0.249

99.295

GS_Gas Sample Total

Sample Description Received by OCD: 9/25/2025 9:23:37 AM		
Low Heating Value (btu per scf)		
1461		
Hydrogen Sulfide (H2S) mol%		
0.001		
Nitrogen (N2) mol%		
22		
Carbon Dioxide (CO2) mol%		
15.067		
Methane (CH4) mol%		
49.681		
Ethane (C2H6) mol%		
10.621		
Propane (C3H8) mol%		
8.501		
so-Butane (C4H10) mol%		
1.572		
N-Butane (C4H10) mol%		
4.795		
iso-Pentane (C5H12) mol%		
1.919		
n-Pentane (C5H12) mol%		
2.07		
Hexanes (C6H14) mol%		
0.954		
Heptanes + (C7H16) mol%		
0.639		
2,2,4-Trimethylpentane (C8H18) mol%		
0.04		
n-Hexane (C6H14) mol%		
0.562		
Benzene (C6H6) mol%		
0.377		
Ethyl-Benzene (C8H10) mol%		
0.015		
Xylene (C8H10) mol%		
0.031		
Toluene (C7H8) mol%		

	Start Time	End Time		Methane Rate [kg/hr]	Event Duration [hr]
	8/10/2025 10:02	9/12/2025 13:07		63.00	238.2833333
Gas Analysis:					
Component	mol%	MW	CALC	Emissions [lbs/hr]	[Kg/hr]
Water		18.02	0	0.00	0.0
Hydrogen Sulfide (H2S) mol%	0.001	34.08	8.98024E-07	0.00	0.0
Nitrogen (N2) mol%	3.3265	28.01	0.002455211	12.14	5.5
Carbon Dioxide (CO2) mol%	11.2439	44.01	0.013039369	64.45	29.2
Methane (CH4) mol%	66.3837	16.04	0.028057827	138.92	63.00
Ethane (C2H6) mol%	9.5614	30.07	0.007576055	37.45	16.9
Propane (C3H8) mol%	5.2851	44.09	0.006140186	30.35	13.7
iso-Butane (C4H10) mol%	0.6995	58.12	0.001071276	5.30	2.4
N-Butane (C4H10) mol%	1.7084	58.12	0.002616395	12.93	5.8
iso-Pentane (C5H12) mol%	0.4728	72.15	0.000898881	4.443036581	2.01498257
n-Pentane (C5H12) mol%	0.4691	72.15	0.000891846	4.408266625	1.99921388
Hexanes (C6H14) mol%	0.319	86.17	0.000724328	3.58	1.62369430
cyclohexane		86.17	0	0	(43.46)
methylcyclohexane		86.17	0	-	
Heptanes + (C7H16) mol%	0.249	100.2	0.000657439	3.249624305	1.47375251
(Octanes under Heptanes+)	55	100.2	0	0	
2,2,4-Trimethylpentane (C8H18) mol	% 0.0106	114.22	3.19033E-05	0.157693614	0.07151637
n-Hexane (C6H14) mol%	0.1484	86.17	0.00033696	1.665543882	0.75534869
Benzene (C6H6) mol%	0.0577	78.11	0.00011876	0.587014105	0.26621954
Ethyl-Benzene (C8H10) mol%	0.0036	106.16	1.00705E-05	0.05	0.0
Xylene (C8H10) mol%	0.008	106.16	2.23789E-05	0.11	0.0
Toluene (C7H8) mol%	0.0506	92.13	0.00012284	0.61	0.2
Gas Sample Total mol%					

Tot	Total Gas Rates			
[scf/hr]	[mscf/hr]	[Kg/hr]	[Kg/hr]	
4,942.85	4.94	145.30	110.57	
Name of the latest terms o	Emiss	ion Rates	17.00	
VOC	67.44	lbs/hr	1618.48	lbs/day
H2S	0.004	lbs/hr	0.11	lbs/day
Benzene	0.587	lbs/hr	14.09	lbs/day
Total	Gas Released		Flammable Gas	
[scf]	[mscf]	[Kg]	[Kg]	
1,177,799.95	1,177.80	34,623.05	26,346.14	
	Emission	ns Released		
VOC	16,069.04	lbs	1,618.48	lbs/24 hrs
H2S	1.06	lbs	0.11	lbs/24 hrs
Benzene	139.88	lbs	14.09	lbs/24 hrs
				-
		MERLI		

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

DEFINITIONS

Action 509331

DEFINITIONS

ı	Operator:	OGRID:
ı	CHEVRON U S A INC	4323
ı	6301 Deauville Blvd	Action Number:
ı	Midland, TX 79706	509331
ı		Action Type:
1		[C-129] Venting and/or Flaring (C-129)

DEFINITIONS

For the sake of brevity and completeness, please allow for the following in all groups of questions and for the rest of this application:

- this application's operator, hereinafter "this operator";
- venting and/or flaring, hereinafter "vent or flare";
- any notification or report(s) of the C-129 form family, hereinafter "any C-129 forms";
- the statements in (and/or attached to) this, hereinafter "the statements in this";
- and the past tense will be used in lieu of mixed past/present tense questions and statements.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 509331

