

### SITE INFORMATION

Closure Report Salado Draw 23 Central Tank Battery (05.29.2025) Incident #: NAPP2515528266 Lea County, New Mexico Unit N Sec 14 T26S R32E 32.035793°, -103.646698°

Motor Oil Release Point of Release: Equipment Failure Release Date: 05.29.2025 Volume Released: 5 Barrels of Motor Oil Volume Recovered: 0 Barrels of Motor Oil

## CARMONA RESOURCES

Prepared for: Chevron U.S.A., Inc. 6301 Deauville Blvd Midland, Texas 79706

Prepared by: Carmona Resources, LLC 310 West Wall Street Suite 500 Midland, Texas 79701

> 310 West Wall Street, Suite 500 Midland TX, 79701 432.813.1992



## **TABLE OF CONTENTS**

## **1.0 SITE INFORMATION AND BACKGROUND**

## 2.0 SITE CHARACTERIZATION AND GROUNDWATER

## **3.0 NMAC REGULATORY CRITERIA**

## 4.0 REMEDIATION ACTIVITIES

## 7.0 CONCLUSION

## **FIGURES**

| FIGURE 1 | OVERVIEW     | FIGURE 2 | TOPOGRAPHIC      |
|----------|--------------|----------|------------------|
| FIGURE 3 | SAMPLE POINT | FIGURE 4 | EXCAVATION DEPTH |

## **APPENDICES**

- APPENDIX A TABLES
- APPENDIX B PHOTOS
- APPENDIX C NMOCD CORRESPONDENCE
- APPENDIX D SITE CHARACTERIZATION AND GROUNDWATER
- APPENDIX E LABORATORY REPORTS



July 7, 2025

Mike Bratcher District Supervisor Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Closure Report Salado Draw 23 Central Tank Battery (05.29.2025) Incident ID: NAPP2515528266 Chevron U.S.A., Inc. Site Location: Unit N, S14, T26S, R32E (Lat 32.035793°, Long -103.646698°) Lea County, New Mexico

Mr. Bratcher:

On behalf of Chevron U.S.A., Inc. (Chevron), Carmona Resources, LLC has prepared this letter to document remediation activities for the Salado Draw 23 Central Tank Battery. The site is located at 32.035793°, -103.646698° within Unit N, S14, T26S, R32E, in Lea County, New Mexico (Figures 1 and 2).

#### **1.0 Site Information and Background**

Based on the information obtained from the NMOCD portal, the release was discovered on May 29, 2025, caused by equipment failure releasing approximately five (5) barrels of motor oil, of which zero (0) barrels were recovered. The release area was contained to the well pad. The NMOCD correspondence is attached in Appendix C.

#### 2.0 Site Characterization and Groundwater

The site is located within a medium karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, no known water sources are within a 0.50-mile radius of the location. The nearest groundwater determination bore is located approximately 0.36 miles East of the site in S14, T26S, R32E and was drilled in 2024. The determination bore was drilled to a depth of 112' below ground surface (ft bgs). The determination bore was gauged 72 hours later and no evidence of groundwater was detected. A copy of the associated Summary report is attached in Appendix D.

Additionally, multiple karst surveys have been completed for past releases in the area, per BLM request. The karst surveys were completed in order to remediate per the standards set in Table 1 NMAC 19.15.29.12 Groundwater >100 feet due to the site being determined to be in a "Low karst" environment. Two (2) karst surveys in the area both show no karst features. The use of the previously surveyed areas can be used in the determination of the karst status of the site. See Appendix D for Site Characterization, Groundwater Information, and Karst Survey(s).

#### 3.0 NMAC Regulatory Criteria

Per the NMOCD regulatory criteria established in 19.15.29.12 NMAC, the following criteria were utilized in assessing the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 1,000 mg/kg (GRO + DRO).
- TPH: 2,500 mg/kg (GRO + DRO + MRO).
- Chloride: 20,000 mg/kg.



#### **4.0 Remediation Activities**

Prior to Carmona Resources arriving on location, a third-party contractor was onsite to conduct a surface scrape of the impacted area to remove all stained soil. On June 13, 2025, Carmona Resources personnel were onsite to collect confirmation samples from the scraped area and horizontal delineation samples. Before collecting composite confirmation samples, the NMOCD division office was notified via NMOCD portal on June 9, 2025, per Subsection D of 19.15.29.12 NMAC. See Appendix C. The entire area was scraped to a depth of 0.25'. Due to the excavation area being less than 6 inches, horizontal delineation samples were collected in place of composite confirmation sidewall samples. A total of four (4) confirmation floor samples were collected (CS-1 through CS-4), and four (4) horizontal delineation samples (H-1 through H-4) were collected every 200 square feet to ensure the proper removal of the contaminated soils. For chemical analysis, the soil samples were collected and placed directly into laboratory-provided sample containers, stored on ice, and transported under the proper chain-of-custody protocol to Cardinal Laboratories in Hobbs, New Mexico. All collected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and Chloride by EPA method 4500. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E. The excavation depth, confirmation floor sample locations, and horizontal delineation samples are shown in Figure 4.

All final confirmation samples were below the regulatory requirements for Benzene, total BTEX, TPH, and Chloride concentrations. Refer to Table 1.

Due to the depth of the surface scrape on the well pad, caliche from the well pad was pushed into the scraped area to be leveled. Horizontal delineation samples H-1 through H-3 are representative of the backfill material used for the area. See Table 1 for soil concentrations of those areas. Approximately 570 square feet of contamination was remediated, resulting in 6 cubic yards of material excavated and transported offsite for proper disposal.

#### 5.0 Conclusions

Based on the assessment results and the analytical data, no further actions are required at the site. Chevron formally requests the closure of the spill. If you have any questions regarding this report or need additional information, please contact us at 432-813-1992.

Sincerely, Carmona Resources, LLC

Ashton Thielke Environmental Manager

Gilbert Priego Project Manager













## **APPENDIX** A



# Table 1Chevron U.S.A., Inc.Chevron Salado Draw 23 Compressor Station (05.29.2025)Lea County, New Mexico

|           | Ditt                      |            | TPH (mg/kg) |       |       |             |                 | Benzene Toluen |         | Ethlybenzene    | Xylene   | Total        | Chloride |
|-----------|---------------------------|------------|-------------|-------|-------|-------------|-----------------|----------------|---------|-----------------|----------|--------------|----------|
| Sample ID | Date                      | Depth (ft) | GRO         | DRO   | MRO   | Total       | (mg/kg) (mg/kg) | (mg/kg)        | (mg/kg) | BTEX<br>(mg/kg) | (mg/kg)  |              |          |
| CS-1      | 6/13/2025                 | 0.25'      | <10.0       | <10.0 | <10.0 | <10.0       | <0.050          | <0.050         | <0.050  | <0.150          | <0.300   | 176          |          |
| CS-2      | 6/13/2025                 | 0.25'      | <10.0       | 83.2  | 293   | 376         | <0.050          | <0.050         | <0.050  | <0.150          | <0.300   | 64.0         |          |
| CS-3      | 6/13/2025                 | 0.25'      | <10.0       | 26.3  | 69.1  | 95.4        | <0.050          | <0.050         | <0.050  | <0.150          | <0.300   | 192          |          |
| CS-4      | 6/13/2025                 | 0.25'      | <10.0       | 404   | 1,200 | 1,604       | <0.050          | <0.050         | <0.050  | <0.150          | <0.300   | 96.0         |          |
| H-1       | 6/13/2025                 | 0-0.5'     | <10.0       | <10.0 | <10.0 | <10.0       | <0.050          | <0.050         | <0.050  | <0.150          | <0.300   | <16.0        |          |
| H-2       | 6/13/2025                 | 0-0.5'     | <10.0       | <10.0 | <10.0 | <10.0       | <0.050          | <0.050         | <0.050  | <0.150          | <0.300   | 32.0         |          |
| H-3       | 6/13/2025                 | 0-0.5'     | <10.0       | <10.0 | <10.0 | <10.0       | <0.050          | <0.050         | <0.050  | <0.150          | <0.300   | <16.0        |          |
| H-4       | 6/13/2025                 | 0-0.5'     | <10.0       | <10.0 | <10.0 | <10.0       | <0.050          | <0.050         | <0.050  | <0.150          | <0.300   | 32.0         |          |
|           | ory Criteria <sup>A</sup> |            | 1,000       | mg/kg |       | 2,500 mg/kg | 10 mg/kg        |                |         |                 | 50 mg/kg | 20,000 mg/kg |          |

<sup>A</sup> – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram

TPH - Total Petroleum Hydrocarbons

ft - feet

(CS) - Confirmation Sample

(H) - Horizontal Sample

## **APPENDIX B**



## PHOTOGRAPHIC LOG

## Chevron U.S.A., Inc.

### Photograph No. 1

- Facility:Salado Draw 23 CompressorStation (05.29.2025)
- County: Lea County, New Mexico

#### **Description:** View South, location sign.



### Photograph No. 2

- Facility:Salado Draw 23 CompressorStation (05.29.2025)
- County: Lea County, New Mexico

## Description:

View North, area of CS-1 & CS-2.



## Photograph No. 3

- Facility:Salado Draw 23 CompressorStation (05.29.2025)
- County: Lea County, New Mexico

## Description:

View North, area of CS-3 & CS-4.





## PHOTOGRAPHIC LOG

Chevron U.S.A., Inc.

### Photograph No. 4

| Facility: | Salado Draw 23 Compressor |
|-----------|---------------------------|
| -         | Station (05.29.2025)      |
|           |                           |

County: Lea County, New Mexico

#### **Description:**

View Northwest, area of CS-2 through CS-4.



### Photograph No. 5

- Facility:Salado Draw 23 CompressorStation (05.29.2025)
- County: Lea County, New Mexico

#### **Description:**

View West, area of CS-3 & CS-4.



## **APPENDIX C**



General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

## State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

| Operator:           | OGRID:                      |             |
|---------------------|-----------------------------|-------------|
| CHEVRON U S A INC   | 4323                        |             |
| 6301 Deauville Blvd | Action Number:              |             |
| Midland, TX 79706   | 470560                      |             |
|                     | Action Type:                |             |
|                     | [NOTIFY] Notification Of Re | lease (NOR) |

#### QUESTIONS

| Salado Draw 23 Central Tank Battery |
|-------------------------------------|
| 05/29/2025                          |
| Federal                             |
|                                     |

#### Incident Details

| Please answer all the questions in this group.                                                        |             |  |
|-------------------------------------------------------------------------------------------------------|-------------|--|
| Incident Type                                                                                         | Oil Release |  |
| Did this release result in a fire or is the result of a fire                                          | No          |  |
| Did this release result in any injuries                                                               | No          |  |
| Has this release reached or does it have a reasonable probability of reaching a<br>watercourse        | Νο          |  |
| Has this release endangered or does it have a reasonable probability of<br>endangering public health  | Νο          |  |
| Has this release substantially damaged or will it substantially damage property or<br>the environment | Νο          |  |
| Is this release of a volume that is or may with reasonable probability be detrimental to fresh water  | Νο          |  |

#### Nature and Volume of Release

| Naterial(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission. |                                                                                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| Crude Oil Released (bbls) Details                                                                                                                                                    | Not answered.                                                                                   |  |
| Produced Water Released (bbls) Details                                                                                                                                               | Not answered.                                                                                   |  |
| Is the concentration of chloride in the produced water >10,000 mg/l                                                                                                                  | Not answered.                                                                                   |  |
| Condensate Released (bbls) Details                                                                                                                                                   | Not answered.                                                                                   |  |
| Natural Gas Vented (Mcf) Details                                                                                                                                                     | Not answered.                                                                                   |  |
| Natural Gas Flared (Mcf) Details                                                                                                                                                     | Not answered.                                                                                   |  |
| Other Released Details                                                                                                                                                               | Cause: Equipment Failure   Pump   Motor Oil   Released: 5 BBL   Recovered: 0 BBL   Lost: 5 BBL. |  |
| Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)                                 | The water portion of the spill calculation sheet is rainwater not produced water                |  |

QUESTIONS

Action 470560

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

## State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 470560

Page 17eof 104

QUESTIONS (continued)

| Operator:           | OGRID:                                 |
|---------------------|----------------------------------------|
| CHEVRON U S A INC   | 4323                                   |
| 6301 Deauville Blvd | Action Number:                         |
| Midland, TX 79706   | 470560                                 |
|                     | Action Type:                           |
|                     | [NOTIFY] Notification Of Release (NOR) |

QUESTIONS

| Nature and Volume of Release (continued)                                                                                                                |                                                                                                          |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|
| Is this a gas only submission (i.e. only significant Mcf values reported)                                                                               | More volume information must be supplied to determine if this will be treated as a "gas<br>only" report. |  |  |  |
| Was this a major release as defined by Subsection A of 19.15.29.7 NMAC                                                                                  | No                                                                                                       |  |  |  |
| Reasons why this would be considered a submission for a notification of a major release                                                                 | Unavailable.                                                                                             |  |  |  |
| With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form. |                                                                                                          |  |  |  |

| Initial Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|
| The responsible party must undertake the following actions immediately unless they could create a s                                                                                                                                                                                                                                                                                                                                                                                                                                                    | afety hazard that would result in injury. |  |
| The source of the release has been stopped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | True                                      |  |
| The impacted area has been secured to protect human health and the<br>environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Not answered.                             |  |
| Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices                                                                                                                                                                                                                                                                                                                                                                                                                                     | Not answered.                             |  |
| All free liquids and recoverable materials have been removed and managed<br>appropriately                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Not answered.                             |  |
| If all the actions described above have not been undertaken, explain why                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Not answered.                             |  |
| Per Paragraph 4 of Subsection B of 19.15.29.8 NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of actions to date in the follow-up C-141 submission. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please prepare and attach a narrative of a dattach all information needed for closure evaluation in the follow-up C-141 submission. |                                           |  |

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

## State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

ACKNOWLEDGMENTS

| Operator:           | OGRID:                                 |
|---------------------|----------------------------------------|
| CHEVRON U S A INC   | 4323                                   |
| 6301 Deauville Blvd | Action Number:                         |
| Midland, TX 79706   | 470560                                 |
|                     | Action Type:                           |
|                     | [NOTIFY] Notification Of Release (NOR) |

#### ACKNOWLEDGMENTS

| < | I acknowledge that I am authorized to submit notification of a release on behalf of my operator.                                                                                                                                                                                                                                             |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V | I acknowledge that upon submitting this application, I will be creating a new incident file (assigned to my operator) to track the notification(s) and corrective action(s) for a release, pursuant to NMAC 19.15.29.                                                                                                                        |
| Z | l acknowledge that creating a new incident file will require my operator to file subsequent submission(s) of form "C-141, Application for administrative approval of a release notification and corrective action", pursuant to NMAC 19.15.29.                                                                                               |
| 2 | I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. |
| V | I acknowledge the fact that the acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment.                                              |
| V | l acknowledge the fact that, in addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.                                                                                                                                   |

ACKNOWLEDGMENTS

Action 470560

General Information Phone: (505) 629-6116

CONDITIONS

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

## State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

| CONDITIONS |
|------------|
|------------|

| Operator:           | OGRID:                                 |
|---------------------|----------------------------------------|
| CHEVRON U S A INC   | 4323                                   |
| 6301 Deauville Blvd | Action Number:                         |
| Midland, TX 79706   | 470560                                 |
|                     | Action Type:                           |
|                     | [NOTIFY] Notification Of Release (NOR) |

| Created<br>By | Condition                                                                                                                                                               | Condition<br>Date |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| branes        | When submitting future reports regarding this release, please submit the calculations used or specific justification for the volumes reported on the initial C-<br>141. | 6/4/2025          |

CONDITIONS

Page 19eof 104

Action 470560

|        | Length (feet) | Width (feet) | Above grade<br>Depth (in) | Below grade<br>Depth (in) | Water Cut<br>(%) | Barrels Water | Barrels Oil |
|--------|---------------|--------------|---------------------------|---------------------------|------------------|---------------|-------------|
| Area 1 | 13            | 13           | 1                         | 0.5                       | 10               | 0.27          | 2.426       |
| Area 2 | 7             | 7            | 0.5                       | 0.25                      | 10               | 0.039         | 0.352       |
| Area 3 | 7             | 4            | 0.25                      | 0.25                      | 10               | 0.012         | 0.108       |
| Area 4 | 10            | 4            | 0.5                       | 1                         | 10               | 0.039         | 0.347       |
| Area 5 | 14            | 4            | 1                         | 1                         | 10               | 0.096         | 0.86        |
| Area 6 | 5             | 4            | 1                         | 1                         | 10               | 0.034         | 0.308       |
| Area 7 | 18            | 7            | 0.5                       | 0.25                      | 10               | 0.1           | 0.905       |
|        |               |              |                           |                           |                  |               |             |
|        |               |              |                           |                           | Rec Vol          |               |             |
|        |               |              |                           |                           | Total            | 0.59          | 5.306       |

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

## State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Page 21eof 104

Action 470570

| QUESTIONS |
|-----------|
|           |

| Operator:           | OGRID:                                  |
|---------------------|-----------------------------------------|
| CHEVRON U S A INC   | 4323                                    |
| 6301 Deauville Blvd | Action Number:                          |
| Midland, TX 79706   | 470570                                  |
|                     | Action Type:                            |
|                     | [C-141] Initial C-141 (C-141-v-Initial) |

#### QUESTIONS

| nAPP2515528266                                         |
|--------------------------------------------------------|
| NAPP2515528266 SALADO DRAW 23 CENTRAL TANK BATTERY @ 0 |
| Oil Release                                            |
| Initial C-141 Received                                 |
| [fAPP2134340195] Salado Draw 23 Central Tank Battery   |
|                                                        |

#### Location of Release Source

| Please | answer | all the | questions in | this group. |  |   |
|--------|--------|---------|--------------|-------------|--|---|
|        |        |         |              |             |  | _ |

| Site Name               | Salado Draw 23 Central Tank Battery |
|-------------------------|-------------------------------------|
| Date Release Discovered | 05/29/2025                          |
| Surface Owner           | Federal                             |

#### Incident Details

| Please answer all the questions in this group.                                                          |             |  |
|---------------------------------------------------------------------------------------------------------|-------------|--|
| Incident Type                                                                                           | Oil Release |  |
| Did this release result in a fire or is the result of a fire                                            | No          |  |
| Did this release result in any injuries                                                                 | No          |  |
| Has this release reached or does it have a reasonable probability of reaching a<br>watercourse          | No          |  |
| Has this release endangered or does it have a reasonable probability of<br>endangering public health    | Νο          |  |
| Has this release substantially damaged or will it substantially damage property or the environment      | No          |  |
| Is this release of a volume that is or may with reasonable probability be<br>detrimental to fresh water | No          |  |

#### Nature and Volume of Release

| Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission. |                                                                                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| Crude Oil Released (bbls) Details                                                                                                                                                    | Not answered.                                                                                   |  |
| Produced Water Released (bbls) Details                                                                                                                                               | Not answered.                                                                                   |  |
| Is the concentration of chloride in the produced water >10,000 mg/l                                                                                                                  | Not answered.                                                                                   |  |
| Condensate Released (bbls) Details                                                                                                                                                   | Not answered.                                                                                   |  |
| Natural Gas Vented (Mcf) Details                                                                                                                                                     | Not answered.                                                                                   |  |
| Natural Gas Flared (Mcf) Details                                                                                                                                                     | Not answered.                                                                                   |  |
| Other Released Details                                                                                                                                                               | Cause: Equipment Failure   Pump   Motor Oil   Released: 5 BBL   Recovered: 0 BBL   Lost: 5 BBL. |  |
| Are there additional details for the questions above (i.e. any answer containing<br>Other, Specify, Unknown, and/or Fire, or any negative lost amounts)                              | The water portion of the spill calculation sheet is rainwater not produced water                |  |

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

## State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 470570

Page 22:0f 104

| QUESTIONS (continued) |                                         |  |
|-----------------------|-----------------------------------------|--|
| Operator:             | OGRID:                                  |  |
| CHEVRON U S A INC     | 4323                                    |  |
| 6301 Deauville Blvd   | Action Number:                          |  |
| Midland, TX 79706     | 470570                                  |  |
|                       | Action Type:                            |  |
|                       | [C-141] Initial C-141 (C-141-v-Initial) |  |

QUESTIONS

| ature and Volume of Release (continued)                                                                                                                 |                                                                               |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| Is this a gas only submission (i.e. only significant Mcf values reported)                                                                               | More info needed to determine if this will be treated as a "gas only" report. |  |
| Was this a major release as defined by Subsection A of 19.15.29.7 NMAC                                                                                  | No                                                                            |  |
| Reasons why this would be considered a submission for a notification of a major release                                                                 | Unavailable.                                                                  |  |
| Vith the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form. |                                                                               |  |

| Initial Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                |  |
| The source of the release has been stopped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | True                                                                                                                                                                                                                                           |  |
| The impacted area has been secured to protect human health and the environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | True                                                                                                                                                                                                                                           |  |
| Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | True                                                                                                                                                                                                                                           |  |
| All free liquids and recoverable materials have been removed and managed appropriately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | True                                                                                                                                                                                                                                           |  |
| actions to date in the follow-up C-141 submission. If remedial efforts have been successfully complet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Not answered.<br>ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of<br>ed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of |  |
| Subsection A of 19.15.29.11 NMAC), please prepare and attach all information needed for closure evaluation in the follow-up C-141 submission. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. |                                                                                                                                                                                                                                                |  |
| I hereby agree and sign off to the above statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Name: Bayley Ranes<br>Title: Environmental Specialist<br>Email: Bayleyranes@chevron.com<br>Date: 06/04/2025                                                                                                                                    |  |

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

## **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Page 23cof 104

Action 470570

**QUESTIONS** (continued)

| Operator:           | OGRID:                                  |
|---------------------|-----------------------------------------|
| CHEVRON U S A INC   | 4323                                    |
| 6301 Deauville Blvd | Action Number:                          |
| Midland, TX 79706   | 470570                                  |
|                     | Action Type:                            |
|                     | [C-141] Initial C-141 (C-141-v-Initial) |

#### QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

| What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)   | Not answered. |  |
|------------------------------------------------------------------------------------------------------------------------------|---------------|--|
| What method was used to determine the depth to ground water                                                                  | Not answered. |  |
| Did this release impact groundwater or surface water                                                                         | Not answered. |  |
| What is the minimum distance, between the closest lateral extents of the release and the following surface areas:            |               |  |
| A continuously flowing watercourse or any other significant watercourse                                                      | Not answered. |  |
| Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)                                            | Not answered. |  |
| An occupied permanent residence, school, hospital, institution, or church                                                    | Not answered. |  |
| A spring or a private domestic fresh water well used by less than five households<br>for domestic or stock watering purposes | Not answered. |  |
| Any other fresh water well or spring                                                                                         | Not answered. |  |
| Incorporated municipal boundaries or a defined municipal fresh water well field                                              | Not answered. |  |
| A wetland                                                                                                                    | Not answered. |  |
| A subsurface mine                                                                                                            | Not answered. |  |
| An (non-karst) unstable area                                                                                                 | Not answered. |  |
| Categorize the risk of this well / site being in a karst geology                                                             | Not answered. |  |
| A 100-year floodplain                                                                                                        | Not answered. |  |
| Did the release impact areas not on an exploration, development, production, or storage site                                 | Not answered. |  |

#### Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

Requesting a remediation plan approval with this submission

No The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

## State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

| Operator:           | OGRID:                                  |
|---------------------|-----------------------------------------|
| CHEVRON U S A INC   | 4323                                    |
| 6301 Deauville Blvd | Action Number:                          |
| Midland, TX 79706   | 470570                                  |
|                     | Action Type:                            |
|                     | [C-141] Initial C-141 (C-141-v-Initial) |
| CONDITIONS          |                                         |

|  | Created By       | Condition | Condition<br>Date |
|--|------------------|-----------|-------------------|
|  | michael.buchanan | None      | 6/4/2025          |

Page 24cof 104

Action 470570

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

## State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Pag**P 25**cof 104

QUESTIONS

Action 471931

| QUESTIONS           |                                                            |  |
|---------------------|------------------------------------------------------------|--|
| Operator:           | OGRID:                                                     |  |
| CHEVRON U S A INC   | 4323                                                       |  |
| 6301 Deauville Blvd | Action Number:                                             |  |
| Midland, TX 79706   | 471931                                                     |  |
|                     | Action Type:<br>[NOTIFY] Notification Of Sampling (C-141N) |  |

#### QUESTIONS

| Prerequisites                                          |  |
|--------------------------------------------------------|--|
| nAPP2515528266                                         |  |
| NAPP2515528266 SALADO DRAW 23 CENTRAL TANK BATTERY @ 0 |  |
| Oil Release                                            |  |
| Initial C-141 Approved                                 |  |
| [fAPP2134340195] Salado Draw 23 Central Tank Battery   |  |
|                                                        |  |

#### Location of Release Source

| Site Name SALADO DRAW 23 CENTRAL TANK BATTERY |            |
|-----------------------------------------------|------------|
| Date Release Discovered                       | 05/29/2025 |
| Surface Owner                                 | Federal    |

#### Sampling Event General Information

| lease answer all the questions in this group.                                                   |                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| What is the sampling surface area in square feet                                                | 570                                                                                                                                                                                                                                                                                                                                                                                                     |
| What is the estimated number of samples that will be gathered                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC | 06/13/2025                                                                                                                                                                                                                                                                                                                                                                                              |
| Time sampling will commence                                                                     | 09:00 AM                                                                                                                                                                                                                                                                                                                                                                                                |
| Please provide any information necessary for observers to contact samplers                      | Carmona Resources – 432-813-8988                                                                                                                                                                                                                                                                                                                                                                        |
| Please provide any information necessary for navigation to sampling site                        | "(32.036441, -103.645765) Carmona Resources will be onsite to collect confirmation floor samples from the recently scraped release area. The contaminated area was scraped to a depth of 4inches and all material was disposed properly. Due to the excavation being less than 6inches in depth, horizontal delineation samples will be collected in place of composite confirmation sidewall samples." |

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

## State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

| Operator:           | OGRID:                                     |
|---------------------|--------------------------------------------|
| CHEVRON U S A INC   | 4323                                       |
| 6301 Deauville Blvd | Action Number:                             |
| Midland, TX 79706   | 471931                                     |
|                     | Action Type:                               |
|                     | [NOTIEY] Notification Of Sampling (C-141N) |

#### CONDITIONS

| Created By | Condition                                                                                                                                                                                                      | Condition<br>Date |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| abarnhill  | Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.          | 6/9/2025          |
| abarnhill  | If confirmation sampling is going to take place over multiple days, individual C-141N applications must be submitted for each sampling date. Date ranges are not currently accepted on the C-141N application. | 6/9/2025          |

CONDITIONS

Page 26cof 104

Action 471931

## **APPENDIX D**





## Received by OCD: 7/7/2025 5:16:47 PM Medium Karst

Chevron USA



Salado Draw 23 Compressor Station (05.29.2025) •



## Legend

Salado Draw 23 Compressor Station (05.29.2025)





## Cave and Karst Resource Inventory Report Salado Draw North Pond Lea County, New Mexico

## Prepared for: Carmona Resources, LLC 310 West Wall Street, Suite 500 Midland, TX,79701

□ Positive within 200 feet of spill delineation boundary

☑ Negative within 200 feet of spill delineation boundary

## July 5, 2024

CARM-001-20240528

Copyright 2024 – Southwest Geophysical Consulting, LLC All rights reserved.

i

Published by: Southwest Geophysical Consulting, LLC 5117 Fairfax Dr. NW Albuquerque, NM 87114 (505) 585-2550 www.swgeophys.com

> Prepared by: Garrett Jorgensen Olague Senior Field Geologist swgeogarrett@gmail.com

Reviewed by: David D. Decker, PhD, PG, CPG Principal, Chief Executive Officer dave@swgeophys.com

Prepared for: Carmona Resources, LLC 310 West Wall Street, Suite 500 Midland, TX 79701

Point of Contact: Mr. Ashton Thielke 432-813-8988 ThielkeA@carmonaresources.com

## MMXXIV

### CARM-001-20240528

©2024

Released to Imaging: 7/17/2025 2:17:58 PM

## TABLE OF CONTENTS

| FRONT MATTER i                             |
|--------------------------------------------|
| TABLE OF CONTENTSii                        |
| LIST OF FIGURESiii                         |
| LIST OF TABLESiii                          |
| 1.0 INTRODUCTION                           |
| 1.1 Goals of this Study1                   |
| 1.2 Summary of Findings                    |
| 1.3 Affected Environment                   |
| 1.4 Limitations of Report                  |
| 2.0 LOCATION AND DESCRIPTION OF STUDY AREA |
| 2.1 Description of Site                    |
| 2.2 Local Geology                          |
| 2.3 Description of Survey                  |
| 2.4 Description of Karst Features          |
| 3.0 RECOMMENDATIONS                        |
| 3.1 Summary                                |
| 3.2 Best Practices                         |
| 4.0 REFERENCES                             |
| 5.0 GLOSSARY OF TERMS AND ABBREVIATIONS 11 |
| 6.0 ATTESTATION                            |

•

### LIST OF FIGURES

| Figure 1: Karst occurrence overview        | 2 |
|--------------------------------------------|---|
| Figure 2: Land ownership and PLSS overview | 4 |
| Figure 3: Geology overview                 | 5 |
| Figure 4: Survey overview                  | 6 |

## LIST OF TABLES

This report does not contain any tables.

.

## **1.0 INTRODUCTION**

An environmental karst survey was commissioned by Carmona Resources, LLC (hereinafter referred to as "the client"), on May 28, 2024, for the purpose of determining what, if any, karst-related surface features are present within a 200-foot (61-meter) boundary surrounding the Salado Draw North Pond release area (hereinafter termed "SDNP").

As indicated in section **1.3 Affected Environment**, the bedrock and overlying soil at the survey site are susceptible to sinkhole development and karst features may be hidden beneath the existing soil stratum. Risk associated with sinkhole formation can be minimized during remediation by careful excavation of the spill site and the control of site hydrology. The owner/developer must recognize, however, that a risk of sinkhole-induced damage to infrastructure does exist even after remediation. If remediation measures have not already been conducted, performing a geophysical survey to determine if subsurface karst development exists for personnel and equipment safety should be considered.

## 1.1 Goals of this Study

To provide the client with the location, description, photos, and boundaries of any surface karst-related features within a 200-meter (656-foot) survey boundary for the SDNP project as provided by the client via e-mail (**Spill Area v2.kmz**) on June 7, 2024.

## 1.2 Summary of Findings

## No surface karst features are located within the aerial karst survey area for the SDNP project.

The lack of surface karst features does not mean the area is not karstified and the survey area may still contain buried karst features. Caution should be exercised while clearing brush and during any excavation, trenching, or construction operations. Employing a Bureau of Land Management approved karst monitor on site during these operations should be considered.

## 1.3 Affected Environment

The proposed SDNP project is located in evaporite karst terrain, a landform that is characterized by underground drainage through solutionally enlarged conduits. Evaporite karst terrain may contain sinkholes, sinking streams, caves, and springs. Sinkholes leading to underground drainages and voids are common. These karst features, as well as occasional fissures and discontinuities in the bedrock, provide the primary sources for rapid recharge of the groundwater aquifers of the region.

### CARM-001-20240528

Additionally, karst may develop by hypogene processes involving dissolution by upwelling fluids from depth independent of recharge from the overlying or immediately adjacent surface. Hypogene karst systems may not be connected to the surface and can remain undiscovered unless encountered during drilling or excavation.

Karst features are delicate resources that are often of geological, hydrological, biological, and archeological importance, and should be protected. The three primary concerns in these types of terrain are environmental issues, worker safety, and infrastructure integrity.

The Bureau of Land Management (BLM) categorizes all areas within the Carlsbad Field Office (CFO) zone of responsibility as having either low, medium, high, or critical cave potential based on geology, occurrence of known caves, density of karst features, and potential impacts to freshwater aquifers<sup>[1]</sup>. These designations are also recognized by the New Mexico State Land Office (NMSLO). This project occurs within a **MEDIUM** karst occurrence zone (MKOZ)<sup>[2]</sup> (**Figure 1**).



Figure 1: Karst occurrence overview. Background image: Google Earth. Image date: January 5, 2024. Datum: WGS-84.

A medium karst occurrence zone is defined as an area in known soluble rock types that may have a shallow insoluble overburden. These areas may contain isolated karst features such as caves and sinkholes. Groundwater recharge may not be wholly dependent on karst features, but the karst features still provide the most rapid aquifer recharge in response to surface runoff<sup>[1]</sup>.

## 1.4 Limitations of Report

This report should be read in full. No responsibility is accepted for the use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

This report has been prepared for the use of Carmona Resources, LLC, in accordance with generally accepted consulting practices. Every effort has been made to ensure the information in this report is accurate as of the time of its writing. This report has not been prepared for use by parties other than the client, their contracting party, and their respective consulting advisors. It may not contain sufficient information for the purposes of other parties or for other uses.

This report was prepared upon completion of the associated fieldwork using a standard template prepared by Southwest Geophysical Consulting and is based on information collected prior to fieldwork, conditions encountered on site, and data collected during the fieldwork and reviewed at the time of preparation. Southwest Geophysical Consulting disclaims responsibility for any changes that might have occurred at the site after this time. Physical verification of aerial imagery analysis results in the field should be conducted prior to using this information for remediation planning and no decision should be based solely on this information.

To the best of our knowledge, information contained in this report is accurate at the date of issue; however, conditions on the site can change in a limited time and, therefore, the information in this report shall not be used beyond three years past the date of imagery collection (see section **2.3 Description of Survey**).
#### 2.0 LOCATION AND DESCRIPTION OF STUDY AREA

#### 2.1 Description of Site

The SDNP project site is located in Lea County, New Mexico, 70.0 kilometers (43.5 miles) southeast of Carlsbad, New Mexico, east of the junction of Orla and Battle Axe Roads (**Figure 1** and **Figure 2**). The release is located within the NE ¼ section of section 23 of NM T26S R32E<sup>[3]</sup>. The region is semi-arid with an average annual precipitation of approximately 13 inches, of which about two-thirds falls as rain during summer thunderstorms from June to October. Summers are hot and sunny while winters are generally mild, with an average maximum temperature of 96°F in July and an average minimum temperature of 28°F in January<sup>[4]</sup>. This area is within the Chihuahuan Desert Thornscrub as defined by the Southwestern Regional ReGAP Vegetation map<sup>[5]</sup> and the vegetation consists mostly of areas of grass, sparse creosote, and sparse yucca, with very good visibility in most locations. See section *2.2 Local Geology* for the geology of the area. The entirety of the survey is within an MKOZ (**Figure 1**) and within BLM-CFO managed land (**Figure 2**).



Figure 2: Land ownership<sup>[6]</sup> and PLSS<sup>[3]</sup> overview. Background image credit: Google Earth. Image date: December 20, 2023. Datum: WGS-84.

#### 2.2 Local Geology

The area surveyed for the SDNP project is located east of Red Hills Draw at an elevation of 961 meters (3,153 feet),  $\pm$  5 meters (16.4 feet), within an area underlain by the Triassic Dockum Group (TRd) and the Permian Dewey Lake Formation (PdI, covered by Quaternary deposits in the below image). The area is mantled by thin Quaternary eolian sands (Qe)<sup>[7]</sup> between 0 and 6 meters in depth (**Figure 3**).

The Dockum Group is contemporaneous with the Chinle Formation of the Colorado Plateau and is almost its exact equivalent<sup>[8]</sup>. The TRd is a mix of conglomerates, sandstones, mudstones and siltstones that are generally dark reddish-brown and contain conspicuous cross-laminations<sup>[9]</sup>.

The Dewey Lake Formation is composed of calcite-cemented, hematite-stained quartz sand grains and occasional gypsum lenses and can, in favorable conditions, form cavernous porosity within 30 meters of the top of the underlying Rustler Formation<sup>[10]</sup>. The Dewey Lake is also known to be highly fractured near areas of heavy halite dissolution (e.g., Nash Draw) and these fractures can act as hydrologic conduits<sup>[11]</sup>.

This area is moderately karstified and has several sinkholes, swallets, caves, and other karst features nearby. The survey area is covered by the easily accessible Geologic Map of New Mexico (2003) at 1:500,000 scale.



Figure 3: Geology overview. Geology overview. Map credit: The Digital Geologic Map of New Mexico in ARC/INFO Format<sup>[7]</sup>, and Google Earth. Image date: December 20, 2023. Datum: WGS-84.

#### 2.3 Description of Survey

Southwest Geophysical Consulting, in partnership with SWCA Environmental Consultants, provides aerial karst surveys using drones that are flown by qualified, FAA licensed drone pilots and that meet the stringent Bureau of Land Management – Carlsbad Field Office requirements for both pedestrian and aerial karst surveys.

Aerial karst surveys are conducted at low elevation following a preplanned raster pattern flightpath designed for the purpose of generating at least 75% imagery overlap. The collected high-resolution, georeferenced imagery is stitched together to develop orthomosaic imagery which is further developed into a digital elevation model (DEM); the DEM is then processed into a local relief model (LRM) (**Figure 4**). This LRM is color coded to enhance differences in elevation of as little as five centimeters. The orthoimagery, DEM, and LRM are uploaded to a server where they are analyzed by a highly qualified karst geologist. Finally, the data is reviewed by a senior karst geologist for quality assurance and downloaded into a table for inclusion in a written report<sup>[12]</sup>.



Figure 4: Survey overview. Background image credit: Google Earth. Image date: December 20, 2023. Datum: WGS-84.

Resolution of the orthoimagery is clear enough that features as small as 10 centimeters can be positively identified in most circumstances. Occasionally there are ambiguous features identified during an aerial survey that will need to be checked in the field if they impact the facility's location. Specifically, it is difficult to tell the difference between solution tubes, abandoned uncased well bores, and some burrows in drone imagery<sup>[13]</sup>. If an ambiguous feature is located during imagery analysis, it is marked with a yellow dot in **Figure 4**. If a feature of any likelihood is subsequently verified in the field prior to publication of the report, the dot will be changed to a red triangle if confirmed as a karst feature or deleted if not.

The imagery for this study was collected via aerial survey by Pat Lagodney of SWCA on June 14, 2024. Surface karst features may have developed after this date and will not be noted in this report. Imagery analysis was completed by David Decker of Southwest Geophysical Consulting on July 1, 2024.

Prior to conducting the aerial karst survey, a surface karst desk study was performed by Southwest Geophysical Consulting. The study was performed using satellite and aerial imagery from Google Earth Pro dated December 20, 2023 (please note features less than one meter in diameter are generally not visible using this method), the Southwest Geophysical Cave and Karst Database dated December 31, 2023, and the Paduca Breaks West, NM, 1:24,000 quad, 1973, USGS topographic map. Please note that we use older topographic maps because newer maps have had caves removed from them. These searches and queries returned no results within the survey boundary.

#### 2.4 Description of Karst Features

#### No features identified as surface karst features are located in the survey area (Figure 4).

The lack of surface karst features does not mean the area is not karstified. Please be aware that the area may contain buried karst features. Caution is advised while clearing brush and during excavation activities. Employing a BLM-CFO approved karst monitor on site during these activities should be considered.

#### **3.0 RECOMMENDATIONS**

#### 3.1 Summary

- The SDNP survey area contains no surface karst features within 200 feet (61 meters) of the spill delineation boundary provided by the client.
- This area may contain subsurface karst features.
- Caution should be exercised while clearing brush and during any excavation, trenching, or construction operations.
- Employing a BLM-CFO approved karst monitor during excavation in this area should be considered.

#### 3.2 Best Practices

This area is prone to rapid karst formation and warrants careful planning and engineering to mitigate karst-forming processes that could be accelerated during remediation processes. Karst guidelines while operating around surface features should be implemented by operators during excavation and soil removal. Mitigation measures for any karst features revealed during excavation shall be approved by the Bureau of Land Management – Carlsbad Field Office and follow the Natural Resources Conservation Service Conservation Practice Standard for Karst Sinkhole Treatment, Code 527, or the Bureau of Land Management Cave and Karst Management Handbook, H-8380-1.

Keep in mind that any flow of gypsum-undersaturated waters into a small crack or crevice can rapidly dissolve any underlying gypsum and cause failure of an impoundment or infrastructure within a matter of months to a few years. It is imperative that any dikes, buffers, or liners installed are checked regularly for integrity, with repairs made immediately upon discovery of failure.

Vigilance during construction is paramount. If voids are encountered during excavation, contact the Bureau of Land Management Karst Division at (575) 234-5972, the New Mexico State Land Office Surface Resources Division at (505) 827-5768, or a BLM-CFO approved karst vendor and request an on-site investigation from a karst expert if one is not already on site. A karst consultant can generally be available in Lea County within five hours.

Approved karst monitors should have karst feature identification training, at least two years of supervised experience identifying karst features, wilderness first aid training, SRT training, confined space training, gas monitor training, and a minimum of SPAR cave rescue training through NCRC. They should have with them the proper gear and be prepared both physically and mentally to enter a collapse feature within minutes to perform a rescue if

needed. Monitoring services with qualified karst monitors, as well as cave surveys and geophysical surveys, are available from Southwest Geophysical Consulting.

Under no circumstances should an untrained, inexperienced person enter a cave, pit, sinkhole, or collapse feature. All field employees of Southwest Geophysical Consulting have extensive caving experience and the ability to determine whether entry into a karst feature is safe or presents a hazard. In the event it is necessary to enter a karst feature, Southwest Geophysical Consulting can provide these services on request.

Cave and karst resource inventory reports for the BLM-CFO should be submitted to:

blm nm karst@blm.gov

Cave and karst resource inventory reports for the NMSLO should be submitted to the respective project manager.

#### **4.0 REFERENCES**

- 1 Goodbar, J. R. Vol. BLM Management Handbook H-8380-1 (ed Carlsbad Field Office) 59 (Bureau of Land Management, Denver, CO, 2015).
- 2 Rybacki, K. (Bureau of Land Management Carlsbad Field Office, 2020).
- 3 Earthpoint. Earthpoint Tools for Google Earth, <<u>https://www.earthpoint.us/Townships.aspx</u>> (2022).
- 4 Whitehead, W. & Flynn, C. *Plant Utilization in Southeastern New Mexico: Botany, Ethnobotany, and Archaeology*. (Bureau of Land Management, Carlsbad Field Office, 2017).
- 5 W.R.C.C. National Climate Data Center 1981-2010 Normal Climate Summary for Carlsbad, New Mexico (291469), (2010).
- 6 NMSLO. Digital overlay (KML) of the surface land ownership in New Mexico (New Mexico State Land Office, Santa Fe, NM, 2016).
- 7 Green, G. N. & Jones, G. E. *The Digital Geologic Map of New Mexico in ARC/INFO Format*, <<u>https://mrdata.usgs.gov/geology/state/state.php?state=NM</u>> (1997).
- 8 McGowen, J. H., Granata, G. E. & Seni, S. J. Depositional Setting of the Triassic Dockum Group, Texas Panhandle - Eastern New Mexico. 57 (Bureau of Economic Geology, The University of Texas at Austion, Austin, TX, 1982).
- Dickerson, R., Rupp, R. & Ford, J. Triassic Stratigraphy and Syndepostional Basin
  Development in the Central Panhandle, Carson County, Texas. *The Mountain Geologist* 51, 223-240 (2014).
- 10 Powers, D. W., Lambert, S. J., Shaffer, S.-E., Hill, L. R. & Weart, W. D. Geological Characterization Report, Waste Isolation Pilot Plant (WIPP) Site, Southeastern New Mexico. 726 (Sandia Laboratories, Albuquerque, NM, 1978).
- 11 Austin, G. S. *Geology and mineral deposits of Ochoan rocks in Delaware Basin and adjacent areas*. Vol. Circular 159 (New Mexico Bureau of Mines and Mineral Resources, 1978).
- 12 Whitehead, W., Bandy, M. & Decker, D. Protocol for Using UAV Photography for Rapid Assessment of Karst Features in Southeast New Mexico. *Proceedings of the 2022 Cave and Karst Management Symposium* (2022).
- 13 Decker, D. D. & Jorgensen, G. L. in *Southwest Geophysical Cave and Karst Database* (ed LLC Southwest Geophysical Consulting) (Albuquerque, NM, 2023).

