2,2-Tetrachloroethane 0.50 127-18-4 Tetrachloroethene 0.50 108-88-3 Toluene 1.0 120-82-1 1,2,4-Trichlorobenzene 2.0 71-55-6 1,1,1-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-01-6 Trichloroethene 0.50 75-69-4 Freon 11 0.50	100-42-5		
127-18-4 Tetrachloroethene 0.50 108-88-3 Toluene 1.0 120-82-1 1,2,4-Trichlorobenzene 2.0 71-55-6 1,1,1-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-01-6 Trichloroethene 0.50 75-69-4 Freon 11 0.50	79-34-5		
108-88-3 Toluene 1.0 120-82-1 1,2,4-Trichlorobenzene 2.0 71-55-6 1,1,1-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-01-6 Trichloroethene 0.50 75-69-4 Freon 11 0.50	127-18-4	Tetrachloroethene	
120-82-1 1,2,4-Trichlorobenzene 2.0 71-55-6 1,1,1-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-01-6 Trichloroethene 0.50 75-69-4 Freon 11 0.50			
71-55-6 1,1,1-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-01-6 Trichloroethene 0.50 75-69-4 Freon 11 0.50	120-82-1	1,2,4-Trichlorobenzene	
79-00-5 1,1,2-Trichloroethane 0.50 79-01-6 Trichloroethene 0.50 75-69-4 Freon 11 0.50	71-55-6	1,1,1-Trichloroethane	
79-01-6 Trichloroethene 0.50 75-69-4 Freon 11 0.50			
75-69-4 Freon 11 0.50			
		Freon 11	
0.00	76-13-1	Freon 113	0.50

Seurofins | Air Toxics

Method : TO-15 (Sp)-Eurofins TA (CEC, OK)

CAS Number	Compound	Rpt. Limit (ppbv)	
95-63-6	1,2,4-Trimethylbenzene	0.50	
108-67-8	1,3,5-Trimethylbenzene	0.50	
108-05-4	Vinyl Acetate	2.0	
75-01-4	Vinyl Chloride	0.50	
108-38-3	m,p-Xylene	1.0	
95-47-6	o-Xylene	0.50	
9999-9999-500	TVOC Ref. to Hexane	10	

	Surrogate	Method Limits	
2037-26-5	Toluene-d8	70-130	
17060-07-0	1,2-Dichloroethane-d4	70-130	
460-00-4	4-Bromofluorobenzene	70-130	

Air Toxics

Eurofins Air Toxics Sample Receipt Confirmation Cover Page

Thank you for choosing Eurofins Air Toxics (EATL). We have received your samples and have listed any Sample Receipt Descrepancies below.

In order to expedite analysis and reporting, please review the attached information for accuracy.

For corrections call: Air Toxics, Ltd. at 916-985-1000

EATL will proceed with the analysis as specified on the Chain of Custody (COC) and Sample Receipt Summary page.

Please note : The Sample Receipt Confirmation, including the total workorder charge, is subject to change upon secondary review. Our aim is to provide a confirmation to you in a timely manner. Sample Receipt Discrepancies, if any, may not include discrepancies regarding sample receipt pressure(s). Additionally, the COC will be provided with the final report.

In accordance with your company's contract, this account is required to have a PO that is fully executed by both parties which also covers the cost of the workorder before any data can be released. Please ensure that you have given all appropriate information to our Project Manager so that there will be no delay in reporting of the data you are requesting.

The following discrepancies have been observed:

The Chain of Custody (COC) was missing method information. EATL will proceed with the analysis as per the original contract or verbal agreement unless otherwise notified.

The Chain of Custody (COC) was not completed properly. Please note for future reference that the COC must be signed and dated with time included in order to properly relinquish or receive samples.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630

(916) 985-1000 .FAX (916) 985-1020 Hours 6:30 A.M to 5:30 P.M. PST 🛟 eurofins

Air Toxics 1 SAMPLE RECEIPT SUMMARY 3 WORKORDER 2406615 4 Client Date Promised: 07/03/24 Mr. Ken Hayes Date Completed: Burofins Environment Testing Date Received: 6/20/24 301 Alpha Dr. Fax Physical State-M 6 Sales Rep: TA Lucud Bru 1b/1	Air Toxics	1 2 3
Air Toxics 2 SAMPLE RECEIPT SUMMARY 3 WORKORDER 2406615 4 Client Date Promised: 07/03/24 5 Mr. Ken Hayes Date Completed: 5 Eurofins Environment Testing 301 Alpha Dr. Fax PO#: Pittsburgh, PA 15238 Project#: State-M 8 Sales Ren: TA 0	Air Toxics	2
WORKORDER 2406615 Date Promised: 07/03/24 5 Client Phone Date Completed: 5 Mr. Ken Hayes Date Received: 6/20/24 6 Eurofins Environment Testing 301 Alpha Dr. Fax PO#: 7 Pittsburgh, PA 15238 Project#: State-M 8 Sales Ren: TA Total \$: \$155.00 9		3
WORKORDER 2406615 Date Promised: 07/03/24 5 Client Phone Date Completed: 5 Mr. Ken Hayes Date Received: 6/20/24 6 Eurofins Environment Testing 301 Alpha Dr. Fax PO#: 7 Pittsburgh, PA 15238 Project#: State-M 8 Sales Ren: TA Total \$: \$155.00 9		
Client Date Promised: 07/03/24 5 Mr. Ken Hayes Date Completed: 6 Eurofins Environment Testing Date Received: 6/20/24 6 301 Alpha Dr. Fax PO#: 7 Pittsburgh, PA 15238 Project#: State-M 8 Sales Ren: Total \$: \$ 155.00		4
ChentPhoneDate Completed:6Mr. Ken HayesDate Received:6/20/246Eurofins Environment Testing301 Alpha Dr.FaxPO#:7301 Alpha Dr.FaxPO#:7Pittsburgh, PA 15238Project#:State-M8Total \$: \$ 155.00	WORKORDER 2406615	
Phone Date Completed: Mr. Ken Hayes Date Received: 6/20/24 Eurofins Environment Testing Date Received: 6/20/24 301 Alpha Dr. Fax Pittsburgh, PA 15238 Project#: State-M Sales Rep: TA	Client Date Promised: 07/03/24	5
Eurofins Environment Testing Date Received: 6/20/24 301 Alpha Dr. Fax Pittsburgh, PA 15238 Project#: State-M Sales Rep: TA	Phone Date Completed:	6
301 Alpha Dr.FaxPO#:7Pittsburgh, PA 15238Project#: State-M8Sales Ren: TA		0
Pittsburgh, PA 15238 Project#: State-M 8 Sales Rep: TA	DO II	7
Sales Rep: TA Total \$: \$ 155.00		
Sales Rep: TA		8
Trand Day T M	Sales Ren: TA	
Logged By: LN	Logged By: LN	9

Fraction	Sample #	<u>Analysis</u>	Collected	Amount\$
01A	20240618M-1	TO-15	6/18/2024	\$120.00
Misc. Charge	es 6 Liter Summa Canister (1) @ \$30.00 each., Fitting w/ Pink Ferrule (1) @ \$5.00 each.	Shipment 162342		\$30.00 \$5.00

Note: Samples received after 3 P.M. PST are considered to be received on the following work day. Atlas Project Name/Profile#: EQUUS/23738

BILL TO: Mr. Ken Hayes Eurofins Environment Testing 301 Alpha Dr. Pittsburgh, PA 15238

Analysis Code: TO-14A

TERMS:

Reporting Method: TO-15 (Sp)-Eurofins TA (CEC, OK)

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

	Shipper Name: Currow Custody Seals Intact? Yes No None Condition:	Relinquished by: (Signature/Affiliation) Date Time Received by: (Signature/Affiliation)	Relinquished by: (Signature/Affiliation) Date Time Received by: (Signature/Affiliation)	Date	Special Instructions/Notes:						01A 20240618 M-1 120430 2221 6-18-24 1013 1.18-24 1017	Lab Field Sample Identification (Location) Canister Flow Controller Information Information Information Information	Sampler: Jerry Fisher		Mater M. and and a second seco	Project # 202426 Man-	Project Name: $\frac{1}{2} \frac{1}{2} \frac{1}{2$	- Contraction and	Purofins Environment Testing Northern California, LLC 80 Blue Ravine Rd. Suite B, Folsom, CA 95630 Phone (800) 985-5955; Fax (916) 351-6279	Allarysis Request/ Califister Chalifi of C	Analysis Request / Canister Chain of C	1 2 3 4 5 6 7 7 8 9
te, Federal, and international laws, regulations, and ordinances of any kind. Relinquishing		ation) Date Time	Date	Date CATL Date							A 8 1	Initial (in "H Final (in "H Receipt (in "Hg)	g)	Lab Use Only Sec.	iebe	Samples received after JPM PST Requested Date, (mm/pd/yy): % are considered to be received on the following workday. * OB Number of Days:	ush (Surcharges will apply, per avail	Turnaround Tir	EATL will proceed with Standard TAT	-usiouy	luctody	

7/3/2024

. .

. .

Air Toxics

67-64-1 Acetone 5.0 71-43-2 Benzene 0.50 100-44-7 alpha-Chlorotoluene 0.50 75-274 Bromodichloromethane 0.50 75-274 Bromomethane 5.0 78-83-3 2-Butanone (Methyl Ethyl Ketone) 2.0 75-15-0 Carbon Disulfide 2.0 65:23-5 Carbon Tetrachloride 0.50 108-90-7 Chlorobenzene 0.50 108-90-7 Chlorobenzene 0.50 74-87-3 Chloromethane 2.0 67-66-3 Chlorobenzene 0.50 74-87-3 Chloromethane 5.0 106-93-4 1,2-Dibromoethane (EDB) 0.50 95-50-1 1.2-Dichlorobenzene 0.50 75-37-8 Chloromethane 0.50 75-37-13 1,3-Dichlorobenzene 0.50 75-37-3 Chloromethane 0.50 75-37-4 1,1-Dichlorobenzene 0.50 75-37-8 1,1-Dichlorobenzene 0.50 75-35-4 1,1-Dichloroethane 0.50 75-35-5 1,2-Dichloroetha	CAS Number	Compound	Rpt. Limit (ppbv)
100-44-7 alpha-Chlorotoluene 0.50 75-27-4 Bromodichloromethane 0.50 75-27-4 Bromodichloromethane 0.50 74-83-9 Bromomethane 5.0 74-83-9 Bromomethane 5.0 78-93-3 2-Butanone (Methyl Ethyl Ketone) 2.0 75-15-0 Carbon Disulfide 2.0 56-23-5 Carbon Tetrachloride 0.50 108-90-7 Chlorobenzene 0.50 124-48-1 Dibromochloromethane 0.50 75-00-3 Chloroform 0.50 76-83-3 Chloroform 0.50 124-48-1 1.2-Dibromoethane (EDB) 0.50 106-93-4 1.2-Dibromoethane 0.50 106-93-4 1.2-Dibromoethane 0.50 541-73-1 1.3-Dichlorobenzene 0.50 106-64-7 1.4-Dichlorobenzene 0.50 107-06-2 1.2-Dichloroethane 0.50 107-06-2 1.2-Dichloroethane 0.50 156-59-2 cis-1.2-Dichloroethene 0.50	67-64-1	Acetone	5.0
75-27-4 Bromodichloromethane 0.50 75-25-2 Bromomethane 5.0 74-83-9 Bromomethane 5.0 78-93-3 2-Butanone (Methyl Ethyl Ketone) 2.0 75-15-0 Carbon Disulfide 2.0 56-23-5 Carbon Tetrachloride 0.50 108-90-7 Chlorobenzene 0.50 124-48-1 Dibromochloromethane 2.0 75-03 Chlorothane 2.0 67-66-3 Chloromethane 2.0 67-66-3 Chloromethane 5.0 106-93-4 1,2-Dichlorobenzene 0.50 95-50-1 1,2-Dichlorobenzene 0.50 95-50-1 1,2-Dichlorobenzene 0.50 95-50-1 1,2-Dichlorobenzene 0.50 106-64-7 1,4-Dichlorobenzene 0.50 75-71-8 Freon 12 0.50 107-06-2 1,2-Dichloroethane 0.50 156-59-2 cis-1,3-Dichloropropene 0.50 156-60-5 trans-1,3-Dichloropropene 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 100	71-43-2	Benzene	0.50
75-25-2 Bromoform 0.50 74-83-9 Bromomethane 5.0 78-93-3 2-Butanone (Methyl Ethyl Ketone) 2.0 75-15-0 Carbon Disulfide 2.0 56-23-5 Carbon Disulfide 0.50 108-90-7 Chlorobenzene 0.50 124-48-1 Dibromochloromethane 0.50 78-73 Chlorobenzene 0.50 74-87-3 Chlorobenzene 0.50 106-93-4 1,2-Dibromoethane (EDB) 0.50 95-50-1 1,2-Dichlorobenzene 0.50 106-46-7 1,4-Dichlorobenzene 0.50 106-46-7 1,4-Dichlorobenzene 0.50 106-46-7 1,4-Dichlorobenzene 0.50 107-06-2 1,2-Dichloroethane 0.50 107-06-2 1,2-Dichloroethane 0.50 107-06-2 1,2-Dichloroethane 0.50 106-46-7 1,4-Dichloroethane 0.50 106-46-7 1,2-Dichloroethane 0.50 106-50 trans-1,2-Dichloroethene 0.50	100-44-7	alpha-Chlorotoluene	0.50
74-83-9 Bromomethane 5.0 78-93-3 2-Butanone (Methyl Ethyl Ketone) 2.0 75-15-0 Carbon Disulfide 2.0 56-23-5 Carbon Tetrachloride 0.50 124-48-1 Dibromochloromethane 0.50 124-48-1 Dibromochloromethane 0.50 78-93-3 Chlorobenzene 0.50 74-87-3 Chlorotemtane 2.0 67-66-3 Chloromethane 5.0 106-93-4 1,2-Dibromoethane (EDB) 0.50 95-50-1 1,2-Dichlorobenzene 0.50 95-50-1 1,2-Dichlorobenzene 0.50 75-34-3 1,1-Dichlorobenzene 0.50 75-34-3 1,1-Dichloroethane 0.50 75-71-8 Freon 12 0.50 107-06-2 1,2-Dichloroethane 0.50 107-06-2 1,2-Dichloroethane 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroppopene 0.50 10061-01-5 cis-1,2-Dichloroppopene 0.50 10061-02-6 trans-1,3-Dichloroppopene 0.50	75-27-4	Bromodichloromethane	0.50
78-93-3 2-Butanone (Methyl Ethyl Ketone) 2.0 75-15-0 Carbon Disulfide 2.0 56-23-5 Carbon Tetrachloride 0.50 108-90-7 Chiorobenzene 0.50 124-48-1 Dibromochloromethane 0.50 75-00-3 Chiorobenzene 0.50 76-66-3 Chioromethane 5.0 106-93-4 1,2-Dibromoethane (EDB) 0.50 95-50-1 1,2-Dichlorobenzene 0.50 541-73-1 1,3-Dichlorobenzene 0.50 106-46-7 1,4-Dichlorobenzene 0.50 75-34-3 1,1-Dichlorobenzene 0.50 107-06-2 1,2-Dichloroethane 0.50 75-34-3 1,1-Dichloroethane 0.50 75-34-4 1,1-Dichloroethane 0.50 107-06-2 1,2-Dichloroethene 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 10061-01-5 cis-1,3-Dichloropropane 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene	75-25-2	Bromoform	0.50
75-15-0 Carbon Disulfide 2.0 56-23-5 Carbon Tetrachloride 0.50 128-90-7 Chlorobenzene 0.50 124-48-1 Dibromochloromethane 0.50 75-00-3 Chloroethane 2.0 67-66-3 Chloroethane 5.0 106-93-4 1,2-Dibromoethane (EDB) 0.50 95-50-1 1,2-Dichlorobenzene 0.50 541-73-1 1,3-Dichlorobenzene 0.50 75-34-3 1,1-Dichlorobenzene 0.50 75-34-3 1,1-Dichlorobenzene 0.50 75-71-8 Freon 12 0.50 107-06-2 1,2-Dichloroethane 0.50 107-06-2 1,2-Dichloroethene 0.50 107-06-2 1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloropropene 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene <	74-83-9	Bromomethane	5.0
56-23-5 Carbon Tetrachloride 0.50 108-90-7 Chlorobenzene 0.50 124-48-1 Dibromochloromethane 0.50 75-00-3 Chloroethane 2.0 67-66-3 Chloroethane 5.0 106-93-4 1,2-Dibromoethane (EDB) 0.50 95-50-1 1,2-Dichlorobenzene 0.50 541-73-1 1,3-Dichlorobenzene 0.50 544-73-3 1,1-Dichlorobenzene 0.50 541-73-1 1,3-Dichlorobenzene 0.50 75-34-3 1,1-Dichlorobenzene 0.50 75-71-8 Freon 12 0.50 107-06-2 1,2-Dichloroethane 0.50 107-06-2 1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 1066-01-5 cis-1,3-Dichloropropane 0.50 10061-01-5 cis-1,3-Dichloropropane 0.50 10061-02-6 trans-1,3-Dichloropropane 0.50 10061-02-6 trans-1,3-Dichloropropane 0.50 10061-02-6 trans-1,3-Dichloroprop	78-93-3	2-Butanone (Methyl Ethyl Ketone)	2.0
108-90-7 Chlorobenzene 0.50 124-48-1 Dibromochloromethane 0.50 75-00-3 Chloroethane 2.0 67-66-3 Chloroform 0.50 74-87-3 Chloromethane 5.0 106-93-4 1.2-Dibromoethane (EDB) 0.50 95-50-1 1.2-Dichlorobenzene 0.50 541-73-1 1.3-Dichlorobenzene 0.50 75-34-3 1.1-Dichlorobenzene 0.50 75-71-8 Freon 12 0.50 75-34-3 1.1-Dichloroethane 0.50 75-71-8 Freon 12 0.50 75-73-4 1,1-Dichloroethane 0.50 75-35-4 1,1-Dichloroethene 0.50 75-75-5 1.2-Dichloropthene 0.50 156-60-5 trans-1,2-Dichloropthene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-11-5 cis-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 <tr< td=""><td>75-15-0</td><td>Carbon Disulfide</td><td>2.0</td></tr<>	75-15-0	Carbon Disulfide	2.0
124-48-1 Dibromochloromethane 0.50 75-00-3 Chloroethane 2.0 67-66-3 Chloroform 0.50 74-87-3 Chloromethane 5.0 106-93-4 1,2-Dibromoethane (EDB) 0.50 95-50-1 1,2-Dichlorobenzene 0.50 95-50-1 1,2-Dichlorobenzene 0.50 106-46-7 1,4-Dichlorobenzene 0.50 75-34-3 1,1-Dichlorobenzene 0.50 75-71-8 Freon 12 0.50 75-35-4 1,1-Dichloroethane 0.50 75-35-4 1,1-Dichloroethane 0.50 75-71-8 Freon 12 0.50 107-06-2 1,2-Dichloroethane 0.50 156-69-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroptopene 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-11-2 Freon 114 0.50 100-41-4 Ethyl Benzene 0.50	56-23-5	Carbon Tetrachloride	0.50
75-00-3 Chloroethane 2.0 67-66-3 Chloroform 0.50 74-87-3 Chloromethane 5.0 106-93-4 1,2-Dibromoethane (EDB) 0.50 95-50-1 1,2-Dichlorobenzene 0.50 541-73-1 1,3-Dichlorobenzene 0.50 75-34 1,4-Dichlorobenzene 0.50 75-34-3 1,1-Dichloroethane 0.50 75-71-8 Freon 12 0.50 107-06-2 1,2-Dichloroethane 0.50 107-06-2 1,2-Dichloroethane 0.50 107-06-2 1,2-Dichloroethane 0.50 107-06-2 1,2-Dichloroethane 0.50 107-06-2 1,2-Dichloroethene 0.50 106-60-5 trans-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloropropene 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-14-4 Ethyl Benzene 0.50 100-41-4 Ethyl Benzene 0.50	108-90-7	Chlorobenzene	0.50
67-66-3 Chloroform 0.50 74-87-3 Chloromethane 5.0 106-93-4 1,2-Dibromoethane (EDB) 0.50 95-50-1 1,2-Dichlorobenzene 0.50 541-73-1 1,3-Dichlorobenzene 0.50 106-46-7 1,4-Dichlorobenzene 0.50 75-74-8 Freon 12 0.50 75-71-8 Freon 12 0.50 107-06-2 1,2-Dichloroethane 0.50 156-69-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 10061-01-5 cis-1,3-Dichloroethene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 2.0 57-08-2 Methylene Chloride 5.0 109-11 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0.50 <	124-48-1	Dibromochloromethane	0.50
74-87-3 Chloromethane 5.0 106-93-4 1,2-Dibromoethane (EDB) 0.50 95-50-1 1,2-Dichlorobenzene 0.50 541-73-1 1,3-Dichlorobenzene 0.50 106-46-7 1,4-Dichlorobenzene 0.50 75-34-3 1,1-Dichloroethane 0.50 75-71-8 Freen 12 0.50 107-06-2 1,2-Dichloroethane 0.50 75-35-4 1,1-Dichloroethane 0.50 156-69-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 10061-01-5 cis-1,3-Dichloroptopane 0.50 10061-02-6 trans-1,3-Dichloroptopene 0.50 10061-02-6 trans-1,3-Dichloroptopene 0.50 10061-02-6 trans-1,3-Dichloroptopene 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 2.0 59-78-8-3 Hexachlorobutadiene 2.0 50-75-92 Methylene Chloride 5.0 108-80-1 4-Methyl-2-pentanone 0.50 109-42-5 Styrene 0.50<	75-00-3	Chloroethane	2.0
106-93-4 1,2-Dibromoethane (EDB) 0.50 95-50-1 1,2-Dichlorobenzene 0.50 541-73-1 1,3-Dichlorobenzene 0.50 106-46-7 1,4-Dichlorobenzene 0.50 75-34-3 1,1-Dichloroethane 0.50 75-71-8 Freon 12 0.50 107-06-2 1,2-Dichloroethane 0.50 75-35-4 1,1-Dichloroethene 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 10061-01-5 cis-1,3-Dichloropropane 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10041-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 75-09-2 Methylene Chloride 5.0 108-10-1 4-Methyl-2-pentanone 0.50 109-42-5 Styrene 0.50 100-42-5 Styrene 0.50	67-66-3	Chloroform	0.50
95-50-1 1,2-Dichlorobenzene 0.50 541-73-1 1,3-Dichlorobenzene 0.50 106-46-7 1,4-Dichlorobenzene 0.50 75-34-3 1,1-Dichloroethane 0.50 75-71-8 Freon 12 0.50 107-06-2 1,2-Dichloroethane 0.50 75-35-4 1,1-Dichloroethene 0.50 107-06-2 1,2-Dichloroethene 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 10601-01-5 cis-1,3-Dichloropropane 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 591-78-6 2-Hexanone 2.0 75-09-2 Methylee Chloride 5.0 108-10-1 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0	74-87-3	Chloromethane	5.0
541-73-1 1,3-Dichlorobenzene 0.50 106-46-7 1,4-Dichlorobenzene 0.50 75-34-3 1,1-Dichloroethane 0.50 75-71-8 Freen 12 0.50 107-06-2 1,2-Dichloroethane 0.50 75-35-4 1,1-Dichloroethane 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 10061-01-5 cis-1,3-Dichloropropane 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10041-04-4 Ethyl Benzene 0.50 10041-04-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 108-10-1 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50 100-42-	106-93-4	1,2-Dibromoethane (EDB)	0.50
106-46-7 1,4-Dichlorobenzene 0.50 75-34-3 1,1-Dichloroethane 0.50 75-71-8 Freon 12 0.50 107-06-2 1,2-Dichloroethane 0.50 75-35-4 1,1-Dichloroethene 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 10061-01-5 cis-1,3-Dichloropropane 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10041-41-4 Ethyl Benzene 0.50 100-41-4 Ethyl Benzene 0.50 87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 591-78-6 2-Hexanone 0.50 108-10-1 4-Methyl-2-pentanone 0.50 108-10-1 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50 1	95-50-1	1,2-Dichlorobenzene	0.50
75-34-3 1,1-Dichloroethane 0.50 75-71-8 Freon 12 0.50 107-06-2 1,2-Dichloroethane 0.50 75-35-4 1,1-Dichloroethene 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 1061-01-5 cis-1,3-Dichloropropane 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 591-78-6 2-Hexanone 0.50 108-10-1 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50 100-42-5 </td <td>541-73-1</td> <td>1,3-Dichlorobenzene</td> <td>0.50</td>	541-73-1	1,3-Dichlorobenzene	0.50
75-71-8 Freon 12 0.50 107-06-2 1,2-Dichloroethane 0.50 75-35-4 1,1-Dichloroethene 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloropropane 0.50 10061-01-5 cis-1,3-Dichloropropane 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 100-41-4 Ethyl Benzene 0.50 87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 591-78-6 2-Hexanone 0.50 108-10-1 4-Methyl-2-pentanone 0.50 108-10-1 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50 102-42-	106-46-7	1,4-Dichlorobenzene	0.50
107-06-2 1,2-Dichloroethane 0.50 75-35-4 1,1-Dichloroethene 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 10061-01-5 cis-1,3-Dichloropropane 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10041-02-6 trans-1,3-Dichloropropene 0.50 10041-02-6 trans-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 100-42-5 Styrene 0.50 108-88-3	75-34-3	1,1-Dichloroethane	0.50
75-35-4 1,1-Dichloroethene 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 78-87-5 1,2-Dichloropropane 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 100-42-5 Styrene 0.50 108-88-3 Toluene 1.0	75-71-8	Freon 12	0.50
156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 78-87-5 1,2-Dichloropropane 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50 108-10-1 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50 108-88-3 Toluene 1.0	107-06-2	1,2-Dichloroethane	0.50
156-60-5 trans-1,2-Dichloroethene 0.50 78-87-5 1,2-Dichloropropane 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-1-2 Freon 114 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50 108-10-1 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50 127-18-4 Tetrachloroethene 0.50 128-88-3 Toluene 1.0	75-35-4	1,1-Dichloroethene	0.50
78-87-5 1,2-Dichloropropane 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 76-14-2 Freon 114 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 100-42-5 Styrene 0.50 108-88-3 Toluene 1.0	156-59-2	cis-1,2-Dichloroethene	0.50
10061-01-5cis-1,3-Dichloropropene0.5010061-02-6trans-1,3-Dichloropropene0.5076-14-2Freon 1140.50100-41-4Ethyl Benzene0.50622-96-84-Ethyltoluene0.5087-68-3Hexachlorobutadiene2.0591-78-62-Hexanone2.075-09-2Methylene Chloride5.0100-42-5Styrene0.5079-34-51,1,2,2-Tetrachloroethane0.50108-88-3Toluene1.0	156-60-5	trans-1,2-Dichloroethene	0.50
10061-02-6trans-1,3-Dichloropropene0.5076-14-2Freon 1140.50100-41-4Ethyl Benzene0.50622-96-84-Ethyltoluene0.5087-68-3Hexachlorobutadiene2.0591-78-62-Hexanone2.075-09-2Methylene Chloride5.0108-10-14-Methyl-2-pentanone0.50100-42-5Styrene0.5079-34-51,1,2,2-Tetrachloroethane0.50127-18-4Tetrachloroethene0.50108-88-3Toluene1.0	78-87-5	1,2-Dichloropropane	0.50
76-14-2 Freon 114 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 108-10-1 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0.50 79-34-5 1,1,2,2-Tetrachloroethane 0.50 108-88-3 Toluene 1.0	10061-01-5	cis-1,3-Dichloropropene	0.50
100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 100-42-5 Styrene 0.50 79-34-5 1,1,2,2-Tetrachloroethane 0.50 108-88-3 Toluene 1.0	10061-02-6	trans-1,3-Dichloropropene	0.50
622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 108-10-1 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0.50 79-34-5 1,1,2,2-Tetrachloroethane 0.50 127-18-4 Tetrachloroethene 0.50 108-88-3 Toluene 1.0	76-14-2	Freon 114	0.50
87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 108-10-1 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0.50 79-34-5 1,1,2,2-Tetrachloroethane 0.50 127-18-4 Tetrachloroethene 0.50 108-88-3 Toluene 1.0	100-41-4	Ethyl Benzene	0.50
591-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 108-10-1 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0.50 79-34-5 1,1,2,2-Tetrachloroethane 0.50 127-18-4 Tetrachloroethene 0.50 108-88-3 Toluene 1.0	622-96-8	4-Ethyltoluene	0.50
75-09-2 Methylene Chloride 5.0 108-10-1 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0.50 79-34-5 1,1,2,2-Tetrachloroethane 0.50 127-18-4 Tetrachloroethene 0.50 108-88-3 Toluene 1.0	87-68-3	Hexachlorobutadiene	2.0
108-10-14-Methyl-2-pentanone0.50100-42-5Styrene0.5079-34-51,1,2,2-Tetrachloroethane0.50127-18-4Tetrachloroethene0.50108-88-3Toluene1.0	591-78-6	2-Hexanone	2.0
100-42-5 Styrene 0.50 79-34-5 1,1,2,2-Tetrachloroethane 0.50 127-18-4 Tetrachloroethene 0.50 108-88-3 Toluene 1.0	75-09-2	Methylene Chloride	5.0
79-34-51,1,2,2-Tetrachloroethane0.50127-18-4Tetrachloroethene0.50108-88-3Toluene1.0	108-10-1	4-Methyl-2-pentanone	0.50
127-18-4 Tetrachloroethene 0.50 108-88-3 Toluene 1.0	100-42-5	Styrene	0.50
108-88-3 Toluene 1.0	79-34-5	1,1,2,2-Tetrachloroethane	0.50
	127-18-4	Tetrachloroethene	0.50
120-82-1 1,2,4-Trichlorobenzene 2.0	108-88-3	Toluene	1.0
	120-82-1	1,2,4-Trichlorobenzene	2.0
71-55-6 1,1,1-Trichloroethane 0.50	71-55-6	1,1,1-Trichloroethane	0.50

Method : TO-15 (Sp)-Eurofins TA (CEC, OK)

Released to Imaging: 6/17/2025 9:46:51 AM

-

Air Toxics

CAS Number	Compound	Rpt. Limit (ppbv)	
79-00-5	1,1,2-Trichloroethane	0.50	
79-01-6	Trichloroethene	0.50	
75-69-4	Freon 11	0.50	
76-13-1	Freon 113	0.50	
95-63-6	1,2,4-Trimethylbenzene	0.50	
108-67-8	1,3,5-Trimethylbenzene	0.50	
108-05-4	Vinyl Acetate	2.0	
75-01-4	Vinyl Chloride	0.50	
108-38-3	m,p-Xylene	1.0	
95-47-6	o-Xylene	0.50	
9999-9999-500	TVOC Ref. to Hexane	10	

CAS Number	Surrogate	Method Limits	
2037-26-5	Toluene-d8	70-130	
17060-07-0	1,2-Dichloroethane-d4	70-130	
460-00-4	4-Bromofluorobenzene	70-130	

Method : TO-15 (Sp)-Eurofins TA (CEC, OK)

.* . <u>`</u> •

. .

Job Number: 180-176226-1 SDG Number: Property ID: 891077

List Source: Eurofins Pittsburgh

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Login Number: 176226 List Number: 1 Creator: Hayes, Ken

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td></td> <td></td>		
The cooler's custody seal, if present, is intact.		
Sample custody seals, if present, are intact.		
The cooler or samples do not appear to have been compromised or tampered with.		
Samples were received on ice.		
Cooler Temperature is acceptable.		
Cooler Temperature is recorded.		
COC is present.		
COC is filled out in ink and legible.		
COC is filled out with all pertinent information.		
Is the Field Sampler's name present on COC?		
There are no discrepancies between the containers received and the COC.		
Samples are received within Holding Time (excluding tests with immediate HTs)		
Sample containers have legible labels.		
Containers are not broken or leaking.		
Sample collection date/times are provided.		
Appropriate sample containers are used.		
Sample bottles are completely filled.		
Sample Preservation Verified.		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").		
Multiphasic samples are not present.		
Samples do not require splitting or compositing.		
Residual Chlorine Checked.		

