2024 Annual Groundwater Monitoring Report

Plains All American Pipeline, LP DCP Plant to Lea Station 6-Inch #2

Lea County, New Mexico
Unit Letter "F", Section 31, Township 20 South, Range 37 East
Latitude 32.5316667° North, Longitude 103.2911111° West
Plains SRS #: 2009-039

NMOCD Reference #: 1RP-2136

NMOCD Incident ID #: nAPP2109730917

Prepared By:

Etech Environmental & Safety Solutions, Inc.

6309 Indiana Ave, Ste. D Lubbock, Texas 79413

Kimble Thrash

Ben J. Arguijo

Environmental & Safety Solutions, Inc.

Midland • San Antonio • Lubbock • Hobbs • Lafayette

TABLE OF CONTENTS

1.0	INTRODUCTION & SITE DESCRIPTION	1
2.0	BACKGROUND INFORMATION	1
3.0	FIELD ACTIVITIES	3
	3.1 Product Recovery	
	3.2 Groundwater Recovery	
	3.3 Groundwater Monitoring	4
4.0	LABORATORY RESULTS	
5.0	SUMMARY	6
6.0	ANTICIPATED ACTIONS	7
	LIMITATIONS	
8.0	DISTRIBUTION	8

FIGURES

Figure 1A – Site Location Map

Figure 1B – Site Map

Figure 2A – Inferred Groundwater Gradient Map – 1Q2024

Figure 2B – Inferred Groundwater Gradient Map – 2Q2024

Figure 2C – Inferred Groundwater Gradient Map – 3Q2024

Figure 2D – Inferred Groundwater Gradient Map – 4Q2024

Figure 3A – Groundwater Concentration Map – 1Q2024

Figure 3B – Groundwater Concentration Map – 2Q2024

Figure 3C – Groundwater Concentration Map – 3Q2024

Figure 3D – Groundwater Concentration Map – 4Q2024

TABLES

- Table 1 Groundwater Elevation & PSH Thickness Summary
- Table 2 Groundwater BTEX Concentration Analytical Summary
- Table 3 SVE Emission Analytical Summary BTEX & TPH
- Table 4 MW-1 SVE System Operation & Recovery Summary
- Table 5 MW-5 Recovery Summary
- Table 6 Concentrations of PAH in Groundwater Summary
- Table 7 MW-7 Cumulative Groundwater Chemistry Summary

APPENDICES

Appendix A – Laboratory Analytical Reports (Groundwater)

Appendix B – Laboratory Analytical Reports (Air Emission)

1.0 INTRODUCTION & SITE DESCRIPTION

Etech Environmental & Safety Solutions (Etech), on behalf of Plains All American Pipeline, LP (Plains), has prepared this 2024 Annual Groundwater Monitoring Report for the DCP Plant to Lea Station 6-Inch #2 release site in accordance with the New Mexico Oil Conservation Division (NMOCD) letter of May 1998, requiring submittal of an Annual Monitoring Report by April 1 of each year.

The legal description of the DCP Plant to Lea Station 6-Inch #2 release site is Unit Letter "F" (SE/NW), Section 31, Township 20 South, Range 37 East, in Lea County, New Mexico. The property affected by the release is owned by the State of New Mexico and administered by the New Mexico State Land Office (NMSLO). The geographic coordinates of the release site are 32.5316667° North latitude and 103.2911111° West longitude. A "Site Location Map" is provided as Figure 1A.

2.0 BACKGROUND INFORMATION

On February 12, 2009, Plains discovered a crude oil release from a six-inch steel pipeline. During initial response activities, Plains installed a temporary clamp on the pipeline to mitigate the release. Approximately 25 barrels (bbls) of crude oil was released from the pipeline, resulting in a surface stain measuring approximately 10 feet (ft.) in width and 12 ft. in length. Plains notified the NMOCD Hobbs District Office of the release, and a "Release Notification and Corrective Action" (Form C-141) was submitted. The cause of the release was attributed to external corrosion of the pipeline.

On February 17, 2009, following initial response activities, excavation of hydrocarbon-impacted soil began at the site. Excavated soil was stockpiled on-site on a plastic liner to mitigate the potential leaching of contaminants into the vadose zone. Approximately 2,700 cubic yards (yd³) of soil was stockpiled on-site during excavation activities. The final dimensions of the excavation were approximately 66 ft. in width, approximately 80 ft. in length, and approximately 15 ft. in depth. Upon completion of the excavation activities, confirmation soil samples were collected from the excavation and stockpiles. Review of laboratory analytical results indicated that soil samples collected from the excavation and stockpiles exhibited concentrations less than NMOCD regulatory standards.

On April 15, 2009, a soil boring (SB-1) was advanced at the release site to evaluate the vertical extent of soil impact. During the advancement of the soil boring, groundwater was encountered at approximately 76 ft. below ground surface (bgs). A temporary casing was installed in the soil boring to allow a groundwater sample to be collected for analysis. During the collection of the groundwater sample, a measurable thickness of phase-separated hydrocarbons (PSH) was observed on the groundwater. Plains immediately notified NMOCD representatives in the Hobbs District Office and the NMOCD Environmental Bureau (Santa Fe) of the impact to groundwater at the release site. On April 16, 2009, SB-1 was converted to a 4-inch monitor well (MW-1).

On June 29, 2009, three (3) additional monitor wells (MW-2, MW-3, and MW-4) were installed to evaluate the status of the groundwater at the site. Monitor well MW-2 is located approximately 135 ft. to the northwest (up-gradient) of monitor well MW-1. The monitor well was installed to a total depth of approximately 90 ft. bgs. Monitor well MW-3 is located approximately 80 ft. to the

southwest (cross-gradient) of monitor well MW-1. The monitor well was installed to a total depth of approximately 90 ft. bgs. Monitor well MW-4 is located approximately 115 ft. to the southeast (down-gradient) of monitor well MW-1. The monitor well was installed to a total depth of approximately 88 ft. bgs. Subsequent gauging determined that PSH was not present in monitor wells MW-2, MW-3, or MW-4.

On August 25, 2009, a 20-mil polyurethane liner was installed on the floor of the excavation. Monitor well MW-1, located within the excavation, was extended to the top of the excavation using a 4-inch diameter PVC riser. The riser was fitted with a 40-mil boot, which was chemically welded to the 20-mil liner to ensure impermeability of the liner. The liner was cushioned by a 6-inch layer of sand installed above and below the liner to protect the liner from damage during backfilling. The excavation was backfilled with the stockpiled soil and compacted in 12-inch lifts. The disturbed areas were contoured to fit the surrounding topography and seeded with an NMSLO-approved seeding mixture. Supplemental seeding occurred on October 12, 2010.

On January 24, 2011, one (1) additional monitor well (MW-5) was installed to further monitor the down-gradient migration of the PSH plume. Monitor well MW-5 is located approximately 50 ft. to the southeast (down-gradient) of monitor well MW-1. The monitor well was installed to a total depth of approximately 95 ft. bgs. PSH was not detected in monitor well MW-5. Laboratory analytical results of soil samples collected during the installation of monitor well MW-5 indicated that benzene, BTEX, and TPH concentrations were less than NMOCD regulatory standards in all submitted soil samples.

On September 10, 2013, two (2) additional monitor wells (MW-6 and MW-7) were installed to further monitor the down-gradient migration of the dissolved-phase plume and to delineate the horizontal extent of PSH. Monitor well MW-6 is located approximately 125 ft. to the east-southeast (cross-gradient) of monitor well MW-1. The monitor well was installed to a total depth of approximately 95 ft. bgs. Monitor well MW-7 is located approximately 175 ft. to the southeast (down-gradient) of monitor well MW-1. The monitor well was installed to a total depth of approximately 100 ft. bgs. Laboratory analytical results of soil samples collected during the installation of monitor wells MW-6 and MW-7 indicated that benzene, BTEX, and TPH concentrations were less than NMOCD regulatory standards in all submitted soil samples. PSH was not detected in monitor wells MW-6 or MW-7.

On August 18, 2020, one (1) additional monitor well (MW-8) was installed pursuant to the *Work Plan* dated November 25, 2019. Monitor well MW-8 is located approximately 125 ft. to the south (cross-gradient) of monitor well MW-1. The monitor well was installed to a total depth of approximately 100 ft. bgs.

In February 2023, at the request of Plains, Etech assumed project management and oversight responsibilities for groundwater remediation activities at the DCP Plant to Lea Station 6-Inch #2 site.

Currently, a total of eight (8) monitor wells are located at the DCP Plant to Lea Station 6-Inch #2 release site. Monitor wells MW-1 through MW-8 are gauged and sampled on a quarterly basis.

A "Site Map" is provided as Figure 1B.

3.0 FIELD ACTIVITIES

3.1 Product Recovery

A measurable thickness of PSH was detected in monitor well MW-1 during the initial site investigation. Manual recovery of PSH from MW-1 commenced in April 2009, and approximately 6,225 gallons (148.2 bbls) of PSH were recovered between 2009 and 2022. No measurable thickness of PSH was detected during the monitoring period, with the exception of January 3, 2024 (0.01 feet).

On July 18, 2012, a Mobile Dual-Phase Extraction (MDPE) unit was installed on monitor well MW-1 by Talon LPE. The MDPE unit was shared with the nearby release site known as DCP Plant to Lea Station 6-Inch Sec. 31 (NMOCD Incident ID # nAPP2109730917), and the location of the unit was alternated quarterly. Between July 2012 and July 2017, an estimated 7,901 equivalent gallons (188 bbls) of PSH was recovered from monitor well MW-1 by MDPE.

On July 19, 2017, the MDPE unit was replaced with a Soil Vapor Extraction (SVE) unit which was permanently installed on monitor well MW-1. Since August 2017, monthly emission samples have been collected to ensure compliance with New Mexico Environment Department (NMED) Air Quality Bureau (AQB) emission threshold requirements. Effluent air samples are collected from the exhaust port of the SVE system during each monthly AFR event. Emission mass calculations indicated that BTEX emission rates averaged 0.117 tons/year, which is well below the yearly AQB emission threshold of 10 tons/year. Laboratory analytical results for effluent air samples are summarized in Table 3, and laboratory analytical reports are provided in Appendix B.

3.2 Groundwater Recovery

Monthly gauging and manual recovery events were conducted from monitor wells MW-1 and MW-5 during the first quarter of the 2024 reporting period. Monthly Aggressive Fluid Recovery (AFR) events were conducted on monitor wells MW-1 and MW-5 throughout the 2024 monitoring period in an effort to control the down- and cross-gradient migration of the dissolved-phase plume. During the AFR events, a hose was lowered into a well's fluid column and connected to a vacuum truck to recover both groundwater impacted with dissolved-phase hydrocarbons and/or PSH. Due to the nature of the recovery method used, it is not possible to accurately determine the exact quantity of PSH recovered.

For monitor well MW-1, an estimated 4,366 gallons (104 bbls) of hydrocarbon-impacted groundwater were recovered during the reporting period via a combination of manual recovery and AFR.

For monitor well MW-5, an estimated 4,240 gallons (101 bbls) of hydrocarbon-impacted groundwater were recovered during the reporting period via a combination of manual recovery and AFR.

An approximate total of 8,606 gallons (205 bbls) of hydrocarbon-impacted groundwater were recovered from the site during 2024 via a combination of manual recovery and AFR. A total of approximately 13,498 gallons (321 bbls) of impacted groundwater have been recovered during AFR events since April of 2016.

3.0 FIELD ACTIVITIES

3.1 Product Recovery

A measurable thickness of PSH was detected in monitor well MW-1 during the initial site investigation. Manual recovery of PSH from MW-1 commenced in April 2009, and approximately 6,225 gallons (148.2 bbls) of PSH were recovered between 2009 and 2022. No measurable thickness of PSH was detected during the monitoring period, with the exception of January 3, 2024 (0.01 feet).

On July 18, 2012, a Mobile Dual-Phase Extraction (MDPE) unit was installed on monitor well MW-1 by Talon LPE. The MDPE unit was shared with the nearby release site known as DCP Plant to Lea Station 6-Inch Sec. 31 (NMOCD Incident ID # nAPP2109730917), and the location of the unit was alternated quarterly. Between July 2012 and July 2017, an estimated 7,901 equivalent gallons (188 bbls) of PSH was recovered from monitor well MW-1 by MDPE.

On July 19, 2017, the MDPE unit was replaced with a Soil Vapor Extraction (SVE) unit which was permanently installed on monitor well MW-1. Since August 2017, monthly emission samples have been collected to ensure compliance with New Mexico Environment Department (NMED) Air Quality Bureau (AQB) emission threshold requirements. Effluent air samples are collected from the exhaust port of the SVE system during each monthly AFR event. Emission mass calculations indicated that BTEX emission rates averaged 0.117 tons/year, which is well below the yearly AQB emission threshold of 10 tons/year. Laboratory analytical results for effluent air samples are summarized in Table 3, and laboratory analytical reports are provided in Appendix B.

3.2 Groundwater Recovery

Monthly gauging and manual recovery events were conducted from monitor wells MW-1 and MW-5 during the first quarter of the 2024 reporting period. Monthly Aggressive Fluid Recovery (AFR) events were conducted on monitor wells MW-1 and MW-5 throughout the 2024 monitoring period in an effort to control the down- and cross-gradient migration of the dissolved-phase plume. During the AFR events, a hose was lowered into a well's fluid column and connected to a vacuum truck to recover both groundwater impacted with dissolved-phase hydrocarbons and/or PSH. Due to the nature of the recovery method used, it is not possible to accurately determine the exact quantity of PSH recovered.

For monitor well MW-1, an estimated 4,366 gallons (104 bbls) of hydrocarbon-impacted groundwater were recovered during the reporting period via a combination of manual recovery and AFR.

For monitor well MW-5, an estimated 4,240 gallons (101 bbls) of hydrocarbon-impacted groundwater were recovered during the reporting period via a combination of manual recovery and AFR.

An approximate total of 8,606 gallons (205 bbls) of hydrocarbon-impacted groundwater were recovered from the site during 2024 via a combination of manual recovery and AFR. A total of approximately 13,498 gallons (321 bbls) of impacted groundwater have been recovered during AFR events since April of 2016.

All recovered fluids were ultimately disposed of at an NMOCD-approved disposal facility.

Summaries of groundwater recovery volumes are provided in Tables 4 and 5.

3.3 Groundwater Monitoring

Groundwater monitoring events were conducted on March 7 (1Q2024); June 11 and 12 (2Q2024); September 4 and 5 (3Q2024); and December 14, 2024. The groundwater monitoring events consisted of measuring static water levels in the on-site monitor wells (MW-1 through MW-8), checking for the presence of PSH, and purging and sampling of each well exhibiting sufficient recharge. Purged water was placed into the on-site aboveground storage tank and disposed of at an NMOCD-approved disposal facility.

Groundwater samples were collected utilizing low-flow sampling equipment, including a bladder pump and multi-parameter meter. Prior to sample collection, readings on the multi-parameter meter were recorded for a minimum of four (4) cycles of five (5) minutes each. Each groundwater sample collected was placed in laboratory-supplied containers appropriate to the analysis requested and placed on ice in a cooler.

Based on sampling criteria provided by the NMOCD, only monitor well MW-1 was subject to annual monitoring for polycyclic aromatic hydrocarbons (PAH). A PAH monitoring event was conducted on March 7, 2024.

Locations of the groundwater monitor wells and the inferred groundwater elevations, which were constructed from measurements collected during the 2024 quarterly sampling events, are depicted in Figures 2A through 2D. The maps indicate a general groundwater gradient of approximately 0.002 feet/foot to the southeast as measured between monitor wells MW-2 and MW-7. Groundwater elevation data is summarized in Table 1.

4.0 LABORATORY RESULTS

Groundwater samples collected from the on-site monitor wells during the quarterly monitoring events were delivered to Eurofins Environment Testing South Central, LLC, in Midland, Texas, for determination of chloride, BTEX, and/or PAH constituent concentrations by Environmental Protection Agency (EPA) Methods 300, SW846-8021b, and SW846 8270C, respectively. A summary of laboratory analytical results is presented in Table 2. A summary of PAH constituent concentrations is provided in Table 6. Groundwater concentration maps are provided as Figures 3A through 3D. Laboratory analytical reports are provided as Appendix A.

Laboratory analytical results were compared to NMOCD regulatory limits based on the New Mexico groundwater standards found in Section 20.6.2.3103 of the New Mexico Administrative Code (NMAC).

Monitor well MW-1

Laboratory analytical results indicated that benzene concentrations ranged from less than the laboratory method detection limit (MDL) in 4Q2024 to 0.01140 mg/L in 1Q2024. Toluene concentrations ranged from less than the laboratory MDL in 2Q2024, 3Q2024, and 4Q2024 to

0.00152 mg/L in 1Q2024. Ethylbenzene concentrations ranged from less than the laboratory MDL in 4Q2024 to 0.0105 mg/L in 1Q2024. Total xylene concentrations ranged from less than the laboratory MDL in 3Q2024 and 4Q2024 to 0.0124 mg/L in 1Q2024.

Benzene concentrations exceeded the NMOCD regulatory standard of 0.01 mg/L in 1Q2024. Toluene, ethylbenzene, and total xylene concentrations were less than NMOCD regulatory standards in all submitted samples.

PAH constituent concentrations in the groundwater sample collected on March 7, 2024, were less than New Mexico Water Quality Control Commission (NMWQCC) Drinking Water Standards.

Monitor well MW-2

Laboratory analytical results indicated that BTEX constituent concentrations were less than the appropriate laboratory MDL and less than NMOCD regulatory standards in all submitted groundwater samples.

Monitor well MW-3

Laboratory analytical results indicated that BTEX constituent concentrations were less than the appropriate laboratory MDL and less than NMOCD regulatory standards in all submitted groundwater samples.

Monitor well MW-4

Laboratory analytical results indicated that BTEX constituent concentrations were less than the appropriate laboratory MDL and less than NMOCD regulatory standards in all submitted groundwater samples.

Monitor well MW-5

Laboratory analytical results indicated that benzene concentrations ranged from less than the laboratory MDL in 2Q2024, 3Q2024, and 4Q2024 to 0.00346 mg/L in 1Q2024. Toluene concentrations were less than the laboratory MDL in each of the submitted groundwater samples. Ethylbenzene concentrations ranged from less than the laboratory MDL in 2Q2024, 3Q2024, and 4Q2024 to 0.000682 mg/L in 1Q2024. Total xylene concentrations ranged from less than the laboratory MDL in 2Q2024, 3Q2024, and 4Q2024 to 0.000585 mg/L in 1Q2024.

BTEX constituent concentrations were less than NMOCD regulatory standards in all submitted samples.

Monitor well MW-6

Laboratory analytical results indicated that BTEX constituent concentrations were less than the appropriate laboratory MDL and less than NMOCD regulatory standards in all submitted groundwater samples.

Monitor well MW-7

Laboratory analytical results indicated that BTEX constituent concentrations were less than the appropriate laboratory MDL and less than NMOCD regulatory standards in all submitted groundwater samples.

Monitor Well MW-8

Laboratory analytical results indicated that BTEX constituent concentrations were less than the appropriate laboratory MDL and less than NMOCD regulatory standards in all submitted groundwater samples.

5.0 SUMMARY

This report presents the results of groundwater monitoring activities for the 2024 annual monitoring period. Currently, there are eight (8) groundwater monitor wells (MW-1 through MW-8) on-site.

An approximate total of 8,606 gallons (205 bbls) of hydrocarbon-impacted groundwater were recovered from the site during 2024 via a combination of manual recovery and AFR. A total of approximately 13,498 gallons (321 bbls) of impacted groundwater have been recovered during AFR events since April of 2016.

Effluent air samples collected from the exhaust port of the SVE system during the monitoring period indicated that BTEX emission rates averaged 0.117 tons/year, which is well below the yearly AQB emission threshold of 10 tons/year.

Groundwater monitoring events were conducted on March 7 (1Q2024); June 11 and 12 (2Q2024); September 4 and 5 (3Q2024); and December 14, 2024. Review of laboratory analytical results from groundwater samples collected during the reporting period indicated that the benzene concentration in monitor well MW-1 exceeded the NMOCD regulatory standard of 0.01 mg/L in 1Q2024. Toluene, ethylbenzene, and total xylene concentrations were less than NMOCD regulatory standards in all submitted groundwater samples.

Only monitor well MW-1 was subject to PAH monitoring during the reporting period. Review of laboratory analytical results from the annual sample collected on March 7, 2024, indicated that PAH constituent concentrations were less than NMWQCC Drinking Water Standards.

Groundwater gauging data collected during the monitoring period indicated a general gradient of approximately 0.002 feet/foot to the south-southeast as measured between monitor wells MW-2 and MW-7.

No measurable thickness of PSH was detected in any of the monitoring wells during the reporting period, with the exception of monitor well MW-1 on January 3, 2024 (0.01 feet).

6.0 ANTICIPATED ACTIONS

Monitor wells MW-1 and MW-5 will continue to be monitored and sampled quarterly for BTEX.

Since monitor wells MW-2, MW-3, MW-4, MW-6, and MW-8 have exhibited eight (8) or more consecutive quarters with no concentrations of BTEX constituents above NMOCD regulatory standards, the sampling frequency for these wells can be safely reduced from quarterly to semiannual (i.e., twice per year).

Given the observed reductions in the extents of the free-phase and dissolved-phase plumes, monitor well MW-7 is no longer necessary for ongoing plume control or monitoring. Review of cumulative laboratory analytical results indicates that BTEX constituent concentrations in monitor well MW-7 have remained below NMOCD regulatory standards since the well was installed in September 2013. Cumulative groundwater chemistry data for the well is provided in Table 7.

Based on the information summarized above, Plains hereby requests permission to plug and abandon monitor well MW-7. Pending NMOCD approval, the monitor well will be plugged and abandoned in accordance with NMOSE and NMOCD regulatory requirements, and a monitor well plugging report will be submitted to the NMOCD within thirty (30) calendar days of completion.

Monitor well MW-1 will be sampled annually for PAH.

AFR will continue on a monthly basis from monitor wells MW-1 and MW-5 in an effort to control the down-gradient migration of the dissolved-phase plume.

Recovery by SVE and monthly emission sampling will continue from monitor well MW-1.

Results of the 2025 sampling and recovery events will be reported in the 2025 Annual Groundwater Monitoring Report, which will be submitted to the NMOCD by April 1, 2026.

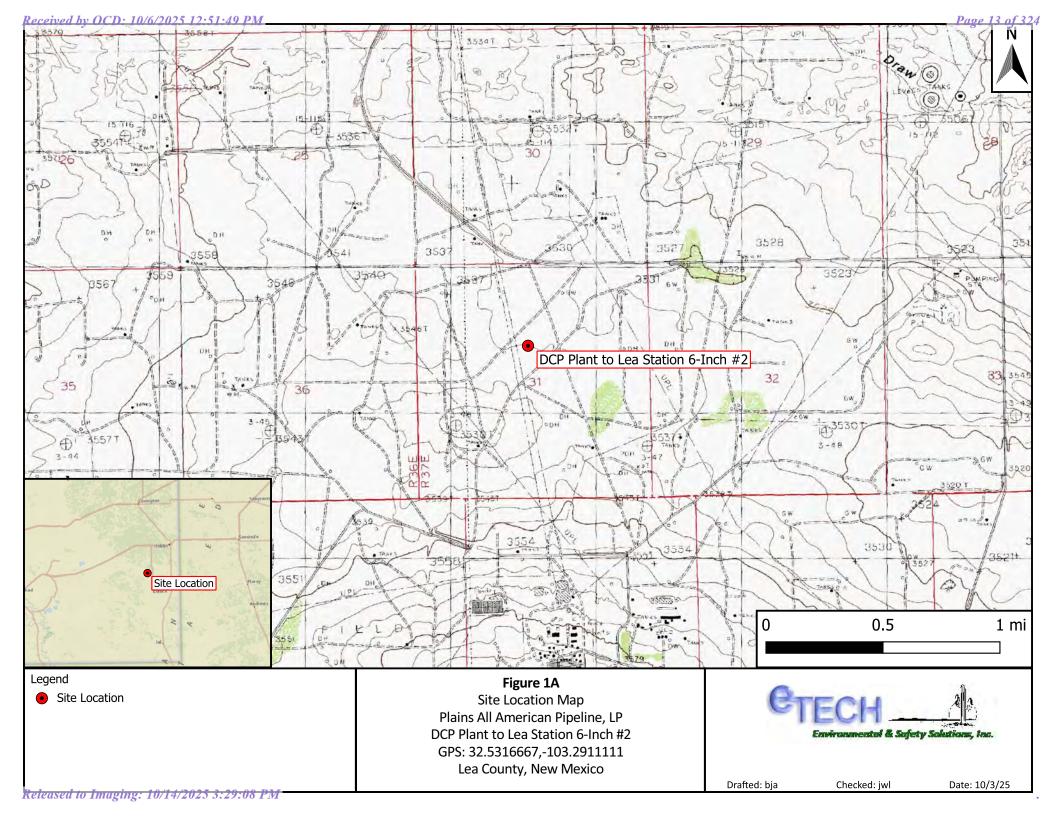
7.0 LIMITATIONS

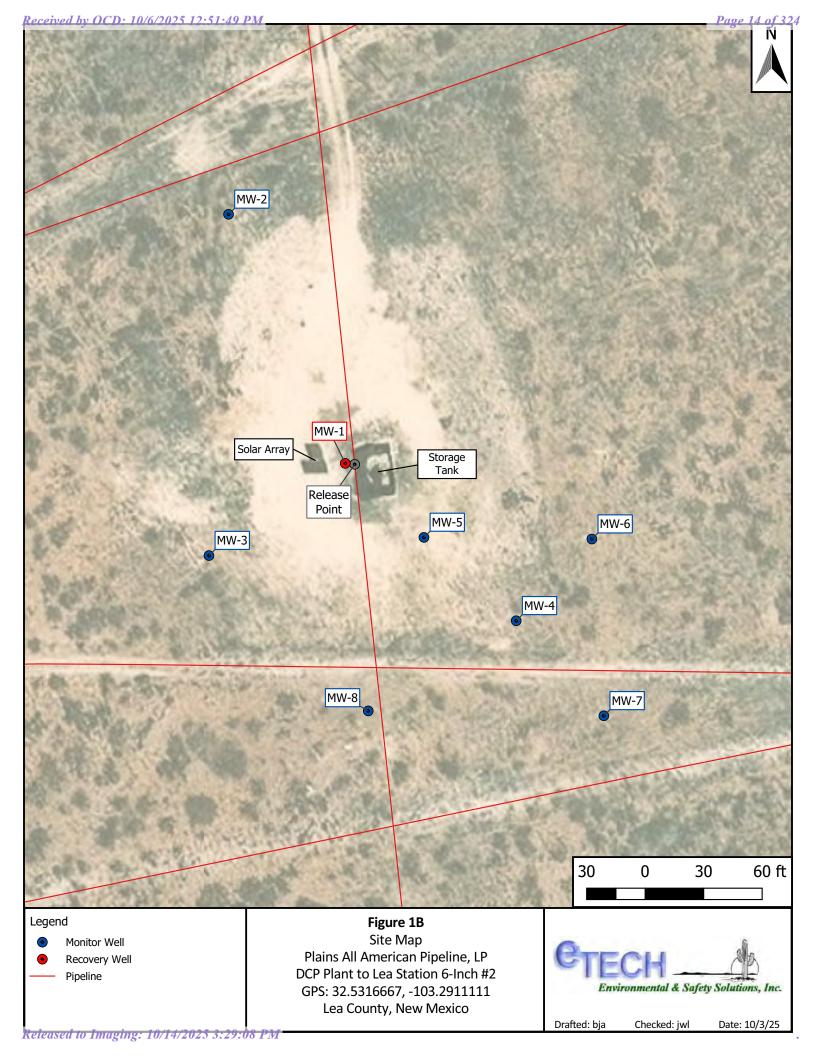
Etech Environmental & Safety Solutions, Inc., has prepared this 2024 Annual Groundwater Monitoring Report to the best of its ability. No other warranty, expressed or implied, is made or intended. Etech has examined and relied upon documents referenced in the report and on oral statements made by certain individuals. Etech has not conducted an independent examination of the facts contained in referenced materials and statements. Etech has presumed the genuineness of these documents and statements and that the information provided therein is true and accurate. Etech has prepared the report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Etech notes that the facts and conditions referenced in this report may change over time, and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Plains All American Pipeline, LP. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Etech and/or Plains All American Pipeline, LP.

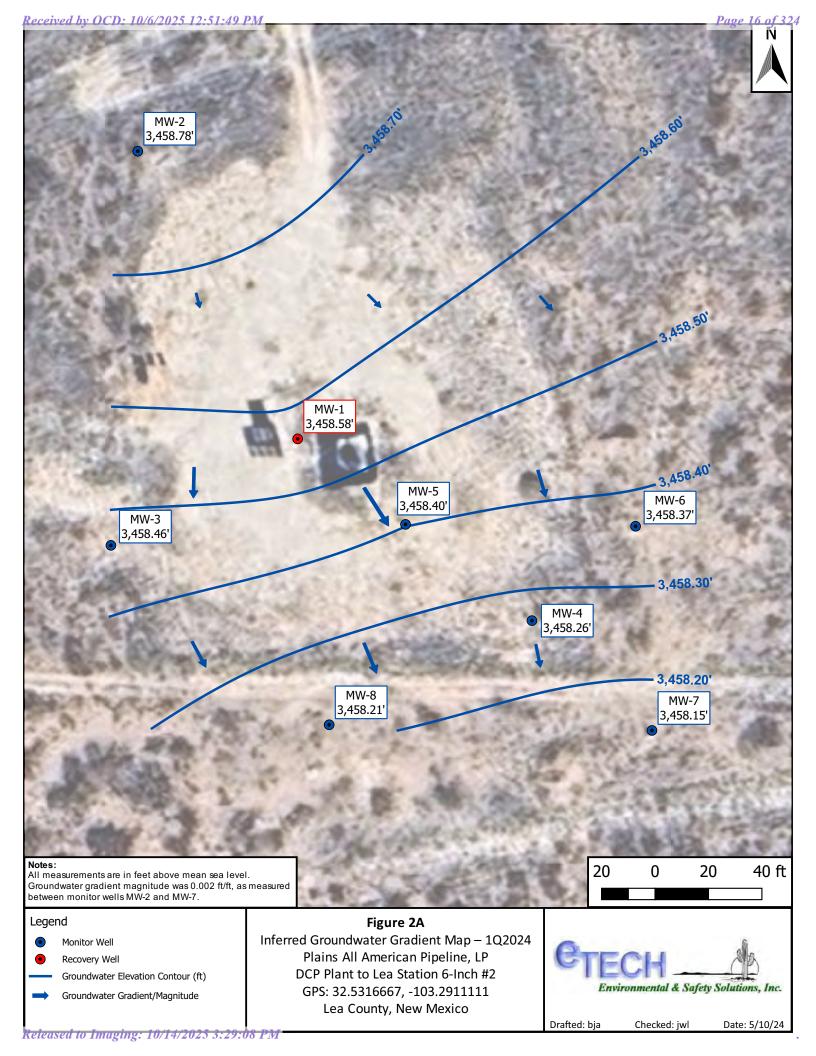
8.0 DISTRIBUTION

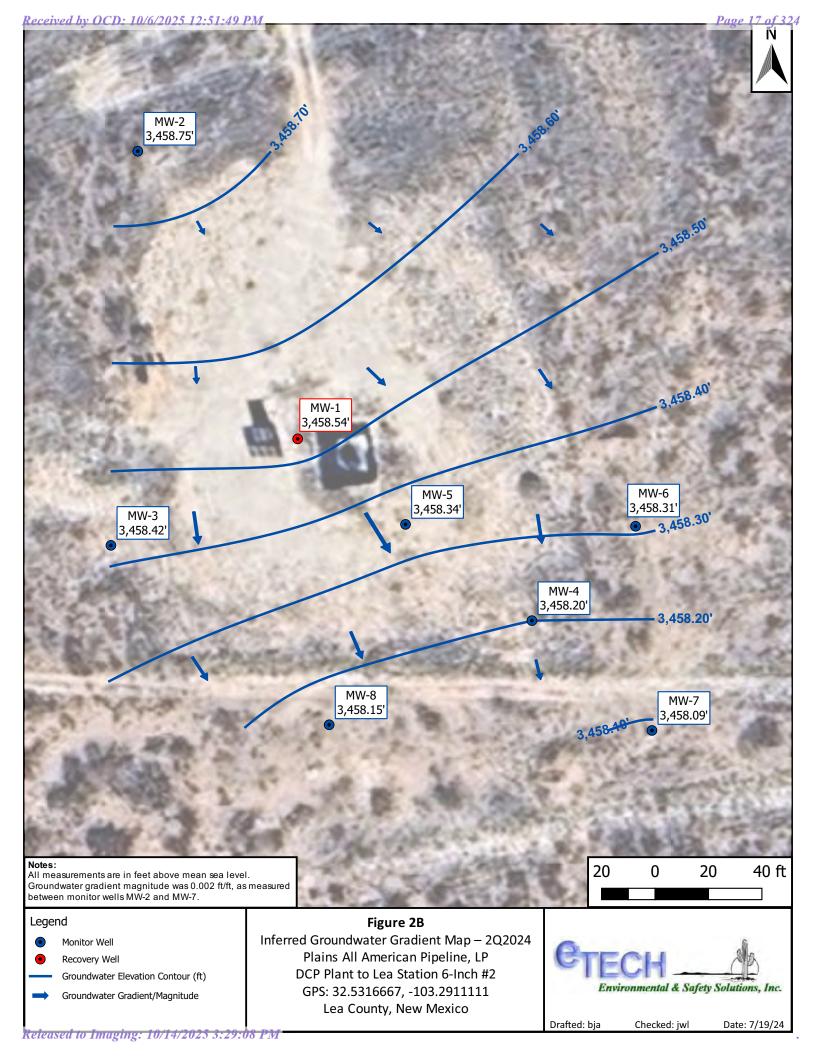
Plains All American Pipeline, LP 1106 Griffith Drive Midland, Texas 79706

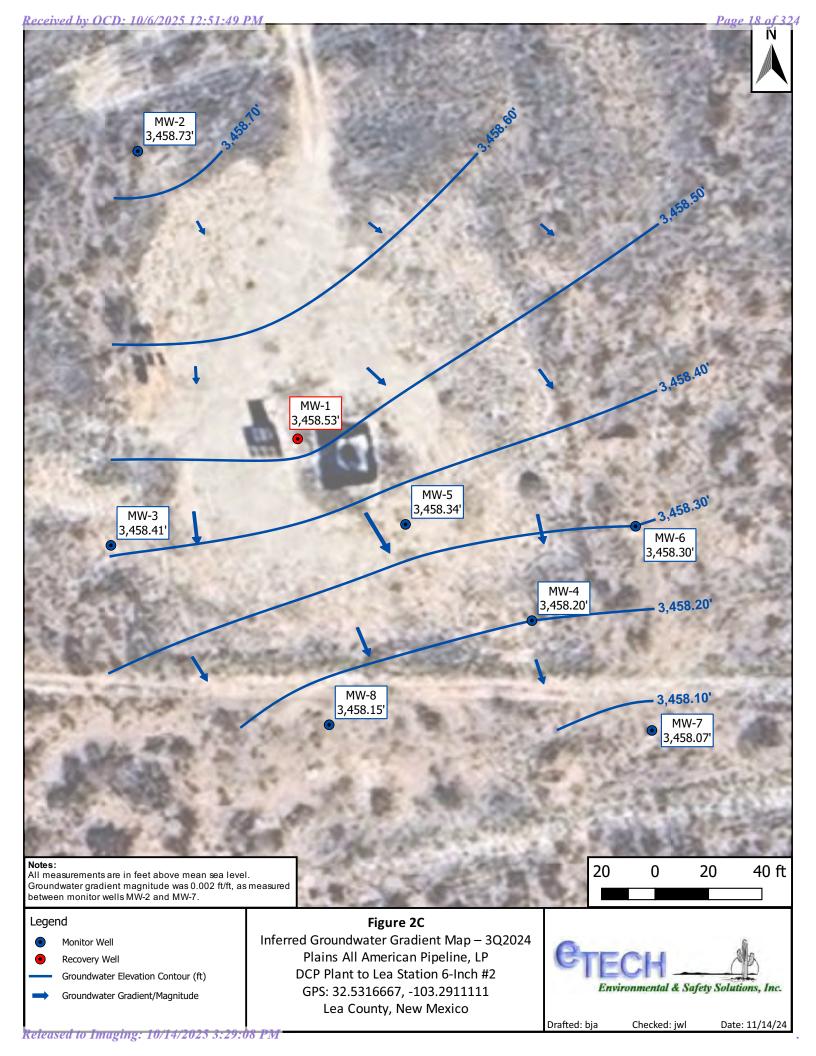

Nelson Velez Environmental Specialist - Advanced New Mexico Oil Conservation Division 1000 Rio Brazos Road Aztec, NM 87410

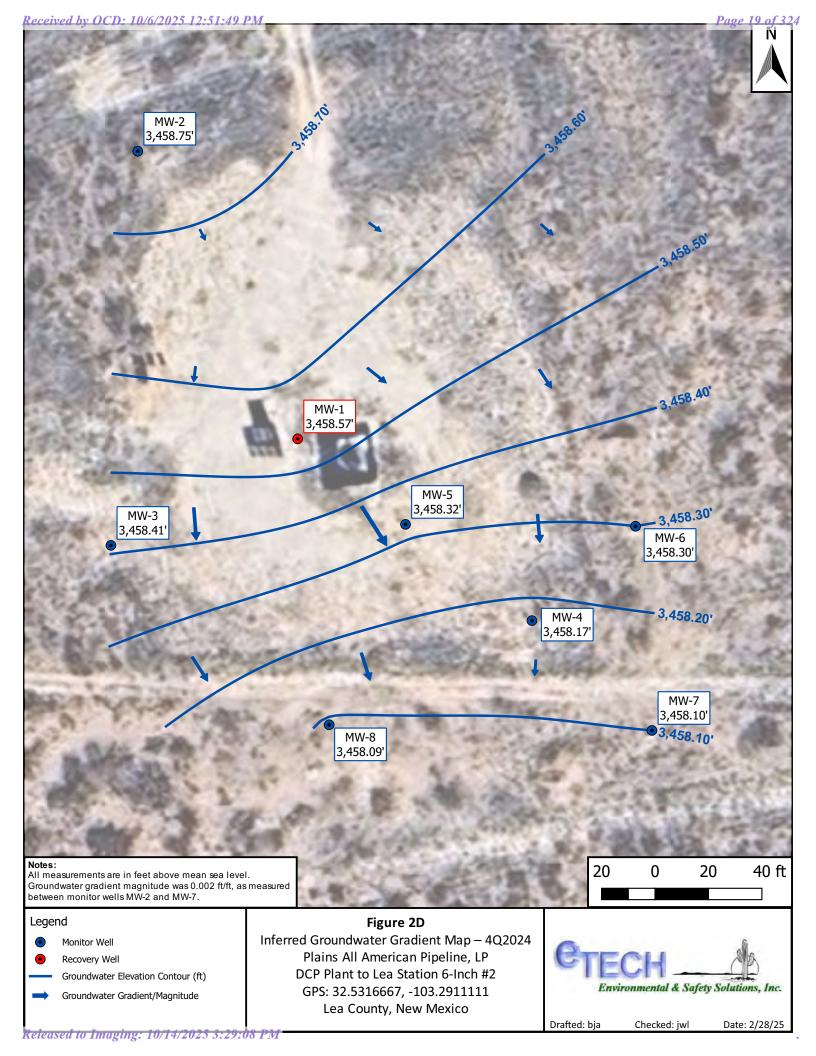

Karolanne Hudgens

Plains All American Pipeline, LP 333 Clay Street, Suite 1600 Houston, Texas 77002

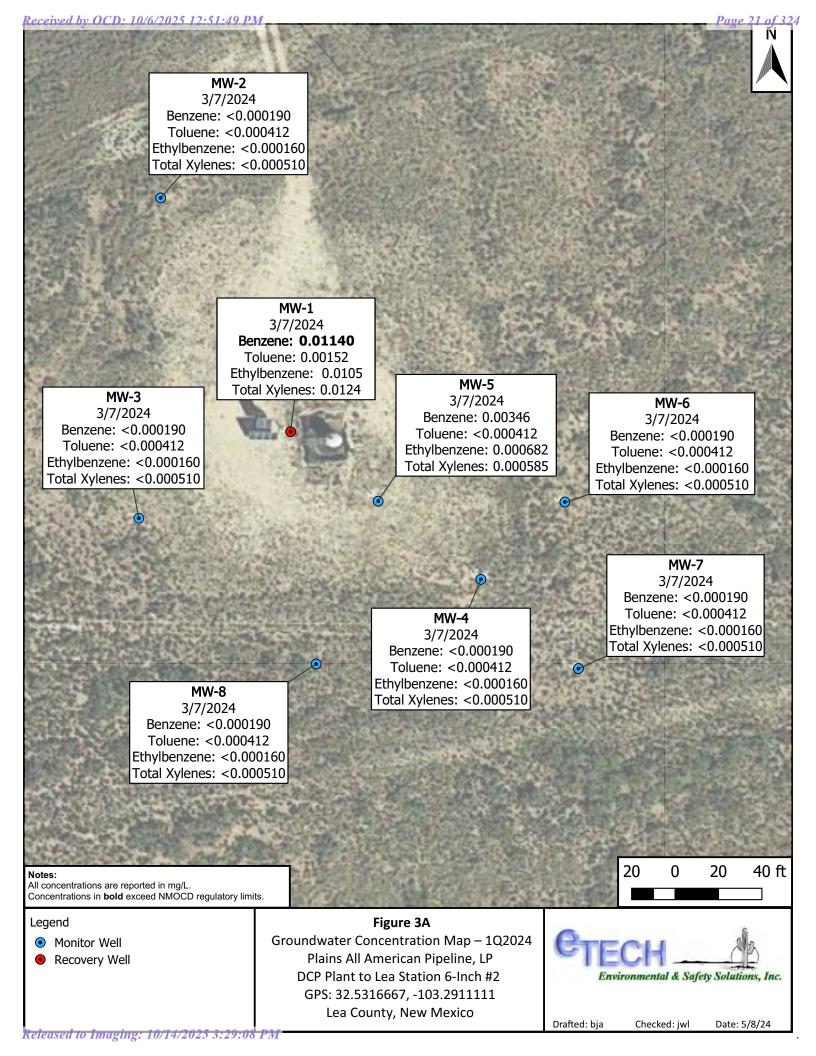

(Electronic Submission)

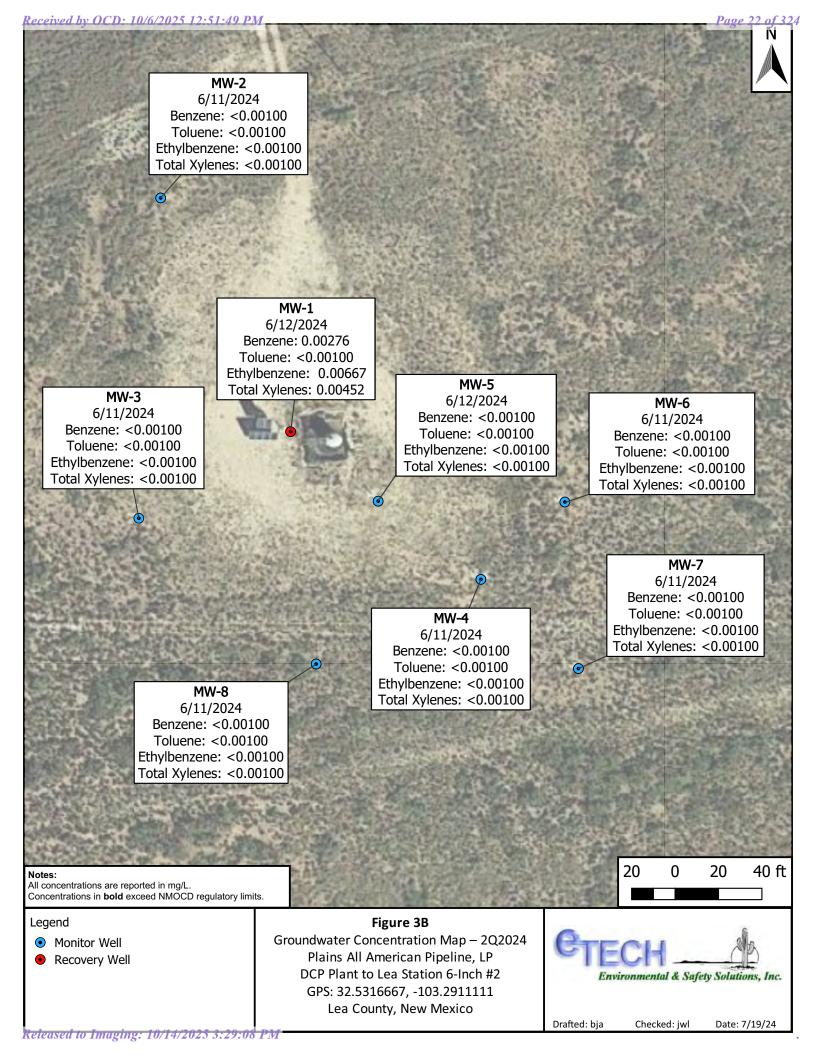

Figures 1A & 1B Site Maps

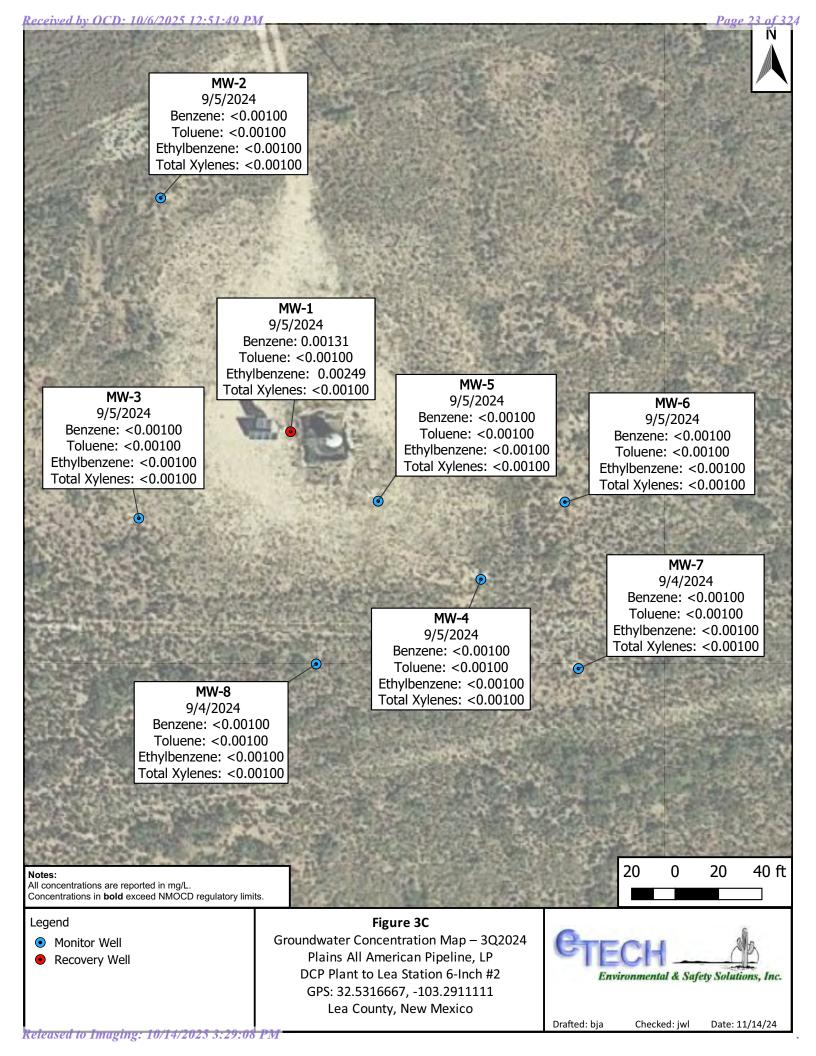


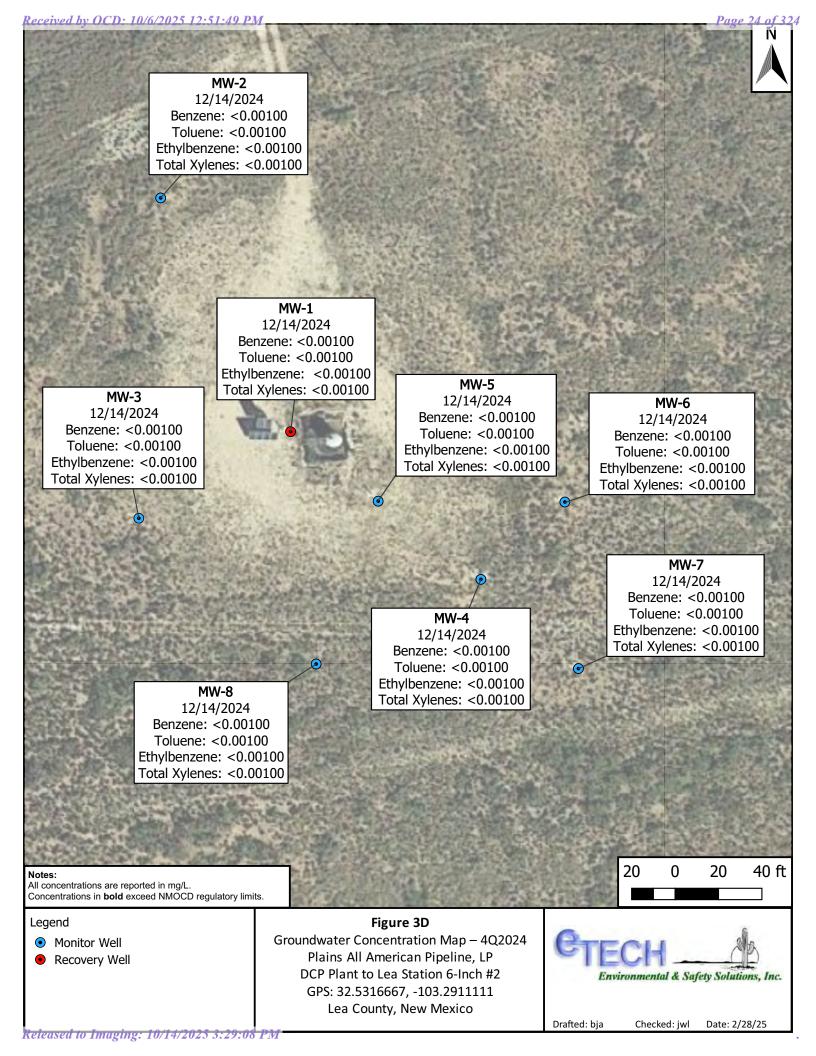


Figures 2A–2D Inferred Groundwater Gradient Maps









Figures 3A–3D Groundwater Concentration Maps

Tables 1–7

Table 1 Groundwater Elevation & PSH1 Thickness Summary

DCP Plant to Lea Station 6-Inch #2 Lea County, New Mexico Plains SRS #: 2009-039 Etech Project #: 17472

NMOCD² Incident ID#: nAPP2109730917

All measurements are	in fe	et above	mean	sea	level

Well ID	Date Gauged	Top of Casing (TOC) ³ Elevation*	Depth to PSH Below TOC (feet)	Depth to Water Below TOC (feet)	PSH Thickness (feet)	Corrected Groundwater Elevation**			
	03/29/2023		-	81.45	-	3,458.80			
	06/22/2023		-	81.53	-	3,458.72			
	09/18/2023		-	81.52	-	3,458.73			
MW-1	12/06/2023	3,540.25	-	81.73	-	3,458.52			
	03/07/2024		-	81.67	-	3,458.58			
	06/12/2024 09/04/2024			81.71 81.72		3,458.54 3,458.53			
	12/14/2024		_	81.68	-	3,458.57			
						·			
	03/29/2023		-	79.32	-	3,458.99			
	06/22/2023		-	79.46	-	3,458.85			
	09/18/2023 12/06/2023		-	79.47 79.60	-	3,458.84 3,458.71			
MW-2	03/07/2024	3,538.31		79.53	-	3,458.78			
	06/11/2024		-	79.56	-	3,458.75			
	09/04/2024		-	79.58	-	3,458.73			
	12/14/2024		-	79.56	-	3,458.75			
			T						
	03/29/2023		-	80.30	-	3,458.64			
	06/22/2023 09/18/2023			80.43 80.43	-	3,458.51 3,458.51			
	12/06/2023	0.50	-	80.56	-	3,458.38			
MW-3	03/07/2024	3,538.94	-	80.48	-	3,458.46			
	06/11/2024		-	80.52	-	3,458.42			
	09/04/2024		-	80.53	-	3,458.41			
	12/14/2024		-	80.53	-	3,458.41			
	03/29/2023		l -	81.23	-	3,458.44			
	06/22/2023			81.36		3,458.31			
	09/18/2023		-	81.35	-	3,458,32			
MW-4	12/06/2023	3,539.67	-	81.51	-	3,458.16			
IVIVV -4	03/07/2024		-	81.41	-	3,458.26			
	06/11/2024		-	81.47	-	3,458.20			
	09/04/2024		-	81.47	-	3,458.20			
	12/14/2024		-	81.50	-	3,458.17			
	03/29/2023		-	79.93	-	3,459.62			
	06/22/2023		- 81.08 -		-	3,458.47			
	09/18/2023	1	1]	-	81.10	-	3,458.45
MW-5	12/06/2023	3,539.55	-	81.25	-	3,458.30			
	03/07/2024		-	81.15	-	3,458.40			
	06/12/2024 09/04/2024				81.21 81.21		3,458.34 3,458.34		
	12/14/2024		-	81.23	-	3,458.32			
						·			
	03/29/2023		-	80.66	-	3,458.56			
	06/22/2023		-	80.79	-	3,458.43			
	09/18/2023		-	80.79	-	3,458.43 3,458.28			
MW-6	12/06/2023 03/07/2024	3,539.22	-	80.94 80.85	-	3,458.37			
	06/11/2024		-	80.91	-	3,458.31			
	09/04/2024		-	80.92	-	3,458.30			
	12/14/2024		-	80.92	-	3,458.30			
	02/20/2022		ı	00.05		2.450.00			
	03/29/2023		-	80.65	-	3,458.32			
	06/22/2023 09/18/2023		-	80.76 80.74	-	3,458.21 3,458.23			
NAVA 7	12/06/2023	0.500.07	-	80.92	-	3,458.05			
MW-7	03/07/2024	3,538.97	-	80.82		3,458.15			
	06/11/2024		-	80.88	-	3,458.09			
	09/04/2024		-	80.90	-	3,458.07			
	12/14/2024		-	80.87	-	3,458.10			
	03/29/2023		_	82.67		3,457.37			
	06/22/2023		-	81.94	-	3,458.10			
	09/18/2023			81.96	-	3,458.08			
MW-8	12/06/2023	3,540.04	-	81.91	-	3,458.13			
10100-0	03/07/2024	5,570.04	-	81.83		3,458.21			
	06/11/2024		-	81.89	-	3,458.15			
	12/14/2024			81.89 81.95	-	3,458.15			
	12/14/2024			81.95		3,458.09			
Notes:									

- Notes:

 1. PSH: Phase Separated Hydrocarbons

 2. NMCD: New Mexico Oil Conservation Division

 3. TOC: Top of Casing

 * Elevations based on the North American Vertical Datum of 1988.

 ** Corrected groundwater elevations were extrapolated using a PSH specific gravity of 0.85, if PSH was gauged in the monitor well.