#### **5.0 GLOSSARY OF TERMS AND ABBREVIATIONS**

| ACEC                      | Area of Critical Environmental Concern                                    |
|---------------------------|---------------------------------------------------------------------------|
| AGI                       | Advanced Geosciences Inc.                                                 |
| BLM-CFO                   | Bureau of Land Management - Carlsbad Field Office                         |
| brecciated                | Fractured rock caused by faulting or collapse.                            |
| caprock-collapse sinkhole | Collapse of roof-spanning rock into a cave or void.                       |
| cave                      | Natural opening at the surface large enough for a person to enter.        |
| cover-collapse sinkhole   | Collapse of roof-spanning soil or clay ground cover into a                |
|                           | subsurface void.                                                          |
| DDSG(XX)                  | Dipole-Dipole, Strong Gradient (XX = number of electrodes)                |
| ERI                       | Electrical Resistivity Imaging                                            |
| GPS                       | Global Positioning System                                                 |
| grike                     | A solutionally enlarged, vertical, or sub-vertical joint or fracture.     |
| (H)                       | High confidence modifier for a PKF. This is typically reserved for a      |
|                           | feature that is definitely karst but has not been confirmed in the field. |
| НКОΖ                      | High Karst Occurrence Zone                                                |
| InSAR                     | Interferometric Synthetic Aperture Radar. A method by which               |
|                           | radar signals from satellites are processed to determine the              |
|                           | amount and rate of subsidence of an area as well as whether the           |
|                           | area is actively subsiding.                                               |
| karst                     | A landscape containing solutional features such as caves,                 |
|                           | sinkholes, swallets, and springs.                                         |
| (L)                       | Low confidence modifier for a PKF. This is typically a feature that       |
|                           | cannot be ruled out as karst but is most likely NOT karst related.        |
|                           | This modifier may also be used for pseudokarst features.                  |
| LED                       | Locally enclosed depression. A natural depression on the surface that     |
|                           | collects rainwater. Some contain swallets and/or caves, others do not.    |
| LKOZ                      | Low Karst Occurrence Zone                                                 |
| (M)                       | Medium confidence modifier for PKF. This is an ambiguous feature          |
|                           | that can't be positively identified as karst without a field visit (e.g., |
|                           | burrows, abandoned unlined wells, solution tubes, pseudokarst).           |
| МКОΖ                      | Medium Karst Occurrence Zone                                              |
| NCRC                      | National Cave Rescue Commission                                           |
| NKF                       | Non-karst feature. Used for features originally identified as PKF         |
|                           | that have been subsequently identified in the field as non-karst          |
|                           | related. This term may also be used for pseudokarst features.             |
| NMSLO                     | New Mexico State Land Office                                              |

CARM-001-20240528

.

| Ohm-m              | Ohm-meter, a unit of measurement for resistivity. Also sometimes      |
|--------------------|-----------------------------------------------------------------------|
|                    | abbreviated Ω-m.                                                      |
| paleokarst         | Previously formed karst features that have been filled in by          |
|                    | erosion and/or deposition of minerals.                                |
| Pat                | Permian Artesia Group                                                 |
| Рс                 | Permian Capitan Formation                                             |
| Pcs                | Permian Castile Formation                                             |
| Pdl                | Permian Dewey Lake Formation                                          |
| PKF                | Possible karst feature. This term is reserved for features identified |
|                    | in satellite or aerial imagery that have NOT been visited in the      |
|                    | field. Further modifiers include (H) for high confidence, (M) for     |
|                    | medium confidence, and (L) for low confidence. These confidence       |
|                    | levels are based on field experience.                                 |
| PLSS               | Public Land Survey System                                             |
| Pqg                | Permian Queen/Greyburg Formation                                      |
| Pru                | Permian Rustler Formation                                             |
| pseudokarst        | Karst-like features (sinkholes, conduits, voids etc.) that are not    |
|                    | formed by dissolution. These types of features include soil piping,   |
|                    | lava tubes, and some cover-collapse and suffosion sinkholes.          |
| Psl                | Permian Salado Formation                                              |
| Psr                | Permian Seven Rivers Formation                                        |
| Pt                 | Permian Tansill Formation                                             |
| Ру                 | Permian Yates Formation                                               |
| Qal                | Quaternary alluvium                                                   |
| Qe                 | Quaternary eolian deposits                                            |
| Qp                 | Quaternary piedmont deposits                                          |
| Qpl                | Quaternary playa lake deposits                                        |
| RKF                | Recognized karst feature. This term is reserved for karst features    |
|                    | that have been physically verified in the field.                      |
| SKF                | Surface Karst Feature                                                 |
| SPAR               | Small Party Assisted Rescue                                           |
| suffosion sinkhole | Raveling of soil into a pre-existing void or fracture.                |
| swallet            | A natural opening in the surface, too small for a person, that drains |
|                    | water to an aquifer. Some are "open," meaning a void can be seen      |
|                    | below; some are "closed, "meaning they are full of sediment.          |
| SWG                | Southwest Geophysical Consulting, LLC                                 |
| То                 | Tertiary Ogallala Formation                                           |
| UTM                | Universal Transverse Mercator (projected coordinates)                 |
|                    |                                                                       |

CARM-001-20240528

©2024

•

| (V)                       | Field verified modifier for a PKF. This indicates that the feature has been visited by a qualified karst professional in the field and fully identified |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| WGS                       | World Geodetic System (geographic coordinates)                                                                                                          |
| BLM-CFO                   | Bureau of Land Management - Carlsbad Field Office                                                                                                       |
| caprock-collapse sinkhole | Collapse of roof-spanning rock into a cave or void.                                                                                                     |
| cave                      | Natural opening at the surface large enough for a person to enter.                                                                                      |
| cover-collapse sinkhole   | Raveling of soil into a pre-existing void or fracture.                                                                                                  |
| GPS                       | Global Positioning System                                                                                                                               |
| NMSLO                     | New Mexico State Land Office                                                                                                                            |
| closed depression         | A natural depression on the surface that collects rainwater. Some                                                                                       |
|                           | contain swallets and/or caves, others do not.                                                                                                           |
| Pru                       | Permian Rustler Formation                                                                                                                               |
| Psl                       | Permian Salado Formation                                                                                                                                |
| Qal                       | Quaternary alluvium                                                                                                                                     |
| Qp                        | Quaternary piedmont deposits                                                                                                                            |
| swallet                   | A natural opening in the surface, too small for a person, that                                                                                          |
|                           | drains water to an aquifer. Some are "open," meaning a void can                                                                                         |
|                           | be seen below; some are "closed, "meaning they are full of                                                                                              |
|                           | sediment.                                                                                                                                               |
| WGS                       | World Geodetic System                                                                                                                                   |
|                           |                                                                                                                                                         |

.

#### **6.0 ATTESTATION**

#### David D. Decker, PhD, PG, CPG

Chief Executive Officer, Principal Geologist Southwest Geophysical Consulting, LLC 5117 Fairfax Dr. NW Albuquerque, NM 87114 <u>dave@swgeophys.com</u> (505) 585-2550

#### **CERTIFICATE OF AUTHOR**

I, David D. Decker, a Licensed Professional Geologist and a Certified Professional Geologist, do certify that:

- I am currently employed as a consulting geologist in the specialty of caves and karst with an office address of 5117 Fairfax Dr. NW, Albuquerque, NM, USA, 87114.
- I graduated with a Master of Science in Applied Physics with a specialization in Sensor Systems from the Naval Post Graduate School in Monterey, California, in 2003, and a Doctor of Philosophy in Earth and Planetary Sciences from the University of New Mexico, Albuquerque, New Mexico, in 2018.
- I am a Licensed Professional Geologist in the State of Texas, USA (PG-15242) and have been since 2021. I am a Certified Professional Geologist through the American Institute of Professional Geologists (CPG-12123) and have been since 2021.
- I have been employed as a geologist continuously since 2016. I was previously employed as a Fire Controlman, Naval Flight Officer, and Aerospace Engineering Duty Officer in the U.S. Navy and operated, maintained, and installed various sensor systems including magnetic, electromagnetic, radar, communications, and acoustic systems in various capacities from 1986 through 2010.
- I have been involved in various aspects of cave and karst studies continuously since 1985, including exploration, mapping, and scientific studies.
- I have read the definition of "qualified karst professional" set out in the ASTM Standard (currently in review). I meet the definition of "qualified professional" for the purposes of ASTM E-1527.
- I am responsible for the content, compilation, and editing of all sections of report number CARM-001-20240528 entitled, "Cave and Karst Resource Inventory Report, Salado Draw North Pond, Lea County, New Mexico." I or a duly authorized and qualified representative of Southwest Geophysical Consulting, LLC, have personally visited this site and/or reviewed the aerial imagery on the date or dates mentioned in section 2.3 Description of Survey.

• I have no prior involvement nor monetary interest in the described property or project, save for my fee for conducting this investigation and providing the report.

Dated in Albuquerque, New Mexico, July 9, 2024.



David D. Decker PhD, CPG-12123





# Cave and Karst Resource Inventory Report Salado Draw Pasture Release Lea County, New Mexico

## Prepared for: Carmona Resources, LLC 310 West Wall Street, Suite 500 Midland, TX 79701

□ Positive within 200 feet of spill delineation boundary

☑ Negative within 200 feet of spill delineation boundary

□ Karst Monitor Recommended

### September 13, 2024

CARM-002-20240814

Copyright 2024 – Southwest Geophysical Consulting, LLC All rights reserved.

i

Published by: Southwest Geophysical Consulting, LLC 5117 Fairfax Dr. NW Albuquerque, NM 87114 (505) 585-2550 www.swgeophys.com

#### Prepared by: David D. Decker, PhD, PG, CPG Principal, Chief Executive Officer dave@swgeophys.com

Reviewed by: David D. Decker, PhD, PG, CPG Principal, Chief Executive Officer dave@swgeophys.com

Prepared for: Carmona Resources, LLC 310 West Wall Street, Suite 500 Midland, TX 79701

Point of Contact: Mr. Ashton Thielke 432-813-8988 ThielkeA@carmonaresources.com

#### MMXXIV

#### CARM-002-20240814

©2024

Released to Imaging: 7/17/2025 2:17:58 PM

#### TABLE OF CONTENTS

| FRONT MATTER i                             |
|--------------------------------------------|
| TABLE OF CONTENTSii                        |
| LIST OF FIGURESiii                         |
| LIST OF TABLESiii                          |
| 1.0 INTRODUCTION                           |
| 1.1 Goals of this Study1                   |
| 1.2 Summary of Findings                    |
| 1.3 Affected Environment                   |
| 1.4 Limitations of Report                  |
| 2.0 LOCATION AND DESCRIPTION OF STUDY AREA |
| 2.1 Description of Site                    |
| 2.2 Local Geology Summary 5                |
| 2.3 Description of Survey                  |
| 2.4 Description of Karst Features          |
| 3.0 RECOMMENDATIONS                        |
| 3.1 Summary 8                              |
| 3.2 Disclosure Statement                   |
| 4.0 REFERENCES                             |
| 5.0 GLOSSARY OF TERMS AND ABBREVIATIONS 12 |
| 6.0 ATTESTATION                            |

•

#### LIST OF FIGURES

| Figure 1: Karst occurrence overview        | 2 |
|--------------------------------------------|---|
| Figure 2: Land ownership and PLSS overview | 4 |
| Figure 3: Geology overview                 | 5 |
| Figure 4: Survey overview                  | 6 |

#### LIST OF TABLES

This report does not contain any tables.

.

#### **1.0 INTRODUCTION**

An environmental karst survey was commissioned by Carmona Resources, LLC (hereinafter referred to as "the client"), on August 14, 2024, for the purpose of determining what, if any, karst-related surface features are present within a 200-foot (61-meter) boundary surrounding the Salado Draw Pasture Release area (hereinafter termed "SDPR").

As indicated in section **1.3 Affected Environment**, the bedrock and overlying soil at the survey site are susceptible to sinkhole development and karst features may be hidden beneath the existing soil stratum. Risk associated with sinkhole formation can be minimized during remediation by careful excavation of the spill site and the control of site hydrology. The owner/developer must recognize, however, that a risk of sinkhole-induced damage to infrastructure does exist even after remediation. If remediation measures have not already been conducted, performing a geophysical survey to determine if subsurface karst development exists for personnel and equipment safety should be considered.

#### 1.1 Goals of this Study

To provide the client with the location, description, photos, and buffers of any surface karstrelated features within a 200-foot (61-meter) survey boundary<sup>[1]</sup> for the SDPR project as provided by the client via e-mail (**Salado Draw Pasture - Carmona Resources - Karst Survey Outline.kmz**) on August 14, 2024.

#### 1.2 Summary of Findings

No surface karst features are located within 200 feet (61 meters) of the spill delineation boundary for the SDPR project. Additionally, no surface karst features are located within the standard 200-meter karst survey boundary.

The lack of surface karst features does not mean the area is not karstified and the survey area may still contain buried karst features. Caution should be exercised while clearing brush and during any excavation operations.

A geophysical survey has not been conducted at this location<sup>[2]</sup>; therefore a subsurface evaluation has **NOT** been performed and a finding of stable ground beneath the release site cannot be provided at this time.

#### 1.3 Affected Environment

The proposed SDPR project is located in evaporite karst terrain, a landform that is characterized by underground drainage through solutionally enlarged conduits. Evaporite karst terrain may contain sinkholes, sinking streams, caves, and springs. Sinkholes leading to

CARM-002-20240814

©2024

underground drainages and voids are common. These karst features, as well as occasional fissures and discontinuities in the bedrock, provide the primary sources for rapid recharge of the groundwater aquifers of the region.

Additionally, karst may develop by hypogene processes involving dissolution by upwelling fluids from depth independent of recharge from the overlying or immediately adjacent surface. Hypogene karst systems may not be connected to the surface and can remain undiscovered unless encountered during drilling or excavation.

Karst features are delicate resources that are often of geological, hydrological, biological, and archeological importance, and should be protected. The three primary concerns in these types of terrain are environmental issues, worker safety, and infrastructure integrity.

The Bureau of Land Management (BLM) categorizes all areas within the Carlsbad Field Office (CFO) zone of responsibility as having either low, medium, high, or critical cave potential based on geology, occurrence of known caves, density of karst features, and potential impacts to freshwater aquifers<sup>[3]</sup>. These designations are also recognized by the New Mexico State Land Office (NMSLO). This project occurs within a **MEDIUM** karst occurrence zone (MKOZ)<sup>[4]</sup> (**Figure 1**).



Figure 1: Karst occurrence overview. Background image: Google Earth. Image date: January 5, 2024. Datum: WGS-84.

A medium karst occurrence zone is defined as an area in known soluble rock types that may have a shallow insoluble overburden. These areas may contain isolated karst features such as caves and sinkholes. Groundwater recharge may not be wholly dependent on karst features, but the karst features still provide the most rapid aquifer recharge in response to surface runoff<sup>[3]</sup>.

#### 1.4 Limitations of Report

This report should be read in full. No responsibility is accepted for the use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

This report has been prepared for the use of Carmona Resources, LLC, in accordance with generally accepted consulting practices. Every effort has been made to ensure the information in this report is accurate as of the time of its writing. This report has not been prepared for use by parties other than the client, their contracting party, and their respective consulting advisors. It may not contain sufficient information for the purposes of other parties or for other uses.

This report was prepared upon completion of the associated fieldwork using a standard template prepared by Southwest Geophysical Consulting and is based on information collected prior to fieldwork, conditions encountered on site, and data collected during the fieldwork and reviewed at the time of preparation. Southwest Geophysical Consulting disclaims responsibility for any changes that might have occurred at the site after this time. Physical verification of aerial imagery analysis results in the field should be conducted prior to using this information for remediation planning. Physical verification of geophysical results using geotechnical methods should be considered.

To the best of our knowledge, information contained in this report is accurate at the date of issue; Due to the nature of karst terrain, information in this report shall not be used beyond three years past the date of imagery collection (see section **2.3 Description of Survey**).

#### 2.0 LOCATION AND DESCRIPTION OF STUDY AREA

#### 2.1 Description of Site

The SDPR project site is located in Lea County, New Mexico, 44.2 kilometers (27.4 miles) west-southwest of Jal, New Mexico (**Figure 1** and **Figure 2**). The release is located within the NW ¼ section of section 23 of NM T26S R32E<sup>[5]</sup>. The region is semi-arid with an average annual precipitation of approximately 13 inches, of which about two-thirds falls as rain during summer thunderstorms from June to October. Summers are hot and sunny while winters are generally mild, with an average maximum temperature of 96°F in July and an average minimum temperature of 28°F in January<sup>[6]</sup>. This area is within the Chihuahuan Desert Thornscrub as defined by the Southwestern Regional ReGAP Vegetation map<sup>[7]</sup> and the vegetation consists mostly of areas of grass, sparse creosote, and sparse yucca, with very good visibility in most locations. See section *2.2 Local Geology* for the geology of the area. The entirety of the survey is within an MKOZ (**Figure 1**) and within BLM-CFO managed land (**Figure 2**).



Figure 2: Land ownership<sup>[8]</sup> and PLSS<sup>[5]</sup> overview. Background image credit: Google Earth. Image date: December 20, 2023. Datum: WGS-84.

#### 2.2 Local Geology Summary

The area surveyed for the SDPR project is located east of Red Hills Draw at an elevation of 959 meters (3,146 feet),  $\pm$  2 meters (6.6 feet), within an area underlain by the Triassic Dockum Group (TRd) and the Permian Dewey Lake Formation (Pdl, covered by Quaternary deposits in the below image). The area is mantled by thin Quaternary eolian sands (Qe)<sup>[9]</sup> between 0 and 6 meters in depth (**Figure 3**).

The Dockum Group is contemporaneous with the Chinle Formation of the Colorado Plateau and is almost its exact equivalent<sup>[10]</sup>. The TRd is a mix of conglomerates, sandstones, mudstones and siltstones that are generally dark reddish-brown and contain conspicuous cross-laminations<sup>[11]</sup>.

The Dewey Lake Formation is composed of calcite-cemented, hematite-stained quartz sand grains and occasional gypsum lenses and can, in favorable conditions, form cavernous porosity within 30 meters of the top of the underlying Rustler Formation<sup>[12]</sup>. The Dewey Lake is also known to be highly fractured near areas of heavy halite dissolution (e.g., Nash Draw) and these fractures can act as hydrologic conduits<sup>[13]</sup>.

This area is moderately karstified and has sinkholes, swallets, caves, and other karst features nearby. The survey area is covered by the easily accessible Geologic Map of New Mexico (2003) at 1:500,000 scale<sup>[14]</sup>.



Figure 3: Geology overview. Map credit: The Digital Geologic Map of New Mexico in ARC/INFO Format<sup>[9]</sup>, and Google Earth. Image date: December 20, 2023. Datum: WGS-84.

#### 2.3 Description of Survey

Southwest Geophysical Consulting, in partnership with SWCA Environmental Consultants, provides aerial karst surveys using drones that are flown by qualified, FAA licensed drone pilots and that meet the stringent Bureau of Land Management – Carlsbad Field Office requirements for both pedestrian and aerial karst surveys.

Aerial karst surveys are conducted at low elevation following a preplanned raster pattern flightpath designed for the purpose of generating at least 75% imagery overlap. The collected high-resolution, georeferenced imagery is stitched together to develop orthomosaic imagery which is further developed into a digital elevation model (DEM); the DEM is then processed into a local relief model (LRM) (**Figure 4**). This LRM is color coded to enhance differences in elevation of as little as five centimeters. The orthoimagery, DEM, and LRM are uploaded to a server where they are analyzed by a highly qualified karst geologist. Finally, the data is reviewed by a senior karst geologist for quality assurance and downloaded into a table for inclusion in a written report<sup>[15]</sup>.



Figure 4: Survey overview. Background image credit: Google Earth. Image date: December 20, 2023. Datum: WGS-84.

Resolution of the orthoimagery is clear enough that features as small as 10 centimeters can be positively identified in most circumstances. Occasionally there are ambiguous features identified during an aerial survey that will need to be checked in the field if they impact the facility's location. Specifically, it is difficult to tell the difference between solution tubes, abandoned uncased well bores, and some burrows in drone imagery<sup>[16]</sup>. If an ambiguous feature is located during imagery analysis, it is marked with a yellow dot in **Figure 4**. If a feature of any likelihood is subsequently verified in the field prior to publication of the report, the dot will be changed to a red triangle if confirmed as a karst feature or deleted if not.

The imagery for this study was collected via aerial survey by Pat Lagodney of SWCA on August 19, 2024. Surface karst features may have developed after this date and will not be noted in this report. Imagery analysis was completed by David Decker of Southwest Geophysical Consulting on August 25, 2024.

Prior to conducting the aerial karst survey, a surface karst desk study was performed by Southwest Geophysical Consulting within 305 meters (1,000 feet) of the spill delineation boundary<sup>[1]</sup>. The study was performed using satellite and aerial imagery from Google Earth Pro dated December 20, 2023 (please note features less than one meter in diameter are generally not visible using this method), the Southwest Geophysical Cave and Karst Database dated December 31, 2023<sup>[17]</sup>, the Paduca Breaks West, NM, 1:24,000 quad, 1973, USGS topographic map, and the most recently available lidar data set from CalTopo (caltopo.com). Please note that we use older topographic maps because newer maps have had caves removed from them. These searches and queries returned no results within the survey boundary.

#### 2.4 Description of Karst Features

#### No features identified as surface karst features are located within the survey area (Figure 4).

The lack of surface karst features does not mean the area is not karstified. Please be aware that the area may contain buried karst features. Caution is advised while clearing brush and during excavation activities.

A geophysical survey has not been conducted at this location<sup>[2]</sup>; therefore a subsurface evaluation has **NOT** been performed and a finding of stable ground beneath the release site cannot be provided at this time.

#### **3.0 RECOMMENDATIONS**

#### 3.1 Summary

- The SDPR survey area contains no surface karst features within 200 feet (61 meters) of the spill delineation boundary provided by the client.
- This area may contain subsurface karst features.
- Caution should be exercised while clearing brush and during any excavation operations.
- A geophysical survey has not been conducted at this location; therefore a subsurface evaluation has **NOT** been performed and a finding of stable ground beneath the release site cannot be provided at this time.

#### 3.2 Disclosure Statement

Mitigation measures for any karst features revealed during excavation shall be approved by the Bureau of Land Management – Carlsbad Field Office and follow the Natural Resources Conservation Service Conservation Practice Standard for Karst Sinkhole Treatment, Code 527, or the Bureau of Land Management Cave and Karst Management Handbook, H-8380-1.

If voids are encountered during excavation, contact the Bureau of Land Management Karst Division at (575) 234-5972, the New Mexico State Land Office Surface Resources Division at (505) 827-5768, or a BLM-CFO approved karst vendor and request an on-site investigation from a karst expert if one is not already on site. A karst consultant can generally be available in Lea County within five hours.

Approved karst monitors should have karst feature identification training, at least two years of supervised experience identifying karst features, wilderness first aid training, SRT training, confined space training, gas monitor training, and a minimum of SPAR cave rescue training through NCRC. They should have with them the proper gear and be prepared both physically and mentally to enter a collapse feature within minutes to perform a rescue if needed. Monitoring services with qualified karst monitors, as well as cave surveys and geophysical surveys, are available from Southwest Geophysical Consulting.

Under no circumstances should an untrained, inexperienced person enter a cave, pit, sinkhole, or collapse feature. All field employees of Southwest Geophysical Consulting have extensive caving experience and the ability to determine whether entry into a karst feature is safe or presents a hazard. In the event it is necessary to enter a karst feature, Southwest Geophysical Consulting can provide these services on request. Cave and karst resource inventory reports for the BLM-CFO should be submitted to:

#### blm nm karst@blm.gov

Cave and karst resource inventory reports for the NMSLO should be submitted to the respective project manager.

Environmental karst survey reports for the OCD should be submitted to the respective project manager.

#### **4.0 REFERENCES**

- 1 Division, O. C. *Title 19, Chapter 15, Part 29* (Oil Conservation Division, 2018).
- 2 Decker, D. & Jorgensen, G. L. *Environmental Karst Surveys White Paper* (Southwest Geophysical Consulting, LLC, 2024).
- 3 Goodbar, J. R. Vol. BLM Management Handbook H-8380-1 (ed Carlsbad Field Office) 59 (Bureau of Land Management, Denver, CO, 2015).
- 4 Rybacki, K. (Bureau of Land Management Carlsbad Field Office, 2020).
- 5 Earthpoint. *Earthpoint Tools for Google Earth,* <<u>https://www.earthpoint.us/Townships.aspx</u>> (2022).
- 6 W.R.C.C. National Climate Data Center 1981-2010 Normal Climate Summary for Carlsbad, New Mexico (291469), 2010).
- 7 Whitehead, W. & Flynn, C. *Plant Utilization in Southeastern New Mexico: Botany, Ethnobotany, and Archaeology*. (Bureau of Land Management, Carlsbad Field Office, 2017).
- 8 NMSLO. Digital overlay (KML) of the surface land ownership in New Mexico (New Mexico State Land Office, Santa Fe, NM, 2016).
- 9 Green, G. N. & Jones, G. E. *The Digital Geologic Map of New Mexico in ARC/INFO Format*, <<u>https://mrdata.usgs.gov/geology/state/state.php?state=NM</u>> (1997).
- 10 McGowen, J. H., Granata, G. E. & Seni, S. J. Depositional Setting of the Triassic Dockum Group, Texas Panhandle - Eastern New Mexico. 57 (Bureau of Economic Geology, The University of Texas at Austion, Austin, TX, 1982).
- Dickerson, R., Rupp, R. & Ford, J. Triassic Stratigraphy and Syndepostional Basin
  Development in the Central Panhandle, Carson County, Texas. *The Mountain Geologist* 51, 223-240 (2014).
- 12 Powers, D. W., Lambert, S. J., Shaffer, S.-E., Hill, L. R. & Weart, W. D. Geological Characterization Report, Waste Isolation Pilot Plant (WIPP) Site, Southeastern New Mexico. 726 (Sandia Laboratories, Albuquerque, NM, 1978).
- 13 Austin, G. S. *Geology and mineral deposits of Ochoan rocks in Delaware Basin and adjacent areas*. Vol. Circular 159 (New Mexico Bureau of Mines and Mineral Resources, 1978).
- 14 Scholle, P. A. Geologic Map of New Mexico. (2003).
- 15 Whitehead, W., Bandy, M. & Decker, D. Protocol for Using UAV Photography for Rapid Assessment of Karst Features in Southeast New Mexico. *Proceedings of the 2022 Cave and Karst Management Symposium* (2022).