Environment Testing

ANALYTICAL REPORT

Page 100 of 250

PREPARED FOR

Attn: Chase Acker Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154 Generated 9/24/2024 5:15:39 PM

JOB DESCRIPTION

CHK STATE M Property ID: 891077

JOB NUMBER

180-179880-1

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh PA 15238

See page two for job notes and contact information

Eurofins Pittsburgh

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

PA Lab ID: 02-00416

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Pittsburgh Project Manager.

Authorization

Kunth Hay

Generated 9/24/2024 5:15:39 PM

Authorized for release by Ken Hayes, Project Manager II Ken.Hayes@et.eurofinsus.com (615)301-5035

Page 2 of 28

Laboratory Job ID: 180-179880-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Definitions/Glossary	5
Sample Summary	6
Method Summary	7
Subcontract Data	8
Chain of Custody	24
Receipt Checklists	28

2

Case Narrative

Client: Chesapeake Energy Corporation Project: CHK STATE M

Job ID: 180-179880-1

Page 103 of 250

Eurofins Pittsburgh

Job ID: 180-179880-1

Job Narrative 180-179880-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 9/17/2024 2:43 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice.

Subcontract Work

Method TO 15: This method was subcontracted to Eurofins Air Toxics, Inc. The subcontract laboratory certification is different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

Eurofins Pittsburgh

Glossary Abbreviation

¤ %R

CFL

CFU

CNF

DER

DL

DLC

EDL

Dil Fac

DL, RA, RE, IN

Definitions/Glossary

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Job ID: 180-179880-1

CHK STATE M SDG: Property ID: 891			
These commonly used abbreviations may or may not be present in this report.			
Listed under the "D" column to designate that the result is reported on a dry weight basis		4	
Percent Recovery			
Contains Free Liquid		5	
Colony Forming Unit			
Contains No Free Liquid		6	
Duplicate Error Ratio (normalized absolute difference)		0	
Dilution Factor		-7	
Detection Limit (DoD/DOE)			
Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample			
Decision Level Concentration (Radiochemistry)		B	
Estimated Detection Limit (Dioxin)			
Limit of Detection (DoD/DOE)		9	
Limit of Quantitation (DoD/DOE)			
EPA recommended "Maximum Contaminant Level"			
Minimum Detectable Activity (Radiochemistry)			
Ministry Data stable Organization (Dellis Londates)			

LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Job ID: 180-179880-1 SDG: Property ID: 891077

l ah Samplo ID	Client Sample ID	Matrix	Collected	Received	
Lab Sample ID 180-179880-1	20240906M-1	Air		09/17/24 14:43	

Method Summary

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Job ID: 180-179880-1 SDG: Property ID: 891077

Method	Method Description	Protocol	Laboratory	
TO-15	TO-15	EPA	Eurofins	- 1

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

Eurofins = Eurofins Air Toxics, 180 Blue Ravine Road, Suite B, Folsom, CA 95630

Eurofins Pittsburgh

Received by OCD: 6/4/2025 10:09:49 AM

6 7 8

Air Toxics

9/24/2024 Mr. Ken Hayes Eurofins Environment Testing 301 Alpha Dr.

Pittsburgh PA 15238

Project Name: CHKSTATM Project #: CHKSTATM Workorder #: 2409263

Dear Mr. Ken Hayes

The following report includes the data for the above referenced project for sample(s) received on 9/10/2024 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Brian Whittaker at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Brian Whettaker

Brian Whittaker Project Manager

Eurofins Air Toxics, LLC

180 Blue Ravine Road, Suite B Folsom, CA 95630

T 916-985-1000 F 916-351-8279 www.airtoxics.com

7

Air Toxics

WORK ORDER #: 2409263

Work Order Summary

CLIENT:	Mr. Ken Hayes Eurofins Environment Testing 301 Alpha Dr. Pittsburgh, PA 15238	BILL TO:	Mr. Ken Hayes Eurofins Environment Testing 301 Alpha Dr. Pittsburgh, PA 15238
PHONE:		P.O. #	180-179880-1
FAX:		PROJECT #	CHKSTATM CHKSTATM
DATE RECEIVED: DATE COMPLETED:	09/10/2024 09/24/2024	CONTACT:	Brian Whittaker

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	20240906M-1	TO-15	13.7 "Hg	1.9 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA
04AA	LCSD	TO-15	NA	NA

CERTIFIED BY:

Lay Lera

09/24/24 DATE:

Technical Director

Cert. No.: AZ Licensure-AZ0775, FL NELAP-E87680, LA NELAP-02089, MN NELAP-2703122, NH NELAP-209223-B, NJ NELAP-CA016, NY NELAP-11291, TX NELAP-T104704434, UT NELAP-CA009332023-16, VA NELAP-12695, WA NELAP-C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) CA300005-20 Eurofins Environment Testing Northern California, LLC certifies that the test results contained in this report meet all requirements of the 2016 TNI Standard.

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000

Page 2 of 16 Page 9 of 28
Air Toxics

LABORATORY NARRATIVE EPA Method TO-15 Eurofins Environment Testing Workorder# 2409263

One 6 Liter Summa Canister sample was received on September 10, 2024. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

A single point calibration for TVOC (Total Volatile Organic Compounds) referenced to Hexane was performed for each daily analytical batch. Recovery is reported as 100% in the associated results for each CCV.

TVOC (Total Volatile Organic Compounds) referenced to Hexane includes area counts for peaks that elute from Hexane minus 0.08 minutes to Naphthalene plus 0.08 minutes and quantitating the area based on the response factor of Hexane.

The presence of a closely eluting non-target peak in sample 20240906M-1 is interfering with the quantitation mass ion for 4-Ethyltoluene. The reported 4-Ethyltoluene concentration is flagged with a "CN" flag to indicate a high bias due to matrix contribution.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

M - Reported value may be biased due to apparent matrix interferences.

CN - See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

1 2 3 4 5 6 7 8 9

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: 20240906M-1

Lab ID#: 2409263-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
4-Ethyltoluene	1.0	1.7 CN	5.1	8.5 CN
1,2,4-Trimethylbenzene	1.0	1.1	5.1	5.3
1,3,5-Trimethylbenzene	1.0	1.6	5.1	8.0
TVOC Ref. to Hexane	21	2800	73	9900

Air Toxics

Client Sample ID: 20240906M-1 Lab ID#: 2409263-01A EPA METHOD TO-15 GC/MS FULL SCAN

CompoundRpt. Limit (ppbv)Amount (ug/m3)Amount (ug/m3)Amount (ug/m3)Acetone10Not Detected25Not DetectedBenzene1.0Not Detected3.3Not Detectedalpha-Chioroblene1.0Not Detected5.4Not DetectedBromodichloromethane1.0Not Detected7.0Not DetectedBromodichloromethane1.0Not Detected11Not DetectedBromodichloromethane1.0Not Detected12Not DetectedBromodichloromethane1.0Not Detected13Not DetectedCarbon Tetrachloride1.0Not Detected13Not DetectedCarbon Tetrachloride1.0Not Detected6.5Not DetectedChiorobenzene1.0Not Detected6.8Not DetectedChiorobenzene1.0Not Detected5.1Not DetectedChiorotorom1.0Not Detected5.1Not DetectedChiorobenzene1.0Not Detected6.2Not Detected1.2-Dichorobenzene1.0Not Detected6.2Not Detected1.2-Dichorobenzene1.0Not Detected6.2Not Detected1.3-Dichorobenzene1.0Not Detected6.2Not Detected1.4-Dichorobenzene1.0Not Detected6.2Not Detected1.2-Dichorobenzene1.0Not Detected4.2Not Detected1.2-Dichorobenzene1.0Not Detected4.2Not Detected <t< th=""><th>File Name: Dil. Factor:</th><th>3092022 2.08</th><th colspan="3">Date of Collection: 9/6/24 11:40:00 AM Date of Analysis: 9/21/24 12:34 AM</th></t<>	File Name: Dil. Factor:	3092022 2.08	Date of Collection: 9/6/24 11:40:00 AM Date of Analysis: 9/21/24 12:34 AM		
Benzene1.0Not Detected3.3Not Detectedalpha-Chlorotoluene1.0Not Detected5.4Not DetectedBromodichoromethane1.0Not Detected7.0Not DetectedBromodrom1.0Not Detected11Not DetectedBromodrom1.0Not Detected12Not DetectedBromodrom1.0Not Detected12Not DetectedCarbon Disulfide4.2Not Detected13Not DetectedCarbon Tetrachloride1.0Not Detected6.5Not DetectedChlorobenzene1.0Not Detected8.8Not DetectedChlorobenzene1.0Not Detected7.1Not DetectedChlorobenzene1.0Not Detected7.1Not DetectedChlorobenzene1.0Not Detected5.1Not DetectedChlorobenzene1.0Not Detected2.1Not Detected1.2-Dibromothane (EDB)1.0Not Detected6.2Not Detected1.2-Dibromothane1.0Not Detected6.2Not Detected1.3-Dichlorobenzene1.0Not Detected6.2Not Detected1.4-Dichlorobenzene1.0Not Detected4.2Not Detected1.2-Dichlorobenzene1.0Not Detected4.2Not Detected1.2-Dichloroethane1.0Not Detected4.2Not Detected1.2-Dichloroethane1.0Not Detected4.2Not Detected1.2-Dichloroethane1.0Not Detecte	Compound		Amount	Rpt. Limit	Amount
alpha-Chlorotoluene1.0Not Detected5.4Not DetectedBromodichloromethane1.0Not Detected7.0Not DetectedBromoorm1.0Not Detected11Not DetectedBromoorm1.0Not Detected12Not Detected2-Butanone (Methyl Ethyl Ketone)4.2Not Detected13Not DetectedCarbon Disulfide4.2Not Detected13Not DetectedCarbon Disulfide1.0Not Detected6.5Not DetectedCarbon Disulfide1.0Not Detected8.8Not DetectedChlorobenzane1.0Not Detected8.8Not DetectedChloroethane1.0Not Detected1.1Not DetectedChloroethane1.0Not Detected2.1Not DetectedChloroethane1.0Not Detected2.1Not Detected1.2-Dichlorobenzene1.0Not Detected8.0Not Detected1.2-Dichlorobenzene1.0Not Detected6.2Not Detected1.3-Dichlorobenzene1.0Not Detected6.2Not Detected1.4-Dichlorobenzene1.0Not Detected4.2Not Detected1.4-Dichloroethane1.0Not Detected4.2Not Detected1.5-Dichloroethane1.0Not Detected4.2Not Detected1.4-Dichloroethane1.0Not Detected4.2Not Detected1.5-Dichloroethane1.0Not Detected4.1Not Detected1.6-Dichloroethane <td>Acetone</td> <td>10</td> <td>Not Detected</td> <td>25</td> <td>Not Detected</td>	Acetone	10	Not Detected	25	Not Detected
Bromodichloromethane1.0Not Detected7.0Not DetectedBromordorm1.0Not Detected11Not DetectedBromonethane10Not Detected40Not DetectedBromonethane10Not Detected12Not DetectedCarbon Disulfide4.2Not Detected13Not DetectedCarbon Tetrachloride1.0Not Detected6.5Not DetectedCarbon Tetrachloride1.0Not Detected8.8Not DetectedChlorobenzene1.0Not Detected8.8Not DetectedChloromethane1.0Not Detected5.1Not DetectedChloromethane1.0Not Detected5.1Not DetectedChloromethane1.0Not Detected6.2Not Detected1.2-Dichlorobenzene1.0Not Detected6.2Not Detected1.2-Dichlorobenzene1.0Not Detected6.2Not Detected1.3-Dichlorobenzene1.0Not Detected4.2Not Detected1.4-Dichlorobenzene1.0Not Detected4.2Not Detected1.4-Dichlorobenzene1.0Not Detected4.2Not Detected1.4-Dichlorobenzene1.0Not Detected4.2Not Detected1.4-Dichloroethane1.0Not Detected4.2Not Detected1.2-Dichloroethane1.0Not Detected4.2Not Detected1.2-Dichloroethene1.0Not Detected4.1Not Detected1.2-Dichloroethene <td< td=""><td>Benzene</td><td>1.0</td><td>Not Detected</td><td>3.3</td><td>Not Detected</td></td<>	Benzene	1.0	Not Detected	3.3	Not Detected
Bromoform1.0Not Detected11Not DetectedBromomethane10Not Detected40Not Detected2-Butanone (Methyl Ethyl Ketone)4.2Not Detected12Not DetectedCarbon Disulfide4.2Not Detected13Not DetectedCarbon Tetrachloride1.0Not Detected4.8Not DetectedChlorobenzene1.0Not Detected4.8Not DetectedDibromochloromethane1.0Not Detected5.4Not DetectedChlorobertane4.2Not Detected5.1Not DetectedChlorobertane1.0Not Detected6.2Not DetectedChlorobertane1.0Not Detected6.2Not DetectedChlorobertane1.0Not Detected6.2Not Detected1,2-Dichlorobenzene1.0Not Detected6.2Not Detected1,2-Dichlorobenzene1.0Not Detected4.2Not Detected1,2-Dichlorobenzene1.0Not Detected4.2Not Detected1,2-Dichlorobenzene1.0Not Detected4.2Not Detected1,2-Dichlorobenzene1.0Not Detected4.2Not Detected1,2-Dichlorobenzene1.0Not Detected4.2Not Detected1,2-Dichlorobenzene1.0Not Detected4.2Not Detected1,2-Dichlorobenzene1.0Not Detected4.1Not Detected1,2-Dichlorobenzene1.0Not Detected4.1Not Detected1,2-Dichlo	alpha-Chlorotoluene	1.0	Not Detected	5.4	Not Detected
Bromomethane10Not Detected40Not Detected2-Butanone (Methyl Ethyl Ketone)4.2Not Detected12Not DetectedCarbon Disuffide4.2Not Detected13Not DetectedCarbon Disuffide1.0Not Detected6.5Not DetectedChronobenzene1.0Not Detected8.8Not DetectedDibromochloromethane4.2Not Detected11Not DetectedChloroethane4.2Not Detected5.1Not DetectedChloroethane1.0Not Detected8.8Not DetectedChloroethane1.0Not Detected5.1Not DetectedChloroethane1.0Not Detected8.0Not Detected1,2-Dibromoethane (EDB)1.0Not Detected6.2Not Detected1,2-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichloroethane1.0Not Detected4.2Not Detected1,2-Dichloroethane1.0Not Detected4.2Not Detected1,2-Dichloroethane1.0Not Detected4.2Not Detected1,2-Dichloroethane1.0Not Detected4.2Not Detected1,2-Dichloroethane1.0Not Detected4.1Not Detected1,2-Dichloroethane1.0Not Detected4.1Not Detected1,2-Dichloroethane1.0Not Detected4.1Not Detected1,2-Dichlor	Bromodichloromethane	1.0	Not Detected	7.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)4.2Not Detected12Not DetectedCarbon Disulfide4.2Not Detected13Not DetectedCarbon Tetrachloride1.0Not Detected6.5Not DetectedChlorobenzene1.0Not Detected4.8Not DetectedDibromochloromethane1.0Not Detected8.8Not DetectedChlorobertane4.2Not Detected5.1Not DetectedChlorobertane1.0Not Detected5.1Not DetectedChlorobertane1.0Not Detected5.1Not DetectedChloroberzene1.0Not Detected6.2Not Detected1,2-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected5.1Not Detected1,4-Dichlorobenzene1.0Not Detected4.2Not Detected1,4-Dichloroethane1.0Not Detected4.1Not Detected1,2-Dichloroethane1.0Not Detected4.1Not Detected1,2-Dichloroethane1.0Not Detected4.1Not Detected1,2-Dichloroethane1.0Not Detected4.1Not Detected1,2-Dichloroethane1.0Not Detected4.1Not Detected1,2-Dichloroethane1.0Not Detected4.1Not Detected <tr<< td=""><td>Bromoform</td><td>1.0</td><td>Not Detected</td><td>11</td><td>Not Detected</td></tr<<>	Bromoform	1.0	Not Detected	11	Not Detected
Carbon Disulfide4.2Not Detected13Not DetectedCarbon Tetrachloride1.0Not Detected6.5Not DetectedChlorobenzene1.0Not Detected4.8Not DetectedDibromochloromethane1.0Not Detected8.8Not DetectedChlorobenzene1.0Not Detected1.1Not DetectedChloroethane4.2Not Detected1.1Not DetectedChloroform1.0Not Detected2.1Not Detected1,2-Dibromoethane (EDB)1.0Not Detected6.2Not Detected1,2-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected5.1Not Detected1,4-Dichlorobenzene1.0Not Detected5.1Not Detected1,4-Dichloroethane1.0Not Detected5.1Not Detected1,2-Dichloroethane1.0Not Detected4.2Not Detected1,2-Dichloroethane1.0Not Detected4.1Not Detected1,2-Dichloroethane1.0Not Detected4.1Not Detected1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloroptene1.0Not Detected4.1Not Detected1,2-Dichloroptene1.0Not Detected4.1Not Detected1,2-Dichloroptene1.0Not Detected4.7Not Detected1,2-Dic	Bromomethane	10	Not Detected	40	Not Detected
Carbon Disulfide4.2Not Detected13Not DetectedCarbon Tetrachloride1.0Not Detected6.5Not DetectedChlorobenzene1.0Not Detected4.8Not DetectedDibromochloromethane1.0Not Detected8.8Not DetectedChlorobenzene1.0Not Detected5.1Not DetectedChloroothane4.2Not Detected2.1Not DetectedChloroothane10Not Detected2.1Not DetectedChloroothane10Not Detected6.2Not Detected1,2-Dichlorobenzene1.0Not Detected6.2Not Detected1,3-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected5.1Not Detected1,4-Dichloroethane1.0Not Detected4.2Not Detected1,2-Dichloroethane1.0Not Detected4.2Not Detected1,2-Dichloroethane1.0Not Detected4.2Not Detected1,2-Dichloroethane1.0Not Detected4.1Not Detected1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloroppane1.0Not Detected4.1Not Detected1,2-Dichloroppopene1.0Not Detected4.7Not Detected1,3-Dichloroppopene1.0Not Detected4.7Not Detected1,4-Entytoluen	2-Butanone (Methyl Ethyl Ketone)	4.2	Not Detected	12	Not Detected
Chlorobenzene1.0Not Detected4.8Not DetectedDibromochloromethane1.0Not Detected6.8Not DetectedChloroothane4.2Not Detected11Not DetectedChloroform1.0Not Detected5.1Not DetectedChlorobrem10Not Detected21Not Detected1,2-Dichlorobenzene1.0Not Detected6.2Not Detected1,3-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected6.2Not Detected1,2-Dichlorobenzene1.0Not Detected6.2Not Detected1,2-Dichlorobenzene1.0Not Detected5.1Not Detected1,2-Dichloroethane1.0Not Detected4.2Not Detected1,2-Dichloroethane1.0Not Detected4.1Not Detected1,2-Dichloroethane1.0Not Detected4.1Not Detected1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloropthene1.0Not Detected4.3Not Detected1,2-Dichloropthene1.0Not Detected4.4Not Detected1,2-Dichloropthene1.0Not Detected4.4Not Detected1,2-Dichloropthene1.0Not Detected4.5Not Detected1,2-Dichloropthene1.0Not Detected4.5Not Detected1,2-Dichloro		4.2	Not Detected	13	Not Detected
Dibromochloromethane1.0Not Detected8.8Not DetectedChloroethane4.2Not Detected11Not DetectedChloroform1.0Not Detected5.1Not DetectedChloromethane10Not Detected21Not Detected1.2-Dibromoethane (EDB)1.0Not Detected8.0Not Detected1.3-Dichlorobenzene1.0Not Detected6.2Not Detected1.4-Dichlorobenzene1.0Not Detected6.2Not Detected1.4-Dichlorobenzene1.0Not Detected6.2Not Detected1.4-Dichlorobenzene1.0Not Detected6.2Not Detected1.4-Dichlorobenzene1.0Not Detected4.2Not Detected1.4-Dichloroethane1.0Not Detected4.2Not Detected1.2-Dichloroethane1.0Not Detected4.1Not Detected1.2-Dichloroethene1.0Not Detected4.1Not Detected1.2-Dichloroethene1.0Not Detected4.1Not Detected1.2-Dichloroethene1.0Not Detected4.7Not Detected1.2-Dichloropropane1.0Not Detected4.7Not Detected1.2-Dichloropropane1.0Not Detected4.7Not Detected1.3-Dichloropropene1.0Not Detected4.5Not Detected4-Ethyltoluene1.0Not Detected4.5Not Detected4-Ethyltoluene1.0Not Detected4.5Not Detected4-Eth	Carbon Tetrachloride	1.0	Not Detected	6.5	Not Detected
Chloroethane4.2Not Detected11Not DetectedChloroform1.0Not Detected5.1Not DetectedChloromethane (EDB)1.0Not Detected21Not Detected1,2-Dichlorobenzene1.0Not Detected6.2Not Detected1,3-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected6.2Not Detected1,1-Dichloroethane1.0Not Detected4.2Not Detected1,2-Dichloroethane1.0Not Detected4.2Not Detected1,2-Dichloroethane1.0Not Detected4.2Not Detected1,2-Dichloroethane1.0Not Detected4.1Not Detected1,2-Dichloroethane1.0Not Detected4.1Not Detected1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloropropane1.0Not Detected4.7Not Detected1,3-Dichloropropene1.0Not Detected7.3Not Detected1,3-Dichloropropene1.0Not Detected4.5Not Detected1,3-Dichloropropene1.0Not Detected7.3Not Detected1,3-Dichloropropene1.0Not Detected7.3Not Detected1,3-Dichloropropene1.0Not Detected7.3Not Detected <tr< td=""><td>Chlorobenzene</td><td>1.0</td><td>Not Detected</td><td>4.8</td><td>Not Detected</td></tr<>	Chlorobenzene	1.0	Not Detected	4.8	Not Detected
Chloroform1.0Not Detected5.1Not DetectedChloromethane10Not Detected21Not Detected1,2-Dichlorobenzene1.0Not Detected8.0Not Detected1,3-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected4.2Not Detected1,2-Dichlorobenzene1.0Not Detected4.2Not Detected1,2-Dichloroethane1.0Not Detected4.2Not Detected1,2-Dichloroethane1.0Not Detected4.1Not Detected1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloropropane1.0Not Detected4.1Not Detected1,2-Dichloropropane1.0Not Detected4.7Not Detected1,3-Dichloropropane1.0Not Detected4.7Not Detected1,4-Ethyltoluene1.0Not Detected4.7Not Detected1,2-Dichloropropane1.0Not Detected4.7Not Detected1,2-Dichloropropane1.0Not Detected4.7Not Detected1,4-Ethyltoluene1.0Not Detected4.7Not Detected<	Dibromochloromethane	1.0	Not Detected	8.8	Not Detected
Chloromethane10Not Detected21Not Detected1,2-Dichlorobenzene1.0Not Detected8.0Not Detected1,3-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected6.2Not Detected1,1-Dichloroethane1.0Not Detected4.2Not Detected1,2-Dichloroethane1.0Not Detected4.2Not Detected1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloropropane1.0Not Detected4.1Not Detected1,3-Dichloropropene1.0Not Detected4.7Not Detected1,4-Eichloropropene1.0Not Detected4.7Not Detected1,4-Eichloropropene1.0Not Detected4.7Not Detected1,4-Eichloropropene1.0Not Detected4.7Not Detected1,4-Eichloropropene1.0Not Detected4.7Not Detected1,4-Eichloropropene1.0Not Detected4.7Not Detected1,4-Eichloropropene1.0Not Detected4.7Not Detected </td <td>Chloroethane</td> <td>4.2</td> <td>Not Detected</td> <td>11</td> <td>Not Detected</td>	Chloroethane	4.2	Not Detected	11	Not Detected
1,2-Dibromoethane (EDB)1.0Not Detected8.0Not Detected1,2-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected4.2Not Detected1,1-Dichloroethane1.0Not Detected4.2Not Detected1,2-Dichloroethane1.0Not Detected4.2Not Detected1,2-Dichloroethane1.0Not Detected4.1Not Detected1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloropthene1.0Not Detected4.1Not Detected1,2-Dichloropropane1.0Not Detected4.7Not Detected1,3-Dichloropropene1.0Not Detected4.7Not Detected1,3-Dichloropropene1.0Not Detected4.7Not Detected1,3-Dichloropropene1.0Not Detected4.5Not Detected4-EthylBenzene1.0Not Detected4.5Not Detected4-EthylBurene1.0Not Detected4.4Not Detected2-Hexanone4.2Not Detected3.6Not Detected4-EthylBurene1.0Not Detected3.6Not Detected <td< td=""><td>Chloroform</td><td>1.0</td><td>Not Detected</td><td>5.1</td><td>Not Detected</td></td<>	Chloroform	1.0	Not Detected	5.1	Not Detected
1,2-Dichlorobenzene1.0Not Detected6.2Not Detected1,3-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected6.2Not Detected1,1-Dichloroethane1.0Not Detected4.2Not Detected1,2-Dichloroethane1.0Not Detected5.1Not Detected1,2-Dichloroethane1.0Not Detected4.2Not Detected1,2-Dichloroethane1.0Not Detected4.1Not Detected1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloropthene1.0Not Detected4.1Not Detected1,2-Dichloroptopane1.0Not Detected4.8Not Detectedcis-1,3-Dichloropropane1.0Not Detected4.7Not Detectedfreon 1141.0Not Detected7.3Not DetectedthylBenzene1.01.7 CN5.18.5 CNHexachlorobutadiene4.2Not Detected4.4Not Detected4-EthylBunzene1.0Not Detected4.3Not Detected4-EthylBunzene1.0Not Detected4.4Not Detected2-Hexanone4.2Not Detected4.4Not Detected4-EthylBunzene1.0Not Detected4.4Not Detected4-EthylBunzene1.0Not Detected4.4Not Detected4-EthylBunzene1.0<	Chloromethane	10	Not Detected	21	Not Detected
1,2-Dichlorobenzene1.0Not Detected6.2Not Detected1,3-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected6.2Not Detected1,1-Dichloroethane1.0Not Detected6.2Not Detected1,2-Dichloroethane1.0Not Detected4.2Not Detected1,2-Dichloroethane1.0Not Detected4.1Not Detected1,2-Dichloroethane1.0Not Detected4.1Not Detected1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloropthene1.0Not Detected4.1Not Detected1,2-Dichloroptopane1.0Not Detected4.8Not Detected1,3-Dichloropropene1.0Not Detected4.7Not Detected1,3-Dichloropropene1.0Not Detected4.7Not Detected1,4-Ehytloulene1.0Not Detected4.5Not Detected4-Ehytloulene1.01.7 CN5.18.5 CNHexachlorobutadiene4.2Not Detected3.6Not Detected4-Ehytloulene1.0Not Detected4.4Not Detected4-Ehytloulene1.0Not Detected4.4Not Detected2-Hexanone4.2Not Detected3.6Not Detected4-Ehytloulene1.0Not Detected4.4Not Detected4-Ehytlouene1.0 </td <td>1,2-Dibromoethane (EDB)</td> <td>1.0</td> <td>Not Detected</td> <td>8.0</td> <td>Not Detected</td>	1,2-Dibromoethane (EDB)	1.0	Not Detected	8.0	Not Detected
1,3-Dichlorobenzene1.0Not Detected6.2Not Detected1,4-Dichlorobenzene1.0Not Detected6.2Not Detected1,1-Dichloroethane1.0Not Detected4.2Not DetectedFreon 121.0Not Detected5.1Not Detected1,2-Dichloroethane1.0Not Detected4.2Not Detected1,2-Dichloroethene1.0Not Detected4.1Not Detectedcis-1,2-Dichloroethene1.0Not Detected4.1Not Detectedrans-1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloroptopane1.0Not Detected4.3Not Detected1,3-Dichloropropene1.0Not Detected4.7Not Detectedrans-1,3-Dichloropropene1.0Not Detected4.7Not Detectedtrans-1,3-Dichloropropene1.0Not Detected7.3Not Detectedtrans-1,3-Dichloropropene1.0Not Detected4.5Not Detectedtrans-1,3-Dichloropropene1.0Not Detected4.5Not Detectedtrans-1,3-Dichloropropene1.0Not Detected4.5Not Detectedtrans-1,3-Dichloropropene1.0Not Detected4.7Not Detectedtrans-1,3-Dichloropropene1.0Not Detected4.5Not Detectedtrans-1,3-Dichloropropene1.0Not Detected4.5Not Detectedtrans-1,3-Dichloropropene1.0Not Detected4.5Not Detectedtrans-1,3-Dichlorobutadiene		1.0	Not Detected	6.2	Not Detected
1,4-Dichlorobenzene1.0Not Detected6.2Not Detected1,1-Dichloroethane1.0Not Detected4.2Not DetectedFreon 121.0Not Detected5.1Not Detected1,2-Dichloroethane1.0Not Detected4.2Not Detected1,1-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloroptopane1.0Not Detected4.7Not Detected1,3-Dichloropropene1.0Not Detected4.7Not Detectedtrans-1,3-Dichloropropene1.0Not Detected7.3Not Detectedfreon 1141.0Not Detected7.3Not Detected4-Ethyltoluene1.01.7 CN5.18.5 CNHexachlorobutadiene4.2Not Detected17Not Detected2-Hexanone4.2Not Detected36Not Detected4-Methyl-2-pentanone1.0Not Detected7.1Not Detected4-Methyl-2-pentanone1.0Not Detected7.1Not Detected1,2,2-Tetrachloroethane1.0Not Detected7.1Not Detected1,2,2-Tetrachloroethane1.0Not Detected7.1Not Detected1,2,2-Tetr			Not Detected		
1,1-Dichloroethane1.0Not Detected4.2Not DetectedFreen 121.0Not Detected5.1Not Detected1,2-Dichloroethane1.0Not Detected4.2Not Detected1,1-Dichloroethane1.0Not Detected4.1Not Detected1,2-Dichloroethene1.0Not Detected4.1Not Detectedcis-1,2-Dichloroethene1.0Not Detected4.1Not Detectedtrans-1,2-Dichloroethene1.0Not Detected4.8Not Detectedcis-1,3-Dichloropropane1.0Not Detected4.7Not Detectedcis-1,3-Dichloropropene1.0Not Detected4.7Not Detectedfreon 1141.0Not Detected7.3Not DetectedFreon 1141.0Not Detected4.5Not Detected4-Ethyltoluene1.01.7 CN5.18.5 CNHexachlorobutadiene4.2Not Detected17Not Detected2-Hexanone4.2Not Detected36Not Detected4-Methyl-2-pentanone1.0Not Detected4.4Not Detected4.1,2,2-Tetrachloroethane1.0Not Detected7.1Not Detected1,2,2-Tetrachloroethane1.0Not Detected7.8Not Detected1,2,2-Tetrachloroethane1.0Not Detected7.1Not Detected1,2,2-Tetrachloroethane1.0Not Detected7.1Not Detected1,2,2-Tetrachloroethane1.0Not Detected7.8Not Detected <t< td=""><td></td><td>1.0</td><td>Not Detected</td><td></td><td>Not Detected</td></t<>		1.0	Not Detected		Not Detected
Freen 121.0Not Detected5.1Not Detected1,2-Dichloroethane1.0Not Detected4.2Not Detected1,1-Dichloroethene1.0Not Detected4.1Not Detectedcis-1,2-Dichloroethene1.0Not Detected4.1Not Detectedtrans-1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloropropane1.0Not Detected4.1Not Detected1,2-Dichloropropane1.0Not Detected4.8Not Detectedtrans-1,3-Dichloropropene1.0Not Detected4.7Not Detectedtrans-1,3-Dichloropropene1.0Not Detected7.3Not Detectedtrans-1,3-Dichloropropene1.0Not Detected7.3Not Detectedtrans-1,3-Dichloropropene1.0Not Detected4.5Not Detectedtrans-1,3-Dichloropropene1.0Not Detected4.7Not Detectedtrans-1,3-Dichloropropene1.0Not Detected4.7Not Detectedtrans-1,3-Dichloropropene1.0Not Detected7.3Not Detectedtrans-1,3-Dichloropropene1.0Not Detected4.5Not Detectedtrans-1,3-Dichloropropene1.0Not Detected4.7Not Detectedtrans-1,3-Dichloropropene1.0Not Detected4.5Not Detectedtrans-1,3-Dichloropropene1.0Not Detected4.5Not Detectedtrans-1,3-Dichloropropene1.0Not Detected4.5Not Detectedthylio		1.0	Not Detected	4.2	Not Detected
1,1-Dichloroethene1.0Not Detected4.1Not Detectedcis-1,2-Dichloroethene1.0Not Detected4.1Not Detectedtrans-1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloropropane1.0Not Detected4.8Not Detectedcis-1,3-Dichloropropene1.0Not Detected4.7Not Detectedcis-1,3-Dichloropropene1.0Not Detected4.7Not Detectedfreon 1141.0Not Detected7.3Not DetectedEthyl Benzene1.0Not Detected4.5Not Detected4-Ethyltoluene1.01.7 CN5.18.5 CNHexachlorobutadiene4.2Not Detected17Not Detected2-Hexanone4.2Not Detected36Not Detected4-Methyle-2-pentanone1.0Not Detected4.3Not Detected5tyrene1.0Not Detected7.1Not Detected1,1,2,2-Tetrachloroethane1.0Not Detected7.1Not Detected1,1,2-Trichloroethane1.0Not Detected7.1Not Detected1,1,2-Trichloroethane1.0Not Detected31Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected		1.0	Not Detected	5.1	Not Detected
1,1-Dichloroethene1.0Not Detected4.1Not Detectedcis-1,2-Dichloroethene1.0Not Detected4.1Not Detectedtrans-1,2-Dichloroethene1.0Not Detected4.1Not Detected1,2-Dichloropropane1.0Not Detected4.8Not Detectedcis-1,3-Dichloropropene1.0Not Detected4.7Not Detectedtrans-1,3-Dichloropropene1.0Not Detected4.7Not Detectedtrans-1,3-Dichloropropene1.0Not Detected4.7Not DetectedFreon 1141.0Not Detected7.3Not DetectedEthyl Benzene1.0Not Detected4.5Not Detected4-Ethyltoluene1.01.7 CN5.18.5 CNHexachlorobutadiene4.2Not Detected17Not Detected2-Hexanone4.2Not Detected36Not Detected4-Methyl-2-pentanone1.0Not Detected4.4Not Detected5tyrene1.0Not Detected7.1Not Detected1,1,2,2-Tetrachloroethane1.0Not Detected7.1Not Detected1,1,2,2-Tetrachloroethane1.0Not Detected7.8Not Detected1,2,4-Trichloroethane1.0Not Detected31Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected<	1.2-Dichloroethane	1.0	Not Detected	4.2	Not Detected
cis-1,2-Dichloroethene1.0Not Detected4.1Not Detectedtrans-1,2-Dichloropthene1.0Not Detected4.1Not Detected1,2-Dichloropropane1.0Not Detected4.8Not Detectedcis-1,3-Dichloropropene1.0Not Detected4.7Not Detectedtrans-1,3-Dichloropropene1.0Not Detected4.7Not Detectedfreon 1141.0Not Detected7.3Not DetectedEthyl Benzene1.0Not Detected4.5Not Detected4-Ethyltoluene1.01.7 CN5.18.5 CNHexachlorobutadiene4.2Not Detected17Not Detected2-Hexanone4.2Not Detected36Not Detected4-Methylene Chloride1.0Not Detected4.3Not Detected4-Methyl-2-pentanone1.0Not Detected4.4Not Detected5tyrene1.0Not Detected7.1Not Detected1,1,2,2-Tetrachloroethane1.0Not Detected7.0Not Detected1,2,4-Trichlorobenzene4.2Not Detected7.0Not Detected1,2,4-Trichloroethane1.0Not Detected7.1Not Detected1,2,4-Trichloroethane1.0Not Detected31Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected<				4.1	
trans-1,2-Dichloropethene1.0Not Detected4.1Not Detected1,2-Dichloropropane1.0Not Detected4.8Not Detectedcis-1,3-Dichloropropene1.0Not Detected4.7Not Detectedtrans-1,3-Dichloropropene1.0Not Detected4.7Not DetectedFreon 1141.0Not Detected7.3Not DetectedEthyl Benzene1.0Not Detected4.5Not Detected4-Ethyltoluene1.01.7 CN5.18.5 CNHexachlorobutadiene4.2Not Detected17Not Detected2-Hexanone4.2Not Detected36Not Detected4-Methyl-2-pentanone1.0Not Detected4.3Not Detected1,1,2,2-Tetrachloroethane1.0Not Detected7.1Not Detected1,2,2-Tetrachloroethane1.0Not Detected7.0Not Detected1,1,2,-Trichloroethane1.0Not Detected7.8Not Detected1,1,2-Trichloroethane1.0Not Detected31Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected		1.0	Not Detected	4.1	Not Detected
1,2-Dichloropropane1.0Not Detected4.8Not Detectedcis-1,3-Dichloropropene1.0Not Detected4.7Not Detectedtrans-1,3-Dichloropropene1.0Not Detected4.7Not DetectedFreon 1141.0Not Detected7.3Not DetectedEthyl Benzene1.0Not Detected4.5Not Detected4-Ethyltoluene1.01.7 CN5.18.5 CNHexachlorobutadiene4.2Not Detected17Not Detected2-Hexanone4.2Not Detected36Not Detected4-Methyl-2-pentanone1.0Not Detected4.3Not Detected5tyrene1.0Not Detected4.4Not Detected1,1,2,2-Tetrachloroethane1.0Not Detected7.1Not Detected1,2,4-Trichlorobenzene4.2Not Detected7.8Not Detected1,2,4-Trichloroethane1.0Not Detected31Not Detected1,2,2-Ticthloroethane1.0Not Detected5.7Not Detected1,2,2-Trichloroethane1.0Not Detected5.7Not Detected1,2,4-Trichloroethane1.0Not Detected5.7Not Detected1,2,2-Ticthloroethane1.0Not Detected5.7Not Detected1,2,2-Ticthloroethane1.0Not Detected5.7Not Detected1,2,2-Ticthloroethane1.0Not Detected5.7Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected <td></td> <td>1.0</td> <td>Not Detected</td> <td>4.1</td> <td>Not Detected</td>		1.0	Not Detected	4.1	Not Detected
cis-1,3-Dichloropropene1.0Not Detected4.7Not Detectedtrans-1,3-Dichloropropene1.0Not Detected4.7Not DetectedFreon 1141.0Not Detected7.3Not DetectedEthyl Benzene1.0Not Detected4.5Not Detected4-Ethyltoluene1.01.7 CN5.18.5 CNHexachlorobutadiene4.2Not Detected44Not Detected2-Hexanone4.2Not Detected17Not Detected4-Methyl-2-pentanone1.0Not Detected36Not Detected4.Methyl-2-pentanone1.0Not Detected4.4Not Detected1,1,2,2-Tetrachloroethane1.0Not Detected7.1Not Detected1,1,2,2-Tetrachloroethane1.0Not Detected7.8Not Detected1,2,4-Trichloroethane1.0Not Detected31Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected		1.0	Not Detected	4.8	Not Detected
trans-1,3-Dichloropropene1.0Not Detected4.7Not DetectedFreon 1141.0Not Detected7.3Not DetectedEthyl Benzene1.0Not Detected4.5Not Detected4-Ethyltoluene1.01.7 CN5.18.5 CNHexachlorobutadiene4.2Not Detected44Not Detected2-Hexanone4.2Not Detected17Not DetectedMethylene Chloride10Not Detected36Not Detected4-Methyl-2-pentanone1.0Not Detected4.4Not Detected5tyrene1.0Not Detected7.1Not Detected1,1,2,2-Tetrachloroethane1.0Not Detected7.0Not Detected1,2,4-Trichloroethane2.1Not Detected31Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected		1.0	Not Detected	4.7	Not Detected
Freen 1141.0Not Detected7.3Not DetectedEthyl Benzene1.0Not Detected4.5Not Detected4-Ethyltoluene1.01.7 CN5.18.5 CNHexachlorobutadiene4.2Not Detected44Not Detected2-Hexanone4.2Not Detected17Not DetectedMethylene Chloride10Not Detected36Not Detected4-Methyl-2-pentanone1.0Not Detected4.3Not Detected5tyrene1.0Not Detected4.4Not Detected1,1,2,2-Tetrachloroethane1.0Not Detected7.1Not Detected1,2,4-Trichlorobenzene4.2Not Detected31Not Detected1,1,2-Trichloroethane1.0Not Detected31Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected				4.7	
Ethyl Benzene1.0Not Detected4.5Not Detected4-Ethyltoluene1.01.7 CN5.18.5 CNHexachlorobutadiene4.2Not Detected44Not Detected2-Hexanone4.2Not Detected17Not DetectedMethylene Chloride10Not Detected36Not Detected4-Methyl-2-pentanone1.0Not Detected4.3Not Detected5tyrene1.0Not Detected4.4Not Detected1,1,2,2-Tetrachloroethane1.0Not Detected7.1Not DetectedTetrachloroethene1.0Not Detected7.0Not Detected1,2,4-Trichlorobenzene4.2Not Detected31Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected			Not Detected	7.3	Not Detected
4-Ethyltoluene1.01.7 CN5.18.5 CNHexachlorobutadiene4.2Not Detected44Not Detected2-Hexanone4.2Not Detected17Not DetectedMethylene Chloride10Not Detected36Not Detected4-Methyl-2-pentanone1.0Not Detected4.3Not Detected5.18.5 CN1.0Not Detected36Not Detected4-Methyl-2-pentanone1.0Not Detected4.3Not Detected5.18.5 CN1.0Not Detected4.4Not Detected1,1,2,2-Tetrachloroethane1.0Not Detected7.1Not DetectedTetrachloroethane1.0Not Detected7.0Not DetectedToluene2.1Not Detected7.8Not Detected1,2,4-Trichloroethane1.0Not Detected31Not Detected1,1,1-Trichloroethane1.0Not Detected5.7Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected		1.0	Not Detected		Not Detected
Hexachlorobutadiene4.2Not Detected44Not Detected2-Hexanone4.2Not Detected17Not DetectedMethylene Chloride10Not Detected36Not Detected4-Methyl-2-pentanone1.0Not Detected4.3Not DetectedStyrene1.0Not Detected4.4Not Detected1,1,2,2-Tetrachloroethane1.0Not Detected7.1Not Detected1,1,2,2-Tetrachloroethane1.0Not Detected7.0Not Detected1,1,2,2-Tetrachloroethane1.0Not Detected7.0Not Detected1,1,2,2-Tetrachloroethane1.0Not Detected7.1Not Detected1,2,4-Trichloroethane1.0Not Detected31Not Detected1,1,1-Trichloroethane1.0Not Detected5.7Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected	-	1.0	1.7 CN	5.1	8.5 CN
2-Hexanone4.2Not Detected17Not DetectedMethylene Chloride10Not Detected36Not Detected4-Methyl-2-pentanone1.0Not Detected4.3Not DetectedStyrene1.0Not Detected4.4Not Detected1,1,2,2-Tetrachloroethane1.0Not Detected7.1Not DetectedTetrachloroethene1.0Not Detected7.0Not DetectedToluene2.1Not Detected7.8Not Detected1,2,4-Trichloroethane1.0Not Detected31Not Detected1,1,1-Trichloroethane1.0Not Detected5.7Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected	-	4.2	Not Detected	44	Not Detected
Methylene Chloride10Not Detected36Not Detected4-Methyl-2-pentanone1.0Not Detected4.3Not DetectedStyrene1.0Not Detected4.4Not Detected1,1,2,2-Tetrachloroethane1.0Not Detected7.1Not DetectedTetrachloroethene1.0Not Detected7.0Not DetectedToluene2.1Not Detected7.8Not Detected1,2,4-Trichloroethane1.0Not Detected31Not Detected1,1,1-Trichloroethane1.0Not Detected5.7Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected		4.2		17	
4-Methyl-2-pentanone1.0Not Detected4.3Not DetectedStyrene1.0Not Detected4.4Not Detected1,1,2,2-Tetrachloroethane1.0Not Detected7.1Not DetectedTetrachloroethane1.0Not Detected7.0Not DetectedToluene2.1Not Detected7.8Not Detected1,2,4-Trichloroethane4.2Not Detected31Not Detected1,1,1-Trichloroethane1.0Not Detected5.7Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected		10	Not Detected	36	Not Detected
Styrene1.0Not Detected4.4Not Detected1,1,2,2-Tetrachloroethane1.0Not Detected7.1Not DetectedTetrachloroethane1.0Not Detected7.0Not DetectedToluene2.1Not Detected7.8Not Detected1,2,4-Trichloroethane4.2Not Detected31Not Detected1,1,1-Trichloroethane1.0Not Detected5.7Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected	-				
1,1,2,2-Tetrachloroethane1.0Not Detected7.1Not DetectedTetrachloroethene1.0Not Detected7.0Not DetectedToluene2.1Not Detected7.8Not Detected1,2,4-Trichloroethane4.2Not Detected31Not Detected1,1,1-Trichloroethane1.0Not Detected5.7Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected					
Tetrachloroethene1.0Not Detected7.0Not DetectedToluene2.1Not Detected7.8Not Detected1,2,4-Trichlorobenzene4.2Not Detected31Not Detected1,1,1-Trichloroethane1.0Not Detected5.7Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected			Not Detected		Not Detected
Toluene2.1Not Detected7.8Not Detected1,2,4-Trichlorobenzene4.2Not Detected31Not Detected1,1,1-Trichloroethane1.0Not Detected5.7Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected					
1,2,4-Trichlorobenzene4.2Not Detected31Not Detected1,1,1-Trichloroethane1.0Not Detected5.7Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected					
1,1,1-Trichloroethane1.0Not Detected5.7Not Detected1,1,2-Trichloroethane1.0Not Detected5.7Not Detected					
1,1,2-Trichloroethane 1.0 Not Detected 5.7 Not Detected					
	Trichloroethene	1.0	Not Detected	5.6	Not Detected