Table 2 Groundwater BTEX¹ Concentration Analytical Summary

DCP Plant to Lea Station 6-Inch #2
Lea County, New Mexico
Plains SRS #: 2009-039
Etech Project #: 17472
NMOCD² Incident ID#: nAPP2109730917

All concentrations are in milligrams per liter (mg/l)

		7111 0011	ochtrations a	re in milligrams pe	SW846-802	01R		
	Date			<u> </u>		1		
Well ID	Sampled	Benzene	Toluene	Ethylbenzene	M,P- Xylenes	O- Xylenes	Total Xylenes	Total BTEX
NMOCD RR	AL CRITERIA ³	0.01	0.75	0.75	тот	AL XYLENE	S 0.62	NE⁴
	03/31/2023	0.173	0.0164	0.0521	0.108 0.0482		0.156	0.398
	06/22/2023		Inadve		tently Not Sa	mpled		
	09/22/2023	0.165	0.0104	0.174	0.140	0.0446	0.185	0.534
MW-1	12/06/2023	0.00274	<0.000412	0.00331	-	-	0.00296	0.00605
IVIVV - I	03/07/2024	0.01140	0.00152	0.0105	-	-	0.0124	0.0358
	06/12/2024	0.00276	<0.00100	0.00667	0.00452	< 0.00100	0.00452	0.0140
	09/05/2024	0.00131	<0.00100	0.00249	<0.00200	< 0.00100	<0.00100	0.00380
	12/14/2024	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00100	<0.00100
	_							
	03/31/2023	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00200	<0.00200
	06/22/2023	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00300	<0.00300
	09/18/2023	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00200	<0.00200
MW-2	12/06/2023	<0.000190	< 0.000412	< 0.000160	-	-	<0.000510	<0.000510
10100-2	03/07/2024	<0.000190	< 0.000412	<0.000160	-	-	<0.000510	<0.000510
	06/11/2024	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00100	<0.00100
	09/05/2024	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00100	<0.00100
	12/14/2024	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00100	<0.00100
	03/31/2023	<0.00100	<0.00100	<0.00100	<0.00200 <0.00100		<0.00200	<0.00200
	06/22/2023	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00300	<0.00300
	09/18/2023	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00200	<0.00200
MW-3	12/06/2023	<0.000190	< 0.000412	< 0.000160	-	-	<0.000510	<0.000510
10100-3	03/07/2024	<0.000190	<0.000412	<0.000160	-	-	<0.000510	<0.000510
	06/11/2024	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00100	<0.00100
	09/05/2024	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00100	<0.00100
	12/14/2024	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00100	<0.00100
	03/31/2023	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00200	<0.00200
	06/22/2023	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00300	<0.00300
	09/18/2023	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00200	<0.00200
MW-4	12/05/2023	<0.000190	<0.000412	<0.000160	-	-	<0.000510	<0.000510
IVIVV ===	03/07/2024	<0.000190	<0.000412	<0.000160	-	-	<0.000510	<0.000510
	06/11/2024	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00100	<0.00100
	09/05/2024	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00100	<0.00100
	12/14/2024	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00100	<0.00100

Notes:

- 1. BTEX: Benzene, Toluene, Ethylbenzene, and Total Xylenes
- 2. NMOCD: New Mexico Oil Conservation Division
- 3. RRAL Criteria: Recommended Remediation Action Level Criteria
- 4. NE: Not Established

 $\mbox{\bf Bold}$ text indicates a concentration exceeding the NMOCD RRAL Criteria

Table 2 Groundwater BTEX¹ Concentration Analytical Summary

DCP Plant to Lea Station 6-Inch #2
Lea County, New Mexico
Plains SRS #: 2009-039
Etech Project #: 17472
NMOCD² Incident ID#: nAPP2109730917

All concentrations are in milligrams per liter (mg/l)

				EPA	SW846-802	21B		
Well ID	Date Sampled	Benzene	Toluene	Ethylbenzene	M,P- Xylenes	O- Xylenes	Total Xylenes	Total BTEX
NMOCD RR	AL CRITERIA ³	0.01	0.75	0.75	тот	AL XYLENE	S 0.62	NE ⁴
	03/31/2023	0.0588	<0.00100	0.00654	<0.00200	<0.00100	<0.00200	0.06534
	06/22/2023	0.00760	0.00110	<0.00100	<0.00200	<0.00100	< 0.00300	0.00870
	09/18/2023	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00200	<0.00200
MW-5	12/05/2023	0.00627	< 0.000412	0.00145	-	-	<0.000510	0.00772
C- VVIVI	03/07/2024	0.00346	< 0.000412	0.000682	-	-	0.000585	0.00473
	06/12/2024	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00100	<0.00100
	09/05/2024	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00100	<0.00100
	12/14/2024	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00100	<0.00100
	_	,						
	03/31/2023	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00200	<0.00200
	06/22/2023	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00300	<0.00300
	09/18/2023	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00200	<0.00200
MW-6	12/05/2023	<0.000190	< 0.000412	< 0.000160	-	-	<0.000510	<0.000510
IVIVV-O	03/07/2024	<0.000190	< 0.000412	< 0.000160	-	-	<0.000510	<0.000510
	06/11/2024	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00100	<0.00100
	09/05/2024	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00100	<0.00100
	12/14/2024	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00100	<0.00100
	T	T	1		T		T	
	03/31/2023	<0.00100	<0.00100	<0.00100	<0.00200 <0.00100		<0.00200	<0.00200
	06/22/2023	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00300	<0.00300
	09/18/2023	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00200	<0.00200
MW-7	12/05/2023	<0.000190	<0.000412	<0.000160	-	-	<0.000510	<0.000510
	03/07/2024	<0.000190	<0.000412	<0.000160	-	-	<0.000510	<0.000510
	06/11/2024	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00100	<0.00100
	09/04/2024	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00100	<0.00100
	12/14/2024	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00100	<0.00100
	T	T	1				1	
	03/31/2023	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00200	<0.00200
	06/22/2023	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00300	<0.00300
	09/18/2023	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00200	<0.00200
MW-8	12/05/2023	0.00538	<0.000412	0.00609	-	-	0.00484	0.0163
	03/07/2024	<0.000190	<0.000412	<0.000160	-	-	<0.000510	<0.000510
	06/11/2024	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00100	<0.00100
	09/04/2024	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00100	<0.00100
	12/14/2024	< 0.00100	< 0.00100	< 0.00100	< 0.00200	< 0.00100	< 0.00100	< 0.00100

Notes:

- 1. BTEX: Benzene, Toluene, Ethylbenzene, and Total Xylenes
- 2. NMOCD: New Mexico Oil Conservation Division
- 3. RRAL Criteria: Recommended Remediation Action Level Criteria
- 4. NE: Not Established

Bold text indicates a concentration exceeding the NMOCD RRAL Criteria

DCP Plant to Lea Station 6-Inch #2 Lea County, New Mexico Plains SRS#: 2009-039 Etech Project #: 17472

NMOCD Incident ID#: nAPP2109730917

Sample ID	Sample Date	Laboratory	BTEX / TPH (mg/m³)	Emission Mass ⁴ (tons/year)	Emission Volume (gal/day)
New Mexico Environ	nment Department (NM	IED) Air Quality Burea	(AQB) Action Level requiring an Air Permit	10	
			Benzene - ND	ND	ND
			Toluene - 48.6	0.0331	0.0249
EFF-1 (013024)	01/30/2024	Pace	Ethylbenzene - 14.40	0.00980	0.00737
EFF-1 (013024)	01/30/2024	Pace	Total Xylene - 42.8	0.0291	0.0219
			Total BTEX - 106	0.0720	0.0542
			TPH - GRO - 1,090	0.742	0.686
			Benzene - ND	ND	ND
		Pace	Toluene - 57.6	0.0392	0.0295
FFF 4 (004F04)	02/15/2024		Ethylbenzene - 11.7	0.00796	0.00599
EFF-1 (021524)	02/15/2024		Total Xylene - 31.4	0.0214	0.0161
			Total BTEX - 101	0.0686	0.0516
			TPH - GRO - 1,500	1.02	0.945
			Benzene - 0.291	0.000198	0.000149
			Toluene - 72.7	0.0495	0.0372
EFF-1 (022724)	02/27/2024	Pace	Ethylbenzene - 18.1	0.0123	0.0093
EFF-1 (022724)	02/21/2024	race	Total Xylene - 51.1	0.0348	0.0262
			Total BTEX - 142	0.0968	0.0728
			TPH - GRO - 1,900	1.29	1.20
			Benzene - ND	ND	ND
			Toluene - 4.33	0.00295	0.00222
EFF-1 (032524)	03/25/2024	Pace	Ethylbenzene - 1.71	0.00116	0.00088
EFF-1 (U32324)	03/23/2024	race	Total Xylene - 5.71	0.00389	0.00292
			Total BTEX - 11.8	0.00800	0.00601
			TPH - GRO - 89.6	0.0610	0.0564
			1Q2024 BTEX Average	0.0613	0.0461

Notes:

- 1. SVE: Soil Vapor Extraction
- 2. BTEX: Benzene, toluene, ethylbenzene, and total xylene analyzed by EPA Method 8021B
- 3. TPH: Total petroleum hydrocarbons analyzed by EPA Method 8015
- 4. Emission Mass calculated assuming flowrate 1.1073 (m³/min) and constituent concentration were constant for the entirety of a year.
- NA: Constituent was not analyzed
- ND: Analyte not detected at or above the reporting limit
- < = Constituent not detected above laboratory sample detection limit (SDL)

DCP Plant to Lea Station 6-Inch #2 Lea County, New Mexico Plains SRS#: 2009-039 Etech Project #: 17472

NMOCD Incident ID#: nAPP2109730917

Sample ID	Sample Date	Laboratory	BTEX / TPH (mg/m³)	Emission Mass ⁴ (tons/year)	Emission Volume (gal/day)
New Mexico Enviro	nment Department (NN	(IED) Air Quality Burea	(AQB) Action Level requiring an Air Permit	10	
			Benzene - ND	ND	ND
			Toluene - 8.89	0.00605	0.00455
EEE 1 (041624)	04/16/2024	PBEL	Ethylbenzene - 1.68	0.00114	0.000858
EFF-1 (041624)	04/16/2024	PDEL	Total Xylene - 3.92	0.00267	0.00201
			Total BTEX - 14.5	0.00986	0.00742
			TPH - GRO - NA	NA	NA
			Benzene - ND	ND	ND
		PBEL	Toluene - ND	ND	ND
FFF 4 (0F0404)	05/21/2024		Ethylbenzene - ND	ND	ND
EFF-1 (052124)			Total Xylene - ND	ND	ND
			Total BTEX - ND	ND	ND
			TPH - GRO - NA	NA	NA
			Benzene - ND	ND	ND
			Toluene - 33.4	0.0227	0.0171
FFF 4 (000004)	00/00/0004	PBEL	Ethylbenzene - ND	ND	ND
EFF-1 (062624)	06/26/2024	PBEL	Total Xylene - ND	ND	ND
			Total BTEX - 33.4	0.0227	0.0171
			TPH - GRO - NA	NA	NA
			2Q2024 BTEX Average	0.0163	0.0122

Notes:

- 1. SVE: Soil Vapor Extraction
- 2. BTEX: Benzene, toluene, ethylbenzene, and total xylene analyzed by EPA Method 8021B
- 3. TPH: Total petroleum hydrocarbons analyzed by EPA Method 8015
- 4. Emission Mass calculated assuming flowrate 1.1073 (m³/min) and constituent concentration were constant for the entirety of a year.
- NA: Constituent was not analyzed
- ND: Analyte not detected at or above the reporting limit
- < = Constituent not detected above laboratory sample detection limit (SDL)

DCP Plant to Lea Station 6-Inch #2 Lea County, New Mexico Plains SRS#: 2009-039 Etech Project #: 17472

NMOCD Incident ID#: nAPP2109730917

Sample ID	Sample Date	Laboratory	BTEX / TPH (mg/m³)	Emission Mass ⁴ (tons/year)	Emission Volume (gal/day)
New Mexico Enviro	nment Department (NM	IED) Air Quality Burea ((AQB) Action Level requiring an Air Permit	10	
			Benzene - 0.351	0.000239	0.000180
			Toluene - 1,146	0.780	0.586
EFF-1 (072424)	07/24/2024	PBEL	Ethylbenzene - 0.304	0.000207	0.000156
EFF-1 (072424)		FDEL	Total Xylene - 0.608	0.000414	0.000311
			Total BTEX - 1,147	0.781	0.587
			TPH - GRO - NA	NA	NA
			Benzene - ND	ND	ND
	08/20/2024	PBEL	Toluene - 30.41	0.0207	0.0156
EFF-1 (082024)			Ethylbenzene - 5.78	0.00393	0.00296
EFF-1 (002024)	00/20/2024		Total Xylene - 16.7	0.0114	0.00856
			Total BTEX - 52.9	0.0360	0.0271
			TPH - GRO - NA	NA	NA
·			Benzene - ND	ND	ND
			Toluene - 32.1	0.0218	0.0164
EFF-1 (092924)	09/29/2024	PBEL	Ethylbenzene - 6.04	0.00411	0.00309
EFF-1 (U92924)	09/29/2024	FDEL	Total Xylene - 17.7	0.0121	0.00907
			Total BTEX - 55.8	0.0380	0.0286
			TPH - GRO - NA	NA	NA
			3Q2024 BTEX Average	0.285	0.214

Notes:

- 1. SVE: Soil Vapor Extraction
- 2. BTEX: Benzene, toluene, ethylbenzene, and total xylene analyzed by EPA Method 8021B
- 3. TPH: Total petroleum hydrocarbons analyzed by EPA Method 8015
- 4. Emission Mass calculated assuming flowrate 1.1073 (m³/min) and constituent concentration were constant for the entirety of a year.
- NA: Constituent was not analyzed
- ND: Analyte not detected at or above the reporting limit
- < = Constituent not detected above laboratory sample detection limit (SDL)

DCP Plant to Lea Station 6-Inch #2 Lea County, New Mexico Plains SRS#: 2009-039 Etech Project #: 17472

NMOCD Incident ID#: nAPP2109730917

Sample ID	Sample Date	Laboratory	BTEX / TPH (mg/m³)	Emission Mass ⁴ (tons/year)	Emission Volume (gal/day)
New Mexico Enviro	nment Department (NM	IED) Air Quality Burea ((AQB) Action Level requiring an Air Permit	10	
			Benzene - ND	ND	ND
			Toluene - 23.7	0.0162	0.0122
EEE 1 (101604)	10/16/2024	PBEL	Ethylbenzene - 2.91	0.00198	0.00149
EFF-1 (101624)		PDEL	Total Xylene - 5.99	0.00408	0.00307
			Total BTEX - 32.6	0.0222	0.0167
			TPH - GRO - NA	NA	NA
		PBEL	Benzene - 27.3	0.0186	0.0140
	11/14/2024		Toluene - 112	0.0764	0.0575
EFF-1 (111424)			Ethylbenzene - 36.7	0.0250	0.0188
EFF-1 (111424)			Total Xylene - 171	0.116	0.0876
			Total BTEX - 347	0.236	0.178
			TPH - GRO - NA	NA	NA
			Benzene - ND	ND	ND
			Toluene - 10.8	0.00734	0.00552
EFF-1 (121024)	12/10/2024	PBEL	Ethylbenzene - 1.47	0.00100	0.00075
LFF-1 (121024)	12/10/2024	FDEL	Total Xylene - 3.45	0.00235	0.00176
			Total BTEX - 15.7	0.0107	0.00803
			TPH - GRO - NA	NA	NA
			4Q2024 BTEX Average	0.0898	0.0675
			2024 Annual BTEX Average	0.117	0.0878

Notes:

- 1. SVE: Soil Vapor Extraction
- 2. BTEX: Benzene, toluene, ethylbenzene, and total xylene analyzed by EPA Method 8021B
- 3. TPH: Total petroleum hydrocarbons analyzed by EPA Method 8015
- 4. Emission Mass calculated assuming flowrate 1.1073 (m³/min) and constituent concentration were constant for the entirety of a year.
- NA: Constituent was not analyzed
- ND: Analyte not detected at or above the reporting limit
- < = Constituent not detected above laboratory sample detection limit (SDL)

Table 4 MW-1 SVE¹ System Operation & Recovery Summary

DCP Plant to Lea Station 6-Inch #2
Lea County, New Mexico
Plains SRS #: 2009-039
Etech Project #: 17472
NMOCD² Incident ID#: nAPP2109730917

All elevation measurements are in feet above mean sea level

Well ID	Date	Top of Casing (TOC) ³ Elevation*	Depth to PSH Below TOC (feet)	Depth to Water Below TOC (feet)	PSH ⁴ Thickness (feet)	Corrected Groundwater Elevation**	PID⁵ Reading	SVE System Hours of Operation	Total Fluid Recovery [†] (gallons)																																	
	01/03/2024		81.74	81.75	0.01	3,458.51	-	-	189																																	
	01/30/2024		-	-	-	-	480.3	43,682.8	-																																	
	01/31/2024		-	81.55	0.00	3,458.70	-	43,703.2	189																																	
	02/15/2024		-	-	-	-	441.8	44,061.1	-																																	
	02/20/2024		-	81.53	0.00	3,458.72	-	44,182.6	189																																	
	02/27/2024		_	-	ı	-	501.1	44,344.8	-																																	
	03/07/2024		-	81.67	0.00	3,458.58	-	-	15.4																																	
	03/25/2024		-	81.52	0.00	3,458.73	193.8	44,769.5	126																																	
	04/16/2024		-	-	ı	1	436.5	45,292.2	-																																	
	04/18/2024		-	81.59	0.00	3,458.66	•	45,396.6	294																																	
	05/21/2024	3,540.25	3,540.25							-	-	-	-	587.2	46,128.2	-																										
	05/23/2024										-	81.52	0.00	3,458.73		46,177.2	378																									
	06/12/2024			-	81.71	0.00	3,458.54	-	-	14.9																																
	06/26/2024			3,540.25	3,540.25	3,540.25	3,540.25	3,540.25	3,540.25	3,540.25	-	-	-	-	287.6	46,508.1	-																									
MW-1	06/27/2024										3,540.25	3,540.25	3,540.25	3,540.25	3,540.25	-	81.58	0.00	3,458.67	-	46,533.8	420																				
	07/24/2024																	·]	-	-	-	-	41.6	47,184.0	-
	08/01/2024															-	81.62	0.00	3,458.63	=	47,370.5	420																				
	08/20/2024		-	-	-	-	399.8	47,826.6	-																																	
	08/22/2024		-	81.59	0.00	3,458.66	-	47,871.2	420																																	
	09/05/2024		-	81.72	0.00	3,458.53	-	-	15.4																																	
	09/29/2024		-	=	=	=	63.8	48,590.3	-																																	
	09/30/2024		-	81.62	0.00	3,458.63	-	48,607.6	420																																	
	10/16/2024		-	=	-	-	423.1	48,993.5	-																																	
	10/24/2024		-	81.64	0.00	3,458.61	-	49,187.0	420																																	
	11/14/2024		-	=	-	-	480.9	49,684.1	-																																	
	11/22/2024		-	81.70	0.00	3,458.55	-	49,874.1	420																																	
	12/10/2024			-	-	-	-	242.5	50,302.0	-																																
	12/14/2024			-	81.68	0.00	3,458.57	-	-	15.3																																
	12/19/2024		-	81.74	0.00	3,458.51	-	50,505.0	420																																	
			2024 Average F		0.005	-,		2024 Total	4,366																																	

Notes:

- 1. SVE: Soil Vapor Extraction
- 2. NMOCD: New Mexico Oil Conservation Division
- 3. TOC: Top Of Casing
- 4. PSH: Phase Separated Hydrocarbons
- 5. PID: Photoionization Detector
- * Elevations based on the North American Vertical Datum of 1988.

^{**} Corrected groundwater elevations were extrapolated using a PSH specific gravity of 0.85, if PSH was gauged in the monitor well.

[†] Via Aggressive Fluid Recovery (AFR) and/or Manual Recovery.

Table 5 MW-5 Recovery Summary

DCP Plant to Lea Station 6-Inch #2 Lea County, New Mexico Plains SRS #: 2009-039 Etech Project #: 17472

NMOCD¹ Incident ID#: nAPP2109730917

All elevation measurements are in feet above mean sea level

Well ID	Date	Top of Casing (TOC) ² Elevation*	Depth to PSH Below TOC (feet)	Depth to Water Below TOC (feet)	PSH ³ Thickness (feet)	Corrected Groundwater Elevation**	Total Fluid Recovery [†] (gallons)
	01/03/2024		-	81.18	0.00	3,458.37	147
	01/31/2024		-	81.11	0.00	3,458.44	147
	02/20/2024		-	81.08	0.00	3,458.47	147
	03/07/2024		-	81.15	0.00	3,458.40	15.4
	03/25/2024		-	81.11	0.00	3,458.44	126
	04/18/2024		-	81.15	0.00	3,458.40	294
	05/23/2024		-	81.11	0.00	3,458.44	378
	06/12/2024		-	81.21	0.00	3,458.34	14.9
MW-5	06/27/2024	3,539.55	-	81.10	0.00	3,458.45	420
	08/01/2024		-	81.13	0.00	3,458.42	420
	08/22/2024		-	81.17	0.00	3,458.38	420
	09/05/2024		-	81.21	0.00	3,458.34	15.4
	09/30/2024		-	81.16	0.00	3,458.39	420
	10/24/2024		-	81.22	0.00	3,458.33	420
	11/22/2024		-	81.27	0.00	3,458.28	420
	12/14/2024		-	81.23	0.00	3,458.32	15.3
	12/19/2024		-	81.26	0.00	3,458.29	420
			2024 Average	PSH Thickness	0.00	2024 Total	4,240

Notes:

1. NMOCD: New Mexico Oil Conservation Division

2. TOC: Top Of Casing

3. PSH: Phase Separated Hydrocarbons

^{*} Elevations based on the North American Vertical Datum of 1988.

^{**} Corrected groundwater elevations were extrapolated using a PSH specific gravity of 0.85, if PSH was gauged in the monitor well.

[†] Via Aggressive Fluid Recovery (AFR) and/or Manual Recovery.

Received by OCD: 10/6/2025 12:51:49 PM

Table 6

Concentrations of PAH¹ in Groundwater Summary

DCP Plant to Lea Station 6-Inch #2 Lea County, New Mexico Plains SRS #: 2009-039 Etech Project #: 17472 NMOCD² Incident ID#: nAPP2109729126

All concentrations are reported in milligrams per liter (mg/L)

								trations are rep		EPA 8270D								
							ne	ane		эс		ene				rene		
Well ID	Date Sampled	Naphthalene	Benzo(a)pyrene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthe	Chrysene	Dibenz(a,h)anthracene	Dibenzofuran	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)Pyrene	Phenanthrene	Pyrene
NMWQC	C ³ Standard	0.03	0.0007								NE ⁴							
	12/10/09	N/A	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	N/A	<0.100	<0.100	<0.100	<0.100	<0.100
MW-1	12/16/20								Well Not	Sampled Due	to PSH							
IVIVV-1	02/10/23	0.00704	<0.000184	0.000239	<0.000184	<0.000184	0.000336	<0.000184	<0.000184	<0.000184	<0.000184	<0.000184	N/A	<0.000184	0.000979	<0.000184	0.000605	0.000243
	03/07/24	0.000628	<0.00018	<0.000019	<0.000017	<0.000019	<0.00002	<0.000017	<0.00018	<0.00002	<0.000018	<0.000018	N/A	<0.000011	0.0000212	<0.000018	0.0000289	<0.000017
	07/01/09	N/A	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	N/A	<0.005	< 0.005	<0.005	<0.005	< 0.005
MW-2	12/16/20	<0.000104	<0.0000609	<0.000107	<0.0000899	<0.0000925	<0.000144	<0.0000759	<0.000121	<0.000124	<0.000167	<0.0000812	N/A	<0.000168	<0.000108	<0.0000975	<0.0000908	<0.000139
	03/14/22	<0.0000963	<0.0000566	<0.0000991	<0.0000834	<0.0000892	<0.000133	<0.0000694	<0.000112	<0.000115	<0.000155	<0.0000753	<0.0000991	<0.000156	<0.000100	<0.0000905	<0.0000842	<0.000129
	07/01/09	N/A	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	N/A	<0.005	< 0.005	<0.005	<0.005	< 0.005
	12/16/11	N/A	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	N/A	<0.005	< 0.005	<0.005	<0.005	< 0.005
MW-3	11/09/12	<0.00031	<0.00019	<0.00035	<0.00033	<0.00016	<0.00024	<0.00036	<0.00028	<0.00049	<0.00022	<0.00019	N/A	<0.00024	<0.00030	<0.00032	<0.00027	<0.00027
	12/16/20	<0.000106	<0.0000623	<0.000109	<0.0000920	<0.0000946	<0.000147	<0.0000777	<0.000124	<0.000127	<0.000171	<0.0000830	N/A	<0.000172	< 0.000110	<0.0000998	<0.0000929	<0.000142
	03/14/22	<0.0000991	<0.0000834	<0.0000892	<0.000133	<0.0000566	<0.0000694	<0.000112	<0.000115	<0.000155	<0.0000753	<0.0000991	<0.000156	<0.000100	<0.0000905	<0.0000963	<0.0000842	<0.000129
	07/01/09	N/A	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	N/A	<0.005	< 0.005	<0.005	<0.005	< 0.005
	12/16/11	N/A	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	N/A	<0.005	<0.005	<0.005	<0.005	<0.005
MW-4	11/09/12	<0.00032	<0.00020	<0.00037	<0.00034	<0.00016	<0.00025	<0.00038	<0.00029	<0.00051	<0.00023	<0.00020	N/A	<0.00025	<0.00031	<0.00034	<0.00028	<0.00028
	12/16/20	<0.000108	<0.0000637	<0.000112	<0.0000939	<0.0000966	<0.000150	<0.0000793	<0.000126	<0.000130	<0.000174	<0.0000848	N/A	<0.000175	<0.000112	<0.000102	<0.0000949	<0.000145
	03/14/22	<0.0000996	<0.0000839	<0.0000897	<0.000134	<0.0000569	<0.0000697	<0.000113	<0.000116	<0.000155	<0.0000757	<0.0000996	<0.000156	<0.000101	<0.0000910	<0.0000968	<0.0000847	<0.000130
	03/25/11	N/A	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	N/A	< 0.005	<0.005	<0.005	< 0.005	<0.005
	11/09/12	<0.00032	<0.00020	<0.00037	<0.00034	<0.00016	<0.00025	<0.00038	<0.00029	<0.00051	<0.00023	<0.00020	N/A	<0.00025	<0.00031	<0.00034	<0.00028	<0.00028
MW-5	12/23/13	0.000535	<0.000049	<0.000049	<0.000049	<0.000049	<0.000049	<0.000049	<0.000049	<0.000049	<0.000049	<0.000049	N/A	<0.000049	<0.000049	<0.000049	<0.000049	<0.000049
	05/08/14	N/A	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	N/A	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	12/16/20	<0.0000986	<0.0000579	<0.000101	<0.0000854	<0.0000879	<0.000136	<0.0000721	<0.000115	<0.000118	<0.000158	<0.0000771	N/A	<0.000159	<0.000102	<0.0000926	<0.0000863	<0.000132
	03/14/22	<0.0000993	<0.0000836	<0.0000894	<0.000133	<0.0000567	<0.0000695	<0.000112	<0.000115	<0.000155	<0.0000755	<0.0000993	<0.000156	<0.000100	<0.0000906	<0.0000965	<0.0000844	<0.000129
	05/08/14	N/A	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	N/A	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
MW-6	12/16/20	<0.000119	<0.0000698	<0.000122	<0.000103	<0.000106	<0.000164	<0.0000869	<0.000138	<0.000142	<0.000191	<0.0000929	N/A	<0.000192	<0.000123	<0.000112	<0.000104	<0.000159
	03/14/22	<0.0000995	<0.0000837	<0.0000895	<0.000133	<0.0000568	<0.0000696	<0.000112	<0.000115	<0.000155	<0.0000756	<0.0000995	<0.000156	<0.000100	<0.0000908	<0.0000967	<0.0000845	<0.000129
									,					,	,			
	05/08/14	N/A	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	N/A	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
MW-7	12/16/20	<0.000110	<0.0000644	<0.000113	<0.0000951	<0.0000978	<0.000152	<0.0000803	<0.000128	<0.000131	<0.000176	<0.0000858	N/A	<0.000177	<0.000114	<0.000103	<0.0000960	<0.000147
	03/14/22	<0.0000996	<0.0000839	<0.0000897	<0.000134	<0.0000569	<0.0000697	<0.000113	<0.000116	<0.000155	<0.0000757	<0.0000996	<0.000156	<0.000101	<0.0000910	<0.0000968	<0.0000847	<0.000130
8-WM	12/16/20	<0.0000646	<0.000110	<0.000113	<0.0000954	<0.0000981	<0.000152	<0.0000805	<0.000128	<0.000132	<0.000177	<0.0000861	N/A	<0.000178	<0.000114	<0.000103	<0.0000963	<0.000148
	03/14/22	<0.000100	<0.0000842	<0.0000900	<0.000134	<0.0000571	<0.0000700	<0.000113	<0.000116	<0.000156	<0.0000760	<0.000100	<0.000157	<0.000101	<0.0000913	<0.0000972	<0.0000850	<0.000130

- 1. PAH: Polycyclic Aromatic Hydrocarbons
- NMOCD: New Mexico Oil Conservation Division
 NMWQCC: New Mexico Water Quality Control Commission
- 4. NE: Not Established
- NA: Not analyzed/not applicable
- J: The target analyte was positively identified below the quantitation limit and above the detection limit

Bold text indicates a concentration exceeding NMWQCC Drinking Water Standards

Table 7 MW-7 Cumulative Groundwater Chemistry Summary

DCP Plant to Lea Station 6-Inch #2 Lea County, New Mexico Plains SRS #: 2009-039 Etech Project #: 17472

NMOCD¹ Incident ID#: nAPP2109730917

All concentrations are in milligrams per liter (mg/l)

		All concentrations are in milligrams per liter (mg/l) EPA SW846-8021B						
Well ID	Date Sampled	M.P. O. Total Total						
		Benzene	Toluene	Ethylbenzene	Xylenes	Xylenes	Xylenes	BTEX
NMOCD RRAL CRITERIA ²		0.01	0.75	0.75	TOTAL XYLENES 0.62		NE ³	
MW-7	09/25/2013	<0.0050	<0.0050	<0.0050	<0.0100	<0.0050	<0.0100	<0.0100
	11/13/2013	<0.0010	<0.0020	< 0.0010	<0.0020	<0.0010	<0.0020	<0.0020
	02/14/2014	<0.0010	< 0.0020	<0.0010	<0.0020	<0.0010	<0.0020	< 0.0020
	05/08/2014	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020
	08/05/2014	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020
	11/07/2014	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020
	02/23/2015	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020
	05/07/2015	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020
	08/05/2015	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020
	12/09/2015	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020
	02/10/2016	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020
	05/03/2016	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020
	11/01/2016	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200
	12/22/2016	<0.000480	< 0.000512	<0.000616	< 0.000454	<0.000270	<0.000270	<0.00051
	03/01/2017	<0.00200	<0.00150	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200
	06/26/2017	<0.00200	< 0.00150	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200
	09/19/2017	<0.00200	<0.00150	<0.00200	<0.00200	<0.00200	<0.00200	< 0.00200
	11/15/2017	<0.00200	<0.00150	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200
	01/16/2018	<0.000480	<0.000512	<0.000616	<0.000454	<0.000270	<0.000270	<0.00027
	04/20/2018	<0.000480	<0.000512	<0.000616	<0.000454	<0.000270	<0.000270	<0.00027
	08/20/2018	<0.000480 <0.000480	<0.000512	<0.000616	<0.000454	<0.000270	<0.000270 <0.000270	<0.00027
	12/11/2018 02/21/2019	<0.000480	<0.000512 <0.000512	<0.000616 <0.000616	<0.000454 <0.000454	<0.000270 <0.000270	<0.000270	<0.00027 <0.00027
	05/22/2019	<0.000480		<0.000616	<0.000454	<0.000270	<0.000270	0.000700
	09/09/2019	<0.000480	<0.0007600	<0.000616	< 0.000454	<0.000270	<0.000270	<0.000700
	11/20/2019	<0.000214	<0.000500	<0.000146	<0.000330	<0.000192	<0.000192	<0.00014
	01/24/2020	<0.000480	<0.000512	<0.000616	< 0.000454	<0.000270	<0.000270	<0.00027
	06/24/2020	<0.000408	<0.000367	<0.000657	<0.000630	<0.000642	<0.000630	<0.00036
	09/22/2020	<0.000408	<0.000367	<0.000657	<0.000630	<0.000642	<0.000630	<0.00036
	12/16/2020	<0.000408	< 0.000367	<0.000657	<0.000630	<0.000642	<0.000630	<0.00036
	03/11/2021	<0.00198	<0.00198	<0.00198	<0.00396	<0.00198	<0.00198	<0.0019
	06/18/2021	<0.00190	<0.00130	<0.00190	<0.000390	<0.00130	<0.000190	<0.0019
	09/22/2021	<0.00200	<0.00200	<0.00200	<0.000029	<0.000042	<0.000042	<0.0020
	12/15/2021	<0.00200	<0.00200	<0.00200	<0.00400	<0.00200	<0.00400	<0.0020
	03/14/2022	<0.00200	0.000674 J	<0.00200	<0.00400	<0.00200	<0.00400	0.000674
		<0.000408	0.000403		<0.000629	<0.000642	<0.000642	< 0.000674
	06/14/2022			<0.000657				
	09/07/2022	<0.000533 <0.00100	<0.000475 <0.00100	<0.000411	<0.00124	<0.000551	<0.00124 <0.0100	<0.00124 <0.00124
	02/09/2023	<0.00100	<0.00100	<0.00100 <0.00100	<0.0100 <0.00200	<0.00100 <0.00100	<0.0100	<0.0012
	03/31/2023	<0.00100		<0.00100			<0.00200	
	06/22/2023		<0.00100		<0.00200	<0.00100		<0.0030
	09/18/2023	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00200	<0.00200
	12/05/2023	<0.000190	<0.000412	<0.000160	-	-	<0.000510	<0.00051
	03/07/2024	<0.000190	<0.000412	<0.000160	-		<0.000510	<0.00051
	06/11/2024	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00100	<0.0010
	09/04/2024	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00100	<0.0010
	12/14/2024	<0.00100	<0.00100	<0.00100	<0.00200	<0.00100	<0.00100	<0.00100

Notes:

- 1. NMOCD: New Mexico Oil Conservation Division
- 2. RRAL Criteria: Recommended Remediation Action Level Criteria
- 3. NE: Not Established
- J: The target analyte was positively identified below the quantitation limit and above the detection limit **Bold** text indicates a concentration exceeding the NMOCD RRAL Criteria

Appendix A Laboratory Analytical Reports (Groundwater)

Pace Analytical® ANALYTICAL REPORT

Ss

Plains All American Pipeline - ETECH

Sample Delivery Group: L1713919

Samples Received: 03/09/2024

Project Number: SRS #2009-039

Description: DCP Plant to Lea Station 6" #2

Site: SRS #2009-039

Report To: Kimble Thrash

PO Box 62228

Midland, TX 79711

Entire Report Reviewed By: Lori A Vahrenkamp

Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	•
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
MW-1 L1713919-01	6
MW-2 L1713919-02	7
MW-3 L1713919-03	8
MW-4 L1713919-04	9
MW-5 L1713919-05	10
MW-6 L1713919-06	11
MW-7 L1713919-07	12
DUP-1 L1713919-08	13
TRIP BLANK L1713919-09	14
MW-8 L1713919-10	15
Qc: Quality Control Summary	16
Volatile Organic Compounds (GC) by Method 8021B	16
Semi Volatile Organic Compounds (GC/MS) by Method 8270 C-SIM	17
GI: Glossary of Terms	19
Al: Accreditations & Locations	20

Sc: Sample Chain of Custody

21

SAMPLE SUMMARY

MW-1 L1713919-01 GW			Collected by Kimble Thrash	Collected date/time 03/07/24 17:20	Received da 03/09/24 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method 8021B	WG2246299	1	03/14/24 03:17	03/14/24 03:17	CDD	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270 C-SIM	WG2244545	1	03/13/24 20:43	03/14/24 22:14	JRM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-2 L1713919-02 GW			Kimble Thrash	03/07/24 12:35	03/09/24 08	00:
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
/olatile Organic Compounds (GC) by Method 8021B	WG2246299	1	03/14/24 03:40	03/14/24 03:40	CDD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-3 L1713919-03 GW			Kimble Thrash	03/07/24 13:40	03/09/24 08	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method 8021B	WG2246299	1	03/14/24 04:02	03/14/24 04:02	CDD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-4 L1713919-04 GW			Kimble Thrash	03/07/24 14:55	03/09/24 08	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method 8021B	WG2246299	1	03/14/24 04:25	03/14/24 04:25	CDD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-5 L1713919-05 GW			Kimble Thrash	03/07/24 16:05	03/09/24 08	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method 8021B	WG2246299	1	03/14/24 04:48	03/14/24 04:48	CDD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-6 L1713919-06 GW			Kimble Thrash	03/07/24 09:00	03/09/24 08	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method 8021B	WG2246299	1	03/14/24 05:11	03/14/24 05:11	CDD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-7 L1713919-07 GW			Kimble Thrash	03/07/24 10:10	03/09/24 08	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method 8021B	WG2246299	1	03/14/24 05:33	03/14/24 05:33	CDD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUP-1 L1713919-08 GW			Kimble Thrash	03/07/24 17:21	03/09/24 08	
Method	Batch	Dilution	Preparation date/time	Analysis	Analyst	Location
			date/time	date/time		

Volatile Organic Compounds (GC) by Method 8021B

WG2246299

03/14/24 05:56

03/14/24 05:56

CDD

Mt. Juliet, TN

SAMPLE SUMMARY

TRIP BLANK L1713919-09 GW			Collected by Kimble Thrash	03/07/24 00:00	03/09/24 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method 8021B	WG2246299	1	03/14/24 00:12	03/14/24 00:12	CDD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-8 L1713919-10 GW			Kimble Thrash	03/07/24 11:20	03/09/24 08	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method 8021B	WG2246299	1	03/14/24 06:19	03/14/24 06:19	CDD	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Lori A Vahrenkamp Project Manager

SAMPLE RESULTS - 01

Collected date/time: 03/07/24 17:20

Volatile Organic Compounds (GC) by Method 8021B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	0.0114		0.000190	0.000500	1	03/14/2024 03:17	WG2246299
Toluene	0.00152	В	0.000412	0.00100	1	03/14/2024 03:17	WG2246299
Ethylbenzene	0.0105		0.000160	0.000500	1	03/14/2024 03:17	WG2246299
Total Xylene	0.0124		0.000510	0.00150	1	03/14/2024 03:17	WG2246299
(S) a,a,a-Trifluorotoluene(PID)	92.6			79.0-125		03/14/2024 03:17	WG2246299

³ Ss

_	=
	⁴Cn
	Cn

Semi Volatile Organic Compounds (GC/MS) by Method 8270 C-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Anthracene	U		0.0000190	0.0000500	1	03/14/2024 22:14	WG2244545
Acenaphthene	U		0.0000190	0.0000500	1	03/14/2024 22:14	WG2244545
Acenaphthylene	U		0.0000170	0.0000500	1	03/14/2024 22:14	WG2244545
Benzo(a)anthracene	U		0.0000200	0.0000500	1	03/14/2024 22:14	WG2244545
Benzo(a)pyrene	U		0.0000180	0.0000500	1	03/14/2024 22:14	WG2244545
Benzo(b)fluoranthene	U		0.0000170	0.0000500	1	03/14/2024 22:14	WG2244545
Benzo(g,h,i)perylene	U		0.0000180	0.0000500	1	03/14/2024 22:14	WG2244545
Benzo(k)fluoranthene	U		0.0000200	0.000250	1	03/14/2024 22:14	WG2244545
Chrysene	U		0.0000180	0.0000500	1	03/14/2024 22:14	WG2244545
Dibenz(a,h)anthracene	U		0.0000180	0.0000500	1	03/14/2024 22:14	WG2244545
Fluoranthene	U		0.0000110	0.0000500	1	03/14/2024 22:14	WG2244545
Fluorene	0.0000212	<u>J</u>	0.0000170	0.0000500	1	03/14/2024 22:14	WG2244545
Indeno(1,2,3-cd)pyrene	U		0.0000180	0.0000500	1	03/14/2024 22:14	WG2244545
Naphthalene	0.000628		0.000128	0.000500	1	03/14/2024 22:14	WG2244545
Phenanthrene	0.0000289	<u>B J</u>	0.0000180	0.0000500	1	03/14/2024 22:14	WG2244545
Pyrene	U		0.0000170	0.0000500	1	03/14/2024 22:14	WG2244545
1-Methylnaphthalene	0.000418	<u>J</u>	0.0000200	0.000500	1	03/14/2024 22:14	WG2244545
2-Methylnaphthalene	0.000393	<u>J</u>	0.0000280	0.000500	1	03/14/2024 22:14	WG2244545
2-Chloronaphthalene	0.0000162	<u>J</u>	0.0000120	0.000500	1	03/14/2024 22:14	WG2244545
(S) Nitrobenzene-d5	74.5			11.0-135		03/14/2024 22:14	WG2244545
(S) 2-Fluorobiphenyl	66.8			32.0-120		03/14/2024 22:14	WG2244545
(S) p-Terphenyl-d14	46.4			23.0-122		03/14/2024 22:14	WG2244545

Collected date/time: 03/07/24 12:35

Page 44 of 324

SAMPLE RESULTS - 02

L1713919

	Result	<u>Qualifier</u>	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.000190	0.000500	1	03/14/2024 03:40	WG2246299
Toluene	U		0.000412	0.00100	1	03/14/2024 03:40	WG2246299
Ethylbenzene	U		0.000160	0.000500	1	03/14/2024 03:40	WG2246299
Total Xylene	U		0.000510	0.00150	1	03/14/2024 03:40	WG2246299
(S) a.a.a-Trifluorotoluene(PID)	93.6			79.0-125		03/14/2024 03:40	WG2246299

Page 45 of 324

SAMPLE RESULTS - 03

Collected date/time: 03/07/24 13:40

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.000190	0.000500	1	03/14/2024 04:02	WG2246299
Toluene	U		0.000412	0.00100	1	03/14/2024 04:02	WG2246299
Ethylbenzene	U		0.000160	0.000500	1	03/14/2024 04:02	WG2246299
Total Xylene	U		0.000510	0.00150	1	03/14/2024 04:02	WG2246299
(S) a.a.a-Trifluorotoluene(PID)	93.7			79.0-125		03/14/2024 04:02	WG2246299

Page 46 of 324

SAMPLE RESULTS - 04

Collected date/time: 03/07/24 14:55

L1713919

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.000190	0.000500	1	03/14/2024 04:25	WG2246299
Toluene	U		0.000412	0.00100	1	03/14/2024 04:25	WG2246299
Ethylbenzene	U		0.000160	0.000500	1	03/14/2024 04:25	WG2246299
Total Xylene	U		0.000510	0.00150	1	03/14/2024 04:25	WG2246299
(S) a.a.a-Trifluorotoluene(PID)	93.6			79.0-125		03/14/2024 04:25	WG2246299

Page 47 of 324

SAMPLE RESULTS - 05

Collected date/time: 03/07/24 16:05

L1713919

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	0.00346		0.000190	0.000500	1	03/14/2024 04:48	WG2246299
Toluene	U		0.000412	0.00100	1	03/14/2024 04:48	WG2246299
Ethylbenzene	0.000682		0.000160	0.000500	1	03/14/2024 04:48	WG2246299
Total Xylene	0.000585	J	0.000510	0.00150	1	03/14/2024 04:48	WG2246299
(S) a,a,a-Trifluorotoluene(PID)	92.9			79.0-125		03/14/2024 04:48	WG2246299

Collected date/time: 03/07/24 09:00

Page 48 of 324

SAMPLE RESULTS - 06

L171391

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.000190	0.000500	1	03/14/2024 05:11	WG2246299
Toluene	U		0.000412	0.00100	1	03/14/2024 05:11	WG2246299
Ethylbenzene	U		0.000160	0.000500	1	03/14/2024 05:11	WG2246299
Total Xylene	U		0.000510	0.00150	1	03/14/2024 05:11	WG2246299
(S) a a a-Trifluorotoluene(PID)	94.0			79.0-125		03/14/2024 05:11	WG2246299

Page 49 of 324

SAMPLE RESULTS - 07

Collected date/time: 03/07/24 10:10

L1713919

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.000190	0.000500	1	03/14/2024 05:33	WG2246299
Toluene	U		0.000412	0.00100	1	03/14/2024 05:33	WG2246299
Ethylbenzene	U		0.000160	0.000500	1	03/14/2024 05:33	WG2246299
Total Xylene	U		0.000510	0.00150	1	03/14/2024 05:33	WG2246299
(S) a.a.a-Trifluorotoluene(PID)	93.6			79.0-125		03/14/2024 05:33	WG2246299

Collected date/time: 03/07/24 17:21

Page 50 of 324

SAMPLE RESULTS - 08

L1713919

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	0.0118		0.000190	0.000500	1	03/14/2024 05:56	WG2246299
Toluene	0.00156	В	0.000412	0.00100	1	03/14/2024 05:56	WG2246299
Ethylbenzene	0.0107		0.000160	0.000500	1	03/14/2024 05:56	WG2246299
Total Xylene	0.0126		0.000510	0.00150	1	03/14/2024 05:56	WG2246299
(S) a,a,a-Trifluorotoluene(PID)	92.5			79.0-125		03/14/2024 05:56	WG2246299

Page 51 of 324

SAMPLE RESULTS - 09

Collected date/time: 03/07/24 00:00

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.000190	0.000500	1	03/14/2024 00:12	WG2246299
Toluene	U		0.000412	0.00100	1	03/14/2024 00:12	WG2246299
Ethylbenzene	U		0.000160	0.000500	1	03/14/2024 00:12	WG2246299
Total Xylene	U		0.000510	0.00150	1	03/14/2024 00:12	WG2246299
(S)	94.2			79.0-125		03/14/2024 00:12	WG2246299

Page 52 of 324 SAMPLE RESULTS - 10

Collected date/time: 03/07/24 11:20

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.000190	0.000500	1	03/14/2024 06:19	WG2246299
Toluene	U		0.000412	0.00100	1	03/14/2024 06:19	WG2246299
Ethylbenzene	U		0.000160	0.000500	1	03/14/2024 06:19	WG2246299
Total Xylene	U		0.000510	0.00150	1	03/14/2024 06:19	WG2246299
(S) a.a.a-Trifluorotoluene(PID)	93.7			79.0-125		03/14/2024 06:19	WG2246299

QUALITY CONTROL SUMMARY

Page 53 of 324

Volatile Organic Compounds (GC) by Method 8021B L1713919-01,02,03

L1713919-01,02,03,04,05,06,07,08,09,10

Method Blank (MB)

(MB) R4046130-3 03/13/2	24 23:03			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Benzene	U		0.000190	0.000500
Toluene	0.000490	<u>J</u>	0.000412	0.00100
Ethylbenzene	U		0.000160	0.000500
Total Xylene	U		0.000510	0.00150
(S) a,a,a-Trifluorotoluene(PID)	95.4			79.0-125

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4046130-1 03/13/2	24 20:26 • (LCSI	D) R4046130-	4 03/13/24 23:2	26						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Benzene	0.0500	0.0545	0.0538	109	108	77.0-122			1.29	20
Toluene	0.0500	0.0491	0.0491	98.2	98.2	80.0-121			0.000	20
Ethylbenzene	0.0500	0.0560	0.0562	112	112	80.0-123			0.357	20
Total Xylene	0.150	0.156	0.157	104	105	47.0-154			0.639	20
(S) a,a,a-Trifluorotoluene(PID)				93.2	93.9	79.0-125				

QUALITY CONTROL SUMMARY

Page 54 of 324

Semi Volatile Organic Compounds (GC/MS) by Method 8270 C-SIM

1713919-01

Method Blank (MB)

(MB) R4046308-3 03/15/24 18:13							
	MB Result	MB Qualifier	MB MDL	MB RDL	2		
Analyte	mg/l		mg/l	mg/l			
Anthracene	U		0.0000190	0.0000500	L		
Acenaphthene	U		0.0000190	0.0000500	3		
Acenaphthylene	U		0.0000170	0.0000500	Ľ		
Benzo(a)anthracene	U		0.0000200	0.0000500	4		
Benzo(a)pyrene	U		0.0000180	0.0000500			
Benzo(b)fluoranthene	U		0.0000170	0.0000500	느		
Benzo(g,h,i)perylene	U		0.0000180	0.0000500	5		
Benzo(k)fluoranthene	U		0.0000200	0.000250	Ľ		
Chrysene	U		0.0000180	0.0000500	6		
Dibenz(a,h)anthracene	U		0.0000180	0.0000500			
Fluoranthene	0.0000129	<u>J</u>	0.0000110	0.0000500			
Fluorene	U		0.0000170	0.0000500	7		
Indeno(1,2,3-cd)pyrene	U		0.0000180	0.0000500			
Naphthalene	U		0.000128	0.000500	8		
Phenanthrene	0.0000202	<u>J</u>	0.0000180	0.0000500			
Pyrene	U		0.0000170	0.0000500			
1-Methylnaphthalene	U		0.0000200	0.000500	9		
2-Methylnaphthalene	U		0.0000280	0.000500	L		
2-Chloronaphthalene	U		0.0000120	0.000500			
(S) Nitrobenzene-d5	112			11.0-135			
(S) 2-Fluorobiphenyl	90.0			32.0-120			
(S) p-Terphenyl-d14	95.5			23.0-122			

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4046308-1 03/15/24 17:37 • (LCSD) R4046308-2 03/15/24 17:55											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Anthracene	0.00200	0.00173	0.00175	86.5	87.5	43.0-127			1.15	20	
Acenaphthene	0.00200	0.00171	0.00179	85.5	89.5	42.0-120			4.57	20	
Acenaphthylene	0.00200	0.00174	0.00180	87.0	90.0	43.0-120			3.39	20	
Benzo(a)anthracene	0.00200	0.00190	0.00195	95.0	97.5	46.0-120			2.60	20	
Benzo(a)pyrene	0.00200	0.00171	0.00175	85.5	87.5	44.0-122			2.31	20	
Benzo(b)fluoranthene	0.00200	0.00188	0.00190	94.0	95.0	43.0-122			1.06	20	
Benzo(g,h,i)perylene	0.00200	0.00163	0.00178	81.5	89.0	25.0-137			8.80	23	
Benzo(k)fluoranthene	0.00200	0.00178	0.00186	89.0	93.0	39.0-128			4.40	22	
Chrysene	0.00200	0.00202	0.00208	101	104	42.0-129			2.93	20	
Dibenz(a,h)anthracene	0.00200	0.00152	0.00176	76.0	88.0	25.0-139			14.6	22	
Fluoranthene	0.00200	0.00213	0.00218	106	109	48.0-131			2.32	20	

QUALITY CONTROL SUMMARY

Page 55 of 324

Semi Volatile Organic Compounds (GC/MS) by Method 8270 C-SIM

.1713919-01

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4046308-1	03/15/24 17:37 •	(LCSD)	R4046308-2	03/15/24 17:55

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Fluorene	0.00200	0.00192	0.00196	96.0	98.0	42.0-120			2.06	20
Indeno(1,2,3-cd)pyrene	0.00200	0.00171	0.00178	85.5	89.0	37.0-133			4.01	20
Naphthalene	0.00200	0.00224	0.00185	112	92.5	30.0-120			19.1	22
Phenanthrene	0.00200	0.00190	0.00198	95.0	99.0	42.0-120			4.12	20
Pyrene	0.00200	0.00191	0.00198	95.5	99.0	38.0-124			3.60	20
1-Methylnaphthalene	0.00200	0.00219	0.00209	109	104	43.0-120			4.67	20
2-Methylnaphthalene	0.00200	0.00239	0.00198	119	99.0	40.0-120			18.8	20
2-Chloronaphthalene	0.00200	0.00175	0.00184	87.5	92.0	39.0-120			5.01	20
(S) Nitrobenzene-d5				115	118	11.0-135				
(S) 2-Fluorobiphenyl				91.5	95.0	32.0-120				
(S) p-Terphenyl-d14				94.5	96.5	23.0-122				

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	d Definitions
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Quali	fier	C	escription

В	The same analyte is found in the associated blank.
1	The identification of the analyte is acceptable; the reported value is an estimate

Pace Analy	utical National	12065 Lebanon	Rd Mount Julie	t TN 37122
race Allai	yticai Nationai		i Ku Mourit Julie	I, IIN 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Info	rmation.		T	T			nahada / Ca			To-1 - 10 - 1	
Plains All American Pip	eline - ET	ECH	Account	s Payable		Pres			A	nalvsis / Co	ontainer / Preservation	IP.	Chain of Custo	dy Page of
PO Box 62228			333 Clay			Chk	11						_ /P	ace.
Midland, TX 79711			Suite 16 Houston	00 n, TX 77002			E F					- 100	PEOP	LE ADVANCING SCIENCE
Report to: Kimble Thrash	E.C.		Email To:	cimble@etechenv.	.com								1000	JULIET, TN Mount Juliet, TN 37122
Project Description: DCP Plant to Lea Station 6" #2		City/State Collected:	GX MI	MG KING	Please Ci								constitutes acknowle Pace Terms and Con-	via this chain of custody edgment and acceptance of the ditions found at: .com/hubfs/pas-standard-
Phone: 432 894 9996	Client Project SRS #2009-	#	<i>puri</i>	Lab Project # PLAINSETECI		Ī							SDG #	713919
Collected by (print): THRASH	Site/Facility II		19	P.O. #			-	I-BIK	1.00				n Di	DZZZ
Collected by (signature):		ab MUST Be	Notified)	Quote #		3	7	HC			S 188		Template:T2	AINSETECH
	Same Da						dm	dm					Prelogin: P1	
Immediately Packed on Ice N Y	Next Da Two Day Three Day	10 Da	(Rad Only) ay (Rad Only)	Date Result	s Needed	No.	40mlAmb-HCl	40mlAmb-H	He				The state of the s	ri A Vahrenkamp
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	BTEX	BTEX	A				Shipped Via: I	Sample # (lab only)
MW-1	6	GW	/	3-7-24	1720	16%	X		X					1
MW-2	G	GW	-	1	112	1	X							701
MW-3	B	GW	-		10160	3	X							-01
MW-4	G	GW	-		1370	-	Carrier Co.							-03
MW-5	G		-		1455	3	X							-07
MW-6		GW			1605	3	X							-07
MW-7	G	GW	-		0900	3	X							-06
DUP-1	G	GW	/		1010	3	X	600	= = -					-07
	G	GW	/		1721	85	X							-08
TRIP BLANK		GW		1		71		X						-09
MW-8	G		1	A	1120	20								1-10
S - Soil AIR - Air F - Filter	-	ncludes: 8x0	GW for BTE	X and 1xTrip Bla	Total Control of the	03	19/20	1		рН	Temp	_ COC Seal	ample Receipt C Present/Intact	
WW - WasteWater										Flow	Other	Bottles	ed/Accurate: arrive intact:	
DW - Drinking Water DT - Other	imples returned v _ UPS FedEx		MINING.	Trackin	g#	9				311	1009	Sufficie	bottles used: nt volume sent: If Applicab	
Relinquished by : (Signature)) Dat		Time:		ed by: (Signatu	ire)	_	-	Tr	ip Blank Re	ceived: Yes/No HCL/Meo	Preserva RAD Screen	Headspace: tion Correct/Ch en <0.5 mR/hr:	ecked: YNNN
Relinquished by : (Signature)	Date 3	/ /	Time:	145 Receive	ed by: (Signatu	ire)			Te	emp:\A	PC Bottles Receive	d If preserva	tion required by Lo	gin: Date/Time
Relinquished by : (Signature)	Date	10	Time:		ed for lab by: (Signatu	re)	\sim	Di	1-1011y- ate: 292 U	Time: 2:1	Hold:		Condition NCF / OK