- 16 Decker, D. *Discussion on karst feature naming standards for Southwest Geophysical Consulting, LLC* (Southwest Geophysical Consulting, LLC, 2022).
- 17 Decker, D. D. & Jorgensen, G. L. in *Southwest Geophysical Cave and Karst Database* (ed LLC Southwest Geophysical Consulting) (Albuquerque, NM, 2023).

#### **5.0 GLOSSARY OF TERMS AND ABBREVIATIONS**

| ACEC                      | Area of Critical Environmental Concern                                    |
|---------------------------|---------------------------------------------------------------------------|
| AGI                       | Advanced Geosciences Inc.                                                 |
| BLM-CFO                   | Bureau of Land Management - Carlsbad Field Office                         |
| brecciated                | Fractured rock caused by faulting or collapse.                            |
| caprock-collapse sinkhole | Collapse of roof-spanning rock into a cave or void.                       |
| cave                      | Natural opening at the surface large enough for a person to enter.        |
| cover-collapse sinkhole   | Collapse of roof-spanning soil or clay ground cover into a                |
|                           | subsurface void.                                                          |
| DDSG(XX)                  | Dipole-Dipole, Strong Gradient (XX = number of electrodes)                |
| ERI                       | Electrical Resistivity Imaging                                            |
| GPS                       | Global Positioning System                                                 |
| grike                     | A solutionally enlarged, vertical, or sub-vertical joint or fracture.     |
| (H)                       | High confidence modifier for a PKF. This is typically reserved for a      |
|                           | feature that is definitely karst but has not been confirmed in the field. |
| НКОΖ                      | High Karst Occurrence Zone                                                |
| InSAR                     | Interferometric Synthetic Aperture Radar. A method by which               |
|                           | radar signals from satellites are processed to determine the              |
|                           | amount and rate of subsidence of an area as well as whether the           |
|                           | area is actively subsiding.                                               |
| karst                     | A landscape containing solutional features such as caves,                 |
|                           | sinkholes, swallets, and springs.                                         |
| (L)                       | Low confidence modifier for a PKF. This is typically a feature that       |
|                           | cannot be ruled out as karst but is most likely NOT karst related.        |
|                           | This modifier may also be used for pseudokarst features.                  |
| LED                       | Locally enclosed depression. A natural depression on the surface that     |
|                           | collects rainwater. Some contain swallets and/or caves, others do not.    |
| LKOZ                      | Low Karst Occurrence Zone                                                 |
| (M)                       | Medium confidence modifier for PKF. This is an ambiguous feature          |
|                           | that can't be positively identified as karst without a field visit (e.g., |
|                           | burrows, abandoned unlined wells, solution tubes, pseudokarst).           |
| МКОΖ                      | Medium Karst Occurrence Zone                                              |
| NCRC                      | National Cave Rescue Commission                                           |
| NKF                       | Non-karst feature. Used for features originally identified as PKF         |
|                           | that have been subsequently identified in the field as non-karst          |
|                           | related. This term may also be used for pseudokarst features.             |
| NMSLO                     | New Mexico State Land Office                                              |

CARM-002-20240814

.

| Ohm-m              | Ohm-meter, a unit of measurement for resistivity. Also sometimes      |
|--------------------|-----------------------------------------------------------------------|
|                    | abbreviated Ω-m.                                                      |
| paleokarst         | Previously formed karst features that have been filled in by          |
|                    | erosion and/or deposition of minerals.                                |
| Pat                | Permian Artesia Group                                                 |
| Рс                 | Permian Capitan Formation                                             |
| Pcs                | Permian Castile Formation                                             |
| Pdl                | Permian Dewey Lake Formation                                          |
| PKF                | Possible karst feature. This term is reserved for features identified |
|                    | in satellite or aerial imagery that have NOT been visited in the      |
|                    | field. Further modifiers include (H) for high confidence, (M) for     |
|                    | medium confidence, and (L) for low confidence. These confidence       |
|                    | levels are based on field experience.                                 |
| PLSS               | Public Land Survey System                                             |
| Pqg                | Permian Queen/Greyburg Formation                                      |
| Pru                | Permian Rustler Formation                                             |
| pseudokarst        | Karst-like features (sinkholes, conduits, voids etc.) that are not    |
|                    | formed by dissolution. These types of features include soil piping,   |
|                    | lava tubes, and some cover-collapse and suffosion sinkholes.          |
| Psl                | Permian Salado Formation                                              |
| Psr                | Permian Seven Rivers Formation                                        |
| Pt                 | Permian Tansill Formation                                             |
| Ру                 | Permian Yates Formation                                               |
| Qal                | Quaternary alluvium                                                   |
| Qe                 | Quaternary eolian deposits                                            |
| Qp                 | Quaternary piedmont deposits                                          |
| Qpl                | Quaternary playa lake deposits                                        |
| RKF                | Recognized karst feature. This term is reserved for karst features    |
|                    | that have been physically verified in the field.                      |
| SKF                | Surface Karst Feature                                                 |
| SPAR               | Small Party Assisted Rescue                                           |
| suffosion sinkhole | Raveling of soil into a pre-existing void or fracture.                |
| swallet            | A natural opening in the surface, too small for a person, that drains |
|                    | water to an aquifer. Some are "open," meaning a void can be seen      |
|                    | below; some are "closed, "meaning they are full of sediment.          |
| SWG                | Southwest Geophysical Consulting, LLC                                 |
| Trd                | Triassic Dockum Group                                                 |
| То                 | Tertiary Ogallala Formation                                           |
|                    |                                                                       |

•

| UTM                       | Universal Transverse Mercator (projected coordinates)               |
|---------------------------|---------------------------------------------------------------------|
| (V)                       | Field verified modifier for a PKF. This indicates that the feature  |
|                           | has been visited by a qualified karst professional in the field and |
|                           | fully identified                                                    |
| WGS                       | World Geodetic System (geographic coordinates)                      |
| BLM-CFO                   | Bureau of Land Management - Carlsbad Field Office                   |
| caprock-collapse sinkhole | Collapse of roof-spanning rock into a cave or void.                 |
| cave                      | Natural opening at the surface large enough for a person to enter.  |
| cover-collapse sinkhole   | Raveling of soil into a pre-existing void or fracture.              |
| GPS                       | Global Positioning System                                           |
| NMSLO                     | New Mexico State Land Office                                        |
| closed depression         | A natural depression on the surface that collects rainwater. Some   |
|                           | contain swallets and/or caves, others do not.                       |
| Pru                       | Permian Rustler Formation                                           |
| Psl                       | Permian Salado Formation                                            |
| Qal                       | Quaternary alluvium                                                 |
| Qp                        | Quaternary piedmont deposits                                        |
| swallet                   | A natural opening in the surface, too small for a person, that      |
|                           | drains water to an aquifer. Some are "open," meaning a void can     |
|                           | be seen below; some are "closed, "meaning they are full of          |
|                           | sediment.                                                           |
| WGS                       | World Geodetic System                                               |
|                           |                                                                     |

•

#### **6.0 ATTESTATION**

#### David D. Decker, PhD, PG, CPG

Chief Executive Officer, Principal Geologist Southwest Geophysical Consulting, LLC 5117 Fairfax Dr. NW Albuquerque, NM 87114 <u>dave@swgeophys.com</u> (505) 585-2550

#### **CERTIFICATE OF AUTHOR**

I, David D. Decker, a Licensed Professional Geologist and a Certified Professional Geologist, do certify that:

- I am currently employed as a consulting geologist in the specialty of caves and karst with an office address of 5117 Fairfax Dr. NW, Albuquerque, NM, USA, 87114.
- I graduated with a Master of Science in Applied Physics with a specialization in Sensor Systems from the Naval Post Graduate School in Monterey, California, in 2003, and a Doctor of Philosophy in Earth and Planetary Sciences from the University of New Mexico, Albuquerque, New Mexico, in 2018.
- I am a Licensed Professional Geologist in the State of Texas, USA (PG-15242) and have been since 2021. I am a Certified Professional Geologist through the American Institute of Professional Geologists (CPG-12123) and have been since 2021.
- I have been employed as a geologist continuously since 2016. I was previously employed as a Fire Controlman, Naval Flight Officer, and Aerospace Engineering Duty Officer in the U.S. Navy and operated, maintained, and installed various sensor systems including magnetic, electromagnetic, radar, communications, and acoustic systems in various capacities from 1986 through 2010.
- I have been involved in various aspects of cave and karst studies continuously since 1985, including exploration, mapping, and scientific studies.
- I have read the definition of "qualified karst professional" set out in the ASTM Standard Practice for Preliminary Karst Terrain Assessment for Site Development (ASTM E-1527). I meet the definition of "qualified professional" for the purposes of this standard.
- I am responsible for the content, compilation, and editing of all sections of report number CARM-002-20240814 entitled, "Cave and Karst Resource Inventory Report, Salado Draw Pasture Release, Lea County, New Mexico." I or a duly authorized and qualified representative of Southwest Geophysical Consulting, LLC, have personally visited this site and/or reviewed the aerial imagery on the date or dates mentioned in section 2.3 Description of Survey.

• I have no prior involvement nor monetary interest in the described property or project, save for my fee for conducting this investigation and providing the report.

Dated in Albuquerque, New Mexico, September 16, 2024.



David D. Decker PhD, CPG-12123



(R=POD has



### New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been

| the POD has been<br>replaced<br>& no longer<br>serves a water<br>right file.) | been<br>replaced,<br>O=orphaned,<br>C=the file is<br>closed) |              |        | (quart<br>smalle<br>larges |     |    |     |     |       |          |             |     | (meters) |               | (In feet) | )               |
|-------------------------------------------------------------------------------|--------------------------------------------------------------|--------------|--------|----------------------------|-----|----|-----|-----|-------|----------|-------------|-----|----------|---------------|-----------|-----------------|
| POD Number                                                                    | Code                                                         | Sub<br>basin | County | Q64                        | Q16 | Q4 | Sec | Tws | Range | x        | Y           | Мар | Distance | Well<br>Depth |           | Water<br>Column |
| <u>C 04880 POD1</u>                                                           |                                                              | CUB          | LE     | SW                         | SE  | SE | 14  | 26S | 32E   | 628447.5 | 3545287.3   | ۹   | 582      | 112           |           |                 |
| <u>C 04485 POD1</u>                                                           |                                                              | CUB          | LE     | SE                         | NW  | NW | 12  | 26S | 32E   | 629038.9 | 3548125.2   | ٩   | 3081     | 55            |           |                 |
| <u>C 04549 POD1</u>                                                           |                                                              | CUB          | LE     | NW                         | NW  | NW | 11  | 26S | 32E   | 627111.4 | 3548316.9   | ٩   | 3133     | 0             | 0         | 0               |
| <u>C 02271</u>                                                                | R                                                            | CUB          | LE     |                            | NE  | SW | 21  | 26S | 32E   | 624449.0 | 3544111.0 * |     | 3608     | 150           | 125       | 25              |
| <u>C 03595 POD1</u>                                                           |                                                              | CUB          | LE     | SE                         | NE  | SW | 21  | 26S | 32E   | 624422.6 | 3544045.9   |     | 3655     | 280           | 180       | 100             |
| <u>C 02271 POD2</u>                                                           |                                                              | CUB          | LE     | SW                         | NE  | SW | 21  | 26S | 32E   | 624348.0 | 3544010.0 * | ٩   | 3737     | 270           | 250       | 20              |
| <u>C 02323</u>                                                                |                                                              | С            | LE     | SW                         | NE  | SW | 21  | 26S | 32E   | 624348.0 | 3544010.0 * | •   | 3737     | 405           | 405       | 0               |
| <u>C 03537 POD1</u>                                                           |                                                              | CUB          | LE     | SW                         | NE  | SW | 21  | 26S | 32E   | 624250.4 | 3543985.6   | •   | 3837     | 850           |           |                 |
|                                                                               |                                                              |              |        |                            |     |    |     |     |       |          |             |     |          |               |           |                 |

#### Average Depth to Water: 192 feet

Minimum Depth: 0 feet

Maximum Depth: 405 feet

Record Count: 8

UTM Filters (in meters): Easting: 627864.66 Northing: 3545275.70 Radius: 4000

\* UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

PAGE 1 OF 2



# WELL RECORD & LOG

### OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

| 50 11 10 10 10 10 10 10 10 10 10 10 10 10 | Contra State College and an an | COLOR DOLLARS |                                    | States States States                  |                                 |             | S. Marshall Control | and the second se |                                   | A TRACTOR STATE | A NEW ALL PARTY OF THE ST |              |
|-------------------------------------------|--------------------------------|---------------|------------------------------------|---------------------------------------|---------------------------------|-------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------|---------------------------|--------------|
| NO                                        | OSE POD NO<br>Pod 1            | . (WELL N     | ¥O.)                               |                                       | WELL TAG ID NO                  | ).          |                     | OSE FILE NO(<br>C-4880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S).                               |                 |                           |              |
| OCATI                                     | well own<br>Chevron U          |               | (S)<br>(Agent-H&R Ente             | erprises, LLC/J                       | ames Hawley)                    |             |                     | PHONE (OPTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ONAL)                             |                 |                           |              |
| GENERAL AND WELL LOCATION                 | WELL OWN<br>PO 3641            | ER MAILI      | NG ADDRESS                         | · · · · · · · · · · · · · · · · · · · |                                 |             |                     | CITY<br>Hobbs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   | state<br>NM     | 88241                     | ZIP          |
| ND                                        | WELL                           |               |                                    | DEGREES                               | MINUTES                         | SECONI      | DS                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                 |                           |              |
| AL A                                      | LOCATIO                        | N L           | ATITUDE                            | 32                                    | 02                              | 11.3        | N                   | * ACCURACY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | REQUIRED: ONE TEN                 | TH OF A         | SECOND                    |              |
| NER                                       | (FROM GF                       | rS)           | ONGITUDE                           | 103                                   | 38                              | 22.7        | W                   | * DATUM REG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QUIRED: WGS 84                    |                 |                           |              |
| 1. GEI                                    | DESCRIPTIO                     | ON RELAT      | FING WELL LOCATION                 | TO STREET ADD                         | RESS AND COMMO                  | N LANDMA    | RKS – PLS           | SS (SECTION, TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WNSHJIP, RANGE) WH                | ERE AVA         | AILABLE                   |              |
|                                           | LICENSE NO                     | ).            | NAME OF LICENS                     | ED DRILLER                            |                                 |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NAME OF WELL DR                   | ILLING C        | COMPANY                   |              |
|                                           | WD-1                           | 1862          |                                    |                                       | James Hawley                    |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H&F                               | R Enterp        | rises, LLC                |              |
|                                           | DRILLING S<br>9-24             |               | DRILLING ENDED<br>9-24-24          | DEPTH OF CO                           | MPLETED WELL (F<br>112'         | FT)         |                     | LE DEPTH (FT)<br>112'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DEPTH WATER FIR                   | ST ENCO<br>N/A  |                           |              |
| Z                                         | COMPLETE                       | O WELL IS     | S: ARTESIAN *a<br>Centralizer info |                                       | LE 🗌 SHALLO                     | OW (UNCON   | FINED)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I<br>WATER LEVEL<br>PLETED WELL N | /A              | DATE STATIC               |              |
| VIIO                                      | DRILLING F                     | LUID:         | ✓ AIR                              | MUD                                   | ADDITIV                         | VES – SPECI | FY:                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                 |                           |              |
| 2. DRILLING & CASING INFORMATION          | DRILLING N                     | TETHOD:       | 🖌 ROTARY 🗌 HA                      | MMER 🗌 CAB                            | LE TOOL 🔲 OTH                   | HER – SPECI | FY:                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CHECK                             | HERE IF         | PITLESS ADAI              | TER IS       |
| NFO                                       | DEPTH                          | (feet bgl)    | BORE HOLE                          | CASING                                | MATERIAL AN                     | D/OR        | 0                   | CDIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CASING                            |                 |                           |              |
| I SN                                      | FROM                           | TO            | DIAM                               |                                       | GRADE<br>each casing string     | and         | CON                 | ASING<br>NECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | INSIDE DIAM.                      |                 | ING WALL<br>ICKNESS       | SLOT<br>SIZE |
| CASI                                      | 01                             | 110           | (inches)                           | note                                  | sections of screen              | )           |                     | TYPE<br>ling diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (inches)                          | (               | (inches)                  | (inches)     |
| G&                                        | 0'                             | 112'          | 6"                                 | NO                                    | Casing left in hole             | ;           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                 |                           |              |
| TIN                                       |                                | 8             |                                    |                                       |                                 |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                 |                           |              |
| DRIL                                      |                                |               |                                    |                                       |                                 |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                 |                           |              |
| 2.1                                       |                                |               |                                    |                                       |                                 |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                 |                           |              |
|                                           |                                |               |                                    |                                       |                                 |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                 |                           |              |
| 1                                         |                                |               |                                    |                                       |                                 |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                 |                           |              |
|                                           |                                |               |                                    |                                       |                                 |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                 |                           |              |
|                                           |                                |               |                                    |                                       |                                 |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                 |                           |              |
|                                           | DEPTH                          | (feet bgl)    | BORE HOLE                          | LIST ANNU                             | JLAR SEAL MATE                  |             |                     | L PACK SIZE-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AMOUNT                            |                 |                           |              |
| IAL                                       | FROM                           | TO            | DIAM. (inches                      | 0                                     | RANGE B<br>ntralizers for Artes | BY INTERV   |                     | spacing below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (cubic feet)                      |                 | METHO                     |              |
| TER                                       |                                |               |                                    |                                       |                                 | N/A         |                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                 |                           |              |
| ANNULAR MATERIAL                          |                                |               |                                    | _                                     |                                 |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                 |                           |              |
| ILAI                                      |                                |               |                                    |                                       |                                 |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                 |                           |              |
| INN                                       |                                |               |                                    |                                       |                                 |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                 |                           |              |
| 3. A                                      |                                |               |                                    |                                       |                                 |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                 |                           |              |
| FOR                                       | OSE INTER                      | NAL US        | E                                  |                                       |                                 |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WELL RECORD                       |                 |                           | (2022)       |
| FILE                                      |                                |               | -                                  |                                       | POD NO                          | D.          |                     | TRN 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 WELL RECORD &                   | x LOG (         | (version 09/22            | 2/2022)      |
| LOC                                       | ATION                          |               |                                    |                                       |                                 |             |                     | WELLTACH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |                 | DAGE                      | 1.05.2       |

WELL TAG ID NO.

| and the set                  |                 |                 |                                 |                                                           |                                                                                | COLUMN ALSO          |                                | 1500200           | 1                    | 187729 100,200 A    |                                                            |
|------------------------------|-----------------|-----------------|---------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------|----------------------|--------------------------------|-------------------|----------------------|---------------------|------------------------------------------------------------|
|                              | DEPTH (f        | reet bgl)<br>TO | THICKNESS<br>(feet)             | INCLUDE WATE                                              | ND TYPE OF MATERIAL E<br>ER-BEARING CAVITIES C<br>pplemental sheets to fully d | R FRAC               | CTURE ZONE                     | s                 | WAT<br>BEAR<br>(YES) | ING?                | ESTIMATED<br>YIELD FOR<br>WATER-<br>BEARING<br>ZONES (gpm) |
|                              | 0'              | 25'             | 25'                             |                                                           | Red Sand                                                                       |                      |                                |                   | Y                    | √ N                 |                                                            |
|                              | 25'             |                 |                                 |                                                           |                                                                                |                      |                                |                   |                      |                     |                                                            |
|                              | 60"             | 65"             | 5'                              |                                                           | Pinkish Tan Sandy Cla                                                          | -                    |                                |                   | Y                    | √ N                 |                                                            |
|                              | 65'             | 70'             | 5'                              |                                                           | Yellow Sandy Clay                                                              |                      |                                |                   | Y                    | √ N                 |                                                            |
|                              | 70'             | 80'             | 10'                             |                                                           | Reddish Brown Sandy C                                                          | lay                  |                                |                   | Y                    | √ N                 |                                                            |
| L                            | 80'             | 85'             | 5'                              |                                                           | Pinkish Tan Sandy Cla                                                          | у                    |                                |                   | Y                    | √ N                 |                                                            |
| 4. HYDROGEOLOGIC LOG OF WELL | 85'             | 112'            | 27'                             |                                                           | Dark Red Sandy Clay                                                            |                      |                                |                   | Y                    | √ N                 |                                                            |
| OF \                         |                 |                 |                                 |                                                           |                                                                                |                      |                                |                   | Y                    | N                   |                                                            |
| 90                           |                 |                 |                                 |                                                           |                                                                                |                      |                                |                   | Y                    | N                   |                                                            |
| ICL                          |                 |                 |                                 |                                                           |                                                                                |                      |                                |                   | Y                    | N                   |                                                            |
| DO                           |                 |                 |                                 |                                                           |                                                                                |                      |                                |                   | Y                    | N                   |                                                            |
| EOI                          |                 |                 |                                 |                                                           |                                                                                |                      |                                |                   | Y                    | N                   |                                                            |
| ROG                          |                 |                 |                                 |                                                           |                                                                                |                      |                                |                   | Y                    | N                   |                                                            |
| IXD                          |                 |                 |                                 |                                                           |                                                                                |                      |                                |                   | Y                    | N                   |                                                            |
| 4. I                         |                 |                 |                                 |                                                           |                                                                                |                      |                                |                   | Y                    | N                   |                                                            |
|                              |                 |                 |                                 |                                                           |                                                                                |                      |                                |                   | Y                    | N                   |                                                            |
|                              |                 |                 |                                 |                                                           |                                                                                |                      |                                |                   | Y                    | N                   |                                                            |
|                              |                 |                 |                                 |                                                           |                                                                                |                      |                                |                   | Y                    | N                   |                                                            |
|                              |                 |                 |                                 |                                                           |                                                                                |                      |                                |                   | Y                    | N                   |                                                            |
|                              |                 |                 |                                 |                                                           |                                                                                |                      |                                |                   | Y                    | N                   |                                                            |
|                              |                 |                 |                                 |                                                           |                                                                                |                      |                                |                   | Y                    | N                   |                                                            |
|                              | METHOD U        | SED TO ES       | TIMATE YIELD                    | OF WATER-BEARIN                                           | G STRATA:                                                                      | 1                    |                                | TOTA              | L ESTIN              |                     |                                                            |
|                              | PUMI            |                 | IR LIFT                         | BAILER 07                                                 | THER - SPECIFY: N/A                                                            |                      |                                |                   | L YIELD              |                     | 0.00                                                       |
| NOIS                         | WELL TES        | T TEST<br>STAR  | RESULTS - ATT<br>T TIME, END TH | ACH A COPY OF DAT<br>ME, AND A TABLE SI                   | TA COLLECTED DURING<br>HOWING DISCHARGE AN                                     | WELL '               | TESTING, INC<br>WDOWN OVI      | CLUDIN<br>ER THI  | NG DISC              | HARGE I             | METHOD,<br>DD.                                             |
| TEST; RIG SUPERVISI          | MISCELLA        | NEOUS INF       |                                 | ore was gauged for w<br>as backfilled to 10' Bo<br>rface. | rater on 9-27-24, well bor<br>GS with drill cuttings, the                      | e was di<br>en hydra | ry. Temporar<br>ated Bentonite | y well<br>e chips | casing w<br>were po  | as remo<br>ured fro | ved. Borehole<br>m 10' BGS to                              |
| LEST                         | PRINT NAM       | IE(S) OF DI     | RILL RIG SUPER                  | VISOR(S) THAT PRO                                         | VIDED ONSITE SUPERVI                                                           | SIONO                | E WELL CON                     | OTDUC             |                      |                     |                                                            |
| 5. T                         | Nathan Sme      |                 |                                 |                                                           | VIDED ONSITE SUPERVI                                                           | .510N U              | F WELL CON                     | STRUC             | TION O               | THER TH             | IAN LICENSEE:                                              |
| SIGNATURE                    |                 |                 |                                 | 0 DAYS AFTER COM                                          | BEST OF HIS OR HER KNO<br>ND THAT HE OR SHE WIL<br>IPLETION OF WELL DRIL       |                      | GE AND BEL<br>THIS WELL F      | IEF, TH<br>RECOR  | IE FORE<br>D WITH    | GOING I<br>THE STA  | S A TRUE AND<br>ATE ENGINEER                               |
| 6. SIC                       |                 | SIGNATI         | JUNE OF DRILLE                  | /                                                         | ames Hawley                                                                    | _                    | _                              |                   | 9-20                 | 0-24                |                                                            |
|                              |                 |                 | Ţ                               | }                                                         |                                                                                |                      |                                |                   |                      | DATE                |                                                            |
|                              | OSE INTERI      | NAL USE         |                                 |                                                           |                                                                                |                      |                                | LL REC            | CORD &               | LOG (Ve             | rsion 09/22/2022)                                          |
| -                            | E NO.<br>CATION |                 |                                 |                                                           | POD NO.                                                                        |                      | TRN NO.                        |                   |                      |                     |                                                            |
| LUC                          | ATION           |                 |                                 |                                                           |                                                                                | WELL                 | TAG ID NO.                     |                   |                      |                     | PAGE 2 OF 2                                                |