🔅 eurofins

Air Toxics

Lab ID#: 2409263-01A EPA METHOD TO-15 GC/MS FULL SCAN File Name: 3092022 Date of Collection: 9/6/24 11:40:00 AM Dil. Factor: Date of Analysis: 9/21/24 12:34 AM 2.08 **Rpt.** Limit Amount **Rpt. Limit** Amount Compound (ug/m3) (ug/m3) (ppbv) (ppbv) Freon 11 1.0 Not Detected 5.8 Not Detected Not Detected 8.0 Not Detected Freon 113 1.0 1,2,4-Trimethylbenzene 1.0 1.1 5.1 5.3 1.0 1.6 5.1 8.0 1,3,5-Trimethylbenzene Vinyl Acetate 4.2 Not Detected 15 Not Detected Not Detected Not Detected Vinyl Chloride 2.6 1.0 m,p-Xylene 2.1 Not Detected 9.0 Not Detected o-Xylene 1.0 Not Detected 4.5 Not Detected TVOC Ref. to Hexane 21 2800 73 9900

Client Sample ID: 20240906M-1

CN =See Case Narrative explanation

Container Type: 6 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	104	70-130
4-Bromofluorobenzene	104	70-130

eurofins Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2409263-02A EPA METHOD TO-15 GC/MS FULL SCAN

Rpt. Limit (ppbv) Amount (ppbv) Rpt. Limit (ppbv) Amount (ug/m3) Amount (ug/m3) Acetone 5.0 Not Detected 1.2 Not Detected Benzene 0.50 Not Detected 1.6 Not Detected alpha-Chiorotoluene 0.50 Not Detected 2.6 Not Detected Bromodichloromethane 0.50 Not Detected 3.4 Not Detected Bromodichloromethane 0.50 Not Detected 5.9 Not Detected Submodichloromethane 0.50 Not Detected 5.9 Not Detected Carbon Tetrachloride 0.50 Not Detected 5.2 Not Detected Carbon Tetrachloride 0.50 Not Detected 2.3 Not Detected Chiorobhane 2.0 Not Detected 2.3 Not Detected Chiorobhane 0.50 Not Detected 3.4 Not Detected Chiorobhane 0.50 Not Detected 3.4 Not Detected Chiorobhane 0.50 Not Detected 3.4 Not Detected <	File Name: Dil. Factor:	3092006a 1.00		of Collection: NA	24 12-01 PM
Compound(ppbv)(ug/m3)(ug/m3)Acetone5.0Not Detected1.2Not DetectedBenzene0.50Not Detected1.6Not Detectedalpha-Chlorotoluene0.50Not Detected2.6Not DetectedBromodichloromethane0.50Not Detected3.4Not DetectedBromotorm0.50Not Detected5.2Not Detected2-Butanone (Methyl Ethyl Ketone)2.0Not Detected5.9Not Detected2-Butanone (Methyl Ethyl Ketone)2.0Not Detected3.1Not DetectedCarbon Disulfide2.0Not Detected3.1Not DetectedCarbon Disulfide0.50Not Detected3.1Not DetectedChlorobenzene0.50Not Detected2.3Not DetectedDibromochloromethane0.50Not Detected2.4Not DetectedChlorobenzene0.50Not Detected3.8Not Detected1,2-Dichlorobenzene0.50Not Detected3.8Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,2-Dichlorobenzene0.50Not Detected2.0Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,2-Dichloroethane0.50Not Detected3.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichlor					
Benzene0.50Not Detected1.6Not Detectedalpha-Chlorotoluene0.50Not Detected2.6Not DetectedBromodichloromethane0.50Not Detected3.4Not DetectedBromodichloromethane5.0Not Detected5.2Not DetectedBromodichloromethane5.0Not Detected5.9Not DetectedCarbon Disulfide2.0Not Detected6.2Not DetectedCarbon Disulfide0.50Not Detected3.1Not DetectedCarbon Tetrachloride0.50Not Detected2.3Not DetectedChlorobenzene0.50Not Detected2.4Not DetectedChlorobenzene0.50Not Detected2.4Not DetectedChlorobenzene0.50Not Detected2.4Not DetectedChlorobenzene0.50Not Detected3.8Not DetectedChlorobenzene0.50Not Detected3.0Not Detected1,2-Diromoethane (EDB)0.50Not Detected3.0Not Detected1,2-Dichorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected2.0Not Detected1,4-Dichlorobenzene0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected <t< th=""><th>Compound</th><th></th><th></th><th>-</th><th></th></t<>	Compound			-	
alpha-Chlorotoluene0.50Not Detected2.6Not DetectedBromodichloromethane0.50Not Detected3.4Not DetectedBromodorm0.50Not Detected5.2Not DetectedBromodorm0.50Not Detected5.9Not Detected2-Butanone (Methyl Ethyl Ketone)2.0Not Detected6.2Not DetectedCarbon Disulfide2.0Not Detected6.2Not DetectedCarbon Disulfide2.0Not Detected3.1Not DetectedCarbon Disulfide0.50Not Detected3.3Not DetectedChlorobenzene0.50Not Detected4.2Not DetectedChlorobertane2.0Not Detected3.4Not DetectedChlorobertane5.0Not Detected1.4Not DetectedChlorobertane5.0Not Detected3.8Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,3-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected2.0Not Detected1,1-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichlorobenzene0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected <t< td=""><td>Acetone</td><td>5.0</td><td>Not Detected</td><td>12</td><td>Not Detected</td></t<>	Acetone	5.0	Not Detected	12	Not Detected
Bromodichloromethane0.50Not Detected3.4Not DetectedBromonorm0.50Not Detected5.2Not DetectedBromomethane5.0Not Detected19Not Detected2-Butanone (Methyl Ethyl Ketone)2.0Not Detected5.9Not DetectedCarbon Disulfide2.0Not Detected3.1Not DetectedCarbon Tetrachloride0.50Not Detected3.1Not DetectedChlorobenzzne0.50Not Detected4.2Not DetectedChlorobenzzne2.0Not Detected2.4Not DetectedChloromethane5.0Not Detected2.4Not DetectedChloromethane5.0Not Detected3.8Not DetectedChloromethane5.0Not Detected3.8Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected2.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected<	Benzene	0.50	Not Detected	1.6	Not Detected
Bromoform0.50Not Detected5.2Not DetectedBromomethane5.0Not Detected9Not Detected2-Butanone (Methyl Ethyl Ketone)2.0Not Detected5.9Not DetectedCarbon Disulfide2.0Not Detected6.2Not DetectedCarbon Tetrachloride0.50Not Detected2.3Not DetectedChlorobenzene0.50Not Detected2.3Not DetectedDibromochloromethane0.50Not Detected2.4Not DetectedChlorobertane2.0Not Detected2.4Not DetectedChlorobertane5.0Not Detected3.8Not DetectedChlorobertane5.0Not Detected3.0Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,2-Dichlorobenzene0.50Not Detected2.0Not Detected1,2-Dichlorobenzene0.50Not Detected2.0Not Detected1,2-Dichlorobenzene0.50Not Detected2.0Not Detected1,2-Dichlorobenzene0.50Not Detected2.0Not Detected1,2-Dichlorobethane0.50Not Detected2.0Not Detected1,2-Dichloroptane0.50Not Detected2.0Not Detected1,2-Dichloroptane0.50Not Detected2.0Not Detected <td>alpha-Chlorotoluene</td> <td>0.50</td> <td>Not Detected</td> <td>2.6</td> <td>Not Detected</td>	alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
Bromomethane5.0Not Detected19Not Detected2-Butanone (Methyl Ethyl Ketone)2.0Not Detected5.9Not DetectedCarbon Disulfide2.0Not Detected6.2Not DetectedCarbon Tetrachloride0.50Not Detected3.1Not DetectedChlorobenzene0.50Not Detected2.3Not DetectedDibromochloromethane0.50Not Detected5.3Not DetectedChloroethane2.0Not Detected5.3Not DetectedChloroethane5.0Not Detected3.8Not Detected1,2-Dibromoethane (EDB)0.50Not Detected3.0Not Detected1,2-Dichorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.3Not D	Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
2-Butanone (Methyl Ethyl Ketone)2.0Not Detected5.9Not DetectedCarbon Disulfide2.0Not Detected6.2Not DetectedCarbon Tetrachloride0.50Not Detected3.1Not DetectedChlorobenzene0.50Not Detected4.2Not DetectedChlorobenzene0.50Not Detected4.2Not DetectedChloroform0.50Not Detected2.4Not DetectedChloroform0.50Not Detected2.4Not DetectedChloroform0.50Not Detected3.8Not DetectedChloroform0.50Not Detected3.0Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,3-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected2.0Not Detected1,4-Dichlorobenzene0.50Not Detected2.0Not Detected1,4-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.3Not Detected1,3-Dichloropropane0.50Not Detected2.3Not Detected1,2-Dichloropropene0.50Not Detected2.3Not Detected<	Bromoform	0.50	Not Detected	5.2	Not Detected
Carbon Disulfide2.0Not Detected6.2Not DetectedCarbon Tetrachloride0.50Not Detected3.1Not DetectedChorobenzene0.50Not Detected2.3Not DetectedDibromochloromethane0.50Not Detected4.2Not DetectedChlorobenzene0.50Not Detected5.3Not DetectedChloromethane2.0Not Detected3.4Not DetectedChloromethane5.0Not Detected10Not Detected1,2-Dibromoethane (EDB)0.50Not Detected3.0Not Detected1,3-Dichlorobenzene0.50Not Detected3.0Not Detected1,3-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detected1,2-Dichloropropene0.50Not Detected2.3Not Detected1,3-Dichloropropene0.50Not Detected2.3Not Detected	Bromomethane	5.0	Not Detected	19	Not Detected
Carbon Tetrachloride0.50Not Detected3.1Not DetectedChlorobenzene0.50Not Detected2.3Not DetectedDibromochloromethane0.50Not Detected5.3Not DetectedChloroethane2.0Not Detected5.3Not DetectedChloromethane5.0Not Detected2.4Not DetectedChloromethane5.0Not Detected3.8Not Detected1,2-Dibromethane (EDB)0.50Not Detected3.0Not Detected1,2-Dibromethane (EDB)0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected2.0Not Detected1,1-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dibroroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.3Not Detected1,2-Dichloroethene0.50Not Detected2.3Not Detected1,2-Dichloroethene0.50Not Detected2.3Not Detected1,2-Dichloroethene0.50Not Detected2.3Not Detecte	2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
Chlorobenzene0.50Not Detected2.3Not DetectedDibromochloromethane0.50Not Detected4.2Not DetectedChloroform0.50Not Detected2.4Not DetectedChloroform0.50Not Detected2.4Not DetectedChloroform0.50Not Detected3.8Not Detected1,2-Dibromoethane (EDB)0.50Not Detected3.0Not Detected1,3-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,2-Dichlorobenzene0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloropthene0.50Not Detected2.3Not Detected1,2-Dichloropthene0.50Not Detected2.3Not Detected1,2-Dichloroptopene0.50Not Detected2.3Not Detected1,2-Dichloroptopene0.50Not Detected2.3Not Detected1,2-Dichloroptopene0.50Not Detected2.4Not Detected <td>Carbon Disulfide</td> <td>2.0</td> <td>Not Detected</td> <td>6.2</td> <td>Not Detected</td>	Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
Dibromochloromethane0.50Not Detected4.2Not DetectedChloroothane2.0Not Detected5.3Not DetectedChloroform0.50Not Detected2.4Not DetectedChloromethane5.0Not Detected10Not Detected1,2-Dibromoethane (EDB)0.50Not Detected3.8Not Detected1,3-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected2.0Not Detected1,4-Dichlorobenzene0.50Not Detected2.0Not Detected1,4-Dichlorobethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detected1,2-Dichloropropene0.50Not Detected2.3Not Detected1,3-Dichloropropene0.50Not Detected2.4Not Detected1,2-Dichloropropene0.50Not Detected2.4Not	Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
Chloroethane2.0Not Detected5.3Not DetectedChloroform0.50Not Detected2.4Not DetectedChloromethane (EDB)0.50Not Detected3.8Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected2.0Not Detected1,1-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,1-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,3-Dichloropropane0.50Not Detected2.3Not Detected1,3-Dichloropropene0.50Not Detected2.3Not Detected1,3-Dichloropropene0.50Not Detected2.4Not Detected1,3-Dichloropropene0.50Not Detected2.4Not Detected1,3-Dichloropropene0.50Not Detected2.4Not Detected1,3-Dichloropropene0.50Not Detected2.4Not	Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Chloroform0.50Not Detected2.4Not DetectedChloromethane5.0Not Detected10Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,3-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,1-Dichloroetnane0.50Not Detected2.0Not Detected1,2-Dichloroetnane0.50Not Detected2.5Not Detected1,2-Dichloroetnane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroptopane0.50Not Detected2.3Not Detected1,3-Dichloropropene0.50Not Detected2.3Not Detected1,3-Dichloropropene0.50Not Detected3.5Not Detected1,3-Dichloropropene0.50Not Detected2.4Not Detected1,3-Dichloropropene0.50Not Detected2.4Not Detected1,3-Dichloropropene0.50Not Detected2.5Not Detected1,40.50Not Detected2.4Not Detected <td>Dibromochloromethane</td> <td>0.50</td> <td>Not Detected</td> <td>4.2</td> <td>Not Detected</td>	Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
Chloromethane5.0Not Detected10Not Detected1,2-Dibromoethane (EDB)0.50Not Detected3.8Not Detected1,3-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected2.0Not Detected1,1-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloropthene0.50Not Detected2.0Not Detected1,2-Dichloropthene0.50Not Detected2.3Not Detected1,2-Dichloroptopane0.50Not Detected2.3Not Detected1,3-Dichloropropane0.50Not Detected2.3Not Detected1,4-Dichloroptopene0.50Not Detected2.4Not Detected1,4-Dichloroptopene0.50Not Detected2.2Not Detected1,2-Dichloroptopene0.50Not Detected2.2Not Detected1,2-Dichloroptopene0.50Not Detected2.4Not Detected1,2-Dichloroptopene0.50Not Detected2.4	Chloroethane	2.0	Not Detected	5.3	Not Detected
1,2-Dibromoethane (EDB)0.50Not Detected3.8Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,1-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroptopane0.50Not Detected2.0Not Detected1,2-Dichloropropene0.50Not Detected2.3Not Detected1,3-Dichloropropene0.50Not Detected2.3Not Detected1,3-Dichloropropene0.50Not Detected2.2Not Detected1,3-Dichloropropene0.50Not Detected2.2Not Detected1,4-Ethylouene0.50Not Detected2.2Not Detected1,4-Ethylouene0.50Not Detected2.4Not Detected2,0Not Detected2.0Not Detected2.4Not Detected2,1-Hexanone2.0Not Detected3.4<	Chloroform	0.50	Not Detected	2.4	Not Detected
1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,3-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,1-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.5Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.3Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detected1,3-Dichloropropene0.50Not Detected2.3Not Detected1,3-Dichloropropene0.50Not Detected2.3Not Detected1,4-Ehyltoluene0.50Not Detected2.4Not Detected4-Ethyltoluene0.50Not Detected2.4Not Detected2-Hexanone2.0Not Detected2.1Not Detected4-Ethyltoluene0.50Not Detected2.1Not Detected2-Hexanone2.0Not Detected2.1Not Detected4-Ethyltoluene0.50Not Detected2.1Not Detected4-Hexanone0.50Not Detected3.4Not Detected4-Hex	Chloromethane	5.0	Not Detected	10	Not Detected
1,3-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,1-Dichloroethane0.50Not Detected2.0Not DetectedFreon 120.50Not Detected2.5Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,1-Dichloroethene0.50Not Detected2.0Not Detectedcis-1,2-Dichloroethene0.50Not Detected2.0Not Detectedras-1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloropthene0.50Not Detected2.3Not Detected1,2-Dichloropthene0.50Not Detected2.3Not Detected1,3-Dichloropropane0.50Not Detected2.3Not Detected1,3-Dichloropropene0.50Not Detected3.5Not Detectedtrans-1,3-Dichloropropene0.50Not Detected3.5Not Detectedtrans-1,3-Dichloropropene0.50Not Detected3.5Not Detectedtrans-1,3-Dichloropropene0.50Not Detected3.5Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.2Not Detectedtrans-1,3-Dichloropropene0.50Not Detected3.5Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.2Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.2Not Detectedtrans-1,3-Dichloroprop	1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
1,3-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,1-Dichloroethane0.50Not Detected2.0Not DetectedFreon 120.50Not Detected2.5Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,1-Dichloroethene0.50Not Detected2.0Not Detectedcis-1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,3-Dichloroptopene0.50Not Detected2.3Not Detected1,3-Dichloropropene0.50Not Detected2.3Not Detected1,3-Dichloropropene0.50Not Detected3.5Not Detectedtrans-1,3-Dichloropropene0.50Not Detected3.5Not Detectedtrans-1,3-Dichloropropene0.50Not Detected3.5Not Detectedtrans-1,3-Dichloropropene0.50Not Detected3.5Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.4Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.4Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.4Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.4Not Detectedtrans-1,3-Dichloropropene	1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,1-Dichloroethane0.50Not Detected2.0Not DetectedFreon 120.50Not Detected2.5Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,1-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detectedcis-1,2-Dichloroethene0.50Not Detected2.0Not Detectedtrans-1,2-Dichloroptopane0.50Not Detected2.3Not Detectedcis-1,3-Dichloropropene0.50Not Detected2.3Not Detectedcis-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not DetectedFreon 1140.50Not Detected2.2Not DetectedEthyl Benzene0.50Not Detected2.4Not Detected4-Ethyltoluene0.50Not Detected2.4Not Detected2-Hexanone2.0Not Detected8.2Not Detected2-Hexanone0.50Not Detected1.7Not Detected4-Methyl-2-pentanone0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1,2,2-Trichloroethane0.50Not Detected3.8Not Detected1,1,2-Trichloroethane0.50Not Detected3.4 <td></td> <td>0.50</td> <td>Not Detected</td> <td>3.0</td> <td>Not Detected</td>		0.50	Not Detected	3.0	Not Detected
Freen 120.50Not Detected2.5Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,1-Dichloroethene0.50Not Detected2.0Not Detectedcis-1,2-Dichloroethene0.50Not Detected2.0Not Detectedtrans-1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroptopane0.50Not Detected2.3Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not DetectedFreon 1140.50Not Detected2.2Not DetectedFreon 1140.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not Detected4-Ethyltoluene0.50Not Detected2.4Not Detected2.1 Hexanone2.0Not Detected2.1Not Detected4-Methyl-2-pentanone0.50Not Detected2.1Not Detected4-Methyl-2-pentanone0.50Not Detected3.4Not Detected1,1,2.2-Tetrachloroethane0.50Not Detected3.4Not Detected1,1,2.2-Tetrachloroethane0.50Not Detected3.4Not Detected1,1,2-Trichloroethane0.50Not Detected3.8Not Detected1,1,2-Trichloroethane0.50Not Detected3.4 </td <td>1,4-Dichlorobenzene</td> <td>0.50</td> <td>Not Detected</td> <td>3.0</td> <td>Not Detected</td>	1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2-Dichloroethane0.50Not Detected2.0Not Detected1,1-Dichloroethene0.50Not Detected2.0Not Detectedcis-1,2-Dichloroethene0.50Not Detected2.0Not Detectedtrans-1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detectedcis-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not DetectedFreon 1140.50Not Detected3.5Not DetectedEthyl Benzene0.50Not Detected2.4Not Detected4-Ethyltoluene0.50Not Detected2.4Not Detected4-Ethyltoluene0.50Not Detected2.4Not Detected2-Hexanone2.0Not Detected2.1Not Detected4-Methyl-2-pentanone2.0Not Detected2.0Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1,1,2-Trichloroethane0.50Not Detected3.8Not Detected1,1,2-Trichloroethane0.50Not Detected3.4Not Detected1,1,2-Trichloroethane0.50Not Detected3.4Not Detected1,1,2-Trichloroethane0.50Not Detected3.8Not Detected1,1,2-Trichloroethane0.50Not Detecte	1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
1,1-Dichloroethene0.50Not Detected2.0Not Detectedcis-1,2-Dichloroethene0.50Not Detected2.0Not Detectedtrans-1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detectedcis-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not Detectedfreon 1140.50Not Detected3.5Not DetectedEthyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not Detected4-Ethyltoluene2.0Not Detected2.4Not Detected2-Hexanone2.0Not Detected2.0Not Detected4-Hexthyl-2-pentanone0.50Not Detected2.0Not Detected4-Methyl-2-pentanone0.50Not Detected2.1Not Detected500Not Detected3.4Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1,1,2,4-Trichloroethane3.8Not Detected1,1,2-Trichloroethane0.50Not Detected3.8Not Detected1,1,2-Trichloroethane3.6Not Detected1,1,2-Trichloroethane0.50Not Detected3.4Not Detected1,1,2-Trichloroethane1,50Not Detected3.4Not Detected1,1,2	Freon 12	0.50	Not Detected	2.5	Not Detected
1,1-Dichloroethene0.50Not Detected2.0Not Detectedcis-1,2-Dichloroethene0.50Not Detected2.0Not Detectedtrans-1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detectedcis-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not DetectedFreen 1140.50Not Detected3.5Not DetectedEthyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not Detected4-Ethyltoluene2.0Not Detected2.1Not Detected2-Hexanone2.0Not Detected2.2Not Detected4-Hexachlorobutadiene2.0Not Detected2.1Not Detected2-Hexanone2.0Not Detected3.4Not Detected4-Methyl-2-pentanone0.50Not Detected3.4Not Detected50Not Detected3.4Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.8Not Detected1,1,2,4-Trichloroethane1.0Not Detected1,1,2-Trichloroethane0.50Not Detected3.8Not Detected1,1,2-Trichloroethane0.50Not Detected3.4Not Detected1,1,2-Trichloroethane0.50Not Detected3.8Not De	1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
trans-1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detectedcis-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not DetectedFreon 1140.50Not Detected3.5Not DetectedEthyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected2.1Not Detected2-Hexanone2.0Not Detected3.2Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not Detected4-Methyl-2-pentanone0.50Not Detected2.1Not Detected5tyrene0.50Not Detected3.4Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1,2,4-Trichlorobenzene2.0Not Detected3.8Not Detected1,2,4-Trichloroethane0.50Not Detected3.4Not Detected1,1,2-Trichloroethane0.50Not Detected3.5Not Detected1,1,2-Trichloroethane0.50Not Detected3.8Not Detected1,1,2-Trichloroethane0.50Not Detected3.6Not Detected1,1,2-Trichloroethane0.50Not Detected3.7Not Detected1,1,2-Trichloroethane0.50Not Detected <td< td=""><td></td><td>0.50</td><td>Not Detected</td><td>2.0</td><td>Not Detected</td></td<>		0.50	Not Detected	2.0	Not Detected
1,2-Dichloropropane0.50Not Detected2.3Not Detectedcis-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not DetectedFreon 1140.50Not Detected3.5Not DetectedEthyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected8.2Not Detected2-Hexanone2.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not Detected5tyrene0.50Not Detected3.4Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1,2,4-Trichlorobenzene2.0Not Detected3.8Not Detected1,2,4-Trichloroethane0.50Not Detected3.4Not Detected1,1,2-Trichloroethane0.50Not Detected3.8Not Detected1,1,2-Trichloroethane0.50Not Detected3.8Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.	cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not DetectedFreon 1140.50Not Detected3.5Not DetectedEthyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected2.1Not Detected2-Hexanone2.0Not Detected8.2Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not Detected4-Methyl-2-pentanone0.50Not Detected2.1Not Detected500Not Detected2.1Not Detected1, 1, 2, 2-Tetrachloroethane0.50Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1, 1, 2, 4-Trichloroethane3.8Not Detected1,1,2-Trichloroethane0.50Not Detected3.8Not Detected1, 1, 2, -Trichloroethane0.50Not Detected3.4Not Detected1,1,2-Trichloroethane0.50Not Detected3.8Not Detected1, 1, 2, -Trichloroethane0.50Not Detected2, 7Not Detected1,1,2-Trichloroethane0.50Not Detected2, 7Not Detected2, 7Not Detected1,1,2-Trichloroethane0.50Not Detected2, 7Not Detected2, 7Not Detected1,1,2-Trichloroethane0.50Not Detected2, 7Not Detected <td>trans-1,2-Dichloroethene</td> <td>0.50</td> <td>Not Detected</td> <td>2.0</td> <td>Not Detected</td>	trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
trans-1,3-Dichloropropene0.50Not Detected2.3Not DetectedFreon 1140.50Not Detected3.5Not DetectedEthyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected2.1Not Detected2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not Detected5tyrene0.50Not Detected3.4Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected7oluene1.0Not Detected3.8Not Detected1,2,4-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
trans-1,3-Dichloropropene0.50Not Detected2.3Not DetectedFreon 1140.50Not Detected3.5Not DetectedEthyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected2.1Not Detected2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not Detected5tyrene0.50Not Detected3.4Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected7oluene1.0Not Detected3.8Not Detected1,2,4-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
Freon 1140.50Not Detected3.5Not DetectedEthyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected2.1Not Detected2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not Detected5tyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1,2,4-Trichlorobenzene2.0Not Detected3.8Not Detected1,1,2-Trichloroethane0.50Not Detected3.8Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected		0.50	Not Detected	2.3	Not Detected
4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected21Not Detected2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not Detected5.0Not Detected2.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not Detected5.1, 1, 2, 2-Tetrachloroethane0.50Not Detected3.4Not Detected1, 1, 2, 2-Tetrachloroethane0.50Not Detected3.4Not DetectedToluene1.0Not Detected3.8Not Detected1, 2, 4-Trichloroethane0.50Not Detected15Not Detected1, 1, 2-Trichloroethane0.50Not Detected2.7Not Detected		0.50	Not Detected	3.5	Not Detected
Hexachlorobutadiene2.0Not Detected21Not Detected2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not Detected5tyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1,2,4-Trichlorobenzene2.0Not Detected3.8Not Detected1,2,4-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene1.0Not Detected3.8Not Detected1,2,4-Trichloroethane0.50Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
Methylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethane0.50Not Detected3.4Not DetectedToluene1.0Not Detected3.8Not Detected1,2,4-Trichloroethane0.50Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene1.0Not Detected3.8Not Detected1,2,4-Trichloroethane2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	2-Hexanone	2.0	Not Detected	8.2	Not Detected
Styrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene1.0Not Detected3.8Not Detected1,2,4-Trichloroethane0.50Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	Methylene Chloride	5.0	Not Detected	17	Not Detected
1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene1.0Not Detected3.8Not Detected1,2,4-Trichloroethane2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Tetrachloroethene0.50Not Detected3.4Not DetectedToluene1.0Not Detected3.8Not Detected1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	Styrene	0.50	Not Detected	2.1	Not Detected
Tetrachloroethene0.50Not Detected3.4Not DetectedToluene1.0Not Detected3.8Not Detected1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected		0.50	Not Detected	3.4	Not Detected
1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	Toluene	1.0	Not Detected	3.8	Not Detected
1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	1,2,4-Trichlorobenzene				Not Detected
1,1,2-Trichloroethane 0.50 Not Detected 2.7 Not Detected		0.50	Not Detected	2.7	Not Detected
					Not Detected
	Trichloroethene	0.50	Not Detected	2.7	Not Detected

Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2409263-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3092006a 1.00	Date of Collection: NA Date of Analysis: 9/20/24 12:01 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.50	Not Detected	2.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
m,p-Xylene	1.0	Not Detected	4.3	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
TVOC Ref. to Hexane	10	Not Detected	35	Not Detected

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	104	70-130
4-Bromofluorobenzene	102	70-130

Air Toxics

Client Sample ID: CCV Lab ID#: 2409263-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3092003	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/20/24 10:38 AM
Compound	%Reco	very
Acetone	88	
Benzene	92	
alpha-Chlorotoluene	104	
Bromodichloromethane	10'	
Bromoform	109	
Bromomethane	107	
2-Butanone (Methyl Ethyl Ketone)	92	
Carbon Disulfide	90	
Carbon Tetrachloride	108	
Chlorobenzene	100	
Dibromochloromethane	108	
Chloroethane	89	
Chloroform	100	
Chloromethane	89	
1,2-Dibromoethane (EDB)	103	
1,2-Dichlorobenzene	102	
1,3-Dichlorobenzene	104	
1,4-Dichlorobenzene	104 92	
1,1-Dichloroethane Freon 12	92 105	
1,2-Dichloroethane	105 91	
1,1-Dichloroethene cis-1,2-Dichloroethene	91	
trans-1,2-Dichloroethene	90	
1,2-Dichloropropane	88	
cis-1,3-Dichloropropene	97	
trans-1,3-Dichloropropene	103	
Freon 114	100	
Ethyl Benzene	98	
4-Ethyltoluene	10	
Hexachlorobutadiene	109	
2-Hexanone	87	
Methylene Chloride	86	
4-Methyl-2-pentanone	92	
Styrene	99	
1,1,2,2-Tetrachloroethane	94	
Tetrachloroethene	104	
Toluene	99	
1,2,4-Trichlorobenzene	103	
1.1.1-Trichloroethane	106	
1,1,2-Trichloroethane	97	
Trichloroethene	103	

Air Toxics

Client Sample ID: CCV Lab ID#: 2409263-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3092003 1.00	Date of Collection: NA Date of Analysis: 9/20/24 10:38 AM
Compound		%Recovery
Freon 11		106
Freon 113		96
1,2,4-Trimethylbenzene		101
1,3,5-Trimethylbenzene		101
Vinyl Acetate		91
Vinyl Chloride		90
m,p-Xylene		98
o-Xylene		99
TVOC Ref. to Hexane		100

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	106	70-130
4-Bromofluorobenzene	107	70-130

Air Toxics

Client Sample ID: LCS Lab ID#: 2409263-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3092004	Date of Collectio	
Dil. Factor:	1.00	Date of Analysis:	: 9/20/24 11:05 AM
Compound	%Re	ecovery	Method Limits
Acetone		84	70-130
Benzene		86	70-130
alpha-Chlorotoluene		92	70-130
Bromodichloromethane		91	70-130
Bromoform		96	70-130
Bromomethane	,	101	70-130
2-Butanone (Methyl Ethyl Ketone)		83	70-130
Carbon Disulfide		84	70-130
Carbon Tetrachloride		104	70-130
Chlorobenzene		89	70-130
Dibromochloromethane		98	70-130
Chloroethane		90	70-130
Chloroform		89	70-130
Chloromethane		87	70-130
1,2-Dibromoethane (EDB)		92	70-130
1,2-Dichlorobenzene		92	70-130
1,3-Dichlorobenzene		95	70-130
1,4-Dichlorobenzene		91	70-130
1,1-Dichloroethane		85	70-130
Freon 12		98	70-130
1,2-Dichloroethane		97	70-130
1,1-Dichloroethene		84	70-130
cis-1,2-Dichloroethene		86	70-130
trans-1,2-Dichloroethene		83	70-130
1.2-Dichloropropane		81	70-130
cis-1,3-Dichloropropene		90	70-130
trans-1,3-Dichloropropene		96	70-130
Freon 114		96	70-130
Ethyl Benzene		90	70-130
4-Ethyltoluene		92	70-130
Hexachlorobutadiene		120	70-130
2-Hexanone		79	70-130
Methylene Chloride		79	70-130
4-Methyl-2-pentanone		80	70-130
Styrene		90	70-130
1,1,2,2-Tetrachloroethane		86	70-130
Tetrachloroethene		93	70-130
Toluene		87	70-130
1,2,4-Trichlorobenzene		110	70-130
1,1,1-Trichloroethane		100	70-130
1,1,2-Trichloroethane		90	70-130
Trichloroethene		90	70-130

Air Toxics

Client Sample ID: LCS Lab ID#: 2409263-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3092004 1.00		Date of Collection: NA Date of Analysis: 9/20/24 11:05 AM	
Compound		%Recovery	Method Limits	
Freon 11		100	70-130	
Freon 113		89	70-130	
1,2,4-Trimethylbenzene		94	70-130	
1,3,5-Trimethylbenzene		93	70-130	
Vinyl Acetate		93	70-130	
Vinyl Chloride		88	70-130	
m,p-Xylene		89	70-130	
o-Xylene		91	70-130	
TVOC Ref. to Hexane		Not Spiked		

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	103	70-130
4-Bromofluorobenzene	107	70-130

Air Toxics

Client Sample ID: LCSD Lab ID#: 2409263-04AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3092005 Date of	Collection: NA
Dil. Factor:	1.00 Date of	Analysis: 9/20/24 11:32 AM
Compound	%Recovery	Method Limits
Acetone	84	70-130
Benzene	86	70-130
alpha-Chlorotoluene	93	70-130
Bromodichloromethane	94	70-130
Bromoform	98	70-130
Bromomethane	110	70-130
2-Butanone (Methyl Ethyl Ketone)	80	70-130
Carbon Disulfide	88	70-130
Carbon Tetrachloride	105	70-130
Chlorobenzene	93	70-130
Dibromochloromethane	98	70-130
Chloroethane	92	70-130
Chloroform	91	70-130
Chloromethane	92	70-130
1,2-Dibromoethane (EDB)	96	70-130
1,2-Dichlorobenzene	93	70-130
1,3-Dichlorobenzene	95	70-130
1,4-Dichlorobenzene	94	70-130
1,1-Dichloroethane	87	70-130
Freon 12	100	70-130
1,2-Dichloroethane	100	70-130
1,1-Dichloroethene	82	70-130
cis-1,2-Dichloroethene	89	70-130
trans-1,2-Dichloroethene	89	70-130
1,2-Dichloropropane	79	70-130
cis-1,3-Dichloropropene		70-130
trans-1,3-Dichloropropene	96	70-130
Freon 114	96	70-130
Ethyl Benzene	92	70-130
4-Ethyltoluene	95	70-130
Hexachlorobutadiene	119	70-130
2-Hexanone	79	70-130
Methylene Chloride	80	70-130
4-Methyl-2-pentanone	80	70-130
Styrene	92	70-130
1,1,2,2-Tetrachloroethane		70-130
Tetrachloroethene	95	70-130
Toluene	87	70-130
1,2,4-Trichlorobenzene	116	70-130
1,1,1-Trichloroethane	101	70-130
1,1,2-Trichloroethane	91	70-130
Trichloroethene	92	70-130

Air Toxics

Client Sample ID: LCSD Lab ID#: 2409263-04AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3092005 1.00	Date of Collect Date of Analys	tion: NA is: 9/20/24 11:32 AM
Compound		%Recovery	Method Limits
Freon 11		102	70-130
Freon 113		91	70-130
1,2,4-Trimethylbenzene		94	70-130
1,3,5-Trimethylbenzene		93	70-130
Vinyl Acetate		95	70-130
Vinyl Chloride		90	70-130
m,p-Xylene		88	70-130
o-Xylene		89	70-130
TVOC Ref. to Hexane		Not Spiked	

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	104	70-130
4-Bromofluorobenzene	105	70-130

1 2 3 4 5 6 7 8 9

Seurofins | Air Toxics

Method : TO-15 (Sp)-Eurofins TA (CEC, OK)

CAS Number	Compound	Rpt. Limit (ppbv)
67-64-1	Acetone	5.0
71-43-2	Benzene	0.50
100-44-7	alpha-Chlorotoluene	0.50
75-27-4	Bromodichloromethane	0.50
75-25-2	Bromoform	0.50
74-83-9	Bromomethane	5.0
78-93-3	2-Butanone (Methyl Ethyl Ketone)	2.0
75-15-0	Carbon Disulfide	2.0
56-23-5	Carbon Tetrachloride	0.50
108-90-7	Chlorobenzene	0.50
124-48-1	Dibromochloromethane	0.50
75-00-3	Chloroethane	2.0
67-66-3	Chloroform	0.50
74-87-3	Chloromethane	5.0
106-93-4	1,2-Dibromoethane (EDB)	0.50
95-50-1	1,2-Dichlorobenzene	0.50
541-73-1	1,3-Dichlorobenzene	0.50
106-46-7	1,4-Dichlorobenzene	0.50
75-34-3	1,1-Dichloroethane	0.50
75-71-8	Freon 12	0.50
107-06-2	1,2-Dichloroethane	0.50
75-35-4	1,1-Dichloroethene	0.50
156-59-2	cis-1,2-Dichloroethene	0.50
156-60-5	trans-1,2-Dichloroethene	0.50
78-87-5	1,2-Dichloropropane	0.50
10061-01-5	cis-1,3-Dichloropropene	0.50
10061-02-6	trans-1,3-Dichloropropene	0.50
76-14-2	Freon 114	0.50
100-41-4	Ethyl Benzene	0.50
622-96-8	4-Ethyltoluene	0.50
87-68-3	Hexachlorobutadiene	2.0
591-78-6	2-Hexanone	2.0
75-09-2	Methylene Chloride	5.0
108-10-1	4-Methyl-2-pentanone	0.50
100-42-5	Styrene	0.50
79-34-5	1,1,2,2-Tetrachloroethane	0.50
127-18-4	Tetrachloroethene	0.50
108-88-3	Toluene	1.0
120-82-1	1,2,4-Trichlorobenzene	2.0
71-55-6	1,1,1-Trichloroethane	0.50
79-00-5	1,1,2-Trichloroethane	0.50
79-01-6	Trichloroethene	0.50
75-69-4	Freon 11	0.50
76-13-1	Freon 113	0.50

1 2 3 4 5 6 7 8 9

🔅 eurofins Air Toxics

Method : TO-15 (Sp)-Eurofins TA (CEC, OK)

CAS Number	Compound	Rpt. Limit (ppbv)
95-63-6	1,2,4-Trimethylbenzene	0.50
108-67-8	1,3,5-Trimethylbenzene	0.50
108-05-4	Vinyl Acetate	2.0
75-01-4	Vinyl Chloride	0.50
108-38-3	m,p-Xylene	1.0
95-47-6	o-Xylene	0.50
9999-9999-500	TVOC Ref. to Hexane	10

	Surrogate	Method Limits	
2037-26-5	Toluene-d8	70-130	
17060-07-0	1,2-Dichloroethane-d4	70-130	
460-00-4	4-Bromofluorobenzene	70-130	

Receive	ed by C	CD.	6/4/	2025	5-10:0	9:4	9 AM							OF	_				Pa	ige .	123 of 2	250
White: Receiving Lab Yell	KEN 615-501	LABORATORY CONTACT:	RECEIVED IN LABORATORY BY:	METHOD OF SHIPMENT:	RELINQUISHED BY:	Singh a	RELINGUISHED BY							0411 42/0/12	-	Inte	Date	SAMPLERS SIGNATURE:		SAMDI EDIS DOUTED		1 2 3 4
Yellow: Equus Environmental Project File Pink: Equ	- 5035			REDEV										20240906 M-1	202406 M-2 KR	Sample ID				Envirosamental, ELC (918) 921-5331	EQUUS	5 6 7 8 9
Pink: Equus QA/QC	ſ	TIME	DATE	TIME	600									AIR 1	ATA I	Sa # of Sa		Matrix Contair	hers	ANR TOXIC	PROJECT NUMBER:	CH
	180 BLUE RAVINE	QAQC@Equus	Send PDF, EDD, and INVOICE (If annitration to	AIRBILL NIMBER	RECEIVED BY:										XX	То-1 Тилс		EXAN	e¥			CHAIN OF CUSTODY RECORD
	". INE RU STEB FOLSOM CA	EquusEnv.com	101CF (1 annitation		CATION TIME TO DATE	DATE /////													IVIALI MURAVERU	PROJECT MANAGER:	PROJECT NAME: 2403263	
	CA 95% 3n			Carrier A.eur	Custody Seal Intact? Ves NorNone Temp °C/MA	Br.y						Sect NID	(本)、	TAC.#			* C6-C12		JTAM		3.3 No. 2015	

Released to Imaging: 6/17/2025 9:46:51 AM

Receive	ed by (CD	: 6/4/	/202	5 10.	:09:4	9 AN	ſ							ç						Pag	ge 124	t of 2	50
White: Receiving Lab Ye		LABORATORY CONTACT:	RECEIVED IN LABORATORY BY:	METHOD OF SHIPMENT:		RELINDIAR HED BY.	RELINGUISHED BY									9/10/24 /140		Date Time		SAMPLERS SIGNATURE		er.	age -	1 2 3 4
Yelkow: Equus Environmental Project File. Pink: Equ	1-5035			FEDEX		C									T-12 01 0. 20X		202406 M-4 100	Sample ID			AME: (918) 921-5331			5 6 7 8 9
Pink: Equus QA/QC	<u> </u>	TIME	DATE	All		TIME/500									AIR 1		. #	of Sam			ers 77	SHIPPED TO:	PROJECT NUMBER:	
	180 BLUE RAL	QAQC@Equus	nd PDF, EDD, and INV	AIRBILL NUMBER	RECEIVED BY:	RECEIVED BY:									××		~	0-15 12 c n		XaNl	X I EXIL S	}	CUSTODY RE	
	RU STE B	EquusEnv.com	Send PDF, EDD, and INVOICE (If applicable) to		0																MATTMULAVERO	CHKSTATE M	ECT NAME:	
-	FLSDM. (4 95% 30		9820	TIME		1/10/1-4							Sart.	# two	TAG #	TAG K			× C6 - (IAI:		2409263	
	as			Canter Acua	Yes Norione)Temp °C/VA									UZPLC #		R	REMARKS		-C12	WO#	J TANDARD	coc _/of _/	No. 2015	

.....Released to Imaging: 6/17/2025 9:46:51 AM

9/24/2024

7 8 9

Air Toxics

CAS Number	Compound	Rpt. Limit (ppbv)
67-64-1	Acetone	5.0
71-43-2	Benzene	0.50
100-44-7	alpha-Chlorotoluene	0.50
75-27-4	Bromodichloromethane	0.50
75-25-2	Bromoform	0.50
74-83-9	Bromomethane	5.0
78-93-3	2-Butanone (Methyl Ethyl Ketone)	2.0
75-15-0	Carbon Disulfide	2.0
56-23-5	Carbon Tetrachloride	0.50
108-90-7	Chlorobenzene	0.50
124-48-1	Dibromochloromethane	0.50
75-00-3	Chloroethane	2.0
67-66-3	Chloroform	0.50
74-87-3	Chloromethane	5.0
106-93-4	1,2-Dibromoethane (EDB)	0.50
95-50-1	1,2-Dichlorobenzene	0.50
541-73-1	1,3-Dichlorobenzene	0.50
106-46-7	1,4-Dichlorobenzene	0.50
75-34-3	1,1-Dichloroethane	0.50
75-71-8	Freon 12	0.50
107-06-2	1,2-Dichloroethane	0.50
75-35-4	1,1-Dichloroethene	0.50
156-59-2	cis-1,2-Dichloroethene	0.50
156-60-5	trans-1,2-Dichloroethene	0.50
78-87-5	1,2-Dichloropropane	0.50
10061-01-5	cis-1,3-Dichloropropene	0.50
10061-02-6	trans-1,3-Dichloropropene	0.50
76-14-2	Freon 114	0.50
100-41-4	Ethyl Benzene	0.50
622-96-8	4-Ethyltoluene	0.50
87-68-3	Hexachlorobutadiene	2.0
591-78-6	2-Hexanone	2.0
75-09-2	Methylene Chloride	5.0
108-10-1	4-Methyl-2-pentanone	0.50
100-42-5	Styrene	0.50
79-34-5	1,1,2,2-Tetrachloroethane	0.50
127-18-4	Tetrachloroethene	0.50
108-88-3	Toluene	1.0
120-82-1	1,2,4-Trichlorobenzene	2.0
71-55-6	1,1,1-Trichloroethane	0.50

Method : TO-15 (Sp)-Eurofins TA (CEC, OK)

Released to Imaging: 6/17/2025 9:46:51 AM

Compound	Rpt. Limit (ppbv)
1,1,2-Trichloroethane	0.50
Trichloroethene	0.50
Freon 11	0.50
Freon 113	0.50
1,2,4-Trimethylbenzene	0.50
1,3,5-Trimethylbenzene	0.50
Vinyl Acetate	2.0
Vinyl Chloride	0.50
m,p-Xylene	1.0
o-Xylene	0.50
TVOC Ref. to Hexane	10
	1,1,2-Trichloroethane Trichloroethene Freon 11 Freon 113 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl Acetate Vinyl Chloride m,p-Xylene o-Xylene

Method : TO-15 (Sp)-Eurofins TA (CEC, OK)

CAS Number	Surrogate	Method Limits	
2037-26-5	Toluene-d8	70-130	
17060-07-0	1,2-Dichloroethane-d4	70-130	
460-00-4	4-Bromofluorobenzene	70-130	

Job Number: 180-179880-1 SDG Number: Property ID: 891077

List Source: Eurofins Pittsburgh

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Login Number: 179880 List Number: 1 Creator: Hayes, Ken

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td></td> <td></td>		
The cooler's custody seal, if present, is intact.		
Sample custody seals, if present, are intact.		
The cooler or samples do not appear to have been compromised or tampered with.		
Samples were received on ice.		
Cooler Temperature is acceptable.		
Cooler Temperature is recorded.		
COC is present.		
COC is filled out in ink and legible.		
COC is filled out with all pertinent information.		
Is the Field Sampler's name present on COC?		
There are no discrepancies between the containers received and the COC.		
Samples are received within Holding Time (excluding tests with immediate HTs)		
Sample containers have legible labels.		
Containers are not broken or leaking.		
Sample collection date/times are provided.		
Appropriate sample containers are used.		
Sample bottles are completely filled.		
Sample Preservation Verified.		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").		
Multiphasic samples are not present.		
Samples do not require splitting or compositing.		
Residual Chlorine Checked.		

Environment Testing

ANALYTICAL REPORT

Page 128 of 250

PREPARED FOR

Attn: Dana Drury Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154 Generated 12/12/2024 5:43:33 PM

JOB DESCRIPTION

Equus - Chesapeake Property ID: 891077

JOB NUMBER

180-183776-1

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh PA 15238

See page two for job notes and contact information

Eurofins Pittsburgh

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

PA Lab ID: 02-00416

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Pittsburgh Project Manager.

Authorization

Kunth Hay

Generated 12/12/2024 5:43:33 PM

Authorized for release by Ken Hayes, Project Manager II Ken.Hayes@et.eurofinsus.com (615)301-5035

Eurofins Pittsburgh is a laboratory within Eurofins Environment Testing Northeast LLC, a company within Eurofins Environment Testing Group of Companies 12/12/2024

Page 2 of 25

Laboratory Job ID: 180-183776-1 SDG: Property ID: 891077

Cover Page	1
Table of Contents	3
Case Narrative	4
Definitions/Glossary	5
Sample Summary	6
Method Summary	7
Subcontract Data	8
Chain of Custody	24
Receipt Checklists	25

Case Narrative

Client: Chesapeake Energy Corporation Project: Equus - Chesapeake

Job ID: 180-183776-1

Eurofins Pittsburgh

Job ID: 180-183776-1

Job Narrative 180-183776-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 12/6/2024 10:11 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice.

Subcontract Work

Method TO 15: This method was subcontracted to Eurofins Air Toxics, Inc. The subcontract laboratory certification is different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

Page 131 of 250

Eurofins Pittsburgh

PQL

PRES

QC

RER

RL RPD

TEF

TEQ

TNTC

Client: Chesapeake Energy Corporation Project/Site: Equus - Chesapeake

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Presumptive

Quality Control

Job ID: 180-183776-1 SDG: Property ID: 891077

Glossary		2
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
 	Listed under the "D" column to designate that the result is reported on a dry weight basis	4
%R	Percent Recovery	
CFL	Contains Free Liquid	5
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	ŏ
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: Equus - Chesapeake Job ID: 180-183776-1 SDG: Property ID: 891077

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-183776-1	20241122M-1	Air	11/22/24 12:25	12/06/24 10:11

Method Summary

Client: Chesapeake Energy Corporation Project/Site: Equus - Chesapeake

Job ID: 180-183776-1 SDG: Property ID: 891077

Method	Method Description	Protocol	Laboratory	
TO-15	TO-15	EPA	Eurofins	-
Protocol R	eferences:			÷.
EPA = l	JS Environmental Protection Agency			- 5
Laboratory	/ References:			
Eurofine	s = Eurofins Air Toxics, 180 Blue Ravine Road, Suite B, Folsom, CA 95630			

Protocol References:

Laboratory References:

Eurofins Pittsburgh

Received by OCD: 6/4/2025 10:09:49 AM

Air Toxics

12/12/2024 Mr. Ken Hayes Eurofins Environment Testing 301 Alpha Dr.