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Kimble Thrash
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: SRS 2009-039

Project Number: SRS 2009-039

Location: Lea Counnty, NM

Lab Order Number: 4F13014

Current Certification

Report Date: 06/19/24

13000 West County Road 100 Odessa TX, 79765 Project: SRS 2009-039 Project Number: SRS 2009-039

Project Manager: Kimble Thrash

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	4F13014-01	Water	06/12/24 14:00	06-13-2024 08:49
MW-2	4F13014-02	Water	06/11/24 17:00	06-13-2024 08:49
MW-3	4F13014-03	Water	06/11/24 15:50	06-13-2024 08:49
MW-4	4F13014-04	Water	06/11/24 14:45	06-13-2024 08:49
MW-5	4F13014-05	Water	06/12/24 12:45	06-13-2024 08:49
MW-6	4F13014-06	Water	06/11/24 13:30	06-13-2024 08:49
MW-7	4F13014-07	Water	06/11/24 11:15	06-13-2024 08:49
MW-8	4F13014-08	Water	06/11/24 12:25	06-13-2024 08:49
DUP-1	4F13014-09	Water	06/12/24 12:46	06-13-2024 08:49

E Tech Environmental & Safety Solutions, Inc. \cite{black}

13000 West County Road 100 Odessa TX, 79765 Project: SRS 2009-039

Project Number: SRS 2009-039 Project Manager: Kimble Thrash

MW-1 4F13014-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envii	ronmental I	Lab, L.P.			
Organics by GC									
Benzene	0.00276	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 20:51	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 20:51	EPA 8021B	
Ethylbenzene	0.00667	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 20:51	EPA 8021B	
Xylene (p/m)	0.00452	0.00200	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 20:51	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 20:51	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P4F1404	06/14/24 15:16	06/14/24 20:51	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.5 %	80-120		P4F1404	06/14/24 15:16	06/14/24 20:51	EPA 8021B	
Total BTEX	0.0140	0.00100	mg/L	1	[CALC]	06/14/24 15:16	06/14/24 20:51	EPA 8021B	
Xylenes (total)	0.00452	0.00100	mg/L	1	[CALC]	06/14/24 15:16	06/14/24 20:51	EPA 8021B	

13000 West County Road 100 Odessa TX, 79765 Project: SRS 2009-039 Project Number: SRS 2009-039

Project Manager: Kimble Thrash

MW-2 4F13014-02 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental I	ab, L.P.			
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 21:13	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 21:13	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 21:13	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 21:13	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 21:13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P4F1404	06/14/24 15:16	06/14/24 21:13	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.0 %	80-120		P4F1404	06/14/24 15:16	06/14/24 21:13	EPA 8021B	
Total BTEX	ND	0.00100	mg/L	1	[CALC]	06/14/24 15:16	06/14/24 21:13	EPA 8021B	
Xylenes (total)	ND	0.00100	mg/L	1	[CALC]	06/14/24 15:16	06/14/24 21:13	EPA 8021B	

13000 West County Road 100 Odessa TX, 79765 Project: SRS 2009-039 Project Number: SRS 2009-039

Project Manager: Kimble Thrash

MW-3 4F13014-03 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 21:35	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 21:35	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 21:35	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 21:35	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 21:35	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		106 %	80-120		P4F1404	06/14/24 15:16	06/14/24 21:35	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.3 %	80-120		P4F1404	06/14/24 15:16	06/14/24 21:35	EPA 8021B	
Total BTEX	ND	0.00100	mg/L	1	[CALC]	06/14/24 15:16	06/14/24 21:35	EPA 8021B	
Xylenes (total)	ND	0.00100	mg/L	1	[CALC]	06/14/24 15:16	06/14/24 21:35	EPA 8021B	

13000 West County Road 100 Odessa TX, 79765

Xylenes (total)

Project: SRS 2009-039 Project Number: SRS 2009-039

Project Manager: Kimble Thrash

MW-4 4F13014-04 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental I	Lab, L.P.			
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 21:57	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 21:57	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 21:57	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 21:57	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 21:57	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P4F1404	06/14/24 15:16	06/14/24 21:57	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.3 %	80-120		P4F1404	06/14/24 15:16	06/14/24 21:57	EPA 8021B	
Total BTEX	ND	0.00100	mg/L	1	[CALC]	06/14/24 15:16	06/14/24 21:57	EPA 8021B	

[CALC]

06/14/24 15:16

06/14/24 21:57

EPA 8021B

ND 0.00100

13000 West County Road 100 Odessa TX, 79765 Project Number: SRS 2009-039
Project Manager: Kimble Thrash

MW-5 4F13014-05 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental I	ab, L.P.			
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 22:19	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 22:19	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 22:19	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 22:19	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 22:19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P4F1404	06/14/24 15:16	06/14/24 22:19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.1 %	80-120		P4F1404	06/14/24 15:16	06/14/24 22:19	EPA 8021B	
Total BTEX	ND	0.00100	mg/L	1	[CALC]	06/14/24 15:16	06/14/24 22:19	EPA 8021B	
Xylenes (total)	ND	0.00100	mg/L	1	[CALC]	06/14/24 15:16	06/14/24 22:19	EPA 8021B	

13000 West County Road 100 Odessa TX, 79765

Total BTEX

Xylenes (total)

Project: SRS 2009-039
Project Number: SRS 2009-039

Project Manager: Kimble Thrash

MW-6 4F13014-06 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 22:41	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 22:41	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 22:41	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 22:41	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 22:41	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P4F1404	06/14/24 15:16	06/14/24 22:41	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.0 %	80-120		P4F1404	06/14/24 15:16	06/14/24 22:41	EPA 8021B	

[CALC]

[CALC]

06/14/24 15:16

06/14/24 15:16

06/14/24 22:41

06/14/24 22:41

EPA 8021B

EPA 8021B

mg/L

ND 0.00100

ND 0.00100

13000 West County Road 100 Odessa TX, 79765

Xylenes (total)

Project: SRS 2009-039 Project Number: SRS 2009-039

Project Manager: Kimble Thrash

MW-7 4F13014-07 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	Lab, L.P.			
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 23:46	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 23:46	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 23:46	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 23:46	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/14/24 23:46	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		101 %	80-120		P4F1404	06/14/24 15:16	06/14/24 23:46	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.3 %	80-120		P4F1404	06/14/24 15:16	06/14/24 23:46	EPA 8021B	
Total BTEX	ND	0.00100	mg/L	1	[CALC]	06/14/24 15:16	06/14/24 23:46	EPA 8021B	

[CALC]

06/14/24 15:16

06/14/24 23:46

EPA 8021B

ND 0.00100

13000 West County Road 100 Odessa TX, 79765 Project: SRS 2009-039 Project Number: SRS 2009-039

Project Manager: Kimble Thrash

MW-8 4F13014-08 (Water)

	Reporting							- 1
Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	P	ermian B	asin Envi	ronmental L	ab, L.P.			
ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/15/24 00:08	EPA 8021B	
ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/15/24 00:08	EPA 8021B	
ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/15/24 00:08	EPA 8021B	
ND	0.00200	mg/L	1	P4F1404	06/14/24 15:16	06/15/24 00:08	EPA 8021B	
ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/15/24 00:08	EPA 8021B	
	102 %	80-120		P4F1404	06/14/24 15:16	06/15/24 00:08	EPA 8021B	
	96.3 %	80-120		P4F1404	06/14/24 15:16	06/15/24 00:08	EPA 8021B	
ND	0.00100	mg/L	1	[CALC]	06/14/24 15:16	06/15/24 00:08	EPA 8021B	
ND	0.00100	mg/L	1	[CALC]	06/14/24 15:16	06/15/24 00:08	EPA 8021B	
	ND ND ND ND ND	Result Limit P ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00200 ND 0.00100 102 % 96.3 % ND 0.00100	ND 0.00100 mg/L ND 0.00100 mg/L ND 0.00100 mg/L ND 0.00100 mg/L ND 0.00200 mg/L ND 0.00100 mg/L ND 0.00100 mg/L 102 % 80-120 ND 0.00100 mg/L ND 0.00100 mg/L ND 0.00100 mg/L	ND	Result Limit Units Dilution Batch	Result Limit Units Dilution Batch Prepared	Result T.imit Units Dilution Batch Prepared Analyzed	ND 0.00100 mg/L 1 P4F1404 06/14/24 15:16 06/15/24 00:08 EPA 8021B ND 0.00200 mg/L 1 P4F1404 06/14/24 15:16 06/15/24 00:08 EPA 8021B ND 0.00100 mg/L 1 P4F1404 06/14/24 15:16 06/15/24 00:08 EPA 8021B ND 0.00200 mg/L 1 P4F1404 06/14/24 15:16 06/15/24 00:08 EPA 8021B ND 0.00100 mg/L 1 P4F1404 06/14/24 15:16 06/15/24 00:08 EPA 8021B ND 0.00100 mg/L 1 P4F1404 06/14/24 15:16 06/15/24 00:08 EPA 8021B ND 0.00100 mg/L 1 P4F1404 06/14/24 15:16 06/15/24 00:08 EPA 8021B 102 % 80-120 P4F1404 06/14/24 15:16 06/15/24 00:08 EPA 8021B P6.3 % 80-120 P4F1404 06/14/24 15:16 06/15/24 00:08 EPA 8021B ND 0.00100 mg/L 1 [CALC] 06/14/24 15:16 06/15/24 00:08 EPA 8021B ND 0.00100 mg/L 1 [CALC] 06/14/24 15:16 06/15/24 00:08 EPA 8021B ND 0.00100 mg/L 1 [CALC] 06/14/24 15:16 06/15/24 00:08 EPA 8021B ND 0.00100 mg/L 1 [CALC] 06/14/24 15:16 06/15/24 00:08 EPA 8021B ND 0.00100 mg/L 1 [CALC] 06/14/24 15:16 06/15/24 00:08 EPA 8021B ND 0.00100 mg/L 1 [CALC] 06/14/24 15:16 06/15/24 00:08 EPA 8021B ND 0.00100 mg/L 1 [CALC] 06/14/24 15:16 06/15/24 00:08 EPA 8021B ND 0.00100 mg/L 1 [CALC] 06/14/24 15:16 06/15/24 00:08 EPA 8021B ND 0.00100 mg/L 1 [CALC] 06/14/24 15:16 06/15/24 00:08 EPA 8021B ND 0.00100 mg/L 1 [CALC] 06/14/24 15:16 06/15/24 00:08 EPA 8021B DA 0.00100 mg/L 1 [CALC] 06/14/24 15:16 06/15/24 00:08 EPA 8021B DA 0.00100 mg/L 1 [CALC] 06/14/24 15:16 06/15/24 00:08 EPA 8021B DA 0.00100 mg/L 1 [CALC] 06/14/24 15:16 06/15/24 00:08 EPA 8021B DA 0.001000 0.001000 0.001000 0.001000 0.001000 0.001000 0.0010000

13000 West County Road 100 Odessa TX, 79765 Project: SRS 2009-039 Project Number: SRS 2009-039

Project Manager: Kimble Thrash

DUP-1 4F13014-09 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental I	ab, L.P.			
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/15/24 00:30	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/15/24 00:30	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/15/24 00:30	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P4F1404	06/14/24 15:16	06/15/24 00:30	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4F1404	06/14/24 15:16	06/15/24 00:30	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		101 %	80-120		P4F1404	06/14/24 15:16	06/15/24 00:30	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.8 %	80-120		P4F1404	06/14/24 15:16	06/15/24 00:30	EPA 8021B	
Total BTEX	ND	0.00100	mg/L	1	[CALC]	06/14/24 15:16	06/15/24 00:30	EPA 8021B	
Xylenes (total)	ND	0.00100	mg/L	1	[CALC]	06/14/24 15:16	06/15/24 00:30	EPA 8021B	

13000 West County Road 100 Odessa TX, 79765 Project: SRS 2009-039
Project Number: SRS 2009-039
Project Manager: Kimble Thrash

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4F1404 - *** DEFAULT PREP ***										
Blank (P4F1404-BLK1)				Prepared &	Analyzed:	06/14/24				
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.124		"	0.120		103	80-120			
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		94.9	80-120			
LCS (P4F1404-BS1)				Prepared &	Analyzed:	06/14/24				
Benzene	0.120	0.00100	mg/L	0.100		120	80-120			
Toluene	0.110	0.00100	"	0.100		110	80-120			
Ethylbenzene	0.118	0.00100	"	0.100		118	80-120			
Xylene (p/m)	0.236	0.00200	"	0.200		118	80-120			
Xylene (o)	0.106	0.00100	"	0.100		106	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	80-120			
Surrogate: 1,4-Difluorobenzene	0.128		"	0.120		106	80-120			
LCS Dup (P4F1404-BSD1)				Prepared &	Analyzed:	06/14/24				
Benzene	0.120	0.00100	mg/L	0.100		120	80-120	0.100	20	
Toluene	0.112	0.00100	"	0.100		112	80-120	1.91	20	
Ethylbenzene	0.118	0.00100	"	0.100		118	80-120	0.500	20	
Xylene (p/m)	0.239	0.00200	"	0.200		120	80-120	1.48	20	
Xylene (o)	0.106	0.00100	"	0.100		106	80-120	0.480	20	
Surrogate: 4-Bromofluorobenzene	0.122		"	0.120		102	80-120			
Surrogate: 1,4-Difluorobenzene	0.125		"	0.120		104	80-120			
Calibration Blank (P4F1404-CCB1)				Prepared &	Analyzed:	06/14/24				
Benzene	0.130		ug/l							
Toluene	0.160		"							
Ethylbenzene	0.180		"							
Xylene (p/m)	0.260		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.121		"	0.120		101	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.5	80-120			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100

Odessa TX, 79765

Project: SRS 2009-039 Project Number: SRS 2009-039

Project Manager: Kimble Thrash

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P4F1404 - *** DEFAULT PREP ***									-	
Calibration Blank (P4F1404-CCB2)				Prepared &	Analyzed:	06/14/24				
Benzene	0.00		ug/l							
Toluene	0.00		"							
Ethylbenzene	0.200		"							
Xylene (p/m)	0.220		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.122		"	0.120		102	80-120			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.9	80-120			
Calibration Blank (P4F1404-CCB3)				Prepared: ()6/14/24 Aı	nalyzed: 06	/15/24			
Benzene	0.250		ug/l							
Toluene	0.140		"							
Ethylbenzene	0.430		"							
Xylene (p/m)	0.480		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.120		"	0.120		100	80-120			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.7	80-120			
Calibration Check (P4F1404-CCV1)				Prepared &	Analyzed:	06/14/24				
Benzene	0.119	0.00100	mg/L	0.100		119	80-120			
Toluene	0.112	0.00100	"	0.100		112	80-120			
Ethylbenzene	0.107	0.00100	"	0.100		107	80-120			
Xylene (p/m)	0.234	0.00200	"	0.200		117	80-120			
Xylene (o)	0.106	0.00100	"	0.100		106	80-120			
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120		99.6	80-120			
Surrogate: 1,4-Difluorobenzene	0.124		"	0.120		104	80-120			
Calibration Check (P4F1404-CCV2)				Prepared &	Analyzed:	06/14/24				
Benzene	0.115	0.00100	mg/L	0.100		115	80-120			
Toluene	0.113	0.00100	"	0.100		113	80-120			
Ethylbenzene	0.108	0.00100	"	0.100		108	80-120			
Xylene (p/m)	0.238	0.00200	"	0.200		119	80-120			
Xylene (o)	0.108	0.00100	"	0.100		108	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	80-120			
Surrogate: 1,4-Difluorobenzene	0.126		"	0.120		105	80-120			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100 Project Number: SRS 2009-039 Odessa TX, 79765 Project Manager: Kimble Thrash

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

Project: SRS 2009-039

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P4F1404 - *** DEFAULT PREP ***										
Calibration Check (P4F1404-CCV3)				Prepared: (06/14/24 A	nalyzed: 06	5/15/24			
Benzene	0.119	0.00100	mg/L	0.100		119	80-120			
Toluene	0.116	0.00100	"	0.100		116	80-120			
Ethylbenzene	0.112	0.00100	"	0.100		112	80-120			
Xylene (p/m)	0.236	0.00200	"	0.200		118	80-120			
Xylene (o)	0.109	0.00100	"	0.100		109	80-120			
Surrogate: 4-Bromofluorobenzene	0.117		"	0.120		97.3	80-120			
Surrogate: 1,4-Difluorobenzene	0.123		"	0.120		102	80-120			
Matrix Spike (P4F1404-MS1)	Sou	rce: 4F12008-	06	Prepared: (06/14/24 A	nalyzed: 06	5/15/24			
Benzene	0.125	0.00100	mg/L	0.100	ND	125	80-120			QM-05
Toluene	0.116	0.00100	"	0.100	ND	116	80-120			
Ethylbenzene	0.138	0.00100	"	0.100	ND	138	80-120			QM-05
Xylene (p/m)	0.252	0.00200	"	0.200	ND	126	80-120			QM-05
Xylene (o)	0.112	0.00100	"	0.100	ND	112	80-120			
Surrogate: 4-Bromofluorobenzene	0.125		"	0.120		105	80-120			
Surrogate: 1,4-Difluorobenzene	0.130		"	0.120		108	80-120			
Matrix Spike Dup (P4F1404-MSD1)	Sou	rce: 4F12008-	06	Prepared: (06/14/24 A	nalyzed: 06	5/15/24			
Benzene	0.113	0.00100	mg/L	0.100	ND	113	80-120	9.77	20	
Toluene	0.102	0.00100	"	0.100	ND	102	80-120	13.5	20	
Ethylbenzene	0.111	0.00100	"	0.100	ND	111	80-120	21.5	20	QM-05
Xylene (p/m)	0.217	0.00200	"	0.200	ND	109	80-120	14.9	20	
Xylene (o)	0.0945	0.00100	"	0.100	ND	94.5	80-120	16.9	20	
Surrogate: 4-Bromofluorobenzene	0.120		"	0.120		100	80-120			
Surrogate: 1,4-Difluorobenzene	0.126		"	0.120		105	80-120			

13000 West County Road 100 Odessa TX, 79765 Project Number: SRS 2009-039
Project Manager: Kimble Thrash

Notes and Definitions

ROI Received on Ice

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD

were within acceptance limits showing that the laboratory is in control and the data is acceptable.

pH1 The Regulatory Holding time for pH is 15 minutes, Analysis should be done in the field.

NPBEL CC Chain of Custody was not generated at PBELAB

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Drew	Darron			
Report Approved By:			Date:	6/19/2024	

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1] Project: SRS 2009-039
13000 West County Road 100 Project Number: SRS 2009-039
Odessa TX, 79765 Project Manager: Kimble Thrash

Permian Basin Environmental Lab, L.P.

-		1.97	120		
100	STATE WEST	CONTRACTOR OF THE PARTY OF THE	100	13/2	
1 100		42	II ASI	4	15
gar 4	SHOW AND	All Hills	10 mm	ditto ele-	- down

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Permian Basin Environmental Lab, LP 1400 Rankin HWY

		-
Phone:	432-686-723	

Midland, Texas 79701 Kimble Thrash Project Manager:

Project Name: SRS 2009-039

Etech Environmental & Safety Solutions, Inc. Company Name:

Project #: SRS 2009-039

P.O. Box 6228 Company Address:

Project Loc: Lea County, NM

City/State/Zip: Telephone No: Midland, TX 79711

(432) 563-2200

PO #:

NPDES

Page 17 of

Fax No: (432) 563-2213

Report Format: Standard TRRP

e-mail: kimble@etechenv.com; shane@etechenv.com; camille.bryant@plains.com; karolanne.hudgens@plains.com Sampler Signature:

ab use or	nly)														Г				Α	naly	ze F	or:			72 hi	
	#: 4F13014							_			 			14-63	-			TOTA	_	1		П	1	П	48,	
AB # (lab use only)		Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #, of Containers		23	ration	t Coul		Other (Specify)	=Drinking Water	NP=Non-Potable Specify Other 3				AL:						RUSH TAT (Pre-Schedule) 24,	+ * + +
1	FIELD CODE MW-1	-	ш -	06/12/24	1400	ii.	3	1	-	3				GW			П	7	1	T	T	Н	T	П	1	,
2	MW-2		-	06/11/24	1700		3			3				GW		_)
3	MW-3			06/11/24	1550		3			3		1		GW	3	3										1
4	MW-4			06/11/24	1445		3			3				GW	3	3										1
5	MW-5			06/12/24	1245		3			3				GW	3	3										1
6	MW-6		-	06/11/24	1330		3			3				GW	3	3										1
7	MW-7	-		06/11/24	1115		3			3				GW	3	3										
8	MW-8			06/11/24	1225		3			3				GW	3	3										
a	DUP-1			06/12/24	1246		3			3				GW	13	3										1

Special Instructions: Please invoice directly to Plains A/P 333 Clay St., Houston, TX 77002 and reference the SRS number in the Project Name.

	Sample Containers Intact? VOCs Free of Headspace?
Time	Labels on container(s)
	Custody seals on container Custody seals on cooler(s)
Time	Sample Hand Delivered by Sampler/Client Rep. ?
Time	by Courier? UPS Temperature Upon Receipt:

Date

seals on container(s)

Y	N
P	N
M	N
Y	N
Y	N
Y	N
Y.	N
1	Lone Star
1	VCF
r:	13
	W

Received by: Date

Received by:

Relinquished by: Relinquished by: Date Relinquished by:

ature Upon Receipt: °C Thermometo °C Factor:

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Kimble Thrash
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: SRS 2009-039 Project Number: SRS 2009-039 Location: Lea County, NM

Lab Order Number: 4I06006

Current Certification

Report Date: 09/13/24

13000 West County Road 100

Project Number: SRS 2009-039 Odessa TX, 79765 Project Manager: Kimble Thrash

ANALYTICAL REPORT FOR SAMPLES

Project: SRS 2009-039

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	4I06006-01	Water	09/05/24 16:45	09-06-2024 09:58
MW-2	4I06006-02	Water	09/05/24 14:00	09-06-2024 09:58
MW-3	4I06006-03	Water	09/05/24 12:45	09-06-2024 09:58
MW-4	4I06006-04	Water	09/05/24 11:15	09-06-2024 09:58
MW-5	4I06006-05	Water	09/05/24 15:20	09-06-2024 09:58
MW-6	4I06006-06	Water	09/05/24 09:35	09-06-2024 09:58
MW-7	4I06006-07	Water	09/04/24 14:40	09-06-2024 09:58
MW-8	4I06006-08	Water	09/04/24 15:55	09-06-2024 09:58
DUP-1	4I06006-09	Water	09/05/24 16:46	09-06-2024 09:58

13000 West County Road 100 Odessa TX, 79765 Project: SRS 2009-039

Project Number: SRS 2009-039 Project Manager: Kimble Thrash

MW-1 4I06006-01 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
						-			
		P	ermian B	asin Envi	ronmental l	Lab, L.P.			
Organics by GC									
Benzene	0.00131	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 06:42	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 06:42	EPA 8021B	
Ethylbenzene	0.00249	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 06:42	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 06:42	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 06:42	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		130 %	80-120		P4I0910	09/09/24 13:57	09/10/24 06:42	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		98.3 %	80-120		P4I0910	09/09/24 13:57	09/10/24 06:42	EPA 8021B	
Total BTEX	0.00380	0.00100	mg/L	1	[CALC]	09/09/24 13:57	09/10/24 06:42	EPA 8021B	
Xylenes (total)	ND	0.00100	mg/L	1	[CALC]	09/09/24 13:57	09/10/24 06:42	EPA 8021B	

EPA 8021B

EPA 8021B

09/10/24 07:03

09/10/24 07:03

E Tech Environmental & Safety Solutions, Inc. [1]

13000 West County Road 100 Odessa TX, 79765

Total BTEX

Xylenes (total)

Project: SRS 2009-039 Project Number: SRS 2009-039

Project Manager: Kimble Thrash

MW-2 4I06006-02 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Po	ermian Ba	sin Envi	ronmental I	ab, L.P.			
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 07:03	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 07:03	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 07:03	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 07:03	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 07:03	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		125 %	80-120		P4I0910	09/09/24 13:57	09/10/24 07:03	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		99.7 %	80-120		P4I0910	09/09/24 13:57	09/10/24 07:03	EPA 8021B	

ND 0.00100

ND 0.00100

[CALC]

[CALC]

09/09/24 13:57

09/09/24 13:57

13000 West County Road 100 Odessa TX, 79765

Surrogate: 1,4-Difluorobenzene

Total BTEX

Xylenes (total)

Project: SRS 2009-039 Project Number: SRS 2009-039

Project Manager: Kimble Thrash

MW-3 4I06006-03 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Pe	ermian B	asin Envi	ronmental L	ab, L.P.			
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 08:07	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 08:07	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 08:07	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 08:07	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 08:07	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		128 %	80-120		P4I0910	09/09/24 13:57	09/10/24 08:07	EPA 8021B	S-GC

99.9 %

ND 0.00100

ND 0.00100

80-120

P4I0910

[CALC]

[CALC]

09/09/24 13:57

09/09/24 13:57

09/09/24 13:57

09/10/24 08:07

09/10/24 08:07

09/10/24 08:07

EPA 8021B

EPA 8021B

EPA 8021B

S-GC

E Tech Environmental & Safety Solutions, Inc. [1]

13000 West County Road 100 Odessa TX, 79765

Xylene (p/m)

Surrogate: 4-Bromofluorobenzene

Surrogate: 1,4-Difluorobenzene

Xylene (o)

Total BTEX

Xylenes (total)

Project: SRS 2009-039 Project Number: SRS 2009-039

Project Manager: Kimble Thrash

MW-4 4I06006-04 (Water)

Analyte	I Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Po	ermian E	Basin Envir	onmental 1	Lab, L.P.			
Organics by GC									
Benzene	ND (0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 08:29	EPA 8021B	
Toluene	ND (0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 08:29	EPA 8021B	
Ethylbenzene	ND (0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 08:29	EPA 8021B	

P4I0910

P4I0910

P4I0910

P4I0910

[CALC]

[CALC]

09/09/24 13:57

09/09/24 13:57

09/09/24 13:57

09/09/24 13:57

09/09/24 13:57

09/09/24 13:57

09/10/24 08:29

09/10/24 08:29

09/10/24 08:29

09/10/24 08:29

09/10/24 08:29

09/10/24 08:29

EPA 8021B

EPA 8021B

EPA 8021B

EPA 8021B

EPA 8021B

EPA 8021B

mg/L

mg/L

80-120

80-120 mg/L

mg/L

0.00200

127 %

99.6%

ND 0.00100

ND 0.00100

ND 0.00100

ND

13000 West County Road 100 Odessa TX, 79765 Project Number: SRS 2009-039 Project Manager: Kimble Thrash

> MW-5 4I06006-05 (Water)

		Reporting							
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

Terman Busin Environmental Europ Err.												
Organics by GC												
Benzene	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 08:50	EPA 8021B				
Toluene	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 08:50	EPA 8021B				
Ethylbenzene	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 08:50	EPA 8021B				
Xylene (p/m)	ND	0.00200	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 08:50	EPA 8021B				
Xylene (o)	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 08:50	EPA 8021B				
Surrogate: 4-Bromofluorobenzene		123 %	80-120		P4I0910	09/09/24 13:57	09/10/24 08:50	EPA 8021B	S-GC			
Surrogate: 1,4-Difluorobenzene		99.6 %	80-120		P4I0910	09/09/24 13:57	09/10/24 08:50	EPA 8021B				
Total BTEX	ND	0.00100	mg/L	1	[CALC]	09/09/24 13:57	09/10/24 08:50	EPA 8021B				
Xylenes (total)	ND	0.00100	mg/L	1	[CALC]	09/09/24 13:57	09/10/24 08:50	EPA 8021B				

13000 West County Road 100 Odessa TX, 79765 Project: SRS 2009-039

Project Number: SRS 2009-039 Project Manager: Kimble Thrash

MW-6 4I06006-06 (Water)

		Reporting							l
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

	To make the control of the control o												
Organics by GC													
Benzene	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 09:11	EPA 8021B					
Toluene	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 09:11	EPA 8021B					
Ethylbenzene	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 09:11	EPA 8021B					
Xylene (p/m)	ND	0.00200	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 09:11	EPA 8021B					
Xylene (o)	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 09:11	EPA 8021B					
Surrogate: 4-Bromofluorobenzene		125 %	80-120		P4I0910	09/09/24 13:57	09/10/24 09:11	EPA 8021B	S-GC				
Surrogate: 1,4-Difluorobenzene		101 %	80-120		P4I0910	09/09/24 13:57	09/10/24 09:11	EPA 8021B					
Total BTEX	ND	0.00100	mg/L	1	[CALC]	09/09/24 13:57	09/10/24 09:11	EPA 8021B					
Xylenes (total)	ND	0.00100	mg/L	1	[CALC]	09/09/24 13:57	09/10/24 09:11	EPA 8021B					

13000 West County Road 100 Odessa TX, 79765 Project Number: SRS 2009-039
Project Manager: Kimble Thrash

MW-7 4I06006-07 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

Organics by GC								
Benzene	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 09:32	EPA 8021B
Toluene	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 09:32	EPA 8021B
Ethylbenzene	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 09:32	EPA 8021B
Xylene (p/m)	ND	0.00200	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 09:32	EPA 8021B
Xylene (o)	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 09:32	EPA 8021B
Surrogate: 4-Bromofluorobenzene		119 %	80-120		P4I0910	09/09/24 13:57	09/10/24 09:32	EPA 8021B
Surrogate: 1,4-Difluorobenzene		100 %	80-120		P4I0910	09/09/24 13:57	09/10/24 09:32	EPA 8021B
Total BTEX	ND	0.00100	mg/L	1	[CALC]	09/09/24 13:57	09/10/24 09:32	EPA 8021B
Xylenes (total)	ND	0.00100	mg/L	1	[CALC]	09/09/24 13:57	09/10/24 09:32	EPA 8021B

13000 West County Road 100 Odessa TX, 79765 Project: SRS 2009-039

Project Number: SRS 2009-039 Project Manager: Kimble Thrash

MW-8 4I06006-08 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental I	Lab, L.P.			
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 09:53	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 09:53	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 09:53	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 09:53	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 09:53	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		116 %	80-120		P4I0910	09/09/24 13:57	09/10/24 09:53	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		101 %	80-120		P4I0910	09/09/24 13:57	09/10/24 09:53	EPA 8021B	
Total BTEX	ND	0.00100	mg/L	1	[CALC]	09/09/24 13:57	09/10/24 09:53	EPA 8021B	
Xylenes (total)	ND	0.00100	mg/L	1	[CALC]	09/09/24 13:57	09/10/24 09:53	EPA 8021B	

13000 West County Road 100 Odessa TX, 79765

 ${\it Surrogate: 4-Bromofluor obenzene}$

Surrogate: 1,4-Difluorobenzene

Total BTEX

Xylenes (total)

Project: SRS 2009-039 Project Number: SRS 2009-039

Project Manager: Kimble Thrash

DUP-1 4I06006-09 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian E	Basin Envir	onmental	Lab, L.P.			
Organics by GC									
Benzene	0.00127	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 10:15	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 10:15	EPA 8021B	
Ethylbenzene	0.00208	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 10:15	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 10:15	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4I0910	09/09/24 13:57	09/10/24 10:15	EPA 8021B	

 $120\,\%$

98.8 %

0.00335 0.00100

ND 0.00100

80-120

80-120

mg/L

mg/L

P4I0910

P4I0910

[CALC]

[CALC]

09/09/24 13:57

09/09/24 13:57

09/09/24 13:57

09/09/24 13:57

09/10/24 10:15

09/10/24 10:15

09/10/24 10:15

09/10/24 10:15

EPA 8021B

EPA 8021B

EPA 8021B

EPA 8021B

Project Number: SRS 2009-039 Project Manager: Kimble Thrash

Project: SRS 2009-039

13000 West County Road 100 Odessa TX, 79765

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P4I0910 - *** DEFAULT PREP *	***									
Blank (P4I0910-BLK1)				Prepared: (09/09/24 A	nalyzed: 09	/10/24			
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	"							
Ethylbenzene	0.00195	0.00100	"							B-1.
Xylene (p/m)	0.00270	0.00200	"							B-1.
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.157		"	0.120		131	80-120			S-GO
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.8	80-120			
LCS (P4I0910-BS1)				Prepared: (09/09/24 Aı	nalyzed: 09	/10/24			
Benzene	0.103	0.00100	mg/L	0.100		103	80-120			
Toluene	0.104	0.00100	"	0.100		104	80-120			
Ethylbenzene	0.110	0.00100	"	0.100		110	80-120			
Xylene (p/m)	0.223	0.00200	"	0.200		112	80-120			
Xylene (o)	0.107	0.00100	"	0.100		107	80-120			
Surrogate: 4-Bromofluorobenzene	0.145		"	0.120		120	80-120			S-GO
Surrogate: 1,4-Difluorobenzene	0.121		"	0.120		100	80-120			
LCS Dup (P4I0910-BSD1)				Prepared: (09/09/24 Aı	nalyzed: 09	/10/24			
Benzene	0.108	0.00100	mg/L	0.100		108	80-120	3.99	20	
Toluene	0.107	0.00100	"	0.100		107	80-120	3.27	20	
Ethylbenzene	0.114	0.00100	"	0.100		114	80-120	3.72	20	
Xylene (p/m)	0.233	0.00200	"	0.200		116	80-120	4.14	20	
Xylene (o)	0.116	0.00100	"	0.100		116	80-120	7.57	20	
Surrogate: 4-Bromofluorobenzene	0.150		"	0.120		125	80-120			S-GO
Surrogate: 1,4-Difluorobenzene	0.122		"	0.120		102	80-120			
Calibration Blank (P4I0910-CCB1)				Prepared: (09/09/24 Aı	nalyzed: 09	/10/24			
Benzene	0.390		ug/l							
Toluene	0.530		"							
Ethylbenzene	2.11		"							B-13
Xylene (p/m)	3.00		"							B-13
Xylene (o)	0.960		"							
Surrogate: 4-Bromofluorobenzene	0.158		"	0.120		132	80-120			S-GO
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		95.2	80-120			

Permian Basin Environmental Lab, L.P.

Project Number: SRS 2009-039 Project Manager: Kimble Thrash

Project: SRS 2009-039

13000 West County Road 100 Odessa TX, 79765

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P4I0910 - *** DEFAULT PREP ***										
Calibration Blank (P4I0910-CCB2)				Prepared: (09/09/24 Aı	nalyzed: 09	/10/24			
Benzene	0.150		ug/l							
Toluene	0.280		"							
Ethylbenzene	1.32		"							B-1
Xylene (p/m)	1.76		"							
Xylene (o)	0.640		"							
Surrogate: 4-Bromofluorobenzene	0.153		"	0.120		127	80-120			S-GO
Surrogate: 1,4-Difluorobenzene	0.120		"	0.120		100	80-120			
Calibration Check (P4I0910-CCV1)				Prepared: (09/09/24 Aı	nalyzed: 09	/10/24			
Benzene	0.120	0.00100	mg/L	0.100		120	80-120			
Toluene	0.115	0.00100	"	0.100		115	80-120			
Ethylbenzene	0.119	0.00100	"	0.100		119	80-120			
Xylene (p/m)	0.229	0.00200	"	0.200		115	80-120			
Xylene (o)	0.115	0.00100	"	0.100		115	80-120			
Surrogate: 4-Bromofluorobenzene	0.146		"	0.120		122	80-120			S-GO
Surrogate: 1,4-Difluorobenzene	0.125		"	0.120		104	80-120			
Calibration Check (P4I0910-CCV2)				Prepared: (09/09/24 Aı	nalyzed: 09	/10/24			
Benzene	0.106	0.00100	mg/L	0.100		106	80-120			
Toluene	0.105	0.00100	"	0.100		105	80-120			
Ethylbenzene	0.106	0.00100	"	0.100		106	80-120			
Xylene (p/m)	0.213	0.00200	"	0.200		107	80-120			
Xylene (o)	0.108	0.00100	"	0.100		108	80-120			
Surrogate: 4-Bromofluorobenzene	0.136		"	0.120		113	80-120			
Surrogate: 1,4-Difluorobenzene	0.124		"	0.120		104	80-120			
Calibration Check (P4I0910-CCV3)				Prepared: (09/09/24 Aı	nalyzed: 09	/10/24			
Benzene	0.115	0.00100	mg/L	0.100		115	80-120			
Toluene	0.109	0.00100	"	0.100		109	80-120			
Ethylbenzene	0.109	0.00100	"	0.100		109	80-120			
Xylene (p/m)	0.220	0.00200	"	0.200		110	80-120			
Xylene (o)	0.111	0.00100	"	0.100		111	80-120			
Surrogate: 4-Bromofluorobenzene	0.133		"	0.120		111	80-120			
Surrogate: 1,4-Difluorobenzene	0.132		"	0.120		110	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100

Odessa TX, 79765

Matrix Spike (P4I0910-MS1)

Project: SRS 2009-039

Project Number: SRS 2009-039 Project Manager: Kimble Thrash

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Prepared: 09/09/24 Analyzed: 09/10/24

32.5

37.6

20

20

R3

R3

Batch P4I0910 - *** DEFAULT PREP ***	
--------------------------------------	--

Benzene	0.0846	0.00100	mg/L	0.100	0.00131	83.3	80-120			
Toluene	0.0848	0.00100	"	0.100	0.000570	84.3	80-120			
Ethylbenzene	0.0881	0.00100	"	0.100	0.00249	85.6	80-120			
Xylene (p/m)	0.173	0.00200	"	0.200	0.00168	85.6	80-120			
Xylene (o)	0.0837	0.00100	"	0.100	ND	83.7	80-120			
Surrogate: 4-Bromofluorobenzene	0.128		"	0.120		107	80-120			
Surrogate: 1,4-Difluorobenzene	0.123		"	0.120		102	80-120			
Matrix Spike Dup (P4I0910-MSD1)	Sour	ce: 4I06006-0)1	Prepared:	09/09/24 An	alyzed: 09	9/10/24			
Benzene	0.125	0.00100	mg/L	0.100	0.00131	123	80-120	38.7	20	R3
Toluene	0.113	0.00100	"	0.100	0.000570	113	80-120	28.8	20	R3
Ethylbenzene	0.117	0.00100	"	0.100	0.00249	115	80-120	29.2	20	R3

Ethylbenzene	0.117	0.00100		0.100	0.00249	115	80-120
Xylene (p/m)	0.239	0.00200	"	0.200	0.00168	119	80-120
Xylene (o)	0.122	0.00100	"	0.100	ND	122	80-120
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	80-120
Surrogate: 1,4-Difluorobenzene	0.118		"	0.120		98.2	80-120

Source: 4I06006-01

Dup

Duplicate

E Tech Environmental & Safety Solutions, Inc. [1] Project: SRS 2009-039
13000 West County Road 100 Project Number: SRS 2009-039
Odessa TX, 79765 Project Manager: Kimble Thrash

Notes and Definitions

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate. R3 The RPD exceeded the acceptance limit due to sample matrix effects. pH1 The Regulatory Holding time for pH is 15 minutes, Analysis should be done in the field. B-13 A common laboratory contaminant was above the RL in the blank Analyte DETECTED DET Analyte NOT DETECTED at or above the reporting limit ND Not Reported NR dry Sample results reported on a dry weight basis RPD Relative Percent Difference LCS Laboratory Control Spike MS Matrix Spike

	Dren	Dervor		
Report Approved By:			Date:	9/13/2024

DaR

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

×	~
Е	L
C	×
2	
7	7
	٠,
-	
ú.	_
*4	7
	٠
c	V
÷	
	7
٠.	_
*4	₹
c	V
Ċ	ď
2	-
5	V
_	
V	è
\sim	$\overline{}$
	-
	-
7	•
- 3	•
c	٦
	•
C	1
-	_
c	
•	-
- 7	2
d	
	-
-	4
- }	3
- 5	بد
- 3	7

					_	
1.8	200	-	-		4	
		A .	200	100		-
1.3	-			-	0.0	

PBELA.	B	1400 Ran	DEST Basin Environmental Lab, LF Ikin HWY Texas 79701	CH:	Phone	W: : 432-686-7235	
Project Manager:	Kimble Thrash	midiand,	Texas 79701	Project Name	: SRS 2009-	039	
Company Name:	Etech Environmental & Safety So	olutions, Inc.		Project #	#: SRS 2009-	039	C
Company Address:	P.O. Box 6228			Project Loc	: Lea County	. NM	
City/State/Zip:	Midland, TX 79711			PO #			
Telephone No:	(432) 563-2200	Fax-No: (432) 56	33-2213	Report Format	Standard	TRRP	NPDES
Sampler Signature:		e-mail: kimble@et	lechenv.com; shane@etechen	v.com; camille.bryan	t@plains.com; ka	rolanne.hudgens(@plains.com
ab use only)	Cal				Analy	ze For:	2 h
ORDER #: 4 TO(O(O(O))		Preservation & # of Containers	Matrix	TCLP: TOTAL:		18, 7

	11 1 601																		1	Analy	ze F	or:			72 h	
ORDER #:	4I06006)								Preser	vation	8#	of Co	ntaine	ire	Matrix			CLP:		П				48,	
LAB# (lab use only)	FIELD CODE		Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #, of Containers		23	T SO				Other (Specify)	Solid	one of the second								RUSH TAT (Pre-Schedule) 24,	Standard TAT
)	MW-1		-	-	09/05/24	1645		3			3			T		GW	3				\vdash	+	+	\vdash	<u> </u>	X
2	MW-2		-	-	09/05/24	1400		3			3					GW	3					+		\vdash	+	X
3	MW-3		-	3	09/05/24	1245		3			3	T				GW	3		\forall			11		\vdash	+	X
4	MW-4		-	-	09/05/24	1115		3			3		T			GW	3		1	+		+	+	\perp	+	x
5	MW-5				09/05/24	1520		3			3	T				GW	3		+		+	+	+	+	+	x
6	MW-6		-	-	09/05/24	0935		3		-	3					GW	3	111	+			+	+		-	X
7	MW-7		1.7		09/04/24	1440		3			3	T	T			GW	3		+			+	+	+		X
8	MW-8				09/04/24	1555		3			3	1	T			GW	3	+	+		1	+	+		1	
9	DUP-1	- 11			09/05/24	1646		3		_	3	1	T			GW	3	+	+	+	+	+	+	+		X
																	1		1	+	\vdash	++	+	+	\vdash	쉬
Relinquished Relinquished	by:	Date Date	O9	me me	Received by:				SRS	numt	oer in	the	Pro	ject	Dat Dat	te	Time	Laborate Sample VOCs Fr Labels of Custody Custody Sample I by Sa by Co	Conta ee of n con seals seals Hand ample	ainers f Head ntainer s on co s on co Delive	Intact? space (s) ontaine ooler(s) ered it Rep.	? er(s))		YYYYYY Lor	N N N N N N N N N N N N N N N N N N N	
Relinquished	by:	Date	Tir	ne	Received by PE	Barro	_							0	9/6	6/24	Time 958	Tempera	ture !	I Inon I	Receip °C	t:	mometo	1 -	3	

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Kimble Thrash
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: SRS 2009-039
Project Number: SRS 2009-039

Location: Lea County, NM

Lab Order Number: 4L16014

Current Certification

Report Date: 12/20/24

13000 West County Road 100

Project Number: SRS 2009-039 Odessa TX, 79765 Project Manager: Kimble Thrash

ANALYTICAL REPORT FOR SAMPLES

Project: SRS 2009-039

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	4L16014-01	Water	12/14/24 16:40	12-16-2024 16:03
MW-2	4L16014-02	Water	12/14/24 12:40	12-16-2024 16:03
MW-3	4L16014-03	Water	12/14/24 13:35	12-16-2024 16:03
MW-4	4L16014-04	Water	12/14/24 14:30	12-16-2024 16:03
MW-5	4L16014-05	Water	12/14/24 15:30	12-16-2024 16:03
MW-6	4L16014-06	Water	12/14/24 11:50	12-16-2024 16:03
MW-7	4L16014-07	Water	12/14/24 10:50	12-16-2024 16:03
MW-8	4L16014-08	Water	12/14/24 09:50	12-16-2024 16:03
DUP-1	4L16014-09	Water	12/14/24 16:41	12-16-2024 16:03

13000 West County Road 100 Odessa TX, 79765

Project: SRS 2009-039 Project Number: SRS 2009-039

Project Manager: Kimble Thrash

MW-1 4L16014-01 (Water)

Analyte	D14	Reporting	T I:4	Dilatian	D-4-h	D	Analyzed	Method	Notes
Tillayee	Result	Limit	Units	Dilution	Batch	Prepared	Anaryzeu	Method	Notes
		Po	ermian B	asin Envi	ronmental I	ab, L.P.			
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P4L1713	12/17/24 13:54	12/18/24 11:40	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4L1713	12/17/24 13:54	12/18/24 11:40	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P4L1713	12/17/24 13:54	12/18/24 11:40	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P4L1713	12/17/24 13:54	12/18/24 11:40	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4L1713	12/17/24 13:54	12/18/24 11:40	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		75.1 %	80-120		P4L1713	12/17/24 13:54	12/18/24 11:40	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		101 %	80-120		P4L1713	12/17/24 13:54	12/18/24 11:40	EPA 8021B	
Total BTEX	ND	0.00100	mg/L	1	[CALC]	12/17/24 13:54	12/18/24 11:40	EPA 8021B	
Xylenes (total)	ND	0.00100	mg/L	1	[CALC]	12/17/24 13:54	12/18/24 11:40	EPA 8021B	
Total BTEX		0.00100	mg/L	1 1	[CALC]	12/17/24 13:54	12/18/24 11:40		EPA 8021B

13000 West County Road 100 Odessa TX, 79765

Project Number: SRS 2009-039

Project: SRS 2009-039

Project Manager: Kimble Thrash

MW-2 4L16014-02 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental I	Lab, L.P.			
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P4L1713	12/17/24 13:54	12/18/24 12:01	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4L1713	12/17/24 13:54	12/18/24 12:01	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P4L1713	12/17/24 13:54	12/18/24 12:01	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P4L1713	12/17/24 13:54	12/18/24 12:01	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4L1713	12/17/24 13:54	12/18/24 12:01	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		76.3 %	80-120		P4L1713	12/17/24 13:54	12/18/24 12:01	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		102 %	80-120		P4L1713	12/17/24 13:54	12/18/24 12:01	EPA 8021B	
Total BTEX	ND	0.00100	mg/L	1	[CALC]	12/17/24 13:54	12/18/24 12:01	EPA 8021B	
Xylenes (total)	ND	0.00100	mg/L	1	[CALC]	12/17/24 13:54	12/18/24 12:01	EPA 8021B	

13000 West County Road 100 Odessa TX, 79765 Project: SRS 2009-039 Project Number: SRS 2009-039

Project Manager: Kimble Thrash

MW-3 4L16014-03 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental I	Lab, L.P.			
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P4L1713	12/17/24 13:54	12/18/24 12:23	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4L1713	12/17/24 13:54	12/18/24 12:23	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P4L1713	12/17/24 13:54	12/18/24 12:23	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P4L1713	12/17/24 13:54	12/18/24 12:23	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4L1713	12/17/24 13:54	12/18/24 12:23	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		76.0 %	80-120		P4L1713	12/17/24 13:54	12/18/24 12:23	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		102 %	80-120		P4L1713	12/17/24 13:54	12/18/24 12:23	EPA 8021B	
Total BTEX	ND	0.00100	mg/L	1	[CALC]	12/17/24 13:54	12/18/24 12:23	EPA 8021B	
Xylenes (total)	ND	0.00100	mg/L	1	[CALC]	12/17/24 13:54	12/18/24 12:23	EPA 8021B	

13000 West County Road 100 Odessa TX, 79765 Project: SRS 2009-039 Project Number: SRS 2009-039

Project Manager: Kimble Thrash

MW-4 4L16014-04 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental I	Lab, L.P.			
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P4L1713	12/17/24 13:54	12/18/24 12:45	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4L1713	12/17/24 13:54	12/18/24 12:45	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P4L1713	12/17/24 13:54	12/18/24 12:45	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P4L1713	12/17/24 13:54	12/18/24 12:45	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4L1713	12/17/24 13:54	12/18/24 12:45	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		79.2 %	80-120		P4L1713	12/17/24 13:54	12/18/24 12:45	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		103 %	80-120		P4L1713	12/17/24 13:54	12/18/24 12:45	EPA 8021B	
Total BTEX	ND	0.00100	mg/L	1	[CALC]	12/17/24 13:54	12/18/24 12:45	EPA 8021B	
Xylenes (total)	ND	0.00100	mg/L	1	[CALC]	12/17/24 13:54	12/18/24 12:45	EPA 8021B	

13000 West County Road 100 Odessa TX, 79765 Project: SRS 2009-039 Project Number: SRS 2009-039

Project Manager: Kimble Thrash

MW-5 4L16014-05 (Water)

A 1		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		D	ormian P	osin Envi	ronmental L	ah I D			
		1	Ci illian D	asiii Liivi	i oninentai 1	au, L.1.			
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 17:18	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 17:18	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 17:18	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 17:18	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 17:18	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		78.8 %	80-120		P4L1913	12/19/24 14:28	12/19/24 17:18	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		100 %	80-120		P4L1913	12/19/24 14:28	12/19/24 17:18	EPA 8021B	
Total BTEX	ND	0.00100	mg/L	1	[CALC]	12/19/24 14:28	12/19/24 17:18	EPA 8021B	
Xylenes (total)	ND	0.00100	mg/L	1	[CALC]	12/19/24 14:28	12/19/24 17:18	EPA 8021B	

13000 West County Road 100 Odessa TX, 79765 Project: SRS 2009-039 Project Number: SRS 2009-039

Project Manager: Kimble Thrash

MW-6 4L16014-06 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental I	ab, L.P.			
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 17:40	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 17:40	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 17:40	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 17:40	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 17:40	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		76.4 %	80-120		P4L1913	12/19/24 14:28	12/19/24 17:40	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		100 %	80-120		P4L1913	12/19/24 14:28	12/19/24 17:40	EPA 8021B	
Total BTEX	ND	0.00100	mg/L	1	[CALC]	12/19/24 14:28	12/19/24 17:40	EPA 8021B	
Xylenes (total)	ND	0.00100	mg/L	1	[CALC]	12/19/24 14:28	12/19/24 17:40	EPA 8021B	

13000 West County Road 100 Odessa TX, 79765 Project: SRS 2009-039
Project Number: SRS 2009-039

Project Manager: Kimble Thrash

MW-7 4L16014-07 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental I	Lab, L.P.			
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 18:02	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 18:02	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 18:02	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 18:02	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 18:02	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		76.1 %	80-120		P4L1913	12/19/24 14:28	12/19/24 18:02	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		100 %	80-120		P4L1913	12/19/24 14:28	12/19/24 18:02	EPA 8021B	
Total BTEX	ND	0.00100	mg/L	1	[CALC]	12/19/24 14:28	12/19/24 18:02	EPA 8021B	
Xylenes (total)	ND	0.00100	mg/L	1	[CALC]	12/19/24 14:28	12/19/24 18:02	EPA 8021B	

13000 West County Road 100 Odessa TX, 79765 Project Number: SRS 2009-039
Project Manager: Kimble Thrash

MW-8 4L16014-08 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		D.	· n	· E ·	4 1 7	1 I D			
		P	ermian B	asın Envi	ronmental L	ab, L.P.			
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 18:23	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 18:23	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 18:23	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 18:23	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 18:23	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		75.1 %	80-120		P4L1913	12/19/24 14:28	12/19/24 18:23	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		100 %	80-120		P4L1913	12/19/24 14:28	12/19/24 18:23	EPA 8021B	
Total BTEX	ND	0.00100	mg/L	1	[CALC]	12/19/24 14:28	12/19/24 18:23	EPA 8021B	
Xylenes (total)	ND	0.00100	mg/L	1	[CALC]	12/19/24 14:28	12/19/24 18:23	EPA 8021B	

13000 West County Road 100 Odessa TX, 79765 Project: SRS 2009-039 Project Number: SRS 2009-039

Project Manager: Kimble Thrash

DUP-1 4L16014-09 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 18:44	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 18:44	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 18:44	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 18:44	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4L1913	12/19/24 14:28	12/19/24 18:44	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		76.2 %	80-120		P4L1913	12/19/24 14:28	12/19/24 18:44	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		99.1 %	80-120		P4L1913	12/19/24 14:28	12/19/24 18:44	EPA 8021B	
Total BTEX	ND	0.00100	mg/L	1	[CALC]	12/19/24 14:28	12/19/24 18:44	EPA 8021B	
Xylenes (total)	ND	0.00100	mg/L	1	[CALC]	12/19/24 14:28	12/19/24 18:44	EPA 8021B	

13000 West County Road 100 Odessa TX, 79765 Project Number: SRS 2009-039
Project Manager: Kimble Thrash

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

	B 1	Reporting	***	Spike	Source	0/855	%REC	DES	RPD	37.
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4L1713 - *** DEFAULT PREP ***										
Blank (P4L1713-BLK1)				Prepared: 1	12/17/24 A	nalyzed: 12	/18/24			
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.0938		"	0.120		78.2	80-120			S-GO
Surrogate: 1,4-Difluorobenzene	0.121		"	0.120		101	80-120			
LCS (P4L1713-BS1)				Prepared: 1	12/17/24 Aı	nalyzed: 12	/18/24			
Benzene	0.0947	0.00100	mg/L	0.100		94.7	80-120			
Toluene	0.0879	0.00100	"	0.100		87.9	80-120			
Ethylbenzene	0.0956	0.00100	"	0.100		95.6	80-120			
Xylene (p/m)	0.191	0.00200	"	0.200		95.5	80-120			
Xylene (o)	0.0854	0.00100	"	0.100		85.4	80-120			
Surrogate: 4-Bromofluorobenzene	0.0968		"	0.120		80.7	80-120			
Surrogate: 1,4-Difluorobenzene	0.132		"	0.120		110	80-120			
LCS Dup (P4L1713-BSD1)				Prepared: 1	12/17/24 Aı	nalyzed: 12	/18/24			
Benzene	0.0960	0.00100	mg/L	0.100		96.0	80-120	1.38	20	
Toluene	0.0921	0.00100	"	0.100		92.1	80-120	4.72	20	
Ethylbenzene	0.101	0.00100	"	0.100		101	80-120	5.18	20	
Xylene (p/m)	0.201	0.00200	"	0.200		100	80-120	4.91	20	
Xylene (o)	0.0898	0.00100	"	0.100		89.8	80-120	5.00	20	
Surrogate: 4-Bromofluorobenzene	0.0998		"	0.120		83.2	80-120			
Surrogate: 1,4-Difluorobenzene	0.133		"	0.120		110	80-120			
Calibration Blank (P4L1713-CCB1)				Prepared: 1	12/17/24 Aı	nalyzed: 12	/18/24			
Benzene	0.00		ug/l							
Toluene	0.00		"							
Ethylbenzene	0.210		"							
Xylene (p/m)	0.240		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.0941		"	0.120		78.4	80-120			S-GO
Surrogate: 1,4-Difluorobenzene	0.123		"	0.120		103	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100

Odessa TX, 79765

Project: SRS 2009-039 Project Number: SRS 2009-039

Project Manager: Kimble Thrash

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P4L1713 - *** DEFAULT PREP ***										
Calibration Blank (P4L1713-CCB2)				Prepared: 1	12/17/24 Aı	nalyzed: 12	/18/24			
Benzene	0.00		ug/l							
Toluene	0.00		"							
Ethylbenzene	0.210		"							
Xylene (p/m)	0.240		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.0941		"	0.120		78.4	80-120			S-GO
Surrogate: 1,4-Difluorobenzene	0.123		"	0.120		103	80-120			
Calibration Check (P4L1713-CCV1)				Prepared: 1	12/17/24 Aı	nalyzed: 12	/18/24			
Benzene	0.0983	0.00100	mg/L	0.100		98.3	80-120			
Toluene	0.0925	0.00100	"	0.100		92.5	80-120			
Ethylbenzene	0.0891	0.00100	"	0.100		89.1	80-120			
Xylene (p/m)	0.196	0.00200	"	0.200		98.2	80-120			
Xylene (o)	0.0906	0.00100	"	0.100		90.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.0983		"	0.120		81.9	80-120			
Surrogate: 1,4-Difluorobenzene	0.132		"	0.120		110	80-120			
Calibration Check (P4L1713-CCV2)				Prepared: 1	12/17/24 Aı	nalyzed: 12	/18/24			
Benzene	0.104	0.00100	mg/L	0.100		104	80-120			
Toluene	0.0978	0.00100	"	0.100		97.8	80-120			
Ethylbenzene	0.0950	0.00100	"	0.100		95.0	80-120			
Xylene (p/m)	0.207	0.00200	"	0.200		104	80-120			
Xylene (o)	0.0946	0.00100	"	0.100		94.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.0959		"	0.120		79.9	80-120			S-GO
Surrogate: 1,4-Difluorobenzene	0.131		"	0.120		109	80-120			
Calibration Check (P4L1713-CCV3)				Prepared: 1	12/17/24 Aı	nalyzed: 12	/18/24			
Benzene	0.0906	0.00100	mg/L	0.100		90.6	80-120			
Toluene	0.0879	0.00100	"	0.100		87.9	80-120			
Ethylbenzene	0.0881	0.00100	"	0.100		88.1	80-120			
Xylene (p/m)	0.191	0.00200	"	0.200		95.7	80-120			
Xylene (o)	0.0890	0.00100	"	0.100		89.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.0968		"	0.120		80.6	80-120			
Surrogate: 1,4-Difluorobenzene	0.131		"	0.120		109	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100

Odessa TX, 79765

Project Number: SRS 2009-039 Project Number: SRS 2009-039 Project Manager: Kimble Thrash

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

Batch P4L1713 - *** DEFAULT PREP ***

Matrix Spike (P4L1713-MS1)	Sour	ce: 4L16006-	18	Prepared:	12/17/24 An	alyzed: 12	2/18/24	
Benzene	0.0864	0.00100	mg/L	0.100	ND	86.4	80-120	
Toluene	0.0751	0.00100	"	0.100	0.000560	74.5	80-120	QM-05
Ethylbenzene	0.0729	0.00100	"	0.100	0.00107	71.8	80-120	QM-05
Xylene (p/m)	0.143	0.00200	"	0.200	0.00144	70.7	80-120	QM-05
Xylene (o)	0.0621	0.00100	"	0.100	ND	62.1	80-120	QM-05
Surrogate: 4-Bromofluorobenzene	0.102		"	0.120		85.0	80-120	
Surrogate: 1,4-Difluorobenzene	0.130		"	0.120		108	80-120	

Matrix Spike Dup (P4L1713-MSD1)	Source: 4L16006-18 Prepared: 12/17/24 Analyzed: 12/18/24									
Benzene	0.0902	0.00100	mg/L	0.100	ND	90.2	80-120	4.25	20	
Toluene	0.0812	0.00100	"	0.100	0.000560	80.7	80-120	7.95	20	
Ethylbenzene	0.0854	0.00100	"	0.100	0.00107	84.3	80-120	16.0	20	
Xylene (p/m)	0.165	0.00200	"	0.200	0.00144	81.9	80-120	14.7	20	
Xylene (o)	0.0697	0.00100	"	0.100	ND	69.7	80-120	11.6	20	QM-05
Surrogate: 4-Bromofluorobenzene	0.114		"	0.120		94.8	80-120			
Surrogate: 1,4-Difluorobenzene	0.128		"	0.120		107	80-120			

Batch P4L1913 - *** DEFAULT PREP ***

Blank (P4L1913-BLK1)		Prepared & Analyzed: 12/19/24						
Benzene	ND	0.00100	mg/L					
Toluene	ND	0.00100	"					
Ethylbenzene	ND	0.00100	"					
Xylene (p/m)	ND	0.00200	"					
Xylene (o)	ND	0.00100	"					
Surrogate: 4-Bromofluorobenzene	0.0926		"	0.120	77.2	80-120	S-GC	
Surrogate: 1,4-Difluorobenzene	0.119		"	0.120	99.4	80-120		

Permian Basin Environmental Lab, L.P.