|                                                    |            |              |                                    | I         | BORING              | RECORD                 |       |       |       |       |      |          |             |                   |    |                          |
|----------------------------------------------------|------------|--------------|------------------------------------|-----------|---------------------|------------------------|-------|-------|-------|-------|------|----------|-------------|-------------------|----|--------------------------|
|                                                    |            | Start: 12    | :39                                |           | NO                  | Ŋ                      | F     | PID I | REAI  | DING  |      | S        | AMP         | LE                |    | REMARKS                  |
|                                                    |            | Finish: 14   |                                    |           | DESCRIPTION<br>USCS | GRAPHIC LOG            | PPN   | ЛХ    |       |       |      | ~        | DN<br>N     | ≿                 |    | BACKGROUND               |
| GEOLOGIC<br>UNIT                                   | DEPTH      |              |                                    |           | U SC RI             | H                      | 2 4 6 | 6 8   | 10 12 | 14 1  | 3 18 | BEF      | EADI        | VEF               | 핀  | PID READING              |
|                                                    |            | DESC         | CRIPTION LITHOLO                   | DGIC      | DES                 | BRA                    | Ĩ     | ĬĬ    |       |       | Ī    | NUMBER   | PID READING | RECOVERY          | Ы  | SOIL : PPM<br>SOIL : PPM |
|                                                    | 0          | Caliche.     | 5YR 8/1, White                     | . Fill /  | Caliche             | <del></del>            |       | ++    |       |       | +    |          |             | R                 |    |                          |
|                                                    |            |              | id, 5YR 5/6, Yel                   |           |                     |                        |       |       |       |       |      |          |             |                   |    |                          |
|                                                    | 5_         | Red, Vei     | y Fine Grained                     | Quartz,   |                     |                        |       |       |       |       |      |          |             |                   |    | -                        |
|                                                    |            |              | orted,Grain Imb                    |           |                     |                        |       |       |       |       |      |          |             |                   |    |                          |
|                                                    | _          |              | che below 5', W                    |           | SM                  |                        |       |       |       |       |      |          |             |                   |    | -                        |
|                                                    | 10         | to Coars     | Quartz Sand, I                     | vieaium   |                     |                        |       |       |       |       |      |          |             |                   |    |                          |
|                                                    |            | 10 00013     | C Olduc                            |           |                     |                        |       |       |       |       |      |          |             |                   |    | -                        |
|                                                    | 15_        |              |                                    |           |                     |                        |       |       |       |       |      |          |             |                   |    | _                        |
|                                                    |            |              | 5YR 5/6, Strong                    |           |                     |                        |       |       |       |       |      |          |             |                   |    | -                        |
|                                                    | _          |              | e Grained Quar                     |           |                     |                        |       |       |       |       |      |          |             |                   |    | -                        |
|                                                    | 20_        |              | l, Poorly Sorted<br>Brown, 5YR 5/4 |           |                     |                        |       |       |       |       |      | 2        |             |                   | 20 | 12:47 —                  |
|                                                    | _          |              | h Red, 5YR 5/6                     |           | SW                  |                        |       |       |       |       |      |          |             |                   |    | -                        |
|                                                    |            | 20', Dry     |                                    | ,         |                     |                        |       |       |       |       |      |          |             |                   |    | -                        |
|                                                    | 25         |              |                                    |           |                     |                        |       |       |       |       |      |          |             |                   |    | _                        |
|                                                    |            |              | iche Beds Belov                    | -         |                     |                        |       |       |       |       |      |          |             |                   |    |                          |
|                                                    | 30_        | Moderate     | d, 5YR 7/0, Pink                   | Κ,        |                     |                        |       |       |       |       |      |          |             |                   |    | _                        |
|                                                    |            |              | ne Harder Belov                    | // 30'    |                     |                        |       |       |       |       |      |          |             |                   |    | -                        |
|                                                    |            |              | 35'-40', Fine to                   | ,         | Sand                |                        |       |       |       |       |      |          |             |                   |    | -                        |
|                                                    | 35         |              | ined Quartz Sa                     |           | Stone               |                        |       |       |       |       |      |          |             |                   |    | _                        |
|                                                    | _          | Well Cer     | nented                             | -         |                     |                        |       |       |       |       |      |          |             |                   |    | -                        |
|                                                    | 40         |              |                                    |           |                     |                        |       |       |       |       |      |          |             |                   |    | 13:19                    |
|                                                    | 1          | •            | ed Bed), 2.5YR                     |           |                     | · ·                    |       |       |       |       |      | 3        |             |                   | 40 | -                        |
|                                                    |            |              | y Fine Grained,<br>Neakly Cement   | •         |                     | · ·                    |       |       |       |       |      |          |             |                   |    | -                        |
|                                                    | 45_        | Soried, V    | weakly Cement                      | eu, Dry   |                     | · ·                    |       |       |       |       |      |          |             |                   |    | _                        |
|                                                    |            |              |                                    |           |                     | · · ·                  |       |       |       |       |      |          |             |                   |    | -                        |
|                                                    | 50—        |              |                                    |           |                     | · ·                    |       |       |       |       |      |          |             |                   |    | 12:20                    |
|                                                    | 50-        |              |                                    |           |                     | · ·                    |       |       |       |       |      | 4        |             |                   | 60 | 13:39 —                  |
|                                                    |            |              | )' Interbedded w<br>idstone Beds,  | vitn      |                     | · ·                    |       |       |       |       |      |          |             |                   |    |                          |
|                                                    | 55—        |              | ely Hard, Dry                      |           | Shale               | · ·                    |       |       |       |       |      |          |             |                   |    | _                        |
|                                                    | _          | mederati     | .,, <b></b> ,                      |           |                     | · ·                    |       |       |       |       |      |          |             |                   |    |                          |
|                                                    | 60—        |              |                                    |           |                     | · ·                    |       |       |       |       |      |          |             |                   |    |                          |
|                                                    |            |              |                                    |           |                     |                        |       |       |       |       |      |          |             |                   |    |                          |
|                                                    |            |              |                                    |           |                     |                        |       |       |       |       |      |          |             |                   |    | -                        |
|                                                    | 65_        |              |                                    |           |                     | <u> </u>               |       |       |       |       |      |          |             |                   |    |                          |
|                                                    | _          |              |                                    |           |                     |                        |       |       |       |       |      |          |             |                   |    | -                        |
|                                                    |            |              |                                    |           |                     |                        |       |       |       |       |      |          |             | Ļ                 |    | -                        |
| 10                                                 | NE CONTINU | JOUS AUGER S | SAMPLER                            | WATER TAE | BLE ( TIME          | OF BORING )            |       |       |       | ER :_ |      | he       |             | <u>n/ :</u><br>5" | 20 | -0107-23                 |
| ST                                                 | ANDARD PI  | ENETRATION T | est L                              | LABORATO  | RY TEST L           | OCATION                | HOL   |       |       |       |      |          |             |                   |    | 32°2'28.43"N,            |
|                                                    | IDISTURBEI |              | +                                  | PENETROM  |                     | NS/ SQ. FT )           |       |       |       |       |      |          |             |                   |    | D <u>103°39'35.87"W</u>  |
| w/                                                 | ATER TABLI | E(24 HRS)    | NR                                 | NO RECOVE |                     |                        |       |       |       |       |      |          |             |                   |    |                          |
| Aarson &<br>ssociates, T<br>Environmental Consulta | nc.        | $\sim$       | DRILL DATE :<br>10/12/2022         | >         |                     | NUMBER :<br><b>1-1</b> |       |       |       |       |      |          |             |                   |    | porough Drilling         |
| Environmental Consulta                             | ants       |              |                                    | -         |                     |                        | DRII  | LLIN  | NG IV | ⊫IH   | UD   | <u> </u> |             | เงเส              | ıу |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |              |                  |          | 1                   | RECORD       |    |                        |      |              |               |            |        |             |             |    |                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|------------------|----------|---------------------|--------------|----|------------------------|------|--------------|---------------|------------|--------|-------------|-------------|----|-------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Start: 12    | 2:39             |          | DESCRIPTION<br>USCS | g            |    | PIE                    | D RE | EAD          | ING           | ;          | SA     | MP          | LE          |    | REMARKS                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DEDTU    |              |                  |          | SS                  | GRAPHIC LOG  | P  | PM                     | x    |              |               |            | ~      | ŊQ          | ž           | E  | BACKGROUND              |
| EOLOGIC<br>UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DEPTH    |              |                  |          | USC                 | Ē            |    |                        |      |              | 14 16         |            | ЦЦ     | EADI        | VEF         | 그  | PID READING             |
| U.I.I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | DESC         | CRIPTION LITHOLO | GIC      | )ES                 | RA           | 4  |                        | ΪΪ   | 12           | 14 16         |            | NUMBER | PID READING | RECOVERY    | E  | SOIL :                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70—      | Sandstor     | ne, 2.5YR 5/9, R | oddieb   |                     | <u> </u>     | _  | $\left  \cdot \right $ | +    |              | ++            |            | ž      | Б           | Ř           |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        |              | ery Fine Grained |          | Sand                |              |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        |              | and,Poorly Sorte |          | Stone               |              |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75_      |              | oderate, Well    | su,      | <u> </u>            |              |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        | Cemente      |                  | 1        | 1                   | · ·          |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |              | ed Bed), 2.5YR   | 4/6 to   |                     | · ·          |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80 —     |              | to Reddish Brow  |          |                     | · ·          |    |                        |      |              |               |            | _      |             |             |    | 13:56                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        |              | y Fine Grained ( |          |                     | · ·          |    |                        |      |              |               |            | 5      |             |             | 80 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        | Sand, Dr     |                  |          | Shale               | · ·          |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |              |                  |          |                     | · ·          |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 00     |              |                  |          |                     | · ·          |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        |              |                  |          |                     | · ·          |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00 -     |              |                  |          |                     | · ·          |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90 —     |              |                  |          |                     | · ·          |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        |              |                  |          |                     | · ·          |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |              |                  |          |                     | · ·          |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95 —     |              |                  |          |                     | · ·          |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        |              |                  |          |                     | · ·          |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 400 -    |              |                  |          |                     | · ·          |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100      |              |                  |          |                     |              |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |              |                  |          |                     |              |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 105      |              |                  |          |                     |              |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 105      |              |                  |          | Shale               | ·            |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        |              |                  |          | Onaic               |              |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 440      |              |                  |          |                     |              |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110      |              |                  |          |                     | ·            |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        |              |                  |          |                     |              |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 115      |              |                  |          |                     | ·            |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |              | TD: 115'         |          |                     |              |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        |              | 121110           |          |                     |              |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100      |              |                  |          |                     |              |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120—     | 1            |                  |          |                     |              |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        |              |                  |          |                     |              |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125—     |              |                  |          |                     |              |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |              |                  |          |                     |              |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        | 1            |                  |          |                     |              |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |              |                  |          |                     |              |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |              |                  |          |                     |              |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        | 1            |                  |          |                     |              |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        |              |                  |          |                     |              |    |                        |      |              |               |            |        |             |             |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | JOUS AUGER S |                  |          | BLE ( TIME          | OF BORING    |    | OB N                   |      |              |               |            | e١     | ror         | <u>n/ 1</u> | 20 | -0107-23                |
| ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ANDARD P | ENETRATION T |                  | LABORATO |                     |              |    | OLE                    | DIA  | ١ME          | TER           | :          |        |             | 5"          |    | 32°2'28.43"N            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DISTURBE | D SAMPLE     |                  |          |                     | NS/ SQ. FT ) | LC | CAC                    | TIO  | N : <u>I</u> | Male          | stori      | n '    | 15-         | 1 S         | SW | <u>'D 103°39'35.87'</u> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | E ( 24 HRS ) |                  | NO RECOV |                     |              | LA | AI GE                  | EOL  | .0G          | IST           | <u>M</u> . | Lá     | arso        | on          |    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |              | DRILL DATE :     |          |                     | NUMBER :     |    |                        |      |              | orough Drilli |            |        |             |             |    |                         |
| arson & marson & mars | nc.      |              | 10/12/2022       |          |                     | 1-1          |    |                        |      |              | ETHO          |            |        |             |             |    | v                       |

|            |           |                                              |                          |         | E         | BORING              | RECORD       |   |       |     |       |      |       |        |             |           |          |              |
|------------|-----------|----------------------------------------------|--------------------------|---------|-----------|---------------------|--------------|---|-------|-----|-------|------|-------|--------|-------------|-----------|----------|--------------|
|            |           | Start: 1(                                    | ):35 MDT                 |         |           | NO                  | 90           |   | PI    | D F | REA   | DIN  | G     | s      | AMF         | ٢E        |          | REMARKS      |
| GEOLOGIC   | DEPTH     | Finish: 1                                    | 5:15                     |         |           | DESCRIPTION<br>USCS | GRAPHIC LOG  | Р | PM    | Х_  |       |      |       | . ~    | DING        | RY        | DEPTH    | BACKGROUND   |
| UNIT       |           | DES                                          | CRIPTION L               |         | OGIC      | SCF                 | HA₽          | 2 | 4 6   | 8   | 10 12 | 2 14 | 16 18 | NUMBER | READING     | Ne Ne     | ΗL       |              |
|            |           | 520                                          |                          | IIIIOEO |           | DÜ                  | GR           |   |       |     |       |      |       |        | PIDF        | REC       | Ш        | SOIL :PPM    |
|            | 0         | Silty Sa                                     | nd, 5YR 5                | /4, Re  | ddish     |                     |              |   |       |     |       |      |       |        |             | Γ         |          | _            |
|            | _         |                                              | Very Fine                |         |           |                     |              |   |       |     |       |      |       |        |             |           |          |              |
|            | 5 _       |                                              | Sand, Poo                | orly So | rted,     | ML                  |              |   |       |     |       |      |       |        |             |           | 5        | _            |
|            |           | Dry                                          |                          |         |           |                     |              |   |       |     |       |      |       | 1      |             |           | 7        | _            |
|            |           |                                              | 2.5YR 8/                 |         | •         |                     |              |   |       |     |       |      |       |        |             |           | [']      | _            |
|            | 10 —      |                                              | ained, Poc               | orly So | rted,     |                     |              |   |       |     |       |      |       |        |             |           | 10       |              |
|            | _         | Dry                                          |                          |         |           |                     |              |   |       |     |       |      |       |        |             |           |          | _            |
|            | _         |                                              |                          |         |           |                     |              |   |       |     |       |      |       |        |             |           |          | _            |
|            | 15        |                                              |                          |         |           | Caliche             |              |   |       |     |       |      |       |        |             |           | 15       |              |
|            |           |                                              |                          |         |           |                     |              |   |       |     |       |      |       |        |             |           |          | _            |
|            |           |                                              |                          |         |           |                     |              |   |       |     |       |      |       |        |             |           |          |              |
|            | 20        |                                              |                          |         |           |                     |              |   |       |     |       |      |       |        |             |           | 20       |              |
|            | -         |                                              |                          |         |           |                     |              |   |       |     |       |      |       |        |             |           |          | -            |
|            | -         | -                                            |                          |         |           |                     |              |   |       |     |       |      |       | 2      |             |           | 0.5      | _            |
|            | 25 —      | Silty Sa                                     | nd, 5YR 5                | /4, Re  | ddish     |                     |              |   |       |     |       |      |       |        |             |           | 25       |              |
|            | _         |                                              | Fine Grain               |         |           | ML                  |              |   |       |     |       |      |       |        |             |           |          | _            |
|            | 30 —      |                                              | th Caliche               |         |           |                     |              |   |       |     |       |      |       | 3      |             |           | -30      |              |
|            | - 00      | <u>.                                    </u> | ), Poorly S              |         | /         | 1                   |              |   |       |     |       |      |       |        |             |           | 00       | _            |
|            | -         |                                              | 2.5YR 8/3                |         | •         |                     |              |   |       |     |       |      |       |        |             |           |          | _            |
|            | 35 _      |                                              | ained, Poc<br>bangular ( |         | rted      | Caliche             | ┊┸╌┰┥        |   |       |     |       |      |       |        |             |           | 35       | _            |
|            | _         | (~10mm                                       |                          | JIA515  |           |                     |              |   |       |     |       |      |       |        |             |           |          |              |
|            | _         |                                              | )                        |         |           |                     |              |   |       |     |       |      |       | 4      |             |           | 39       | _            |
|            | 40        |                                              | nd, 5YR 6                |         |           |                     |              |   |       |     |       |      |       |        |             |           | 39<br>40 |              |
|            | -         |                                              | Brown, V                 |         |           |                     |              |   |       |     |       |      |       |        |             |           |          | _            |
|            | 45        |                                              | Quartz Sa                |         |           |                     |              |   |       |     |       |      |       |        |             |           | 45       | -            |
|            | - +5      | Clasts (                                     | vith Subar               | igular  | Caliche   |                     |              |   |       |     |       |      |       |        |             |           | 43       |              |
|            | _         | Clasis (                                     | - 1011111)               |         |           |                     |              |   |       |     |       |      |       |        |             |           |          | _            |
|            | 50 —      |                                              |                          |         |           |                     |              |   |       |     |       |      |       |        |             |           | 50       |              |
|            |           |                                              |                          |         |           | ML                  |              |   |       |     |       |      |       |        |             |           |          | _            |
|            | -         |                                              |                          |         |           |                     |              |   |       |     |       |      |       |        |             |           |          | _            |
|            | 55 —      |                                              |                          |         |           |                     |              |   |       |     |       |      |       |        |             |           | 55       |              |
|            | _         |                                              |                          |         |           |                     |              |   |       |     |       |      |       |        |             |           |          | _            |
|            |           |                                              |                          |         |           |                     |              |   |       |     |       |      |       |        |             |           |          |              |
|            | 60 —      |                                              |                          |         |           |                     |              |   |       |     |       |      |       |        |             |           | 60       |              |
|            | _         |                                              |                          |         |           |                     |              |   |       |     |       |      |       |        |             |           |          | _            |
|            | -         |                                              |                          |         |           |                     |              |   |       |     |       |      |       |        |             |           |          | -            |
| 10         |           | JOUS AUGER S                                 | SAMPLER                  | =       | WATER TAE | BLE ( TIME          | OF BORING )  | J | OB N  | 1UI | MB    | ER   | :(    | Che    | vro         | n/        | 19       | -0180-01     |
|            | TANDARD P | ENETRATION 1                                 | EST                      | L       | LABORATO  |                     |              | Н | OLE   | DI  | IAN   | 1ETI | ER :_ | ¢      |             | <u>2"</u> | )ra      | w 24 CTB     |
|            | NDISTURBE | D SAMPLE                                     |                          | +       |           |                     | NS/ SQ. FT ) |   | OCA   |     |       |      |       | 32.02  | <u>2505</u> | 83        | °, -′    | 103.6342389° |
| — w.       | ATER TABL | E(24 HRS)                                    |                          | NR      | NO RECOVE | ERY                 |              |   | AI GI |     |       |      |       |        |             |           |          |              |
| ∆arson & 🚅 |           |                                              | DRILL DATE :             |         |           |                     |              | D | RILL  | .IN | G     | CON  | ITRA  | CT     | DR :        |           | S        | carborough   |
| Aarson &   | nc.       |                                              | 04-14                    | 4-2020  | )         | SB                  | 8-01         | П | RILI  | IN  | G١    | ЛЕТ  | НОГ   | ) ·    | Air F       | Rota      | ary      |              |

# Received by OCD: 7/7/2025 5916:47 PPM

|                       |                        |                        |                         | E                           | BORING                  | RECORD          |                                    |                          |       |                             |                       |                               |                                       |
|-----------------------|------------------------|------------------------|-------------------------|-----------------------------|-------------------------|-----------------|------------------------------------|--------------------------|-------|-----------------------------|-----------------------|-------------------------------|---------------------------------------|
|                       |                        | Start: 10:             |                         |                             | TION                    | LOG             |                                    | ) READ                   |       | S                           | AMPI                  |                               | REMARKS<br>BACKGROUND                 |
| GEOLOGIC<br>UNIT      |                        | Finish: 15<br>DESCF    | :15<br>RIPTION LITH     | IOLOGIC                     | DESCRIPTION<br>USCS     | GRAPHIC LOG     |                                    | X                        | 14 16 |                             | PID READING           | RECOVERY<br>DEPTH             |                                       |
|                       | 65<br>                 | Red, Very<br>Sorted wi | th Subangu<br>Chert Cla | ned, Poorly<br>ular Caliche | ML                      |                 |                                    |                          |       | 5                           |                       | —66<br>70                     | _                                     |
|                       |                        |                        |                         |                             |                         |                 |                                    |                          |       |                             |                       | 75                            | _                                     |
|                       | 80                     |                        |                         |                             |                         |                 |                                    |                          |       |                             |                       | 80                            | _                                     |
|                       | 85 —<br>—<br>—<br>90 — | Silty Sand             | d, 5YR 4/6,             | Yellowish                   |                         |                 |                                    |                          |       |                             |                       | 85<br>90                      | -                                     |
|                       | 95                     | Red, Fine              | Grained, I              |                             | ML                      |                 |                                    |                          |       |                             |                       | 95                            | _                                     |
|                       |                        | Dn                     | TD:101.9                |                             |                         |                 |                                    |                          |       | 6                           |                       | 100<br>                       |                                       |
|                       |                        | _ ,                    |                         | -                           |                         |                 |                                    |                          |       |                             |                       | 105                           | -                                     |
|                       |                        |                        | st [                    | _ LABORATOR                 | RY TEST LO<br>ETER (TOM |                 | JOB N<br>HOLE<br>LOCA <sup>T</sup> | Diami<br>Tion :<br>Eolog | ETER  | :Sa<br><u>32.02</u><br>E. ( | llado<br>25058<br>Cha | 2"<br>) Dra<br>33°, -⁄<br>vez | 0-0180-01<br>w 24 CTB<br>103.6342389° |
| Aarson & Ssociates, I | nc.<br>ants            | D                      | RILL DATE :<br>04-14-2  | 2020                        |                         | NUMBER :<br>-01 | DRILL<br>DRILL                     |                          |       |                             |                       |                               | carborough                            |

Esri, NASA, NGA, USGS, FEMA, Sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, (c) OpenStreetMap contributors, and the GIS User

# Salado Draw 23 Compressor Station (05.29.2025)



1% Annual Chance Flood Hazard

# Salado Draw 23 Compressor Station (05.29.2025)



New Mexico Oil Conservation Division

# **APPENDIX E**





June 18, 2025

ASHTON THIELKE CARMONA RESOURCES 310 W WALL ST, SUITE 500 MIDLAND, TX 79701

RE: SALADO DRAW 23 COMPRESSOR STATION

Enclosed are the results of analyses for samples received by the laboratory on 06/13/25 12:54.