Pittsburgh PA 15238

Project Name: CHKSTATE M Project #: CHKSTATM Workorder #: 2411743

Dear Mr. Ken Hayes

The following report includes the data for the above referenced project for sample(s) received on 11/27/2024 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Brian Whittaker at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Brian Whettake

Brian Whittaker Project Manager

Eurofins Air Toxics, LLC

180 Blue Ravine Road, Suite B Folsom, CA 95630

T 916-985-1000 F 916-351-8279 www.airtoxics.com

Air Toxics

WORK ORDER #: 2411743

Work Order Summary

CLIENT:	Mr. Ken Hayes Eurofins Environment Testing 301 Alpha Dr. Pittsburgh, PA 15238	BILL TO:	Mr. Ken Hayes Eurofins Environment Testing 301 Alpha Dr. Pittsburgh, PA 15238
PHONE:		P.O. #	CHKSTATM
FAX:		PROJECT #	CHKSTATM CHKSTATE M
DATE RECEIVED: DATE COMPLETED:	11/27/2024 12/12/2024	CONTACT:	Brian Whittaker
DATE COMPLETED:	12/12/2024		

			RECEIPT	FINAL
FRACTION #	NAME	TEST	VAC./PRES.	PRESSURE
01A	20241122M-1	TO-15	12.0 "Hg	2 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA
04AA	LCSD	TO-15	NA	NA

CERTIFIED BY:

las

DATE: <u>12/12/24</u>

Technical Director

Cert. No.: AZ Licensure-AZ0775, FL NELAP-E87680, LA NELAP-02089, MN NELAP-2703122, NH NELAP-209223-B, NJ NELAP-CA016, NY NELAP-11291, TX NELAP-T104704434, UT NELAP-CA009332023-16, VA NELAP-12695, WA NELAP-C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) CA300005-20 Eurofins Environment Testing Northern California, LLC certifies that the test results contained in this report meet all requirements of the 2016 TNI Standard.

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000

Page 2 of 16 Page 9 of 25 **Air Toxics**

LABORATORY NARRATIVE EPA Method TO-15 Eurofins Environment Testing Workorder# 2411743

One 6 Liter Summa Canister sample was received on November 27, 2024. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

A single point calibration for TVOC (Total Volatile Organic Compounds) referenced to Hexane was performed for each daily analytical batch. Recovery is reported as 100% in the associated results for each CCV.

TVOC (Total Volatile Organic Compounds) referenced to Hexane includes area counts for peaks that elute from Hexane minus 0.08 minutes to Naphthalene plus 0.08 minutes and quantitating the area based on the response factor of Hexane.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

- M Reported value may be biased due to apparent matrix interferences.
- CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: 20241122M-1

Lab ID#: 2411743-01A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
TVOC Ref. to Hexane	19	1900	67	6700

Air Toxics

Client Sample ID: 20241122M-1 Lab ID#: 2411743-01A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	91121112 1.89	Date of Collection: 11/22/24 12:25:00 P Date of Analysis: 12/11/24 05:22 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	9.4	Not Detected	22	Not Detected
Benzene	0.94	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.94	Not Detected	4.9	Not Detected
Bromodichloromethane	0.94	Not Detected	6.3	Not Detected
Bromoform	0.94	Not Detected	9.8	Not Detected
Bromomethane	9.4	Not Detected	37	Not Detected
2-Butanone (Methyl Ethyl Ketone)	3.8	Not Detected	11	Not Detected
Carbon Disulfide	3.8	Not Detected	12	Not Detected
Carbon Tetrachloride	0.94	Not Detected	5.9	Not Detected
Chlorobenzene	0.94	Not Detected	4.4	Not Detected
Dibromochloromethane	0.94	Not Detected	8.0	Not Detected
Chloroethane	3.8	Not Detected	10	Not Detected
Chloroform	0.94	Not Detected	4.6	Not Detected
Chloromethane	9.4	Not Detected	20	Not Detected
1,2-Dibromoethane (EDB)	0.94	Not Detected	7.3	Not Detected
1,2-Dichlorobenzene	0.94	Not Detected	5.7	Not Detected
1,3-Dichlorobenzene	0.94	Not Detected	5.7	Not Detected
1,4-Dichlorobenzene	0.94	Not Detected	5.7	Not Detected
1,1-Dichloroethane	0.94	Not Detected	3.8	Not Detected
Freon 12	0.94	Not Detected	4.7	Not Detected
1,2-Dichloroethane	0.94	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.94	Not Detected	3.7	Not Detected
cis-1,2-Dichloroethene	0.94	Not Detected	3.7	Not Detected
trans-1,2-Dichloroethene	0.94	Not Detected	3.7	Not Detected
1,2-Dichloropropane	0.94	Not Detected	4.4	Not Detected
cis-1,3-Dichloropropene	0.94	Not Detected	4.3	Not Detected
trans-1,3-Dichloropropene	0.94	Not Detected	4.3	Not Detected
Freon 114	0.94	Not Detected	6.6	Not Detected
Ethyl Benzene	0.94	Not Detected	4.1	Not Detected
4-Ethyltoluene	0.94	Not Detected	4.6	Not Detected
Hexachlorobutadiene	3.8	Not Detected	40	Not Detected
2-Hexanone	3.8	Not Detected	15	Not Detected
Methylene Chloride	9.4	Not Detected	33	Not Detected
4-Methyl-2-pentanone	0.94	Not Detected	3.9	Not Detected
Styrene	0.94	Not Detected	4.0	Not Detected
1,1,2,2-Tetrachloroethane	0.94	Not Detected	6.5	Not Detected
Tetrachloroethene	0.94	Not Detected	6.4	Not Detected
Toluene	1.9	Not Detected	7.1	Not Detected
1,2,4-Trichlorobenzene	3.8	Not Detected	28	Not Detected
1,1,1-Trichloroethane	0.94	Not Detected	5.2	Not Detected
	0.94	Not Detected	5.2	Not Detected
1,1,2-Trichloroethane				
Trichloroethene	0.94	Not Detected	5.1	Not Detected

eurofins

Air Toxics

Client Sample ID: 20241122M-1 Lab ID#: 2411743-01A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	91121112 1.89	Date of Collection: 11/22/24 12:25:00 P Date of Analysis: 12/11/24 05:22 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.94	Not Detected	5.3	Not Detected
Freon 113	0.94	Not Detected	7.2	Not Detected
1,2,4-Trimethylbenzene	0.94	Not Detected	4.6	Not Detected
1,3,5-Trimethylbenzene	0.94	Not Detected	4.6	Not Detected
Vinyl Acetate	3.8	Not Detected	13	Not Detected
Vinyl Chloride	0.94	Not Detected	2.4	Not Detected
m,p-Xylene	1.9	Not Detected	8.2	Not Detected
o-Xylene	0.94	Not Detected	4.1	Not Detected
TVOC Ref. to Hexane	19	1900	67	6700

Container Type: 6 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	85	70-130
1,2-Dichloroethane-d4	88	70-130
4-Bromofluorobenzene	86	70-130

Seurofins | Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2411743-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	91121106c 1.00	Date of Collection: NA Date of Analysis: 12/11/24 11:31 AM		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Acetone	5.0	Not Detected	12	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Freon 12	0.50	Not Detected	2.5	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
Toluene	1.0	Not Detected	3.8	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
monioroethene	0.00		2.1	

eurofins Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2411743-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	91121106c 1.00	Date of Collection: NA Date of Analysis: 12/11/24 11:31 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.50	Not Detected	2.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
m,p-Xylene	1.0	Not Detected	4.3	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
TVOC Ref. to Hexane	10	Not Detected	35	Not Detected

Container Type: NA - Not Applicable

		Method Limits
Surrogates	%Recovery	
Toluene-d8	88	70-130
1,2-Dichloroethane-d4	88	70-130
4-Bromofluorobenzene	88	70-130

Air Toxics

Client Sample ID: CCV Lab ID#: 2411743-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	91121103		Date of Collection: NA
Dil. Factor:	1.00		Date of Analysis: 12/11/24 10:10 AM
Compound	%Recovery		
Acetone		89	
Benzene		91	
alpha-Chlorotoluene		92	
Bromodichloromethane		89	
Bromoform		92	
Bromomethane		100	
2-Butanone (Methyl Ethyl Ketone)		92	
Carbon Disulfide		84	
Carbon Tetrachloride		89	
Chlorobenzene		94	
Dibromochloromethane		96	
Chloroethane		96	
Chloroform		88	
Chloromethane		91	
1,2-Dibromoethane (EDB)		91	
1,2-Dichlorobenzene		99	
1,3-Dichlorobenzene		100	
1,4-Dichlorobenzene		104	
1,1-Dichloroethane		85	
Freon 12		93	
1,2-Dichloroethane		83	
1,1-Dichloroethene		99	
cis-1,2-Dichloroethene		100	
trans-1,2-Dichloroethene		96	
1,2-Dichloropropane		86	
cis-1,3-Dichloropropene		93	
trans-1,3-Dichloropropene		93	
Freon 114		92	
Ethyl Benzene		101	
4-Ethyltoluene		106	
Hexachlorobutadiene		100	
2-Hexanone		103	
Methylene Chloride		84	
4-Methyl-2-pentanone		105	
Styrene		103	
1,1,2,2-Tetrachloroethane		88	
Tetrachloroethene		100	
Toluene		86 102	
1,2,4-Trichlorobenzene			
		88	
1,1,2-Trichloroethane		88	
Trichloroethene		89	

Air Toxics

Client Sample ID: CCV Lab ID#: 2411743-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	91121103	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/11/24 10:10 AM
Compound		%Recovery
Freon 11		91
Freon 113		101
1,2,4-Trimethylbenzene		106
1,3,5-Trimethylbenzene		104
Vinyl Acetate		94
Vinyl Chloride		102
m,p-Xylene		101
o-Xylene		105
TVOC Ref. to Hexane		100

Container Type: NA - Not Applicable

		Method Limits
Surrogates	%Recovery	
Toluene-d8	87	70-130
1,2-Dichloroethane-d4	82	70-130
4-Bromofluorobenzene	88	70-130
C		

eurofins		

Air Toxics

Client Sample ID: LCS Lab ID#: 2411743-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:		ollection: NA nalysis: 12/11/24 10:36 AM
		Method
Compound	%Recovery	Limits
Acetone	84	70-130
Benzene	92	70-130
alpha-Chlorotoluene	93	70-130
Bromodichloromethane	86	70-130
Bromoform	91	70-130
Bromomethane	97	70-130
2-Butanone (Methyl Ethyl Ketone)	90	70-130
Carbon Disulfide	81	70-130
Carbon Tetrachloride	89	70-130
Chlorobenzene	93	70-130
Dibromochloromethane	95	70-130
Chloroethane	92	70-130
Chloroform	85	70-130
Chloromethane	92	70-130
1,2-Dibromoethane (EDB)	89	70-130
1,2-Dichlorobenzene	99	70-130
1,3-Dichlorobenzene	103	70-130
1,4-Dichlorobenzene	106	70-130
1,1-Dichloroethane	82	70-130
Freon 12	88	70-130
		70-130
1,2-Dichloroethane	93	70-130
1,1-Dichloroethene	93	70-130
cis-1,2-Dichloroethene	97	70-130
trans-1,2-Dichloroethene	92 85	70-130
1,2-Dichloropropane		
cis-1,3-Dichloropropene	95	70-130
trans-1,3-Dichloropropene	93	70-130
Freon 114	88	70-130
Ethyl Benzene	103	70-130
4-Ethyltoluene	104	70-130
Hexachlorobutadiene	118	70-130
2-Hexanone	100	70-130
Methylene Chloride	80	70-130
4-Methyl-2-pentanone	101	70-130
Styrene	105	70-130
1,1,2,2-Tetrachloroethane	89	70-130
Tetrachloroethene	99	70-130
Toluene	87	70-130
1,2,4-Trichlorobenzene	117	70-130
1,1,1-Trichloroethane	88	70-130
1,1,2-Trichloroethane	88	70-130
Trichloroethene	88	70-130

Air Toxics

Client Sample ID: LCS Lab ID#: 2411743-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	91121104 1.00		Date of Collection: NA Date of Analysis: 12/11/24 10:36 AM						
Compound		%Recovery	Method Limits						
Freon 11		89	70-130						
Freon 113		95	70-130						
1,2,4-Trimethylbenzene		108	70-130						
1,3,5-Trimethylbenzene		105	70-130						
Vinyl Acetate		108	70-130						
Vinyl Chloride		98	70-130						
m,p-Xylene		100	70-130						
o-Xylene		106	70-130						
TVOC Ref. to Hexane		Not Spiked							

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	88	70-130
1,2-Dichloroethane-d4	81	70-130
4-Bromofluorobenzene	87	70-130

Air Toxics

Client Sample ID: LCSD Lab ID#: 2411743-04AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	91121105 Date of Collec	
טוו. רמנוטו.	1.00 Date of Analys	sis: 12/11/24 11:02 AM
Compound	%Recovery	Method Limits
Acetone	85	70-130
Benzene	94	70-130
alpha-Chlorotoluene	94	70-130
Bromodichloromethane	89	70-130
	92	70-130
Bromomethane	99	70-130
2-Butanone (Methyl Ethyl Ketone)	92	70-130
Carbon Disulfide	81	70-130
Carbon Tetrachloride	90	70-130
Chlorobenzene		70-130
Dibromochloromethane	96	70-130
Chloroethane	91	70-130
Chloroform	86	70-130
Chloromethane	94	70-130
1,2-Dibromoethane (EDB)	91	70-130
1,2-Dichlorobenzene	101	70-130
1,3-Dichlorobenzene	102	70-130
1,4-Dichlorobenzene	107	70-130
1,1-Dichloroethane	83	70-130
Freon 12	91	70-130
1,2-Dichloroethane	83	70-130
1,1-Dichloroethene	94	70-130
cis-1,2-Dichloroethene	98	70-130
trans-1,2-Dichloroethene	94	70-130
1,2-Dichloropropane	87	70-130
cis-1,3-Dichloropropene	96	70-130
trans-1,3-Dichloropropene	96	70-130
Freon 114	88	70-130
Ethyl Benzene	105	70-130
4-Ethyltoluene	107	70-130
Hexachlorobutadiene	119	70-130
2-Hexanone	100	70-130
Methylene Chloride	81	70-130
4-Methyl-2-pentanone	102	70-130
Styrene	105	70-130
1,1,2,2-Tetrachloroethane	90	70-130
Tetrachloroethene	102	70-130
Toluene	88	70-130
1,2,4-Trichlorobenzene	120	70-130
1,1,1-Trichloroethane	89	70-130
	90	70-130
1,1,2-Trichloroethane		
Trichloroethene	88	70-130

Released to Imaging: 6/17/2025 9:46:51 AM

🔅 eurofins

Air Toxics

Client Sample ID: LCSD Lab ID#: 2411743-04AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	91121105 1.00		Date of Collection: NA Date of Analysis: 12/11/24 11:02 AM						
Compound		%Recovery	Method Limits						
Freon 11		90	70-130						
Freon 113		96	70-130						
1,2,4-Trimethylbenzene		110	70-130						
1,3,5-Trimethylbenzene		106	70-130						
Vinyl Acetate		111	70-130						
Vinyl Chloride		98	70-130						
m,p-Xylene		103	70-130						
o-Xylene		107	70-130						
TVOC Ref. to Hexane		Not Spiked							

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	89	70-130
1,2-Dichloroethane-d4	83	70-130
4-Bromofluorobenzene	87	70-130

1 2 3 4 5 6 7 8 9

Seurofins | Air Toxics

Method : TO-15 (Sp)-Eurofins TA (CEC, OK)

67-64-1 Acetone 5.0 71-43-2 Benzene 0.50 75-27-4 Bromodichloromethane 0.50 75-28-2 Bromodichloromethane 0.50 75-28-3 Bromodichloromethane 5.0 74-83-9 Bromomethane 5.0 75-15-0 Carbon Disulfide 2.0 56-23-5 Carbon Disulfide 0.50 108-80-7 Chlorobenzene 0.50 124-48-1 Dibromochloromethane 0.50 124-48-1 1.2-Dichlorobenzene 0.50 124-48-1 1.2-Dichlorobenzene 0.50 106-63 1.4-Dichlorobenzene 0.50 106-64-7 1.4-Dichlorobenzene 0.50 107-06-2 1.2-Dichloroethane 0.50	CAS Number	Compound	Rpt. Limit (ppbv)
100-44-7 alpha-Chlorotoluene 0.50 75-27-4 Bromodichioromethane 0.50 75-25-2 Bromomethane 5.0 78-39-3 2-Butanone (Methyl Ethyl Ketone) 2.0 75-15-0 Carbon Disulfide 2.0 66-23-5 Carbon Teitrachloride 0.50 108-90-7 Chlorobenzene 0.50 124-48-1 Dibromochloromethane 0.50 75-00-3 Chlorobenzene 0.50 76-66-3 Chloroberthane 5.0 76-66-3 Chloroberthane 5.0 76-67-3 Chlorobenzene 0.50 95-50-1 1,2-Dichlorobenzene 0.50 95-50-1 1,2-Dichlorobenzene 0.50 75-34 1,1-Dichlorobenzene 0.50 75-34 1,1-Dichlorobenzene 0.50 75-71-8 Freon 12 0.50 107-06-2 1,2-Dichlorotethane 0.50 75-35-4 1,1-Dichloroperpane 0.50 156-60-5 trans-1,2-Dichloroperpane 0.50	67-64-1	Acetone	5.0
75:27-4 Bromodichloromethane 0.50 75:25-2 Bromorethane 5.0 78:93:3 2-Butanone (Methyl Ethyl Ketone) 2.0 75:15-0 Carbon Disulfide 0.50 78:93:3 2-Butanone (Methyl Ethyl Ketone) 2.0 75:15-0 Carbon Disulfide 0.50 108:90-7 Chlorobenzene 0.50 75:00-3 Chlorobenzene 0.50 75:40-3 Chloromethane 2.0 67:66-3 Chloromethane 5.0 106:43-4 1,2:Dibromochloromethane (EDB) 0.50 95:50-1 1,2:Dichlorobenzene 0.50 95:50-1 1,2:Dichlorobenzene 0.50 75:47:8 1,4:Dichlorobenzene 0.50 75:47:8 1,4:Dichlorobenzene 0.50 75:47:8 1,2:Dichlorobenzene 0.50 75:35:4 1,1:Dichlorobenzene 0.50 75:47:8 Freon 12 0.50 76:64:9 cis.1,2:Dichloroethane 0.50 75:35:4 1,1:Dichloroethane 0.50 78:87:5 1,2:Dichloropropane 0.50	71-43-2	Benzene	0.50
75-25-2 Bromorethane 0.50 74-83-9 Bromorethane 5.0 78-93-3 2-Butanone (Methyl Ethyl Ketone) 2.0 75-15-0 Carbon Disulfide 2.0 56-23-5 Carbon Tetrachloride 0.50 108-90-7 Chlorobenzene 0.50 75-00-3 Chlorobenzene 0.50 76-66-3 Chlorobenzene 5.0 74-87-3 Chloromethane 5.0 76-66-3 Chlorobenzene 0.50 95-50-1 1,2-Dichlorobenzene 0.50 95-50-1 1,2-Dichlorobenzene 0.50 75-71-8 Freon 12 0.50 75-71-8 Freon 12 0.50 107-06-2 1,2-Dichlorobenzene 0.50 107-06-2 1,2-Dichloroethane 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroppane 0.50 10061-02-6 trans-1,3-Dichloroppane 0.50 10061-02-6 trans-1,3-Dichloropropane 0.50 10061-01-5 cis-1,3-Dichloropropane 0.50 10	100-44-7	alpha-Chlorotoluene	0.50
74-83-9 Bromomethane 5.0 78-93-3 2-Butanone (Methyl Ethyl Ketone) 2.0 75-15-0 Carbon Disulfide 2.0 56-23-5 Carbon Tetrachloride 0.50 108-90-7 Chlorobenzene 0.50 75-00-3 Chlorobenzene 0.50 75-00-3 Chlorobenzene 0.50 76-66-3 Chlorobenzene 0.50 74-87-3 Chloromethane 5.0 106-93-4 1.2-Dibromoethane (EDB) 0.50 95-50-1 1.2-Dichlorobenzene 0.50 94-73-1 1,3-Dichlorobenzene 0.50 95-50-1 1.2-Dichlorobenzene 0.50 106-64-7 1,4-Dichlorobenzene 0.50 106-64-7 1,4-Dichloroethane 0.50 107-06-2 1,2-Dichloroethane 0.50 107-06-2 1,2-Dichloroethane 0.50 156-69-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloropropane 0.50 10061-01-5 cis-1,3-Dichloropropane 0.50 10061-02-6 trans-1,3-Dichloropropane 0.50	75-27-4	Bromodichloromethane	0.50
78-93-3 2-Butanone (Methyl Ethyl Ketone) 2.0 75-15-0 Carbon Disulfide 2.0 56-23-5 Carbon Tetrachloride 0.50 108-90-7 Chlorobenzene 0.50 124-48-1 Dibromochloromethane 2.0 67-66-3 Chloroethane 2.0 67-66-3 Chloromethane 5.0 106-93-4 1.2-Dibromoethane (EDB) 0.50 95-50-1 1.2-Dibromoethane (EDB) 0.50 95-50-1 1.2-Dichlorobenzene 0.50 95-50-1 1.2-Dichlorobenzene 0.50 75-34-3 1,1-Dichlorobenzene 0.50 75-34-3 1,1-Dichloroethane 0.50 75-71-8 Freon 12 0.50 75-35-4 1,1-Dichloroethane 0.50 75-35-5 1.2-Dichloroptene 0.50 78-87-5 1.2-Dichloroptene 0.50 76-84-7 1.4-Dichloroethene 0.50 75-35-4 1.1-Dichloroethene 0.50 75-35-5 1.2-Dichloroptopene 0.50 78-87-5 1.2-Dichloroptopene 0.50 <t< td=""><td>75-25-2</td><td>Bromoform</td><td>0.50</td></t<>	75-25-2	Bromoform	0.50
75-15-0 Carbon Disulfide 2.0 56-23-5 Carbon Tetrachloride 0.50 108-90-7 Chlorobenzene 0.50 124-48-1 Dibromochloromethane 2.0 67-66-3 Chlorobenzene 0.50 75-00-3 Chloromethane 2.0 67-86-3 Chloromethane 5.0 106-93-4 1,2-Dibromethane (EDB) 0.50 95-50-1 1,2-Dichlorobenzene 0.50 541-73-1 1,3-Dichlorobenzene 0.50 543-3 1,1-Dichlorobenzene 0.50 75-31-4 1,2-Dichlorobenzene 0.50 75-71-8 Freon 12 0.50 107-06-2 1,2-Dichloroethane 0.50 75-35-4 1,1-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 156-60-5 trans-1,3-Dichloropropene 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50	74-83-9	Bromomethane	5.0
56-23-5 Carbon Tetrachloride 0.50 108-90-7 Chlorobenzene 0.50 124-48-1 Dibromochloromethane 0.50 75-00-3 Chloroethane 2.0 67-66-3 Chloromethane 5.0 106-93-4 1.2-Dibromoethane (EDB) 0.50 95-50-1 1.2-Dichlorobenzene 0.50 106-43-7 1.4-Dichlorobenzene 0.50 75-34-3 1.1-Dichlorobenzene 0.50 106-46-7 1.4-Dichlorobenzene 0.50 75-34-3 1.1-Dichlorobenzene 0.50 107-06-2 1.2-Dichloroethane 0.50 75-35-4 1.1-Dichloroethene 0.50 156-69-2 cis-1.2-Dichloroethene 0.50 156-60-5 trans-1.2-Dichloroethene 0.50 10061-01-5 cis-1.3-Dichloropropene 0.50 10061-02-6 trans-1.3-Dichloropropene 0.50 10061-02-6 trans-1.3-Dichloropropene 0.50 10061-02-6 trans-1.3-Dichloropropene 0.50 100-11-4 Ethyl B	78-93-3	2-Butanone (Methyl Ethyl Ketone)	2.0
108-90-7 Chlorobenzene 0.50 124-48-1 Dibromochloromethane 0.50 75-00-3 Chloroethane 2.0 67-66-3 Chloroform 0.50 74-87-3 Chloromethane 5.0 106-93-4 1.2-Dibromoethane (EDB) 0.50 95-50-1 1.2-Dichlorobenzene 0.50 541-73-1 1.3-Dichlorobenzene 0.50 75-34-3 1.1-Dichlorobenzene 0.50 75-34-3 1.1-Dichlorobenzene 0.50 107-06-2 1.2-Dichloroethane 0.50 107-06-2 1.2-Dichloroethene 0.50 156-59-2 cis.1.2-Dichloroethene 0.50 156-60-5 trans.1.2-Dichloropropane 0.50 10061-01-5 cis.1.3-Dichloropropane 0.50 10061-02-6 trans.1.3-Dichloropropene 0.50 10061-02-6 trans.1.3-Dichloropropene 0.50 10061-02-6 trans.1.3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 100-42-5 Styrene	75-15-0	Carbon Disulfide	2.0
124-48-1 Dibromochloromethane 0.50 75-00-3 Chloroethane 2.0 67-66-3 Chloromethane 5.0 106-93-4 1.2-Dibromoethane (EDB) 0.50 95-50-1 1.2-Dichlorobenzene 0.50 541-73-1 1.3-Dichlorobenzene 0.50 75-34-3 1.4-Dichlorobenzene 0.50 75-34-3 1.1-Dichlorobenzene 0.50 75-34-3 1.1-Dichlorobenzene 0.50 75-71-8 Freon 12 0.50 75-71-8 Freon 12 0.50 75-71-8 Freon 12 0.50 75-71-8 Freon 12 0.50 75-35-4 1.1-Dichloroethane 0.50 75-63-2 cis-1,2-Dichloroethene 0.50 75-60-5 trans-1,2-Dichloropropane 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 7	56-23-5	Carbon Tetrachloride	0.50
75-00-3 Chloroethane 2.0 67-66-3 Chloroform 0.50 74-87-3 Chloromethane 5.0 106-93-4 1.2-Dibromoethane (EDB) 0.50 95-50-1 1.2-Dichlorobenzene 0.50 541-73-1 1.3-Dichlorobenzene 0.50 106-46-7 1.4-Dichlorobenzene 0.50 75-34-3 1.1-Dichloroethane 0.50 75-71-8 Freon 12 0.50 107-06-2 1.2-Dichloroethane 0.50 75-35-4 1.1-Dichloroethane 0.50 156-50-2 cis-1.2-Dichloroethene 0.50 156-60-5 trans-1.2-Dichloropropane 0.50 10061-01-5 cis-1.3-Dichloropropene 0.50 10061-02-6 trans-1.3-Dichloropropene 0.50 10061-02-6 trans-1.3-Dichloropropene 0.50 10041-02-6 trans-1.3-Dichloropropene 0.50 10041-02-6 trans-1.3-Dichloropropene 0.50 10041-02-6 trans-1.3-Dichloroptropene 0.50 10041-02-6 trans-1.3-Dichloroptropene 0.50 100-41-4 Ethylto	108-90-7	Chlorobenzene	0.50
67-66-3 Chloroform 0.50 74-87-3 Chloromethane 5.0 106-93-4 1,2-Dibromoethane (EDB) 0.50 95-50-1 1,2-Dichlorobenzene 0.50 541-73-1 1,3-Dichlorobenzene 0.50 106-46-7 1,4-Dichlorobenzene 0.50 75-34-3 1,1-Dichloroethane 0.50 107-06-2 1,2-Dichloroethane 0.50 107-06-2 1,2-Dichloroethane 0.50 156-59-2 cls-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 10061-01-5 cls-1,2-Dichloroppane 0.50 10061-01-5 cls-1,3-Dichloroppopene 0.50 10061-02-6 trans-1,3-Dichloroppopene 0.50 10061-02-6 trans-1,3-Dichloroppopene 0.50 10061-02-6 trans-1,3-Dichloroptopene 0.50 622-96-8 4-EthyltBenzene 0.50 622-96-8 4-Ethyltene 0.50 75-09-2 Methyl-2-pentanone 2.0 591-78-6 2.Hexanone 2.0 79-09-2 Methylene Chloride	124-48-1	Dibromochloromethane	0.50
74-87-3 Chloromethane 5.0 106-93-4 1,2-Dibromoethane (EDB) 0.50 95-50-1 1,2-Dichlorobenzene 0.50 541-73-1 1,3-Dichlorobenzene 0.50 106-46-7 1,4-Dichlorobenzene 0.50 75-34-3 1,1-Dichlorobenzene 0.50 75-71-8 Freon 12 0.50 107-06-2 1,2-Dichloroethane 0.50 75-35-4 1,1-Dichloroethane 0.50 75-35-4 1,1-Dichloroethane 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 10061-01-5 cis-1,3-Dichloropropane 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 100-41-4 Ethyl Benzene 0.50 104-76 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 108-10-1 4-Methyl-2-pentanone 0.50 104-42-5 Styrene 0.50 <tr< td=""><td>75-00-3</td><td>Chloroethane</td><td>2.0</td></tr<>	75-00-3	Chloroethane	2.0
106-93-4 1,2-Dibromoethane (EDB) 0,50 95-50-1 1,2-Dichlorobenzene 0,50 541-73-1 1,3-Dichlorobenzene 0,50 106-46-7 1,4-Dichlorobenzene 0,50 75-34-3 1,1-Dichloroethane 0,50 75-71-8 Freon 12 0,50 107-06-2 1,2-Dichloroethane 0,50 75-35-4 1,1-Dichloroethene 0,50 156-59-2 cis-1,2-Dichloroethene 0,50 156-60-5 trans-1,2-Dichloroethene 0,50 1061-01-5 cis-1,2-Dichloropropane 0,50 10061-01-5 cis-1,3-Dichloropropene 0,50 10061-02-6 trans-1,3-Dichloropropene 0,50 10061-02-6 trans-1,3-Dichloropropene 0,50 100-41-4 Ethyl Benzene 0,50 100-41-4 Ethyl Benzene 0,50 622-96-8 4-Ethyltoluene 2,0 75-09-2 Methylene Chloride 5,0 108-10-1 4-Methyl-2-pentanone 0,50 108-42-5 Styrene	67-66-3	Chloroform	0.50
106-93-4 1,2-Dibromoethane (EDB) 0.50 95-50-1 1,2-Dichlorobenzene 0.50 541-73-1 1,3-Dichlorobenzene 0.50 106-46-7 1,4-Dichlorobenzene 0.50 75-34-3 1,1-Dichloroethane 0.50 75-71-8 Freen 12 0.50 107-06-2 1,2-Dichloroethane 0.50 75-35-4 1,1-Dichloroethane 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 1061-01-5 cis-1,3-Dichloropropane 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 100-41-4 Ethyl Benzene 0.50 100-41-4 Ethyl Benzene 0.50 102-96-8 4-Ethyltoluene 2.0 75-09-2 Methylene Chloride 5.0 108-10-1 4-Methyl-2-pentanone	74-87-3	Chloromethane	5.0
95-50-1 1,2-Dichlorobenzene 0,50 541-73-1 1,3-Dichlorobenzene 0,50 106-46-7 1,4-Dichlorobenzene 0,50 75-34-3 1,1-Dichlorobenzene 0,50 75-71-8 Freon 12 0,50 107-06-2 1,2-Dichloroethane 0,50 107-06-2 1,2-Dichloroethane 0,50 156-59-2 cis-1,2-Dichloroethene 0,50 156-60-5 trans-1,2-Dichloropthene 0,50 1061-01-5 cis-1,3-Dichloropthene 0,50 10061-01-5 cis-1,3-Dichloropropane 0,50 10061-02-6 trans-1,3-Dichloropropene 0,50 10061-02-6 trans-1,3-Dichloropropene 0,50 10061-02-6 trans-1,3-Dichloropropene 0,50 622-96-8 4-Ethylbulene 0,50 622-96-8 4-Ethylbulene 0,50 75-09-2 Methyle-2-pentanone 2,0 75-09-2 Methyl-2-pentanone 0,50 100-42-5 Styrene 0,50 100-42-5 Styrene <t< td=""><td>106-93-4</td><td>1,2-Dibromoethane (EDB)</td><td></td></t<>	106-93-4	1,2-Dibromoethane (EDB)	
106-46-7 1,4-Dichlorobenzene 0.50 75-34-3 1,1-Dichloroethane 0.50 75-71-8 Freon 12 0.50 107-06-2 1,2-Dichloroethane 0.50 75-35-4 1,1-Dichloroethene 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 1061-01-5 cis-1,3-Dichloropropane 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 87-68-3 Hexachlorobutadiene 2.0 87-68-3 Hexachlorobutadiene 0.50 100-41-4 Ethyl-2-pentanone 0.50 108-10-1 4-Methyl-2-pentanone 0.50 108-25 Styrene 0.50 102-42-5 Styrene 0.50 102-42-5 Styrene 0.50 102-42-5 Styrene 0.50 104-42-5 <td>95-50-1</td> <td></td> <td></td>	95-50-1		
75-34-3 1,1-Dichloroethane 0.50 75-71-8 Freon 12 0.50 107-06-2 1,2-Dichloroethane 0.50 75-35-4 1,1-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloropropane 0.50 10061-01-5 cis-1,3-Dichloropropane 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 1004-1-4 Ethyl Benzene 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyl Iouene 0.50 75-09-2 Methylene Chloride 5.0 100-41-4 Ethyl Benzene 0.50 75-09-2 Methylene Chloride 5.0 108-10-1 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50 102-14 1,2,2-Tetrachloroethane 0.50 102-88-1 1,2,4-Trichloroethane 0.50	541-73-1	1,3-Dichlorobenzene	0.50
75-71-8 Freon 12 0.50 107-06-2 1,2-Dichloroethane 0.50 75-35-4 1,1-Dichloroethene 0.50 156-69-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 78-87-5 1,2-Dichloropropane 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 75-08-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50 127-18-4 Tetrachloroethane 0.50 127-18-4 Tetrachloroethane 0.50 120-82-1 1,2,4-Trichloroethane 0.50	106-46-7	1,4-Dichlorobenzene	0.50
107-06-2 1,2-Dichloroethane 0.50 75-35-4 1,1-Dichloroethene 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 78-87-5 1,2-Dichloropropane 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 100-42-5 Styrene 0.50 102-45 Styrene 0.50 102-45 Styrene 0.50 104-42-5 Styrene 0.50 102-42-5 Styrene 0.50	75-34-3		
107-06-2 1,2-Dichloroethane 0.50 75-35-4 1,1-Dichloroethene 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 78-87-5 1,2-Dichloropropane 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltouene 0.50 87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 591-78-6 2-Hexanone 0.50 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50 127-18-4 Tetrachloroethane 0.50 127-18-4 Tetrachloroethane 0.50 128-3 Toluene 1.0 120-82-1 1,2,4-Trichloroethane 0.50 71-55-6 1,1,1-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-01-6 <td>75-71-8</td> <td>Freon 12</td> <td>0.50</td>	75-71-8	Freon 12	0.50
75-35-4 1,1-Dichloroethene 0.50 156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroethene 0.50 78-87-5 1,2-Dichloropropane 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 79-09-2 Methylene Chloride 5.0 100-42-5 Styrene 0.50 127-18-4 Tetrachloroethane 0.50 127-18-4 Tetrachloroethane 2.0 71-55-6 1,1,2-2-Tetrachloroethane 0.50 108-88-3 Toluene 1.0 120-82-1 1,2,4-Trichloroethane 0.50 71-55-6 1,1,1-Trichloroethane 0.50 73-00-5 1,1,2-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-01-6 Trichloroethane 0.50	107-06-2	1,2-Dichloroethane	
156-59-2 cis-1,2-Dichloroethene 0.50 156-60-5 trans-1,2-Dichloroptopane 0.50 78-87-5 1,2-Dichloroptopane 0.50 10061-01-5 cis-1,3-Dichloroptopene 0.50 10061-02-6 trans-1,3-Dichloroptopene 0.50 100-41-4 Ethyl Benzene 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 591-78-6 2-Hexanone 0.50 108-10-1 4-Methyl-2-pentanone 0.50 108-10-1 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50 102-82-1 1,2,2-Tetrachloroethane 0.50 108-88-3 Toluene 1.0 120-82-1 1,2,4-Trichlorobenzene 2.0 71-55-6 1,1,1-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 <td< td=""><td>75-35-4</td><td>1,1-Dichloroethene</td><td></td></td<>	75-35-4	1,1-Dichloroethene	
156-60-5 trans-1,2-Dichloroethene 0.50 78-87-5 1,2-Dichloropropane 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 76-14-2 Freon 114 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 108-10-1 4-Methyl-2-pentanone 0.50 109-42-5 Styrene 0.50 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50 100-42-5 Styrene 0.50 108-88-3 Toluene 1.0 120-82-1 1,2,4-Trichloroethane 0.50 110-82-5 1,1,2-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-01-6 Trichloroethene 0.50 79-01-6 Trichloroeth			
78-87-5 1,2-Dichloropropane 0.50 10061-01-5 cis-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 76-14-2 Freon 114 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 100-42-5 Styrene 0.50 79-34-5 1,1,2,2-Tetrachloroethane 0.50 108-88-3 Toluene 1.0 120-82-1 1,2,4-Trichlorobenzene 2.0 71-55-6 1,1,1-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-01-6 Trichloroethane 0.50 79-01-6 Trichloroethane 0.50 79-01-6 Trichloroethane 0.50 79-01-6 Trichloroethane 0.50	156-60-5	trans-1,2-Dichloroethene	
10061-01-5 cis-1,3-Dichloropropene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 76-14-2 Freon 114 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 100-42-5 Styrene 0.50 79-34-5 1,1,2,2-Tetrachloroethane 0.50 127-18-4 Tetrachlorobenzene 2.0 71-55-6 1,1,2,4-Trichlorobenzene 2.0 71-55-6 1,1,2-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-01-6 Trichloroethane 0.50 79-01-6 Trichloroethane 0.50 75-69-4 Freon 11 0.50	78-87-5	1,2-Dichloropropane	
10061-02-6trans-1,3-Dichloropropene0.5076-14-2Freon 1140.50100-41-4Ethyl Benzene0.50622-96-84-Ethyltoluene0.5087-68-3Hexachlorobutadiene2.0591-78-62-Hexanone2.0591-78-62-Hexanone5.0108-10-14-Methyl-2-pentanone0.50100-42-5Styrene0.50100-42-5Styrene0.50108-88-3Toluene1.0120-82-11,2,4-Trichlorobenzene2.071-55-61,1,2-Trichloroethane0.5079-00-51,1,2-Trichloroethane0.5079-01-6Trichloroethane0.5075-69-4Freon 110.50	10061-01-5		
76-14-2 Freon 114 0.50 100-41-4 Ethyl Benzene 0.50 622-96-8 4-Ethyltoluene 0.50 87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 108-10-1 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0.50 79-34-5 1,1,2,2-Tetrachloroethane 0.50 108-88-3 Toluene 1.0 120-82-1 1,2,4-Trichlorobenzene 2.0 71-55-6 1,1,2-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-01-6 Trichloroethene 0.50 79-04 Freon 11 0.50	10061-02-6		
622-96-84-Ethyltoluene0.5087-68-3Hexachlorobutadiene2.0591-78-62-Hexanone2.075-09-2Methylene Chloride5.0108-10-14-Methyl-2-pentanone0.50100-42-5Styrene0.5079-34-51,1,2,2-Tetrachloroethane0.50127-18-4Tetrachloroethene0.50108-88-3Toluene1.0120-82-11,2,4-Trichloroethane0.5071-55-61,1,1-Trichloroethane0.5079-00-51,1,2-Trichloroethane0.5079-01-6Trichloroethene0.5075-69-4Freon 110.50	76-14-2	Freon 114	0.50
622-96-84-Ethyltoluene0.5087-68-3Hexachlorobutadiene2.0591-78-62-Hexanone2.075-09-2Methylene Chloride5.0108-10-14-Methyl-2-pentanone0.50100-42-5Styrene0.5079-34-51,1,2,2-Tetrachloroethane0.50127-18-4Tetrachloroethene0.50108-88-3Toluene1.0120-82-11,2,4-Trichloroethane0.5079-00-51,1,2-Trichloroethane0.5079-01-6Trichloroethene0.5075-69-4Freon 110.50	100-41-4	Ethyl Benzene	0.50
87-68-3 Hexachlorobutadiene 2.0 591-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 108-10-1 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0.50 79-34-5 1,1,2,2-Tetrachloroethane 0.50 127-18-4 Tetrachloroethene 0.50 108-88-3 Toluene 1.0 120-82-1 1,2,4-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-01-6 Trichloroethene 0.50 79-01-6 Freon 11 0.50	622-96-8	4-Ethyltoluene	
591-78-6 2-Hexanone 2.0 75-09-2 Methylene Chloride 5.0 108-10-1 4-Methyl-2-pentanone 0.50 100-42-5 Styrene 0.50 79-34-5 1,1,2,2-Tetrachloroethane 0.50 127-18-4 Tetrachloroethene 0.50 108-88-3 Toluene 1.0 120-82-1 1,2,4-Trichloroethane 0.50 79-00-5 1,1,1-Trichloroethane 0.50 79-01-6 Trichloroethene 0.50 79-01-6 Freon 11 0.50	87-68-3	Hexachlorobutadiene	2.0
108-10-14-Methyl-2-pentanone0.50100-42-5Styrene0.5079-34-51,1,2,2-Tetrachloroethane0.50127-18-4Tetrachloroethene0.50108-88-3Toluene1.0120-82-11,2,4-Trichlorobenzene2.071-55-61,1,1-Trichloroethane0.5079-00-51,1,2-Trichloroethane0.5079-01-6Trichloroethane0.5075-69-4Freon 110.50	591-78-6	2-Hexanone	
100-42-5Styrene0.5079-34-51,1,2,2-Tetrachloroethane0.50127-18-4Tetrachloroethene0.50108-88-3Toluene1.0120-82-11,2,4-Trichlorobenzene2.071-55-61,1,1-Trichloroethane0.5079-00-51,1,2-Trichloroethane0.5079-01-6Trichloroethene0.5075-69-4Freon 110.50	75-09-2	Methylene Chloride	
100-42-5Styrene0.5079-34-51,1,2,2-Tetrachloroethane0.50127-18-4Tetrachloroethene0.50108-88-3Toluene1.0120-82-11,2,4-Trichlorobenzene2.071-55-61,1,1-Trichloroethane0.5079-00-51,1,2-Trichloroethane0.5079-01-6Trichloroethene0.5075-69-4Freon 110.50	108-10-1	4-Methyl-2-pentanone	0.50
79-34-51,1,2,2-Tetrachloroethane0.50127-18-4Tetrachloroethene0.50108-88-3Toluene1.0120-82-11,2,4-Trichlorobenzene2.071-55-61,1,1-Trichloroethane0.5079-00-51,1,2-Trichloroethane0.5079-01-6Trichloroethene0.5075-69-4Freon 110.50	100-42-5		
127-18-4Tetrachloroethene0.50108-88-3Toluene1.0120-82-11,2,4-Trichlorobenzene2.071-55-61,1,1-Trichloroethane0.5079-00-51,1,2-Trichloroethane0.5079-01-6Trichloroethene0.5075-69-4Freon 110.50	79-34-5	1,1,2,2-Tetrachloroethane	
108-88-3 Toluene 1.0 120-82-1 1,2,4-Trichlorobenzene 2.0 71-55-6 1,1,1-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-01-6 Trichloroethene 0.50 75-69-4 Freon 11 0.50	127-18-4	Tetrachloroethene	
71-55-6 1,1,1-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-01-6 Trichloroethene 0.50 75-69-4 Freon 11 0.50	108-88-3	Toluene	
71-55-6 1,1,1-Trichloroethane 0.50 79-00-5 1,1,2-Trichloroethane 0.50 79-01-6 Trichloroethene 0.50 75-69-4 Freon 11 0.50	120-82-1	1,2,4-Trichlorobenzene	2.0
79-00-5 1,1,2-Trichloroethane 0.50 79-01-6 Trichloroethene 0.50 75-69-4 Freon 11 0.50			
79-01-6 Trichloroethene 0.50 75-69-4 Freon 11 0.50	79-00-5	1,1,2-Trichloroethane	
75-69-4 Freon 11 0.50	79-01-6	Trichloroethene	
		Freon 11	
	76-13-1	Freon 113	