13000 West County Road 100

Odessa TX, 79765

Project Number: SRS 2009-039 Project Number: SRS 2009-039 Project Manager: Kimble Thrash

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
·	Result	Liiiit	Omis	Level	Result	70KEC	Lillits	KI D	Eiiiit	Notes
Batch P4L1913 - *** DEFAULT PREP ***										
LCS (P4L1913-BS1)				Prepared &	Analyzed:	12/19/24				
Benzene	0.0961	0.00100	mg/L	0.100		96.1	80-120			
Toluene	0.0913	0.00100	"	0.100		91.3	80-120			
Ethylbenzene	0.102	0.00100	"	0.100		102	80-120			
Xylene (p/m)	0.202	0.00200	"	0.200		101	80-120			
Xylene (o)	0.0900	0.00100	"	0.100		90.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.0953		"	0.120		79.4	80-120			S-G
Surrogate: 1,4-Difluorobenzene	0.130		"	0.120		109	80-120			
LCS Dup (P4L1913-BSD1)				Prepared &	Analyzed:	12/19/24				
Benzene	0.0958	0.00100	mg/L	0.100		95.8	80-120	0.281	20	
Toluene	0.0906	0.00100	"	0.100		90.6	80-120	0.747	20	
Ethylbenzene	0.101	0.00100	"	0.100		101	80-120	1.03	20	
Xylene (p/m)	0.202	0.00200	"	0.200		101	80-120	0.124	20	
Xylene (o)	0.0898	0.00100	"	0.100		89.8	80-120	0.200	20	
Surrogate: 4-Bromofluorobenzene	0.0969		"	0.120		80.8	80-120			
Surrogate: 1,4-Difluorobenzene	0.133		"	0.120		111	80-120			
Calibration Blank (P4L1913-CCB1)				Prepared &	: Analyzed:	12/19/24				
Benzene	0.120		ug/l							
Toluene	0.170		"							
Ethylbenzene	0.380		"							
Xylene (p/m)	0.490		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.0893		"	0.120		74.4	80-120			S-G
Surrogate: 1,4-Difluorobenzene	0.119		"	0.120		98.9	80-120			
Calibration Blank (P4L1913-CCB2)				Prepared &	: Analyzed:	12/19/24				
Benzene	0.00		ug/l							
Toluene	0.00		"							
Ethylbenzene	0.200		"							
Xylene (p/m)	0.410		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.0916		"	0.120		76.3	80-120			S-G
Surrogate: 1,4-Difluorobenzene	0.123		"	0.120		103	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100

Odessa TX, 79765

Project Number: SRS 2009-039
Project Manager: Kimble Thrash

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4L1913 - *** DEFAULT PREP ***										
Calibration Check (P4L1913-CCV1)				Prepared &	Analyzed	: 12/19/24				
Benzene	0.0915	0.00100	mg/L	0.100		91.5	80-120			
Toluene	0.0802	0.00100	"	0.100		80.2	80-120			
Ethylbenzene	0.0801	0.00100	"	0.100		80.1	80-120			
Xylene (p/m)	0.163	0.00200	"	0.200		81.7	80-120			
Xylene (o)	0.0803	0.00100	"	0.100		80.3	80-120			
Surrogate: 4-Bromofluorobenzene	0.0862		"	0.120		71.8	80-120			S-GO
Surrogate: 1,4-Difluorobenzene	0.129		"	0.120		108	80-120			
Calibration Check (P4L1913-CCV2)				Prepared &	Analyzed	: 12/19/24				
Benzene	0.0949	0.00100	mg/L	0.100		94.9	80-120			
Toluene	0.0882	0.00100	"	0.100		88.2	80-120			
Ethylbenzene	0.0852	0.00100	"	0.100		85.2	80-120			
Xylene (p/m)	0.187	0.00200	"	0.200		93.5	80-120			
Xylene (o)	0.0861	0.00100	"	0.100		86.1	80-120			
Surrogate: 4-Bromofluorobenzene	0.0946		"	0.120		78.8	80-120			S-GO
Surrogate: 1,4-Difluorobenzene	0.131		"	0.120		109	80-120			
Calibration Check (P4L1913-CCV3)				Prepared: 1	2/19/24 A	nalyzed: 12	/20/24			
Benzene	0.0904	0.00100	mg/L	0.100		90.4	80-120			
Toluene	0.0831	0.00100	"	0.100		83.1	80-120			
Ethylbenzene	0.0812	0.00100	"	0.100		81.2	80-120			
Xylene (p/m)	0.179	0.00200	"	0.200		89.6	80-120			
Xylene (o)	0.0805	0.00100	"	0.100		80.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.0953		"	0.120		79.4	80-120			S-GO
Surrogate: 1,4-Difluorobenzene	0.133		"	0.120		111	80-120			
Matrix Spike (P4L1913-MS1)	Sou	ırce: 4L16014-	05	Prepared: 1	2/19/24 A	nalyzed: 12	/20/24			
Benzene	0.103	0.00100	mg/L	0.100	ND	103	80-120			
Toluene	0.0956	0.00100	"	0.100	ND	95.6	80-120			
Ethylbenzene	0.104	0.00100	"	0.100	ND	104	80-120			
Xylene (p/m)	0.206	0.00200	"	0.200	ND	103	80-120			
Xylene (o)	0.0914	0.00100	"	0.100	ND	91.4	80-120			
Surrogate: 4-Bromofluorobenzene	0.0956		"	0.120		79.6	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.132		"	0.120		110	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Project Number: SRS 2009-039 Odessa TX, 79765 Project Manager: Kimble Thrash

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

Project: SRS 2009-039

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P4L1913 - *** DEFAULT PREP ***

Matrix Spike Dup (P4L1913-MSD1)	Sour	Source: 4L16014-05			Prepared: 12/19/24 Analyzed: 12/20/24					
Benzene	0.105	0.00100	mg/L	0.100	ND	105	80-120	2.11	20	
Toluene	0.0986	0.00100	"	0.100	ND	98.6	80-120	3.10	20	
Ethylbenzene	0.108	0.00100	"	0.100	ND	108	80-120	3.86	20	
Xylene (p/m)	0.213	0.00200	"	0.200	ND	107	80-120	3.47	20	
Xylene (o)	0.0950	0.00100	"	0.100	ND	95.0	80-120	3.84	20	
Surrogate: 4-Bromofluorobenzene	0.0968		"	0.120		80.7	80-120			
Surrogate: 1,4-Difluorobenzene	0.132		"	0.120		110	80-120			

E Tech Environmental & Safety Solutions, Inc. [1] Project: SRS 2009-039
13000 West County Road 100 Project Number: SRS 2009-039
Odessa TX, 79765 Project Manager: Kimble Thrash

Notes and Definitions

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

ROI Received on Ice

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were

within acceptance limits showing that the laboratory is in control and the data is acceptable.

pH1 The Regulatory Holding time for pH is 15 minutes, Analysis should be done in the field.

NPBEL C(Chain of Custody was not generated at PBELAB

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By: Date: 12/20/2024

Brent Barron, Laboratory Director/Technical Director

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

E Tech Environmental & Safety Solutions, Inc. [1] Project: SRS 2009-039
13000 West County Road 100 Project Number: SRS 2009-039
Odessa TX, 79765 Project Manager: Kimble Thrash

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

ge 111 of 324	PBELA	<i>13</i> сна
Pa	Project Manager:	Kimble Thrash

Company Name:

City/State/Zip:

Telephone No:

e inquished by:

elinquished by:

elinquished by:

Sampler Signature:

Company Address: P.O. Box 6228

Time

Time

Date

Received by:

Received by:

Befored by PBB Ledan

CHAIN OF CUSTODY	RECORD AND	ANAI YSIS	REQUEST
------------------	------------	-----------	---------

CHAIN OF CUSTODY RECORD AND	ANALYSIS REQUEST L:	CH:	W:		
	Permian Basin Environmental Lab, LP 1400 Rankin HWY		Phone: 432	2-686-7235	4
Kimble Thrash	Midland, Texas 79701	Project Name:	SRS 2009-039		age 20
Etech Environmental & Safety Solutions, Inc.		Project #:	SRS 2009-039		e e
P.O. Box 6228	· ·	Project Loc:	Lea County, N	л	
Midland, TX 79711		PO #:			
	Fax No: (432) 563-2213 e-mail: kimble@etechenv.com; shane@etechenv.	Report Format:	e	TRRP	☐ NPDES
			Analyze F		Ē

Date

Date

Time

(lab use on	,]															Г				-	٩na	lyze	For	:				5 5	П
ORDER#	# 4L16014																				LP:		Ì					\Box	48, 7;	1
J. C. C.		ļ		_					reser	vatio	on & #	of C	onta	iners	_	Matrix				TOT	AL:			$oldsymbol{\perp}$				丄	7,	
LAB # (lab use only)	FIELD CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	lce	HNO3	HCI	H ₂ SO ₄	NaOH	Na ₂ S ₂ O ₃	None	(i)	DVX=Dinking vvater SL=Sludge GW = Groundwater SL=Soil/Solid NP=Non-Potable Specify Other	3TEX 8021 B												RUSH TAT (Pre-Schedule) 24,	standard TAT
_	MW-1	-		12/14/24	1640		3		_	3	寸		T		T	GW	3			\dashv	\top	\top	+	+			1		╫	X
2	MW-2	_	-	12/14/24	1240		3	T		3	寸	\neg		\top	T	GW	3		H	寸	1		\top	1				\top		X
3	MW-3	-	_	12/14/24	1335		3			3	寸		T	+	\top	GW	3			7			_	†		Н	十	+	T	x
4	MW-4	-		12/14/24	1430		3			3	\exists		7	T	\dagger	GW	3		\Box	\dashv	1	+	\top	+	T		\dashv	+	+-	X
5	MW-5	-	-	12/14/24	1530		3	寸		3		十	十	\top	†	GW	3			+	_	┰	+	+	1.			+	+	x
6	MW-6	-	_	12/14/24	1150		3		_	3	\dashv	_	\dagger		\dagger	GW	3	-		十	+	\dashv	+	+	\vdash	\dashv	\dashv	十	†	x
7	MW-7	_		12/14/24	1050		3	\dashv	_	3	十	_	十		\dagger	GW	3			\dashv	\dashv	+	╁	+	\vdash		\dashv	+	+	x
8	MW-8	_		12/14/24	0950		3	7	_	3	\dashv	\dashv	T	1	\dagger	GW	3		\dashv	\dashv			+	+	1	\dashv	\dashv	+	H	x
9	DUP-1	_	_	12/14/24	1641		3	7		3	\dashv	_	\dagger		\dagger	GW	3			\dashv			+	+			\dashv	+	+	X
								1		\top	1	1	十	1	\top		Ť		1	\dashv	\top		+	-	H		\dashv	+	\dagger	Ĥ
pecial Inst	ructions: Please invoice directly to Plains A/P 333	Clay S	t., Hou	ston, TX 7700	2 and referer	ice f	he S	RS	num	ber	in th	ne Pi	roje	ct Na	me.				Labo Sam								(Y	<i>\</i>	N	ᅦ

Released to Imaging: 10/14/2025 3:29:08 PM

Υ

Υ

Temperature Upon Receipt: Received: 1016746 Adjusted: 1016746 674°C Thermometor: NC

UPŚ

DHL

VOCs Free of Headspace?

Labels on container(s) Custody seals on container(s)
Custody seals on cooler(s)

Sample Hand Delivered

by Courier?

by Sampler/Client Rep. ?

Appendix B Laboratory Analytical Reports (Air Emissions)

Pace Analytical® ANALYTICAL REPORT

February 05, 2024

Revised Report

Plains All American Pipeline - ETECH

L1700540 Sample Delivery Group: Samples Received: 01/31/2024

Project Number: SRS #2009-039

Description: DCP Plant to Lea Station 6" #2

SRS #2009-039 Site:

Report To: Kimble Thrash

PO Box 62228

Midland, TX 79711

Project Manager

Entire Report Reviewed By: Lori A Vahrenkamp

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and and as the samples are received.

ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, Pace Analytical National

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
EFF-1 (013024) L1700540-01	5
Qc: Quality Control Summary	6
Volatile Organic Compounds (MS) by Method M18-Mod	6
GI: Glossary of Terms	8
Al: Accreditations & Locations	9
Sc: Sample Chain of Custody	10

SAMPLE SUMMARY

EFF-1 (013024) L1700540-01 Air			Kimble Thrash	01/30/24 11:30	01/31/24 09:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method M18-Mod	WG2216953	100	02/01/24 04:01	02/01/24 04:01	SDS	Mt. Juliet, TN
Volatile Organic Compounds (MS) by Method M18-Mod	WG2217971	200	02/01/24 17:35	02/01/24 17:35	GH	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Lori A Vahrenkamp Project Manager

Report Revision History

Level II Report - Version 1: 02/05/24 15:24

Project Narrative

Revised report issued 2/5/24 to correct the client sample ID to match the Chain-of-Custody.

SAMPLE RESULTS - 01

Page 117 of 324

Collected date/time: 01/30/24 11:30

L1700540

Volatile Organic Compounds (MS) by Method M18-Mod

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	20.0	63.9	ND	ND		100	WG2216953
Toluene	108-88-3	92.10	100	377	12900	48600		200	WG2217971
Ethylbenzene	100-41-4	106	40.0	173	3310	14400		200	WG2217971
m&p-Xylene	179601-23-1	106	80.0	347	7560	32800		200	WG2217971
o-Xylene	95-47-6	106	40.0	173	2310	10000		200	WG2217971
Methyl tert-butyl ether	1634-04-4	88.10	20.0	72.1	ND	ND		100	WG2216953
TPH (GC/MS) Low Fraction	8006-61-9	101	40000	165000	264000	1090000		200	WG2217971
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		128				WG2216953
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		101				WG2217971

QUALITY CONTROL SUMMARY

Page 118 of 324

L1700540-01

Volatile Organic Compounds (MS) by Method M18-Mod

Method Blank (MB)

(S) 1,4-Bromofluorobenzene 96.6

(MB) R4028581-3 01/3	1/24 10:52			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ppbv		ppbv	ppbv
Benzene	U		0.0715	0.200
Methyl tert-butyl ether	U		0.0647	0.200

60.0-140

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 1(40203011 01/31/24	(LCSD)	1140203012	01/31/24 10:00							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Benzene	3.75	3.75	3.73	100	99.5	70.0-130			0.535	25
Methyl tert-butyl ether	3.75	3.81	3.83	102	102	70.0-130			0.524	25
(S) 1,4-Bromofluorobenzene				102	101	60.0-140				

QUALITY CONTROL SUMMARY

Page 119 of 324

L1700540-01

Volatile Organic Compounds (MS) by Method M18-Mod

Method Blank (MB)

(MB) R4028934-3 02/01/2	4 09:49			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ppbv		ppbv	ppbv
Toluene	U		0.0870	0.500
Ethylbenzene	U		0.0835	0.200
m&p-Xylene	U		0.135	0.400
o-Xylene	U		0.0828	0.200
TPH (GC/MS) Low Fraction	40.8	<u>J</u>	39.7	200
(S) 1,4-Bromofluorobenzene	95.2			60.0-140

⁵Sr

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4028934-1 02/01/24 08:52 • (LCSD) R4028934-2 02/01/24 09	9:22	9:22	22
---	------	------	----

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Toluene	3.75	3.89	3.89	104	104	70.0-130			0.000	25
Ethylbenzene	3.75	4.02	3.98	107	106	70.0-130			1.00	25
m&p-Xylene	7.50	8.30	8.12	111	108	70.0-130			2.19	25
o-Xylene	3.75	4.19	4.15	112	111	70.0-130			0.959	25
TPH (GC/MS) Low Fraction	188	187	188	99.5	100	70.0-130			0.533	25
(S) 1,4-Bromofluorobenzene				96.1	94.7	60.0-140				

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	d Delimitoris
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Ovalifier	Description

Qualifier Description

The identification of the analyte is acceptable; the reported value is an estimate.

D 4 1 1	CK CONTRACTOR	400051	- B		10000	TN 1 07400
Pace Analytical	National	12065 L	.ebanon R	d Mount .	Juliet,	TN 3/122

Kentucky² 16 South Dakota n/a Louisiana Al30792 Tennessee¹4 2006 Louisiana LA018 Texas T104704245-20-18 Maine TN00003 Texas 5 LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847				
Arizona AZ0612 New Hampshire 2975 Arkansas 88-0469 New Jersey-PILAP TN002 California 2932 New Mexico¹ TN0003 Colorado TN00003 New York 11742 Connecticut PH-0197 North Carolina¹ Env375 Florida E87487 North Carolina³ My 2704 Georgia¹ 923 North Carolina³ 41 Georgia¹ 923 North Carolina³ 41 Georgia¹ 923 North Carolina³ 41 Idaho TN00003 North Dakota R140 Idaho TN00003 Oklahoma 9915 Illinois 20008 Oklahoma 9915 Illindina CTN-01 Oregon TN00002 Kansas E-10277 Rhode Island A000356 Kentucky² 16 South Dakota n/a Louisiana JA018 Texas Labita Maisian Mayona Texas Labita	Alabama	40660	Nebraska	NE-OS-15-05
Arkansas 88-0469 New Jersey-NELAP TN0002 California 2932 New Mexico¹ TN00003 Colorado TN00003 New York 1742 Connecticut PH-0197 North Carolina ¹ Enva75 Florida E87487 North Carolina ¹ DW21704 Georgia NELAP North Carolina ³ 41 Georgia ¹ 100003 North Dakota R-140 Idaho TN00003 Ohio-VAP CL0069 Illinois 200008 Oklahoma 9915 Illindiana C-TN-01 Oregon TN20002 Iowa 364 Pennsylvania 68-02979 Kentucky¹¹* KY9010 South Carolina 840-04002 Kentucky¹² KY9010 South Dakota n/a Louisiana Al30792 Tennessee¹⁴ 2006 Louisiana Al30792 Texas LAB0152 Manyland 324 Utah TN000032 LAB0152 Michigan 9958 <t< td=""><td>Alaska</td><td>17-026</td><td>Nevada</td><td>TN000032021-1</td></t<>	Alaska	17-026	Nevada	TN000032021-1
California 2932 New Mexico ¹ TN00003 Colorado TN00003 New York 11742 Connecticut PH-0197 North Carolina¹ Env375 Florida E87487 North Carolina¹ DW21704 Georgia NELAP North Carolina³ 41 Georgia¹ 923 North Dakota R-140 Idaho TN00003 Oklahoma 9915 Ilminis 200008 Oklahoma 9915 Indiana C-TN-01 Oregon TN20002 Iowa 364 Pennsylvania 68-02379 Kentucky¹ Kr90010 South Carolina 840-0402 Kentucky² If South Carolina 101074045-20-18 Maine TN0003 Texas	Arizona	AZ0612	New Hampshire	2975
Colorado TN00003 New York 11742 Connecticut PH-0197 North Carolina Env375 Florida E87487 North Carolina 1 DW21704 Georgia NELAP North Carolina 3 41 Georgia 1 923 North Dakota R-140 Idaho TN00003 Ohio-VAP CL0069 Illinois 200008 Oklahoma 9915 Ildidana C-TN-01 Oregon TN200002 Iowa 364 Pennsylvania 68-02379 Kansas E-10277 Rhode Island LA000356 Kentucky 1 6 Ky9010 South Carolina 84004002 Kentucky 2 16 South Dakota n/a Louisiana LA018 Texas T104704245-20-18 Maine Towas 5 LAB0152 Maryland 324 Utah TN000032021-11 Massachusetts M-TN003 Evan 5 LAB0152 Michigan 9958 Virginia 303 <tr< td=""><td>Arkansas</td><td>88-0469</td><td>New Jersey-NELAP</td><td>TN002</td></tr<>	Arkansas	88-0469	New Jersey-NELAP	TN002
Connecticut PH-0197 North Carolina Env375 Florida E87487 North Carolina 1 DW21704 Georgia NELAP North Carolina 3 41 Georgia 1 923 North Carolina 3 41 Idaho TN00003 Ohio-VAP CL0069 Illinois 200008 Oklahoma 9915 Indiana C-TN-01 Oregon TN200002 Iowa 364 Pensylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky 16 Ky9010 South Carolina 84004002 Kentucky 2 I6 South Dakota n/a Louisiana LA018 Texas 104702445-20-18 Maine TN0003 Texas 5 LAB0152 Maine TN0003 Texas 5 LAB0152 Massachusetts Mryginia 100033 Michigan 958 Washington 6847 Missosiri Nortin West Virginia 233	California	2932	New Mexico ¹	TN00003
Florida E87487 North Carolina ¹ DW21704 Georgia NELAP North Carolina ³ 41 Georgia¹ 923 North Dakota R-140 Idho TN0003 Ohio-VAP CL0069 Illinois 200008 Oklahoma 9915 Indiana CTN-01 Oregon TN20002 lowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky¹6 Ky9010 South Dakota n/a Louisiana Al30792 Tennessee¹⁴ 2006 Louisiana LA018 Texas LAB0152 Maine TN0003 Texas § LAB0152 Maine TN0003 Yermot TY2006 Missachusetts M-TN03 Yermot TY2006 Mississippi TN0003 Yes Wirginia 233 Mississippi TX0003 Yes Wirginia 233 Mississippi TX0056 Yes Wirginia 21A	Colorado	TN00003	New York	11742
Georgia NELAP North Carolina 3 41 Georgia 1 923 North Dakota R-140 Idaho TM0003 Ohio-VAP CL0069 Illinois 200008 Oklahoma 9915 Indiana C-TN-01 Oregon TN200002 Iowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky 1 6 KY90010 South Carolina 84004002 Kentucky 2 6 KY9001 South Carolina 4004002 Kentucky 3 6 KY9001 South Carolina 4004002 Louisiana JA018 Texas 104 Louisiana LA018 Texas 104 Maine TN0003 Texas LAB0152 Maryland 324 Uth Texas LAB0152 Massachusetts M-TN003 Yermont YT2006 Michigan 9958 Wisnington 2847 Mississippi TN0003 Wisnington <td< td=""><td>Connecticut</td><td>PH-0197</td><td>North Carolina</td><td>Env375</td></td<>	Connecticut	PH-0197	North Carolina	Env375
Georgia 1 923 North Dakota R-140 Idaho TN00003 Ohio-VAP CL0069 Illinois 200008 Oklahoma 9915 Indiana C-TN-01 Oregon TN200002 Iowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA0000356 Kentucky 16 KY9010 South Carollina 84004002 Kentucky 2 16 South Dakota n/a Louisiana LA018 Tennessee 1 4 2006 Louisiana LA018 Texas 1104704245-20-18 Maine TN00003 Texas 5 LA080152 Maryland 324 Utah TN000032021-11 Massachusetts M-TN003 Vermont V72006 Michigan 9958 Wirginia 10033 Minesota Q47-99-395 Washington C847 Missouri 340 West Virginia 23 Missouri Wigensia Myoning A2LA <	Florida	E87487	North Carolina ¹	DW21704
Idaho TN00003 Ohio-VAP CL0069 Illinois 200008 Oklahoma 9915 Indiana C-TN-01 Oregon TN200002 Iowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky¹6 Ky90010 South Carolina 84004002 Kentucky² 16 South Dakota n/a Louisiana LA018 Tennessee¹⁴ 2006 Maine TN00003 Texas 5 LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont Y72006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington 233 Missosiri 340 West Virginia 233 Missouri 340 Wisconsin 98093910 Montana CERTO086 Wyoming A2LA A2LA – ISO 17025 1461.01 A161.02 DOD	Georgia	NELAP	North Carolina ³	41
Illinois 200008 Oklahoma 9915 Indiana C-TN-01 Oregon TN200002 Iowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky¹6 KY9010 South Carolina 84004002 Kentucky²2 16 South Dakota n/a Louisiana LA018 Tennessee¹⁴ 2006 Louisiana LA018 Texas T104704245-20-18 Maine TN00003 Texas 5 LAB0152 Maryland 324 Utah TN000032021-11 Massachusetts M-TN003 Vermont YT2006 Minnesota 047-99-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 98093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 A1HA-LAP, LLC EMLAP 100789	Georgia ¹	923	North Dakota	R-140
Indiana C-TN-01 Oregon TN200002 lowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky¹6 KY90010 South Carolina 84004002 Kentucky² 16 South Dakota n/a Louisiana LA018 Tennessee¹⁴ 2006 Louisiana TN0003 Texas 5 LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont V72006 Minnesota 9958 Virginia 1003 Minnesota 047-99-395 Washington C847 Missouri 340 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 A1HA-LAP,LLC EMLAP 100789	Idaho	TN00003	Ohio-VAP	CL0069
Iowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky¹ 16 KY90010 South Carolina 84004002 Kentucky² 16 South Dakota n/a Louisiana A130792 Tennessee 14 2006 Louisiana LA018 Texas 104704245-20-18 Maine TN0003 Texas 5 LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 10033 Minnesota 047-999-395 Washington C847 Missouri 340 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 146.01 AIHA-LAP,LLC EMLAP 100789	Illinois	200008	Oklahoma	9915
Kansas E-10277 Rhode Island LA000356 Kentucky ¹⁶ KY90010 South Carolina 84004002 Kentucky ² 16 South Dakota n/a Louisiana Al30792 Tennessee ^{1,4} 2006 Louisiana LA018 Texas T104704245-20-18 Maine TN00003 Texas ⁵ LAB0152 Maryland 324 Utah TN000032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Missouri 340 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AlHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 ⁵ 1461.02 DOD 1461.01	Indiana	C-TN-01	Oregon	TN200002
Kentucky ¹ 6 KY90010 South Carolina 84004002 Kentucky ² 16 South Dakota n/a Louisiana Al30792 Tennessee ¹ 4 2006 Louisiana LA018 Texas T104704245-20-18 Maine TN0003 Texas ⁵ LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 10033 Minnesota V4-999-395 Washington C847 Mississippi TN0003 West Virginia 233 Missouri Misconsin 998093910 Montana CERT0086 Wyoming ALLA A2LA – ISO 17025 1461.01 AlHA-LAP, LLC EMLAP 100789 A2LA – ISO 17025 ⁵ 1461.02 DOD 1461.01	lowa	364	Pennsylvania	68-02979
Kentucky² 16 South Dakota n/a Louisiana Al30792 Tennessee¹4 2006 Louisiana LA018 Texas T104704245-20-18 Maine TN00003 Texas 5 LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Kansas	E-10277	Rhode Island	LAO00356
Louisiana Al30792 Tennessee ^{1 4} 2006 Louisiana LA018 Texas T104704245-20-18 Maine TN0003 Texas ⁵ LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississippi TN0003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 ⁵ 1461.02 DOD 1461.01	Kentucky 16	KY90010	South Carolina	84004002
Louisiana LA018 Texas T104704245-20-18 Maine TN0003 Texas 5 LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Viginia 10033 Minnesota 047-999-395 Washington C847 Mississippi TN0003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Kentucky ²	16	South Dakota	n/a
Maine TN0003 Texas 5 LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississippi TN0003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Louisiana	Al30792	Tennessee 1 4	2006
Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississippi TN0003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Louisiana	LA018	Texas	T104704245-20-18
Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Maine	TN00003	Texas ⁵	LAB0152
Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississippi TN0003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Maryland	324	Utah	TN000032021-11
Minnesota 047-999-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Massachusetts	M-TN003	Vermont	VT2006
Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Michigan	9958	Virginia	110033
Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Minnesota	047-999-395	Washington	C847
Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Mississippi	TN00003	West Virginia	233
A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Missouri	340	Wisconsin	998093910
A2LA – ISO 17025 ⁵ 1461.02 DOD 1461.01	Montana	CERT0086	Wyoming	A2LA
	A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
Canada 1461.01 USDA P330-15-00234	A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
	Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Infor	rmation:			1 2.0		Analysis / Con	tainer / Preser	vative		Ch	nain of Custody	Page of
Plains All American Pig	eline - ET	ECH		s Payable		Pres Chk		es de la company						Bo	
PO Box 62228 Midland, TX 79711			Suite 160												DVANCING SCIENCE
Report to: Kimble Thrash			Email To:	yant@plains.com	n;karolanne.hı	udgens				**			Sub	065 Lebanon Rd Moun bmitting a sample via t	
Project Description: DCP Plant to Lea Station 6" #2	1 n 10	City/State Collected:	Lea County,	New Mexico	Please C				ž,				htt	ce Terms and Condition rps://info.pacelabs.com rms.pdf	
Phone: (432) 894-9996	SRS #2009			Lab Project # PLAINSETEC	CH-NM GW								SC	OG# (C0	00540
Collected by (print): Kimble Thrash	Site/Facility SRS #2009			P.O.#			BTEX Tedlai						11	cctnum: PLAII	
Collected by (signature):	(Lab MUST Be		Quote #	ılts Needed		-						Pr	Template: T246078 Prelogin: P1052420 PM: 3587 - Lori A Vahrenkamp		
Immediately Packed on Ice N Y Y	Next D Two D Three	ay10 D	ay (Rad Only)	Date Nest	ilis Needed	No. of	M18-MOD						PE	В;	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	M18-						Sh	Remarks	Sample # (lab only)
EFF-1 (013024)	Grab	Air	N/A	01-30-2024	1130	1	X		100		27. 27.5				-01
XXX	EN	ac	OF	CC	C	×	X	火							
								100		<u>Itt</u>					
Marie San				-									100 P		
		1.00		1 - 2 -											
					-										
								-0:							
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:	ev							pH Flow	TempOther _		COC Seal COC Sign Bottles Correct	l Prese ned/Acc arrive bottle	e intact: es used:	
DW - Drinking Water OT - Other	Samples returne UPS Fedi	ed via: Ex Courie			cking #642	- 4	30	8992				VOA Zero	o Heads	<pre>lume sent: f Applicable space: Correct/Chec</pre>	Y N
Reinquished by : (Signature)	1/30/1	4 1	618 Reg	eved by: (Sign	e K	ies	hara	Trip Blank R	ТВ	L/MeoH	RAD Scr	een <0	.5 mR/hr:		
Refinquished by : (Signature)	rurely	1/30/	24 1°	730	eived by: (Sigr		Marie Control	DRAZ	Temp:	°C Bottles	Received:		vation re	equired by Logi	
Relinquished by : (Signature)		Date:	Tim	ne: Rec	eived for lab t	y: (Signa	ture)	Cy E	Date:	Time:	900	Hold:			Condition: NCF OK

Pace Analytical® ANALYTICAL REPORT

February 23, 2024

Plains All American Pipeline - ETECH

L1706443 Sample Delivery Group:

Samples Received: 02/16/2024

Project Number: SRS #2009-039

Description: DCP Plant to Lea Station 6" #2

SRS #2009-039 Site:

Report To: Kimble Thrash

PO Box 62228

Midland, TX 79711

Entire Report Reviewed By: Lori A Vahrenkamp

Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	·
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
EFF-1 (021524) L1706443-01	5
Qc: Quality Control Summary	6
Volatile Organic Compounds (MS) by Method M18-Mod	6
GI: Glossary of Terms	8
Al: Accreditations & Locations	9
Sc: Sample Chain of Custody	10

SAMPLE SUMMARY

EFF-1 (021524) L1706443-01 Air			Collected by Kimble Thrash	Collected date/time 02/15/24 09:15	02/16/24 09:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method M18-Mod	WG2230114	20	02/21/24 00:08	02/21/24 00:08	DAH	Mt. Juliet, TN
Volatile Organic Compounds (MS) by Method M18-Mod	WG2231025	200	02/21/24 17:05	02/21/24 17:05	SDS	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

SAMPLE RESULTS - 01 Page 127 of 324

Collected date/time: 02/15/24 09:15

L1706443

Volatile Organic Compounds (MS) by Method M18-Mod

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	4.00	12.8	ND	ND		20	WG2230114
Toluene	108-88-3	92.10	100	377	15300	57600	Q	200	WG2231025
Ethylbenzene	100-41-4	106	40.0	173	2690	11700	Q	200	WG2231025
m&p-Xylene	179601-23-1	106	80.0	347	5650	24500	Q	200	WG2231025
o-Xylene	95-47-6	106	40.0	173	1600	6940	Q	200	WG2231025
Methyl tert-butyl ether	1634-04-4	88.10	4.00	14.4	ND	ND		20	WG2230114
TPH (GC/MS) Low Fraction	8006-61-9	101	40000	165000	363000	1500000	Q	200	WG2231025
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		162		<u>J1</u>		WG2230114
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		108				WG2231025

Sample Narrative:

L1706443-01 WG2230114: Surrogate failure due to matrix interference

QUALITY CONTROL SUMMARY

Page 128 of 324

L1706443-01

Volatile Organic Compounds (MS) by Method M18-Mod

Method Blank (MB)

(MB) R4036238-3 02/20/2	24 10:51			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ppbv		ppbv	ppbv
Benzene	U		0.0715	0.200
Methyl tert-butyl ether	U		0.0647	0.200
(S) 1.4-Bromofluorohenzene	99 3			60 0-140

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4036238-1 02/20/24 09:34 • (LCSD) R4036238-2 02/20/24 10:13

(LCS) N+030230 1 02/20/	2+ 05.5+ (LCC	D) N+030230	2 02/20/241	3.13						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Benzene	3.75	4.19	4.26	112	114	70.0-130			1.66	25
Methyl tert-butyl ether	3.75	4.11	4.14	110	110	70.0-130			0.727	25
(S) 1,4-Bromofluorobenzene				95.3	97.1	60.0-140				

Volatile Organic Compounds (MS) by Method M18-Mod

QUALITY CONTROL SUMMARY

Page 129 of 324

L1706443-01

Method Blank (MB)

(MB) R4036784-1 02/21/24	1 09:51			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ppbv		ppbv	ppbv
Toluene	U		0.0870	0.500
Ethylbenzene	U		0.0835	0.200
m&p-Xylene	U		0.135	0.400
o-Xylene	U		0.0828	0.200
TPH (GC/MS) Low Fraction	43.5	<u>J</u>	39.7	200
(S) 1,4-Bromofluorobenzene	97.7			60.0-140

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4036784-2 02/21	/24 12:34 • (LCS	D) R4036784	-3 02/21/24 13:	11						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Toluene	3.75	3.39	3.39	90.4	90.4	70.0-130			0.000	25
Ethylbenzene	3.75	3.39	3.41	90.4	90.9	70.0-130			0.588	25
m&p-Xylene	7.50	6.84	6.88	91.2	91.7	70.0-130			0.583	25
o-Xylene	3.75	3.40	3.43	90.7	91.5	70.0-130			0.878	25
TPH (GC/MS) Low Fraction	188	163	165	86.7	87.8	70.0-130			1.22	25
(S) 1,4-Bromofluorobenzene				101	100	60.0-140				

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbic viations and	
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
-----------	-------------

J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
Q	Sample was prepared and/or analyzed past holding time as defined in the method. Concentrations should be considered minimum values.

Pace Analytical National	12065 Lebanon Rd Mount Juliet,	TN 37122
race Analytical National	12000 Lebanon Ku Mount Juliet,	111 3/122

, , , , , , , , , , , , , , , , , , , ,			
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Info	rmation:		1			Analysis / Co	ntainer / P	reservative			Chain of Custor	dy Page of
Plains All American Pipe PO Box 62228 Midland, TX 79711	eline - ETI	ECH	333 Clay Suite 16			Pres Chk								P	O ACC
Report to: Kimble Thrash			Email To: camille.br	yant@plains.com;k	carolanne.hu	dgens									ULIET, TN
Project Description: DCP Plant to Lea Station 6" #2		City/State Collected:	211	1 811		ircle:								submitting a sample of	is this chain of custody. dement and acceptance is point found at dischoolis/pas-standard
Phone: 432 894 9996	Client Project SRS #2009-			Lab Project # PLAINSETECH	I-NM GW								1	1.	5 H 1170
Collected by (print): KIMBLE THRASH	Site/Facility IS SRS #2009-			P.O. #			Tedlar								1117
Collected by (signature): Immediately Packed on Ice N Y	Same Da		Day	Quote # Date Results	Needed	No.	-BTEX						P	emplate: T2 4	16078
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	M18-MOD						S	hipped Via: F	edEX Groun
EFF-1 (021524)	6	Air	_	2-15-24	0915	1	X	+		+		-			01
XXXEN				, , , ,											
								1							
SS - Soil AIR - Air F - Filter SW - Groundwater B - Bioassay NW - WasteWater OW - Drinking Water	marks:	via:							pH	Tem		Bottle Correc	gned/Acc s arrive t bottle	Receipt Chent/Intact: curate: e intact: es used: ume sent:	ecklist NP Y Y Y Y Y
JI - Other	UPSFedEx	_Courier	Time:	do)	d by: (Signatu d by: (Signatu d by: (Signatu	ure)	305 c	916°	Trip Blank Red		es / No HCL / MeoH TBR les Received:	VOA Zer Preserv RAD Scr	ro Heads vation (E Applicable Space: Correct/Che 5 mR/hr:	e Y
Relinquished by: (Signature) ased to Imaging: 10/14/2025 3:	Dat 29:08 PM	e:	Time:		d for lab by: (Signatu	omew	`	AMB Date:	Time	6900	Hold:			Condition: NCF / O

Pace Analytical® ANALYTICAL REPORT

March 12, 2024

Revised Report

Plains All American Pipeline - ETECH

L1709751 Sample Delivery Group:

Samples Received: 02/28/2024

Project Number: SRS #2009-039

Description: DCP Plant to Lea Station 6" #2

SRS #2009-039 Site:

Report To: Kimble Thrash

PO Box 62228

Midland, TX 79711

Project Manager

Entire Report Reviewed By: Lori A Vahrenkamp

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
EFF-1 (022724) L1709751-01	5
Qc: Quality Control Summary	6
Volatile Organic Compounds (MS) by Method M18-Mod	6
GI: Glossary of Terms	8
Al: Accreditations & Locations	9
Sc: Sample Chain of Custody	10

Ss

SAMPLE SUMMARY

EFF-1 (022724) L1709751-01 Air			Kimble Thrash	02/27/24 09:30	02/28/24 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (MS) by Method M18-Mod	WG2235749	100	02/28/24 19:53	02/28/24 19:53	SDS	Mt. Juliet, TN
Volatile Organic Compounds (MS) by Method M18-Mod	WG2238194	400	03/02/24 18:51	03/02/24 18:51	DAH	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Lori A Vahrenkamp Project Manager

Report Revision History

Level II Report - Version 1: 03/04/24 10:01

Project Narrative

Revised report issued 3/12/24 to correct client sample ID to reflect Chain-of-Custody.

SAMPLE RESULTS - 01

Page 137 of 324

Volatile Organic Compounds (MS) by Method M18-Mod

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	<u>Batch</u>
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	20.0	63.9	91.1	291		100	WG2235749
Toluene	108-88-3	92.10	200	753	19300	72700		400	WG2238194
Ethylbenzene	100-41-4	106	20.0	86.7	4170	18100		100	WG2235749
m&p-Xylene	179601-23-1	106	40.0	173	9280	40200		100	WG2235749
o-Xylene	95-47-6	106	20.0	86.7	2520	10900		100	WG2235749
Methyl tert-butyl ether	1634-04-4	88.10	20.0	72.1	ND	ND		100	WG2235749
TPH (GC/MS) Low Fraction	8006-61-9	101	80000	330000	459000	1900000		400	WG2238194
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		125				WG2235749
(S) 1.4-Bromofluorobenzene	460-00-4	175	60 0-140		97.8				WG2238194

Volatile Organic Compounds (MS) by Method M18-Mod

QUALITY CONTROL SUMMARY

Page 138 of 324

L1709751-01

Method Blank (MB)

(MB) R4039283-3 02/28/2	24 09:58			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ppbv		ppbv	ppbv
Benzene	U		0.0715	0.200
Ethylbenzene	U		0.0835	0.200
m&p-Xylene	U		0.135	0.400
o-Xylene	U		0.0828	0.200
Methyl tert-butyl ether	U		0.0647	0.200
(S) 1,4-Bromofluorobenzene	93.9			60.0-140

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4039283-1 02/2	8/24 09:00 • (LC	SD) R403928	3-2 02/28/24	09:29							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Benzene	3.75	3.85	3.85	103	103	70.0-130			0.000	25	
Ethylbenzene	3.75	3.73	3.76	99.5	100	70.0-130			0.801	25	
m&p-Xylene	7.50	7.58	7.65	101	102	70.0-130			0.919	25	
o-Xylene	3.75	3.84	3.80	102	101	70.0-130			1.05	25	
Methyl tert-butyl ether	3.75	3.84	3.75	102	100	70.0-130			2.37	25	
(S) 1,4-Bromofluorobenzer	пе			101	102	60.0-140					

QUALITY CONTROL SUMMARY

Page 139 of 324

L1709751-01

Volatile Organic Compounds (MS) by Method M18-Mod

Method Blank (MB)

(MB) R4040789-3 03/02/2	24 08:07			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ppbv		ppbv	ppbv
Toluene	U		0.0870	0.500
TPH (GC/MS) Low Fraction	U		39.7	200
(S) 1,4-Bromofluorobenzene	90.8			60.0-140

Ср

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(200) 11 10 10 10 10 1 00 102	2107.00 (200	<i>DD</i>) 101010100	2 00/02/210	7.00						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Toluene	3.75	4.04	4.01	108	107	70.0-130			0.745	25
TPH (GC/MS) Low Fraction	188	182	180	96.8	95.7	70.0-130			1.10	25
(S) 1,4-Bromofluorobenzene				97.3	95.6	60.0-140				

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	a Delimitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

8 of 10

D A	Athen Nieutenan	100CF alaman	- Dal Marria		TNI 07100
Pace Analy	/ticai ivationai	12065 Lebanor	1 Ka Mount	. Juliet,	11N 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 1 6	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Company Name/Address:			Billing Information:			T		Analysis / Container / Preservative								Chain of Custody	y Page 1 of 1	
Plains All American Pipeline - ETECH PO Box 62228 Midland, TX 79711			Accounts Payable 333 Clay St			Pres Chk										/B)	
			Suite 1600 Houston, TX 77002													PEOPLE	PEOPLE ADVANCING SCIENCE	
Report to: Kimble Thrash	Email To: camille.bryant@plains.com;karolanne.huc												MT JULIET, TN 12065 Lebanon Rd Mount Juliet, TN 37122 Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at: https://info.pacelabs.com/hubts/pas-standard-					
Project Description: DCP Plant to Lea Station 6" #2	City/State			Lea County, NM Please Cir														
Phone: (432) 894-9996		Client Project # SRS #2009-039 Site/Facility ID # SRS #2009-039		Lab Project # PLAINSETECH-NM GW P.O. #			Tedlar							SDG# 10935 F058 Acctnum: PLAINSETECH				
Collected by (print): Kimble Thrash	The second second second second second																	
Collected by (signature):	Same D	Lab MUST Be	Day	Quote #	Quote # Date Results Needed		BTEX							1 1	Template:T246078 Prelogin: P1052420			
Immediately Packed on Ice N X Y	Next Da Two Da Three D		ay (Rad Only) Day (Rad Only)	Date Results			257	46							PM: 3587 - Lori A Vahrenkamp PB:			
Sample ID	Comp/Grab	Matrix *	* Depth Date T		Time	Cntrs	M18-MOD						(2)			Shipped Via: F	Sample # (lab only)	
EFF-1 (022724)	Grab	Air	N/A	02-27-2024	0930	1	х										-01	
*****END 0	F CO	C***	***															
GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water	Remarks: This sample should not be invoiced to L1706443 failure						client	; see		pH Temp Flow Other				COC Seal COC Signe Bottles a Correct b		mple Receipt Checklist Present/Intact: NP Y N d/Accurate: N rrive intact: NP Y N ottles used: N t volume sent: N		
OT - Other ReInquished by : (Signature)	UPSFedEx		Time	Trackin	ed by: (Signa	ture	10	ha	rd	grip Blan	k Recei	- 19	No HCL / MeoH	Prese	ero Hea	If Applicab dspace: Correct/Che 0.5 mR/hr:	leN	
Relinquished by: (Signature)	inquished by: (Signature) Date! Time: 165				ed by: (Signa	ture)			7	rempt 1	A91 °		les Received	d: If preservation required by Login: Date/Time				
Relinquished by : (Signature) Date:			Time		(Signati	(Signature)				Date: Time: 2/28/24 0900			Hold:	Hold: Condition: NCF / OK				

Pace Analytical® ANALYTICAL REPORT

April 02, 2024

Plains All American Pipeline - ETECH

L1718952 Sample Delivery Group:

Samples Received: 03/27/2024

Project Number: SRS #2009-039

Description: DCP Plant to Lea Station 6" #2

Site: SRS #2009-039

Report To: Kimble Thrash

PO Box 62228

Midland, TX 79711

Entire Report Reviewed By: Lori A Vahrenkamp

Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
EFF-1 (032524) L1718952-01	5
Qc: Quality Control Summary	6
Volatile Organic Compounds (MS) by Method M18-Mod	6
GI: Glossary of Terms	8
Al: Accreditations & Locations	9
Sc: Sample Chain of Custody	10

SAMPLE SUMMARY

EFF-1 (032524) L1718952-01 Air			Collected by Robert Peters	Collected date/time 03/25/24 11:05	03/27/24 09:3	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method M18-Mod Volatile Organic Compounds (MS) by Method M18-Mod	WG2255845 WG2256561	1 20	03/28/24 17:01 03/29/24 16:27	03/28/24 17:01 03/29/24 16:27	DAH SDS	Mt. Juliet, TN Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

L1718952-01 WG2255845: Surrogate failure due to sample matrix.

Sample Narrative:

Volatile Organic Compounds (MS) by Method M18-Mod

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	<u>Batch</u>
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG2255845
Toluene	108-88-3	92.10	10.0	37.7	1150	4330		20	WG2256561
Ethylbenzene	100-41-4	106	4.00	17.3	394	1710		20	WG2256561
m&p-Xylene	179601-23-1	106	8.00	34.7	1000	4340		20	WG2256561
o-Xylene	95-47-6	106	4.00	17.3	317	1370		20	WG2256561
Methyl tert-butyl ether	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG2255845
TPH (GC/MS) Low Fraction	8006-61-9	101	4000	16500	21700	89600		20	WG2256561
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		280		<u>J1</u>		WG2255845
(S) 1.4-Rromofluorohenzene	460-00-4	175	60 0-140		106				WG2256561

QUALITY CONTROL SUMMARY

Page 148 of 324

L1718952-01

Volatile Organic Compounds (MS) by Method M18-Mod

Method Blank (MB)

(MB) R4051206-3 03/28/2	24 10:16			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ppbv		ppbv	ppbv
Benzene	U		0.0715	0.200
Methyl tert-butyl ether	U		0.0647	0.200
(S) 1,4-Bromofluorobenzene	97.4			60.0-140

3 C C

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4051206-1 03/2	8/24 08:58 • (LCS	SD) R4051206	5-2 03/28/24 0	9:38							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Benzene	3.75	4.43	4.47	118	119	70.0-130			0.899	25	
Methyl tert-butyl ether	3.75	4.59	4.66	122	124	70.0-130			1.51	25	
(S) 1,4-Bromofluorobenzei	ne			101	103	60.0-140					

QUALITY CONTROL SUMMARY

Page 149 of 324

L1718952-01

Volatile Organic Compounds (MS) by Method M18-Mod

Method Blank (MB)

(MB) R4051796-3 03/29/2	4 09:45			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ppbv		ppbv	ppbv
Toluene	U		0.0870	0.500
Ethylbenzene	U		0.0835	0.200
m&p-Xylene	U		0.135	0.400
o-Xylene	U		0.0828	0.200
TPH (GC/MS) Low Fraction	43.9	<u>J</u>	39.7	200
(S) 1,4-Bromofluorobenzene	99.0			60.0-140

⁵Sr

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

\ /	,	,									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Toluene	3.75	3.73	3.75	99.5	100	70.0-130			0.535	25	
Ethylbenzene	3.75	3.90	4.08	104	109	70.0-130			4.51	25	
m&p-Xylene	7.50	7.88	8.31	105	111	70.0-130			5.31	25	
o-Xylene	3.75	4.07	4.17	109	111	70.0-130			2.43	25	
TPH (GC/MS) Low Fraction	188	178	175	94.7	93.1	70.0-130			1.70	25	
(S) 1,4-Bromofluorobenzene				97.4	93.3	60.0-140					

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MOL	
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.