QUESTIONS				
Operator:		OGRID:		
CHEVRON U S A INC 6301 Deauville Blvd		4323 Action Number:		
Midland, TX 79706		509331		
		Action Type: [C-129] Venting and/or Flaring (C-129)		
QUESTIONS		[O 120] Forming units Finding (O 120)		
Prerequisites Any messages presented in this section, will prevent submission of this application. Please resolve t	hese issues before continuing wit	h the rest of the questions		
Incident Well	Unavailable.			
Incident Facility	[fAPP2213779829] Dagger	Lake Section 4 Compressor Station		
Determination of Reporting Requirements				
Answer all questions that apply. The Reason(s) statements are calculated based on your answers an	id may provide addional quidance			
Was this vent or flare caused by an emergency or malfunction	Yes			
Did this vent or flare last eight hours or more cumulatively within any 24-hour period from a single event	Yes			
Is this considered a submission for a vent or flare event	Yes, major venting and/or	flaring of natural gas.		
An operator shall file a form C-141 instead of a form C-129 for a release that, includes liquid during vi	enting and/or flaring that is or may	he a major or minor release under 19 15 29 7 NMAC		
Was there at least 50 MCF of natural gas vented and/or flared during this event	Yes	20 d major of militar resource direct resource.		
Did this vent or flare result in the release of ANY liquids (not fully and/or completely flared) that reached (or has a chance of reaching) the ground, a surface, a watercourse, or otherwise, with reasonable probability, endanger public health, the environment or fresh water	No			
Was the vent or flare within an incorporated municipal boundary or withing 300 feet from an occupied permanent residence, school, hospital, institution or church in existence	No			
Equipment Involved				
Primary Equipment Involved	Gas Compressor Station			
Additional details for Equipment Involved. Please specify	Malfunction of pilot light and	d fuel gas regulator on flare.		
Denvescentative Compositional Analysis of Vented as Flored Natural Con				
Representative Compositional Analysis of Vented or Flared Natural Gas Please provide the mole percent for the percentage questions in this group.				
Methane (CH4) percentage	66			
Nitrogen (N2) percentage, if greater than one percent	3			
Hydrogen Sulfide (H2S) PPM, rounded up	10			
Carbon Dioxide (C02) percentage, if greater than one percent	11			
Oxygen (02) percentage, if greater than one percent	0			
If you are venting and/or flaring because of Pipeline Specification, please provide the required speci	fications for each αas.			
Methane (CH4) percentage quality requirement	Not answered.			
Nitrogen (N2) percentage quality requirement	Not answered.			
Hydrogen Sufide (H2S) PPM quality requirement	Not answered.			
Carbon Dioxide (C02) percentage quality requirement	Not answered.			

Not answered.

Oxygen (02) percentage quality requirement

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116
Online Phone Directory
https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 509331

OUESTI	ONS (continued)
Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd Midland, TX 79706	Action Number: 509331
Midialid, 1X 79700	Action Type:
	[C-129] Venting and/or Flaring (C-129)
QUESTIONS	
Date(s) and Time(s)	
Date vent or flare was discovered or commenced	08/10/2025
Time vent or flare was discovered or commenced	09:02 AM
Time vent or flare was terminated	10:00 PM
Cumulative hours during this event	805
Measured or Estimated Volume of Vented or Flared Natural Gas	
Natural Gas Vented (Mcf) Details	Cause: Equipment Failure Gas Compressor Station Natural Gas Vented Released: 1,178 Mcf Recovered: 0 Mcf Lost: 1,178 Mcf.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Additional details for Measured or Estimated Volume(s). Please specify	Not answered.
Is this a gas only submission (i.e. only significant Mcf values reported)	Yes, according to supplied volumes this appears to be a "gas only" report.
Venting or Flaring Resulting from Downstream Activity	
Was this vent or flare a result of downstream activity	Mo
Was notification of downstream activity received by this operator	No
Downstream OGRID that should have notified this operator	Not answered.
	Not answered.
Date notified of downstream activity requiring this vent or flare	Not answered.
Time notified of downstream activity requiring this vent or flare	Not answered.
Steps and Actions to Prevent Waste	
For this event, this operator could not have reasonably anticipated the current event and it was beyond this operator's control.	True
Please explain reason for why this event was beyond this operator's control	Release was detected due to voluntary methane monitoring and root cause was determined to be a malfunction of the pilot gas regulator valve.
Steps taken to limit the duration and magnitude of vent or flare	Malfunctioning component was repaired upon discovery to minimize venting.
Corrective actions taken to eliminate the cause and reoccurrence of vent or flare	Corrective measures focused on reducing gas production as quickly and safely as possible to minimize the duration and volume of gas vented.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

ACKNOWLEDGMENTS

Action 509331

ACKNOWLEDGMENTS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	509331
	Action Type:
	[C-129] Venting and/or Flaring (C-129)

ACKNOWLEDGMENTS

V	I acknowledge that I am authorized to submit a <i>Venting and/or Flaring</i> (C-129) report on behalf of this operator and understand that this report can be a complete C-129 submission per 19.15.27.8 and 19.15.28.8 NMAC.
V	I acknowledge that upon submitting this application, I will be creating a new incident file (assigned to this operator) to track any C-129 forms, pursuant to 19.15.27.7 and 19.15.28.8 NMAC and understand that this submission meets the notification requirements of Paragraph (1) of Subsection G and F respectively.
V	I hereby certify the statements in this report are true and correct to the best of my knowledge and acknowledge that any false statement may be subject to civil and criminal penalties under the Oil and Gas Act.
V	I acknowledge that the acceptance of any C-129 forms by the OCD does not relieve this operator of liability should their operations have failed to adequately investigate, report, and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment.
V	I acknowledge that OCD acceptance of any C-129 forms does not relieve this operator of responsibility for compliance with any other applicable federal, state, or local laws and/or regulations.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 509331

CONDITIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	509331
	Action Type:
	[C-129] Venting and/or Flaring (C-129)

CONDITIONS

Created By		Condition Date
bbauman	If the information provided in this report requires an amendment, submit a [C-129] Amend Venting and/or Flaring Incident (C-129A), utilizing your incident number from this event.	9/25/2025