1 2 3 4 5 6 7 8 9

Seurofins | Air Toxics

Method : TO-15 (Sp)-Eurofins TA (CEC, OK)

CAS Number	Compound	Rpt. Limit (ppbv)	
95-63-6	1,2,4-Trimethylbenzene	0.50	
108-67-8	1,3,5-Trimethylbenzene	0.50	
108-05-4	Vinyl Acetate	2.0	
75-01-4	Vinyl Chloride	0.50	
108-38-3	m,p-Xylene	1.0	
95-47-6	o-Xylene	0.50	
9999-9999-500	TVOC Ref. to Hexane	10	

	Surrogate	Method Limits	
2037-26-5	Toluene-d8	70-130	
17060-07-0	1,2-Dichloroethane-d4	70-130	
460-00-4	4-Bromofluorobenzene	70-130	

Received by OCD: 6/4/2025 10:09:49 AM

Page 151 of 250

Whi	Г	5		REO	ME		RE			[1		1				1		1		1			014 11			S		. 101 (_ 1
White: Receiving Lab	VeN	LABORATORT CONTACT: 30		RECEIVED IN LABORATORY BY:	METHOD OF SHIPMENT:		RELINQUISHED BY:	NELINAGISHED BY:	TOTAL NUMBER OF CONTAINERS	$\bigcap_{i=1}^{n}$														1	+	11-22-2024	Date		SAMPLERS SIGNATURE:	SAMPLER'S PRINTED NAME:		2
	6 610	UNIACT:		BORATOR	PMENT:		B Y.		OF CONTA																	12:75	Time		NATURE:	UNTED NAN		4
Yellow: Equus Environmental Project File Pink:	201 - 203 5			YBY:		~			AINERS																Leve 131 C (18/ Jan	20241127 M-1	Sample ID		tric tarrer		EQUUS	6 7 8 9
Pink: Equus QA/QC			TIME	DATE		TIME		DATE 1/-7	•																A.T		Sam	ple Mi	atrix		CHKSTATM	
	~			0	A			(_					 					$\left \right $								# of Sam;	ole Co	ntainer		HKSTATM	CHAI
	9 081	BORAT	na rur,			RECEIVED BY:	Mund	RECEIVED BY:			_						_									_	TO -1 TOTAL V	<u>5</u> ois .	n j	AVR TOXIC	TN TN	N OF CL
	SLUE K	LABORATORY ADDRESS:	QA		IMAFO	BY: (1×) BY:																			HEX	ANG	*			JSTODY
	BLUE RAWNE	RESS:	QAQC@EquusEnv.com	204 DDE EDD - 1 million			10	-/				-				-				\downarrow						_				24	PR	CHAIN OF CUSTODY RECORD
	TRD.		3E (It app DuusEn	8			Lun														Ť.									MATT.	OJECT N	8
	STEB	1.0011	licable) t v com	26895			4										-		+		-									IANAGEF	PROJECT NAME: CHKSTATE M	24
			ö	11883			せい見		ļ								1													KRO "		
	MOSA				TIME	DATE	1	DAT	#												-+	-		+		-						1743
	2					m	TIME u/ (O	DATE, 1/ 7 7/2															\	/l	TAG			\star	PO#			-
	FOLSOM CA 95630						1			CAR	CUS	PRO												1	# 6		Ċ	いしろ	autor and the second	TAT:		
	0									ad r	CUSTODY SEAL? YES NO NONE	PROBE TIME STORED: JUL IV	INTIAL "C. CF: FINAL "C.													REMARKS			WO#		coc of	No. 2800
PAS	ed to	Im	aain	a. 6	/17	/202	25.0	• 16	-51		7	1/1	1	h	Pa	ige	24	of 2	25						4					12/1] 2/202	24

Released to Imaging: 6/17/2025 9:46:51 AM

Job Number: 180-183776-1 SDG Number: Property ID: 891077

List Source: Eurofins Pittsburgh

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Login Number: 183776 List Number: 1 Creator: Hayes, Ken

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td></td> <td></td>		
The cooler's custody seal, if present, is intact.		
Sample custody seals, if present, are intact.		
The cooler or samples do not appear to have been compromised or tampered with.		
Samples were received on ice.		
Cooler Temperature is acceptable.		
Cooler Temperature is recorded.		
COC is present.		
COC is filled out in ink and legible.		
COC is filled out with all pertinent information.		
Is the Field Sampler's name present on COC?		
There are no discrepancies between the containers received and the COC.		
Samples are received within Holding Time (excluding tests with immediate HTs)		
Sample containers have legible labels.		
Containers are not broken or leaking.		
Sample collection date/times are provided.		
Appropriate sample containers are used.		
Sample bottles are completely filled.		
Sample Preservation Verified.		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").		
Multiphasic samples are not present.		
Samples do not require splitting or compositing.		
Residual Chlorine Checked.		

Environment Testing

ANALYTICAL REPORT

Page 153 of 250

PREPARED FOR

Attn: Dana Drury Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154 Generated 4/3/2025 5:28:13 PM

JOB DESCRIPTION

Equus - Chesapeake Property ID: 891077

JOB NUMBER

180-188321-1

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh PA 15238

See page two for job notes and contact information

Eurofins Pittsburgh

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

PA Lab ID: 02-00416

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Pittsburgh Project Manager.

Authorization

Kunth Hay

Generated 4/3/2025 5:28:13 PM

Authorized for release by Ken Hayes, Project Manager II Ken.Hayes@et.eurofinsus.com (615)301-5035

Eurofins Pittsburgh is a laboratory within Eurofins Environment Testing Northeast LLC, a company within Eurofins Environment Testing Group of Companies 4/3/2025

Page 2 of 30

Laboratory Job ID: 180-188321-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Definitions/Glossary	5
Sample Summary	6
Method Summary	7
Subcontract Data	8
Chain of Custody	24
Receipt Checklists	30

Eurofins Pittsburgh 4/3/2025

Case Narrative

Client: Chesapeake Energy Corporation Project: Equus - Chesapeake

Job ID: 180-188321-1

Job ID: 180-188321-1

Eurofins Pittsburgh

Job Narrative 180-188321-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 3/27/2025 8:00 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice.

Subcontract Work

Method TO 15: This method was subcontracted to Eurofins Air Toxics, Inc. The subcontract laboratory certification is different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

Page 156 of 250

Eurofins Pittsburgh

Definitions/Glossary

Client: Chesapeake Energy Corporation Project/Site: Equus - Chesapeake

Job ID: 180-188321-1 SDG: Property ID: 891077

4
5
0

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¢	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Eurofins Pittsburgh

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: Equus - Chesapeake Job ID: 180-188321-1 SDG: Property ID: 891077

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-188321-1	20250320M-1	Air	03/20/25 12:20	03/27/25 08:00

Client: Chesapeake Energy Corporation Project/Site: Equus - Chesapeake

Job ID: 180-188321-1 SDG: Property ID: 891077

Method	Method Description	Protocol	Laboratory
TO-15	TO-15	EPA	Eurofins

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

Eurofins = Eurofins Air Toxics, 180 Blue Ravine Road, Suite B, Folsom, CA 95630

Eurofins Pittsburgh

Air Toxics

Analytical Report

4/3/2025 Mr. Ken Hayes Eurofins Environment Testing 301 Alpha Dr.

Pittsburgh PA 15238

Project Name: CHK STATE M Project #: Workorder #: 2503633

Dear Mr. Ken Hayes

The following report includes the data for the above referenced project for sample(s) received on 3/21/2025 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Jade White at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Jade White Project Manager

Eurofins Air Toxics, LLC

180 Blue Ravine Road, Suite B Folsom, CA 95630 T 916-985-1000 F 916-351-8279 www.airtoxics.com

1 2 3 4 5 6 7

Air Toxics

WORK ORDER #: 2503633

Work Order Summary

CLIENT:	Mr. Ken Hayes Eurofins Environment Testing 301 Alpha Dr. Pittsburgh, PA 15238	BILL TO:	Mr. Ken Hayes Eurofins Environment Testing 301 Alpha Dr. Pittsburgh, PA 15238
PHONE:		P.O. #	180-188321-1
FAX:		PROJECT #	CHK STATE M
DATE RECEIVED: DATE COMPLETED:	03/21/2025 04/03/2025	CONTACT:	Jade White

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	TEST	VAC./PRES.	PRESSURE
01A	20250320M-1	TO-15	9.8 "Hg	1.9 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA
04AA	LCSD	TO-15	NA	NA

CERTIFIED BY:

lay Lera

DATE: 04/03/25

Technical Director

Cert. No.: AZ Licensure-AZ0775, FL NELAP-E87680, LA NELAP-02089, MN NELAP-2836569, NH NELAP-209224-A, NJ NELAP-CA016, NY NELAP-11291, TX NELAP-T104704434, UT NELAP-CA009332023-16, VA NELAP-13180, WA NELAP-C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) CA300005-21 Eurofins Environment Testing Northern California, LLC certifies that the test results contained in this report meet all requirements of the 2016 TNI Standard.

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000

(910) 983-1000

Page 2 of 16 Page 9 of 30

Air Toxics

LABORATORY NARRATIVE EPA Method TO-15 Eurofins Environment Testing Workorder# 2503633

One 6 Liter Summa Canister sample was received on March 21, 2025. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

A single point calibration for TVOC (Total Volatile Organic Compounds) referenced to Hexane was performed for each daily analytical batch. Recovery is reported as 100% in the associated results for each CCV.

TVOC (Total Volatile Organic Compounds) referenced to Hexane includes area counts for peaks that elute from Hexane minus 0.08 minutes to Naphthalene plus 0.08 minutes and quantitating the area based on the response factor of Hexane.

The presence of a closely eluting non-target peak in sample 20250320M-1 is interfering with the quantitation mass ion for 4-Ethyltoluene. The reported 4-Ethyltoluene concentration is flagged with a "CN" flag to indicate a high bias due to matrix contribution.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

J - Estimated value.

- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

M - Reported value may be biased due to apparent matrix interferences.

CN - See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: 20250320M-1

Lab ID#: 2503633-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	0.84	1.2	2.7	3.8
4-Ethyltoluene	0.84	1.1 CN	4.1	5.6 CN
1,3,5-Trimethylbenzene	0.84	1.3	4.1	6.5
m,p-Xylene	1.7	3.4	7.3	15
TVOC Ref. to Hexane	17	3000	59	10000

🔅 eurofins

Air Toxics

Lab ID#: 2503633-01A **EPA METHOD TO-15 GC/MS FULL SCAN** File Name: 17033132 Date of Collection: 3/20/25 12:20:00 PM Dil. Factor: 1.68 Date of Analysis: 4/1/25 04:31 AM **Rpt.** Limit Amount **Rpt.** Limit Amount Compound (ug/m3) (ppbv) (ppbv) (ug/m3) 8.4 Not Detected 20 Not Detected Acetone 0.84 2.7 Benzene 1.2 3.8 alpha-Chlorotoluene 0.84 Not Detected 4.3 Not Detected 0.84 Not Detected 5.6 Not Detected Bromodichloromethane 0.84 8.7 Bromoform Not Detected Not Detected 33 Bromomethane 8.4 Not Detected Not Detected 2-Butanone (Methyl Ethyl Ketone) 3.4 Not Detected 9.9 Not Detected Carbon Disulfide 3.4 Not Detected 10 Not Detected 0.84 Not Detected 5.3 Not Detected Carbon Tetrachloride 0.84 Chlorobenzene Not Detected 3.9 Not Detected 7.2 Dibromochloromethane 0.84 Not Detected Not Detected Chloroethane 3.4 Not Detected 8.9 Not Detected 0.84 4.1 Not Detected Chloroform Not Detected Chloromethane 8.4 Not Detected 17 Not Detected 0.84 6.4 Not Detected 1,2-Dibromoethane (EDB) Not Detected 0.84 5.0 1,2-Dichlorobenzene Not Detected Not Detected 1,3-Dichlorobenzene 0.84 Not Detected 5.0 Not Detected 0.84 Not Detected 5.0 Not Detected 1,4-Dichlorobenzene 1,1-Dichloroethane 0.84 Not Detected 3.4 Not Detected 0.84 4.2 Not Detected Freon 12 Not Detected 1,2-Dichloroethane 0.84 Not Detected 3.4 Not Detected 0.84 1,1-Dichloroethene Not Detected 3.3 Not Detected 0.84 Not Detected 3.3 Not Detected cis-1,2-Dichloroethene 0.84 3.3 Not Detected trans-1,2-Dichloroethene Not Detected 1,2-Dichloropropane 0.84 Not Detected 3.9 Not Detected cis-1,3-Dichloropropene 0.84 Not Detected 3.8 Not Detected 0.84 Not Detected 3.8 Not Detected trans-1,3-Dichloropropene Freon 114 0.84 Not Detected 5.9 Not Detected 0.84 Not Detected 3.6 Not Detected Ethyl Benzene

0.84

3.4

3.4

8.4

0.84

0.84

0.84

0.84

1.7

3.4

0.84

0.84

0.84

Client Sample ID: 20250320M-1

5.6 CN

Not Detected

Released to Imaging: 6/17/2025 9:46:51 AM

4-Ethyltoluene

2-Hexanone

Styrene

Toluene

Hexachlorobutadiene

Methylene Chloride

Tetrachloroethene

4-Methyl-2-pentanone

1,1,2,2-Tetrachloroethane

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichloroethene

1.1 CN

Not Detected

4.1

36

14

29

3.4

3.6

5.8

5.7

6.3

25

4.6

4.6

4.5

🔅 eurofins

Air Toxics

Lab ID#: 2503633-01A EPA METHOD TO-15 GC/MS FULL SCAN File Name: 17033132 Date of Collection: 3/20/25 12:20:00 PM Dil. Factor: Date of Analysis: 4/1/25 04:31 AM 1.68 **Rpt.** Limit Amount **Rpt. Limit** Amount Compound (ug/m3) (ug/m3) (ppbv) (ppbv) Not Detected Freon 11 0.84 4.7 Not Detected 0.84 Not Detected Not Detected Freon 113 6.4 1,2,4-Trimethylbenzene 0.84 Not Detected 4.1 Not Detected 0.84 4.1 6.5 1,3,5-Trimethylbenzene 1.3 Vinyl Acetate 3.4 Not Detected 12 Not Detected 2.1 Not Detected Vinyl Chloride Not Detected 0.84 m,p-Xylene 1.7 3.4 7.3 15 o-Xylene 0.84 Not Detected 3.6 Not Detected TVOC Ref. to Hexane 17 3000 59 10000 CN =See Case Narrative explanation **Container Type: 6 Liter Summa Canister**

Client Sample ID: 20250320M-1

Surrogates	%Recovery	Method Limits
Toluene-d8	107	70-130
1,2-Dichloroethane-d4	107	70-130
4-Bromofluorobenzene	90	70-130

Seurofins | Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2503633-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17033109e 1.00	Date of Collection: NA Date of Analysis: 3/31/25 03:14 PM			
	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Acetone	5.0	Not Detected	12	Not Detected	
Benzene	0.50	Not Detected	1.6	Not Detected	
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected	
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected	
Bromoform	0.50	Not Detected	5.2	Not Detected	
Bromomethane	5.0	Not Detected	19	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected	
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected	
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected	
Chlorobenzene	0.50	Not Detected	2.3	Not Detected	
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected	
Chloroethane	2.0	Not Detected	5.3	Not Detected	
Chloroform	0.50	Not Detected	2.4	Not Detected	
Chloromethane	5.0	Not Detected	10	Not Detected	
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected	
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected	
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected	
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected	
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected	
Freon 12	0.50	Not Detected	2.5	Not Detected	
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected	
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected	
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected	
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected	
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected	
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected	
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected	
Freon 114	0.50	Not Detected	3.5	Not Detected	
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected	
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected	
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected	
2-Hexanone	2.0	Not Detected	8.2	Not Detected	
Methylene Chloride	5.0	Not Detected	17	Not Detected	
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected	
Styrene	0.50	Not Detected	2.1	Not Detected	
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected	
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected	
Toluene	1.0	Not Detected	3.8	Not Detected	
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected	
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected	
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected	
Trichloroethene	0.50	Not Detected	2.7	Not Detected	

eurofins Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2503633-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17033109e 1.00	Date of Collection: NA Date of Analysis: 3/31/25 03:14 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.50	Not Detected	2.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
m,p-Xylene	1.0	Not Detected	4.3	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
TVOC Ref. to Hexane	10	Not Detected	35	Not Detected

Container Type: NA - Not Applicable

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	104	70-130	
1,2-Dichloroethane-d4	102	70-130	
4-Bromofluorobenzene	90	70-130	

Air Toxics

Client Sample ID: CCV Lab ID#: 2503633-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17033106	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/31/25 01:51 PM
		·
Compound	%Rec	overy
Acetone	g	8
Benzene		11
alpha-Chlorotoluene		02
Bromodichloromethane		07
Bromoform		4
Bromomethane		11
2-Butanone (Methyl Ethyl Ketone)		11
Carbon Disulfide		06
Carbon Tetrachloride		8
Chlorobenzene		00 7
Dibromochloromethane Chloroethane		18
Chloroform		08
Chloromethane		23
1,2-Dibromoethane (EDB)		03
1,2-Dichlorobenzene		4
1,3-Dichlorobenzene		5
1,4-Dichlorobenzene		4
1,1-Dichloroethane	1	13
Freon 12	10	08
1,2-Dichloroethane)4
1,1-Dichloroethene	10	02
cis-1,2-Dichloroethene	10	03
trans-1,2-Dichloroethene	g	9
1,2-Dichloropropane	1	16
cis-1,3-Dichloropropene		77
trans-1,3-Dichloropropene		04
Freon 114		00
Ethyl Benzene		7
4-Ethyltoluene		7
Hexachlorobutadiene		8
2-Hexanone		15
Methylene Chloride		16
4-Methyl-2-pentanone		06
Styrene		01
1,1,2,2-Tetrachloroethane Tetrachloroethene		11 3
Tetrachioroethene		5 06
1,2,4-Trichlorobenzene		D6
1,1,1-Trichloroethane)2
1,1,2-Trichloroethane		05
Trichloroethene		D6
monoroeulene	I.	