D A I	at a a L K Laat a la a L	10005 -	Dal Marinet	1. 1: - + TNL 07400
Pace Analy	ticai Nationai	12065 Lebanon	Ra Mount .	Juliet, TN 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ^{1 6}	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA - ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Address of the control of the contro	Company Name/Address:	rmation:					An	alvsis / (Container	/ Prese	rvative			Chain of Custody	Page of			
Individe Threath Individe Threath	Plains All American Pip PO Box 62228 Midland, TX 79711	oeline - ETI	ECH	333 Clay Suite 16	St 00												PEOPLE	ICE ADVANCING SCIENCE
Triples Criples Chrystate	Report to: Kimble Thrash	4	3	camille.bryant@plains.com;karolanne.hudg													12065 Lebanon Rd. Mos Submitting a sample via	int Juliet, TN 37122 this chain of custody
Dollected by (princip) SRS #2009-039 PLAINSETECH-NM GW CO32 Rochard princip SRS #2009-039 Rush? (Lick MUST Be Notified) Sample ID Compy/Grab Matrix* Dolle Results Needed Sample ID Compy/Grab Matrix* Dolle Results Needed Sample ID Compy/Grab Matrix* Dolle Time Dolle Time Tracking B Sample Section. Check List Social TS 490-0 CO32 Accharded The PIDS24220 PM: 3887 - Lori A Vahrenkamp PB: Sinjoed Vist FedEX Ground Results (Reded of No. O) Air Dia GRAP AV F- Filler Remarks: Dolle Time Social TS 490-0 CO32 Accharded The PIDS24220 PM: 3887 - Lori A Vahrenkamp PB: Sinjoed Vist FedEX Ground Results (Reded of No. O) The Compy Graph Remarks: Dolle Time Social TS 490-0 CO32 Accharded The Piller Remarks: Dolle Time Sample Received Vist (Signature) Tracking B Correct Doll Les used: UND FedEX Courter Tracking B Time: Sample Received: Vist (Signature) Time: Received for lab by (Signature) Dolle: Time: Received for lab by (Signature) Dolle: Time: Received for lab by (Signature) Time: Received for lab by (Signature) Time: Received for lab by (Signature) Dolle: Time: Received for lab by (Signature) Time: Received for lab by (Signature) Dolle: Time: Received for lab by (Signature)	Project Description: DCP Plant to Lea Station 6" #2		Collected:	LEA COUNTY, NM PT MT C													https://info.pacelabs.co	
Diffected by (signature): Poly Publish	4328949996						1	_		- A							0111	8952
Matrix Sample ID Comg/Grab Matrix* Depth Date Time Cntrs Social AllR- Air F-Filter W- Groundwater W- Groundwate	Collected by (print): POSELT PETERS				P.O. #			Tedla			g							
Matrix: S- Soil All All F-Filter W- Coroundware F-Filt	nmediately	Same Da	ay Five y 5 Day y 10 Da	Day (Rad Only)	ay Date Results Needed		COURS -	- BT									Prelogin: P10! PM: 3587 - Lori	52420
Matrix: S- Soil All All F-Filter W- Coroundwater B - Bioassay W- WasteWater W- Drinking Water W- Drink	and the second s	Comp/Grab	Matrix *	Depth Date Time				118-N										Sample # (lab only
Matrix: S-Soil AIR-Air F-Filter W- Groundwater B- Bloassay W- Orther Samples returned via: UPS Fedex Courier UPS Fedex Courier Tracking # G426 8808 1999 Trip Blank Received: Yes (No) HCI/Nech TaR Received by: (Signature) Date: US32 Time: Received by: (Signature) Date: Time: Received for lab by: (Signature) Date: Time: Hold: Condispon: Cond	EFF-1 (032524)	G	Air	NA	3152	4 1105	1	3 44										-01
Matrix: 5-Soil AIR-Air F-Filter WW-Groundwater B-Bioassay WW-WasteWater WW-Drinking Water UPS FedEx Courier Tracking # G476 8308 C199 Trip Blank Received: Yes No HCC/MeoH TBR Time: Received by: (Signature) Time: Received by: (Signature) Time: Received by: (Signature) Time: Received by: (Signature) Time: Received for lab by: (Signature) Date: Time: Received for lab by: (Signatur	XXX	END) (OF	C	DC	×	X	X									
Matrix: I-Soil AIR-Air F-Filter W - Groundwater B - Bioassay W - WasteWater W - Orinking Water T- Other UPS FedEx Courier Date: Time: Received by: (Signature) Date: Time: Received by: (Signature) PH Temp COC Seal Present Checklist COC Sail Present Checklist COC Sail Present Chacklist COC	enter y a community production of the enter	e e calcul ridue e real recognic	100	With the second														
Matrix: S-Soil AIR-Air F-Filter W-Groundwater B-Bioassay W-WasteWater W-Orinking Water T-Other UPS FedEx Courier Date: UPS FedEx Courier Time: Received by: (Signature) Date: Time: Received for lab by: (Signature) Date: Time: Hold: Cod Saal Present Checklist COC Saal Present Checklist COC Sail Present Check						1 14												
Sesoil AIR-Air F-Filter W-Groundwater B-Bioassay W-Groundwater B-Bioassay W-W-WasteWater W-Other Samples returned via: UPS FedEx Courier U																		
Selinquished by: (Signature) Selinquished by: (Signature) Date: Time: Received for lab by: (Signature) PH Temp COC Seal Present/Intact: MP Y N COC Signature) Ph Temp COC Seal Present/Intact: MP Y N COC Signal Present/Intact: MP Y N N COC Signal Present/Intact: MP Y N N N N N N N N N N N N N N N N N N			1 =															
Tracking # 6476 8308 1199 Voa Zero Headspace: Y No HCL/ MeoH TBR Telinquished by : (Signature) Date: Time: Received by: (Signature) Date: Time: Received by: (Signature) Date: Time: Received by: (Signature) Trip Blank Received: Yes (No HCL/ MeoH TBR) Temp: DPA6 °C Bottles Received: If preservation required by Login: Date/Time Amb HOLL F Amb Received by: (Signature) Date: Time: Received for lab by: (Signature) Date: Time: Received for lab by: (Signature) Date: Time: Hold: Condition:	SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Dripkler Water							+					COC S Bottl Corre	COC Seal Present/Intact: MP Y COC Signed/Accurate: Bottles arrive intact: Correct bottles used:				
Temp: DPA6 °C Bottles Received by Login: Date/Time Condition: Con	OT - Other					26	88	months of	Trip Blank Received: Yes /(No)				VOA Z Prese	VOA Zero Headspace: Y Preservation Correct/Checked: Y				
Received for lab by: (Signature) Date: Time: Received for lab by: (Signature) Date: Time: Hold: Condition:	Refinquished by (Signature)	J Da	19/12	Time	e: Re	ceived by: (Sign	() (-10	ur o	Te Te	emp:DF	746°C	TBI	}	If pres	ervation	n required by Log	n: Date/Time
	Relinquished by : (Signature)	4) Da	Innin	1 1		ceived for lab b	y: (Signa	ture)). I≠		1	Hold:			

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report Rev. 1

Prepared for:

Kimble Thrash
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: DCP #2
Project Number: 17472
Location: Lea County, NM

Lab Order Number: 4D16011

Current Certification

Report Date: 04/30/24

13000 West County Road 100 Odessa TX, 79765 Project: DCP #2
Project Number: 17472

Project Manager: Kimble Thrash

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EFF-1 (041624)	4D16011-01	Air	04/16/24 10:00	04-16-2024 14:22

This revised report corrects the incorrect sample ID.

13000 West County Road 100

Odessa TX, 79765

Project: DCP #2
Project Number: 17472

Project Manager: Kimble Thrash

EFF-1 (041624) 4D16011-01 (Air)

Analyte	Lim Result	it Repor	ting Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Pe	rmian l	Basin Envi	ronmental I	ab, L.P.			
EPA TO-15									
Benzene	ND	0.0100	ppm	1	P4D2510	04/17/24 00:00	04/17/24 00:00	TO-15	SUB-8
Ethylbenzene	0.386	0.0100	ppm	1	P4D2510	04/17/24 00:00	04/17/24 00:00	TO-15	SUB-8
Xylene (p/m)	0.725	0.0100	ppm	1	P4D2510	04/17/24 00:00	04/17/24 00:00	TO-15	SUB-8
Xylene (o)	0.178	0.0100	ppm	1	P4D2510	04/17/24 00:00	04/17/24 00:00	TO-15	SUB-8
Toluene	2.36	0.0100	ppm	1	P4D2510	04/17/24 00:00	04/17/24 00:00	TO-15	SUB-8

13000 West County Road 100

Odessa TX, 79765

Project: DCP #2

Project Number: 17472 Project Manager: Kimble Thrash

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100

Odessa TX, 79765

Project: DCP #2

Project Number: 17472 Project Manager: Kimble Thrash

Notes and Definitions

SUB-8 Subcontract of analyte/analysis to A&B Labs Houston.

NPBEL CC Chain of Custody was not generated at PBELAB

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Drew	Darlor			
Report Approved By:			Date:	4/30/2024	

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

PBELAB

- 1	
	2
	~
	1
- 1	•
	-
- 1	0
	Ξ.
	4
	N
	-
	1
- 1	
- 1	-
	-
	Ċ
- 1	$\Gamma \setminus$
- 4	~
	9
- 1	1
	Ġ
	_
	-
	_
- 1	-
	•
- 1	
	_
- 1	
	2
-	000
-	000
-	
	h, 00
-	h, 00
	JO 114 P
	JO 114 P
	JO 114 P
	Of his OC
	OC All pon
	nod by OC
	nod by OC
	omod hy OC
	omod hy OC
	Out porior
	Out porior
	Out porior
	Ocorrod by OC
	Ocorrod by OC
	Out porior

Project Manager: Company Name: Company Address: City/State/Zip: Telephone No: Sampler Signature:		,	19711	Fax No: e-mail:	Mic	dlan	My.	exa	s 79			e	ch	Rep	ort I	Forn	D#:	SPS LEA	dard		Пт] NPI		
lab use only)															-	_		TCLP:	Inal	yze F	or:		_		8, 72 h	1
ORDER #: 4016011							- P	rese	rvation	18#	of Co	ontain	ers	Matrix	1			TOTAL:	+						24, 48,	-
(iab use only) FEFF-1 (O41 D24)	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	Ice	HNO ₃	HCI	H ₂ SO ₄	NaOH	Na ₂ S ₂ O ₃	Other (Specify)	et et	NP=Non-Potable S	Anlons (Cl. SO4, Alkalinity)	A BTEX 8021B/5030 or BTEX 8260								re-Schedule)	Standard TAT
											1	-	-		1				-	+						-
	-				+	+	+		Н	+	+	+	+	-	+	+	+	HH	+	+	\forall		+	H	H	\exists
					1	t					1	1	İ		1	1			1						Ħ	
					+	-	+		Н	4	+	+	+		+	+	+	H	+	+	H	+	5		H	\dashv
Special Instructions: Relinquished by: Date Date	414	ime V	Received by:									1		Date Date		ime	Sa VO La Cu Cu	aboratory ample Cor DCs Free abels on c ustody sea ustody sea ample Hai	of He ontain als or als or als or	ers Interested in control coole	act? ace? ainer(er(s)		(Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		N N N N N N	
Relinquished by: Relinquished by: Date PBEL_COC_2021_1 Revision #: 2021_1	T	ime	Received by PE	Bled	700	V				_		(Date of the	V	ime { , } 2	Te Re Ac	by Samp by Count emperatur eceived: ajustea:	er?	UP on Re	S [DHL	meto	Lor	13	

Permian Basin Environmental Lab, LP

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Page 6 of 6

Phone: 432-686-7235

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Kimble Thrash
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: SRS 2009-84 Project Number: SRS 2009-84

Location: Lea County, NM

Lab Order Number: 4E21015

Current Certification

Report Date: 06/04/24

E Tech Environmental & Safety Solutions, Inc. [1] 13000 West County Road 100

Odessa TX, 79765

Project: SRS 2009-84
Project Number: SRS 2009-84
Project Manager: Kimble Thrash

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EFF-1 (052124)	4E21015-01	Air	05/21/24 09:15	05-21-2024 14:28

Btex by TO-15 analysis were subcontracted to A&B Houston. Their current certification can be found here: https://www.tceq.texas.gov/assets/public/compliance/compliance_support/qa/labs/a&b_env.pdf

13000 West County Road 100

Odessa TX, 79765

Project: SRS 2009-84
Project Number: SRS 2009-84
Project Manager: Kimble Thrash

EFF-1 (052124) 4E21015-01 (Air)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian I	Basin Envi	ronmental I	Lab, L.P.			
EPA TO-15									
Benzene	ND	2.50	ppm	1	P4F0315	05/25/24 00:00	05/25/24 00:00	TO-15	SUB-8
Ethylbenzene	ND	2.50	ppm	1	P4F0315	05/25/24 00:00	05/25/24 00:00	TO-15	SUB-8
Xylene (p/m)	ND	2.50	ppm	1	P4F0315	05/25/24 00:00	05/25/24 00:00	TO-15	SUB-8
Xylene (o)	ND	2.50	ppm	1	P4F0315	05/25/24 00:00	05/25/24 00:00	TO-15	SUB-8
Toluene	ND	2.50	ppm	1	P4F0315	05/25/24 00:00	05/25/24 00:00	TO-15	SUB-8

13000 West County Road 100

Odessa TX, 79765

Project: SRS 2009-84

Project Number: SRS 2009-84 Project Manager: Kimble Thrash

To the	Reporting	** **	Spike	Source	N/BEG	%REC	DDD	RPD	37.
Analyte Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100

Odessa TX, 79765

Project: SRS 2009-84

Project Number: SRS 2009-84 Project Manager: Kimble Thrash

Notes and Definitions

SUB-8 Subcontract of analyte/analysis to A&B Labs Houston.

NPBEL Ct Chain of Custody was not generated at PBELAB

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Drew	Darwort			
Report Approved By:			Date:	6/4/2024	

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

-
_
O.,
0
Ξ.
4
-
-
10
7
٠.
2.3
10
43
C 3
_
-
0
2.4
5
$\overline{}$
_
~
Diam.
٠.
$\overline{}$
7 3
\sim
_
_
-
-
~
~
~
9
-5
-5
- 100
9
6.2
_
9
-
-

3	
40	PRETAR
91 8	Telbiblibiaco.
00	

P	PBELA Project Manager:	CHAIN OF Kimble Thrash	CUST	TODY	RECORD AN	ID ANAL	Pe 14	rmia 00 F	an E Ran		En HW	Υ		ental	L: _	LP		roie		H:	: SF			one:		686-7	235		_		Page 6 of 21
	Company Name:	Etech Environmental	& Sa	fety S	Solutions, Inc	C.																		09-0							Pa
	Company Address:	P.O. Box 6228		,												_								nty,							
	City/State/Zip:	Midland, TX 79711																		0 #				,							
	Telephone No: Sampler Signature:	(432) 563-2200				Fax No e-mail							sha	ne@)etec	hen			For	mat	: [TR			NF		k
(lab use	e only)		1															Γ					An	alyz	e Fo	r:				72 h	П
ORDE	R#: 4E21016	(Г	Pres	erva	tion &	# of (Conta	iners	_	Matri	×				CLP:		П	Ŧ	T	П	Ŧ	F	48,	П
LAB# (lab use only)	FIEL	D CODE (052124)	, Beginning Depth	. Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	lce	HNO ₃	Ð	H ₂ SO ₄	NaOH	Na ₂ S ₂ O ₃	X	fy)	ter SL=SI	N N	X BIEX 8260 B											RUSH TAT (Pre-Schedule) 24,	X Standard TAT
	I Instructions: Please invo	sice directly to Plains A/P 33	Ti	St., Ho	Received by:	2 and refere	eence	the	SR	S nu	mbe	er in	the F	Proje		Date		Ti	me	Sa VC Lal Cu	mple Cs F bels stod	ree on co	of H conta als o	mmer ners Ir leads ainer(s	ntact? pace' s) ntaine	? er(s)		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ı	2222	
	ished by:	Date Date		ime ime	Received by:	Bllo	sou	V								Dat		Ti	me 28	Tei	by S	Samp Couri rature ed:	pler/C ier? e Up	oon R	Rep. JPS eceip	DH:	ermon	Y Y edEx netor:	Lor	N N ne St	ar

Released to Imaging: 10/14/2025 3:29:08 PM

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Permian Basin Environmental Lab, LP 1400 Rankin HWY Midland Texas 79701 **Phone: 432-686-7235**PBELAB_SUB_COC_V2

	Project Manager:	Brent Barro	on					IVIIC	ııan	a, 1	exas	5 /9/	701				Proje	ect Na	ıme:		5	SUBO	CON	ITRA	СТ				
	Company Name	PBEL																Proje	ct #:										
	Company Address:	1400 Ranki	in HWY														Pro	oject	Loc:										
	City/State/Zip:	Midland Te	xas 79701															Р	O #:										
	Telephone No:	432-661-41	84				Fax No:	•									Repor	Forn	nat:	X	Stan	dard			RRP)	□ N	IPDES	3
	Sampler Signature:	N/A					e-mail:		brei	ntba	rron (@pbe	lab.	com															
																		-				An	alyze	For:			$\overline{\top}$	_	
ORDER #	#:									Р	reser	vation	&#</td><td>of Co</td><td>ntaine</td><td>rs</td><td>Matrix</td><td>(</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>LAB # (lab use only)</td><td>4</td><td>E21015</td><td></td><td>Beginning Depth</td><td>Ending Depth</td><td>Date Sampled</td><td>.15 Time Sampled</td><td>Field Filtered</td><td>Total #. of Containers</td><td>ICE</td><td>HNO_{3.250 poly 1}</td><td>HCI 3 40mL VOA</td><td>A IMOR Dis A sidans A HOEN</td><td>NaOH/Zn</td><td>NONE SOOML POLY 250 MIL POLY 500 ML WWA AMBER GLASS</td><td>X</td><td>2 2</td><td>NP=Non-Potable Specify Other TO-15</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>24 HOUR RUSH</td><td>X STANDARD</td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Lab</td><td>orato</td><td>ry Co</td><td>mme</td><td>nts:</td><td></td><td></td><td></td><td></td><td>_</td><td>Н</td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td>iners Heads</td><td></td><td></td><td></td><td></td><td>Y Y</td><td>N N</td><td></td></tr><tr><td>Brent Ba</td><td>shed by: arron shed by:</td><td></td><td>5/21/2024 Date</td><td>5:00</td><td>) PM me</td><td>Received by:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Dat</td><td></td><td>Time Time</td><td>Lab Cus Cus</td><td>els or tody tody</td><td>n cont seals seals</td><td>cainer on co on co Delive</td><td>(s) ntain oler(s</td><td>er(s)</td><td></td><td></td><td>Y Y Y Y</td><td>N N N</td><td></td></tr><tr><td></td><td>•</td><td></td><td>Date</td><td>111</td><td>ile</td><td>·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>by Sa by Co</td><td>imple ourier</td><td>r/Clier ?</td><td>nt Rep UPS</td><td>6 [</td><td>HL</td><td></td><td>Υ</td><td>N one Sta</td><td>ar o</td></tr><tr><td>Relinqui</td><td>shed by:</td><td></td><td>Date</td><td>Tir</td><td>me</td><td>Received by:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Dat</td><td>te</td><td>Time</td><td>Rec</td><td>npera eived usted</td><td>:</td><td>Upon</td><td>Kecei</td><td>ipt: °C °C Fa</td><td>ctor</td><td></td><td></td><td></td><td></td></tr></tbody></table>																

Total Number of Pages:

Laboratory Analysis Report

Job ID: 24052487

10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

Client Project Name : Subcontract

Report To: Client Name: Permian Basin Environmental Lab, LP

Attn: Brent Barron

Client Address: 1400 Rankin Hwy
City, State, Zip: Midland, Texas, 79701

Sample Collected By:

Date Collected: 05/21/24

P.O.#.:

A&B Labs has analyzed the following samples...

 Client Sample ID
 Matrix
 A&B Sample ID

 4E21015
 Air
 24052487.01

Released By: Senthilkumar Sevukan

Title: Vice President Operations

Date: 05/30/2024

Analyst: Amit Bembde

This Laboratory is NELAP (T104704213-23-31) accredited. Effective: 04/01/2024; Expires: 03/31/2025

Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

ab-q210-0321

Date Received: 05/22/2024 10:15

Job ID: 24052487

Date: 5/30/2024

Attn: Brent Barron

Client Name: Permian Basin Environmental Lab, LP

Project Name: Subcontract

Client Sample ID: Lab Sample ID: 4E21015 24052487.01

Date Collected: Sample Matrix: 05/21/24 Air 09:15

Time Collected: Other Information:

Test Method	Parameter/Test Description	M.W.	Results(nl)	RptLimit(nl)	InjVol(cc)	ug/M3	ppm	Q	Date/Time
EPA TO-15	Volatile Organic Compounds in Air	by GCMS							
	1,1,1-Trichloroethane	133.4	BRL	0.5	0.2	< 13640.1	< 2.5000		05/25/24
	1,1,2,2-Tetrachloroethane	167.85	BRL	0.5	0.2		< 2.5000		05/25/24
	1,1,2-Trichloro-1,2,2-trifluoroethane	187.38	BRL	0.5	0.2	> 19159.5	< 2.5000		05/25/24
	1,1,2-Trichloroethane	133.41	BRL	0.5	0.2		< 2.5000		05/25/24
	1,1-Dichloroethane	98.96	BRL	0.5	0.2	< 10118.6	< 2.5000		05/25/24
	1,1-Dichloroethylene	96.94	BRL	0.5	0.2		< 2.5000		05/25/24
	1,2,4-Trichlorobenzene	181.45	BRL	0.5	0.2	< 18553.2	< 2.5000		05/25/24
	1,2,4-Trimethylbenzene	120.19	BRL	0.5	0.2	< 12289.4	< 2.5000		05/25/24
	1,2-Dibromoethane	187.87	BRL	0.5	0.2		< 2.5000		05/25/24
	1,2-Dichlorobenzene	147.00	BRL	0.5	0.2	< 15030.7	< 2.5000		05/25/24
	1,2-Dichloroethane	98.96	BRL	0.2	0.2	< 4047.4	< 1.0000		05/25/24
	1,2-Dichloropropane	112.99	BRL	0.5	0.2		< 2.5000		05/25/24
	1,2-Dichlorotetrafluoroethane	170	BRL	0.5	0.2		< 2.5000		05/25/24
	1,3,5-Trimethylbenzene	120.19	BRL	0.5	0.2	< 12289.4	< 2.5000		05/25/24
	1,3-Butadiene	54.09	BRL	0.22	0.2		< 1.1000		05/25/24
	1,3-Dichlorobenzene	147.00	BRL	0.5	0.2		< 2.5000		05/25/24
	1,4-Dichlorobenzene	147.00	BRL	0.5	0.2	< 15030.7	< 2.5000		05/25/24
	2-Butanone	72.11	BRL	0.5	0.2		< 2.5000		05/25/24
	4-Ethyltoluene	120	BRL	0.5	0.2	< 12269.9	< 2.5000		05/25/24
	Acetone ²	58.08	BRL	0.5	0.2		< 2.5000		05/25/24
	Benzene	78.11	BRL	0.2	0.2		< 1.0000		05/25/24
	Benzyl chloride	126.59	BRL	0.5	0.2	> 12943.8	< 2.5000		05/25/24
	Bromodichloromethane ¹	163.83	0.51	0.5	0.2		2.5500		05/25/24
	Bromoform	252.75	BRL	0.5	0.2	< 25843.6	< 2.5000		05/25/24
	Bromomethane	94.94	BRL	0.5	0.2	< 9707.6	< 2.5000		05/25/24
	Carbon disulfide ²	76.14	BRL	0.5	0.2	< 7785.3	< 2.5000		05/25/24

ab-q212-0321

Job ID: 24052487

Date: 5/30/2024

Attn: Brent Barron

24052487.01

Client Name : Permian Basin Environmental Lab, LP

Project Name: Subcontract

Client Sample ID: 4E21015 Lab Sample ID:

Date Collected: 05/21/24 Sample Matrix: Air

Time Collected: 09:15

Other Information:

Test Method	Parameter/Test Description	M.W.	Results(nl)	RptLimit(nl)	InjVol(cc)	ug/M3	ppm	Q	Date/Time
PA TO-15	Volatile Organic Compounds in Air b	y GCMS							
	Carbon tetrachloride	153.82	BRL	0.5	0.2	< 15728.0	< 2.5000		05/25/24
	Chlorobenzene	112.56	BRL	0.5	0.2	< 11509.2	< 2.5000		05/25/24
	Chloroethane	65.42	BRL	0.5	0.2	< 6689.2	< 2.5000		05/25/24
	Chloroform	119.38	BRL	0.5	0.2	< 12206.5	< 2.5000		05/25/24
	Chloromethane	50.49	BRL	0.5	0.2		< 2.5000		05/25/24
	cis-1,2-Dichloroethylene	96.94	BRL	0.5	0.2	< 9912.1	< 2.5000		05/25/24
	cis-1,3-Dichloropropene	110.97	BRL	0.5	0.2	< 11346.6	< 2.5000		05/25/24
	Cyclohexane	84.16	7.48	0.5	0.2	128735. 5	37.4000		05/25/24
	Dibromochloromethane ²	208.29	BRL	0.5	0.2	< 21297.5	< 2.5000		05/25/24
	Dichlorodifluoromethane	120	BRL	0.5	0.2	< 12269.9	< 2.5000		05/25/24
	Ethanol ²	46.07	BRL	0.5	0.2		< 2.5000		05/25/24
	Ethyl acetate ²	88.11	BRL	0.5	0.2	< 9009.2	< 2.5000		05/25/24
	Ethylbenzene	106.17	BRL	0.5	0.2	< 10855.8	< 2.5000		05/25/24
	Hexachlorobutadiene	258	BRL	0.5	0.2	< 26380.4	< 2.5000		05/25/24
	Isopropyl Alcohol ²	60.1	BRL	0.5	0.2	< 6145.2	< 2.5000		05/25/24
	m- & p-Xylenes	106.17	BRL	1	0.2	< 21711.7	< 5.0000		05/25/24
	Methyl Butyl Ketone ²	100	BRL	0.5	0.2	< 10224.9	< 2.5000		05/25/24
	Methylene chloride	84.93	BRL	0.5	0.2	< 8684.0	< 2.5000		05/25/24
	MIBK	100.16	BRL	0.5	0.2	< 10241.3	< 2.5000		05/25/24
	MTBE	88.15	BRL	0.5	0.2		< 2.5000		05/25/24
	n-Heptane	100.21	7.78	0.5	0.2	159434. 3	38.9000		05/25/24
	n-Hexane	86.18	5.41	0.5	0.2		27.0500		05/25/24
	o-Xylene	106.17	BRL	0.5	0.2	< 10855.8	< 2.5000		05/25/24
	Propylene	42.08	BRL	0.5	0.2	< 4302.7	< 2.5000		05/25/24
	Styrene	104	BRL	0.5	0.2	< 10633.9	< 2.5000		05/25/24
	Tetrachloroethylene	165.83	BRL	0.5	0.2	< 16956.0	< 2.5000		05/25/24
	Tetrahydrofuran ²	72.11	BRL	0.5	0.2		< 2.5000		05/25/24
	Toluene	92.14	BRL	0.5	0.2	< 9421.3	< 2.5000		05/25/24

Page 10 of 21

Q.b

Job ID: 24052487

Date: 5/30/2024

Attn: Brent Barron

Client Name : Permian Basin Environmental Lab, LP

Project Name: Subcontract

Client Sample ID: 4E21015 Lab Sample ID: 24052487.01

Date Collected: 05/21/24 Sample Matrix: Air Time Collected: 09:15

Other Information:

Test Method	Parameter/Test Description	M.W.	Results(nl)	RptLimit(nl)	InjVol(cc)	ug/M3	ppm	Q	Date/Time
EPA TO-15	Volatile Organic Compounds in Air b	y GCMS							
	trans-1,2-Dichloroethylene	96.94	BRL	0.5	0.2	< 9912.1	< 2.5000		05/25/24
	trans-1,3-Dichloropropene	110.97	BRL	0.5	0.2	< 11346.6	< 2.5000		05/25/24
	Trichloroethylene	131.39	BRL	0.5	0.2	< 13434.6	< 2.5000		05/25/24
	Trichlorofluoromethane	137.37	BRL	0.5	0.2	< 14046.0	< 2.5000		05/25/24
	Vinyl Acetate	86.09	BRL	0.5	0.2	< 8802.7	< 2.5000		05/25/24
	Vinyl Chloride	62.5	BRL	0.21	0.2	< 2684.0	< 1.0500		05/25/24

Total [VOC] calculated 21.18 400600. 757 105.900

EPA TO-- 15 Sample Analysis -- GC/MS

Lab ID	24052487.01
Date Acquired	25 May 2024 2:38 pm
Analyst	AVB
Sample Run ID	X052508.D
Tedlar bag (cc)	6000
Injection Volume (cc)	0.2

Compound Name	CAS#	R.T.	M.W	Nanoliters	Vol.(L)	ug/l	ppm
Hexane, 2-methyl-	591-76-4	10.49	100	3.3	0.0002	67.485	16.500
Hexane, 3-methyl-	589-34-4	10.84	100	4.8	0.0002	98.160	24.000
cyclohexane, methyl-	108-87-2	12.7	98	16.8	0.0002	336.687	84.000
Heptane, 2-methyl-	592-27-8	14.369	114	3.5	0.0002	81.595	17.500
Cyclohexane, 1,3-dimethyl-, cis	638-04-0	14.885	112	4.61	0.0002	105.587	23.050

TIC* REPORT

A&B Job Sample ID:	Method	Blank
--------------------	--------	-------

Analysis Date: 5/25/2024

est Method	Parameter/Test Description	CAS#	RT	MW	Reading(nI)**	ppm (v/v)	g/m ³	Analys
D-15	None							AVB
			1	I	1			1

^{*} TIC: Tentatively identified compounds.

Phone: 713-453-6060 www.ablabs.com

^{**}The values are estimated relative to the nearest internal standards and only major peaks are reported.

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

Samples in This QC Batch: 24052487.01

QC Type: Method Blank						
Parameter	CAS #	Result	Units	D.F.	RptLimit	Qua
trans-1,2-Dichloroethylene	156-60-5	BRL	nL	1	0.5	
Dichlorodifluoromethane	75-71-8	BRL	nL	1	0.5	
Chloromethane	74-87-3	BRL	nL	1	0.5	
1,2-Dichlorotetrafluoroetha	76-14-2	BRL	nL	1	0.5	
Vinyl Chloride	75-01-4	BRL	nL	1	0.21	
Bromomethane	74-83-9	BRL	nL	1	0.5	
Chloroethane	75-00-3	BRL	nL	1	0.5	
Trichlorofluoromethane	75-69-4	BRL	nL	1	0.5	
1,1-Dichloroethylene	75-35-4	BRL	nL	1	0.5	
Methylene chloride	75-09-2	BRL	nL	1	0.5	
1,1,2-Trichloro-1,2,2-trifluo	76-13-1	BRL	nL	1	0.5	
1,1-Dichloroethane	75-34-3	BRL	nL	1	0.5	
cis-1,2-Dichloroethylene	156-59-2	BRL	nL	1	0.5	
Chloroform	67-66-3	BRL	nL	1	0.5	
1,2-Dichloroethane	107-06-2	BRL	nL	1	0.2	
1,1,1-Trichloroethane	71-55-6	BRL	nL	1	0.5	
Benzene	71-43-2	BRL	nL	1	0.2	
Carbon tetrachloride	56-23-5	BRL	nL	1	0.5	
1,2-Dichloropropane	78-87-5	BRL	nL	1	0.5	
Trichloroethylene	79-01-6	BRL	nL	1	0.5	
cis-1,3-Dichloropropene	10061-01-5	BRL	nL	1	0.5	
trans-1,3-Dichloropropene	10061-02-6	BRL	nL	1	0.5	
1,1,2-Trichloroethane	79-00-5	BRL	nL	1	0.5	
Toluene	108-88-3	BRL	nL	1	0.5	
1,2-Dibromoethane	106-93-4	BRL	nL	1	0.5	
Tetrachloroethylene	127-18-4	BRL		1	0.5	
Chlorobenzene	108-90-7	BRL	nL	1	0.5	
			nL			
Ethylbenzene	100-41-4	BRL	nL !	1	0.5	
m- & p-Xylenes	179601-23-1	BRL	nL	1	1	
Styrene	100-42-5	BRL	nL	1	0.5	
o-Xylene	95-47-6	BRL	nL	1	0.5	
1,1,2,2-Tetrachloroethane	79-34-5	BRL	nL	1	0.5	
1,3,5-Trimethylbenzene	108-67-8	BRL	nL	1	0.5	
1,2,4-Trimethylbenzene	95-63-6	BRL	nL	1	0.5	
1,3-Dichlorobenzene	541-73-1	BRL	nL	1	0.5	
1,4-Dichlorobenzene	106-46-7	BRL	nL	1	0.5	
1,2-Dichlorobenzene	95-50-1	BRL	nL	1	0.5	
1,2,4-Trichlorobenzene	120-82-1	BRL	nL	1	0.5	
Hexachlorobutadiene	87-68-3	BRL	nL	1	0.5	
1,3-Butadiene	106-99-0	BRL	nL	1	0.22	
2-Butanone	78-93-3	BRL	nL	1	0.5	
1-Ethyltoluene	622-96-8	BRL	nL	1	0.5	

Refer to the Definition page for terms.

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

 $\textbf{Samples in This QC Batch} \ : \quad 24052487.01$

QC Type: Method Blank						
Parameter	CAS #	Result	Units	D.F.	RptLimit	Qual
Acetone	67-64-1	BRL	nL	1	0.5	
Benzyl chloride	100-44-7	BRL	nL	1	0.5	
Bromodichloromethane	75-27-4	BRL	nL	1	0.5	
Bromoform	75-25-2	BRL	nL	1	0.5	
Carbon disulfide	75-15-0	BRL	nL	1	0.5	
Cyclohexane	110-82-7	BRL	nL	1	0.5	
Dibromochloromethane	124-48-1	BRL	nL	1	0.5	
Ethanol	64-17-5	BRL	nL	1	0.5	
Ethyl acetate	141-78-6	BRL	nL	1	0.5	
n-Heptane	142-82-5	BRL	nL	1	0.5	
n-Hexane	110-54-3	BRL	nL	1	0.5	
Isopropyl Alcohol	67-63-0	BRL	nL	1	0.5	
Methyl Butyl Ketone	591-78-6	BRL	nL	1	0.5	
MIBK	108-10-1	BRL	nL	1	0.5	
MTBE	1634-04-4	BRL	nL	1	0.5	
Propylene	115-07-1	BRL	nL	1	0.5	
Tetrahydrofuran	109-99-9	BRL	nL	1	0.5	
Vinyl Acetate	108-05-4	BRL	nL	1	0.5	

QC Type: LCS and LCS	D									
	LCS	LCS	LCS	LCSD	LCSD	LCSD	222	RPD	%Recovery	0 1
Parameter	Spk Added	Result	% Rec	Spk Added	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
trans-1,2-Dichloroethylene	5	5.04	101	5	4.97	99.4	1.4	30	70-130	
Dichlorodifluoromethane	5	5.46	109	5	5.38	108	1.5	30	59-134	
Chloromethane	5	5.36	107	5	5.30	106	1.1	30	55-132	
1,2-Dichlorotetrafluoroetha	5	5.43	109	5	5.36	107	1.3	30	63-142	
Vinyl Chloride	5	5.00	100	5	4.95	99	1	30	61-139	
Bromomethane	5	6.64	133	5	6.48	130	2.4	30	63-134	
Chloroethane	5	5.38	108	5	5.30	106	1.5	30	63-127	
Trichlorofluoromethane	5	5.45	109	5	5.37	107	1.5	30	62-130	
1,1-Dichloroethylene	5	5.30	106	5	5.23	105	1.3	30	61-133	
Methylene chloride	5	5.48	110	5	5.40	108	1.5	30	62-117	
1,1,2-Trichloro-1,2,2-trifluo	5	5.32	106	5	5.22	104	1.9	30	60-131	
1,1-Dichloroethane	5	5.33	107	5	5.27	105	1.1	30	68-126	
cis-1,2-Dichloroethylene	5	5.28	106	5	5.23	105	1	30	70-131	
Chloroform	5	5.45	109	5	5.38	108	1.3	30	68-134	
1,2-Dichloroethane	5	4.93	98.6	5	4.89	97.8	0.8	30	65-132	
1,1,1-Trichloroethane	5	5.01	100	5	4.92	98.4	1.8	30	68-132	
Benzene	5	5.23	105	5	5.17	103	1.2	30	69-119	
Carbon tetrachloride	5	5.08	102	5	5.01	100	1.4	30	68-132	

ab-q213-0321

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

Samples in This QC Batch: 24052487.01

QC Type: LCS and LCSD										
Parameter	LCS Spk Added	LCS Result	LCS % Rec	LCSD Spk Added	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qua
1,2-Dichloropropane	5	5.24	105	5	5.13	103	2.1	30	69-123	
Trichloroethylene	5	5.36	107	5	5.31	106	0.9	30	71-123	
cis-1,3-Dichloropropene	5	5.14	103	5	5.04	101	2	30	70-128	
trans-1,3-Dichloropropene	5	5.04	101	5	4.98	99.6	1.2	30	75-133	
1,1,2-Trichloroethane	5	5.33	107	5	5.30	106	0.6	30	73-119	
Toluene	5	5.16	103	5	5.12	102	0.8	30	62-127	
1,2-Dibromoethane	5	5.31	106	5	5.24	105	1.3	30	74-122	
Tetrachloroethylene	5	5.07	101	5	5.00	100	1.4	30	66-124	
Chlorobenzene	5	5.75	115	5	5.64	113	1.9	30	70-119	
Ethylbenzene	5	5.78	116	5	5.70	114	1.4	30	70-124	
m- & p-Xylenes	10	11.4	114	10	11.2	112	1.9	30	61-134	
Styrene	5	5.68	114	5	5.58	112	1.8	30	73-127	
o-Xylene	5	5.72	114	5	5.66	113	1.1	30	67-125	
1,1,2,2-Tetrachloroethane	5	6.15	123	5	6.08	122	1.1	30	65-127	
1,3,5-Trimethylbenzene	5	5.92	118	5	5.86	117	1	30	67-130	
1,2,4-Trimethylbenzene	5	5.88	118	5	5.79	116	1.5	30	66-132	
1,3-Dichlorobenzene	5	5.99	120	5	5.92	118	1.2	30	65-130	
1,4-Dichlorobenzene	5	5.86	117	5	5.82	116	0.7	30	60-131	
1,2-Dichlorobenzene	5	5.80	116	5	5.78	116	0.3	30	63-129	
1,2,4-Trichlorobenzene	5	5.73	115	5	5.86	117	2.2	30	41-142	
Hexachlorobutadiene	5	5.89	118	5	6.00	120	1.8	30	56-138	
Propylene	5	5.23	105	5	5.14	103	1.7	30	57-136	
1,3-Butadiene	5	4.92	98.4	5	5.74	115	15.4	30	60-140	
Ethanol	5	4.26	85.2	5	4.51	90.2	5.7	30	59-133	
Acetone	5	5.09	102	5	5.08	102	0.2	30	58-128	
Isopropyl Alcohol	5	5.08	102	5	5.03	101	1	30	52-134	
Carbon disulfide	5	5.56	111	5	5.48	110	1.4	30	57-134	
MTBE	5	4.94	98.8	5	4.84	96.8	2	30	66-129	
2-Butanone	5	5.31	106	5	5.25	105	1.1	30	67-130	
Ethyl acetate	5	5.53	111	5	5.48	110	0.9	30	65-128	
n-Hexane	5	5.33	107	5	5.29	106	0.8	30	63-131	
Tetrahydrofuran	5	5.27	105	5	5.18	104	1.7	30	60-123	
Cyclohexane	5	5.09	102	5	5.06	101	0.6	30	70-117	
n-Heptane	5	5.10	102	5	5.04	101	1.2	30	69-131	
MIBK	5	5.28	106	5	5.20	104	1.5	30	67-130	
Methyl Butyl Ketone	5	5.17	103	5	4.91	98.2	5.2	30	60-140	
Bromoform	5	5.86	117	5	5.77	115	1.5	30	66-139	
4-Ethyltoluene	5	5.93	119	5	5.85	117	1.4	30	67-129	
Benzyl chloride	5	5.67	113	5	5.65	117	0.4	30	50-147	
Bromodichloromethane	5	5.17	103	5	5.11	102	1.2	30	72-128	
Dibromochloromethane	5	5.15	103	5	5.07	102	1.6	30	72-128	

ab-q213-0321

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

Samples in This QC Batch: 24052487.01

QC Type: LCS and LCSD										
Parameter	LCS Spk Added	LCS Result	LCS % Rec	LCSD Spk Added	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
Vinyl Acetate	5	4.97	99.4	5	4.94	98.8	0.6	30	56-139	

ab-q213-0321

LABORATORY TERM AND QUALIFIER DEFINITION REPORT

G,b L-A-B-S

Job ID: 24052487

Date: 5/30/2024

General Term Definition

MQL Unadjusted Minimum Quantitation Limit Back-Wt **Back Weight** Post Weight BRL Post-Wt Below Reporting Limit ppm parts per million cfu colony-forming units Pre-Wt Previous Weight Conc. Concentration Qualifier D.F. **Dilution Factor** RegLimit Regulatory Limit Front Weight

Front-Wt Front Weight RegLimit Regulatory Limit

J Estimation. Below calibration range but above MDL RLU Relative Light Unit

LCS Laboratory Check Standard RPD Relative Percent Difference

LCS Laboratory Check Standard RPD Relative Percent LCSD Laboratory Check Standard Duplicate RptLimit Reporting Limit

LOD Limit of detection adjusted for %M + DF SDL Sample Detection Limit

LOQLimit of Quantitation adjusted for %M + DFsurrSurrogateMSMatrix SpikeTTime

MSD Matrix Spike Duplicate TNTC Too numerous to count

MW Molecular Weight UQL Unadjusted Upper Quantitation Limit

Qualifier Definition

Sample Condition Checklist

	t Name : Permian Basin Enviror	mental Lab. LP											
Tem		Client Name : Permian Basin Environmental Lab, LP											
	Temperature : 24.1°C Sample pH : NA												
Ther													
Pers	ervative :	Lot#:	1										
	Check Points												
1. 0	1. Cooler Seal present and signed.												
2. S	2. Sample(s) in a cooler.												
3. I	3. If yes, ice in cooler.												
4. S	4. Sample(s) received with chain-of-custody.												
5. C	5. C-O-C signed and dated.												
6. S	6. Sample(s) received with signed sample custody seal.												
7. Sample containers arrived intact. (If No comment)													
8. N	8. Water Soil Liquid Sludge Solid Cassette Tube Bulk Badge Food Other												
9. S	9. Samples were received in appropriate container(s)												
10. S	10. Sample(s) were received with Proper preservative												
11. A	11. All samples were tagged or labeled.												
12. S	12. Sample ID labels match C-O-C ID's.												
13. B	13. Bottle count on C-O-C matches bottles found.												
14. S	14. Sample volume is sufficient for analyses requested.												
15. S	15. Samples were received with in the hold time.												
16. V	16. VOA vials completely filled.												
17. S	17. Sample accepted.												
18. H	18. Has client been contacted about sub-out												
Comments : Include actions taken to resolve discrepancies/problem: Other: Air (Clear Tedlar Bag). ~EV 5/22/2024													

Brought by $\;:\;\;$ FedEx

Received by: EValdez Check in by/date: EValdez / 05/22/2024

ab-s005-1123

Phone: 713-453-6060 www.ablabs.com

Page 19 of 21

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Permian Basin Environmental Lab, LP 1400 Rankin HWY

Phone: 432-686-7235 PBELAB_SUB_COC_V2

Page 20 of 21

Midland, Texas 79701 Project Name: SUBCONTRACT Brent Barron Project Manager: Project #: Company Name PBEL----Project Loc: Company Address: 1400 Rankin HWY Midland Texas 79701 PO #: City/State/Zip: TRRP NPDES 432-661-4184 Fax No: Telephone No: Report Format: X Standard Sampler Signature: N/A e-mail: brentbarron@pbelab.com Analyze For: Matrix ORDER#: Preservation & # of Containers laOH /Ascorbic Acid 250ML Po 24 HOUR RUSH otal #. of Containers ICI 3 40mL VOA Time Sampled Date Sampled Ending Depth HNO_{3 250 poly 1} laOH/Zn 3W = Ground VONE 5/21/2024 4E21015 9:15 **AIR** Job ID:24052487 Permian Basin Environme AMS Relinguished by: 5/21/2024 5:00 PM Received by: Date Brent Barron Custody seals on cooler(s). Time Sample Hand Delivered Y
by Sampler/Client Rep.? Y
by Courier? UPS DHL COURT
Time Temperature Upon Receipt.
Received: 24/1/ C
Adjusted: 74/1/ C Factor Relinquished by: Date Time Date 5/22/24 5/24/24 10:12 Received-by: Relinguished by: Time Date

ORIGIN ID:MAFA BRENT BARRON PBE LAB 1400 RANKIN HWY

(432) 686-7235

SHIP DATE: 21MAY24 ACTWGT: 2.00 LB CAD: 107136846/INET4535 DIMS: 13x9x9 IN

MIDLAND, TX 79701 UNITED STATES US

BILL SENDER

SAMPLE RECEIVING

A & B ENVIRONMENTAL SERVICES 10100 EAST FREEWAY SUITE 100

HOUSTON TX 77029

DEPT

22 MAY 5:00P _ STANDARD OVERNIGHT

7764 8980 2769

AB HBYA

77029

TX-US

IAH

PLEASE PLACE IN FRONT OF POUCH ige along the horizontal line. ping pouch and affix it to your shipment. other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized

declared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$1,000, e.g.

jewelry, precious metals, negotiable instruments and other items listed in our Service Guide. Written claims must be filed

nits, see current FedEx Service Guid

within strict time

file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document

will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage onstitutes your agreement to the service conditions in the current FedEx Service Guide, available on

delay, non-delivery your actual loss an FedEx for any loss

fedex.cam. FedEx Use of this system

including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and

After printing this label CONSIGNEE COPY 1. Fold the printed pag 2. Place label in shippi

Page 21 of 21

Page 179

10/6/2025 12:51:49 PM

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Kimble Thrash
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: SRS 2009-039 Project Number: SRS 2009-039

Location: Lea County, NM

Lab Order Number: 4F26022

Current Certification

Report Date: 07/12/24

13000 West County Road 100

Odessa TX, 79765

Project SRS 2009-039
Project Number: SRS 2009-039
Project Manager: Kimble Thrash

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EFF-1 (052124)	4F26022-01	Air	06/26/24 08:30	06-26-2024 14:36

13000 West County Road 100

Odessa TX, 79765

Project: SRS 2009-039
Project Number: SRS 2009-039

Project Manager: Kimble Thrash

EFF-1 (052124) 4F26022-01 (Air)

Analyte	R Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian I	Basin Envi	ronmental I	Lab, L.P.			
EPA TO-15									
Benzene	ND	2.50	ppm	1	P4G1201	06/28/24 00:00	06/28/24 00:00	TO-15	
Ethylbenzene	ND	2.50	ppm	1	P4G1201	06/28/24 00:00	06/28/24 00:00	TO-15	
Xylene (p/m)	ND	5.00	ppm	1	P4G1201	06/28/24 00:00	06/28/24 00:00	TO-15	
Xylene (o)	ND	2.50	ppm	1	P4G1201	06/28/24 00:00	06/28/24 00:00	TO-15	
Toluene	8.85	2.50	ppm	1	P4G1201	06/28/24 00:00	06/28/24 00:00	TO-15	

13000 West County Road 100

Odessa TX, 79765

Project: SRS 2009-039

Project Number: SRS 2009-039 Project Manager: Kimble Thrash

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
maryte	Result	Lillit	Units	Level	Kesuit	70KEC	Lillits	KrD	Lillit	Note

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100

Odessa TX, 79765

Project Number: SRS 2009-039
Project Manager: Kimble Thrash

Notes and Definitions

NPBEL CO Chain of Custody was not generated at PBELAB

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Drew	Darwort		
Report Approved By:			Date:	7/12/2024

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

	١	s		
	i	2	S	C
	2			
	G	2	L	
			7	1
	d	9		Ĺ
	c	i	۲.	1
	1	7	٦	١
		•		è
	7	b	è	
	ì	i		Ĺ
	1	1		è
	J	ľ		•
	¢	7	١	Ì
	ý			ľ
				1
	ì	į		
	2	1		è
	(7	١	ą
	¢	3	١	į
	ì	i	i	ť
	\$		٦	4
	ď	1	•	,

5 of 3.	PBELAB	CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST	CH:	
e 18.		Permian Basin Environmental Lab, LP 1400 Rankin HWY		Ph

	CH:		W:	2
Lab, LP		Phone:	432-686-7235	of 2;
				9

Pro	oject Manager:	Kimble Thrash					140	00 R	ank	in H	Envir WY s 79		nenta	l Lab	o, LP		oject I	Name	e: Si		2009-			-7235			
Cor	mpany Name:	Etech Environment	al & Sa	afety S	Solutions, Ir	IC.															2009-						7
Cor	mpany Address:	P.O. Box 6228														F	Projec										
City	y/State/Zip:	Midland, TX 79711																PO#				11.00					
	ephone No:	(432) 563-2200		>		Fax No											ort Fo	rmat	: [□т] NPI	
lab use only)	Y		7			e-mail	Kim	ble@	yete	chen	iv.con	n; sh	ane@	etec	chen	v.com;	camille.	bryant	t@pla		om; ka			dgens	@plain	s.con	n E
DDED #.	4F2602	2	1																Т	CLP:	IIII					П	8, 72
RUEK #:	11200		+					Н	P	reser	vation	&#c</td><td>f Cont</td><td>ainers</td><td>\rightarrow</td><td>Matrix</td><td>2 1</td><td></td><td>TO</td><td>TAL:</td><td></td><td>П</td><td></td><td></td><td></td><td></td><td>24, 48,</td></tr><tr><th>LAB# (lab use only)</th><th>FIELI</th><th>D CODE</th><th>Beginning Depth</th><th>Ending Depth</th><th>Date Sampled</th><th>Time Sampled</th><th>Field Filtered</th><th>Total #. of Containers</th><th>Ice</th><th>HNO3</th><th>HCI H,SO</th><th>NaOH</th><th>Na₂S₂O₃</th><th>None</th><th>(y)</th><th>DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Soli</th><th>STEX 8260 B</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>RUSH TAT (Pre-Schedule)</th></tr><tr><td>1</td><td>EFF-1</td><td>(062624)</td><td></td><td>-</td><td>6/26/2024</td><td>0830</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>Х</td><td></td><td>Air</td><td>X</td><td>+</td><td></td><td>\Box</td><td>+</td><td>Н</td><td></td><td>\forall</td><td>1</td><td>Н</td><td>œ</td></tr><tr><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>\sqcup</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td>H</td><td>-</td><td>+</td><td>+</td><td>+</td><td>+</td><td>Н</td><td>-</td><td>+</td><td></td><td>+</td><td>+</td><td></td><td></td><td>1</td><td></td><td>1</td><td>Н</td><td></td><td>Ц</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\forall</td><td>+</td><td>+</td><td>+</td><td>+</td><td>+</td><td>Н</td><td>+</td><td>+</td><td></td><td>+</td><td>+</td><td>H</td><td>+</td><td>+</td><td>Н</td><td>+</td><td>+</td><td>+</td><td>Н</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>П</td><td></td><td>1</td><td>1</td><td>1</td><td>1</td><td>Н</td><td></td><td>1</td><td></td><td>H</td><td></td><td>Н</td><td>+</td><td></td><td>H</td><td>+</td><td>+</td><td></td><td>Н</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>П</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\Box</td><td></td><td>Н</td><td></td></tr><tr><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td>H</td><td>4</td><td>1</td><td>+</td><td>1</td><td>1</td><td>Н</td><td>-</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td>Н</td><td>+</td><td>+</td><td>+</td><td>+</td><td>+</td><td>Н</td><td>+</td><td>+</td><td></td><td>H</td><td>+</td><td>H</td><td></td><td>+</td><td>\Box</td><td>-</td><td>\square</td><td>+</td><td>Н</td><td></td></tr><tr><td>ecial Instru</td><td>ctions: Please invoi</td><td>ce directly to Plains A/P 3</td><td>33 Clay</td><td>St., Ho</td><td>uston, TX 7700</td><td>2 and refere</td><td>nce t</td><td>he S</td><td>RS</td><td>um</td><td>ber in</td><td>the</td><td>Proje</td><td>ect N</td><td>ame</td><td>V.</td><td></td><td></td><td></td><td></td><td>omme</td><td></td><td></td><td></td><td>-</td><td>7</td><td></td></tr><tr><td>linquished by</td><td></td><td>Oate Oate Date</td><td>414</td><td>me V</td><td>Received by:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Date</td><td></td><td>Time</td><td>Lat Cus Cus</td><td>Cs F bels o stody stody</td><td>ree of on con seals seals</td><td>Head tainer on co on co</td><td>space (s) ontain ooler(s</td><td>e? ier(s)</td><td></td><td>YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY</td><td></td><td>2 2 2 2 2</td></tr><tr><td>quioricu by</td><td></td><td>/ Date</td><td></td><td>me</td><td>Received by:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Date</td><td></td><td>Time</td><td>Sar</td><td>by S</td><td>ample</td><td>Delive r/Clien</td><td>t Rep</td><td></td><td>ı .</td><td>Y</td><td>11</td><td>N N</td></tr><tr><td>elinquishea by</td><td><i>y.</i></td><td>Date</td><td>Ti</td><td>me (-</td><td>Received by PE</td><td></td><td>C</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Qb</td><td>Date</td><td>24/1</td><td>Time U:3</td><td>Ter Red Adj</td><td>npera ceive usted</td><td>ature I</td><td>Inon F</td><td>Recei</td><td>pt: C Th C Fa</td><td>ermon</td><td>netor:</td><td>14</td><td>Star S</td></tr></tbody></table>															

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Permian Basin Environmental Lab, LP 1400 Rankin HWY Midland, Texas 79701 **Phone: 432-686-7235**PBELAB_SUB_COC_V2

	Project Manager:	Brent Barron								<u>u, .</u>	CAG.			•				Pre	ojec	t Naı	me:		S	UBC	CON	TRA	CT					_ {
	Company Name	PBEL																	Pr	ojec	t #:											
	Company Address:	1400 Rankin HWY																ı	Proje	ect L	oc:											
	City/State/Zip:	Midland Texas 797	01																	PC) #:											I M. O
	Telephone No:	432-661-4184					Fax No:											Rep	ort F	orm	at:	x s	Stanc	dard		Π-	TRRF)		NPC	ES	1.77
	Sampler Signature:	: N/A					e-mail:	•	brer	ntbai	rron	@pb	oelal	b.coi	m																	7.77
								•											_					An	alyze	For:						٦
									-																							
ORDER #	!: 			1		1	:	· ·		P	reser				Cont	ainer	S	Ma	trix													
AB # (lab use only)				Beginning Depth	Ending Depth	Date Sampled	Time Sampled	ield Filtered	otal #. of Containers	ICE	HNO _{3 250 poly 1}	HCI 3 40mL VOA	₁₂ SO ₄ 1 AMBER 500/250POLY	NaOH /Ascorbic Acid 250ML Po	NaOH/Zn	IONE SOOML POLY 250 MIL POLY 500 ML VM AMBER GLASS	NONE	DW=Drinking Water SL=Sludge SW = Groundwater S=Soil/Solid	P=Non-Potable Specify Other	TO-15											24 HOUR RUSH	IANDAKD
		4F26022		8	В	6/26/2024	8:30	证	1	≅	_	_		_	_	۷ >	X	Al		X			\top						Ħ		()	
		1 20022					0.00		-								_			Ĥ			\top	\top					\forall		Ť	Ħ
											1	1											\dagger	1					\forall			1
																							T						\Box			1
																													\Box			1
																													\Box			1
																													П			1
			<u> </u>	-	<u> </u>															1	Labo	orato	ry Co	mmei	nts:							
																								ners I					Υ		N	
BRENT B	ARRON	6/26/2	024	5:00	PM	Received by:									Т		Dat	·e	Ті	me				leads ainer(í I			Y		N N	
5112111 5		0,20,2		5.55																	Cust	ody s	eals o	on cor	ntain				Y		N N	
Relinquis	shed by:	Date	е	Tin	ne	Received by:											Dat	:e	Ti	me	Sam	ple H	and [Delive	red				Y	- 1	N	
																						by Co	urier		UPS		DHL	Fee	Y dEx		N Star	280
Relinquis	shed by:	Date	9	Tin	ne	Received by:											Dat	e	Ti		Rece	eived:		Jpon I		°C						TOO
																					Adju	ısted:				°C Fa	ctor	P	age	7 of	22	_9

Total Number of Pages:

Laboratory Analysis Report

Job ID: 24063189

10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

Client Project Name: Subcontract

Report To: Client Name: Permian Basin Environmental Lab, LP

Attn: Brent Barron

Client Address: 1400 Rankin Hwy
City, State, Zip: Midland, Texas, 79701

Sample Collected By:

Date Collected: 06/26/24

P.O.#.:

A&B Labs has analyzed the following samples...