Cardinal Laboratories is accredited through Texas NELAP under certificate number TX-C25-00101. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (\*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/ga/lab\_accred\_certif.html">www.tceq.texas.gov/field/ga/lab\_accred\_certif.html</a>.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

| Method EPA 552.2 | Haloacetic Acids (HAA-5)     |
|------------------|------------------------------|
| Method EPA 524.2 | Total Trihalomethanes (TTHM) |
| Method EPA 524.4 | Regulated VOCs (V1, V2, V3)  |

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celeg D. Keine

Celey D. Keene Lab Director/Quality Manager



CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

| Received:         | 06/13/2025                       | Sampling Date:      | 06/13/2025    |
|-------------------|----------------------------------|---------------------|---------------|
| Reported:         | 06/18/2025                       | Sampling Type:      | Soil          |
| Project Name:     | SALADO DRAW 23 COMPRESSOR STATI( | Sampling Condition: | Cool & Intact |
| Project Number:   | 2746                             | Sample Received By: | Alyssa Parras |
| Project Location: | LEA CO., NM                      |                     |               |

# Sample ID: H - 1 (0-0.5') (H253532-01)

| BTEX 8021B                           | mg,         | /kg             | Analyze         | d By: JH     |      |            |               |        |          |
|--------------------------------------|-------------|-----------------|-----------------|--------------|------|------------|---------------|--------|----------|
| Analyte                              | Result      | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifie |
| Benzene*                             | <0.050      | 0.050           | 06/14/2025      | ND           | 2.05 | 102        | 2.00          | 0.439  |          |
| Toluene*                             | <0.050      | 0.050           | 06/14/2025      | ND           | 2.09 | 105        | 2.00          | 0.542  |          |
| Ethylbenzene*                        | <0.050      | 0.050           | 06/14/2025      | ND           | 2.05 | 102        | 2.00          | 0.0873 |          |
| Total Xylenes*                       | <0.150      | 0.150           | 06/14/2025      | ND           | 6.05 | 101        | 6.00          | 0.168  |          |
| Total BTEX                           | <0.300      | 0.300           | 06/14/2025      | ND           |      |            |               |        |          |
| Surrogate: 4-Bromofluorobenzene (PID | 94.5        | % 71.5-13       | 4               |              |      |            |               |        |          |
| Chloride, SM4500Cl-B                 | mg,         | /kg             | Analyzed By: AC |              |      |            |               |        |          |
| Analyte                              | Result      | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifie |
| Chloride                             | <16.0       | 16.0            | 06/16/2025      | ND           | 464  | 116        | 400           | 0.00   |          |
| TPH 8015M                            | mg,         | /kg             | Analyze         | d By: MS     |      |            |               |        |          |
| Analyte                              | Result      | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifie |
| GRO C6-C10*                          | <10.0       | 10.0            | 06/18/2025      | ND           | 210  | 105        | 200           | 1.81   |          |
| DRO >C10-C28*                        | <10.0       | 10.0            | 06/18/2025      | ND           | 194  | 97.0       | 200           | 2.62   |          |
| EXT DRO >C28-C36                     | <10.0       | 10.0            | 06/18/2025      | ND           |      |            |               |        |          |
| Surrogate: 1-Chlorooctane            | <i>93.8</i> | % 44.4-14       | 5               |              |      |            |               |        |          |
| Surrogate: 1-Chlorooctadecane        | 92.5        | % 40.6-15       | •               |              |      |            |               |        |          |

### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



|                   | CARMONA RESOURCES<br>ASHTON THIELKE<br>310 W WALL ST, SUITE 50<br>MIDLAND TX, 79701<br>Fax To: | 00                  |               |
|-------------------|------------------------------------------------------------------------------------------------|---------------------|---------------|
| Received:         | 06/13/2025                                                                                     | Sampling Date:      | 06/13/2025    |
| Reported:         | 06/18/2025                                                                                     | Sampling Type:      | Soil          |
| Project Name:     | SALADO DRAW 23 COMPRESSOR STATI(                                                               | Sampling Condition: | Cool & Intact |
| Project Number:   | 2746                                                                                           | Sample Received By: | Alyssa Parras |
| Project Location: | LEA CO., NM                                                                                    |                     |               |

## Sample ID: H - 2 (0-0.5') (H253532-02)

| BTEX 8021B                           | mg/    | kg              | Analyze         | d By: JH     |      |            |               |        |           |
|--------------------------------------|--------|-----------------|-----------------|--------------|------|------------|---------------|--------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 06/14/2025      | ND           | 2.05 | 102        | 2.00          | 0.439  |           |
| Toluene*                             | <0.050 | 0.050           | 06/14/2025      | ND           | 2.09 | 105        | 2.00          | 0.542  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 06/14/2025      | ND           | 2.05 | 102        | 2.00          | 0.0873 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 06/14/2025      | ND           | 6.05 | 101        | 6.00          | 0.168  |           |
| Total BTEX                           | <0.300 | 0.300           | 06/14/2025      | ND           |      |            |               |        |           |
| Surrogate: 4-Bromofluorobenzene (PID | 93.9   | % 71.5-13       | 4               |              |      |            |               |        |           |
| Chloride, SM4500Cl-B                 | mg/    | kg              | Analyzed By: AC |              |      |            |               |        |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| Chloride                             | 32.0   | 16.0            | 06/16/2025      | ND           | 464  | 116        | 400           | 0.00   |           |
| TPH 8015M                            | mg/    | kg              | Analyze         | d By: MS     |      |            |               |        |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 06/13/2025      | ND           | 210  | 105        | 200           | 1.81   |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 06/13/2025      | ND           | 194  | 97.0       | 200           | 2.62   |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 06/13/2025      | ND           |      |            |               |        |           |
| Surrogate: 1-Chlorooctane            | 95.4   | % 44.4-14       | 5               |              |      |            |               |        |           |
| Surrogate: 1-Chlorooctadecane        | 91.8   | 40.6-15         | 3               |              |      |            |               |        |           |

### Cardinal Laboratories

#### \*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



|                                                                                 | CARMONA RESOURCES<br>ASHTON THIELKE<br>310 W WALL ST, SUITE !<br>MIDLAND TX, 79701<br>Fax To: | 500                                                                            |                                                      |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------|
| Received:<br>Reported:<br>Project Name:<br>Project Number:<br>Project Location: | 06/13/2025<br>06/18/2025<br>SALADO DRAW 23 COMPRESSOR STATI(<br>2746<br>LEA CO., NM           | Sampling Date:<br>Sampling Type:<br>Sampling Condition:<br>Sample Received By: | 06/13/2025<br>Soil<br>Cool & Intact<br>Alyssa Parras |

## Sample ID: H - 3 (0-0.5') (H253532-03)

| BTEX 8021B                           | mg/    | ′kg             | Analyze         | d By: JH     |      |            |               |        |           |
|--------------------------------------|--------|-----------------|-----------------|--------------|------|------------|---------------|--------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifie  |
| Benzene*                             | <0.050 | 0.050           | 06/14/2025      | ND           | 2.05 | 102        | 2.00          | 0.439  |           |
| Toluene*                             | <0.050 | 0.050           | 06/14/2025      | ND           | 2.09 | 105        | 2.00          | 0.542  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 06/14/2025      | ND           | 2.05 | 102        | 2.00          | 0.0873 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 06/14/2025      | ND           | 6.05 | 101        | 6.00          | 0.168  |           |
| Total BTEX                           | <0.300 | 0.300           | 06/14/2025      | ND           |      |            |               |        |           |
| Surrogate: 4-Bromofluorobenzene (PID | 94.1   | % 71.5-13       | 4               |              |      |            |               |        |           |
| Chloride, SM4500Cl-B                 | mg/    | ′kg             | Analyzed By: AC |              |      |            |               |        |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| Chloride                             | <16.0  | 16.0            | 06/16/2025      | ND           | 464  | 116        | 400           | 0.00   |           |
| TPH 8015M                            | mg,    | ′kg             | Analyze         | d By: MS     |      |            |               |        |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 06/13/2025      | ND           | 210  | 105        | 200           | 1.81   |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 06/13/2025      | ND           | 194  | 97.0       | 200           | 2.62   |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 06/13/2025      | ND           |      |            |               |        |           |
| Surrogate: 1-Chlorooctane            | 95.9   | % 44.4-14       | 5               |              |      |            |               |        |           |
| Surrogate: 1-Chlorooctadecane        | 91.4   | % 40.6-15       | 3               |              |      |            |               |        |           |

### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



|                                                       | CARMONA RESOURCE<br>ASHTON THIELKE<br>310 W WALL ST, SUIT<br>MIDLAND TX, 79701<br>Fax To: | -                                          |                                |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------|
| Received:<br>Reported:                                | 06/13/2025<br>06/18/2025                                                                  | Sampling Date:<br>Sampling Type:           | 06/13/2025<br>Soil             |
| Project Name:<br>Project Number:<br>Project Location: | SALADO DRAW 23 COMPRESSOR STATI(<br>2746<br>LEA CO., NM                                   | Sampling Condition:<br>Sample Received By: | Cool & Intact<br>Alyssa Parras |

## Sample ID: H - 4 (0-0.5') (H253532-04)

| BTEX 8021B                           | mg/    | ′kg             | Analyze         | d By: JH     |      |            |               |        |           |
|--------------------------------------|--------|-----------------|-----------------|--------------|------|------------|---------------|--------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 06/14/2025      | ND           | 2.05 | 102        | 2.00          | 0.439  |           |
| Toluene*                             | <0.050 | 0.050           | 06/14/2025      | ND           | 2.09 | 105        | 2.00          | 0.542  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 06/14/2025      | ND           | 2.05 | 102        | 2.00          | 0.0873 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 06/14/2025      | ND           | 6.05 | 101        | 6.00          | 0.168  |           |
| Total BTEX                           | <0.300 | 0.300           | 06/14/2025      | ND           |      |            |               |        |           |
| Surrogate: 4-Bromofluorobenzene (PID | 94.9   | % 71.5-13       | 4               |              |      |            |               |        |           |
| Chloride, SM4500Cl-B                 | mg/    | ′kg             | Analyzed By: AC |              |      |            |               |        |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| Chloride                             | 32.0   | 16.0            | 06/16/2025      | ND           | 464  | 116        | 400           | 0.00   |           |
| TPH 8015M                            | mg/    | ′kg             | Analyze         | d By: MS     |      |            |               |        |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 06/13/2025      | ND           | 210  | 105        | 200           | 1.81   |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 06/13/2025      | ND           | 194  | 97.0       | 200           | 2.62   |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 06/13/2025      | ND           |      |            |               |        |           |
| Surrogate: 1-Chlorooctane            | 106 9  | % 44.4-14       | 5               |              |      |            |               |        |           |
| Surrogate: 1-Chlorooctadecane        | 100 9  | % 40.6-15       | 3               |              |      |            |               |        |           |

### Cardinal Laboratories

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



# **Notes and Definitions**

| ND  | Analyte NOT DETECTED at or above the reporting limit                        |
|-----|-----------------------------------------------------------------------------|
| RPD | Relative Percent Difference                                                 |
| **  | Samples not received at proper temperature of 6°C or below.                 |
| *** | Insufficient time to reach temperature.                                     |
| -   | Chloride by SM4500Cl-B does not require samples be received at or below 6°C |

Samples reported on an as received basis (wet) unless otherwise noted on report

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

|                                                                   |                                      | 4 0                                                                                     |                    |           |                         |                                    |                          |         |                       |                                   | 5 3                          |
|-------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------|--------------------|-----------|-------------------------|------------------------------------|--------------------------|---------|-----------------------|-----------------------------------|------------------------------|
|                                                                   |                                      | 2                                                                                       | 1251               | 17:25)    | CI-17                   |                                    | U                        | 200     | 0.00                  | ř                                 | 1 Quel                       |
| Date/Time                                                         | e) Received by: (Signature)          | Relinquished by: (Signature)                                                            | me                 | Date/Time |                         | e)                                 | Received by: (Signature) | Rece    |                       | r: (Signature)                    | Relinquished by: (Signature) |
|                                                                   |                                      |                                                                                         |                    |           |                         |                                    |                          |         |                       |                                   |                              |
|                                                                   | sources.com                          | Please send results to cmoehring@carmonaresources.com and mcarmona@carmonaresources.com | rces.com           | onaresou  | g@carmo                 | o cmoehrin                         | se send results t        | Pleas   |                       |                                   |                              |
|                                                                   |                                      |                                                                                         | -                  |           | -                       |                                    |                          |         |                       |                                   |                              |
|                                                                   |                                      |                                                                                         |                    |           |                         |                                    |                          |         |                       |                                   |                              |
|                                                                   |                                      |                                                                                         |                    |           |                         |                                    |                          |         |                       |                                   |                              |
|                                                                   |                                      |                                                                                         |                    | -         | _                       |                                    |                          |         |                       |                                   |                              |
| •                                                                 |                                      |                                                                                         | •                  |           | +                       |                                    |                          | 1       |                       |                                   |                              |
|                                                                   |                                      |                                                                                         | ×                  | ×         | Grab/ 1                 | G                                  | ×                        |         | 6/13/2025             | 0.5")                             | . Ly H-4 (0-0.5')            |
|                                                                   |                                      |                                                                                         | ×                  | ×         | Grab/ 1                 | G                                  | ×                        |         | 6/13/2025             | -0.5")                            | 3 H-3 (0-0.5')               |
|                                                                   |                                      |                                                                                         | ×                  | ×         | Grab/ 1                 | G                                  | ×                        |         | 6/13/2025             | -0.5')                            | A H-2 (0-0.5')               |
|                                                                   |                                      |                                                                                         | ×                  | ×         | Grab/ 1                 | G                                  | ×                        |         | 6/13/2025             | -0.5')                            | H-1 (0-0.5')                 |
| Sample Comments                                                   |                                      |                                                                                         | TP                 | # *       | Grab/ # of<br>Comp Cont | Water Co                           | le Soil                  | Time    | Date                  | ntification                       | Sample Identification        |
| NaOH+Ascorbic Acid: SAPC                                          | N                                    |                                                                                         | PH 80 <sup>-</sup> |           | -                       | 4.40                               | Corrected Temperature:   | Corre   |                       |                                   | Total Containers:            |
| Zn Acetate+NaOH: Zn                                               | Zr                                   |                                                                                         |                    | в         |                         | 4.1.                               | Temperature Reading:     | Temp    | NO N/A                | als: Yes                          | Sample Custody Seals:        |
| Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> : NaSO <sub>3</sub> | HO                                   |                                                                                         | _                  | TEX       | Pi                      | 10.8.                              | Correction Factor:       | Corre   |                       | ls: Yes                           | Cooler Custody Seals:        |
| NaHSO4: NABIS                                                     |                                      |                                                                                         | RO +<br>de 4       | 802       | aran                    | the only                           | Thermometer ID:          | Thern   | es N                  |                                   | Received Intact:             |
| 0                                                                 | Ŧ                                    |                                                                                         |                    | 1B        | nete                    | Yes No                             | No Wet Ice:              | Yes No  | Temp Blank:           |                                   | SAMPLE RECEIPT               |
| H <sub>2</sub> S0 <sub>4</sub> : H <sub>2</sub> NaOH: Na          | Ť :                                  |                                                                                         | + M                |           | r                       | lab, if received by 4:30pm         | lab, if rece             |         |                       |                                   | PO #:                        |
| HCI HC HNO HNO                                                    | I C                                  |                                                                                         | RO)                |           | the                     | TAT starts the day received by the | TAT starts the           |         | JDC                   |                                   | Sampler's Name:              |
| •                                                                 |                                      |                                                                                         |                    |           |                         | 72 HR                              | Due Date:                | xico    | Lea County New Mexico | Lea Co                            | Project Location             |
| None: NO DI Water: H O                                            |                                      |                                                                                         | _                  | s.        | Pres.                   | ✓ Rush                             | Routir                   |         | 2746                  |                                   | Project Number:              |
| Preservative Codes                                                | JEST .                               | ANALYSIS REQUEST                                                                        |                    |           |                         | Turn Around                        | -1                       | or Stat | 23 Compress           | Salado Draw 23 Compressor Station | Project Name:                |
| Other:                                                            | Deliverables: EDD ADaPT              |                                                                                         | .com               | esources  | Carmonar                | ThielkeA@Carmonaresources.com      | Email:                   |         |                       | 432-813-8988                      | Phone:                       |
| JST TRRP Level IV                                                 | Reporting:Level II Level III PST/UST |                                                                                         |                    |           | Ŗ                       | City, State ZIP:                   |                          |         | 9701                  | Midland, TX 79701                 | City, State ZIP:             |
|                                                                   |                                      |                                                                                         |                    |           |                         | Address:                           |                          |         | II Ste. 500           | 310 West Wall Ste. 500            | Address:                     |
| Brownfields RRC uperfund                                          | Program: UST/PST PRP Brownfi         |                                                                                         |                    |           | me:                     | Company Name                       |                          |         | sources               | Carmona Resources                 | Company Name:                |
| omments                                                           | Work Order Comments                  | ces                                                                                     | Carmona Resources  | Carm      | ent)                    | Bill to: (if different)            |                          |         | (e                    | Ashton Thielke                    | Project Manager:             |
| Page 1 of 1                                                       |                                      |                                                                                         |                    |           |                         |                                    |                          |         |                       |                                   |                              |
| 1053532                                                           | Work Order No: Hass                  |                                                                                         |                    |           |                         |                                    |                          |         |                       |                                   |                              |
|                                                                   |                                      | ionj                                                                                    |                    |           |                         |                                    |                          |         |                       |                                   |                              |
|                                                                   |                                      | fodv                                                                                    | Chain of Custody   | ain o     | Chi                     |                                    |                          |         |                       |                                   |                              |

Page 7 of 7

.

Page 85 of 104

Received by OCD: 7/7/2025 5:16:47 PM



June 19, 2025

ASHTON THIELKE CARMONA RESOURCES 310 W WALL ST, SUITE 500 MIDLAND, TX 79701

RE: SALADO DRAW 23 COMPRESSOR STATION

Enclosed are the results of analyses for samples received by the laboratory on 06/13/25 12:54.

Cardinal Laboratories is accredited through Texas NELAP under certificate number TX-C25-00101. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (\*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/ga/lab\_accred\_certif.html">www.tceq.texas.gov/field/ga/lab\_accred\_certif.html</a>.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

| Method EPA 552.2 | Total Haloacetic Acids (HAA-5) |
|------------------|--------------------------------|
| Method EPA 524.2 | Total Trihalomethanes (TTHM    |
| Method EPA 524.4 | Regulated VOCs (V1, V2, V3)    |

Cardinal Laboratories is accredited through the State of New Mexico Environment Department for:

| Method SM 9223-B | Total Coliform and E. coli (Colilert MMO-MUG)   |
|------------------|-------------------------------------------------|
| Method EPA 524.2 | Regulated VOCs and Total Trihalomethanes (TTHM) |
| Method EPA 552.2 | Total Haloacetic Acids (HAA-5)                  |

Accreditation applies to public drinking water matrices for State of Colorado and New Mexico.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager



| CARMONA RESOURCES<br>310 W WALL ST, SUITE 500<br>MIDLAND TX, 79701 | Project Number: | SALADO DRAW 23 COMPRESSOR 5<br>2746<br>ASHTON THIELKE | Reported:<br>19-Jun-25 09:43 |
|--------------------------------------------------------------------|-----------------|-------------------------------------------------------|------------------------------|
|                                                                    |                 |                                                       |                              |

| Sample ID      | Laboratory ID | Matrix | Date Sampled    | Date Received   |  |
|----------------|---------------|--------|-----------------|-----------------|--|
| CS - 1 (0.25') | H253531-01    | Soil   | 13-Jun-25 00:00 | 13-Jun-25 12:54 |  |
| CS - 2 (0.25') | H253531-02    | Soil   | 13-Jun-25 00:00 | 13-Jun-25 12:54 |  |
| CS - 3 (0.25') | H253531-03    | Soil   | 13-Jun-25 00:00 | 13-Jun-25 12:54 |  |
| CS - 4 (0.25') | H253531-04    | Soil   | 13-Jun-25 00:00 | 13-Jun-25 12:54 |  |

06/19/25 - Client changed the sample IDs (see COC). This is the revised report and will replace the one sent on 06/18/25.