Air Toxics

Client Sample ID: CCV Lab ID#: 2503633-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17033106 1.00	Date of Collection: NA Date of Analysis: 3/31/25 01:51 PM
Compound		%Recovery
Freon 11		102
Freon 113		98
1,2,4-Trimethylbenzene		94
1,3,5-Trimethylbenzene		91
Vinyl Acetate		98
Vinyl Chloride		114
m,p-Xylene		99
o-Xylene		98
TVOC Ref. to Hexane		100

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	104	70-130	
1,2-Dichloroethane-d4	102	70-130	
4-Bromofluorobenzene	94	70-130	

Air Toxics

Client Sample ID: LCS Lab ID#: 2503633-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17033107	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/31/25 02:18 PM
Compound	%Recove	ery Limits
Acetone	95	70-130
Benzene	96	70-130
alpha-Chlorotoluene	100	70-130
Bromodichloromethane	106	70-130
Bromoform	94	70-130
Bromomethane	113	70-130
2-Butanone (Methyl Ethyl Ketone)	108	70-130
Carbon Disulfide	104	70-130
Carbon Tetrachloride	98	70-130
Chlorobenzene	101	70-130
Dibromochloromethane		70-130
Chloroethane	120	70-130
Chloroform	106	70-130
Chloromethane	120	70-130
1,2-Dibromoethane (EDB)	103	70-130
1,2-Dichlorobenzene	95	70-130
, 1,3-Dichlorobenzene	98	70-130
1,4-Dichlorobenzene	98	70-130
1,1-Dichloroethane	112	70-130
Freon 12	109	70-130
1,2-Dichloroethane		70-130
1,1-Dichloroethene	99	70-130
cis-1,2-Dichloroethene	102	70-130
trans-1,2-Dichloroethene	101	70-130
1,2-Dichloropropane	99	70-130
cis-1,3-Dichloropropene		70-130
trans-1,3-Dichloropropene	107	70-130
Freon 114	100	70-130
Ethyl Benzene	102	70-130
4-Ethyltoluene	96	70-130
Hexachlorobutadiene	94	70-130
2-Hexanone	122	70-130
Methylene Chloride	116	70-130
4-Methyl-2-pentanone	100	70-130
Styrene	102	70-130
1,1,2,2-Tetrachloroethane	111	70-130
Tetrachloroethene	94	70-130
Toluene	91	70-130
1,2,4-Trichlorobenzene	105	70-130
1,1,1-Trichloroethane	101	70-130
1,1,2-Trichloroethane	107	70-130
Trichloroethene	90	70-130

Air Toxics

Client Sample ID: LCS Lab ID#: 2503633-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17033107 1.00		Date of Collection: NA Date of Analysis: 3/31/25 02:18 PM	
Compound		%Recovery	Method Limits	
Freon 11		103	70-130	
Freon 113		97	70-130	
1,2,4-Trimethylbenzene		96	70-130	
1,3,5-Trimethylbenzene		95	70-130	
Vinyl Acetate		115	70-130	
Vinyl Chloride		115	70-130	
m,p-Xylene		102	70-130	
o-Xylene		99	70-130	
TVOC Ref. to Hexane		Not Spiked		

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	89	70-130	
1,2-Dichloroethane-d4	100	70-130	
4-Bromofluorobenzene	92	70-130	

Air Toxics

Client Sample ID: LCSD Lab ID#: 2503633-04AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17033108 Date of Collection Date of Anal	ection: NA Iysis: 3/31/25 02:45 PM
		Method
Compound	%Recovery	Limits
Acetone	95	70-130
Benzene	112	70-130
alpha-Chlorotoluene	101	70-130
Bromodichloromethane	105	70-130
Bromoform	94	70-130
Bromomethane	113	70-130
2-Butanone (Methyl Ethyl Ketone)	111	70-130
Carbon Disulfide	104	70-130
Carbon Tetrachloride	96	70-130
Chlorobenzene	102	70-130
Dibromochloromethane	97	70-130
Chloroethane	121	70-130
Chloroform	102	70-130
Chloromethane	119	70-130
1,2-Dibromoethane (EDB)	104	70-130
1,2-Dichlorobenzene	95	70-130
1,3-Dichlorobenzene	97	70-130
1,4-Dichlorobenzene	97	70-130
1,1-Dichloroethane	109	70-130
Freon 12	112	70-130
1,2-Dichloroethane	103	70-130
1,1-Dichloroethene	98	70-130
cis-1,2-Dichloroethene	100	70-130
trans-1,2-Dichloroethene	98	70-130
1,2-Dichloropropane	115	70-130
cis-1,3-Dichloropropene	110	70-130
trans-1,3-Dichloropropene	107	70-130
Freon 114	99	70-130
Ethyl Benzene	101	70-130
4-Ethyltoluene	97	70-130
Hexachlorobutadiene	104	70-130
2-Hexanone	104	70-130
Methylene Chloride	113	70-130
4-Methyl-2-pentanone	115	70-130
	102	70-130
Styrene		
1,1,2,2-Tetrachloroethane	111	70-130
Tetrachloroethene	93	70-130
	105	70-130
1,2,4-Trichlorobenzene	118	70-130
	101	70-130
1,1,2-Trichloroethane	106	70-130
Trichloroethene	106	70-130

Air Toxics

Client Sample ID: LCSD Lab ID#: 2503633-04AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17033108 1.00	Date of Collec Date of Analys	tion: NA sis: 3/31/25 02:45 PM
Compound		%Recovery	Method Limits
Freon 11		103	70-130
Freon 113		95	70-130
1,2,4-Trimethylbenzene		98	70-130
1,3,5-Trimethylbenzene		94	70-130
Vinyl Acetate		113	70-130
Vinyl Chloride		111	70-130
m,p-Xylene		101	70-130
o-Xylene		99	70-130
TVOC Ref. to Hexane		Not Spiked	

Container Type: NA - Not Applicable

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	104	70-130	
1,2-Dichloroethane-d4	100	70-130	
4-Bromofluorobenzene	94	70-130	

1 2 3 4 5 6 7 8 9

Seurofins | Air Toxics

Method : TO-15 (Sp)-Eurofins TA (CEC, OK)

CAS Number	Compound	Rpt. Limit (ppbv)
67-64-1	Acetone	5.0
71-43-2	Benzene	0.50
100-44-7	alpha-Chlorotoluene	0.50
75-27-4	Bromodichloromethane	0.50
75-25-2	Bromoform	0.50
74-83-9	Bromomethane	5.0
78-93-3	2-Butanone (Methyl Ethyl Ketone)	2.0
75-15-0	Carbon Disulfide	2.0
56-23-5	Carbon Tetrachloride	0.50
108-90-7	Chlorobenzene	0.50
124-48-1	Dibromochloromethane	0.50
75-00-3	Chloroethane	2.0
67-66-3	Chloroform	0.50
74-87-3	Chloromethane	5.0
106-93-4	1,2-Dibromoethane (EDB)	0.50
95-50-1	1,2-Dichlorobenzene	0.50
541-73-1	1,3-Dichlorobenzene	0.50
106-46-7	1,4-Dichlorobenzene	0.50
75-34-3	1,1-Dichloroethane	0.50
75-71-8	Freon 12	0.50
107-06-2	1,2-Dichloroethane	0.50
75-35-4	1,1-Dichloroethene	0.50
156-59-2	cis-1,2-Dichloroethene	0.50
156-60-5	trans-1,2-Dichloroethene	0.50
78-87-5	1,2-Dichloropropane	0.50
10061-01-5	cis-1,3-Dichloropropene	0.50
10061-02-6	trans-1,3-Dichloropropene	0.50
76-14-2	Freon 114	0.50
100-41-4	Ethyl Benzene	0.50
622-96-8	4-Ethyltoluene	0.50
87-68-3	Hexachlorobutadiene	2.0
591-78-6	2-Hexanone	2.0
75-09-2	Methylene Chloride	5.0
108-10-1	4-Methyl-2-pentanone	0.50
100-42-5	Styrene	0.50
79-34-5	1,1,2,2-Tetrachloroethane	0.50
127-18-4	Tetrachloroethene	0.50
108-88-3	Toluene	1.0
120-82-1	1,2,4-Trichlorobenzene	2.0
71-55-6	1,1,1-Trichloroethane	0.50
79-00-5	1,1,2-Trichloroethane	0.50
79-01-6	Trichloroethene	0.50
75-69-4	Freon 11	0.50
76-13-1	Freon 113	0.50
		0.00

1 2 3 4 5 6 7 8 9

🛟 eurofins Air Toxics

Method : TO-15 (Sp)-Eurofins TA (CEC, OK)

CAS Number	Compound	Rpt. Limit (ppbv)	
95-63-6	1,2,4-Trimethylbenzene	0.50	
108-67-8	1,3,5-Trimethylbenzene	0.50	
108-05-4	Vinyl Acetate	2.0	
75-01-4	Vinyl Chloride	0.50	
108-38-3	m,p-Xylene	1.0	
95-47-6	o-Xylene	0.50	
9999-9999-500	TVOC Ref. to Hexane	10	

	Surrogate	Method Limits	
2037-26-5	Toluene-d8	70-130	
17060-07-0	1,2-Dichloroethane-d4	70-130	
460-00-4	4-Bromofluorobenzene	70-130	

Received by OCD: 6/4/2025 10:09:49 AM

Page 176 of 250

4/3/2025

💸 eurofins |

Air Toxics

Eurofins Air Toxics Sample Receipt Confirmation Cover Page

Thank you for choosing Eurofins Air Toxics (EATL). We have received your samples and have listed any Sample Receipt Descrepancies below.

In order to expedite analysis and reporting, please review the attached information for accuracy.

For corrections call: Air Toxics, Ltd. at 916-985-1000

EATL will proceed with the analysis as specified on the Chain of Custody (COC) and Sample Receipt Summary page.

Please note : The Sample Receipt Confirmation, including the total workorder charge, is subject to change upon secondary review. Our aim is to provide a confirmation to you in a timely manner. Sample Receipt Discrepancies, if any, may not include discrepancies regarding sample receipt pressure(s). Additionally, the COC will be provided with the final report.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630

(916) 985-1000 .FAX (916) 985-1020 Hours 6:30 A.M to 5:30 P.M. PST

Air Toxics

SAMPLE RECEIPT SUMMARY

WORKORDER 2503633

	Client	Phone	Date Promised: Date Completed:		
	Mr. Ken Hayes Eurofins Environment Testing 301 Alpha Dr.	Fax	Date Received: PO#:	3/21/25	
	Pittsburgh, PA 15238		Project#:	CHK STATE N	1
	Sales Rep: TA		Total \$: Logged By:	\$ 155.00 KCB	
<u>Fraction</u>	Sample #		<u>Analysis</u> <u>Co</u>	<u>llected</u> <u>A</u>	<u>mount\$</u>
01A	20250320M-1		TO-15 3/2	0/2025	\$120.00

\$30.00 Misc. Charges 6 Liter Summa Canister (1) @ \$30.00 each., Shipment 168820 Fitting w/ Pink Ferrule (1) @ \$5.00 each. \$5.00

Note: Samples received after 3 P.M. PST are considered to be received on the following work day. Atlas Project Name/Profile#: CHK State M-1/23738

BILL TO: Mr. Ken Hayes Eurofins Environment Testing 301 Alpha Dr. Pittsburgh, PA 15238

Analysis Code: TO-14A

TERMS:

Reporting Method: TO-15 (Sp)-Eurofins TA (CEC, OK)

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

Page 1 Page 26 of 30

Received by OCD: 6/4/2025 10:09:49 AM

Page 179 of 250

4/3/2025

Air Toxics

CAS Number	Compound	Rpt. Limit (ppbv)
67-64-1	Acetone	5.0
71-43-2	Benzene	0.50
100-44-7	alpha-Chlorotoluene	0.50
75-27-4	Bromodichloromethane	0.50
75-25-2	Bromoform	0.50
74-83-9	Bromomethane	5.0
78-93-3	2-Butanone (Methyl Ethyl Ketone)	2.0
75-15-0	Carbon Disulfide	2.0
56-23-5	Carbon Tetrachloride	0.50
108-90-7	Chlorobenzene	0.50
124-48-1	Dibromochloromethane	0.50
75-00-3	Chloroethane	2.0
67-66-3	Chloroform	0.50
74-87-3	Chloromethane	5.0
106-93-4	1,2-Dibromoethane (EDB)	0.50
95-50-1	1,2-Dichlorobenzene	0.50
541-73-1	1,3-Dichlorobenzene	0.50
106-46-7	1,4-Dichlorobenzene	0.50
75-34-3	1,1-Dichloroethane	0.50
75-71-8	Freon 12	0.50
107-06-2	1,2-Dichloroethane	0.50
75-35-4	1,1-Dichloroethene	0.50
156-59-2	cis-1,2-Dichloroethene	0.50
156-60-5	trans-1,2-Dichloroethene	0.50
78-87-5	1,2-Dichloropropane	0.50
10061-01-5	cis-1,3-Dichloropropene	0.50
10061-02-6	trans-1,3-Dichloropropene	0.50
76-14-2	Freon 114	0.50
100-41-4	Ethyl Benzene	0.50
622-96-8	4-Ethyltoluene	0.50
87-68-3	Hexachlorobutadiene	2.0
591-78-6	2-Hexanone	2.0
75-09-2	Methylene Chloride	5.0
108-10-1	4-Methyl-2-pentanone	0.50
100-42-5	Styrene	0.50
79-34-5	1,1,2,2-Tetrachloroethane	0.50
127-18-4	Tetrachloroethene	0.50
108-88-3	Toluene	1.0
120-82-1	1,2,4-Trichlorobenzene	2.0
71-55-6	1,1,1-Trichloroethane	0.50

Method : TO-15 (Sp)-Eurofins TA (CEC, OK)

Released to Imaging: 6/17/2025 9:46:51 AM

Air Toxics

CAS Number	Compound	Rpt. Limit (ppbv)
79-00-5	1,1,2-Trichloroethane	0.50
79-01-6	Trichloroethene	0.50
75-69-4	Freon 11	0.50
76-13-1	Freon 113	0.50
95-63-6	1,2,4-Trimethylbenzene	0.50
108-67-8	1,3,5-Trimethylbenzene	0.50
108-05-4	Vinyl Acetate	2.0
75-01-4	Vinyl Chloride	0.50
108-38-3	m,p-Xylene	1.0
95-47-6	o-Xylene	0.50
9999-9999-500	TVOC Ref. to Hexane	10

Method : TO-15 (Sp)-Eurofins TA (CEC, OK)

CAS Number	Surrogate	Method Limits	
2037-26-5	Toluene-d8	70-130	
17060-07-0	1,2-Dichloroethane-d4	70-130	
460-00-4	4-Bromofluorobenzene	70-130	

Job Number: 180-188321-1 SDG Number: Property ID: 891077

List Source: Eurofins Pittsburgh

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Login Number: 188321

List Number: 1 Creator: Hayes, Ken

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	N/A	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	N/A	
Cooler Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	N/A	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Environment Testing

Page 183 of 250

PREPARED FOR

Attn: Dana Drury Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154 Generated 6/27/2024 11:55:18 AM

ANALYTICAL REPORT

JOB DESCRIPTION

CHK State M

JOB NUMBER

180-175999-1

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh PA 15238

See page two for job notes and contact information

Eurofins Pittsburgh

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

PA Lab ID: 02-00416

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Pittsburgh Project Manager.

Authorization

Kunth Hay

Generated 6/27/2024 11:55:18 AM

Authorized for release by Ken Hayes, Project Manager II Ken.Hayes@et.eurofinsus.com (615)301-5035

Page 185 of 250

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Definitions/Glossary	5
Certification Summary	6
Sample Summary	7
Method Summary	8
Lab Chronicle	9
Client Sample Results	10
QC Sample Results	11
QC Association Summary	12
Chain of Custody	13
Receipt Checklists	15

Case Narrative

Client: Chesapeake Energy Corporation Project: CHK State M

Eurofins Pittsburgh

Job ID: 180-175999-1

 Page 186 of 250

 1

 099-1

 2

 urgh

 3

 4

 mary

 5

 ns, to

 7

 8

 9

 4,

 11

 12

Job ID: 180-175999-1

Job Narrative

180-175999-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 6/19/2024 9:49 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

NEG POS

PQL

PRES

QC

RER

RL RPD

TEF

TEQ

TNTC

Definitions/Glossary

Client: Chesapeake Energy Corporation Project/Site

Positive / Present

Presumptive

Quality Control

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Job ID: 180-175999-1

Project/Site: 0	CHK State M	
Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	4
%R	Percent Recovery	
CFL	Contains Free Liquid	5
CFU	Colony Forming Unit	3
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	ð
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation Project/Site: CHK State M

Job ID: 180-175999-1

Laboratory: Eurofins Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

ate ate ate ate	PH-0818 N/A 12028 (NJ) M-NJ312	09-30-24 01-02-25 06-30-24 06-30-24	ł
ate	12028 (NJ)	06-30-24	ł
			6
ate	M-NJ312	06-30-24	
		00 00 24	
ELAP	12028	06-30-24	
ELAP	11452	04-01-25	
ELAP	68-00522	02-28-25	
ate	LAO00376	12-31-24	9
S Federal Programs	525-24-149-77606	05-21-27	
	ELAP ELAP ate	ELAP 11452 ELAP 68-00522 ate LAO00376	ELAP 11452 04-01-25 ELAP 68-00522 02-28-25 ate LAO00376 12-31-24

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: CHK State M

Job ID: 180-175999-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-175999-1	MW-4	Water	06/18/24 09:30	06/19/24 09:49
180-175999-2	Dup	Water	06/18/24 00:00	06/19/24 09:49
180-175999-3	Eq Blank	Water	06/18/24 07:00	06/19/24 09:49

Method Summary

Client: Chesapeake Energy Corporation Project/Site: CHK State M

ethod	Method Description	Protocol	Laboratory	
0.0	Anions, Ion Chromatography	EPA	EET EDI	_
Protocol R	eferences:			
EPA = l	IS Environmental Protection Agency			
Laborator	v References:			
EET ED	I = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900			
				1
				- 1

Lab Chronicle

Job ID: 180-175999-1

Matrix: Water

Lab Sample ID: 180-175999-1

Project/Site: CHK State M **Client Sample ID: MW-4** Date Collected: 06/18/24 09:30

Client: Chesapeake Energy Corporation

Date	Received:	06/19/24	09:49

Prep Type Total/NA	Batch Type Analvsis	Batch <u>Method</u> <u>300.0</u>	Run	Dil Factor	Initial Amount 10 mL	Final Amount 10 mL	Batch Number 982215	Prepared or Analyzed 06/26/24 14:30	Analyst	Lab EET EDI
	Instrumer	nt ID: IC 1								
Client Sam	ple ID: Dup)					La	b Sample II	D: 180-	175999-
Date Collecte	d: 06/18/24 0	0:00						-	Ma	trix: Wate
	d: 06/19/24 0	0.40								

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analvzed	Analvst	Lab
Total/NA	Analysis	- 300.0 it ID: IC 1		10	10 mL	10 mL	982215	06/26/24 14:45		EET EDI

Client Sample ID: Eq Blank Date Collected: 06/18/24 07:00 Date Received: 06/19/24 09:49

Lab Sample ID: '	180-175999-3
	Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	10 mL	10 mL	982215	06/26/24 15:00	OXG	EET EDI
	Instrumer	t ID: IC 1								

Laboratory References:

EET EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Analyst References:

Lab: EET EDI

Batch Type: Analysis OXG = Olivia Guerrero

5

8

Client Sample Results

)-1

Analyzed

Lab Sample ID: 180-175999-1

Client: Chesapeake Energy Corporation
Project/Site: CHK State M

Matrix: Water

Dil Fac

5
8
9

Client Sample ID: MV	V-4		
Date Collected: 06/18/24	09:30		
Date Received: 06/19/24	09:49		
 Method: EPA 300.0 - An	ions, Ion Chroma	tography	
Method: EPA 300.0 - An Analyte		t <mark>ography</mark> Qualifier	RL

Chloride	374		10.0		mg/L			06/26/24 14:30	10
Client Sample ID: Du	р					Lal	b Sample	ID: 180-175	5999-2
Date Collected: 06/18/24	00:00						-	Matrix	: Water
Date Received: 06/19/24	09:49								
Method: EPA 300.0 - An	ions, Ion Chroma	tography							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	368		10.0		mg/L			06/26/24 14:45	10
Client Sample ID: Eq	Blank					Lal	b Sample	ID: 180-175	5999-3
Date Collected: 06/18/24	07:00						-	Matrix	: Water
Date Received: 06/19/24	09:49								
	ions, Ion Chroma	tography							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	12.0		1.00		mg/L			06/26/24 15:00	1

MDL Unit

D

Prepared

QC Sample Results

Client: Chesapeake Energy Corporation Project/Site: CHK State M Job ID: 180-175999-1

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 460-982215/3 Matrix: Water Analysis Batch: 982215									Clie	ent Sam	ple ID: M Prep Ty			4
Analysis Datch. 302213	МВ	МВ												5
Analyte	Result	Qualifier		RL	Γ	MDL Uı	nit	D	Р	repared	Analy	zed	Dil Fac	
Chloride	ND			1.00		m	g/L				06/26/24	03:12	1	
Lab Sample ID: LCS 460-982215/5 Matrix: Water								Client	t Sai	nple ID	: Lab Coi Prep Ty			7
Analysis Batch: 982215														8
			Spike		LCS	LCS					%Rec			U
Analyte			Added		Result	Qualifi	er Un	nit	D	%Rec	Limits			6
Chloride			3.20		2.925		mg	g/L		91	90 - 110			3
Lab Sample ID: LCSD 460-982215/6	3						Clie	nt San	nple	ID: Lab	Control	Samp	le Dup	1
Matrix: Water											Prep Ty	pe: To	tal/NA	
Analysis Batch: 982215														
-			Spike		LCSD	LCSD					%Rec		RPD	
Analyte			Added	1	Result	Qualifi	er Un	nit	D	%Rec	Limits	RPD	Limit	
Chloride			3.20		2.894		mc	r/l		90	90 - 110	1	15	

QC Association Summary

Client: Chesapeake Energy Corporation Project/Site: CHK State M

HPLC/IC

Analysis Batch: 982215

Lab Sample ID 180-175999-1	Client Sample ID	Prep Type Total/NA	Matrix Water	<u>Method</u> 300.0	Prep Batch
180-175999-2	Dup	Total/NA	Water	300.0	
180-175999-3	Eq Blank	Total/NA	Water	300.0	
MB 460-982215/3	Method Blank	Total/NA	Water	300.0	
LCS 460-982215/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 460-982215/6	Lab Control Sample Dup	Total/NA	Water	300.0	

P	ag	е	1	94	of	2.	5()

11 12 13

Job ID: 180-175999-1

Eurofine Edicon			10	310472	
T77 New Durham Road Edison, NJ 08817	Chain of Cu	ain of Custody Record	HARRISBUR(BURG	
Phone 732-549-3900 Fax 732-549-3679	C	I ab DM	Carner	Γ	COC No
Client Information	Sampler Furt	Hayes, Ken			180-100413-18137 1
Client Contact. Julie Czech	Phone /	E-Mail Ken Hayes@et.eurofinsus.com	State of Origin finsus.com		Page 1 of 1 N6/12/24
Company Equus Environmental LLC	QISMd		Analysis Requested		100 # JOG
Address 1923 South 44th West Avenue	Due Date Requested:				Preservation Codes: A-HCL N-None 180-175999
City Tulsa	TAT Requested (days):				-
State, Zip OK, 74107	Compliance Project: Δ Yes Δ No				
Phone 405-935-6870(Tel)	PO # Cost Center 9001036000				
Email Julie czech@equusenv.com	#OM	(on		519 	
Project Name CHK State M	Project #: 18028372	EX (62 OL			
site State M	#MOSS	n) azi	-		Other:
	Sample Type Sample (C=comp,	р, O-ORGFM_2 	30-175999	edmUN late	
Sample Identification	Sample Date Time G=grab	ation Code: XA			Special Instructions/Note:
Mu/- J	6-18-24 930 6	Water N X	n of o		
	1	Water M X	Custo		
E. BLAF	700	Water N X			
1 1		Water N			
Since & second		Water			
			Samula Disnosal / A fee may he assossed if samules are refained (noder than 1 month)	ed if samples are retaine	d longer than 1 month)
ant	Poison BUnknownRadiological		Return To Client	Disposal By Lab	e For Months
Other (specify)		Special Ins	Special Instructions/QC Requirements		
Empty Kit Relinguished by:	Date.	Time.		Method of Shipment: Fell ex	6772 2905 1790
	Date/Time CUISE24 1600	کر	Select	-COC Date Time	d la company
Relinquished by		Company Received by		Daté/Timé	Company
Relinquished by	Date/Time	Company Received by	l by-	Date/Time	Company
Custody Seals Intact: Custody Seal No.		Cooler T	Cooler Temperature(s) °C and Other Remarks [.]	-	
72.90.80	(1.20		1		Ver 04 02/2024

11 12 13

Page 13 of 16 Released to Imaging: 6/17/2025 9:46:51 AM

6/27/2024

Login Sample Receipt Checklist

Job Number: 180-175999-1 Client: Chesapeake Energy Corporation Login Number: 175999 List Source: Eurofins Pittsburgh 5 List Number: 1 Creator: Rivera, Kenneth Answer Comment Question Radioactivity wasn't checked or is </= background as measured by a survey meter. The cooler's custody seal, if present, is intact. Sample custody seals, if present, are intact. The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. Cooler Temperature is acceptable. Cooler Temperature is recorded. COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? 13 There are no discrepancies between the containers received and the COC. Samples are received within Holding Time (excluding tests with immediate HTs) Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified. There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs Containers requiring zero headspace have no headspace or bubble is

Eurofins Pittsburgh Released to Imaging: 6/17/2025 9:46:51 AM

<6mm (1/4").

Multiphasic samples are not present.

Residual Chlorine Checked.

Samples do not require splitting or compositing.

Job Number: 180-175999-1

List Source: Eurofins Edison

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Login Number: 175999 List Number: 2 Creator: Rivera, Kenneth

Login Number: 175999 List Number: 2 Creator: Rivera, Kenneth			List Source: Eurofins Edison List Creation: 06/22/24 10:32 AM	5
Question	Answer	Comment		
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> <td></td> <td></td>	N/A			
The cooler's custody seal, if present, is intact.	True			
Sample custody seals, if present, are intact.	True			8
The cooler or samples do not appear to have been compromised or tampered with.	True			9
Samples were received on ice.	True			
Cooler Temperature is acceptable.	True			
Cooler Temperature is recorded.	True	1.2°C, IR #9		
COC is present.	True			
COC is filled out in ink and legible.	True			
COC is filled out with all pertinent information.	True			
Is the Field Sampler's name present on COC?	True			13
There are no discrepancies between the containers received and the COC.	True			
Samples are received within Holding Time (excluding tests with immediate HTs)	True			
Sample containers have legible labels.	True			
Containers are not broken or leaking.	True			
Sample collection date/times are provided.	True			
Appropriate sample containers are used.	True			
Sample bottles are completely filled.	True			
Sample Preservation Verified.	True			
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True			
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True			
Multiphasic samples are not present.	True			
Samples do not require splitting or compositing.	True			
Residual Chlorine Checked.	N/A			

Environment Testing

Page 199 of 250

PREPARED FOR

Attn: Dana Drury Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154 Generated 12/4/2024 1:28:58 PM

ANALYTICAL REPORT

JOB DESCRIPTION

CHK State M

JOB NUMBER

180-183252-1

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh PA 15238

See page two for job notes and contact information

Eurofins Pittsburgh

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

PA Lab ID: 02-00416

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Pittsburgh Project Manager.

Authorization

Kunth Hay

Generated 12/4/2024 1:28:58 PM

Authorized for release by Ken Hayes, Project Manager II Ken.Hayes@et.eurofinsus.com (615)301-5035

Page 2 of 17

Page 201 of 250

Cover Page	1
Table of Contents	3
Case Narrative	4
Definitions/Glossary	5
Certification Summary	6
Sample Summary	7
Method Summary	8
Lab Chronicle	9
Client Sample Results	10
QC Sample Results	11
QC Association Summary	12
Chain of Custody	13
Receipt Checklists	16

Job ID: 180-183252-1

Case Narrative

Client: Chesapeake Energy Corporation Project: CHK State M

Eurofins Pittsburgh

Job ID: 180-183252-1

Job Narrative 180-183252-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 11/22/2024 9:30 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.1°C.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Definitions/Glossary

Client: Chesapeake Energy Corporation Project/Site: CHK State M

Job ID: 180-183252-1

Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¢.	Listed under the "D" column to designate that the result is reported on a dry weight basis	4
%R	Percent Recovery	
CFL	Contains Free Liquid	5
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	6
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	8
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Accreditation/Certification Summary

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Program

State

State

State

State

NELAP

NELAP

NELAP

US Federal Programs

State

Client: Chesapeake Energy Corporation Project/Site: CHK State M

Laboratory: Eurofins Edison

DE Haz. Subst. Cleanup Act (HSCA)

Authority

Georgia

Connecticut

Massachusetts

New Jersey

Pennsylvania

Rhode Island

New York

USDA

Identification Number

PH-0818

12028 (NJ)

M-NJ312

68-00522

LAO00376

525-24-149-77606

12028

11452

N/A

Expiration Date

09-30-26

01-02-25

07-01-25

07-01-25

06-30-25

04-01-25

02-28-25

12-31-24

05-21-27

Page 204 of 250

Job ID: 180-183252-1

2 3 4 5

11 12

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: CHK State M

Job ID: 180-183252-1

Page 205 of 250

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-183252-1	MW-4	Water	11/21/24 11:15	11/22/24 09:30
180-183252-2	DUP	Water	11/21/24 11:15	11/22/24 09:30
180-183252-3	EQUIPMENT BLANK	Water	11/21/24 09:25	11/22/24 09:30

Method Summary

Client: Chesapeake Energy Corporation Project/Site: CHK State M

lethod	Method Description	Protocol	Laboratory
800.0	Anions, Ion Chromatography	EPA	EET EDI
Protocol F	References:		
EPA = l	JS Environmental Protection Agency		
Laborator	y References:		
EET ED	DI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900		

Laboratory References:

Client: Chesapeake Energy Corporation

Lab Chronicle

Job ID: 180-183252-1

Matrix: Water

5

8

Lab Sample ID: 180-183252-1

Project/Site: CHK State M **Client Sample ID: MW-4** Date Collected: 11/21/24 11:15 Data Bassiwadi 11/22/24 00:20

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		5	10 mL	10 mL	1009765	12/01/24 13:47	OXG	EET EDI
	Instrumer	t ID: IC 2								
liont Sam		C					12	b Sample II	100	193252 -
	ple ID: DUI						La	n Sample II	D. 100-	103232-
	-						La	n Sample II		trix: Wate
Date Collecte	d: 11/21/24 1	1:15					La			
Date Collecte	d: 11/21/24 1	1:15		Dil	Initial	Final	La	Prepared		
Date Collecte Date Receive	d: 11/21/24 1 d: 11/22/24 0	1:15 9:30	Run	Dil Factor	Initial Amount	Final Amount				
Date Collecte Date Receive Prep Type Total/NA	d: 11/21/24 1 d: 11/22/24 0 Batch	1:15 9:30 Batch	Run				Batch	Prepared	Ма	trix: Wate

Client Sample ID: EQUIPMENT BLANK Date Collected: 11/21/24 09:25 Date Received: 11/22/24 09:30

Lab Sample ID: 180-183252-3 **Matrix: Water**

- 	Batch	Batch	Dura	Dil	Initial	Final	Batch	Prepared	Awalisat	Lab
Prep Type Total/NA	Analysis	_ Method 300.0	Run	Factor	Amount 10 mL	Amount 10 mL	Number 1009765	or Analyzed 12/01/24 14:17	Analyst OXG	EET EDI
	,	it ID: IC 2			TO THE	TO IIIE	1009700	12/01/24 14.17	0/0	

Laboratory References:

EET EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Analyst References:

Lab: EET EDI

Batch Type: Analysis OXG = Olivia Guerrero

Eurofins Pittsburgh

Page 207 of 250

Matrix: Water

Client Sample Results

Job ID: 180-183252-1

Client: Chesapeake Energy Corporation
Project/Site: CHK State M

Lab Sample ID: 180-183252-1

Client Sample ID: MW-4 Date Collected: 11/21/24 11:15 Date Received: 11/22/24 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	345		5.00		mg/L			12/01/24 13:47	5
Client Sample ID: DUP						Lal	o Sample	D: 180-183	3252-2
Date Collected: 11/21/24 11:15								Matrix	: Water
Date Received: 11/22/24 09:30									
Method: EPA 300.0 - Anions, lo		Qualifier	RL	MDL	Unit	D	Drenered	Analyzad	Dil Fac
Analyte	Result	Quaimer			Unit	U	Prepared	Analyzed	DIFAC
Chloride	346		5.00		mg/L		Prepared	<u>Analyzed</u> 12/01/24 14:02	5
Chloride	346						•		5
Chloride Client Sample ID: EQUIPM	346						•	12/01/24 14:02	5
Chloride Client Sample ID: EQUIPME Date Collected: 11/21/24 09:25	346						•	12/01/24 14:02	5 3252-3
Chloride Client Sample ID: EQUIPM Date Collected: 11/21/24 09:25 Date Received: 11/22/24 09:30	³⁴⁶ ENT BLA	NK					•	12/01/24 14:02	5 3252-3
	346 ENT BLA n Chroma	NK		MDL	mg/L		•	12/01/24 14:02	5 3252-3