 Client Sample ID
 Matrix
 A&B Sample ID

 4F26022
 Air
 24063189.01

Released By: Senthilkumar Sevukan

Vice President Operations

Date: 07/10/2024

Analyst: Amit Bembde

Title:

This Laboratory is NELAP (T104704213-23-31) accredited. Effective: 04/01/2024; Expires: 03/31/2025

Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

ab-q210-0321

Date Received: 06/28/2024 10:00

Job ID: 24063189

Date: 7/10/2024

Attn: Brent Barron

24063189.01

Air

Lab Sample ID:

Sample Matrix:

Client Name : Permian Basin Environmental Lab, LP

Project Name: Subcontract

Client Sample ID: 4F26022

Date Collected: 06/26/24 Time Collected: 08:30

Other Information:

est Method	Parameter/Test Description	M.W.	Results(nl)	RptLimit(nl)	InjVol(cc)	ug/M3	ppm	Q Date/Time	
PA TO-15	Volatile Organic Compounds in Air	by GCMS							
	1,1,1-Trichloroethane	133.4	BRL	0.5	0.2	< 13640.1	< 2.5000	06/28/24	
	1,1,2,2-Tetrachloroethane	167.85	BRL	0.5	0.2		< 2.5000	06/28/24	
	1,1,2-Trichloro-1,2,2-trifluoroethane	187.38	BRL	0.5	0.2	< 19159.5	< 2.5000	06/28/24	
	1,1,2-Trichloroethane	133.41	BRL	0.5	0.2	< 13641.1	< 2.5000	06/28/24	
	1,1-Dichloroethane	98.96	BRL	0.5	0.2	< 10118.6	< 2.5000	06/28/24	
	1,1-Dichloroethylene	96.94	BRL	0.5	0.2	< 9912.1	< 2.5000	06/28/24	
	1,2,4-Trichlorobenzene	181.45	BRL	0.5	0.2		< 2.5000	06/28/24	
	1,2,4-Trimethylbenzene	120.19	BRL	0.5	0.2	< 12289.4	< 2.5000	06/28/24	
	1,2-Dibromoethane	187.87	BRL	0.5	0.2	< 19209.6	< 2.5000	06/28/24	
	1,2-Dichlorobenzene	147.00	BRL	0.5	0.2	< 15030.7	< 2.5000	06/28/24	
	1,2-Dichloroethane	98.96	BRL	0.2	0.2	< 4047.4	< 1.0000	06/28/24	
	1,2-Dichloropropane	112.99	BRL	0.5	0.2		< 2.5000	06/28/24	
	1,2-Dichlorotetrafluoroethane	170	BRL	0.5	0.2		< 2.5000	06/28/24	
	1,3,5-Trimethylbenzene	120.19	BRL	0.5	0.2	< 12289.4	< 2.5000	06/28/24	
	1,3-Butadiene	54.09	BRL	0.22	0.2	< 2433.5	< 1.1000	V7 06/28/24	
	1,3-Dichlorobenzene	147.00	BRL	0.5	0.2		< 2.5000	06/28/24	
	1,4-Dichlorobenzene	147.00	BRL	0.5	0.2	< 15030.7	< 2.5000	06/28/24	
	2-Butanone	72.11	BRL	0.5	0.2	< 7373.2	< 2.5000	06/28/24	
	4-Ethyltoluene	120	BRL	0.5	0.2	< 12269.9	< 2.5000	06/28/24	
	Acetone ²	58.08	BRL	0.5	0.2		< 2.5000	06/28/24	
	Benzene	78.11	BRL	0.2	0.2		< 1.0000	06/28/24	
	Benzyl chloride	126.59	BRL	0.5	0.2	< 12943.8	< 2.5000	06/28/24	
	Bromodichloromethane ¹	163.83	BRL	0.5	0.2	< 16751.5	< 2.5000	06/28/24	
	Bromoform	252.75	BRL	0.5	0.2	< 25843.6	< 2.5000	06/28/24	
	Bromomethane	94.94	BRL	0.5	0.2		< 2.5000	06/28/24	
	Carbon disulfide ²	76.14	BRL	0.5	0.2	< 7785.3	< 2.5000	06/28/24	

ab-q212-0321

Job ID: 24063189

Date: 7/10/2024

Attn: Brent Barron

Client Name : Permian Basin Environmental Lab, LP

Project Name: Subcontract

Client Sample ID: 4F26022 Lab Sample ID: 24063189.01

Date Collected: 06/26/24 Sample Matrix: Air Time Collected: 08:30

Other Information:

Other Inform									
Test Method	Parameter/Test Description	M.W.	Results(nl)	RptLimit(nl)	InjVol(cc)	ug/M3	ppm	Q	Date/Time
EPA TO-15	Volatile Organic Compounds in Air b	y GCMS							
	Carbon tetrachloride	153.82	BRL	0.5	0.2		< 2.5000		06/28/24
	Chlorobenzene	112.56	BRL	0.5	0.2	> 11509.2	< 2.5000		06/28/24
	Chloroethane	65.42	BRL	0.5	0.2		< 2.5000		06/28/24
	Chloroform	119.38	BRL	0.5	0.2	> 12206.5	< 2.5000		06/28/24
	Chloromethane	50.49	BRL	0.5	0.2		< 2.5000		06/28/24
	cis-1,2-Dichloroethylene	96.94	BRL	0.5	0.2		< 2.5000		06/28/24
	cis-1,3-Dichloropropene	110.97	BRL	0.5	0.2	> 11346.6	< 2.5000		06/28/24
	Cyclohexane	84.16	0.78	0.5	0.2	13424.3	3.9000		06/28/24
	Dibromochloromethane ²	208.29	BRL	0.5	0.2		< 2.5000		06/28/24
	Dichlorodifluoromethane	120	BRL	0.5	0.2	> 12269.9	< 2.5000		06/28/24
	Ethanol ²	46.07	BRL	0.5	0.2	< 4710.6	< 2.5000		06/28/24
	Ethyl acetate ²	88.11	BRL	0.5	0.2	< 9009.2	< 2.5000		06/28/24
	Ethylbenzene	106.17	BRL	0.5	0.2	< 10855.8	< 2.5000		06/28/24
	Hexachlorobutadiene	258	BRL	0.5	0.2	> 26380.4	< 2.5000		06/28/24
	Isopropyl Alcohol ²	60.1	BRL	0.5	0.2		< 2.5000		06/28/24
	m- & p-Xylenes	106.17	BRL	1	0.2		< 5.0000		06/28/24
	Methyl Butyl Ketone ²	100	BRL	0.5	0.2	> 10224.9	< 2.5000		06/28/24
	Methylene chloride	84.93	BRL	0.5	0.2	< 8684.0	< 2.5000		06/28/24
	MIBK	100.16	BRL	0.5	0.2	< 10241.3	< 2.5000		06/28/24
	MTBE	88.15	BRL	0.5	0.2	< 9013.3	< 2.5000		06/28/24
	n-Heptane	100.21	6.50	0.5	0.2	133203. 5	32.5000		06/28/24
	n-Hexane	86.18	BRL	0.5	0.2	< 8811.9	< 2.5000		06/28/24
	o-Xylene	106.17	BRL	0.5	0.2	< 10855.8	< 2.5000		06/28/24
	Propylene	42.08	BRL	0.5	0.2		< 2.5000		06/28/24
	Styrene	104	BRL	0.5	0.2		< 2.5000		06/28/24
	Tetrachloroethylene	165.83	BRL	0.5	0.2	< 16956.0	< 2.5000		06/28/24
	Tetrahydrofuran ²	72.11	BRL	0.5	0.2	< 7373.2	< 2.5000		06/28/24
	Toluene	92.14	1.77	0.5	0.2	33351.3	8.8500		06/28/24

ab-q212-0321

Q.b

Job ID: 24063189

Attn: Brent Barron

24063189.01

Air

Lab Sample ID:

Sample Matrix:

Date: 7/10/2024

Client Name : Permian Basin Environmental Lab, LP

Project Name: Subcontract

Client Sample ID: 4F26022

Date Collected: 06/26/24 Time Collected: 08:30

Other Information:

Toot Mothod	Darameter/Test Description	MANA	Dogulto/pl)	Dott insit/al)	Tni\/al/aa\	/\/2		^	Data/Time
rest Method	Parameter/Test Description	M.W.	Results(nl)	RptLimit(nl)	Injvoi(cc)	ug/M3	ppm	Q	Date/Time
EPA TO-15	Volatile Organic Compounds in Air b	y GCMS							
	trans-1,2-Dichloroethylene	96.94	BRL	0.5	0.2		< 2.5000		06/28/24
	trans-1,3-Dichloropropene	110.97	BRL	0.5	0.2	< 11346.6	< 2.5000		06/28/24
	Trichloroethylene	131.39	BRL	0.5	0.2	< 13434.6	< 2.5000		06/28/24
	Trichlorofluoromethane	137.37	BRL	0.5	0.2	< 14046.0	< 2.5000		06/28/24
	Vinyl Acetate	86.09	BRL	0.5	0.2	< 8802.7	< 2.5000		06/28/24
	Vinyl Chloride	62.5	BRL	0.21	0.2	< 2684.0	< 1.0500		06/28/24
						470070			

Total [VOC] calculated 9.05 179979. 45.250

EPA TO-- 15 Sample Analysis -- GC/MS

Lab ID	24063189.01
Date Acquired	28 Jun 2024 10:11 pm
Analyst	AVB
Sample Run ID	X062808.D
Tedlar bag (cc)	1000
Injection Volume (cc)	0.2

Compound Name	CAS#	R.T.	M.W	Nanoliters	Vol.(L)	ug/l	ppm
Hexane, 2-methyl-	591-76-4	10.49	100	1	0.0002	20.450	5.000
Hexane, 3-methyl-	589-34-4	10.84	100	1.6	0.0002	32.720	8.000
cyclohexane, methyl-	108-87-2	12.7	98	8	0.0002	160.327	40.000
Heptane, 2-methyl-	592-27-8	14.369	114	2	0.0002	46.626	10.000
Heptane, 3-methyl-	589-81-1	14.67	100	1.1	0.0002	22.495	5.500
Cyclohexane, 1,3-dimethyl-, cis	638-4-0	14.885	112	2.02	0.0002	46.266	10.100
Octane	111-65-9	15.61	114	2.4	0.0002	55.951	12.000

TIC* REPORT

A&B Job Sample ID:	METHOD BLANK
--------------------	--------------

Analysis Date: 6/28/2024

est Method	Parameter/Test Description	CAS#	RT	MW	Reading(nI)**	ppm (v/v)	μg/m ³	Analys
O-15	None							AVB

^{*} TIC: Tentatively identified compounds.

Phone: 713-453-6060 www.ablabs.com

^{**}The values are estimated relative to the nearest internal standards and only major peaks are reported.

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

 $\textbf{Samples in This QC Batch} \ : \quad 24063189.01$

Parameter	CAS #	Result	Units	D.F.	RptLimit	Qua
trans-1,2-Dichloroethylene	156-60-5	BRL	nL	1	0.5	
Dichlorodifluoromethane	75-71-8	BRL	nL	1	0.5	
Chloromethane	74-87-3	BRL	nL	1	0.5	
1,2-Dichlorotetrafluoroetha	76-14-2	BRL	nL	1	0.5	
Vinyl Chloride	75-01-4	BRL	nL	1	0.21	
Bromomethane	74-83-9	BRL	nL	1	0.5	
Chloroethane	75-00-3	BRL	nL	1	0.5	
Trichlorofluoromethane	75-69-4	BRL	nL	1	0.5	
1,1-Dichloroethylene	75-35-4	BRL	nL	1	0.5	
Methylene chloride	75-09-2	BRL	nL	1	0.5	
1,1,2-Trichloro-1,2,2-trifluo	76-13-1	BRL	nL	1	0.5	
1,1-Dichloroethane	75-34-3	BRL	nL	1	0.5	
cis-1,2-Dichloroethylene	156-59-2	BRL	nL	1	0.5	
Chloroform	67-66-3	BRL	nL	1	0.5	
1,2-Dichloroethane	107-06-2	BRL	nL	1	0.2	
1,1,1-Trichloroethane	71-55-6	BRL	nL	1	0.5	
Benzene	71-43-2	BRL	nL	1	0.2	
Carbon tetrachloride	56-23-5	BRL	nL	1	0.5	
1,2-Dichloropropane	78-87-5	BRL	nL	1	0.5	
Trichloroethylene	79-01-6	BRL	nL	1	0.5	
cis-1,3-Dichloropropene	10061-01-5	BRL	nL	1	0.5	
trans-1,3-Dichloropropene	10061-02-6	BRL	nL	1	0.5	
1,1,2-Trichloroethane	79-00-5	BRL	nL	1	0.5	
Toluene	108-88-3	BRL	nL	1	0.5	
1,2-Dibromoethane	106-93-4	BRL	nL	1	0.5	
Tetrachloroethylene	127-18-4	BRL	nL	1	0.5	
Chlorobenzene	108-90-7	BRL	nL	1	0.5	
Ethylbenzene	100-41-4	BRL	nL	1	0.5	
m- & p-Xylenes	179601-23-1	BRL	nL	1	1	
Styrene	100-42-5	BRL	nL	1	0.5	
p-Xylene	95-47-6	BRL	nL	1	0.5	
1,1,2,2-Tetrachloroethane	79-34-5	BRL	nL	1	0.5	
1,3,5-Trimethylbenzene	108-67-8	BRL	nL	1	0.5	
1,2,4-Trimethylbenzene	95-63-6	BRL	nL	1	0.5	
1,3-Dichlorobenzene	541-73-1	BRL	nL	1	0.5	
1,4-Dichlorobenzene	106-46-7	BRL	nL	1	0.5	
1,2-Dichlorobenzene	95-50-1	BRL	nL	1	0.5	
1,2,4-Trichlorobenzene	120-82-1	BRL	nL	1	0.5	
Hexachlorobutadiene	87-68-3	BRL	nL	1	0.5	
1,3-Butadiene	106-99-0	BRL	nL	1	0.3	
2-Butanone	78-93-3	BRL	nL	1	0.22	
4-Ethyltoluene	622-96-8	BRL	nL	1	0.5	

Refer to the Definition page for terms.

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

 $\textbf{Samples in This QC Batch} \ : \quad 24063189.01$

QC Type: Method Blank	(
Parameter	CAS #	Result	Units	D.F.	RptLimit	Qual
Acetone	67-64-1	BRL	nL	1	0.5	
Benzyl chloride	100-44-7	BRL	nL	1	0.5	
Bromodichloromethane	75-27-4	BRL	nL	1	0.5	
Bromoform	75-25-2	BRL	nL	1	0.5	
Carbon disulfide	75-15-0	BRL	nL	1	0.5	
Cyclohexane	110-82-7	BRL	nL	1	0.5	
Dibromochloromethane	124-48-1	BRL	nL	1	0.5	
Ethanol	64-17-5	BRL	nL	1	0.5	
Ethyl acetate	141-78-6	BRL	nL	1	0.5	
n-Heptane	142-82-5	BRL	nL	1	0.5	
n-Hexane	110-54-3	BRL	nL	1	0.5	
Isopropyl Alcohol	67-63-0	BRL	nL	1	0.5	
Methyl Butyl Ketone	591-78-6	BRL	nL	1	0.5	
MIBK	108-10-1	BRL	nL	1	0.5	
MTBE	1634-04-4	BRL	nL	1	0.5	
Propylene	115-07-1	BRL	nL	1	0.5	
Tetrahydrofuran	109-99-9	BRL	nL	1	0.5	
Vinyl Acetate	108-05-4	BRL	nL	1	0.5	

QC Type: LCS and LCSD LCS LCS LCS LCSD LCSD LCSD RPD %Recovery												
		LCS			LCSD	LCSD		RPD	%Recovery			
Parameter	Spk Added	Result	% Rec	Spk Added	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual		
trans-1,2-Dichloroethylene	5	5.30	106	5	5.29	106	0.2	30	70-130			
Dichlorodifluoromethane	5	5.20	104	5	5.14	103	1.2	30	59-134			
Chloromethane	5	5.37	107	5	5.31	106	1.1	30	55-132			
1,2-Dichlorotetrafluoroetha	5	4.86	97.2	5	4.80	96	1.2	30	63-142			
Vinyl Chloride	5	4.16	83.2	5	4.12	82.4	1	30	61-139			
Bromomethane	5	5.02	100	5	5.15	103	2.6	30	63-134			
Chloroethane	5	5.37	107	5	5.39	108	0.4	30	63-127			
Trichlorofluoromethane	5	5.04	101	5	5.00	100	0.8	30	62-130			
1,1-Dichloroethylene	5	5.21	104	5	5.19	104	0.4	30	61-133			
Methylene chloride	5	5.29	106	5	5.29	106	0	30	62-117			
1,1,2-Trichloro-1,2,2-trifluo	5	5.24	105	5	5.20	104	0.8	30	60-131			
1,1-Dichloroethane	5	5.37	107	5	5.36	107	0.2	30	68-126			
cis-1,2-Dichloroethylene	5	5.12	102	5	5.10	102	0.4	30	70-131			
Chloroform	5	5.14	103	5	5.10	102	0.8	30	68-134			
1,2-Dichloroethane	5	4.89	97.8	5	4.87	97.4	0.4	30	65-132			
1,1,1-Trichloroethane	5	4.88	97.6	5	4.83	96.6	1	30	68-132			
Benzene	5	5.20	104	5	5.16	103	0.8	30	69-119			
Carbon tetrachloride	5	4.80	96	5	4.75	95	1	30	68-132			

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

Samples in This QC Batch: 24063189.01

Parameter							RPD			Qua		
1,2-Dichloropropane	5	5.32	106	5	5.28	106	0.8	30	69-123			
Trichloroethylene	5	5.05	101	5	5.01	100	0.8	30	71-123			
cis-1,3-Dichloropropene	5	4.92	98.4	5	4.90	98	0.4	30	70-128			
trans-1,3-Dichloropropene	5	4.65	93	5	4.68	93.6	0.6	30	75-133			
1,1,2-Trichloroethane	5	5.09	102	5	5.08	102	0.2	30	73-119			
Toluene	5	5.03	101	5	4.99	99.8	0.8	30	62-127			
1,2-Dibromoethane	5	4.69	93.8	5	4.69	93.8	0	30	74-122			
Tetrachloroethylene	5	4.80	96	5	4.76	95.2	0.8	30	66-124			
Chlorobenzene	5	4.97	99.4	5	4.94	98.8	0.6	30	70-119			
Ethylbenzene	5	5.13	103	5	5.10	102	0.6	30	70-124			
m- & p-Xylenes	10	9.96	99.6	10	9.92	99.2	0.4	30	61-134			
Styrene	5	4.60	92	5	4.56	91.2	0.9	30	73-127			
o-Xylene	5	5.10	102	5	5.07	101	0.6	30	67-125			
1,1,2,2-Tetrachloroethane	5	5.26	105	5	5.24	105	0.4	30	65-127			
1,3,5-Trimethylbenzene	5	4.99	99.8	5	4.97	99.4	0.4	30	67-130			
1,2,4-Trimethylbenzene	5	4.80	96	5	4.79	95.8	0.2	30	66-132			
1,3-Dichlorobenzene	5	4.81	96.2	5	4.84	96.8	0.6	30	65-130			
1,4-Dichlorobenzene	5	4.73	94.6	5	4.74	94.8	0.2	30	60-131			
1,2-Dichlorobenzene	5	4.71	94.2	5	4.76	95.2	1.1	30	63-129			
1,2,4-Trichlorobenzene	5	4.31	86.2	5	4.56	91.2	5.6	30	41-142			
Hexachlorobutadiene	5	4.35	87	5	4.49	89.8	3.2	30	56-138			
Propylene	5	5.55	111	5	5.46	109	1.6	30	57-136			
1,3-Butadiene	5	3.13	62.6	5	3.11	62.2	0.6	30	60-140			
Ethanol	5	4.69	93.8	5	4.84	96.8	3.2	30	59-133			
Acetone	5	5.07	101	5	5.08	102	0.2	30	58-128			
Isopropyl Alcohol	5	4.65	93	5	4.74	94.8	1.9	30	52-134			
Carbon disulfide	5	5.36	107	5	5.34	107	0.4	30	57-134			
MTBE	5	4.95	99	5	4.92	98.4	0.6	30	66-129			
2-Butanone	5	4.80	96	5	4.89	97.8	1.9	30	67-130			
Ethyl acetate	5	5.08	102	5	5.11	102	0.6	30	65-128			
n-Hexane	5	5.58	112	5	5.54	111	0.7	30	63-131			
Tetrahydrofuran	5	5.17	103	5	5.19	104	0.4	30	60-123			
Cyclohexane	5	5.37	107	5	5.33	107	0.7	30	70-117			
n-Heptane	5	5.47	109	5	5.42	108	0.9	30	69-131			
MIBK	5	5.29	106	5	5.27	105	0.4	30	67-130			
Methyl Butyl Ketone	5	5.49	110	5	5.17	103	6	30	60-140			
Bromoform	5	4.64	92.8	5	4.62	92.4	0.4	30	66-139			
4-Ethyltoluene	5	4.92	98.4	5	4.90	98	0.4	30	67-129			
Benzyl chloride	5	4.47	89.4	5	4.57	91.4	2.2	30	50-147			
Bromodichloromethane	5	4.98	99.6	5	4.96	99.2	0.4	30	72-128			
Dibromochloromethane	5	4.74	94.8	5	4.72	94.4	0.4	30	70-130			

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

Samples in This QC Batch: 24063189.01

QC Type: LCS and LCS	D									
Parameter	LCS Spk Added	LCS Result	LCS % Rec	LCSD Spk Added	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
rarameter	Spk Added	Result	70 KEC	эрк Аииеи	Result	70 KEC	KPD	CUILIIIII	CUILIIIII	Quai
Vinyl Acetate	5	4.86	97.2	5	4.88	97.6	0.4	30	56-139	

LABORATORY TERM AND QUALIFIER DEFINITION REPORT

ab

Job ID: 24063189 Date: 7/10/2024

General Term Definition

Back-Wt Back Weight MQL Unadjusted Minimum Quantitation Limit
BRL Below Reporting Limit Post-Wt Post Weight

 cfu
 colony-forming units
 ppm
 parts per million

 Conc.
 Concentration
 Pre-Wt
 Previous Weight

D.F. Dilution Factor Q Qualifier
Front-Wt Front Weight RegLimit Regulatory Limit
J Estimation. Below calibration range but above MDL RLU Relative Light Unit

LCS Laboratory Check Standard RPD Relative Percent Difference

LCSD Laboratory Check Standard Duplicate RptLimit Reporting Limit

LOD Limit of detection adjusted for %M + DF SDL Sample Detection Limit

LOQLimit of Quantitation adjusted for %M + DFsurrSurrogateMSMatrix SpikeTTime

MSD Matrix Spike Duplicate TNTC Too numerous to count

MW Molecular Weight UQL Unadjusted Upper Quantitation Limit

Qualifier Definition

V7 CCV recovery is below the control limit for this analyte, however the average %difference for all the analytes meets method criteria.

Sample Condition Checklist

Α&	B JobID : 24063189	Date Received: 06/28/2024 Time Received: 10:	MA00								
Client Name : Permian Basin Environmental Lab, LP Temperature : 23.0°C Sample pH : NA											
Tei	mperature : 23.0°C	Sample pH: NA									
The	ermometer ID : IR7	pH Paper ID : NA									
Pe	rservative :	Lot#:		1							
		Check Points	Yes	No	N/A						
1.	Cooler Seal present and signed.				Х						
2.	Sample(s) in a cooler.			Х							
3.	If yes, ice in cooler.				Х						
4.	Sample(s) received with chain-of-cust	ody.	Х								
5.	C-O-C signed and dated.		Х								
6.	Sample(s) received with signed sample	e custody seal.		Х							
7.	Sample containers arrived intact. (If N	o comment)	Х								
8.	Water Soil Liquid SI	udge Solid Cassette Tube Bulk Badge Food Other									
9.	Samples were received in appropriate	container(s)	Х								
10.	Sample(s) were received with Proper	preservative			Х						
11.	All samples were tagged or labeled.		Х								
12.	Sample ID labels match C-O-C ID's.		Х								
13.	Bottle count on C-O-C matches bottles	found.	Х								
14.	Sample volume is sufficient for analyse	es requested.	Х								
15.	Samples were received with in the hole	d time.	Х								
16.	VOA vials completely filled.				Х						
17.	Sample accepted.		Х								
18. Has client been contacted about sub-out											
	mments: Include actions taken to resoler= Air (clear tedlar bags). ~ANS 06/28/24										
	(disa. tsa.a. sags). Title soj 20j 2 i										

Brought by : FedEx

Received by: ASmith Check in by/date: ASmith / 06/28/2024

ab-s005-1123

Phone: 713-453-6060 www.ablabs.com

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Permian Basin Environmental Lab, LP 1400 Rankin HWY Midland, Texas 79701

Phone: 432-686-7235 PBELAB_SUB_COC_V2

	Project Manager:			_									Project Name:			me:_	e: SUBCONTRACT													
	Company Name	PBEL	-		-		· .			****	· · · · · · · · · · · · · · · · · · ·	er ×					_	Pi	rojec	:t#:_			-							10/6/2025
	Company Address:	1400 Rankin H	łWY														_	Proj	ect L	.oc:_										2025
	City/State/Zip:	Midland Texas	s 79701		,														P	D #: _										12:51
	Telephone No:	432-661-4184					Fax No:				•					•	Rej	ort l	-orm	iat: >	 Κ St	anda	ard	Γ	TF	₹₽	[NF	PDE!	:49 1
	Sampler Signature:	. N/A					e-mail:	,	bre	ntba	rron(@pb	elab.	com										_	_					M
			_			•												_					Anal	yze Fo	or:					
ORDER											racar	natio	n 9. H	of Co	otaine	rc	I NA	atrix												
CADER							•			П	reser	_	- 1	_	Γ	Т	141	itiix	1											
(Aluo asn qej) # grT		1		g Depth	epth	Sampled	mpled	p	ontainers		poly 1	nL VOA	4 ₂ SO ₄ 1 AMBER 500/250POLY	TOTAL PRINCIPLE	ONE SOOML POLY 250 MIL POLY 500 ML/M AMBER GLASS			dndwater S=SoiJ/Solid Potable Specify Other			į								R RUSH	STANDARD
AB#(lab				Beginning Depth	inding Depth	Date Sar	Time Sampled	ield Filtered	fotal #. of Containers	<u>ყ</u>	HNO _{3 250 poly 1}	1Cl 3 40mL VOA	1,504 1 /	NaOH/Zn	IONE SOOML	NONE	OW≃Drinking	GW = Groundwater NP≖Non-Potable S	TO-15		ŀ								24 HOU	STANDA
DI A	4	F26022		Щ	- н	6/26/2024	8:30		1						2.5	X		IR	x									工		х
														_					L						_	_	 	\bot		
		. 0.40004	00	_					_										F						-	1		_	<u> </u>	
	JOD IL	:240631	89 	-					_	H	\dashv	_	+	+		\vdash			\vdash		_	╁	H	+	十	+	\dashv	+	╂┈	\vdash
				-							\neg		_	+		\vdash	-		╁				\Box	\top	+					
	08/28/2024 Perm	nian Basin Environ:	me AMS																	333		3 3600								
·					<u></u>				-				· · · · · ·				-	 -	1	Sam	ile Co	ntain	ers Ini	tact?"			· Y		· N	
BRENT E	BARRON	6,	/26/2024	5:00	PM	Received by:										Dat	te	T	ime	Labe Custo	ls on c ody se	ontai als or	ner(s 1 cont) tainer	(s)		Y Y		N	
Relinqui	shed by:		Date	Tir	ne	Received by: Fed by: Received by:	K Z								K	Dai	te	y I	ime	A Residence	111111		N NOW NO		100	uni metal	O'ROBER .	/ · Lor	N N N ne Sta	ī.
Relinqui	shed by:		Date	Tir In: ()	ne 1	Received by:)	ĺ,							7-	Dat	te) /,	T 10 ان	ime :00	Tem Rece	perati ived:	re U 2	oon Re	eceipt			-	Lor	7 I	
<u> </u>	SUF X	6	28/24	10.0	<u>U</u>	عينات السيا			10	615	See	N. CHE				<u>*</u> 20	å e	7/3 <u>8</u>		Adjū:	sted:			ANT C	3 Facto	Pa	ige 2	20 of	22	The same

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Permian Basin Environmental Lab, LP 1400 Rankin HWY Midland, Texas 79701 Phone: 432-686-7235 PBELAB_SUB_COC_V2

	Project Manager.	Dietit Balloli														_	roje	ct N	ame	:		SU	RC	<u>וי אכ</u>	RAC	<u> </u>				_ ::
	Company-Name	PBEL			<u> </u>										_		- Г	² roje	ect#	:										10/0/
	Company Address:	1400 Rankin HWY														-														2025
	City/State/Zip:	Midland Texas 79701				· · · · · · · · · · · · · · · · · · ·										_			°O#.											12:5
	Telephone No:	432-661-4184			 -	Fax No:						·				- Po	port				Sta	ndar	м —		TRI	DD.				1:49
	Sampler Signature:					e-mail:						-1-6				_ '\0	port	. 01	illat.	^	Sta	iluai	u	L	ן ואי	ΛP	L	NP	DES	PM
olas in the Address	Oampier Oignature.	THE STATE OF THE S		-		e-man.		bie	пра	mon	@pu	elab	.com	1				Г	_				Anaiy	ze Fo	r:			_		_
ORDER		Merchanian decidendes Merchanian de Laborator							_																					
UKDEK						:		_		reser	_	_	of C	1	7	⊢ N	atrix	┨												
												4 ₂ SO ₄ 1 AMBER 500/250POLY	NaOH / Ascorbic Acid 250ML Po	IDNE SOOML POLY 250 MIL POLY 500 ML		ľ														
nly)			£			_	i	irs		ĺ	4	2000/	c Acid) Mil. Pol		L=Sludge	S=Soil/Solid	and des											ᇤ	
o nse o	557 COCCO	1	g Dep	epth	mpled	mpled	1. 17 18	Containe		poly 1	내	AMBE!	scorbi	POLY 25	GLASS	Water S		dr.				ļ	Ì						R RU	ē
LAB # (lab use only)	Y		Beginning Depth	Ending Depth	Date Sampled	Time Sampled	eld Filtered	otal #. of Containers	끙	HNO _{3 250 poly 1}	HCI 3 40mL VOA	504 1	NaOH /Asc	NE 500M	WM AMBER	W=Drinking Water St=Studge	GW = Groundwater	10.15						i					24 HOUR RUSH	ANDA
02.4	4	F26023	<u> </u>	<u> </u>	6/26/2024	10:00	Fie	<u>်</u> 1	≗	표	╧┼	<u> </u>	<u> </u>	<u> </u>	≨ Z X	+	<u>ĕ ₽</u> NR	X	\neg	\vdash		-	\dashv		+	_	+	+		X
02 <i>f</i>	77	104									7					1		Ť				_	1	+			+	1		
						-	-				_ =	-			7127W					-	***									
				-					\dashv	\dashv	+	-	+	╀	-	┞		 		_			- -		\sqcup	┟┼	+	$\dashv \dashv$		
							$\ \cdot\ $		\dashv	\dashv		-	+	+	+	 		╁	-			-		+	+	\vdash	\dashv	+-	\vdash	
						T																								
																		1											N	**************************************
BRENT	BARRON	6/26/2024	5:00	PM	Received by:		=							T	Da	 te	Т	ime	-ไง๊กั	Ce Fr	e of	Hea	denai	-67			v		N N	
	Sala al Laur					· · · · · · · · · · · · · · · · · · ·								<u> </u>			_		Cus	tody	seal	s on	coole	r(s)			Y		N N	
	ished by:	Date	Tir	ne	Received by:	dEx								.	Da	te	T	ime	San	by S	iano ampl	Deli er/Cl	vered lent F	1, ep. ?	ρű		Υ. Υ.	lor	N N	
Relinqui	shed by:	Date,		ne A l \	Received by: Fe				etjari Hari	111					Da /ac			ime	Ter	npera eivec	ture ture	Upo	n Re ص	ceipt:	23	9	کے ح	Lone Q	1	
rec	45X	6/28/24	- \v.	UU					K. K.	(Ay)	1.5			کا ا	/28)/2	<i>4</i> !	,,OO	Adj	üster	l:	4		<u>°</u> c	Factor	Pac	e 2	1 of	22	4

ORIGIN ID:MAFA BRENT BARRON PBE LAB 1400 RANKIN HWY

SHIP DATE: 26JUN24 ACTWGT: 2.00 LB CAD: 107136846/INET4535 DIMS: 13x9x9 IN

MIDLAND, TX 79701 UNITED STATES US

BILL SENDER

SAMPLE RECEIVING **A & B ENVIRONMENTAL SERVICES** 10100 EAST FREEWAY SUITE 100

583J5/B21D/9AE3

HOUSTON TX 77029
(713) 453-6060

7770 8258 2861

THU - 27 JUN 5:00P STANDARD OVERNIGHT

AB HBYA

77029

IAH

POUCH After printing this label:
CONSIGNEE COPY - PLEASE PLACE IN FRONT OF POU
1 Fold the printed page along the horizontal line.
2. Place label in shipping pouch and affix it to your shipment.

other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized d file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from , misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document documented loss. Maximum for items of extraordinary value is \$1,000, e.g. including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and letals, negotiable instruments and other items listed in our Service Guide. Written claims must be filed ill not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, o the service conditions in the current FedEx Service Guide, available on limits, see current FedEx Service Guide. covery cannot exceed actual constitutes your agreement delay, non-delivery declared value. Re Use of this system your actual loss a fedex.com. FedEx within strict time ewelry, precious

Page 22 of 22

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Kimble Thrash
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: SRS 2009-84 Project Number: SRS 2009-84

Location: Lea County, NM

Lab Order Number: 4G25009

Current Certification

Report Date: 08/07/24

13000 West County Road 100 Odessa TX, 79765 Project: SRS 2009-84

Project Number: SRS 2009-84 Project Manager: Kimble Thrash

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EFF-1 (072424)	4G25009-01	Air	07/24/24 16:15	07-25-2024 11:48

TO15 analysis were subcontracted to A&B Houston. Their current certification can be found here: https://www.tceq.texas.gov/assets/public/compliance/compliance_support/qa/labs/a&b_env.pdf

13000 West County Road 100

Project Number: SRS 2009-84 Odessa TX, 79765 Project Manager: Kimble Thrash

> EFF-1 (072424) 4G25009-01 (Air)

Project: SRS 2009-84

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian I	Basin Envi	ronmental L	ab, L.P.			
EPA TO-15									
Benzene	0.110	0.00400	ppm	1	P4H0708	08/07/24 11:04	07/24/24 00:00	TO-15	SUB-8
Ethylbenzene	0.0700	0.0100	ppm	1	P4H0708	08/07/24 11:04	07/24/24 00:00	TO-15	SUB-8
Xylene (p/m)	0.0700	0.0200	ppm	1	P4H0708	08/07/24 11:04	07/24/24 00:00	TO-15	SUB-8
Xylene (o)	0.0700	0.0100	ppm	1	P4H0708	08/07/24 11:04	07/24/24 00:00	TO-15	SUB-8
Toluene	304	0.0100	ppm	1	P4H0708	08/07/24 11:04	07/24/24 00:00	TO-15	SUB-8

13000 West County Road 100

Odessa TX, 79765

Project: SRS 2009-84

Project Number: SRS 2009-84
Project Manager: Kimble Thrash

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100

Odessa TX, 79765

Project: SRS 2009-84

Project Number: SRS 2009-84 Project Manager: Kimble Thrash

Notes and Definitions

SUB-8 Subcontract of analyte/analysis to A&B Labs Houston.

NPBEL CC Chain of Custody was not generated at PBELAB

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Byin Barron		
Report Approved By:		Date:	8/7/2024

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

The state of the s
PRDIT
PBELAB

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST	
THE CORD AND ANALYSIS REQUEST	1

6 of 19 CH: Phone: 432-686-7235

	Project Manager: Company Name:	Kimble Thrash					1	400	Ran	Basin kin H Texa	WY			tal L	ab, l		Pro	ject	Nam	ne: 5	SRS	Pho 200		32-68	6-72	35		Page 6 of	ы
	Company Address:	Etech Environmenta	al & S	afety	Solutions, I	nc.										_		Pro	oject	#: 5	RS	200	9-08	4				L	_
	City/State/Zip:																P	roje	ct Lo	oc: L	ea (Cour	nty, N	M					
	Telephone No:	Midland, TX 79711 (432) 563-2200									_					_			PO	#:	1								
/lah	Sampler Signature:	1.027 303-2200		9		Fax No							_	_	_							andaro			TRR			NPDI	
(lab use			1			e-mai	I: kin	nble	@ete	echen	v.co	m; s	hane	@et	eche	env.co	m; ca	amille	e.brya	nt@p	lains.				udge	ns@p	ains.		
ORDER	R#: 4G 250	09							_									H			TCLP:		iyze	For:	Т	T		40 72 1	2000
~							T	Т	\vdash	Preser	vation	n & #	of Cor	ntaine	ers	. 7	atrix	H		T	OTAL:		-		1				
LAB# (lab use only)	FIELD (Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #, of Containers	Ice	HNO3	CO H	12304 N201	Na ₂ S ₂ O ₃	None	Other (Specify)	DW=Drinking Water SL=Sludge	(0)	BTEX 8260 B										RUSH TAT (Dro. Schodula) 24	CONTRACTOR OF THE PARTY OF THE
+	. (0	72424)		-	7/24/2024	1615		2		1	1	T		Х		А	ir	Х		T					1			1	
									Н	+	+	+	+	\vdash	Н			H	+	+	H		+	H		\square	1	T	
-																			+	+	H			H	+	+	+	+	
+			-				H			-	1	1																1	
							Н	-	-	+	+	+	+		H		-	+	+	+	H	+	+	H	+	\square	+	1	
-																		1	+	+	H	+	+	\vdash	+	H	+	+	,
ial Instru	uctions: Places in		+	-			Н	-	-			-							I									T	
uished by		Date Date	Time	8	Received by:	and refere	nce t	he S	GRS I	numb	er in	the	Proj	ect I	Date	е		Time	Sa VC La Cu Cu	imple DCs F bels o istody istody imple	ree on con seal seal	s on o	dspacer(s) contain cooler vered	ct? ce? ner(s) (s)				N N N N N N N N N N N N N N N N N N N	
- S 0y.		Date	Time		ived by PBB	Sedso	e							7/2	Date 5	24	II.	ime 48	Tei	by S	ample ourie ature	er/Clie r? Upon	UPS Rece	o. ? i Di	nermo	FadE	11/	N ne St	-

Total Number of Pages:

Laboratory Analysis Report

Job ID: 24072687

10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

Client Project Name : Subcontract

Report To: Client Name: Permian Basin Environmental Lab, LP

Attn: Brent Barron

Client Address: 1400 Rankin Hwy
City, State, Zip: Midland, Texas, 79701

P.O.#.: Sample Collected By:

Date Collected: 07/24/24

A&B Labs has analyzed the following samples...

 Client Sample ID
 Matrix
 A&B Sample ID

 4G25009
 Air
 24072687.01

R. Com

Analyst: Amit Bembde

Alla

Released By: Gobinath Rangasamy

Title: Project Manager
Date: 08/02/2024

This Laboratory is NELAP (T104704213-23-31) accredited. Effective: 04/01/2024; Expires: 03/31/2025

Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

ab-q210-0321

Date Received: 07/26/2024 10:18

Report Number: RPT240802078

Job ID: 24072687

Date: 8/2/2024

Attn: Brent Barron

Client Name : Permian Basin Environmental Lab, LP

Project Name: Subcontract

Client Sample ID: 4G25009 Lab Sample ID: 24072687.01

Date Collected: 07/24/24 Sample Matrix: Air

Time Collected: 16:15

Other Information:

est Method	Parameter/Test Description	M.W.	Results(nl)	MDL	InjVol(cc)	ug/M3 ppm (Date/Time
PA TO-15	Volatile Organic Compounds in Air	by GCMS					
	1,1,1-Trichloroethane	133.4	< 0.12	0.12	1	< 654.7 < 0.1200	07/26/24
	1,1,2,2-Tetrachloroethane	167.85	< 0.05	0.05	1	< 343.3 < 0.0500	07/26/24
	1,1,2-Trichloro-1,2,2-trifluoroethane	187.38	< 0.13	0.13	1	< 996.3 < 0.1300	07/26/24
	1,1,2-Trichloroethane	133.41	< 0.11	0.11	1	< 600.2 < 0.1100	07/26/24
	1,1-Dichloroethane	98.96	< 0.13	0.13	1	< 526.2 < 0.1300	07/26/24
	1,1-Dichloroethylene	96.94	< 0.2	0.2	1	< 793.0 < 0.2000	07/26/24
	1,2,4-Trichlorobenzene	181.45	< 0.09	0.09	1	< 667.9 < 0.0900	07/26/24
	1,2,4-Trimethylbenzene	120.19	< 0.05	0.05	1	< 245.8 < 0.0500	07/26/24
	1,2-Dibromoethane	187.87	< 0.1	0.1	1	< 768.4 < 0.1000	07/26/24
	1,2-Dichlorobenzene	147.00	< 0.09	0.09	1	< 541.1 < 0.0900	07/26/24
	1,2-Dichloroethane	98.96	< 0.11	0.11	1	< 445.2 < 0.1100	07/26/24
	1,2-Dichloropropane	112.99	< 0.12	0.12	1	< 554.6 < 0.1200	07/26/24
	1,2-Dichlorotetrafluoroethane	170	< 0.14	0.14	1	< 973.4 < 0.1400	07/26/24
	1,3,5-Trimethylbenzene	120.19	< 0.05	0.05	1	< 245.8 < 0.0500	07/26/24
	1,3-Butadiene	54.09	< 0.22	0.22	1	< 486.7 < 0.2200	07/26/24
	1,3-Dichlorobenzene	147.00	< 0.1	0.1	1	< 601.2 < 0.1000	07/26/24
	1,4-Dichlorobenzene	147.00	< 0.1	0.1	1	< 601.2 < 0.1000	07/26/24
	2-Butanone	72.11	< 0.08	0.08	1	< 235.9 < 0.0800	07/26/24
	4-Ethyltoluene	120	< 0.05	0.05	1	< 245.4 < 0.0500	07/26/24
	Acetone ²	58.08	< 0.13	0.13	1	< 308.8 < 0.1300	07/26/24
	Benzene	78.11	< 0.11	0.11	1	< 351.4 < 0.1100	07/26/24
	Benzyl chloride	126.59	< 0.05	0.05	1	< 258.9 < 0.0500	07/26/24
	Bromodichloromethane ¹	163.83	< 0.1	0.1	1	< 670.1 < 0.1000	07/26/24
	Bromoform	252.75	< 0.09	0.09	1	< 930.4 < 0.0900	07/26/24
	Bromomethane	94.94	< 0.14	0.14	1	< 543.6 < 0.1400	07/26/24
	Carbon disulfide ²	76.14	< 0.17	0.17	1	< 529.4 < 0.1700	07/26/24
	Carbon tetrachloride	153.82	< 0.1	0.1	1	< 629.1 < 0.1000	07/26/24
	Chlorobenzene	112.56	< 0.11	0.11	1	< 506.4 < 0.1100	07/26/24
	Chloroethane	65.42	< 0.18	0.18	1	< 481.6 < 0.1800	07/26/24
	Chloroform	119.38	< 0.12	0.12	1	< 585.9 < 0.1200	07/26/24
	Chloromethane	50.49	< 0.16	0.16	1	< 330.4 < 0.1600	07/26/24
	cis-1,2-Dichloroethylene	96.94	< 0.14	0.14	1	< 555.1 < 0.1400	07/26/24
	cis-1,3-Dichloropropene	110.97	< 0.08	0.08	1	< 363.1 < 0.0800	07/26/24
	Cyclohexane	84.16	14.92	0.1	1	51356.5 14.9200 E	07/26/24
	Dibromochloromethane ²	208.29	< 0.1	0.1	1	< 851.9 < 0.1000	07/26/24
	Dichlorodifluoromethane	120	< 0.12	0.12	1	< 589.0 < 0.1200	07/26/24
	Ethanol ²	46.07	< 0.26	0.26	1	< 489.9 < 0.2600	07/26/24
	Ethyl acetate ²	88.11	< 0.12	0.12	1	< 432.4 < 0.1200	07/26/24
	Ethylbenzene	106.17	< 0.07	0.07	1	< 304.0 < 0.0700	07/26/24
	Hexachlorobutadiene	258	< 0.06	0.06	1	< 633.1 < 0.0600	07/26/24

ab-q212-0321

Job ID: 24072687

Date: 8/2/2024

Attn: Brent Barron

Client Name: Permian Basin Environmental Lab, LP

Project Name: Subcontract

Client Sample ID: Lab Sample ID: 4G25009 24072687.01

Date Collected: Sample Matrix: 07/24/24 Air Time Collected: 16:15

Other Information:

Test Method	Parameter/Test Description	M.W.	Results(nl)	MDL	InjVol(cc)	ug/M3	ppm	Q	Date/Time
EPA TO-15	Volatile Organic Compounds in Air b	y GCMS							
	Isopropyl Alcohol ²	60.1	< 0.07	0.07	1	< 172.1	< 0.0700		07/26/24
	m- & p-Xylenes	106.17	< 0.14	0.14	1	< 607.9	< 0.1400		07/26/24
	Methyl Butyl Ketone ²	100	< 0.08	0.08	1	< 327.2	< 0.0800		07/26/24
	Methylene chloride	84.93	< 0.14	0.14	1	< 486.3	< 0.1400		07/26/24
	MIBK	100.16	< 0.07	0.07	1	< 286.8	< 0.0700		07/26/24
	MTBE	88.15	< 0.08	0.08	1	< 288.4	< 0.0800		07/26/24
	n-Heptane	100.21	9.98	0.12	1	40903.7	9.9800		07/26/24
	n-Hexane	86.18	11.88	0.16	1	41874.0	11.8800	E	07/26/24
	o-Xylene	106.17	< 0.07	0.07	1	< 304.0	< 0.0700		07/26/24
	Propylene	42.08	< 0.19	0.19	1	< 327.0	< 0.1900		07/26/24
	Styrene	104	< 0.07	0.07	1	< 297.8	< 0.0700		07/26/24
	Tetrachloroethylene	165.83	< 0.11	0.11	1	< 746.1	< 0.1100		07/26/24
	Tetrahydrofuran ²	72.11	< 0.06	0.06	1	< 177.0	< 0.0600		07/26/24
	Toluene	92.14	< 0.12	0.12	1	< 452.2	< 0.1200		07/26/24
	trans-1,2-Dichloroethylene	96.94	< 0.11	0.11	1	< 436.1	< 0.1100		07/26/24
	trans-1,3-Dichloropropene	110.97	< 0.08	0.08	1	< 363.1	< 0.0800		07/26/24
	Trichloroethylene	131.39	< 0.18	0.18	1	< 967.3	< 0.1800		07/26/24
	Trichlorofluoromethane	137.37	< 0.14	0.14	1	< 786.6	< 0.1400		07/26/24
	Vinyl Acetate	86.09	< 0.06	0.06	1	< 211.3	< 0.0600		07/26/24
	Vinyl Chloride	62.5	< 0.21	0.21	1	< 536.8	< 0.2100		07/26/24

134134. Total [VOC] calculated 36.78 36.780 209

ab-q212-0321

EPA TO-- 15 Sample Analysis -- GC/MS

Lab ID	24072687.01
Date Acquired	26 Jul 2024 5:23 pm
Analyst	AVBEMBDE
Sample Run ID	X072607.D
tedlar bag (cc)	1000
Injection Volume (cc)	1

Compound Name	CAS#	R.T.	M.W	Nanoliters	Vol.(L)	ug/l	ppm
Pentane, 2-methyl-	107-83-5	6.92	86	9.2	0.001	32.360	9.200
Pentane, 3-methyl-	96-14-0	7.37	86	7.4	0.001	26.029	7.400
Cyclopentane, methyl-	96-37-7	8.92	84	14.5	0.001	49.816	14.500
Hexane, 2-methyl-	591-76-4	10.4	100	6.9	0.001	28.221	6.900
Hexane, 3-methyl-	589-34-4	10.75	100	9.1	0.001	37.219	9.100
Cyclopentane, 1.3-dimethyl-	2453-00-1	11.057	98	5	0.001	20.041	5.000
Isopropylcyclobutane	872-56-0	11.28	98	8.2	0.001	32.867	8.200
Cyclohexane, methyl-	96-37-7	12.6	84	20.5	0.001	70.429	20.500
Cyclopentane, ethyl-	1640-89-7	13.026	98	2.84	0.001	11.383	2.840
Heptane, 2-methyl-	592-27-8	14.26	114	3.1	0.001	14.454	3.100
Cyclohexane, 1,3-dimethyl-, cis	638-04-0	14.763	112	3.4	0.001	15.575	3.400

TIC* REPORT

A&B Job Sample ID: Method Blar	ık
--------------------------------	----

Analysis Date: 7/26/2024

est Method	Parameter/Test Description	CAS#	RT	MW	Reading(nl)**	ppm (v/v)	μg/m³	Analys
D-15	None							AVB
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
				l				

^{*} TIC: Tentatively identified compounds.

Phone: 713-453-6060 www.ablabs.com

^{**}The values are estimated relative to the nearest internal standards and only major peaks are reported.

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

 $\textbf{Samples in This QC Batch} \ : \quad 24072687.01$

QC Type: Method Blank						
Parameter	CAS #	Result	Units	D.F.	RptLimit	Qual
trans-1,2-Dichloroethylene	156-60-5	BRL	nL	1	0.5	
Dichlorodifluoromethane	75-71-8	BRL	nL	1	0.5	
Chloromethane	74-87-3	BRL	nL	1	0.5	
1,2-Dichlorotetrafluoroetha	76-14-2	BRL	nL	1	0.5	
/inyl Chloride	75-01-4	BRL	nL	1	0.21	
Bromomethane	74-83-9	BRL	nL	1	0.5	
Chloroethane	75-00-3	BRL	nL	1	0.5	
Trichlorofluoromethane	75-69-4	BRL	nL	1	0.5	
1,1-Dichloroethylene	75-35-4	BRL	nL	1	0.5	
Methylene chloride	75-09-2	BRL	nL	1	0.5	
1,1,2-Trichloro-1,2,2-trifluo	76-13-1	BRL	nL	1	0.5	
1,1-Dichloroethane	75-34-3	BRL	nL	1	0.5	
cis-1,2-Dichloroethylene	156-59-2	BRL	nL	1	0.5	
Chloroform	67-66-3	BRL	nL	1	0.5	
1,2-Dichloroethane	107-06-2	BRL	nL	1	0.2	
1,1,1-Trichloroethane	71-55-6	BRL	nL	1	0.5	
Benzene	71-43-2	BRL	nL	1	0.2	
Carbon tetrachloride	56-23-5	BRL	nL	1	0.5	
1,2-Dichloropropane	78-87-5	BRL	nL	1	0.5	
Trichloroethylene	79-01-6	BRL	nL	1	0.5	
cis-1,3-Dichloropropene	10061-01-5	BRL	nL	1	0.5	
trans-1,3-Dichloropropene	10061-02-6	BRL	nL	1	0.5	
1,1,2-Trichloroethane	79-00-5	BRL	nL	1	0.5	
Toluene	108-88-3	BRL	nL	1	0.5	
1,2-Dibromoethane	106-93-4	BRL	nL	1	0.5	
Tetrachloroethylene	127-18-4	BRL	nL	1	0.5	
Chlorobenzene	127-18 -4 108-90-7	BRL		1	0.5	
			nL			
Ethylbenzene	100-41-4	BRL	nL	1	0.5	
m- & p-Xylenes	179601-23-1	BRL	nL	1	1	
Styrene	100-42-5	BRL	nL	1	0.5	
o-Xylene	95-47-6	BRL	nL	1	0.5	
1,1,2,2-Tetrachloroethane	79-34-5	BRL	nL	1	0.5	
1,3,5-Trimethylbenzene	108-67-8	BRL	nL	1	0.5	
1,2,4-Trimethylbenzene	95-63-6	BRL	nL	1	0.5	
1,3-Dichlorobenzene	541-73-1	BRL	nL	1	0.5	
1,4-Dichlorobenzene	106-46-7	BRL	nL	1	0.5	
1,2-Dichlorobenzene	95-50-1	BRL	nL	1	0.5	
1,2,4-Trichlorobenzene	120-82-1	BRL	nL	1	0.5	
Hexachlorobutadiene	87-68-3	BRL	nL	1	0.5	
1,3-Butadiene	106-99-0	BRL	nL	1	0.22	
2-Butanone	78-93-3	BRL	nL	1	0.5	
1-Ethyltoluene	622-96-8	BRL	nL	1	0.5	

Refer to the Definition page for terms.