## Cardinal Laboratories

## \*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager



| CARMONA RESOURCES<br>310 W WALL ST, SUITE 500<br>MIDLAND TX, 79701 |                    |      | Project Num<br>Project Mana | ,<br>ber: 274          |          |         | RESSOR 5 | 1          | Reported:<br>9-Jun-25 09:4 | 43    |
|--------------------------------------------------------------------|--------------------|------|-----------------------------|------------------------|----------|---------|----------|------------|----------------------------|-------|
|                                                                    |                    |      |                             | 1 ( 0.25<br>531-01 (Se | <i>,</i> |         |          |            |                            |       |
| Analyte                                                            | Result             | MDL  | Reporting<br>Limit          | Units                  | Dilution | Batch   | Analyst  | Analyzed   | Method                     | Notes |
|                                                                    |                    |      | Cardina                     | l Laborat              | ories    |         |          |            |                            |       |
| Inorganic Compounds<br>Chloride                                    | 176                |      | 16.0                        | mg/kg                  | 4        | 5061615 | AC       | 16-Jun-25  | 4500-Cl-B                  |       |
|                                                                    |                    | 2021 | 10.0                        | ing/kg                 | ·        | 5001015 | ne       | 10 Juli 25 | 1500 CT B                  |       |
| Volatile Organic Compounds by<br>Benzene*                          |                    | 8021 | 0.050                       | ··· - /]               | 50       | 5061313 | ЛН       | 14-Jun-25  | 8021B                      |       |
| Toluene*                                                           | < 0.050<br>< 0.050 |      | 0.050<br>0.050              | mg/kg<br>mg/kg         | 50       | 5061313 | Л        | 14-Jun-25  | 8021B<br>8021B             |       |
| Ethylbenzene*                                                      | <0.050<br><0.050   |      | 0.050                       | mg/kg                  | 50       | 5061313 | Л        | 14-Jun-25  | 8021B<br>8021B             |       |
| Total Xylenes*                                                     | <0.050             |      | 0.050                       | mg/kg                  | 50<br>50 | 5061313 | л        | 14-Jun-25  | 8021B<br>8021B             |       |
| Total BTEX                                                         | <0.150             |      | 0.300                       | mg/kg                  | 50       | 5061313 | л        | 14-Jun-25  | 8021B                      |       |
| Surrogate: 4-Bromofluorobenzene (PID)                              | -0.500             |      | 94.2 %                      | 71.5                   |          | 5061313 | Л        | 14-Jun-25  | 8021B<br>8021B             |       |
| Petroleum Hydrocarbons by G                                        | C FID              |      |                             |                        |          |         |          |            |                            |       |
| GRO C6-C10*                                                        | <10.0              |      | 10.0                        | mg/kg                  | 1        | 5061324 | MS       | 13-Jun-25  | 8015B                      |       |
| DRO >C10-C28*                                                      | <10.0              |      | 10.0                        | mg/kg                  | 1        | 5061324 | MS       | 13-Jun-25  | 8015B                      |       |
| EXT DRO >C28-C36                                                   | <10.0              |      | 10.0                        | mg/kg                  | 1        | 5061324 | MS       | 13-Jun-25  | 8015B                      |       |
| Surrogate: 1-Chlorooctane                                          |                    |      | 77.6 %                      | 44.4                   | -145     | 5061324 | MS       | 13-Jun-25  | 8015B                      |       |
| Surrogate: 1-Chlorooctadecane                                      |                    |      | 73.4 %                      | 40.6                   | -153     | 5061324 | MS       | 13-Jun-25  | 8015B                      |       |

# Cardinal Laboratories

# \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



| CARMONA RESOURCES<br>310 W WALL ST, SUITE 500<br>MIDLAND TX, 79701 | )               |      | Project Num<br>Project Mana | ,<br>iber: 274         |          |         | RESSOR 5 |           | Reported:<br>19-Jun-25 09: | 43    |
|--------------------------------------------------------------------|-----------------|------|-----------------------------|------------------------|----------|---------|----------|-----------|----------------------------|-------|
|                                                                    |                 |      |                             | 2 ( 0.25<br>531-02 (Se | ,        |         |          |           |                            |       |
| Analyte                                                            | Result          | MDL  | Reporting<br>Limit          | Units                  | Dilution | Batch   | Analyst  | Analyzed  | Method                     | Notes |
|                                                                    |                 |      | Cardina                     | l Laborat              | tories   |         |          |           |                            |       |
| Inorganic Compounds<br>Chloride                                    | 64.0            |      | 16.0                        | mg/kg                  | 4        | 5061615 | AC       | 16-Jun-25 | 4500-Cl-B                  |       |
| Volatile Organic Compounds I                                       | ov EPA Method 8 | 3021 |                             |                        |          |         |          |           |                            |       |
| Benzene*                                                           | < 0.050         |      | 0.050                       | mg/kg                  | 50       | 5061313 | ЛН       | 14-Jun-25 | 8021B                      |       |
| Toluene*                                                           | < 0.050         |      | 0.050                       | mg/kg                  | 50       | 5061313 | ЛН       | 14-Jun-25 | 8021B                      |       |
| Ethylbenzene*                                                      | < 0.050         |      | 0.050                       | mg/kg                  | 50       | 5061313 | ЛН       | 14-Jun-25 | 8021B                      |       |
| Total Xylenes*                                                     | < 0.150         |      | 0.150                       | mg/kg                  | 50       | 5061313 | ЛН       | 14-Jun-25 | 8021B                      |       |
| Total BTEX                                                         | < 0.300         |      | 0.300                       | mg/kg                  | 50       | 5061313 | JH       | 14-Jun-25 | 8021B                      |       |
| Surrogate: 4-Bromofluorobenzene (PID)                              | 1               |      | 94.1 %                      | 71.5                   | -134     | 5061313 | ЛН       | 14-Jun-25 | 8021B                      |       |
| Petroleum Hydrocarbons by G                                        | GC FID          |      |                             |                        |          |         |          |           |                            |       |
| GRO C6-C10*                                                        | <10.0           |      | 10.0                        | mg/kg                  | 1        | 5061324 | MS       | 13-Jun-25 | 8015B                      |       |
| DRO >C10-C28*                                                      | 83.2            |      | 10.0                        | mg/kg                  | 1        | 5061324 | MS       | 13-Jun-25 | 8015B                      |       |
| EXT DRO >C28-C36                                                   | 293             |      | 10.0                        | mg/kg                  | 1        | 5061324 | MS       | 13-Jun-25 | 8015B                      |       |
| Surrogate: 1-Chlorooctane                                          |                 |      | 96.1 %                      | 44.4                   | -145     | 5061324 | MS       | 13-Jun-25 | 8015B                      |       |
| Surrogate: 1-Chlorooctadecane                                      |                 |      | 89.3 %                      | 40.6                   | -153     | 5061324 | MS       | 13-Jun-25 | 8015B                      |       |

### **Cardinal Laboratories**

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



| CARMONA RESOURCES<br>310 W WALL ST, SUITE 50<br>MIDLAND TX, 79701 | 0                 | -     | ect Numb      | er: 274<br>er: ASH   | .ado draw<br>16<br>HTON THIE |         | RESSOR 5 | 1         | Reported:<br>9-Jun-25 09:4 | 43    |
|-------------------------------------------------------------------|-------------------|-------|---------------|----------------------|------------------------------|---------|----------|-----------|----------------------------|-------|
|                                                                   |                   |       |               | 6 ( 0.25<br>31-03 (S | /                            |         |          |           |                            |       |
|                                                                   |                   |       |               |                      | )                            |         |          |           |                            |       |
| Analyte                                                           | Result            | MDL L | orting<br>mit | Units                | Dilution                     | Batch   | Analyst  | Analyzed  | Method                     | Notes |
|                                                                   |                   |       | Cardinal      | Labora               | tories                       |         |          |           |                            |       |
| Inorganic Compounds                                               |                   |       |               |                      |                              |         |          |           |                            |       |
| Chloride                                                          | 192               | 1     | 6.0           | mg/kg                | 4                            | 5061615 | AC       | 16-Jun-25 | 4500-Cl-B                  |       |
| Volatile Organic Compounds                                        | by EPA Method 802 | 1     |               |                      |                              |         |          |           |                            |       |
| Benzene*                                                          | < 0.050           | 0     | 050           | mg/kg                | 50                           | 5061313 | JH       | 14-Jun-25 | 8021B                      |       |
| Toluene*                                                          | < 0.050           | 0     | 050           | mg/kg                | 50                           | 5061313 | JH       | 14-Jun-25 | 8021B                      |       |
| Ethylbenzene*                                                     | < 0.050           | 0     | 050           | mg/kg                | 50                           | 5061313 | JH       | 14-Jun-25 | 8021B                      |       |
| Total Xylenes*                                                    | < 0.150           | 0     | 150           | mg/kg                | 50                           | 5061313 | JH       | 14-Jun-25 | 8021B                      |       |
| Total BTEX                                                        | < 0.300           | 0     | 300           | mg/kg                | 50                           | 5061313 | ЛН       | 14-Jun-25 | 8021B                      |       |
| Surrogate: 4-Bromofluorobenzene (PIL                              | ))                |       | 92.4 %        | 71.5                 | 5-134                        | 5061313 | ЈН       | 14-Jun-25 | 8021B                      |       |
| Petroleum Hydrocarbons by                                         | GC FID            |       |               |                      |                              |         |          |           |                            |       |
| GRO C6-C10*                                                       | <10.0             | 1     | 0.0           | mg/kg                | 1                            | 5061324 | MS       | 13-Jun-25 | 8015B                      |       |
| DRO >C10-C28*                                                     | 26.3              | 1     | 0.0           | mg/kg                | 1                            | 5061324 | MS       | 13-Jun-25 | 8015B                      |       |
| EXT DRO >C28-C36                                                  | 69.1              | 1     | 0.0           | mg/kg                | 1                            | 5061324 | MS       | 13-Jun-25 | 8015B                      |       |
| Surrogate: 1-Chlorooctane                                         |                   |       | 95.0 %        | 44.4                 | 4-145                        | 5061324 | MS       | 13-Jun-25 | 8015B                      |       |
| Surrogate: 1-Chlorooctadecane                                     |                   |       | 89.5 %        | 40.6                 | 5-153                        | 5061324 | MS       | 13-Jun-25 | 8015B                      |       |

### **Cardinal Laboratories**

## \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



| CARMONA RESOURCES<br>310 W WALL ST, SUITE 50<br>MIDLAND TX, 79701 | 0                 |     | Project Num<br>Project Mana | ber: 274               |              |         | RESSOR 5 | 1         | Reported:<br>9-Jun-25 09: | 43    |
|-------------------------------------------------------------------|-------------------|-----|-----------------------------|------------------------|--------------|---------|----------|-----------|---------------------------|-------|
|                                                                   |                   |     |                             | 4 ( 0.25<br>531-04 (So |              |         |          |           |                           |       |
|                                                                   |                   |     | П255.                       | 551-04 (50             | <b>)</b> (1) |         |          |           |                           |       |
| Analyte                                                           | Result            | MDL | Reporting<br>Limit          | Units                  | Dilution     | Batch   | Analyst  | Analyzed  | Method                    | Notes |
|                                                                   |                   |     | Cardina                     | l Laborat              | ories        |         |          |           |                           |       |
| Inorganic Compounds                                               |                   |     |                             |                        |              |         |          |           |                           |       |
| Chloride                                                          | 96.0              |     | 16.0                        | mg/kg                  | 4            | 5061615 | AC       | 16-Jun-25 | 4500-Cl-B                 |       |
| Volatile Organic Compounds                                        | by EPA Method 802 | 21  |                             |                        |              |         |          |           |                           |       |
| Benzene*                                                          | < 0.050           |     | 0.050                       | mg/kg                  | 50           | 5061313 | JH       | 14-Jun-25 | 8021B                     |       |
| Toluene*                                                          | < 0.050           |     | 0.050                       | mg/kg                  | 50           | 5061313 | JH       | 14-Jun-25 | 8021B                     |       |
| Ethylbenzene*                                                     | < 0.050           |     | 0.050                       | mg/kg                  | 50           | 5061313 | JH       | 14-Jun-25 | 8021B                     |       |
| Total Xylenes*                                                    | < 0.150           |     | 0.150                       | mg/kg                  | 50           | 5061313 | JH       | 14-Jun-25 | 8021B                     |       |
| Total BTEX                                                        | < 0.300           |     | 0.300                       | mg/kg                  | 50           | 5061313 | ЛН       | 14-Jun-25 | 8021B                     |       |
| Surrogate: 4-Bromofluorobenzene (PID                              | )                 |     | 94.4 %                      | 71.5                   | -134         | 5061313 | JH       | 14-Jun-25 | 8021B                     |       |
| Petroleum Hydrocarbons by (                                       | GC FID            |     |                             |                        |              |         |          |           |                           |       |
| GRO C6-C10*                                                       | <10.0             |     | 10.0                        | mg/kg                  | 1            | 5061324 | MS       | 13-Jun-25 | 8015B                     |       |
| DRO >C10-C28*                                                     | 404               |     | 10.0                        | mg/kg                  | 1            | 5061324 | MS       | 13-Jun-25 | 8015B                     |       |
| EXT DRO >C28-C36                                                  | 1200              |     | 10.0                        | mg/kg                  | 1            | 5061324 | MS       | 13-Jun-25 | 8015B                     |       |
| Surrogate: 1-Chlorooctane                                         |                   |     | 91.7 %                      | 44.4                   | -145         | 5061324 | MS       | 13-Jun-25 | 8015B                     |       |
| Surrogate: 1-Chlorooctadecane                                     |                   |     | 81.3 %                      | 40.6                   | -153         | 5061324 | MS       | 13-Jun-25 | 8015B                     |       |

#### Cardinal Laboratories

### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



# **Inorganic Compounds - Quality Control**

|                                                   |        | Cardir             | nal Lab | oratories      |                  |           |                |      |              |       |
|---------------------------------------------------|--------|--------------------|---------|----------------|------------------|-----------|----------------|------|--------------|-------|
| Analyte                                           | Result | Reporting<br>Limit | Units   | Spike<br>Level | Source<br>Result | %REC      | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
| Batch 5061615 - 1:4 DI Water                      |        |                    |         |                |                  |           |                |      |              |       |
| ank (5061615-BLK1) Prepared & Analyzed: 16-Jun-25 |        |                    |         |                |                  |           |                |      |              |       |
| Chloride                                          | ND     | 16.0               | mg/kg   |                |                  |           |                |      |              |       |
| LCS (5061615-BS1)                                 |        |                    |         | Prepared &     | & Analyzed:      | 16-Jun-25 |                |      |              |       |
| Chloride                                          | 464    | 16.0               | mg/kg   | 400            |                  | 116       | 80-120         |      |              |       |
| LCS Dup (5061615-BSD1)                            |        |                    |         | Prepared &     | & Analyzed:      | 16-Jun-25 |                |      |              |       |
| Chloride                                          | 464    | 16.0               | mg/kg   | 400            |                  | 116       | 80-120         | 0.00 | 20           |       |

#### **Cardinal Laboratories**

## \*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager



| CARMONA RESOURCES<br>310 W WALL ST, SUITE 500<br>MIDLAND TX, 79701 | Project Number: | SALADO DRAW 23 COMPRESSOR 5<br>2746<br>ASHTON THIELKE | Reported:<br>19-Jun-25 09:43 |
|--------------------------------------------------------------------|-----------------|-------------------------------------------------------|------------------------------|
|--------------------------------------------------------------------|-----------------|-------------------------------------------------------|------------------------------|

# Volatile Organic Compounds by EPA Method 8021 - Quality Control

| Cardinal | Labor | atories |
|----------|-------|---------|
|          |       |         |

|                                       |        | Reporting |       | Spike       | Source     |            | %REC     |        | RPD   |       |
|---------------------------------------|--------|-----------|-------|-------------|------------|------------|----------|--------|-------|-------|
| Analyte                               | Result | Limit     | Units | Level       | Result     | %REC       | Limits   | RPD    | Limit | Notes |
| Batch 5061313 - Volatiles             |        |           |       |             |            |            |          |        |       |       |
| Blank (5061313-BLK1)                  |        |           |       | Prepared: 1 | 3-Jun-25 A | nalyzed: 1 | 4-Jun-25 |        |       |       |
| Benzene                               | ND     | 0.050     | mg/kg |             |            |            |          |        |       |       |
| Toluene                               | ND     | 0.050     | mg/kg |             |            |            |          |        |       |       |
| Ethylbenzene                          | ND     | 0.050     | mg/kg |             |            |            |          |        |       |       |
| Total Xylenes                         | ND     | 0.150     | mg/kg |             |            |            |          |        |       |       |
| Total BTEX                            | ND     | 0.300     | mg/kg |             |            |            |          |        |       |       |
| Surrogate: 4-Bromofluorobenzene (PID) | ND     |           | mg/kg | 0.0500      |            | 94.4       | 71.5-134 |        |       |       |
| LCS (5061313-BS1)                     |        |           |       | Prepared &  | Analyzed:  | 13-Jun-25  |          |        |       |       |
| Benzene                               | 2.05   | 0.050     | mg/kg | 2.00        |            | 102        | 76.3-129 |        |       |       |
| Toluene                               | 2.09   | 0.050     | mg/kg | 2.00        |            | 105        | 84.1-129 |        |       |       |
| Ethylbenzene                          | 2.05   | 0.050     | mg/kg | 2.00        |            | 102        | 80.1-133 |        |       |       |
| m,p-Xylene                            | 4.04   | 0.100     | mg/kg | 4.00        |            | 101        | 81.4-134 |        |       |       |
| o-Xylene                              | 2.01   | 0.050     | mg/kg | 2.00        |            | 101        | 81.4-133 |        |       |       |
| Total Xylenes                         | 6.05   | 0.150     | mg/kg | 6.00        |            | 101        | 81.5-134 |        |       |       |
| Surrogate: 4-Bromofluorobenzene (PID) | 0.0457 |           | mg/kg | 0.0500      |            | 91.3       | 71.5-134 |        |       |       |
| LCS Dup (5061313-BSD1)                |        |           |       | Prepared: 1 | 3-Jun-25 A | nalyzed: 1 | 4-Jun-25 |        |       |       |
| Benzene                               | 2.05   | 0.050     | mg/kg | 2.00        |            | 103        | 76.3-129 | 0.439  | 15.8  |       |
| Toluene                               | 2.10   | 0.050     | mg/kg | 2.00        |            | 105        | 84.1-129 | 0.542  | 15.9  |       |
| Ethylbenzene                          | 2.04   | 0.050     | mg/kg | 2.00        |            | 102        | 80.1-133 | 0.0873 | 16    |       |
| m,p-Xylene                            | 4.03   | 0.100     | mg/kg | 4.00        |            | 101        | 81.4-134 | 0.142  | 16.2  |       |
| o-Xylene                              | 2.01   | 0.050     | mg/kg | 2.00        |            | 100        | 81.4-133 | 0.220  | 16.7  |       |
| Total Xylenes                         | 6.04   | 0.150     | mg/kg | 6.00        |            | 101        | 81.5-134 | 0.168  | 16.3  |       |
| Surrogate: 4-Bromofluorobenzene (PID) | 0.0457 |           | mg/kg | 0.0500      |            | 91.5       | 71.5-134 |        |       |       |
|                                       |        |           |       |             |            |            |          |        |       |       |

#### **Cardinal Laboratories**

\*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager



| CARMONA RESOURCES<br>310 W WALL ST, SUITE 500<br>MIDLAND TX, 79701 | Project Number: | SALADO DRAW 23 COMPRESSOR 5<br>2746<br>ASHTON THIELKE | Reported:<br>19-Jun-25 09:43 |
|--------------------------------------------------------------------|-----------------|-------------------------------------------------------|------------------------------|
|--------------------------------------------------------------------|-----------------|-------------------------------------------------------|------------------------------|

# Petroleum Hydrocarbons by GC FID - Quality Control

# **Cardinal Laboratories**

|                                         |        | Reporting |       | Spike      | Source    |           | %REC     |      | RPD   |       |
|-----------------------------------------|--------|-----------|-------|------------|-----------|-----------|----------|------|-------|-------|
| Analyte                                 | Result | Limit     | Units | Level      | Result    | %REC      | Limits   | RPD  | Limit | Notes |
| Batch 5061324 - General Prep - Organics |        |           |       |            |           |           |          |      |       |       |
| Blank (5061324-BLK1)                    |        |           |       | Prepared & | Analyzed: | 13-Jun-25 |          |      |       |       |
| GRO C6-C10                              | ND     | 10.0      | mg/kg |            |           |           |          |      |       |       |
| DRO >C10-C28                            | ND     | 10.0      | mg/kg |            |           |           |          |      |       |       |
| EXT DRO >C28-C36                        | ND     | 10.0      | mg/kg |            |           |           |          |      |       |       |
| Surrogate: 1-Chlorooctane               | 54.0   |           | mg/kg | 50.0       |           | 108       | 44.4-145 |      |       |       |
| Surrogate: 1-Chlorooctadecane           | 50.9   |           | mg/kg | 50.0       |           | 102       | 40.6-153 |      |       |       |
| LCS (5061324-BS1)                       |        |           |       | Prepared & | Analyzed: | 13-Jun-25 |          |      |       |       |
| GRO C6-C10                              | 210    | 10.0      | mg/kg | 200        |           | 105       | 81.5-123 |      |       |       |
| DRO >C10-C28                            | 194    | 10.0      | mg/kg | 200        |           | 97.0      | 77.7-122 |      |       |       |
| Total TPH C6-C28                        | 404    | 10.0      | mg/kg | 400        |           | 101       | 80.9-121 |      |       |       |
| Surrogate: 1-Chlorooctane               | 58.4   |           | mg/kg | 50.0       |           | 117       | 44.4-145 |      |       |       |
| Surrogate: 1-Chlorooctadecane           | 57.4   |           | mg/kg | 50.0       |           | 115       | 40.6-153 |      |       |       |
| LCS Dup (5061324-BSD1)                  |        |           |       | Prepared & | Analyzed: | 13-Jun-25 |          |      |       |       |
| GRO C6-C10                              | 206    | 10.0      | mg/kg | 200        |           | 103       | 81.5-123 | 1.81 | 13    |       |
| DRO >C10-C28                            | 189    | 10.0      | mg/kg | 200        |           | 94.4      | 77.7-122 | 2.62 | 15.6  |       |
| Total TPH C6-C28                        | 395    | 10.0      | mg/kg | 400        |           | 98.7      | 80.9-121 | 2.20 | 18.5  |       |
| Surrogate: 1-Chlorooctane               | 58.0   |           | mg/kg | 50.0       |           | 116       | 44.4-145 |      |       |       |
| Surrogate: 1-Chlorooctadecane           | 55.8   |           | mg/kg | 50.0       |           | 112       | 40.6-153 |      |       |       |

### **Cardinal Laboratories**

## \*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager



# **Notes and Definitions**

| ND  | Analyte NOT DETECTED at or above the reporting limit                                          |
|-----|-----------------------------------------------------------------------------------------------|
| RPD | Relative Percent Difference                                                                   |
| **  | Samples not received at proper temperature of 6°C or below.                                   |
| *** | Insufficient time to reach temperature.                                                       |
| -   | Chloride by SM4500Cl-B does not require samples be received at or below $6^{\circ}\mathrm{C}$ |