QC Sample Results

Client: Chesapeake Energy Corporation Project/Site: CHK State M Job ID: 180-183252-1

10

Page 209 of 250

Method: 300.0 - Anions, Ion Chromatography Lab Sample ID: MB 460-1009765/3 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 1009765 MB MB Analyte **Result Qualifier** RL MDL Unit D Analyzed Dil Fac Prepared Chloride 1.00 12/01/24 08:12 ND mg/L 1 Lab Sample ID: LCS 460-1009765/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 1009765 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Chloride 3.20 3.011 90 - 110 mg/L 94 Lab Sample ID: LCSD 460-1009765/6 **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA Analysis Batch: 1009765 Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Limits RPD Limit Unit D %Rec Chloride 3.20 3.009 mg/L 94 90 - 110 0 15

QC Association Summary

Client: Chesapeake Energy Corporation Project/Site: CHK State M

HPLC/IC

Analysis Batch: 1009765

Lab Sample ID 180-183252-1	Client Sample ID MW-4	Prep Type Total/NA	Matrix Water	Method 300.0	Prep Batch
180-183252-2	DUP	Total/NA	Water	300.0	
180-183252-3	EQUIPMENT BLANK	Total/NA	Water	300.0	
MB 460-1009765/3	Method Blank	Total/NA	Water	300.0	
LCS 460-1009765/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 460-1009765/6	Lab Control Sample Dup	Total/NA	Water	300.0	

Job ID: 180-183252-1

2 3 4 5 6 7 8 9	10 11 CHAIN OF CUSTODY RECORD	RECORD	No. 2801
	PROJECT NUMBER:	PROJECT NAME: CHXSTATE M	coc l of l
	(918) 921-5331 SHIPPED TO: ビントシック	PROJECT MANAGER: MATT MULAVZRJ	TAT:
SAMPLER'S PRINTED NAME:	ĸ	#0d	WO#
SAMPLERS SIGNATURE:			
Date Time Sample ID	Samp # of Samp <u>C'HLOR</u> TEMP		REMARKS
1-21-24 11/15 MW-4	when 1 x x		
	· when I x x		
<u> </u>	water 1 x x		
trib blenk	water 2 × ×		
		180-183252 Chain of Custody	
TOTAL NUMBER OF CONTAINERS			
	TIME 18:32 RECEIVED BT:	The March Inne 0930	
relinquished by	DATE RECEIVED BY:	DATE	
NETHOD OF SHIPMENT	AIRBILL NUMBER:	290 PHPS 150H	
ECEIVED IN LABORATORY BY:	DATE Send PDF, EDD, 7	Send PDF, EDD, and INVOICE (if applicable) to:	
ABORATORY CONTACT:	곡	•	
KEN 615-21-5035	W LLL	NEW DULHAM RD. EDISON, NJ 08817	210
White: Receiving Lab Yellow: Equus Environmental Project File	Pink: Equus QA/QC		

Received by OCD: 6/4/2025 10:09:49 AM

~

12/4/2024

Page 211 of 250

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Phone: 412-963-7058 Fax 412-963-2468		Chain o	f Cust	in of Custody Record	cord						<i>.</i> %	🕉 eurofins	Lr connen ^T es
Client Information (Sub Contract Lab)	Sampier N/A			Lab PM: Hayes, Ken	(en				Carrier Tracking No(s): N/A	ing No(s):	CO 18(COC No: 180-528781 1	
Client Contact Shipping/Receiving	Phone: N/A			E-Mail: Ken.Hayes@et.eurofinsus.com	/es@et.ei	urofinsus.	com		State of Origin: Pennsylvania	n: Dia	Page: Page	Page: Page 1 of 1	
Company: Eurofins Environment Testing Northeast L				Acc N/	reditations	Required (S	ee note):				Job #. 180-1	#. D-183252-1	
Address: 777 New Durtham Road,	Due Date Requested: 12/9/2024	*					Analys	sis Req	Analysis Requested		Pre	Preservation Codes:	:\$6
City: Edison State. Zio:	TAT Requested (days):	rs): N/A											
NJ, 08817											<u> </u>		
Phone: 732-549-3900(Tei) 732-549-3679(Fax)	Po#; N/A			(0									
	WO#: N/A			9 OL N				•			S.		
	Project #; 18028372			sөд) өү							enisin		
Site: N/A	SSOW#:			dures								er	
			Sample Type (C=comp,	Matrix (www.tw., Smonth, Owwerkold, Owwerkold, Beld Fillered	м/SM лпопе 00_086FM_28						redmu N Isto	in the second	
cample regimileaton - vicit in (Lab ID)			- 0		-			-					
MW-4 (180-183252-1)	11/21/24	11 15 Fastern	υ	Water	×								
DUP (180-183252-2)	11/21/24	11-05 Fastern	υ	Water	×						- .		
EQUIPMENT BLANK (180-183252-3)	11/21/24	09:25 Fastern	υ	Water	×						~		
							_						
NNIN' Since ishorehove accreditations are striked to chance. Fitmfine Diffshinch is	isree the runarchin of	method analyd	a & accreditat			antract labo		ie camule	shinmont is f		chain-office seture	v lif the lahorator	v does not currently
maintin acceletation in the State of Origin Issue analysis/less/matrix being analyzed, the samples must be shipped back to the Eurofins Pittsburgh laboratory or other instructions will be provided. Any changes to acceditation status should be brought to Eurofins Pittsburgh laboratory or other instructions will be provided. Any changes to acceditation status should be brought to Eurofins Pittsburgh laboratory or other instructions will be provided. Any changes to acceditation status should be brought to Eurofins Pittsburgh laboratory or other instructions will be provided. Any changes to acceditation status should be brought to Eurofins Pittsburgh laboratory or other instructions will be provided. Any changes to acceditation status should be brought to Eurofins Pittsburgh laboratory or other instructions will be provided. Any changes to acceditation status should be brought to Eurofins Pittsburgh.	being analyzed, the sar	mples must be tody attesting to	shipped back t said complia	o the Eurofins Pitt	sburgh labor sburgh.	atory or oth	er instructio	ns will be	srovided. Any	changes to ac	creditation statu	s should be broug	int to Eurofins Pittsburgh
Possible Hazard Identification					Sample	Disposal	(A fee n	Tay be a	ssessed il	samples a	re retained I	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	month)
Unconfirmed Deliverable Requested: 1 II III, IV Other (specify)	Primary Deliverable Rank: 2	ble Rank: 2			Special II	Return To Client Dist Special Instructions/QC Requirements:	fient s/QC Rei		^J Disposal By Lab ients:	Lab	Archive For	For	Months
Empty Kit Relinquished by		Date:		Time:	le:				Method	Method of Shipment	P P AO	9	
Reinquished by: AMM	Date/Time: //~7.5.21	-	1001	Company	Receiv	Received by				DateTime:	1-		Company
Relinquished by:		•	-	Company	Received by	ad by:				Date/Time:			Company
Relinquished by:	Date/Time:			Company	Receiv	Received by:				Date/Time:			Company
Custody Seals Intact: Custody Seal No. Δ Yes Δ No					Cooler	Cooler Temperature(s) °C and Other Remarks	re(s) °C and	I Other Rei	narks:				
2 2 2 - 2 1		d			-								Ver: 10/10/2024
n	-	7				13	12		9	8	6 7	5	2 3

Released to Imaging: 6/17/2025 9:46:51 AM

Page 15 of 17

Job Number: 180-183252-1

List Source: Eurofins Pittsburgh

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Login Number: 183252 List Number: 1 Creator: Abernathy, Eric L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

13

Job Number: 180-183252-1

List Source: Eurofins Edison

List Creation: 11/26/24 12:43 PM

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Login Number: 183252 List Number: 2

Creator: Armbruster, Chris		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.5/2.7, 2.1/2.3°C IR9
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

True

True

N/A

<6mm (1/4").

Multiphasic samples are not present.

Residual Chlorine Checked.

Samples do not require splitting or compositing.

Received by OCD: 6/4/2025 10:09:49 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Dana Drury Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154 Generated 4/4/2025 9:02:30 AM

JOB DESCRIPTION

Equus - Chesapeake

JOB NUMBER

180-188088-1

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh PA 15238

See page two for job notes and contact information

Eurofins Pittsburgh

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

PA Lab ID: 02-00416

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Pittsburgh Project Manager.

Authorization

Kunth Hay

Generated 4/4/2025 9:02:30 AM

Authorized for release by Ken Hayes, Project Manager II Ken.Hayes@et.eurofinsus.com (615)301-5035

Page 2 of 18

Page 218 of 250

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Definitions/Glossary	5
Certification Summary	6
Sample Summary	7
Method Summary	8
Lab Chronicle	9
Client Sample Results	10
QC Sample Results	11
QC Association Summary	12
Chain of Custody	13
Receipt Checklists	16

Case Narrative

Client: Chesapeake Energy Corporation Project: Equus - Chesapeake

Job ID: 180-188088-1

Job ID: 180-188088-1

Eurofins Pittsburgh

Job Narrative 180-188088-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 3/21/2025 9:15 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.7°C.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Pittsburgh

Definitions/Glossary

Client: Chesapeake Energy Corporation Project/Site: Equus - Chesapeake

Page 220 of 250

Job ID: 180-188088-1

Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
☆	Listed under the "D" column to designate that the result is reported on a dry weight basis	 4
%R	Percent Recovery	-
CFL	Contains Free Liquid	E
CFU	Colony Forming Unit	5
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	8
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	12 13
MPN	Most Probable Number	
MQL	Method Quantitation Limit	12
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	

Eurofins Pittsburgh

Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

TEQ TNTC

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation Project/Site: Equus - Chesapeake

Job ID: 180-188088-1

Laboratory: Eurofins Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Connecticut	State	PH-0818	09-30-26	
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	01-03-26	
Georgia	State	12028 (NJ)	07-01-25	
Massachusetts	State	M-NJ312	07-01-25	
New Jersey	NELAP	12028	06-30-25	
New York	NELAP	11452	04-02-26	
Pennsylvania	NELAP	68-00522	02-27-26	
Rhode Island	State	LAO00376	12-23-25	
USDA	US Federal Programs	525-24-149-77606	05-21-27	

Page 221 of 250

Eurofins Pittsburgh

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: Equus - Chesapeake

Job ID: 180-188088-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-188088-1	MW-4	Water	03/20/25 11:35	03/21/25 09:15
180-188088-2	DUP	Water	03/20/25 11:40	03/21/25 09:15
180-188088-3	EQUIPMENT BLANK	Water	03/20/25 09:30	03/21/25 09:15

Method Summary

Client: Chesapeake Energy Corporation Project/Site: Equus - Chesapeake

Job ID: 180-188088-1

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	EPA	EET EDI
Protocol F	References:		
EPA =	JS Environmental Protection Agency		
Laborator	y References:		
EET EI	DI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900		

Laboratory References:

Eurofins Pittsburgh

Client: Chesapeake Energy Corporation

Lab Chronicle

Job ID: 180-188088-1

Matrix: Water

5 6

Lab Sample ID: 180-188088-1

Project/Site: Equus - Chesapeake Client Sample ID: MW-4 Date Collected: 03/20/25 11:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10	10 mL	10 mL	1028138	03/27/25 17:40	OXG	EET EDI
	Instrumer	nt ID: IC 2								
Client Sam	ple ID: DUI	Р					La	b Sample II	D: 180-	188088-
Date Collecte	-								Ма	trix: Wat
Date Receive	d: 03/21/25 0	9:15								
_	Datak	Detak		Dil	lu iti a l	Final	Datah	Duewowed		
	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10	10 mL	10 mL	1028138	03/27/25 17:55	OXG	EET EDI
	Instrumer	nt ID: IC 2								
	ple ID: EQI		BLANK				La	b Sample II	D: 180-	188088-
Client Sam										trix: Wate
	d· 03/20/25 0	9.30								
Date Collecte										
Date Collecte										
Date Collecte				Dil	Initial	Final	Batch	Prepared		
Date Collecte	d: 03/21/25 0	9:15	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Date Collecte Date Receive	d: 03/21/25 0 Batch	9:15 Batch	Run					•	Analyst	Lab EET EDI

Laboratory References:

EET EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Analyst References:

Lab: EET EDI

Batch Type: Analysis OXG = Olivia Guerrero

Eurofins Pittsburgh

Page 224 of 250

Matrix: Water

9

Client Sample Results

Job ID: 180-188088-1

Lab Sample ID: 180-188088-1

Client: Chesapeake Energy Corporation Project/Site: Equus - Chesapeake

Client Sample ID: MW-4 Date Collected: 03/20/25 11:35 Date Received: 03/21/25 09:15

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	290	10.0		mg/L			03/27/25 17:40	10
Client Sample ID: DUP					Lal	b Sample	ID: 180-188	3088-2
Date Collected: 03/20/25 11:40						-	Matrix	: Water
Date Received: 03/21/25 09:15								
_ Method: EPA 300.0 - Anions, Ior	n Chromatography							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	286	10.0		mg/L			03/27/25 17:55	10
Client Sample ID: EQUIPME	INT BLANK				Lal	b Sample	ID: 180-188	3088-3
Date Collected: 03/20/25 09:30						-	Matrix	: Water
Date Received: 03/21/25 09:15								
_ Method: EPA 300.0 - Anions, Ior	n Chromatography							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

QC Sample Results

Client: Chesapeake Energy Corporation Project/Site: Equus - Chesapeake

Page 226 of 250

Job ID: 180-188088-1

Method: 300.0 - Anions, Ion Chromatography Lab Sample ID: MB 460-1028138/15 **Client Sample ID: Method Blank** Matrix: Water Prep Type: Total/NA Analysis Batch: 1028138 MB MB Analyte **Result Qualifier** RL MDL Unit Analyzed Dil Fac D Prepared 1.00 03/27/25 12:39 Chloride ND mg/L 1 Lab Sample ID: LCS 460-1028138/17 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 1028138 Spike LCS LCS %Rec Analyte Added **Result Qualifier** Unit D %Rec Limits Chloride 3.20 2.902 90 - 110 mg/L 91 Lab Sample ID: LCSD 460-1028138/18 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA Analysis Batch: 1028138 Spike LCSD LCSD %Rec RPD Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec Chloride 3.20 2.895 90 90 - 110 15 mg/L 0 Lab Sample ID: MB 460-1029480/3 **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA** Analysis Batch: 1029480 MB MB Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Chloride ND 1.00 04/03/25 10:50 mg/L Lab Sample ID: LCS 460-1029480/5 **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 1029480 LCS LCS Spike %Rec Analyte Added **Result Qualifier** Limits Unit D %Rec Chloride 3.20 3.216 101 90 - 110 mg/L Lab Sample ID: LCSD 460-1029480/6 Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA Analysis Batch: 1029480 RPD Spike LCSD LCSD %Rec Analyte Added **Result Qualifier** Limits RPD Limit Unit D %Rec 3.20 3.225

mg/L

101

90 - 110

Eurofins Pittsburgh

0

15

10

Released to Imaging: 6/17/2025 9:46:51 AM

Chloride

QC Association Summary

Client: Chesapeake Energy Corporation Project/Site: Equus - Chesapeake

HPLC/IC

Analysis Batch: 1028138

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
Analysis Batch: 1029	480					
LCSD 460-1028138/18	Lab Control Sample Dup	Total/NA	Water	300.0		
LCS 460-1028138/17	Lab Control Sample	Total/NA	Water	300.0		
MB 460-1028138/15	Method Blank	Total/NA	Water	300.0		
180-188088-2	DUP	Total/NA	Water	300.0		k
180-188088-1	MW-4	Total/NA	Water	300.0		
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
_ *						

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
180-188088-3	EQUIPMENT BLANK	Total/NA	Water	300.0
MB 460-1029480/3	Method Blank	Total/NA	Water	300.0
LCS 460-1029480/5	Lab Control Sample	Total/NA	Water	300.0
LCSD 460-1029480/6	Lab Control Sample Dup	Total/NA	Water	300.0

5 6

11 12 13

Eurofins Pittsburgh

				CHAIN	CHAIN OF CUSTODY RECORD	RECORD	No. 2830	
			PROJECT NUMBER: CHKSTATM		ž	PROJECT NAME: CHK STATE M	coc / ot /	
			SHIPPED T	ö	FTN SOAL	PROJECT MANAGER:	TAT:	
		(918) 921-5331		<u> </u>		MUALC MUNICAVENO		
		Eric Former	x					9
SAMPLERS SIGNATURE:	SNATURE:	CODI	e Matri		30 L		(
Date	Time	Sample ID	lqms2	lqms2 to #	JWZL 201103		REMARKS	
3-20-20-5	11.35	MU-CH	water	2	X			
5202-02-5	01-5:11	Dep	water	2	×			
3-20-2025	9:30	nent Blank	wher	1 2	××			
			water	2	X			
		-						
						V		
				$ \rightarrow $				
						180088 C	180-188088 Chain of Custody	
							,	
TOTAL NUMBER OF CONTAINERS	R OF CONT.		•	4				-
RELINQUISHED BY:) BY:		DATE J20-201	200	RECEIVED BY:	<u>87]</u> ≢_	PX [5] 25	
RELINQUISHED BY:) BY:		DATE TIME		ŘECEIVED BY:		DATE	
METHOD OF SHIPMENT:	HIPMENT:			₹	AIRBILL NUMBER:	2: UZCA CD72 7/20	00	
に)) RECEIVED IN LABORATORY BY:	ABORATOR	X	DATE	<u>, v</u>	and PDF, EDD, a	2 E	10	
	CONTACT.							
KEN &	6/5-3	301-5035		<u>ב</u>	777 NEW	W DUCHAM RD EDISON, NJ	11 0880 LI	
White Receiving Lab		Yellow Equus Environmental Project File Pink Ec	Pink Equus QA/QC					

Page 13 of 18

Released to Imaging: 6/17/2025 9:46:51 AM

Page 228 of 250

12

Received by OCD: 6/4/2025 10:09:49 AM

Page 229 of 250

Released to Imaging: 6/17/2025 9:46:51 AM

4/4/2025

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Login Number: 188088 List Number: 1 Creator: Abernathy, Eric L

Question	Answer Comment	
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	8
The cooler or samples do not appear to have been compromised or tampered with.	True	9
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	13
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 180-188088-1

List Source: Eurofins Pittsburgh

Job Number: 180-188088-1

List Source: Eurofins Edison

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Login Number: 188088 List Number: 2 Creator: Armbruster, Chris

List Number: 2			List Source: Euronn's Edison List Creation: 03/25/25 12:53 PM	5
Creator: Armbruster, Chris Question	Answer	Comment		
		Comment		
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> <td></td> <td></td>	N/A			
The cooler's custody seal, if present, is intact.	N/A			
Sample custody seals, if present, are intact.	N/A			8
The cooler or samples do not appear to have been compromised or tampered with.	True			9
Samples were received on ice.	True			
Cooler Temperature is acceptable.	True			
Cooler Temperature is recorded.	True	0.8/1.2°C IR9		
COC is present.	True			
COC is filled out in ink and legible.	True			
COC is filled out with all pertinent information.	True			
Is the Field Sampler's name present on COC?	True			13
There are no discrepancies between the containers received and the COC.	True			
Samples are received within Holding Time (excluding tests with immediate HTs)	True			
Sample containers have legible labels.	True			
Containers are not broken or leaking.	True			
Sample collection date/times are provided.	True			
Appropriate sample containers are used.	True			
Sample bottles are completely filled.	True			
Sample Preservation Verified.	True			
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True			
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True			
Multiphasic samples are not present.	True			
Samples do not require splitting or compositing.	True			
Residual Chlorine Checked.	N/A			

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Login Number: 188088 List Number: 3 Creator: Casallas, Angela C

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

13

List Source: Eurofins Edison

List Creation: 04/03/25 09:45 AM

Received by OCD: 6/4/2025 10:09:49 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Dana Drury Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154 Generated 9/16/2024 10:38:31 AM

JOB DESCRIPTION

CHK STATE M

JOB NUMBER

460-310953-1

Eurofins Edison 777 New Durham Road Edison NJ 08817

See page two for job notes and contact information

Eurofins Edison

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Kunth May

Generated 9/16/2024 10:38:31 AM

Authorized for release by Ken Hayes, Project Manager II Ken.Hayes@et.eurofinsus.com (615)301-5035

Page 236 of 250

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
QC Sample Results	8
QC Association Summary	9
Lab Chronicle	10
Certification Summary	11
Method Summary	12
Sample Summary	13
Chain of Custody	14
Receipt Checklists	16

Definitions/Glossary

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Job ID: 460-310953-1

Page	23	7	of
------	----	---	----

250

2		
Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	J
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	<u> </u>
%R	Percent Recovery	
CFL	Contains Free Liquid	5
CFU	Colony Forming Unit	5
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	8
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	13
NC	Not Calculated	13 14
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEO	Taxiaity Equivalent Quatiant (Diavin)	

- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

Case Narrative

Job ID: 460-310953-1

Client: Chesapeake Energy Corporation Project: CHK STATE M

Eurofins Edison

Job ID: 460-310953-1

Job Narrative 460-310953-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 9/7/2024 11:30 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.8°C.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Client Sample ID: MW-4						Lab Sa	ample ID: 4	60-310953-1	
Analyte Chloride	Result	Qualifier	RL 10.0	MDL	Unit mg/L	Dil Fac	$\frac{\mathbf{D}}{2} \frac{\mathbf{Method}}{300.0}$	Prep Type	
Client Sample ID: DUP						Lab Sa	ample ID: 4	60-310953-2	Ę
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Р гер Туре	
Chloride	358		10.0		mg/L	10	300.0	Total/NA	
Client Sample ID: EQ Blan	k					Lab Sa	mple ID: 4	60-310953-3	

Detection Summary

No Detections.

Job ID: 460-310953-1

Page 239 of 250

5

This Detection Summary does not include radiochemical test results.

Client Sample Results

Job ID: 460-310953-1

Client: Chesapeake Energy Corporation
Project/Site: CHK STATE M

Client Sample ID: MW-4 Lab Sample ID: 460-310953-1 Date Collected: 09/06/24 10:25 **Matrix: Water** Date Received: 09/07/24 11:30 Method: EPA 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Chloride 361 10.0 mg/L 09/13/24 15:15 **Client Sample ID: DUP** Lab Sample ID: 460-310953-2 Date Collected: 09/06/24 00:00 **Matrix: Water** Date Received: 09/07/24 11:30 Method: EPA 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Chloride 358 10.0 mg/L 09/13/24 16:45

Client Sample ID: EQ Blank Date Collected: 09/06/24 07:45

Date	conecteu.	05/00/24 07.45
Date	Received:	09/07/24 11:30

Method: EPA 300.0 - Anions, Io	on Chromat	ography								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	ND		1.00		mg/L			09/13/24 17:00	1	i

Eurofins Edison

Dil Fac 10 6 Dil Fac 10 Lab Sample ID: 460-310953-3 **Matrix: Water**

QC Sample Results

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 460-995659/3 Matrix: Water Analysis Batch: 995659									C	Clie	nt Sam	ple ID: N Prep Ty			į
	MB	MB													
Analyte	Result	Qualifier		RL	I	MDL	Unit		D	Pr	epared	Analy	/zed	Dil Fac	1
Chloride	ND			1.00			mg/L					09/13/24	4 09:47	1	
Lab Sample ID: LCS 460-995659/5 Matrix: Water Analysis Batch: 995659								Cli	ient S	San	nple ID	: Lab Co Prep Ty			
			Spike		LCS	LCS						%Rec			
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits			
Chloride			3.20		3.060			mg/L		_	96	90 - 110			
Lab Sample ID: LCSD 460-995659/6 Matrix: Water Analysis Batch: 995659							C	lient S	Samp	ble	ID: Lab	Control Prep Ty			
			Spike		LCSD	LCSE	C					%Rec		RPD	
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limit	
Chloride			3.20		3.070			mg/L		_	96	90 - 110	0	15	1

Job ID: 460-310953-1

Eurofins Edison

QC Association Summary

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

HPLC/IC

Analysis Batch: 995659

Lab Sample ID 460-310953-1	Client Sample ID MW-4	Prep Type Total/NA	Matrix Water	Method 300.0	Prep Batch
460-310953-2	DUP	Total/NA	Water	300.0	
460-310953-3	EQ Blank	Total/NA	Water	300.0	
MB 460-995659/3	Method Blank	Total/NA	Water	300.0	
LCS 460-995659/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 460-995659/6	Lab Control Sample Dup	Total/NA	Water	300.0	

Client: Chesapeake Energy Corporation

Lab Chronicle

Job ID: 460-310953-1

									Project/Site: Cl
60-310953-1 Matrix: Water	Sample ID: 4	Lab							Client Samp
									Date Received
	Prepared			Batch	Dilution		Batch	Batch	_
	or Analyzed	Lab	Analyst	Number	Factor	Run	Method	Туре	Prep Type
	09/13/24 15:15	EET EDI	OXG	995659	10		300.0	Analysis	Total/NA
60-310953-2	Sample ID: 4	Lab					2	ole ID: DU	Client Samp
Matrix: Water	-						0:00	d: 09/06/24 0	Date Collected
							1:30	l: 09/07/24 1	Date Received
	Prepared			Batch	Dilution		Batch	Batch	_
	or Analyzed	Lab	Analyst	Number	Factor	Run	Method	Туре	Prep Type
		EET EDI	OXG	995659	10		300.0	Analysis	Total/NA
	09/13/24 16:45							2	
60-310953-3							Blank	ole ID: EQ	Client Sam
60-310953-3 Matrix: Water									Client Samp
60-310953-3 Matrix: Water							7:45	d: 09/06/24 0	
				Batch	Dilution		7:45	d: 09/06/24 0	Date Collected
	Sample ID: 4		Analyst		Dilution Factor	Run	7:45 1:30	d: 09/06/24 0 l: 09/07/24 1	Date Collected

Laboratory References:

EET EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Job ID: 460-310953-1

Laboratory: Eurofins Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Connecticut	State	PH-0818	09-30-24	
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	01-02-25	
Georgia	State	12028 (NJ)	07-01-25	
Massachusetts	State	M-NJ312	07-01-25	
New Jersey	NELAP	12028	06-30-25	
lew York	NELAP	11452	04-01-25	
Pennsylvania	NELAP	68-00522	02-28-25	
Rhode Island	State	LAO00376	12-31-24	
JSDA	US Federal Programs	525-24-149-77606	05-21-27	

Eurofins Edison

Page 244 of 250

Method Summary

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

lethod	Method Description	Protocol	Laboratory
00.0	Anions, Ion Chromatography	EPA	EET EDI

I References:

EPA = US Environmental Protection Agency

Laboratory References:

EET EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Eurofins Edison

Lab Sample ID

460-310953-1

460-310953-2

460-310953-3

Sample Summary

Collected

09/06/24 10:25 09/07/24 11:30

09/06/24 00:00 09/07/24 11:30

09/06/24 07:45 09/07/24 11:30

Received

Matrix

Water

Water

Water

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

MW-4

DUP

EQ Blank

Client Sample ID

Job ID: 460-310953-1

Page 246 of 250

5
8
9
12
13

Released to Imaging: 6/17/2025 9:46:51 AM

	CHAIN OF CUS		No. 2016
	PROJECT NUMBER. CHIKSTATM	PROJECT NAME:	coc / of //
	SHIPPED TO. EDIJUN	PROJECT MANAGER: MATT MULA-VERO	CZANDATED
ve: be /	almers Alg	**************************************	#0M
SAMPLERS SIGNATURE		<u> </u>	0953
Date Time Sample ID	olqms2 to #	<u>)</u>	REMARKS
4/6/24 1025 MW-4	Weter 1 X	×	
- Due	when 7 X	× ×	
745 EQ Blank	ash-1 X		
- Temp	uet. 1	×	
		460-310953 Chain of G	ustody
= CONTAINERS	7		
	2	2 the matter Time 1, 4, 0	
Deci NOVAHEN RY.		DATE	06/08 22
		TIME	
METHOD OF SHIPMENT		AIRBILL NUMBER LEDX X 4059 5943 8600	
RECEIVED IN LABORATORY BY-	DATE Send PC TIME	Send PDF EDD, and INVOICE (if applicable) to: QAQC@EquusEnv.com	
LABORATORY CONTACT	<u>۲</u>	777 NEW DURHAMRO EDISON, NJ OOBLY	
Yellow Equus Environmental Project File	Pink: Equus @A/QC		
		1	
		7 8 9 1 2 3 4	1 2 3 4 5 6

Released to Imaging: 6/17/2025 9:46:51 AM

.

Page 247 of 250

 5.		Ja	–	<u> </u>													
Lage		er Other							 		 						
L		Other						 	 		 	 			sted.		
		Phos					-	·							eH edjus	alysis.	
		Total Cyanide	(pH>12)	-					 -	·	-				ch were J	ior to and	
	3 0 0 9	TOC	(2>Hd)												nples whi	L hours pr	
	Cooler #7, Cooler #8; Cooler #9;	TKN	(pH<2)												ut the sar	at least 24	
ŋ	<u> </u>	Sulfide	(6 <hq)< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Volume of Preservative used (ml).</td><td>s) The appropriate Project Manager and Department Manager should be notified about the samples which were pH adju</td><td>Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis.</td><td>_</td></hq)<>											Volume of Preservative used (ml).	s) The appropriate Project Manager and Department Manager should be notified about the samples which were pH adju	Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis.	_
d pH Lc	8	Phenois	(pH<2)					 	 		 	 		ervative u	Expirat ould be no	e must be l Date:	
Eurofins LestAmerica Edison Receipt Temperature and pH Log	Cooler l emperaures W: <u>c c c</u> 65 <u>c c c</u> 66 <u>c c</u>	EPH or QAM F	(pH<2)			\uparrow						.MO		ne of Pres	nager sh	ompliance	
empera		Pest	(pH 5-9)		\uparrow							lation be		Volun	tment Ma	e out of c	
sceipt T	Cooler #4: Cooler #5: Cooler #6:		(pH<2) (f								 	 If pH adjustments are required record the information below	1		and Depar	which ar	
IR 6 m # R		Metals H	(pH<2) (1									record ti			Aanager s	ul analysis	
Ĕ		Nitrate Nitrite Me	(pH<2) (p	_								required			Project A	s for Mets	
			- I-									ients are			opropriate	Sample. Initials:	
310953	0000	nia COD	2) (pH<2)	+	_		<u> </u>					adjustm	ted.]]	e(s) ⁻ The at	Ē	
T M		Ammonia	(pH<2)]≝]	s). adjus	Name/Co	servativ		
- ist -	Cooler #11 Cooler #11 Cooler #21 Cooler #31		TALS Sample Number									1	Sample No(s). adjusted.	Preservative Name/Conc.	Lot # of Preservative(s) [.] 7	<u>-</u>	
Job Number [.] Number of Coolers:			S Sample										Sai	Pres	۲ō	EDS-WI-038, Rev 4.1	D

.

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Login Number: 310953 List Number: 1 Creator: Nelson, Rose E

Question	Answer	Comment	
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> <td></td>	N/A		
The cooler's custody seal, if present, is intact.	True		ŝ
Sample custody seals, if present, are intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		ĺ
Samples were received on ice.	True		1
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the containers received and the COC.	True		2
Samples are received within Holding Time (excluding tests with immediate HTs)	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Residual Chlorine Checked.	N/A		

14

Job Number: 460-310953-1

List Source: Eurofins Edison

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Operator:

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDIT	IONS
r:	OGRID:
CHESAPEAKE OPERATING, INC.	147179
6100 NORTH WESTERN AVE	Action Number:
OKC, OK 73118	470659

Action Type:

[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS		
Created By	Condition	Condition Date
amaxwell	Report approved. Provide a sampling notification via a C-141N, 48-hour sampling notification, prior to conducting monitoring and sampling at the next event.	6/17/2025

CONDITIONS

Action 470659