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

 $\textbf{Samples in This QC Batch} \ : \quad 24072687.01$

QC Type: Method Blank										
Parameter	CAS #	Result	Units	D.F.	RptLimit		Qual			
Acetone	67-64-1	BRL	nL	1	0.5					
Benzyl chloride	100-44-7	BRL	nL	1	0.5					
Bromodichloromethane	75-27-4	BRL	nL	1	0.5					
Bromoform	75-25-2	BRL	nL	1	0.5					
Carbon disulfide	75-15-0	BRL	nL	1	0.5					
Cyclohexane	110-82-7	BRL	nL	1	0.5					
Dibromochloromethane	124-48-1	BRL	nL	1	0.5					
Ethanol	64-17-5	BRL	nL	1	0.5					
Ethyl acetate	141-78-6	BRL	nL	1	0.5					
n-Heptane	142-82-5	BRL	nL	1	0.5					
n-Hexane	110-54-3	BRL	nL	1	0.5					
Isopropyl Alcohol	67-63-0	BRL	nL	1	0.5					
Methyl Butyl Ketone	591-78-6	BRL	nL	1	0.5					
MIBK	108-10-1	BRL	nL	1	0.5					
MTBE	1634-04-4	BRL	nL	1	0.5					
Propylene	115-07-1	BRL	nL	1	0.5					
Tetrahydrofuran	109-99-9	BRL	nL	1	0.5					
Vinyl Acetate	108-05-4	BRL	nL	1	0.5					

QC Type: LCS and LCSD										
	LCS	LCS	LCS	LCSD	LCSD	LCSD		RPD	%Recovery	
Parameter	Spk Added	Result	% Rec	Spk Added	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
trans-1,2-Dichloroethylene	5	4.84	96.8	5	4.95	99	2.2	30	70-130	
Dichlorodifluoromethane	5	5.22	104	5	5.31	106	1.7	30	59-134	
Chloromethane	5	4.99	99.8	5	5.05	101	1.2	30	55-132	
1,2-Dichlorotetrafluoroetha	5	5.12	102	5	5.24	105	2.3	30	63-142	
Vinyl Chloride	5	4.99	99.8	5	5.10	102	2.2	30	61-139	
Bromomethane	5	4.99	99.8	5	5.07	101	1.6	30	63-134	
Chloroethane	5	5.04	101	5	5.04	101	0	30	63-127	
Trichlorofluoromethane	5	4.96	99.2	5	5.02	100	1.2	30	62-130	
1,1-Dichloroethylene	5	4.93	98.6	5	5.05	101	2.4	30	61-133	
Methylene chloride	5	5.02	100	5	5.03	101	0.2	30	62-117	
1,1,2-Trichloro-1,2,2-trifluo	5	4.98	99.6	5	5.08	102	2	30	60-131	
1,1-Dichloroethane	5	4.91	98.2	5	4.95	99	0.8	30	68-126	
cis-1,2-Dichloroethylene	5	4.91	98.2	5	4.99	99.8	1.6	30	70-131	
Chloroform	5	4.94	98.8	5	5.03	101	1.8	30	68-134	
1,2-Dichloroethane	5	5.05	101	5	5.14	103	1.8	30	65-132	
1,1,1-Trichloroethane	5	4.97	99.4	5	5.02	100	1	30	68-132	
Benzene	5	5.00	100	5	5.02	100	0.4	30	69-119	
Carbon tetrachloride	5	4.97	99.4	5	5.02	100	1	30	68-132	

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

Samples in This QC Batch: 24072687.01

QC Type: LCS and LCSD										
Parameter	LCS Spk Added	LCS Result	LCS % Rec	LCSD Spk Added	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qua
1,2-Dichloropropane	5	4.96	99.2	5	5.06	101	2	30	69-123	T
Trichloroethylene	5	5.12	102	5	5.15	103	0.6	30	71-123	
cis-1,3-Dichloropropene	5	4.89	97.8	5	4.99	99.8	2	30	70-128	
trans-1,3-Dichloropropene	5	4.89	97.8	5	4.99	99.8	2	30	75-133	
1,1,2-Trichloroethane	5	5.03	101	5	5.11	102	1.6	30	73-119	
Toluene	5	4.97	99.4	5	5.10	102	2.6	30	62-127	
1,2-Dibromoethane	5	4.93	98.6	5	5.05	101	2.4	30	74-122	
Tetrachloroethylene	5	5.01	100	5	5.10	102	1.8	30	66-124	
Chlorobenzene	5	5.04	101	5	5.15	103	2.2	30	70-119	
Ethylbenzene	5	4.85	97	5	4.95	99	2	30	70-124	
m- & p-Xylenes	10	9.89	98.9	10	10.1	101	2.1	30	61-134	
Styrene	5	4.73	94.6	5	4.87	97.4	2.9	30	73-127	
o-Xylene	5	4.87	97.4	5	4.98	99.6	2.2	30	67-125	
1,1,2,2-Tetrachloroethane	5	4.98	99.6	5	5.10	102	2.4	30	65-127	
1,3,5-Trimethylbenzene	5	4.45	89	5	4.71	94.2	5.7	30	67-130	
1,2,4-Trimethylbenzene	5	4.34	86.8	5	4.57	91.4	5.2	30	66-132	
1,3-Dichlorobenzene	5	4.62	92.4	5	4.82	96.4	4.2	30	65-130	
1,4-Dichlorobenzene	5	4.32	86.4	5	4.45	89	3	30	60-131	
1,2-Dichlorobenzene	5	4.33	86.6	5	4.57	91.4	5.4	30	63-129	
1,2,4-Trichlorobenzene	5	4.90	98	5	5.09	102	3.8	30	41-142	
Hexachlorobutadiene	5	5.57	111	5	5.72	114	2.7	30	56-138	
Propylene	5	5.03	101	5	5.15	103	2.4	30	57-136	
1,3-Butadiene	5	5.00	100	5	5.07	101	1.4	30	60-140	
Ethanol	5	6.03	121	5	6.14	123	1.8	30	59-133	
Acetone	5	4.96	99.2	5	5.15	103	3.8	30	58-128	
Isopropyl Alcohol	5	5.51	110	5	5.82	116	5.5	30	52-134	
Carbon disulfide	5	4.95	99	5	5.03	101	1.6	30	57-134	
MTBE	5	5.01	100	5	5.07	101	1.2	30	66-129	
2-Butanone	5	5.03	101	5	5.17	103	2.8	30	67-130	
Ethyl acetate	5	4.97	99.4	5	4.98	99.6	0.2	30	65-128	
n-Hexane	5	4.95	99	5	4.96	99.2	0.2	30	63-131	
Tetrahydrofuran	5	5.04	101	5	5.14	103	2	30	60-123	
Cyclohexane	5	5.00	100	5	5.00	100	0	30	70-117	
n-Heptane	5	4.99	99.8	5	5.11	102	2.4	30	69-131	
MIBK	5	4.86	97.2	5	4.95	99	1.8	30	67-130	
Methyl Butyl Ketone	5	4.41	88.2	5	4.55	91	3.1	30	60-140	
Bromoform	5	4.81	96.2	5	4.95	99	2.9	30	66-139	
4-Ethyltoluene	5	4.32	86.4	5	4.61	92.2	6.5	30	67-129	
Benzyl chloride	5	4.86	97.2	5	5.17	103	6.2	30	50-147	
Bromodichloromethane	5	5.00	100	5	5.05	101	1	30	72-128	
Dibromochloromethane	5	5.00	100	5	5.11	102	2.2	30	70-130	

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

Samples in This QC Batch: 24072687.01

QC Type: LCS and LCSD											
Parameter	LCS Spk Added	LCS Result	LCS % Rec	LCSD Spk Added	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual	
raiailletei	Spk Added	Result	70 REC	эрк Аииеи	Result	70 KEC	KPD	CUILIIIII	CUILIIIII	Quai	
Vinyl Acetate	5	4.64	92.8	5	4.77	95.4	2.8	30	56-139		

LABORATORY TERM AND QUALIFIER DEFINITION REPORT

Job ID: 24072687 Date: 8/2/2024

General Term Definition

Unadjusted Minimum Quantitation Limit MQL Back-Wt **Back Weight** Post Weight BRL Post-Wt Below Reporting Limit ppm parts per million cfu colony-forming units Pre-Wt Previous Weight Conc. Concentration Qualifier D.F. **Dilution Factor** RegLimit Regulatory Limit Front-Wt Front Weight J Estimation. Below calibration range but above MDL RLU Relative Light Unit RPD Relative Percent Difference LCS Laboratory Check Standard **RptLimit** Reporting Limit LCSD Laboratory Check Standard Duplicate

LOD Limit of detection adjusted for %M + DF SDL Sample Detection Limit

LOQLimit of Quantitation adjusted for %M + DFsurrSurrogateMSMatrix SpikeTTime

MSD Matrix Spike Duplicate TNTC Too numerous to count

MW Molecular Weight UQL Unadjusted Upper Quantitation Limit

Qualifier Definition

E Estimation. Above calibration range.

Sample Condition Checklist

A&I	3 JobID : 24072687	Date Received: 07/26/2024 Time Received: 10:	18AM		
Clie	nt Name : Permian Basin Environi	mental Lab, LP			
Ter	nperature : 22.5°C	Sample pH: NA			
The	rmometer ID : IR7	pH Paper ID : NA			
Per	servative :	Lot#:	1		
		Check Points	Yes	No	N/A
1.	Cooler Seal present and signed.			Χ	
2.	Sample(s) in a cooler.		Х		
3.	If yes, ice in cooler.			Х	
4.	Sample(s) received with chain-of-custo	dy.	Х		
5.	C-O-C signed and dated.		Х		
6.	Sample(s) received with signed sample	custody seal.		Х	
7.	Sample containers arrived intact. (If No	comment)	Х		
8.	Water Soil Liquid Slu Matrix:	dge Solid Cassette Tube Bulk Badge Food Other			
9.	Samples were received in appropriate o	ontainer(s)	Х		
10.	Sample(s) were received with Proper p	reservative			Χ
11.	All samples were tagged or labeled.		Х		
12.	Sample ID labels match C-O-C ID's.		Х		
13.	Bottle count on C-O-C matches bottles	found.	Χ		
14.	Sample volume is sufficient for analyse	s requested.	Χ		
15.	Samples were received with in the hold	time.	Χ		
16.	VOA vials completely filled.				Х
17.	Sample accepted.		Χ		
18.	Has client been contacted about sub-ou	ıt			Х
	nments : Include actions taken to resolver: Air (clear tedlar). ~DG 7/26/24	ve discrepancies/problem:			
	(3.55. 35.5.). 55.//20/21				

Brought by : FedEx

Received by: DGonzalez Check in by/date: DGonzalez / 07/26/2024

ab-s005-1123

Phone: 713-453-6060 www.ablabs.com

Page 17 of 19

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Permian Basin Environmental Lab, LP 1400 Rankin HWY Midland, Texas 79701 Phone: 432-686-7235 PBELAB_SUB_COC_V2

Project Manager:	Brent Barron														Pr	oject	Nar	ne:_		S	UBC	ONT	RAC	Τ				
•	-PBEL			arakan dari dari da araba da a	and the second of the second o			<u> </u>	<u> </u>	>						Pr	ojec	t #:_										70/0
	1400 Rankin HWY															Proje	ct L	oc:_								_,		6707
City/State/Zip:	Midland Texas 79701																PC) #:_										C:77
Telephone No:	432-661-4184				Fax No:	_									Rep	ort F	orm	at: :	x s	tand	ard] TR	RP] NPI	DES	1:49 I
Sampler Signature	N/A				e-mail:		brer	ntbar	ron@	⊋pbel	lab.co	om				_					۸۳۶	lyze Fo						Š
																				1	Alla	lyze re	<u>,,, </u>					
ORDER #:					:		_	P	resen	ation	12	Cont	ainer	s	Ma	itrix]	i										1
L/B·# (lab.use.only)		Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	ICE	HNO _{3 250 poly 1}	HCI 3 40mL VOA H-SO, 1 AMBER 500/250POLY	NaOH /Ascorbic Acid 250ML Po	NaOH/Zn	NONE SODML POLY 250 MIL POLY 500 ML WM AMBER GLASS	NONE	DW=Drinking Water SL=Sludge	GW = Groundwater S=50il/50ild NP=Non-Potable Specify Other	10-15		;								72 HOUR RUSH	STANDARD
	4G25009			7/24/2024	16:15		2							х	A	JR	х											x
																					_		_ _					_
07/28/2	Job ID:240726		MS																									
Approximation and provinces												_					1	Lab San	orato ple C	ry Co ontai	mmer ners li	its: " ntact?	an e		Œ)	N:	
BRENT BARRON	7/25/2024	5:0	0 PM	Received by:		-	- 1144							Dat	te			Lab Cus	els on tody s	cont eals	ainer(on cor	ilor/el	(s):		 		88==	
Relinquished by:	Date	Ti	me	Received by:	redex									Dat	te	T	ime	San	ple H by Sa by Co	and I mple urier	Delive r/Clien	red t Rep	? DI	IL(Y. Y FedEx) Lon	N N e Sta	
Relinquished by:	7/26/24	i O	18	Received by:	ديند								71	Dai 20	te 0/2	₹ [(ime 918	Ten Rec Adj	npera eived usted	ure 22	Jpon . 5°	Receip	t: C C Fact	or	FedEx	7	K-S	

ORIGN ID:MAFA BRENT BARRON PBE LAB .1400 RANKIN HW

SHIP DATE: 25JUL24 ACTWGT: 2.00 LB CAD: 107136846/INET4535 DIMS: 13x9x9 IN

MIDLAND, TX 79701 UNITED STATES US

BILL SENDER

SAMPLE RECEIVING A & B ENVIRONMENTAL SERVICES 10100 EAST FREEWAY SUITE 100

HOUSTON TX:77029

- 26 JUL 5:00P STANDARD OVERNIGHT

·7776 1576 0471

AB HB

77029

IAH TX-US

POUCH

Fold the p Place labe

documented loss. Maximum for items of extraordinary value is \$1,000, e.g. s and other items listed in our Service Guide. Written claims must be filed

overy cannot exceed actual

declared value. Re

jewelry, precious within strict time

other, forms of da

FedEx for any los

delay, non-delive your actual loss a

Use of this systen

claim in excess of \$100 per package, whether the result of loss, damage

Page 19 of 19

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Kimble Thrash
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: SRS 2009-039 Project Number: SRS 2009-039 Location: Lea County, NM

Lab Order Number: 4H21021

Current Certification

Report Date: 09/08/24

13000 West County Road 100 Odessa TX, 79765 Project: SRS 2009-039
Project Number: SRS 2009-039

ANALYTICAL REPORT FOR SAMPLES

Project Manager: Kimble Thrash

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EFF-1 (082024)	4H21021-01	Air	08/20/24 14:30	08-21-2024 15:00

TO-15 analysis was subcontracted to A&B Houston. Their current certification can be found here: https://www.tceq.texas.gov/assets/public/compliance/compliance_support/qa/labs/a&b_env.pdf

13000 West County Road 100

Odessa TX, 79765

Project SRS 2009-039
Project Manager: Kimble Thrash

EFF-1 (082024) 4H21021-01 (Air)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian l	Basin Envii	onmental I	ab, L.P.			
EPA TO-15									
Benzene	ND	0.110	ppm	1	P4I0409	08/23/24 10:04	08/23/24 14:30	TO-15	SUB-8
Ethylbenzene	1.33	0.0700	ppm	1	P4I0409	08/23/24 10:04	08/23/24 14:30	TO-15	SUB-8
Xylene (p/m)	3.08	0.140	ppm	1	P4I0409	08/23/24 10:04	08/23/24 14:30	TO-15	SUB-8
Xylene (o)	0.770	0.0700	ppm	1	P4I0409	08/23/24 10:04	08/23/24 14:30	TO-15	SUB-8
Toluene	8.07	0.120	ppm	1	P4I0409	08/23/24 10:04	08/23/24 14:30	TO-15	SUB-8

E Tech Environmental & Safety Solutions, Inc. \cite{black}

13000 West County Road 100

Odessa TX, 79765

Project: SRS 2009-039
Project Number: SRS 2009-039

Project Number: SRS 2009-039
Project Manager: Kimble Thrash

	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
--	---------	--------	--------------------	-------	----------------	------------------	------	----------------	-----	--------------	-------

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100

Odessa TX, 79765

Project: SRS 2009-039
Project Number: SRS 2009-039
Project Manager: Kimble Thrash

Notes and Definitions

SUB-8 Subcontract of analyte/analysis to A&B Labs Houston.

NPBEL Ct Chain of Custody was not generated at PBELAB

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Drew	Darlor			
Report Approved By:			Date:	9/8/2024	

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

PO #:

Report Format: | | Standard

Dhono:	122	696	7225

Permian Basin Environmental Lab, LP 1400 Rankin HWY

Midland, Texas 79701

Kimble Thrash Project Manager:

Project Name: SRS 2009-039

Etech Environmental & Safety Solutions, Inc. Company Name:

Project #: SRS 2009-039

P.O. Box 6228 Company Address:

Project Loc: Lea County, NM

City/State/Zip:

Midland, TX 79711

TRRP

NPDES

Page 6 of 20

Telephone No: Sampler Signature: (432) 563-2200

e-mail: kimble@etechenv.com; shane@etechenv.com; camille.bryant@plains.com; karolanne.hudgens@plains.com

lab use or	ly)	1																	Ana	lyze	For:	ir lef			2 h	
	11101001	1					-											TCLF							48, 7	
ORDER	#: 4H21021	_	_			_	_	F	resen	ration	& # of	Conta	ainers	_	Matrix	<u></u>		TOTAL		1			\perp	-	24,	
AB # (lab use only)	FIELD CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	lce	HNO ₃	H280.	NaOH	Na ₂ S ₂ O ₃	None	(%)	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid NP=Non-Potable Specify Other	1									RUSH TAT (Pre-Schedule)	Standard TAT
Ī	EFF-1 (082024)		-	8/20/2024	1430		2						Х		Air	Х			П							Х
									1	1	L														Ц	
						-		Н	1	\perp						Н	\perp		\sqcup	1	1		11	+	Н	_
		-	-			-	L	Н	+	+	-		Н			Н	+	+	\vdash	+	-	-	+	+	Н	\vdash
		+	-			\vdash	-	H	+	+	-		Н	\dashv		Н	+	+	H	+	+	+	+	+	Н	
		+				+		Н	+	+	+		Н	+		\vdash	+	+	H	+	+	-	+	+	Н	
		+				+		Н	+	+	+		H			\forall	+	+	+	+	+	+	+	+	Н	
		+				+			+	+			Н	\forall		\forall	+	+	\forall	+	+		+	+	Н	
		-				T		Н	+	+			H	\forall		\forall	+		\forall	\top			+	+	Н	
Special Ir	structions: Please invoice directly to Plains A/P 3	33 Clay	St., Ho	uston, TX 7700	2 and refere	ence	the	SRS	num	ber ir	the	Proj	ect N	Nam	e.		Sam	ple Co	y Com	ers Int	tact?		1	103	NN	
Relinquish	pate / Date / Zin/	415	ime	Received by:										Dat	te	Time	Labe	els on tody se	contain eals or eals or	ner(s)	ainer(s)		, V	NNN	
Relinquish	ned by: Dafe	T	ime	Received by:										Dat	te	Time		by San	and De apler/C rier?	lient F	Rep. ? PS	DHL	FedE	X LO	N N ne Sta	ar
Relinquish	ned by: Date	T	ime (Reseived by Pl	Blody	X.							8/	Dat		Time 5:00	Tem Reco	peratueived:	are Upo	on Re	ceipt:	Therm Factor	ometo	1)	3	

Fax No: (432) 563-2213

Special Instructions:	Please	invoice	directly	1

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Permian Basin Environmental Lab, LP 1400 Rankin HWY Midland Texas 79701 **Phone: 432-686-7235**PBELAB_SUB_COC_V2

	Project Manager:	Brent Barron						Mid	llan	d, Te	exas	797	701				Pr	ojec	t Nar	ne:_		SL	JBC	ТИС	RAC	Т				_ ?
	Company Name	PBEL																Pr	ojec	t #:_										_
	Company Address:	1400 Rankin H	HWY														. 1	Proje	ect L	oc:_										_
	City/State/Zip:	Midland Texas	s 79701																PC) #: <u>-</u>										
	Telephone No:	432-661-4184					Fax No:										Rep	ort F	orm	at:	X St	anda	rd		TR	RP	Г	NP	DES	1771
	Sampler Signature:	N/A					e-mail:	•	brei	ntbar	ron@	2pbe	lab.	com				_												727
ORDER	#:						:			Pr	eser	vation	&#</th><th>of Co</th><th>ntaine</th><th>rs</th><th>Ma</th><th>trix</th><th></th><th></th><th></th><th></th><th>Anal</th><th>yze Fo</th><th>or:</th><th></th><th></th><th></th><th></th><th></th></tr><tr><th>AB # (lab use only)</th><th></th><th></th><th></th><th>3eginning Depth</th><th>Ending Depth</th><th>Date Sampled</th><th>Time Sampled</th><th>ield Filtered</th><th>otal #. of Containers</th><th>CE</th><th>4NO_{3 250 poly 1}</th><th>HCI 3 40mL VOA H₂SO, 1 AMBER 500/250POLY</th><th>NAOH /Ascorbic Acid 250MI Po</th><th>VaOH/Zn</th><th>ONE 500ML POLY 250 MIL POLY 500 ML</th><th>NONE</th><th>DW=Drinking Water SL=Sludge</th><th>VP=Non-Potable Specify Other</th><th>TO-15</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>24 HOUR RUSH</th><th>ТАМРАКО</th></tr><tr><td>7</td><td>4</td><td>H21021</td><td></td><td>ш</td><td>ш</td><td>8/20/2024</td><td>14:30</td><td>ш</td><td>2</td><td></td><td></td><td></td><td>. 2</td><td></td><td>zs</td><td>X</td><td>A</td><td></td><td>Х</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>X</td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\perp</td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td>+</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td>igert</td><td>H</td><td>\dashv</td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td>${\mathbb H}$</td><td>H</td><td>-</td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>工</td><td></td><td>Ш</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Samı</td><td>ratory ple Co</td><td>ntaine</td><td>ers In</td><td>tact?</td><td></td><td></td><td>Υ</td><td></td><td>N</td><td></td></tr><tr><td>BRENT E</td><td>BARRON</td><td>8,</td><td>/21/2024</td><td>5:00</td><td>) PM</td><td>Received by:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Da</td><td>te</td><td>Ti</td><td>me</td><td>Labe Cust</td><td>s Free Is on c ody se ody se</td><td>ontai als on</td><td>ner(s</td><td>) :ainer(</td><td>(s)</td><td></td><td>Y Y Y</td><td></td><td>N N N</td><td></td></tr><tr><td>Relinqui</td><td>ished by:</td><td></td><td>Date</td><td>Tiı</td><td>me</td><td>Received by:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Da</td><td>te</td><td>Ti</td><td>me</td><td>Samı</td><td>ple Ha by Sam</td><td>nd De</td><td>liver</td><td>ed</td><td></td><td></td><td>Y</td><td></td><td>N N</td><td>1 L</td></tr><tr><td>Relinqui</td><td>ished by:</td><td></td><td>Date</td><td>Tiı</td><td>me</td><td>Received by:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Da</td><td>te</td><td>Ti</td><td></td><td>Tem Rece</td><td>by Cou peratu ived: sted:</td><td>rier?</td><td></td><td>UPS eceipt °C</td><td>DHI :</td><td></td><td>FedEx</td><td>Lone</td><td>e Star</td><td>FO 177 38</td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Page</td><td>€ 7 c</td><td>of 20</td><td></td></tr></tbody></table>																	

Total Number of Pages:

Laboratory Analysis Report

Job ID: 24082420

10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

Client Project Name : Subcontract

Report To: Client Name: Permian Basin Environmental Lab, LP

Attn: Brent Barron

Client Address: 1400 Rankin Hwy
City, State, Zip: Midland, Texas, 79701

P.O.#.:

Sample Collected By:

Date Collected: 08/20/24

A&B Labs has analyzed the following samples...

 Client Sample ID
 Matrix
 A&B Sample ID

 4H21021
 Air
 24082420.01

R. With

Analyst: Amit Bembde

Alla

Released By: Gobinath Rangasamy

Title: Project Manager
Date: 08/29/2024

This Laboratory is NELAP (T104704213-23-31) accredited. Effective: 04/01/2024; Expires: 03/31/2025

Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

ab-q210-0321

Date Received: 08/22/2024 10:13

Page 8 of 20
Report Number: RPT240829037

Job ID: 24082420

Date: 8/29/2024

Attn: Brent Barron

Client Name: Permian Basin Environmental Lab, LP

Project Name: Subcontract

Client Sample ID: Lab Sample ID: 4H21021 24082420.01

Date Collected: Sample Matrix: 08/20/24 Air 14:30

Time Collected: Other Information:

Test Method	Parameter/Test Description	M.W.	Results(nl)	MDL	InjVol(cc)	ug/M3	ppm	Q Date/Time
PA TO-15	Volatile Organic Compounds in Air	by GCMS						
	1,1,1-Trichloroethane	133.4	< 0.12	0.12	20CC	< 32.7	< 0.0060	08/23/24
	1,1,2,2-Tetrachloroethane	167.85	< 0.05	0.05	20CC	< 17.2	< 0.0025	08/23/24
	1,1,2-Trichloro-1,2,2-trifluoroethane	187.38	< 0.13	0.13	20CC	< 49.8	< 0.0065	08/23/24
	1,1,2-Trichloroethane	133.41	< 0.11	0.11	20CC	< 30.0	< 0.0055	08/23/24
	1,1-Dichloroethane	98.96	< 0.13	0.13	20CC	< 26.3	< 0.0065	08/23/24
	1,1-Dichloroethylene	96.94	< 0.2	0.2	20CC	< 39.6	< 0.0100	08/23/24
	1,2,4-Trichlorobenzene	181.45	< 0.09	0.09	20CC	< 33.4	< 0.0045	08/23/24
	1,2,4-Trimethylbenzene	120.19	< 0.05	0.05	20CC	< 12.3	< 0.0025	08/23/24
	1,2-Dibromoethane	187.87	< 0.1	0.1	20CC	< 38.4	< 0.0050	08/23/24
	1,2-Dichlorobenzene	147.00	< 0.09	0.09	20CC	< 27.1	< 0.0045	08/23/24
	1,2-Dichloroethane	98.96	< 0.11	0.11	20CC	< 22.3	< 0.0055	08/23/24
	1,2-Dichloropropane	112.99	< 0.12	0.12	20CC	< 27.7	< 0.0060	08/23/24
	1,2-Dichlorotetrafluoroethane	170	< 0.14	0.14	20CC	< 48.7	< 0.0070	08/23/24
	1,3,5-Trimethylbenzene	120.19	< 0.05	0.05	20CC	< 12.3	< 0.0025	08/23/24
	1,3-Butadiene	54.09	< 0.22	0.22	20CC	< 24.3	< 0.0110	08/23/24
	1,3-Dichlorobenzene	147.00	< 0.1	0.1	20CC	< 30.1	< 0.0050	08/23/24
	1,4-Dichlorobenzene	147.00	< 0.1	0.1	20CC	< 30.1	< 0.0050	08/23/24
	2-Butanone	72.11	< 0.08	0.08	20CC	< 11.8	< 0.0040	08/23/24
	4-Ethyltoluene	120	< 0.05	0.05	20CC	< 12.3	< 0.0025	08/23/24
	Acetone ²	58.08	< 0.13	0.13	20CC	< 15.4	< 0.0065	08/23/24
	Benzene	78.11	< 0.11	0.11	20CC	< 17.6	< 0.0055	08/23/24
	Benzyl chloride	126.59	< 0.05	0.05	20CC	< 12.9	< 0.0025	08/23/24
	Bromodichloromethane ¹	163.83	< 0.1	0.1	20CC	< 33.5	< 0.0050	08/23/24
	Bromoform	252.75	< 0.09	0.09	20CC	< 46.5	< 0.0045	08/23/24
	Bromomethane	94.94	< 0.14	0.14	20CC	< 27.2	< 0.0070	08/23/24
	Carbon disulfide ²	76.14	< 0.17	0.17	20CC	< 26.5	< 0.0085	08/23/24
	Carbon tetrachloride	153.82	< 0.1	0.1	20CC	< 31.5	< 0.0050	08/23/24
	Chlorobenzene	112.56	2.79	0.11	20CC	642.2	0.1395	08/23/24
	Chloroethane	65.42	< 0.18	0.18	20CC	< 24.1	< 0.0090	08/23/24
	Chloroform	119.38	< 0.12	0.12	20CC	< 29.3	< 0.0060	08/23/24
	Chloromethane	50.49	< 0.16	0.16	20CC	< 16.5	< 0.0080	08/23/24
	cis-1,2-Dichloroethylene	96.94	< 0.14	0.14	20CC	< 27.8	< 0.0070	08/23/24
	cis-1,3-Dichloropropene	110.97	< 0.08	0.08	20CC	< 18.2	< 0.0040	08/23/24
	Cyclohexane	84.16	8.92	0.1	20CC	1535.2	0.4460	08/23/24
	Dibromochloromethane ²	208.29	< 0.1	0.1	20CC	< 42.6	< 0.0050	08/23/24
	Dichlorodifluoromethane	120	< 0.12	0.12	20CC	< 29.4	< 0.0060	08/23/24
	Ethanol ²	46.07	< 0.26	0.26	20CC	< 24.5	< 0.0130	08/23/24
	Ethyl acetate ²	88.11	< 0.12	0.12	20CC	< 21.6	< 0.0060	08/23/24
	Ethylbenzene	106.17	1.33	0.07	20CC	288.8	0.0665	08/23/24
	Hexachlorobutadiene	258	< 0.06	0.06	20CC	< 31.7	< 0.0030	08/23/24

ab-q212-0321

Job ID: 24082420

Date: 8/29/2024

Attn: Brent Barron

10757.7

Client Name: Permian Basin Environmental Lab, LP

Project Name: Subcontract

Client Sample ID: Lab Sample ID: 4H21021 24082420.01

Date Collected: Sample Matrix: 08/20/24 Air Time Collected: 14:30

Other Information:

Test Method	Parameter/Test Description	M.W.	Results(nl)	MDL	InjVol(cc)	ug/M3	ppm	Q	Date/Time
EPA TO-15	Volatile Organic Compounds in Air b	y GCMS							
	Isopropyl Alcohol ²	60.1	< 0.07	0.07	20CC	< 8.6	< 0.0035		08/23/24
	m- & p-Xylenes	106.17	3.08	0.14	20CC	668.7	0.1540		08/23/24
	Methyl Butyl Ketone ²	100	< 0.08	0.08	20CC	< 16.4	< 0.0040		08/23/24
	Methylene chloride	84.93	< 0.14	0.14	20CC	< 24.3	< 0.0070		08/23/24
	MIBK	100.16	< 0.07	0.07	20CC	< 14.3	< 0.0035		08/23/24
	MTBE	88.15	< 0.08	0.08	20CC	< 14.4	< 0.0040		08/23/24
	n-Heptane	100.21	0.58	0.12	0.5CC	4754.3	1.1600		08/22/24
	n-Hexane	86.18	6.7	0.16	20CC	1180.8	0.3350		08/23/24
	o-Xylene	106.17	0.77	0.07	20CC	167.2	0.0385		08/23/24
	Propylene	42.08	< 0.19	0.19	20CC	< 16.4	< 0.0095		08/23/24
	Styrene	104	< 0.07	0.07	20CC	< 14.9	< 0.0035		08/23/24
	Tetrachloroethylene	165.83	< 0.11	0.11	20CC	< 37.3	< 0.0055		08/23/24
	Tetrahydrofuran ²	72.11	< 0.06	0.06	20CC	< 8.8	< 0.0030		08/23/24
	Toluene	92.14	8.07	0.12	20CC	1520.6	0.4035		08/23/24
	trans-1,2-Dichloroethylene	96.94	< 0.11	0.11	20CC	< 21.8	< 0.0055		08/23/24
	trans-1,3-Dichloropropene	110.97	< 0.08	0.08	20CC	< 18.2	< 0.0040		08/23/24
	Trichloroethylene	131.39	< 0.18	0.18	20CC	< 48.4	< 0.0090		08/23/24
	Trichlorofluoromethane	137.37	< 0.14	0.14	20CC	< 39.3	< 0.0070		08/23/24
	Vinyl Acetate	86.09	< 0.06	0.06	20CC	< 10.6	< 0.0030		08/23/24
	Vinyl Chloride	62.5	< 0.21	0.21	20CC	< 26.8	< 0.0105		08/23/24

ab-q212-0321

EPA TO-- 15 Sample Analysis -- GC/MS

Lab ID	24082420.01
Date Acquired	23 Aug 2024 10:04 am
Analyst	AVBEMBDE
Sample Run ID	X082213.D
tedlar bag (cc)	1000
Injection Volume (cc)	20

Compound Name	CAS#	R.T.	M.W	Nanoliters	Vol.(L)	ug/l	ppm
Cyclopentane, methyl-	96-37-7	8.92	84	5.96	0.02	1.024	0.298
Hexane, 2-methyl-	591-76-4	10.4	100	8.59	0.02	1.757	0.430
Hexane, 3-methyl-	589-34-4	10.75	100	11.96	0.02	2.446	0.598
Cyclopentane, 1.3-dimethyl-	2453-00-1	11.17	98	7.05	0.02	1.413	0.353
Isopropylcyclobutane	872-56-0	11.28	98	9.58	0.02	1.920	0.479
Cyclohexane, methyl-	96-37-7	12.6	84	39.82	0.02	6.840	1.991
Cyclopentane, ethyl-	1640-89-7	13.026	98	8.1	0.02	1.623	0.405
Heptane, 2-methyl-	592-27-8	14.26	114	11.41	0.02	2.660	0.571
Heptane, 3-methyl-	589-81-1	14.56	114	7.67	0.02	1.788	0.384
Cyclohexane, 1,3-dimethyl-, cis	638-04-0	14.763	112	12.42	0.02	2.845	0.621
Octane	111-65-9	15.51	114	17.13	0.02	3.993	0.857

TIC* REPORT

A&B Job Sample ID: METHOD BLANK

Analysis Date: 8/22/2024

est Method	Parameter/Test Description	CAS#	RT	MW	Reading(nI)**	ppm (v/v)	μg/m³	Analys
O-15	None							AVB
				I				1

^{*} TIC: Tentatively identified compounds.

Phone: 713-453-6060 www.ablabs.com

^{**}The values are estimated relative to the nearest internal standards and only major peaks are reported.

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

Samples in This QC Batch: 24082420.01

QC Type: Method Blank						
Parameter	CAS #	Result	Units	D.F.	RptLimit	Qual
trans-1,2-Dichloroethylene	156-60-5	BRL	nL	1	0.5	
Dichlorodifluoromethane	75-71-8	BRL	nL	1	0.5	
Chloromethane	74-87-3	BRL	nL	1	0.5	
1,2-Dichlorotetrafluoroetha	76-14-2	BRL	nL	1	0.5	
Vinyl Chloride	75-01-4	BRL	nL	1	0.21	
Bromomethane	74-83-9	BRL	nL	1	0.5	
Chloroethane	75-00-3	BRL	nL	1	0.5	
Trichlorofluoromethane	75-69-4	BRL	nL	1	0.5	
1,1-Dichloroethylene	75-35-4	BRL	nL	1	0.5	
Methylene chloride	75-09-2	BRL	nL	1	0.5	
1,1,2-Trichloro-1,2,2-trifluo	76-13-1	BRL	nL	1	0.5	
1,1-Dichloroethane	75-34-3	BRL	nL	1	0.5	
cis-1,2-Dichloroethylene	156-59-2	BRL	nL	1	0.5	
Chloroform	67-66-3	BRL	nL	1	0.5	
1,2-Dichloroethane	107-06-2	BRL	nL	1	0.2	
1,1,1-Trichloroethane	71-55-6	BRL	nL	1	0.5	
Benzene	71-43-2	BRL	nL	1	0.2	
Carbon tetrachloride	56-23-5	BRL	nL	1	0.5	
1,2-Dichloropropane	78-87-5	BRL	nL	1	0.5	
Trichloroethylene	79-01-6	BRL	nL	1	0.5	
cis-1,3-Dichloropropene	10061-01-5	BRL	nL	1	0.5	
crans-1,3-Dichloropropene	10061-01-5	BRL	nL	1	0.5	
	79-00-5	BRL	nL	1	0.5	
1,1,2-Trichloroethane Toluene	108-88-3	BRL			0.5	
			nL	1		
1,2-Dibromoethane	106-93-4	BRL	nL	1	0.5	
Tetrachloroethylene	127-18-4	BRL	nL	1	0.5	
Chlorobenzene	108-90-7	BRL	nL	1	0.5	
Ethylbenzene	100-41-4	BRL	nL	1	0.5	
m- & p-Xylenes	179601-23-1	BRL	nL	1	1	
Styrene	100-42-5	BRL	nL	1	0.5	
o-Xylene	95-47-6	BRL	nL	1	0.5	
1,1,2,2-Tetrachloroethane	79-34-5	BRL	nL	1	0.5	
1,3,5-Trimethylbenzene	108-67-8	BRL	nL	1	0.5	
1,2,4-Trimethylbenzene	95-63-6	BRL	nL	1	0.5	
1,3-Dichlorobenzene	541-73-1	BRL	nL	1	0.5	
1,4-Dichlorobenzene	106-46-7	BRL	nL	1	0.5	
1,2-Dichlorobenzene	95-50-1	BRL	nL	1	0.5	
1,2,4-Trichlorobenzene	120-82-1	BRL	nL	1	0.5	
Hexachlorobutadiene	87-68-3	BRL	nL	1	0.5	
1,3-Butadiene	106-99-0	BRL	nL	1	0.22	
2-Butanone	78-93-3	BRL	nL	1	0.5	
1-Ethyltoluene	622-96-8	BRL	nL	1	0.5	

Refer to the Definition page for terms.

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

 $\textbf{Samples in This QC Batch} \ : \quad 24082420.01$

QC Type: Method Blank	(
Parameter	CAS #	Result	Units	D.F.	RptLimit	Qual
Acetone	67-64-1	BRL	nL	1	0.5	
Benzyl chloride	100-44-7	BRL	nL	1	0.5	
Bromodichloromethane	75-27-4	BRL	nL	1	0.5	
Bromoform	75-25-2	BRL	nL	1	0.5	
Carbon disulfide	75-15-0	BRL	nL	1	0.5	
Cyclohexane	110-82-7	BRL	nL	1	0.5	
Dibromochloromethane	124-48-1	BRL	nL	1	0.5	
Ethanol	64-17-5	BRL	nL	1	0.5	
Ethyl acetate	141-78-6	BRL	nL	1	0.5	
n-Heptane	142-82-5	BRL	nL	1	0.5	
n-Hexane	110-54-3	BRL	nL	1	0.5	
Isopropyl Alcohol	67-63-0	BRL	nL	1	0.5	
Methyl Butyl Ketone	591-78-6	BRL	nL	1	0.5	
MIBK	108-10-1	BRL	nL	1	0.5	
MTBE	1634-04-4	BRL	nL	1	0.5	
Propylene	115-07-1	BRL	nL	1	0.5	
Tetrahydrofuran	109-99-9	BRL	nL	1	0.5	
Vinyl Acetate	108-05-4	BRL	nL	1	0.5	

QC Type: LCS and LCS	D									
	LCS	LCS	LCS	LCSD	LCSD	LCSD		RPD	%Recovery	
Parameter	Spk Added	Result	% Rec	Spk Added	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
trans-1,2-Dichloroethylene	5	5.22	104	5	5.30	106	1.5	30	70-130	
Dichlorodifluoromethane	5	5.09	102	5	5.16	103	1.4	30	59-134	
Chloromethane	5	5.00	100	5	5.03	101	0.6	30	55-132	
1,2-Dichlorotetrafluoroetha	5	4.94	98.8	5	4.95	99	0.2	30	63-142	
Vinyl Chloride	5	4.94	98.8	5	5.04	101	2	30	61-139	
Bromomethane	5	4.96	99.2	5	4.92	98.4	0.8	30	63-134	
Chloroethane	5	4.85	97	5	4.98	99.6	2.6	30	63-127	
Trichlorofluoromethane	5	5.00	100	5	5.09	102	1.8	30	62-130	
1,1-Dichloroethylene	5	5.09	102	5	5.07	101	0.4	30	61-133	
Methylene chloride	5	4.94	98.8	5	4.97	99.4	0.6	30	62-117	
1,1,2-Trichloro-1,2,2-trifluo	5	4.97	99.4	5	5.00	100	0.6	30	60-131	
1,1-Dichloroethane	5	5.05	101	5	5.13	103	1.6	30	68-126	
cis-1,2-Dichloroethylene	5	5.20	104	5	5.22	104	0.4	30	70-131	
Chloroform	5	5.10	102	5	5.15	103	1	30	68-134	
1,2-Dichloroethane	5	5.17	103	5	5.28	106	2.1	30	65-132	
1,1,1-Trichloroethane	5	5.02	100	5	5.10	102	1.6	30	68-132	
Benzene	5	5.09	102	5	5.14	103	1	30	69-119	
Carbon tetrachloride	5	4.99	99.8	5	5.07	101	1.6	30	68-132	

ab-q213-0321

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

 $\textbf{Samples in This QC Batch} \ : \quad 24082420.01$

QC Type: LCS and LCSI	D									
Parameter	LCS Spk Added	LCS Result	LCS % Rec	LCSD Spk Added	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qua
1,2-Dichloropropane	5	5.09	102	5	5.16	103	1.4	30	69-123	
Trichloroethylene	5	5.15	103	5	5.23	105	1.5	30	71-123	
cis-1,3-Dichloropropene	5	5.25	105	5	5.42	108	3.2	30	70-128	
trans-1,3-Dichloropropene	5	5.25	105	5	5.42	108	3.2	30	75-133	
1,1,2-Trichloroethane	5	5.14	103	5	5.22	104	1.5	30	73-119	
Toluene	5	5.24	105	5	5.36	107	2.3	30	62-127	
1,2-Dibromoethane	5	5.24	105	5	5.39	108	2.8	30	74-122	
Tetrachloroethylene	5	5.08	102	5	5.22	104	2.7	30	66-124	
Chlorobenzene	5	5.41	108	5	5.34	107	1.3	30	70-119	
Ethylbenzene	5	5.74	115	5	5.57	111	3	30	70-124	
m- & p-Xylenes	10	11.4	114	10	11.0	110	3.7	30	61-134	
Styrene	5	5.98	120	5	5.76	115	3.7	30	73-127	
o-Xylene	5	5.85	117	5	5.41	108	7.8	30	67-125	
1,1,2,2-Tetrachloroethane	5	5.91	118	5	5.53	111	6.6	30	65-127	
1,3,5-Trimethylbenzene	5	6.45	129	5	5.76	115	11.3	30	67-130	
1,2,4-Trimethylbenzene	5	6.37	127	5	5.55	111	13.8	30	66-132	
1,3-Dichlorobenzene	5	6.01	120	5	5.54	111	8.1	30	65-130	
1,4-Dichlorobenzene	5	5.77	115	5	5.35	107	7.6	30	60-131	
1,2-Dichlorobenzene	5	6.23	125	5	5.62	112	10.3	30	63-129	
1,2,4-Trichlorobenzene	5	4.81	96.2	5	4.86	97.2	1	30	41-142	
Hexachlorobutadiene	5	5.60	112	5	5.64	113	0.7	30	56-138	
Propylene	5	5.21	104	5	5.25	105	0.8	30	57-136	
1,3-Butadiene	5	5.07	101	5	5.19	104	2.3	30	60-140	
Ethanol	5	6.48	130	5	6.41	128	1.1	30	59-133	
Acetone	5	5.23	105	5	5.28	106	1	30	58-128	
Isopropyl Alcohol	5	5.67	113	5	6.03	121	6.2	30	52-134	
Carbon disulfide	5	4.99	99.8	5	5.01	100	0.4	30	57-134	
MTBE	5	6.09	122	5	6.16	123	1.1	30	66-129	
2-Butanone	5	6.11	122	5	6.20	124	1.5	30	67-130	
Ethyl acetate	5	6.11	122	5	6.20	124	1.5	30	65-128	
n-Hexane	5	5.16	103	5	5.13	103	0.6	30	63-131	
Tetrahydrofuran	5	6.37	127	5	6.37	127	0	30	60-123	L4
Cyclohexane	5	5.07	101	5	5.13	103	1.2	30	70-117	
n-Heptane	5	5.24	105	5	5.33	107	1.7	30	69-131	
MIBK	5	5.19	104	5	5.34	107	2.8	30	67-130	
Methyl Butyl Ketone	5	5.21	104	5	5.41	108	3.8	30	60-140	
Bromoform	5	5.68	114	5	5.48	110	3.6	30	66-139	
4-Ethyltoluene	5	6.44	129	5	5.78	116	10.8	30	67-129	
Benzyl chloride	5	5.79	116	5	5.53	111	4.6	30	50-147	
Bromodichloromethane	5	5.07	101	5	5.18	104	2.2	30	72-128	
Dibromochloromethane	5	5.21	101	5	5.33	107	2.3	30	70-130	

ab-q213-0321

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

Samples in This QC Batch : 24082420.01

QC Type:	LCS and LCS	D									
Parameter		LCS Spk Added	LCS Result	LCS % Rec	LCSD Spk Added	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
Vinyl Acetat	te	5	5.04	101	5	5.18	104	2.7	30	56-139	- Qua.

ab-q213-0321

LABORATORY TERM AND QUALIFIER DEFINITION REPORT

Job ID: 24082420 Date: 8/29/2024

General Term Definition

Back-Wt **Back Weight** Post-Wt Post Weight BRL Below Reporting Limit ppm parts per million cfu Previous Weight colony-forming units Pre-Wt Conc. Qualifier Concentration D.F. **Dilution Factor** RegLimit Regulatory Limit

Front-Wt Front Weight RLU Relative Light Unit J Estimation. Below calibration range but above MDL RPD Relative Percent Difference

LCS Laboratory Check Standard **RptLimit** Reporting Limit

LCSD SDL Laboratory Check Standard Duplicate Sample Detection Limit

LOD Limit of detection adjusted for %M + DF SQL Below calibration range but above MDL

LOQ Limit of Quantitation adjusted for %M + DF surr Surrogate MS Matrix Spike Time Т

MSD **TNTC** Matrix Spike Duplicate Too numerous to count

MWUQL Unadjusted Upper Quantitation Limit Molecular Weight

MQL Unadjusted Minimum Quantitation Limit

Qualifier Definition

L4 Associated LCS and/or LCSD recovery is out of laboratory statistical acceptance limits but within method control limits for flagged

parameter.

Sample Condition Checklist

Α&	3 JobID : 24082420	Date Received: 08/22/2024 Time Received: 10:	13AM		
Clie	ent Name : Permian Basin Environ	mental Lab, LP			
Ter	nperature : 21.8°C	Sample pH: N/A			
The	ermometer ID : 230292880	pH Paper ID: N/A			
Pe	servative :	Lot#:			
		Check Points	Yes	No	N/A
1.	Cooler Seal present and signed.				Х
2.	Sample(s) in a cooler.			Х	
3.	If yes, ice in cooler.				Х
4.	Sample(s) received with chain-of-custo	ody.	Х		
5.	C-O-C signed and dated.		Х		
6.	Sample(s) received with signed sample	custody seal.		Χ	
7.	Sample containers arrived intact. (If N	o comment)	Х		
8.	Water Soil Liquid Slu Matrix:	dge Solid Cassette Tube Bulk Badge Food Other			
9.	Samples were received in appropriate		Х		
10.	Sample(s) were received with Proper p	reservative			Х
11.	All samples were tagged or labeled.		Х		
12.	Sample ID labels match C-O-C ID's.		Х		
13.	Bottle count on C-O-C matches bottles	found.	Х		
14.	Sample volume is sufficient for analyse	s requested.	Х		
15.	Samples were received with in the hold	I time.	Х		
16.	VOA vials completely filled.				Χ
17.	Sample accepted.		Х		
18.	Has client been contacted about sub-o	ut			Χ
	mments: Include actions taken to resolute: Air. Received 2 clear tedlar bags. ~MC 0				
Cui	S. F. M. Neccived 2 clear tediar bugs. Whe o	o,, _o			

Brought by $\;:\;\;$ FedEx

Received by: MClotfelter Check in by/date: MClotfelter / 08/22/2024

ab-s005-1123

Phone: 713-453-6060 www.ablabs.com

Page 18 of 20

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Permian Basin Environmental Lab, LP

Phone: 432-686-7235

Page 19 of 20

	Project Manager:	Brent Barro	nn.									as 7					D.	roine	st Nia	me:						OC_V	'2			
	Company Name	PBEL	211				Job		D:	2	40)8/	24	20	12		rı	-												- 1000
	Company Address:	1400 Rank	in HWY																	- _:20-										-
	City/State/Zip:	Midland Te	exas 79701				08/22/2024	Pe	rml	en B	aair	n Env	المصا	ne /	8MA				P	D #: _					_	·				
	Telephone No:	432-661-41	184				Fax No:										Rep	ort	Forn	nat:)	C S	tanda	ırd	E	TF	≀RP	[NF	PDE	s
	Sampler Signature:	N/A					e-mail:		bre	ntba	illoi	n@pt	elab.	.com																-
	. Lips and Total Angels The problem of the																						Ana	lyze Fo	r:				-	
ORDER						· · · · · · · · · · · · · · · · · · ·	;		_	ľ	Prese	ervatio	-		ntaine	ıs	Ma	itrix]											
IAB # (lab use only)				Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	ICE	HNO _{3 250 poly 1}	١٥I	H ₂ SO ₄ 1 AMBER 500/250POLY	NaOH/Zn	NONE SOOML POLY 250 MIL POLY 500 ML WIM AMBER GLASS	NONE	DW=Drinking Water SL=Sludge	GW * Groundwater S=soil/Soild NP=Non-Potable Specify Other											24 HOUR RUSH	STANDARD
OIAB	4	H21021				8/20/2024	14:30		2							х	Α	IR	х										Ī	х
																													1	<u> </u>
							*									\			-						+		\dashv		1	+
				 				\vdash					-	-	_	\vdash		<u> </u>	╂─	 	\perp			+	+	++	\dashv	+	十	╁
														\dagger					╁			╁		\dashv	+	\Box	+	+	+	\dagger
																										囯	士		I	
· · · · · · · · · · · · · · · · · · ·	odratin se sje serveter de	·			· · · · · · · · · · · · · · · · · · ·	·····								ķ	· • · · · ·					Samo	le Co	ntain	ers In	tact?			M	7	N	
RENT E	BARRON		8/21/2024	5:00	PM	Received by:				•						Dat	e	T	ime	VOCs Label Custo	Free s on c dy se	of He ontal als or	adsp ner(s i cont	ice?) ainer((s) ₃ :		TO Y		N N B	, if
Relinqui	shed by: FeSEP		Date 8/22/24	Tii		Received by:										Dat					v Cou	ipier/i rier?	Lilent	Kep: ! UPS	ĎH	文 L	Y Y FedE	i Lär	N N N ne St	ar,
Relinqui	shed by:		Date	Tir	ne	Received by:							5 55 6 55 5 50		97	Dat	e /-/}		ime 013	Temp	eratu	re Ur	on R	eceipt	3.20	200	دسالا را انتهار والسياد و		16 Bu	

ORIGIN ID:MAFA BRENT BARRON PBE LAB 1400 RANKIN HWY

(432) 686-7235

SHIP DATE: 21AUG24 ACTWGT: 2.00 LB CAD: 107136846/INET4535 DIMS: 13x9x9 IN

MIDLAND, TX 79701 UNITED STATES US

BILL SENDER

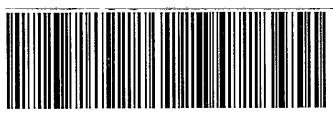
SAMPLE RECEIVING A & B ENVIRONMENTAL SERVICES -10100 EAST FREEWAY SUITE 100

583J6/A12D/9AE3

HOUSTON TX 77029
(713) 453-6060
NV:
PO:

DEPT:

THU - 22 AUG 5:00P STANDARD OVERNIGHT


7781 1002 6695

ab Hbya

77029

TX-US

IAH

After printing this label:
CONSIGNEE COPY - PLEASE PLACE IN FRONT OF POU
1 Fold the printed page along the horizontal line.
2. Place label in shipping pouch and affix it to your shipment.

ns found in the current FedEx Service Guide apply. Your right to recover from ion, unless you declare a higher value, pay an additional charge, document covery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$1,000, e.g. e package, loss of sales, income interest, profit, attorney's fees, costs, and s and other items listed in our Service Guide. Written claims must be filed claim in excess of \$100 per package, whether the result of loss, damage, to the service conditions in the current FedEx Service Guide, available on 🖟 ill not be responsible for an n'd file a timely claim. Limitatiộ misdelivery, or misinforma including intrinsic value of th etals, negotiable instrumen within strict time limits, see current FedEx Servi donstitutes your agreement Use of this system fedex.com. FedEx delay, non-delive your actual loss a FedEx for any loss other forms of da declared value. R jewelry, precious

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Kimble Thrash
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: SRS 2009-039 Project Number: SRS 2009-039

Location: Lea County, NM

Lab Order Number: 4I30007

Current Certification

Report Date: 10/11/24

E Tech Environmental & Safety Solutions, Inc. [1] 13000 West County Road 100

Odessa TX, 79765

Project: SRS 2009-039
Project Number: SRS 2009-039
Project Manager: Kimble Thrash

ANALYTICAL REPORT FOR SAMPLES

	Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
_	EFF-1 (092924)	4I30007-01	Air	09/29/24 15:30	09-30-2024 12:21

TO-15 analysis was subcontracted to A&B Houston. Their current certification can be found here: https://www.tceq.texas.gov/assets/public/compliance/compliance_support/qa/labs/a&b_env.pdf

13000 West County Road 100 Odessa TX, 79765 Project: SRS 2009-039
Project Number: SRS 2009-039

Project Manager: Kimble Thrash

EFF-1 (092924) 4I30007-01 (Air)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian I	Basin Envi	onmental I	ab, L.P.			
EPA TO-15									
Benzene	ND	0.200	ppm	1	P4J1103	10/01/24 00:00	10/01/24 00:00	TO-15	SUB-8
Ethylbenzene	1.39	0.500	ppm	1	P4J1103	10/01/24 00:00	10/01/24 00:00	TO-15	SUB-8
Xylene (p/m)	3.31	1.00	ppm	1	P4J1103	10/01/24 00:00	10/01/24 00:00	TO-15	SUB-8
Xylene (o)	0.770	0.500	ppm	1	P4J1103	10/01/24 00:00	10/01/24 00:00	TO-15	SUB-8
Toluene	8.51	0.500	ppm	1	P4J1103	10/01/24 00:00	10/01/24 00:00	TO-15	SUB-8

13000 West County Road 100

Odessa TX, 79765

Project: SRS 2009-039 et Number: SRS 2009-039

Project Number: SRS 2009-039 Project Manager: Kimble Thrash

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100

Odessa TX, 79765

Project: SRS 2009-039
Project Number: SRS 2009-039
Project Manager: Kimble Thrash

Notes and Definitions

SUB-8 Subcontract of analyte/analysis to A&B Labs Houston.

NPBEL CC Chain of Custody was not generated at PBELAB

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Drew	Durior			
Report Approved By:			Date:	10/11/2024	

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Received by

CHAIN OF	CUSTODY RECORD	AND ANAI	YSIS REQUEST
----------	----------------	----------	--------------

Date

Time

REQUEST	L	CH:	W:	
rmian Basin Environmen	tal Lab, LP		Phone: 432-686-7235	

1400 Rankin HWY

Midland, Texas 79701

Project Name: SRS 2009-039

Project #: SRS 2009-039

Project Loc: Lea County, NM

PO #:

Report Format: V Standard

NPDES

TRRP

Page 6 of 20

Telephone No:

Sampler Signature:

City/State/Zip:

Company Name:

Company Address:

(432) 563-2200

Kimble Thrash

P.O. Box 6228

Midland, TX 79711

Etech Environmental & Safety Solutions, Inc.

Fax No: (432) 563-2213

e-mail: kimble@etechenv.com; shane@etechenv.com; camille.bryant@plains.com; karolanne.hudgens@plains.com

by Courier?

by Sampler/Client Rep. ?

Temperature Upon Receipt:

UPS

(lab use																			Anal	yze	For:				2 h	T
ORDER	#: 4I30C07								Prese	ervatio	n & #	of Co	ntaine	rs	Matrix			CLP:	1	T	П			П	48,7	l
LAB # (lab use only)	FIELD CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	Ice	03			NBOH NBON NBON		(Specify)	DW=Drinking Water SL=Studge GW = Groundwater S=Soil/Solid NP=Non-Potable Specify Other	BTEX 8260 B									RUSH TAT (Pre-Schedule) 24,	PERSONAL PROPERTY AND PROPERTY
-	EFF-1 (092924)		-	9/29/2024	1530	I	2				T		X		Air	Χ			I						1	t
						+		H	\dashv	+	+	+	+			-	+	H	+	-		+	\sqcup	1	+	-
											1					1		H	+		H	+	H	+	+	
						-			4	-	+	-						-	1					1	T	
						+		+	+	+	+	+	+	H		+	+	+	+	+	H	+	Н	+	+	-
-											I												Ħ	\pm	\dagger	-
						-	Н	+	+	+	+	+	-	H		+			-				П			-
ecial In	structions: Please invoice directly to Plains A/P 33:	Tin	1e	Received by:	and refere	nce	the S	RS	num	ber i	n the	e Pro	ject	Name		Time	Laborat Sample VOCs F Labels o	Conta ree of	Head	Intac	ct?		/	÷)	N N N	
linquishe	d by:	12 Tim	14	Received by:		_	_				_		-	Dat		lme	Custody Custody Sample	seals	on c	ontair	(S)	j	15	444	NNN	

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Permian Basin Environmental Lab, LP 1400 Rankin HWY Midland Texas 79701 **Phone: 432-686-7235**PBELAB_SUB_COC_V2

	Project Manager:	Brent Barron					Mic	llan	id, T	еха	ıs 7	970	1				Pr	ojec	t Na	me:			SUI	всс	TNC	RAC	Т				
	Company Name	PBEL																Pi	rojed	ct #:											
	Company Address:	1400 Rankin HWY															ı	Proj	ect l	_oc:											
	City/State/Zip:	Midland Texas 79701																	P	O #:											
	Telephone No:	432-661-4184				Fax No:											Rep	ort I	orn	nat:	Χ	Star	ndar	d		TR	RP		□ NI	PDES	;
	Sampler Signature:	N/A				e-mail:		bre	ntba	irron	ı@pl	oela	b.co	m				_													
																				1	T .	1 1	1	Analy	yze Fo	or:	1		$\overline{}$	-	
ORDER	#:					:			P	rese	rvatio	on &	# of	Cont	ainer	S	Ma	trix	-												
LAB # (lab use only)	41:	30007-01	Beginning Depth	Ending Depth	9/29/2024	Time Sampled	Field Filtered	T Total #. of Containers	ICE	HNO _{3 250 poly 1}	HCI 3 40mL VOA	H ₂ SO ₄ 1 AMBER 500/250POLY	NaOH /Ascorbic Acid 250ML Po	NaOH/Zn	NONE 500ML POLY 250 MIL POLY 500 ML WM AMBER GLASS	X NONE	DW=Drinking Water SL=Sludge		X T0-15	1									<u>-</u>	24 HOUR RUSH	X STANDARD
																													+	+	H
																															П
Please a	add tressa@pbelab.co	m to the WOA. Thank you.																		San	nple	Cont	ainer	s Int	act?				Y Y	N N	
BRENT E	BARRON	9/30/2024	5:00) PM	Received by:											Dat	e	Т	ime	Lab Cus	els o	n cor	ntain s on	er(s) conta	ainer	(s)		,	Y Y	N N	
Relinqui	shed by:	Date	Ti	me	Received by:											Dat	e	Т	ime	San	nple by S	Hand Sampl	l Deli er/Cl	vere ient l	d Rep. ?			١		N N	
Relinqui	ished by:	Date	Ti	me	Received by:											Dat	е	Т	ime	Rec	by C nper ceive uste	d:	err Upo	on Re	UPS eceipt °(°(or		x Lo		
																												Pag	ge 7	of 20	0

Total Number of Pages:

Laboratory Analysis Report

Job ID: 24100028

10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

Client Project Name : Subcontract

Report To: Client Name: Permian Basin Environmental Lab, LP

Attn: Brent Barron

Client Address: 1400 Rankin Hwy
City, State, Zip: Midland, Texas, 79701

P.O.#.: Sample Collected By:

Date Collected: 09/29/24

A&B Labs has analyzed the following samples...