Samples reported on an as received basis (wet) unless otherwise noted on report

### Cardinal Laboratories

## \*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

| eceivea | by I             | oci                          | D: 7/7     | /2025 :                                                           | 5:1          | 6:4 | 7 P | PM_ | <br> | _             | _         | ,           | _         | _               |                                              |                     |                       |                        |                                                          |                            |                     |                                     |                    |                                   |                               |                 |                    |                        |                         |                 | Page                   | 96 of            |
|---------|------------------|------------------------------|------------|-------------------------------------------------------------------|--------------|-----|-----|-----|------|---------------|-----------|-------------|-----------|-----------------|----------------------------------------------|---------------------|-----------------------|------------------------|----------------------------------------------------------|----------------------------|---------------------|-------------------------------------|--------------------|-----------------------------------|-------------------------------|-----------------|--------------------|------------------------|-------------------------|-----------------|------------------------|------------------|
|         | Up De            | Kelinquished by: (Signature) | * Custon   |                                                                   |              |     |     |     |      | · · · · · · · |           | 2 CS-3 (20) |           | CS-1 (Ap)       | Comple Line                                  | Total Containers:   | Sample Clistody Seals | Cooler Clistody Scoler | SAMPLE RECEIPT                                           | PO#                        | Sampler's Name:     | Project Location                    | Project Number:    | Project Name:                     | Phone:                        | ate ZIP:        |                    |                        |                         | Project Manager |                        |                  |
|         | l                | Signature)                   | nert       |                                                                   |              |     |     |     |      | S. 0.0        | ,0        | N 10.05     | k         | nication X      |                                              | Tes                 |                       | X                      |                                                          |                            |                     | Lea Co                              |                    | Salado Draw                       | 432-813-8988                  | Midland, TX     | STO West Wall Ste. | Calliola Resources     | Carmona Do              | Ashton Thialka  |                        |                  |
|         | 29               |                              | egue       |                                                                   |              |     |     |     |      | CZNZICI IO    | 6/13/2025 | 6/13/2025   | CZNZ/CI/O | Date            |                                              | NO NIA              | R                     | es N                   |                                                          |                            | JDC                 | Lea County, New Mexico              | 2746               | Salado Draw 23 Compressor Station |                               | TX 79701        | all Ste. 500       | sources                |                         |                 |                        |                  |
|         | anno             | Received by:                 | otiel      |                                                                   | Plazea con   | •   |     |     |      |               |           |             |           | Time            | Corrected Temperature                        | Temperature Reading | Correction Factor:    | Thermometer ID:        | Yes No                                                   |                            |                     |                                     |                    | sor Station                       |                               |                 |                    |                        |                         |                 |                        |                  |
|         | Ŷ                | /: (Signature)               | Dep        | id results to                                                     | d monilée 4. |     |     |     |      | ×             | ×         | ×           | ×         | Soil            | emperature:                                  | e Reading:          | actor:                | er ID:                 | Wet Ice:                                                 | lab, if recei              | TAT starts the (    | Due Date:                           | Routine            | · Turn                            | Email:                        |                 |                    |                        |                         |                 |                        |                  |
|         |                  |                              | 54         | r rease serior results to cmoenring@carmonaresources.com and mcar |              |     |     |     |      | Comp          | Comp      | Comp        | Comp      | Water Comp      | 4.42                                         | 4.10                | もあっ                   |                        | Yes No                                                   | lab, if received by 4:30pm | dav received by fi  | 72 HR                               | Rush               | Turn Around .                     | ThielkeA@C                    | City, State ZIP | Address:           | Company Name           | Bill to: (if different) |                 |                        |                  |
|         | 1:13.25          | Dat                          | hause      | Øcarmonare                                                        |              |     |     |     |      | 1p<br>1       | np 1      | np 1        | np 1      | np Cont         | -                                            |                     | Pa                    |                        | neter                                                    |                            |                     | ,                                   | Pres.              |                                   | ThielkeA@Carmonaresources.com |                 |                    | me:                    | ant)                    |                 |                        | Chai             |
|         | lasu             | Date/Time                    | S. to      | Sources.cor                                                       |              | _   | +   |     |      | X X X         | X X X     | X X X       | XXX       | TF              | PH 801                                       | 5M (                | GR                    |                        | DRO                                                      | + MR                       | 80)                 |                                     |                    |                                   | urces.com                     |                 |                    |                        | Carmona Resources       |                 |                        | Chain of Custody |
| 0 4     | 2                | Relinquished by: (Signature) | · le/18/25 | m and mcarmona@carmonaresources.com                               |              |     |     |     |      |               |           | ×           | ×         |                 |                                              | Ch                  | lorid                 | le 45                  | 00                                                       |                            |                     | •                                   | ANALYSIS REQUEST   |                                   |                               |                 |                    |                        | sources                 |                 |                        | istody           |
|         |                  |                              |            | resources.com                                                     |              |     |     |     | •    |               |           |             |           |                 |                                              |                     | 101                   |                        |                                                          |                            |                     |                                     | QUEST              |                                   |                               |                 |                    | Program: UST/PST PPP k | Work Ord                |                 | Work Order             |                  |
|         | uie) Date/ I ime |                              |            |                                                                   |              |     |     |     |      |               |           |             |           | Sample Comments | Acetate+NaOH: Zn<br>NaOH+Ascorbic Acid: SAPC |                     | NaHSO4: NABIS         |                        | H <sub>2</sub> SO <sub>4</sub> : H <sub>2</sub> NaOH: Na |                            | Cool: Cool MeOH: Me | None: NO DI Water: H <sub>2</sub> O | Preservative Codes |                                   |                               |                 |                    | 5                      | ľ                       | Page 1 of       | Work Order No: 1353581 |                  |

- Released to Imaging: 7/17/2025 2:17:58 PM

Page 11 of 11

٠

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 97 of 104

QUESTIONS

Action 482366

| QUESTIC             | NS                                                                          |
|---------------------|-----------------------------------------------------------------------------|
| Operator:           | OGRID:                                                                      |
| CHEVRON U S A INC   | 4323                                                                        |
| 6301 Deauville Blvd | Action Number:                                                              |
| Midland, TX 79706   | 482366                                                                      |
|                     | Action Type:<br>[C-141] Remediation Closure Request C-141 (C-141-v-Closure) |

#### QUESTIONS

| nAPP2515528266                                         |
|--------------------------------------------------------|
| NAPP2515528266 SALADO DRAW 23 CENTRAL TANK BATTERY @ 0 |
| Oil Release                                            |
| Remediation Closure Report Received                    |
| [fAPP2134340195] Salado Draw 23 Central Tank Battery   |
|                                                        |

#### Location of Release Source

| Please answer all the questions in this group. |  |
|------------------------------------------------|--|
|------------------------------------------------|--|

| Site Name               | SALADO DRAW 23 CENTRAL TANK BATTERY |
|-------------------------|-------------------------------------|
| Date Release Discovered | 05/29/2025                          |
| Surface Owner           | Federal                             |

#### Incident Details

| Please answer all the questions in this group.                                                          |             |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|--|--|--|
| Incident Type                                                                                           | Oil Release |  |  |  |  |  |  |  |
| Did this release result in a fire or is the result of a fire                                            | No          |  |  |  |  |  |  |  |
| Did this release result in any injuries                                                                 | No          |  |  |  |  |  |  |  |
| Has this release reached or does it have a reasonable probability of reaching a<br>watercourse          | No          |  |  |  |  |  |  |  |
| Has this release endangered or does it have a reasonable probability of<br>endangering public health    | No          |  |  |  |  |  |  |  |
| Has this release substantially damaged or will it substantially damage property or the environment      | No          |  |  |  |  |  |  |  |
| Is this release of a volume that is or may with reasonable probability be<br>detrimental to fresh water | No          |  |  |  |  |  |  |  |

# Nature and Volume of Release

| Material(s) released, please answer all that apply below. Any calculations or specific justifications fo                                                | r the volumes provided should be attached to the follow-up C-141 submission.                    |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| Crude Oil Released (bbls) Details                                                                                                                       | Not answered.                                                                                   |  |
| Produced Water Released (bbls) Details                                                                                                                  | Not answered.                                                                                   |  |
| Is the concentration of chloride in the produced water >10,000 mg/l                                                                                     | No                                                                                              |  |
| Condensate Released (bbls) Details                                                                                                                      | Not answered.                                                                                   |  |
| Natural Gas Vented (Mcf) Details                                                                                                                        | Not answered.                                                                                   |  |
| Natural Gas Flared (Mcf) Details                                                                                                                        | Not answered.                                                                                   |  |
| Other Released Details                                                                                                                                  | Cause: Equipment Failure   Pump   Motor Oil   Released: 5 BBL   Recovered: 0 BBL   Lost<br>BBL. |  |
| Are there additional details for the questions above (i.e. any answer containing<br>Other, Specify, Unknown, and/or Fire, or any negative lost amounts) | The water portion of the spill calculation sheet is rainwater not produced water                |  |

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 482366

Page 98 of 104

QUESTIONS (continued)

| Operator:           | OGRID:                                                      |
|---------------------|-------------------------------------------------------------|
| CHEVRON U S A INC   | 4323                                                        |
| 6301 Deauville Blvd | Action Number:                                              |
| Midland, TX 79706   | 482366                                                      |
|                     | Action Type:                                                |
|                     | [C-141] Remediation Closure Request C-141 (C-141-v-Closure) |

QUESTIONS

| Nature and Volume of Release (continued)                                                             |                                                                               |  |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| Is this a gas only submission (i.e. only significant Mcf values reported)                            | More info needed to determine if this will be treated as a "gas only" report. |  |
| Was this a major release as defined by Subsection A of 19.15.29.7 NMAC                               | No                                                                            |  |
| Reasons why this would be considered a submission for a notification of a major release              | Unavailable.                                                                  |  |
| With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i. | e. gas only) are to be submitted on the C-129 form.                           |  |

| Initial Response                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                               |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| The responsible party must undertake the following actions immediately unless they could create a s                                                                                          | afety hazard that would result in injury.                                                                                                                                                                                                                                                                                                                                                     |  |
| The source of the release has been stopped True                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                               |  |
| The impacted area has been secured to protect human health and the<br>environment                                                                                                            | True                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices                                                                           | True                                                                                                                                                                                                                                                                                                                                                                                          |  |
| All free liquids and recoverable materials have been removed and managed appropriately True                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                               |  |
| If all the actions described above have not been undertaken, explain why                                                                                                                     | Not answered.<br>liation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                              | ed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of                                                                                                                                                                                                                                                                                       |  |
| to report and/or file certain release notifications and perform corrective actions for releat<br>the OCD does not relieve the operator of liability should their operations have failed to a | knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or |  |
| I hereby agree and sign off to the above statement                                                                                                                                           | Name: Bayley Ranes<br>Title: Environmental Specialist<br>Email: Bayleyranes@chevron.com<br>Date: 06/04/2025                                                                                                                                                                                                                                                                                   |  |

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

**QUESTIONS** (continued)

| Operator:           | UGRID:                                                      |
|---------------------|-------------------------------------------------------------|
| CHEVRON U S A INC   | 4323                                                        |
| 6301 Deauville Blvd | Action Number:                                              |
| Midland, TX 79706   | 482366                                                      |
|                     | Action Type:                                                |
|                     | [C-141] Remediation Closure Request C-141 (C-141-v-Closure) |

#### QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

| What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)   | Between 100 and 500 (ft.) |  |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|
| What method was used to determine the depth to ground water                                                                  | Direct Measurement        |  |
| Did this release impact groundwater or surface water                                                                         | No                        |  |
| What is the minimum distance, between the closest lateral extents of the release and the following surface areas:            |                           |  |
| A continuously flowing watercourse or any other significant watercourse                                                      | Between 1 and 5 (mi.)     |  |
| Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)                                            | Between 1 and 5 (mi.)     |  |
| An occupied permanent residence, school, hospital, institution, or church                                                    | Between 1 and 5 (mi.)     |  |
| A spring or a private domestic fresh water well used by less than five households<br>for domestic or stock watering purposes | Between 1 and 5 (mi.)     |  |
| Any other fresh water well or spring                                                                                         | Between 1 and 5 (mi.)     |  |
| Incorporated municipal boundaries or a defined municipal fresh water well field                                              | Greater than 5 (mi.)      |  |
| A wetland                                                                                                                    | Between 1 and 5 (mi.)     |  |
| A subsurface mine                                                                                                            | Greater than 5 (mi.)      |  |
| An (non-karst) unstable area                                                                                                 | Between ½ and 1 (mi.)     |  |
| Categorize the risk of this well / site being in a karst geology                                                             | Medium                    |  |
| A 100-year floodplain                                                                                                        | Between 1 and 5 (mi.)     |  |
| Did the release impact areas not on an exploration, development, production, or<br>storage site                              | No                        |  |

#### Remediation Plan

| Please answer all the questions that apply or are indicated. This information must be provided to the                                                                                         | appropriate district office no later than 90 days after the release discovery date.                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Requesting a remediation plan approval with this submission                                                                                                                                   | Yes                                                                                                           |
| Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination as                                                                                         | sociated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.            |
| Have the lateral and vertical extents of contamination been fully delineated Yes                                                                                                              |                                                                                                               |
| Was this release entirely contained within a lined containment area                                                                                                                           | No                                                                                                            |
| Soil Contamination Sampling: (Provide the highest observable value for each, in milligr                                                                                                       | ams per kilograms.)                                                                                           |
| Chloride (EPA 300.0 or SM4500 Cl B)                                                                                                                                                           | 192                                                                                                           |
| TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M)                                                                                                                                                   | 1604                                                                                                          |
| GRO+DRO (EPA SW-846 Method 8015M)                                                                                                                                                             | 404                                                                                                           |
| BTEX (EPA SW-846 Method 8021B or 8260B)                                                                                                                                                       | 0                                                                                                             |
| Benzene (EPA SW-846 Method 8021B or 8260B)                                                                                                                                                    | 0                                                                                                             |
| Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed eff<br>which includes the anticipated timelines for beginning and completing the remediation. | orts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, |
| On what estimated date will the remediation commence                                                                                                                                          | 06/10/2025                                                                                                    |
| On what date will (or did) the final sampling or liner inspection occur                                                                                                                       | 06/13/2025                                                                                                    |
| On what date will (or was) the remediation complete(d)                                                                                                                                        | 06/10/2025                                                                                                    |
| What is the estimated surface area (in square feet) that will be reclaimed                                                                                                                    | 0                                                                                                             |
| What is the estimated volume (in cubic yards) that will be reclaimed                                                                                                                          | 0                                                                                                             |
| What is the estimated surface area (in square feet) that will be remediated                                                                                                                   | 560                                                                                                           |
| What is the estimated volume (in cubic yards) that will be remediated                                                                                                                         | 6                                                                                                             |
| These estimated dates and measurements are recognized to be the best guess or calculation at the tin                                                                                          | ne of submission and may (be) change(d) over time as more remediation efforts are completed.                  |

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Action 482366

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

| Page 100 of 104 | Page | 100 | of. | 104 |
|-----------------|------|-----|-----|-----|
|-----------------|------|-----|-----|-----|

QUESTIONS, Page 4

Action 482366

| QUESTIONS (continued) |                                                             |  |
|-----------------------|-------------------------------------------------------------|--|
| Operator:             | OGRID:                                                      |  |
| CHEVRON U S A INC     | 4323                                                        |  |
| 6301 Deauville Blvd   | Action Number:                                              |  |
| Midland, TX 79706     | 482366                                                      |  |
|                       | Action Type:                                                |  |
|                       | [C-141] Remediation Closure Request C-141 (C-141-v-Closure) |  |

#### QUESTIONS

Remediation Plan (continued)

| Remeulation Flan (continueu)                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                               |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Please answer all the questions that apply or are indicated. This information must be provided to the                                                                                        | appropriate district office no later than 90 days after the release discovery date.                                                                                                                                                                                                                                                                                                           |  |
| This remediation will (or is expected to) utilize the following processes to remediate                                                                                                       | / reduce contaminants:                                                                                                                                                                                                                                                                                                                                                                        |  |
| (Select all answers below that apply.)                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                               |  |
| (Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)                                                                                                               | Yes                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Which OCD approved facility will be used for off-site disposal                                                                                                                               | LEA LAND LANDFILL [fEEM0112342028]                                                                                                                                                                                                                                                                                                                                                            |  |
| OR which OCD approved well (API) will be used for off-site disposal                                                                                                                          | Not answered.                                                                                                                                                                                                                                                                                                                                                                                 |  |
| OR is the off-site disposal site, to be used, out-of-state                                                                                                                                   | Not answered.                                                                                                                                                                                                                                                                                                                                                                                 |  |
| OR is the off-site disposal site, to be used, an NMED facility                                                                                                                               | Not answered.                                                                                                                                                                                                                                                                                                                                                                                 |  |
| (Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)                                                                                                                       | Not answered.                                                                                                                                                                                                                                                                                                                                                                                 |  |
| (In Situ) Soil Vapor Extraction                                                                                                                                                              | Not answered.                                                                                                                                                                                                                                                                                                                                                                                 |  |
| (In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)                                                                                                            | Not answered.                                                                                                                                                                                                                                                                                                                                                                                 |  |
| (In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)                                                                                                                           | Not answered.                                                                                                                                                                                                                                                                                                                                                                                 |  |
| (In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)                                                                                                                     | Not answered.                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Ground Water Abatement pursuant to 19.15.30 NMAC                                                                                                                                             | Not answered.                                                                                                                                                                                                                                                                                                                                                                                 |  |
| OTHER (Non-listed remedial process)                                                                                                                                                          | Not answered.                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed ef<br>which includes the anticipated limelines for beginning and completing the remediation. | forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,                                                                                                                                                                                                                                                                                |  |
| to report and/or file certain release notifications and perform corrective actions for relea<br>the OCD does not relieve the operator of liability should their operations have failed to a  | knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or |  |
| I hereby agree and sign off to the above statement                                                                                                                                           | Name: Kennedy Lincoln<br>Title: Environmental Specialist<br>Email: kennedy lincoln@chevron.com                                                                                                                                                                                                                                                                                                |  |

Email: kennedy.lincoln@chevron.com

Date: 07/07/2025

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 482366

Page 101 of 104

| QUESTIONS (continued) |                                                             |  |
|-----------------------|-------------------------------------------------------------|--|
| Operator:             | OGRID:                                                      |  |
| CHEVRON U S A INC     | 4323                                                        |  |
| 6301 Deauville Blvd   | Action Number:                                              |  |
| Midland, TX 79706     | 482366                                                      |  |
|                       | Action Type:                                                |  |
|                       | [C-141] Remediation Closure Request C-141 (C-141-v-Closure) |  |

| QU | EST | ION | IS |
|----|-----|-----|----|
|----|-----|-----|----|

| Deferral Requests Only                                                                               |    |
|------------------------------------------------------------------------------------------------------|----|
| Only answer the questions in this group if seeking a deferral upon approval this submission. Each of |    |
| Requesting a deferral of the remediation closure due date with the approval of this submission       | Νο |

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

**QUESTIONS** (continued)

| Operator:           | OGRID:                                                      |
|---------------------|-------------------------------------------------------------|
| CHEVRON U S A INC   | 4323                                                        |
| 6301 Deauville Blvd | Action Number:                                              |
| Midland, TX 79706   | 482366                                                      |
|                     | Action Type:                                                |
|                     | [C-141] Remediation Closure Request C-141 (C-141-v-Closure) |

QUESTIONS

| Sampling Event Information                                                                      |            |
|-------------------------------------------------------------------------------------------------|------------|
| Last sampling notification (C-141N) recorded                                                    | 471931     |
| Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC | 06/13/2025 |
| What was the (estimated) number of samples that were to be gathered                             | 7          |
| What was the sampling surface area in square feet                                               | 570        |

| Remediation | Closure | Request |  |
|-------------|---------|---------|--|
|-------------|---------|---------|--|

| Only answer the questions in this group if seeking remediation closure for this release because all r                                                                                                                                                                                | emediation steps have been completed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Requesting a remediation closure approval with this submission                                                                                                                                                                                                                       | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Have the lateral and vertical extents of contamination been fully delineated                                                                                                                                                                                                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Was this release entirely contained within a lined containment area                                                                                                                                                                                                                  | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| All areas reasonably needed for production or subsequent drilling operations have<br>been stabilized, returned to the sites existing grade, and have a soil cover that<br>prevents ponding of water, minimizing dust and erosion                                                     | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| What was the total surface area (in square feet) remediated                                                                                                                                                                                                                          | 570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| What was the total volume (cubic yards) remediated                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene   | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| What was the total surface area (in square feet) reclaimed                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| What was the total volume (in cubic yards) reclaimed                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Summarize any additional remediation activities not included by answers (above)                                                                                                                                                                                                      | Stained soil removed via surface scrape. Confirmation floor samples all within acceptable limits per NMAC 19.15.29.12 - groundwater > 100'. Backfilled with clean caliche located on pad.                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                      | closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a<br>notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of                                                                                                                                                                                                                                                                                                                                                       |
| to report and/or file certain release notifications and perform corrective actions for release<br>the OCD does not relieve the operator of liability should their operations have failed to<br>water, human health or the environment. In addition, OCD acceptance of a C-141 report | knowledge and understand that pursuant to OCD rules and regulations all operators are required<br>ases which may endanger public health or the environment. The acceptance of a C-141 report by<br>adequately investigate and remediate contamination that pose a threat to groundwater, surface<br>it does not relieve the operator of responsibility for compliance with any other federal, state, or<br>ially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed<br>ing notification to the OCD when reclamation and re-vegetation are complete. |
|                                                                                                                                                                                                                                                                                      | Name: Kennedy Lincoln<br>Title: Environmental Specialist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| I hereby agree and sign off to the above statement Email: kennedy.lincoln@chevron.com Date: 07/07/2025 | I hereby agree and sign off to the above statement |  |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|

QUESTIONS, Page 6

Action 482366

Page 102 of 104

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

| Operator:           | OGRID:                                                      |  |
|---------------------|-------------------------------------------------------------|--|
| CHEVRON U S A INC   | 4323                                                        |  |
| 6301 Deauville Blvd | Action Number:                                              |  |
| Midland, TX 79706   | 482366                                                      |  |
|                     | Action Type:                                                |  |
|                     | [C-141] Remediation Closure Request C-141 (C-141-v-Closure) |  |
| OUESTIONS           |                                                             |  |

#### STIONS

| Reclamation Report                                                                    |    |  |
|---------------------------------------------------------------------------------------|----|--|
| Only answer the questions in this group if all reclamation steps have been completed. |    |  |
| Requesting a reclamation approval with this submission                                | No |  |

Action 482366

**QUESTIONS** (continued)

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 104 of 104

CONDITIONS

Action 482366

| Operator:           | OGRID:                                                      |
|---------------------|-------------------------------------------------------------|
| CHEVRON U S A INC   | 4323                                                        |
| 6301 Deauville Blvd | Action Number:                                              |
| Midland, TX 79706   | 482366                                                      |
|                     | Action Type:                                                |
|                     | [C-141] Remediation Closure Request C-141 (C-141-v-Closure) |

#### CONDITIONS

| Created By       | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Condition<br>Date |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| michael.buchanan | Remediation closure is approved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/17/2025         |
| michael.buchanan | The reclamation report will need to include: Executive Summary of the reclamation activities; Scaled Site Map including sampling locations;<br>Analytical results including, but not limited to, results showing that any remaining impacts meet the reclamation standards and results to prove the<br>backfill is non-waste containing; At least one (1) representative 5-point composite sample will need to be collected from the backfill material that<br>will be used for the reclamation of the top four feet of the excavation. The OCD reserves the right to request additional sampling if needed; pictures<br>of the backfilled areas showing that the area is back, as nearly as practical, to the original condition or the final land use and maintain those areas<br>to control dust and minimize erosion to the extent practical; pictures of the top layer, which is either the background thickness of topsoil or one foot<br>of suitable material to establish vegetation at the site, whichever is greater; and a revegetation plan. | 7/17/2025         |
| michael.buchanan | A reclamation report will not be accepted until reclamation of the release area, including areas reasonably needed for production or drilling<br>activities, is complete and meet the requirements of 19.15.29.13 NMAC. Areas not reasonably needed for production or drilling activities will still<br>need to be reclaimed and revegetated as early as practicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7/17/2025         |
| michael.buchanan | All revegetation activities will need to be documented and included in the revegetation report. The revegetation report will need to include: An executive summary of the revegetation activities including: Seed mix, Method of seeding, dates of when the release area was reseeded, information pertinent to inspections, information about any amendments added to the soil, information on how the vegetative cover established meets the life-form ratio of plus or minus fifty percent of pre-disturbance levels and a total percent plant cover of at least seventy percent of pre-disturbance levels, excluding noxious weeds per 19.15.29.13 D.(3) NMAC, and any additional information; a scaled Site Map including area that was revegetated in square feet; and pictures of the revegetated areas during reseeding activities, inspections, and final pictures when revegetation is achieved.                                                                                                                                               | 7/17/2025         |
| michael.buchanan | A revegetation report will not be accepted until revegetation of the release area, including areas reasonably needed for production or drilling activities, is complete and meet the requirements of 19.15.29.13 NMAC. Areas not reasonably needed for production or drilling activities will still need to be reclaimed and revegetated as early as practicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7/17/2025         |
| michael.buchanan | Per 19.15.29.13 E. NMAC, if a reclamation and revegetation report has been submitted to the surface owner, it may be used if the requirements of the surface owner provide equal or better protection of freshwater, human health, and the environment. A copy of the approval of the reclamation and revegetation report from the surface owner and a copy of the approved reclamation and revegetation report will need to be submitted to the OCD via the Permitting website.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/17/2025         |