 Client Sample ID
 Matrix
 A&B Sample ID

 4I30007-01
 Air
 24100028.01

R. With

Analyst: Juan Gonzalez

Released By: Gobinath Rangasamy
Title: Project Manager

Date: 10/08/2024

This Laboratory is NELAP (T104704213-23-31) accredited. Effective: 04/01/2024; Expires: 03/31/2025

Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

ab-q210-0321

Date Received: 10/01/2024 09:59

Report Number: RPT24

Job ID: 24100028

Date: 10/8/2024

Attn: Brent Barron

Client Name : Permian Basin Environmental Lab, LP

Project Name: Subcontract

Client Sample ID: 4I30007-01 Lab Sample ID: 24100028.01

Date Collected: 09/29/24 Sample Matrix: Air

Time Collected: 15:30

Other Information:

Test Method	Parameter/Test Description	M.W.	Results(nl)	RptLimit(nl)	IniVol(cc)	ug/M3	ppm	Q	Date/Time
	· ·		. (000100(111)	· cpc=ime(iii)	211,101(00)	39/113	Phili	٠	zatoj ililio
EPA TO-15	Volatile Organic Compounds in Air	-	DDI	0.5	2000	. 120 1	- 0.0350		10/01/24
	1,1,1-Trichloroethane	133.4	BRL	0.5	20CC		< 0.0250		10/01/24
	1,1,2,2-Tetrachloroethane	167.85	BRL	0.5	20CC		< 0.0250		10/01/24
	1,1,2-Trichloro-1,2,2-trifluoroethane	187.38	BRL BRL	0.5	20CC 20CC		< 0.0250		10/01/24
	1,1,2-Trichloroethane	133.41		0.5			< 0.0250		10/01/24
	1,1-Dichloroethane	98.96	BRL	0.5	20CC		< 0.0250		10/01/24
	1,1-Dichloroethylene	96.94	BRL	0.5	20CC		< 0.0250		10/01/24
	1,2,4-Trichlorobenzene	181.45	BRL	0.5	20CC		< 0.0250		10/01/24
	1,2,4-Trimethylbenzene	120.19	BRL	0.5	20CC		< 0.0250		10/01/24
	1,2-Dibromoethane	187.87	BRL	0.5	20CC		< 0.0250		10/01/24
	1,2-Dichlorobenzene	147.00	BRL	0.5	20CC		< 0.0250		10/01/24
	1,2-Dichloroethane	98.96	BRL	0.2	20CC		< 0.0100		10/01/24
	1,2-Dichloropropane	112.99	BRL	0.5	20CC		< 0.0250		10/01/24
	1,2-Dichlorotetrafluoroethane	170	BRL	0.5	20CC		< 0.0250		10/01/24
	1,3,5-Trimethylbenzene	120.19	BRL	0.5	20CC		< 0.0250		10/01/24
	1,3-Butadiene	54.09	BRL	0.22	20CC		< 0.0110		10/01/24
	1,3-Dichlorobenzene	147.00	BRL	0.5	20CC		< 0.0250		10/01/24
	1,4-Dichlorobenzene	147.00	BRL	0.5	20CC		< 0.0250		10/01/24
	2-Butanone	72.11	BRL	0.5	20CC		< 0.0250		10/01/24
	4-Ethyltoluene	120	BRL	0.5	20CC		< 0.0250		10/01/24
	Acetone ²	58.08	BRL	0.5	20CC		< 0.0250		10/01/24
	Benzene	78.11	BRL	0.2	20CC		< 0.0100		10/01/24
	Benzyl chloride	126.59	BRL	0.5	20CC		< 0.0250		10/01/24
	Bromodichloromethane ¹	163.83	BRL	0.5	20CC		< 0.0250		10/01/24
	Bromoform	252.75	BRL	0.5	20CC		< 0.0250		10/01/24
	Bromomethane	94.94	BRL	0.5	20CC		< 0.0250		10/01/24
	Carbon disulfide ²	76.14	BRL	0.5	20CC		< 0.0250		10/01/24
	Carbon tetrachloride	153.82	BRL	0.5	20CC		< 0.0250		10/01/24
	Chlorobenzene	112.56	BRL	0.5	20CC		< 0.0250		10/01/24
i	Chloroethane	65.42	BRL	0.5	20CC		< 0.0250		10/01/24
	Chloroform	119.38	BRL	0.5	20CC		< 0.0250		10/01/24
	Chloromethane	50.49	BRL	0.5	20CC		< 0.0250		10/01/24
	cis-1,2-Dichloroethylene	96.94	BRL	0.5	20CC		< 0.0250		10/01/24
	cis-1,3-Dichloropropene	110.97	BRL	0.5	20CC		< 0.0250	_	10/01/24
	Cyclohexane	84.16	10.16	0.5	20CC		0.5080	Ė	10/01/24
	Dibromochloromethane ²	208.29	BRL	0.5	20CC		< 0.0250		10/01/24
	Dichlorodifluoromethane	120	BRL	0.5	20CC		< 0.0250		10/01/24
	Ethanol ²	46.07	BRL	0.5	20CC		< 0.0250		10/01/24
	Ethyl acetate ²	88.11	BRL	0.5	20CC		< 0.0250		10/01/24
	Ethylbenzene	106.17	1.39	0.5	20CC		0.0695		10/01/24
	Hexachlorobutadiene	258	BRL	0.5	20CC	< 263.8	< 0.0250		10/01/24

ab-q212-0321

Q.b

Job ID: 24100028

Date: 10/8/2024

Attn: Brent Barron

24100028.01

3.049

59

Client Name : Permian Basin Environmental Lab, LP

Project Name: Subcontract

Client Sample ID: 4I30007-01 Lab Sample ID:

Date Collected: 09/29/24 Sample Matrix: Air

Time Collected: 15:30

Other Information:

Total [VOC] calculated

Test Method	Parameter/Test Description	M.W.	Results(nl)	RptLimit(nl)	InjVol(cc)	ug/M3	ppm Q	Date/Time
EPA TO-15	Volatile Organic Compounds in Air	by GCMS						
	Isopropyl Alcohol ²	60.1	BRL	0.5	20CC	< 61.5	< 0.0250	10/01/24
	m- & p-Xylenes	106.17	3.31	1	20CC	718.7	0.1655	10/01/24
	Methyl Butyl Ketone ²	100	BRL	0.5	20CC	< 102.2	< 0.0250	10/01/24
	Methylene chloride	84.93	BRL	0.5	20CC	< 86.8	< 0.0250	10/01/24
	MIBK	100.16	BRL	0.5	20CC	< 102.4	< 0.0250	10/01/24
	MTBE	88.15	BRL	0.5	20CC	< 90.1	< 0.0250	10/01/24
	n-Heptane	100.21	29.10	0.5	20CC	5963.4	1.4550 E	10/01/24
	n-Hexane	86.18	7.73	0.5	20CC	1362.3	0.3865	10/01/24
	o-Xylene	106.17	0.77	0.5	20CC	167.2	0.0385	10/01/24
	Propylene	42.08	BRL	0.5	20CC	< 43.0	< 0.0250	10/01/24
	Styrene	104	BRL	0.5	20CC	< 106.3	< 0.0250	10/01/24
	Tetrachloroethylene	165.83	BRL	0.5	20CC	< 169.6	< 0.0250	10/01/24
	Tetrahydrofuran ²	72.11	BRL	0.5	20CC	< 73.7	< 0.0250	10/01/24
	Toluene	92.14	8.51	0.5	20CC	1603.5	0.4255	10/01/24
	trans-1,2-Dichloroethylene	96.94	BRL	0.5	20CC	< 99.1	< 0.0250	10/01/24
	trans-1,3-Dichloropropene	110.97	BRL	0.5	20CC	< 113.5	< 0.0250	10/01/24
	Trichloroethylene	131.39	BRL	0.5	20CC	< 134.3	< 0.0250	10/01/24
	Trichlorofluoromethane	137.37	BRL	0.5	20CC	< 140.5	< 0.0250	10/01/24
	Vinyl Acetate	86.09	BRL	0.5	20CC	< 88.0	< 0.0250	10/01/24
	Vinyl Chloride	62.5	BRL	0.21	20CC	< 26.8	< 0.0105	10/01/24
Total [VOC] o	alculated		60 97			11865.4	3 049	

60.97

EPA TO-- 15 Sample Analysis -- GC/MS

Lab ID	24100028.01
Date Acquired	1 Oct 2024 7:48 pm
Analyst	JGONZALEZ
Sample Run ID	X100106.D
tedlar bag (cc)	1000
Injection Volume (cc)	20

Compound Name	CAS#	R.T.	M.W	Nanoliters	Vol.(L)	ug/l	ppm
Cyclopentane, methyl-	96-37-7	8.92	84	9.1	0.02	1.563	0.455
Hexane, 2-methyl-	591-76-4	10.4	100	10.7	0.02	2.188	0.535
Hexane, 3-methyl-	589-34-4	10.75	100	14.2	0.02	2.904	0.710
Cyclopentane, 1.3-dimethyl-	2453-00-1	11.183	98	8.61	0.02	1.726	0.431
Isopropylcyclobutane	872-56-0	11.28	98	11.7	0.02	2.345	0.585
Cyclohexane, methyl-	108-87-2	12.6	98	45.3	0.02	9.079	2.265
Cyclopentane, ethyl-	1640-89-7	13.026	98	2.84	0.02	0.569	0.142
Heptane, 2-methyl-	592-27-8	14.26	114	13.7	0.02	3.194	0.685
Heptane, 3-methyl-	589-81-1	14.57	114	9.6	0.02	2.238	0.480
Cyclohexane, 1,3-dimethyl-, ci	638-04-0	14.763	112	15.3	0.02	3.504	0.765
Octane	111-65-9	15.529	114	20.78	0.02	4.844	1.039
Cyclohexane, ethyl-	1678-91-7	16.712	112	11.34	0.02	2.597	0.567

TIC* REPORT

Analysis Date: 10/1/2024

est Method	Parameter/Test Description	CAS#	RT	MW	Reading(nl)**	ppm (v/v)	μg/m³	Analys
O-15	None							JG

^{*} TIC: Tentatively identified compounds.

Phone: 713-453-6060 www.ablabs.com

^{**}The values are estimated relative to the nearest internal standards and only major peaks are reported.

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

Samples in This QC Batch: 24100028.01

QC Type: Method Blank						
Parameter	CAS #	Result	Units	D.F.	RptLimit	Qual
trans-1,2-Dichloroethylene	156-60-5	BRL	nL	1	0.5	
Dichlorodifluoromethane	75-71-8	BRL	nL	1	0.5	
Chloromethane	74-87-3	BRL	nL	1	0.5	
1,2-Dichlorotetrafluoroetha	76-14-2	BRL	nL	1	0.5	
Vinyl Chloride	75-01-4	BRL	nL	1	0.21	
Bromomethane	74-83-9	BRL	nL	1	0.5	
Chloroethane	75-00-3	BRL	nL	1	0.5	
Trichlorofluoromethane	75-69-4	BRL	nL	1	0.5	
1,1-Dichloroethylene	75-35-4	BRL	nL	1	0.5	
Methylene chloride	75-09-2	BRL	nL	1	0.5	
1,1,2-Trichloro-1,2,2-trifluo	76-13-1	BRL	nL	1	0.5	
1,1-Dichloroethane	75-34-3	BRL	nL	1	0.5	
cis-1,2-Dichloroethylene	156-59-2	BRL	nL	1	0.5	
Chloroform	67-66-3	BRL	nL	1	0.5	
1,2-Dichloroethane	107-06-2	BRL	nL	1	0.2	
1,1,1-Trichloroethane	71-55-6	BRL	nL	1	0.5	
Benzene	71-43-2	BRL	nL	1	0.2	
Carbon tetrachloride	56-23-5	BRL	nL	1	0.5	
1,2-Dichloropropane	78-87-5	BRL	nL	1	0.5	
Trichloroethylene	79-01-6	BRL	nL	1	0.5	
cis-1,3-Dichloropropene	10061-01-5	BRL	nL	1	0.5	
crans-1,3-Dichloropropene	10061-01-5	BRL	nL	1	0.5	
	79-00-5	BRL	nL	1	0.5	
1,1,2-Trichloroethane Toluene	108-88-3	BRL			0.5	
			nL	1		
1,2-Dibromoethane	106-93-4	BRL	nL	1	0.5	
Tetrachloroethylene	127-18-4	BRL	nL	1	0.5	
Chlorobenzene	108-90-7	BRL	nL	1	0.5	
Ethylbenzene	100-41-4	BRL	nL	1	0.5	
m- & p-Xylenes	179601-23-1	BRL	nL	1	1	
Styrene	100-42-5	BRL	nL	1	0.5	
o-Xylene	95-47-6	BRL	nL	1	0.5	
1,1,2,2-Tetrachloroethane	79-34-5	BRL	nL	1	0.5	
1,3,5-Trimethylbenzene	108-67-8	BRL	nL	1	0.5	
1,2,4-Trimethylbenzene	95-63-6	BRL	nL	1	0.5	
1,3-Dichlorobenzene	541-73-1	BRL	nL	1	0.5	
1,4-Dichlorobenzene	106-46-7	BRL	nL	1	0.5	
1,2-Dichlorobenzene	95-50-1	BRL	nL	1	0.5	
1,2,4-Trichlorobenzene	120-82-1	BRL	nL	1	0.5	
Hexachlorobutadiene	87-68-3	BRL	nL	1	0.5	
1,3-Butadiene	106-99-0	BRL	nL	1	0.22	
2-Butanone	78-93-3	BRL	nL	1	0.5	
1-Ethyltoluene	622-96-8	BRL	nL	1	0.5	

Refer to the Definition page for terms.

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

 $\textbf{Samples in This QC Batch} \ : \quad 24100028.01$

QC Type: Method Blank	(
Parameter	CAS #	Result	Units	D.F.	RptLimit	Qual
Acetone	67-64-1	BRL	nL	1	0.5	
Benzyl chloride	100-44-7	BRL	nL	1	0.5	
Bromodichloromethane	75-27-4	BRL	nL	1	0.5	
Bromoform	75-25-2	BRL	nL	1	0.5	
Carbon disulfide	75-15-0	BRL	nL	1	0.5	
Cyclohexane	110-82-7	BRL	nL	1	0.5	
Dibromochloromethane	124-48-1	BRL	nL	1	0.5	
Ethanol	64-17-5	BRL	nL	1	0.5	
Ethyl acetate	141-78-6	BRL	nL	1	0.5	
n-Heptane	142-82-5	BRL	nL	1	0.5	
n-Hexane	110-54-3	BRL	nL	1	0.5	
Isopropyl Alcohol	67-63-0	BRL	nL	1	0.5	
Methyl Butyl Ketone	591-78-6	BRL	nL	1	0.5	
MIBK	108-10-1	BRL	nL	1	0.5	
MTBE	1634-04-4	BRL	nL	1	0.5	
Propylene	115-07-1	BRL	nL	1	0.5	
Tetrahydrofuran	109-99-9	BRL	nL	1	0.5	
Vinyl Acetate	108-05-4	BRL	nL	1	0.5	

QC Type: LCS and LCS	D									
	LCS	LCS	LCS	LCSD	LCSD	LCSD		RPD	%Recovery	
Parameter	Spk Added	Result	% Rec	Spk Added	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
trans-1,2-Dichloroethylene	5	5.10	102	5	5.12	102	0.4	30	70-130	
Dichlorodifluoromethane	5	5.63	113	5	5.69	114	1.1	30	59-134	
Chloromethane	5	5.25	105	5	5.32	106	1.3	30	55-132	
1,2-Dichlorotetrafluoroetha	5	5.23	105	5	5.35	107	2.3	30	63-142	
Vinyl Chloride	5	5.18	104	5	5.22	104	0.8	30	61-139	
Bromomethane	5	5.00	100	5	5.10	102	2	30	63-134	
Chloroethane	5	5.09	102	5	5.13	103	0.8	30	63-127	
Trichlorofluoromethane	5	5.21	104	5	5.33	107	2.3	30	62-130	
1,1-Dichloroethylene	5	5.03	101	5	5.04	101	0.2	30	61-133	
Methylene chloride	5	4.95	99	5	4.99	99.8	0.8	30	62-117	
1,1,2-Trichloro-1,2,2-trifluo	5	5.15	103	5	5.23	105	1.5	30	60-131	
1,1-Dichloroethane	5	5.12	102	5	5.13	103	0.2	30	68-126	
cis-1,2-Dichloroethylene	5	4.95	99	5	4.95	99	0	30	70-131	
Chloroform	5	5.06	101	5	5.12	102	1.2	30	68-134	
1,2-Dichloroethane	5	5.29	106	5	5.31	106	0.4	30	65-132	
1,1,1-Trichloroethane	5	5.16	103	5	5.21	104	1	30	68-132	
Benzene	5	4.95	99	5	4.91	98.2	0.8	30	69-119	
Carbon tetrachloride	5	5.19	104	5	5.22	104	0.6	30	68-132	

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

Samples in This QC Batch: 24100028.01

	_									
QC Type: LCS and LCS	D									
	LCS	LCS	LCS	LCSD	LCSD	LCSD		RPD	%Recovery	
Parameter	Spk Added	Result	% Rec	Spk Added	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qu
1,2-Dichloropropane	5	5.04	101	5	5.03	101	0.2	30	69-123	
Trichloroethylene	5	5.07	101	5	5.07	101	0	30	71-123	
cis-1,3-Dichloropropene	5	4.90	98	5	4.89	97.8	0.2	30	70-128	
trans-1,3-Dichloropropene	5	4.90	98	5	4.89	97.8	0.2	30	75-133	
1,1,2-Trichloroethane	5	4.88	97.6	5	4.89	97.8	0.2	30	73-119	
Toluene	5	4.93	98.6	5	4.88	97.6	1	30	62-127	
1,2-Dibromoethane	5	4.80	96	5	4.81	96.2	0.2	30	74-122	
Tetrachloroethylene	5	5.10	102	5	5.08	102	0.4	30	66-124	
Chlorobenzene	5	4.60	92	5	4.52	90.4	1.8	30	70-119	
Ethylbenzene	5	4.67	93.4	5	4.65	93	0.4	30	70-124	
m- & p-Xylenes	10	9.38	93.8	10	9.32	93.2	0.6	30	61-134	
Styrene	5	4.51	90.2	5	4.48	89.6	0.7	30	73-127	
o-Xylene	5	4.76	95.2	5	4.70	94	1.3	30	67-125	
1,1,2,2-Tetrachloroethane	5	4.70	94	5	4.68	93.6	0.4	30	65-127	
1,3,5-Trimethylbenzene	5	4.75	95	5	4.71	94.2	0.8	30	67-130	
1,2,4-Trimethylbenzene	5	4.72	94.4	5	4.70	94	0.4	30	66-132	
1,3-Dichlorobenzene	5	4.71	94.2	5	4.74	94.8	0.6	30	65-130	
1,4-Dichlorobenzene	5	4.64	92.8	5	4.65	93	0.2	30	60-131	
1,2-Dichlorobenzene	5	4.56	91.2	5	4.51	90.2	1.1	30	63-129	
1,2,4-Trichlorobenzene	5	4.77	95.4	5	4.89	97.8	2.5	30	41-142	
Hexachlorobutadiene	5	4.97	99.4	5	5.13	103	3.2	30	56-138	
Propylene	5	5.47	109	5	5.48	110	0.2	30	57-136	
1,3-Butadiene	5	5.29	106	5	5.34	107	0.9	30	60-140	
Ethanol	5	5.09	102	5	5.28	106	3.7	30	59-133	
Acetone	5	5.07	101	5	5.16	103	1.8	30	58-128	
Isopropyl Alcohol	5	4.76	95.2	5	4.92	98.4	3.3	30	52-134	
Carbon disulfide	5	4.92	98.4	5	4.96	99.2	0.8	30	57-134	
MTBE	5	5.26	105	5	5.22	104	0.8	30	66-129	
2-Butanone	5	5.32	105	5	5.42	104	1.9	30	67-130	
Ethyl acetate	5	5.01	100	5	5.02	100	0.2	30	65-128	
n-Hexane	5	5.14	100	5	5.13	100	0.2	30	63-131	
Tetrahydrofuran	5	5.38	103	5	5.13 5.44	103	1.1	30	60-123	
Cyclohexane		5.36 5.17	103	_	5.44	109	1.1	30	70-123	
n-Heptane	5 5	5.36	103	5 5	5.12	102	0.6	30	69-131	
•										
MIBK	5	4.96	99.2	5	5.04	101	1.6	30	67-130	
Methyl Butyl Ketone	5	4.89	97.8	5	4.91	98.2	0.4	30	60-140	
Bromoform	5	4.66	93.2	5	4.67	93.4	0.2	30	66-139	
4-Ethyltoluene	5	4.70	94	5	4.63	92.6	1.5	30	67-129	
Benzyl chloride	5	4.43	88.6	5	4.48	89.6	1.1	30	50-147	
Bromodichloromethane	5	5.06	101	5	5.10	102	0.8	30	72-128	
Dibromochloromethane	5	5.01	100	5	5.01	100	0	30	70-130	

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

Samples in This QC Batch: 24100028.01

QC Type: LCS and LCS	D									
Parameter	LCS Spk Added	LCS Result	LCS % Rec	LCSD Spk Added	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
Vinyl Acetate	5	4.85	97	5	4.90	98	1	30	56-139	

LABORATORY TERM AND QUALIFIER DEFINITION REPORT

Job ID: 24100028 Date: 10/8/2024

General Term Definition

Back-Wt **Back Weight** Post-Wt Post Weight BRL Below Reporting Limit ppm parts per million cfu Previous Weight colony-forming units Pre-Wt Conc. Concentration Qualifier D.F. **Dilution Factor** RegLimit Regulatory Limit Front-Wt Front Weight RLU Relative Light Unit

J Estimation. Below calibration range but above MDL RPD Relative Percent Difference

LCS Laboratory Check Standard RptLimit Reporting Limit

LCSD Laboratory Check Standard Duplicate SDL Sample Detection Limit

LOD Limit of detection adjusted for %M + DF SQL Below calibration range but above MDL

LOQLimit of Quantitation adjusted for %M + DFsurrSurrogateMSMatrix SpikeTTime

MSD Matrix Spike Duplicate TNTC Too numerous to count

MW Molecular Weight UQL Unadjusted Upper Quantitation Limit

MQL Unadjusted Minimum Quantitation Limit

Qualifier Definition

E Estimation. Above calibration range.

Sample Condition Checklist

A&I	3 JobID : 24100028	Date Received: 10/01/2024 Time Received: 9:5	9AM		
Clie	nt Name : Permian Basin Environ	mental Lab, LP			
Ter	nperature : 23.8°C	Sample pH: NA			
	rmometer ID : IR7	pH Paper ID : NA			
Per	servative :	Lot#:	1	1	1
		Check Points	Yes	No	N/A
1.	Cooler Seal present and signed.			Х	
2.	Sample(s) in a cooler.		Х		
3.	If yes, ice in cooler.			Х	
4.	Sample(s) received with chain-of-custo	ody.	Х		
5.	C-O-C signed and dated.		Х		
6.	Sample(s) received with signed sample	e custody seal.		Х	
7.	Sample containers arrived intact. (If N	o comment)	Х		
8.	Water Soil Liquid Slu	Idge Solid Cassette Tube Bulk Badge Food Other			
9.	Samples were received in appropriate	container(s)	Х		
10.	Sample(s) were received with Proper p	reservative			Х
11.	All samples were tagged or labeled.		Х		
12.	Sample ID labels match C-O-C ID's.		Х		
13.	Bottle count on C-O-C matches bottles	found.	Х		
14.	Sample volume is sufficient for analyse	es requested.	Х		
15.	Samples were received with in the hold	I time.	Х		
16.	VOA vials completely filled.				Х
17.	Sample accepted.		Х		
18.	Has client been contacted about sub-o	ut			Х
_					
	nments: Include actions taken to resoler: Air (clear tedlar). ~DG 10/1/24	ve discrepancies/problem:			
- 4.10	(

Brought by : FedEx

Received by: DGonzalez Check in by/date: DGonzalez / 10/01/2024

ab-s005-1123

Phone: 713-453-6060 www.ablabs.com

Page 18 of 20

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Permian Basin Environmental Lab, LP 1400 Rankin HWY Midland, Texas 79701 Phone: 432-686-7235 PBELAB_SUB_COC_V2

Project Manager:	Brent Barron			-											_	Proj	ect	Nam	ie:		SL	BCC	ITAC	RAC	I				D:
Company Name	PBEL	-													_		Pro	ject	#:										10/6/2025
Company Address	s: 1400 Rankin HWY														_	Pr	ojed	t Lo	ic:										2025
City/State/Zip:	Midland Texas 79701														_			PO	#:										12:5
Telephone No:	432-661-4184		····		Fax No:										_ R	epoi	rt Fo	rma	t: X	Sta	ında	rd] TR	RP	Ε] NP	'DES	1:49 I
Sampler Signature	e: N/A				e-mail:		bre	ntba	rron	@pt	elab	.con	1																Me
																	Ļ					Analy	ze Foi	:	,] [
ORDER#:					•			F	rece	rvatio	n & #	t of C	istno	ners		Matri													
LyB # (lab use only)	Job ID:24100	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	7 Total #. of Containers	331	HNO _{3.250 poly.1}		H ₂ SO ₄ 1 AMBER 500/250POLY	NaOH/72	NONE 500ML POLY 250 MIL POLY 500 ML	WM AMBER GLASS NOME	_	GW = Groundwater S=Soi/Solid	_	X T0-15						(24 HOUR RUSH	X STANDARD
	11/2024 Permian Basin Enviro	nme	AMS			\neg						\top	1-	1	\top			\top		\top		\neg	+	1		1	1-1	H	┨
	-	1	r	т ——						_	\dashv	\dagger	╁	_	+		╅	\top	+	┤─		\dashv	-	1	\vdash	十	+		_
Please add tressa@pbelab.c	om to the WOA. Thank you.	! 	1														<u></u>	ľ	OCs F	ree o	fHe	dspac	·		-			N	
BRENT BARRON	9/30/2024	5:00	PM	Received by:	Fedu	,								Da	ate		Tim	ie C	abels ustod	on co y sea	ntali Is on	ier(s) conta	iner(s r(s)	l lev		(Y)) : - {	Z (S Z	
Relinquished by:	Date	Tir	me	Inductived by.							·			Da	ate		Tim	ie S	ample by	Han Samp	d Del ler/C	ivered lient R	ep. ?	NUI		Y edEx)Loni	EStar	Page
Relinquished by:	(0/0//24	Tir 0 9 \$	me 9	Received					-1		*(*	Î	0/0	ate /	24	Tim Ø45	R A	empe eceive djuste	ratür ed:	23	n Red	eipt: C	Factor	. 1	12 1 1 ge 19	ญ	, t	259 013
					P	age	12 q	<u> 13</u>																		_			40

ORIGIN ID:MAFA BRENT BARRON PBE LAB 1400 RANKIN HWY

(432) 686-7235

SHIP DATE: 30SEP24 ACTWGT: 3.00 LB CAD: 107136846/INET4535 DIMS: 13x9x9 IN

MIDLAND, TX 79701 UNITED STATES US

BILL SENDER

SAMPLE RECEIVING A & B ENVIRONMENTAL SERVICES 10100 EAST FREEWAY SUITE 100

58CJ2/B264/C6C4

HOUSTON TX 77029
(713) 453-5060
INV:
PO:

DEPT

- 01 OCT 5:00P TUE STANDARD OVERNIGHT

7789 2480 7277

ab Hbya

77029

IAH

After printing this lebel: CONSIGNEE COPY * PLEASE PLACE IN FRONT OF POUCH 1 Fold the printed page along the horizontal line. 2. Place label in shipping pouch and affix it to your shipment

age whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized d file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document declared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$1,000, e.g. including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and etals, negotiable instruments and other items listed in our Service Guide. Written claims must be filed constitutes your agreement to the service conditions in the current FedEx Service Guide, available on hits, see current FedEx Service Guide. fedex.com. FedEx your actual loss at FedEx for any loss delay, non-delive other forms of dai Use of this system jewelτy, precious within strict time

Page 260

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Kimble Thrash
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: SRS 2009-039 Project Number: SRS 2009-039

Location: Lea County, NM

Lab Order Number: 4J17019

Current Certification

Report Date: 11/05/24

E Tech Environmental & Safety Solutions, Inc. [1] 13000 West County Road 100

Odessa TX, 79765

Project Number: SRS 2009-039
Project Manager: Kimble Thrash

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EFF-1 (101624)	4J17019-01	Air	10/16/24 15:15	10-17-2024 11:08

TO-15 analysis were subcontracted to A&B Houston. Their current certification can be found here: https://www.tceq.texas.gov/assets/public/compliance/compliance_support/qa/labs/a&b_env.pdf

E Tech Environmental & Safety Solutions, Inc. [1]

13000 West County Road 100

Odessa TX, 79765

Project Number: SRS 2009-039
Project Manager: Kimble Thrash

EFF-1 (101624) 4J17019-01 (Air)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian I	Basin Envi	ronmental L	ab, L.P.			
EPA TO-15									
Benzene	ND	0.200	ppm	1	P4K0510	10/17/24 00:00	10/18/24 00:00	TO-15	SUB-8
Ethylbenzene	0.670	0.500	ppm	1	P4K0510	10/17/24 00:00	10/18/24 00:00	TO-15	SUB-8
Xylene (p/m)	1.38	1.00	ppm	1	P4K0510	10/17/24 00:00	10/18/24 00:00	TO-15	SUB-8
Xylene (o)	ND	0.500	ppm	1	P4K0510	10/17/24 00:00	10/18/24 00:00	TO-15	SUB-8
Toluene	6.30	0.500	ppm	1	P4K0510	10/17/24 00:00	10/18/24 00:00	TO-15	SUB-8

E Tech Environmental & Safety Solutions, Inc. \cite{black}

13000 West County Road 100

Odessa TX, 79765

Project: SRS 2009-039

Project Number: SRS 2009-039 Project Manager: Kimble Thrash

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

E Tech Environmental & Safety Solutions, Inc. [1]

13000 West County Road 100

Odessa TX, 79765

Project: SRS 2009-039

Project Number: SRS 2009-039 Project Manager: Kimble Thrash

Notes and Definitions

SUB-8 Subcontract of analyte/analysis to A&B Labs Houston.

NPBEL Ct Chain of Custody was not generated at PBELAB

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Dren	Darror			
Report Approved By:			Date:	11/5/2024	

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

ORDER #:

~	
-	
-	
0	
4	
-	
16	
- 40	
- 4:	
-CA	
_	
5	
O	
_	
9	
C	
~	
6	
0	
-	
-	
C	
0	
~	
~	
Sec.	
2	
0	
- 5	
0	
- 83	
್ಲ	
- a	
×	
-	

<i># 1077</i>	i en de	
San San San San		
	TD)	BI_{JA}

4517019

CHAIN OF	CUSTODY	RECORD A	AND	ANALYSIS	REQUEST
----------	---------	----------	-----	-----------------	---------

Page 6 of 20 Permian Basin Environmental Lab, LP Phone: 432-686-7235 1400 Rankin HWY Midland, Texas 79701 Project Manager: Kimble Thrash Project Name: SRS 2009-039 **Company Name:** Etech Environmental & Safety Solutions, Inc. Project #: SRS 2009-039 **Company Address:** P.O. Box 6228 Project Loc: Lea County, NM City/State/Zip: Midland, TX 79711 PO #: (432) 563-2200 Report Format: Standard Telephone No: Fax No: (432) 563-2213 TRRP NPDES Sampler Signature: e-mail: kimble@etechenv.com; shane@etechenv.com; camille.bryant@plains.com; karolanne.hudgens@plains.com (lab use only)

Preservation & # of Containers

Matrix

CH:

Analyze For:

TCLP:

TOTAL:

24, 48, 72 h

LAB# (lab use only	FIELD CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	lce HNO,	Î	H ₂ SO ₄	NaOH	Na ₂ S ₂ O ₃	Other (Specify)		GW = Groundwater S=: NP=Non-Potable Spec											AS ord) TAT USIG	Standard TAT
	EFF-1 (101624)	-		10/16/2024	1515		2					>		T	۹ir	Х											Х
							_	\perp	\bot				┸														
								_	1			\perp	<u> </u>	-			_	Ш	Ц	_	_ _			\perp	$\perp \downarrow$	\perp	Ш
		<u> </u>				\vdash	-	+	+	-			4	-			-			4	+	$\perp \downarrow$			\sqcup	_	$\perp \! \! \! \! \! \! \! \! \! \! \perp \! \! \! \! \! \! \! \!$
						H	+		+	+	H		+	-		+	+-	\vdash	\dashv	_	+	+	-	+	$\dashv \dashv$	-	\dashv
						\vdash	+	+	+	 		+	十	+			+			+	+	+		_	\vdash	+	+
-						H	\dashv	+	\dagger	+		\dashv	╁	1-			+	H	\dashv	+	-	+1	+	+	++	\dashv	+
							+	+	+				\top			-	1		+	_	+	H	+	+	\Box	1	++
																				\top						1	$\forall \exists$
	nstructions: Please invoice directly to Plains A/P 33				2 and refere	nce t	he SI	RS ni	umb	er in 1	the F	Projec	t Nan	ne.			Sa	mple	Cont	Comm tainer of Hea	s Inta	act?			(Š)	N	J I
Relinquish	10/17/24	110	4	Received by:									Da	ate		Time	Lat Cu: Cu:	oels o stody stody	on co / sea / sea	ntaine Is on o	er(s) conta coole	ainer(s er(s)	s)		Y Y Y	N N N	
Relinquish				Received by:									Da	ate		Time	Sai	mple by S by C	Hand ampl	d Deli er/Clie er?	vered ent Re UP	d ep.? S		Fe	dEX I	N N one	
Relinquish	eed by: Date	Tíı	me	Received by PE	BEL: Mas	a						10	Da 	ate 1/24	/ 11	1:08	Ter Red Adj	nper ceive ustec	ature	Upor LQ .	Rec	ceipt:		nome or:		114	3

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Permian Basin Environmental Lab, LP 1400 Rankin HWY Midland, Texas 79701 **Phone: 432-686-7235**PBELAB_SUB_COC_V2

	Project Manager:	Brent Barro	n							-, -							Pro	ject	Nan	ne:_		SU	JBC	ONT	RAC	Т				
	Company Name	PBEL																Pro	ject	#:_										
	Company Address:	1400 Ranki	n HWY														Р													- 2
	City/State/Zip:	Midland Tex	xas 79701																РО	#:_										
	Telephone No:	432-661-41	84				Fax No:										Repo	rt Fo	orma	at: >	〈 St	anda	rd		TR	RP		□ _{NF}	PDES	1.77
	Sampler Signature:	N/A					e-mail:		brei	ntbar	ron@	pbel	ab.c	om				_												722
																		-	1	<u> </u>	1	T	Ana	lyze F	or:	1 1	-	$\overline{}$	-	
ORDER :	#:						:			Pi	reserv	ation	& # c	of Cor	itaine	rs .	Matr	ix												
LAB # (lab use only)	4	iJ17019		Beginning Depth	Ending Depth	10/16/2024	Time Sampled	Field Filtered	7 Total #. of Containers	ICE	HNO _{3.250 poly1}	HCI 3 40mL VOA H,SO ₄ 1 AMBER 500/250POLY	NaOH /Ascorbic Acid 250ML Po	NaOH/Zn	NONE SOOML POLY 250 MIL POLY 500 MIL WANDER GLASS	X NONE	DW=Drinking Water SL=Sludge GW = Groundwater S=Sol/Solid	NP=Non-Potable Specify Other	X T ₀₋₁₅									- -	24 HOUR RUSH	X STANDARD
Diagon	dd tressa@pbelab.co	m to the MOA	Thoulesson																_	aho	rator	Com	mon	tc:				ᆚ		
Piease a	aa tressa@pbeiab.coi	m to the woa	. Thank you.																			ntaine					Y		N	
BRENT B	ADDON		10/17/2024	5:00	D D A	Received by:									1	D-4		T:				of He ontail					Y Y		N N	
DKEINI E	ARRON		10/17/2024	5:00	PIVI	Received by:										Dat	.e	1111	(Custo	ody se	als on als on	cont	tainer	(s)		Y Y		N N	
Relinqui	shed by:		Date	Tir	me	Received by:										Dat	e	Tin	ne S	Samp	le Ha	nd De pler/0	liver	ed	?		Y		N N	1
Relinqui	shed by:		Date	Tir	me	Received by:										Dat	e	Tin	- [1	b Temp Recei	y Cou			UPS eceip	DH		FedEx	Lor	ne Star	20,07

Total Number of Pages:

Laboratory Analysis Report

Job ID: 24102006

10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

Client Project Name : Subcontract

Report To: Client Name: Permian Basin Environmental Lab, LP

Attn: Brent Barron

Client Address: 1400 Rankin Hwy
City, State, Zip: Midland, Texas, 79701

P.O.#.: Sample Collected By:

Date Collected: 10/16/24

A&B Labs has analyzed the following samples...

 Client Sample ID
 Matrix
 A&B Sample ID

 4J17019
 Air
 24102006.01

R. With

Analyst: Amit Bembde

Alla

Released By: Gobinath Rangasamy
Title: Project Manager
Date: 10/25/2024

This Laboratory is NELAP (T104704213-23-31) accredited. Effective: 04/01/2024; Expires: 03/31/2025

Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

ab-q210-0321

Page 8 of 20

Date Received: 10/18/2024 10:08

Report Number: RPT24102501

LABORATORY TEST RESULTS

Job ID: 24102006

Date: 10/25/2024

Attn: Brent Barron

Client Name : Permian Basin Environmental Lab, LP

Project Name: Subcontract

Client Sample ID: 4J17019 Lab Sample ID: 24102006.01

Date Collected: 10/16/24 Sample Matrix: Air

Time Collected: 15:15
Other Information:

Test Method Parameter/Test Description	M.W.	Results(nl)	RptLimit(nl) IniVol(cc)	ua/M3

1,1,2,2-Tetrachloroethane 167.85 BRL 0.5 1CC < 343 1,1,2-Trichloro-1,2,2-trifluoroethane 187.38 BRL 0.5 1CC < 383 1,1,2-Trichloroethane 133.41 BRL 0.5 1CC < 272 1,1-Dichloroethane 98.96 BRL 0.5 1CC < 202 1,1-Dichloroethylene 96.94 BRL 0.5 1CC < 198 1,2,4-Trichlorobenzene 181.45 BRL 0.5 1CC < 371 1,2,4-Trimethylbenzene 120.19 BRL 0.5 1CC < 245	8.0 < 0.5000 2.5 < 0.5000 1.9 < 0.5000 8.2 < 0.5000 3.7 < 0.5000 2.4 < 0.5000 0.6 < 0.5000 7.9 < 0.5000 1.9 < 0.5000	10/18/24 10/18/24 10/18/24 10/18/24 10/18/24 10/18/24 10/18/24 10/18/24
1,1,2,2-Tetrachloroethane 167.85 BRL 0.5 1CC < 343 1,1,2-Trichloro-1,2,2-trifluoroethane 187.38 BRL 0.5 1CC < 383 1,1,2-Trichloroethane 133.41 BRL 0.5 1CC < 272 1,1-Dichloroethane 98.96 BRL 0.5 1CC < 202 1,1-Dichloroethylene 96.94 BRL 0.5 1CC < 198 1,2,4-Trichlorobenzene 181.45 BRL 0.5 1CC < 371 1,2,4-Trimethylbenzene 120.19 BRL 0.5 1CC < 245	2.5 < 0.5000 1.9 < 0.5000 8.2 < 0.5000 3.7 < 0.5000 2.4 < 0.5000 0.6 < 0.5000 7.9 < 0.5000 1.9 < 0.5000	10/18/24 10/18/24 10/18/24 10/18/24 10/18/24 10/18/24 10/18/24
1,1,2-Trichloro-1,2,2-trifluoroethane 187.38 BRL 0.5 1CC < 383	1.9 < 0.5000 8.2 < 0.5000 3.7 < 0.5000 2.4 < 0.5000 0.6 < 0.5000 7.9 < 0.5000 1.9 < 0.5000	10/18/24 10/18/24 10/18/24 10/18/24 10/18/24 10/18/24
1,1,2-Trichloroethane 133.41 BRL 0.5 1CC < 272	8.2 < 0.5000 3.7 < 0.5000 2.4 < 0.5000 0.6 < 0.5000 7.9 < 0.5000 1.9 < 0.5000	10/18/24 10/18/24 10/18/24 10/18/24 10/18/24
1,1-Dichloroethane 98.96 BRL 0.5 1CC < 202	3.7 < 0.5000 2.4 < 0.5000 0.6 < 0.5000 7.9 < 0.5000 1.9 < 0.5000	10/18/24 10/18/24 10/18/24 10/18/24
1,1-Dichloroethylene 96.94 BRL 0.5 1CC < 198	2.4 < 0.5000 0.6 < 0.5000 7.9 < 0.5000 1.9 < 0.5000	10/18/24 10/18/24 10/18/24
1,2,4-Trichlorobenzene 181.45 BRL 0.5 1CC < 371	0.6 < 0.5000 7.9 < 0.5000 1.9 < 0.5000	10/18/24 10/18/24
1,2,4-Trimethylbenzene 120.19 BRL 0.5 1CC < 245	7.9 < 0.5000 1.9 < 0.5000	10/18/24
	1.9 < 0.5000	
1,2-Dibromoethane 187.87 BRL 0.5 1CC < 384		10/18/24
1,2-Dichlorobenzene 147.00 BRL 0.5 1CC < 300	6.1 < 0.5000	10/18/24
1,2-Dichloroethane 98.96 BRL 0.2 1CC < 80	9.5 < 0.2000	10/18/24
1,2-Dichloropropane 112.99 BRL 0.5 1CC < 231	0.6 < 0.5000	10/18/24
1,2-Dichlorotetrafluoroethane 170 BRL 0.5 1CC < 347	6.5 < 0.5000	10/18/24
1,3,5-Trimethylbenzene 120.19 BRL 0.5 1CC < 245	7.9 < 0.5000	10/18/24
1,3-Butadiene 54.09 BRL 0.22 1CC < 48	6.7 < 0.2200	10/18/24
1,3-Dichlorobenzene 147.00 BRL 0.5 1CC < 300	6.1 < 0.5000	10/18/24
1,4-Dichlorobenzene 147.00 BRL 0.5 1CC < 300	6.1 < 0.5000	10/18/24
2-Butanone 72.11 BRL 0.5 1CC < 147	4.6 < 0.5000	10/18/24
4-Ethyltoluene 120 BRL 0.5 1CC < 245	4.0 < 0.5000	10/18/24
Acetone ² 58.08 BRL 0.5 1CC < 118	7.7 < 0.5000	10/18/24
Benzene 78.11 BRL 0.2 1CC < 63	8.9 < 0.2000	10/18/24
Benzyl chloride 126.59 BRL 0.5 1CC < 258	8.8 < 0.5000	10/18/24
Bromodichloromethane ¹ 163.83 BRL 0.5 1CC < 335	0.3 < 0.5000	10/18/24
Bromoform 252.75 BRL 0.5 1CC < 516	8.7 < 0.5000	10/18/24
Bromomethane 94.94 BRL 0.5 1CC < 194	1.5 < 0.5000	10/18/24
Carbon disulfide ² 76.14 BRL 0.5 1CC < 155	7.1 < 0.5000	10/18/24
Carbon tetrachloride 153.82 BRL 0.5 1CC < 314	5.6 < 0.5000	10/18/24
Chlorobenzene 112.56 BRL 0.5 1CC < 230	1.8 < 0.5000	10/18/24
	7.8 < 0.5000	10/18/24
	1.3 < 0.5000	10/18/24
	2.5 < 0.5000	10/18/24
cis-1,2-Dichloroethylene 96.94 BRL 0.5 1CC < 198	2.4 < 0.5000	10/18/24
	9.3 < 0.5000	10/18/24
	1.3 2.3100	10/18/24
	9.5 < 0.5000	10/18/24
	4.0 < 0.5000	10/18/24
	2.1 < 0.5000	
,	1.8 < 0.5000	10/18/24
•	9.4 0.6700	10/18/24
Hexachlorobutadiene 258 BRL 0.5 1CC < 527	6.1 < 0.5000	10/18/24

ab-q212-0321

LABORATORY TEST RESULTS

Q.b

Job ID: 24102006

Date: 10/25/2024

Attn: Brent Barron

24102006.01

Air

119951.

959

30.200

Lab Sample ID:

Sample Matrix:

Client Name : Permian Basin Environmental Lab, LP

Project Name: Subcontract

Client Sample ID: 4J17019

Date Collected: 10/16/24 Time Collected: 15:15

Other Information:

Total [VOC] calculated

Test Method	Parameter/Test Description	M.W.	Results(nl)	RptLimit(nl)	InjVol(cc)	ug/M3	ppm	Q	Date/Time
EPA TO-15	Volatile Organic Compounds in Air b	y GCMS							
	Isopropyl Alcohol ²	60.1	BRL	0.5	1CC	< 1229.0	< 0.5000		10/18/24
	m- & p-Xylenes	106.17	1.38	1	1CC	5992.4	1.3800		10/18/24
	Methyl Butyl Ketone ²	100	BRL	0.5	1CC	< 2045.0	< 0.5000		10/18/24
	Methylene chloride	84.93	BRL	0.5	1CC	< 1736.8	< 0.5000		10/18/24
	MIBK	100.16	BRL	0.5	1CC	< 2048.3	< 0.5000		10/18/24
	MTBE	88.15	BRL	0.5	1CC	< 1802.7	< 0.5000		10/18/24
	n-Heptane	100.21	18.27	0.5	1CC	74880.8	18.2700	E	10/18/24
	n-Hexane	86.18	1.27	0.5	1CC	4476.4	1.2700		10/18/24
	o-Xylene	106.17	BRL	0.5	1CC	< 2171.2	< 0.5000		10/18/24
	Propylene	42.08	BRL	0.5	1CC	< 860.5	< 0.5000		10/18/24
	Styrene	104	BRL	0.5	1CC	< 2126.8	< 0.5000		10/18/24
	Tetrachloroethylene	165.83	BRL	0.5	1CC	< 3391.2	< 0.5000		10/18/24
	Tetrahydrofuran ²	72.11	BRL	0.5	1CC	< 1474.6	< 0.5000		10/18/24
	Toluene	92.14	6.30	0.5	1CC	23741.6	6.3000		10/18/24
	trans-1,2-Dichloroethylene	96.94	BRL	0.5	1CC	< 1982.4	< 0.5000		10/18/24
	trans-1,3-Dichloropropene	110.97	BRL	0.5	1CC	< 2269.3	< 0.5000		10/18/24
	Trichloroethylene	131.39	BRL	0.5	1CC	< 2686.9	< 0.5000		10/18/24
	Trichlorofluoromethane	137.37	BRL	0.5	1CC	< 2809.2	< 0.5000		10/18/24
	Vinyl Acetate	86.09	BRL	0.5	1CC	< 1760.5	< 0.5000		10/18/24
	Vinyl Chloride	62.5	BRL	0.21	1CC	< 536.8	< 0.2100		10/18/24

30.20

EPA TO-- 15 Sample Analysis -- GC/MS

Lab ID	24102006.01
Date Acquired	18 Oct 2024 1:02 pm
Analyst	Avbembde
Sample Run ID	X101712.D
tedlar bag (cc)	1000
Injection Volume (cc)	1

Compound Name	CAS#	R.T.	M.W	Nanoliters	Vol.(L)	ug/l	ppm
Hexane, 2-methyl-	591-76-4	10.4	100	4.7	0.001	19.223	4.700
Hexane, 3-methyl-	598-34-4	10.76	100	7	0.001	28.630	7.000
Cyclopentane, 1.3-dimethyl-	2453-00-1	11.183	98	3.83	0.001	15.351	3.830
Isopropylcyclobutane	872-56-0	11.28	98	5.46	0.001	21.885	5.460
Cyclohexane, methyl-	108-87-2	12.6	98	29.72	0.001	119.123	29.720
Cyclopentane, ethyl-	1640-89-7	13.026	98	5.16	0.001	20.682	5.160
Cyclopentane, 1,2,4-trimethyl-	2815-58-9	13.337	112	5.93	0.001	27.164	5.930
Cyclopentane, 1,2,3-trimethyl-	2815-57-8	13.618	112	4.4	0.001	20.155	4.400
Heptane, 2-methyl-	592-27-8	14.268	114	8.68	0.001	40.471	8.680
Heptane, 3-methyl-	589-81-1	14.559	114	4.68	0.001	21.821	4.680
Cyclohexane, 1,3-dimethyl-, cis	638-04-0	14.763	112	7.34	0.001	33.623	7.340

LABORATORY TEST RESULTS

TIC* REPORT

AGE JUD Sample ID. WIET HOD BLANT	A&B Job Sample ID:	METHOD BLANK
-----------------------------------	--------------------	--------------

Analysis Date: 10/17/2024

est Method	Parameter/Test Description	CAS#	RT	MW	Reading(nI)**	ppm (v/v)	μg/m³	Analys
O-15	None							AVB
				I				1

^{*} TIC: Tentatively identified compounds.

Phone: 713-453-6060 www.ablabs.com

^{**}The values are estimated relative to the nearest internal standards and only major peaks are reported.

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

 $\textbf{Samples in This QC Batch} \ : \quad 24102006.01$

Parameter	CAS #	Result	Units	D.F.	RptLimit	Qua
trans-1,2-Dichloroethylene	156-60-5	BRL	nL	1	0.5	
Dichlorodifluoromethane	75-71-8	BRL	nL	1	0.5	
Chloromethane	74-87-3	BRL	nL	1	0.5	
1,2-Dichlorotetrafluoroetha	76-14-2	BRL	nL	1	0.5	
Vinyl Chloride	75-01-4	BRL	nL	1	0.21	
Bromomethane	74-83-9	BRL	nL	1	0.5	
Chloroethane	75-00-3	BRL	nL	1	0.5	
Trichlorofluoromethane	75-69-4	BRL	nL	1	0.5	
1,1-Dichloroethylene	75-35-4	BRL	nL	1	0.5	
Methylene chloride	75-09-2	BRL	nL	1	0.5	
1,1,2-Trichloro-1,2,2-trifluo	76-13-1	BRL	nL	1	0.5	
1,1-Dichloroethane	75-34-3	BRL	nL	1	0.5	
cis-1,2-Dichloroethylene	156-59-2	BRL	nL	1	0.5	
Chloroform	67-66-3	BRL	nL	1	0.5	
1,2-Dichloroethane	107-06-2	BRL	nL	1	0.2	
1,1,1-Trichloroethane	71-55-6	BRL	nL	1	0.5	
Benzene	71-43-2	BRL	nL	1	0.2	
Carbon tetrachloride	56-23-5	BRL	nL	1	0.5	
1,2-Dichloropropane	78-87-5	BRL	nL	1	0.5	
Trichloroethylene	79-01-6	BRL	nL	1	0.5	
cis-1,3-Dichloropropene	10061-01-5	BRL	nL	1	0.5	
trans-1,3-Dichloropropene	10061-02-6	BRL	nL	1	0.5	
1,1,2-Trichloroethane	79-00-5	BRL	nL	1	0.5	
Toluene	108-88-3	BRL	nL	1	0.5	
1,2-Dibromoethane	106-93-4	BRL	nL	1	0.5	
Tetrachloroethylene	127-18-4	BRL	nL	1	0.5	
Chlorobenzene	108-90-7	BRL	nL	1	0.5	
Ethylbenzene	100-41-4	BRL	nL	1	0.5	
m- & p-Xylenes	179601-23-1	BRL	nL	1	1	
Styrene	100-42-5	BRL	nL	1	0.5	
o-Xylene	95-47-6	BRL	nL	1	0.5	
1,1,2,2-Tetrachloroethane	79-34-5	BRL	nL	1	0.5	
1,3,5-Trimethylbenzene	108-67-8	BRL	nL	1	0.5	
1,2,4-Trimethylbenzene	95-63-6	BRL	nL	1	0.5	
1,3-Dichlorobenzene	541-73-1	BRL	nL	1	0.5	
1,4-Dichlorobenzene	106-46-7	BRL	nL	1	0.5	
1,2-Dichlorobenzene	95-50-1	BRL	nL	1	0.5	
1,2,4-Trichlorobenzene	120-82-1	BRL	nL	1	0.5	
Hexachlorobutadiene	87-68-3	BRL	nL	1	0.5	
1,3-Butadiene	106-99-0	BRL	nL	1	0.22	
2-Butanone	78-93-3	BRL	nL	1	0.5	
4-Ethyltoluene	622-96-8	BRL	nL	1	0.5	

Refer to the Definition page for terms.

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

 $\textbf{Samples in This QC Batch} \ : \quad 24102006.01$

QC Type: Method Blank	(
Parameter	CAS #	Result	Units	D.F.	RptLimit	Qual
Acetone	67-64-1	BRL	nL	1	0.5	
Benzyl chloride	100-44-7	BRL	nL	1	0.5	
Bromodichloromethane	75-27-4	BRL	nL	1	0.5	
Bromoform	75-25-2	BRL	nL	1	0.5	
Carbon disulfide	75-15-0	BRL	nL	1	0.5	
Cyclohexane	110-82-7	BRL	nL	1	0.5	
Dibromochloromethane	124-48-1	BRL	nL	1	0.5	
Ethanol	64-17-5	BRL	nL	1	0.5	
Ethyl acetate	141-78-6	BRL	nL	1	0.5	
n-Heptane	142-82-5	BRL	nL	1	0.5	
n-Hexane	110-54-3	BRL	nL	1	0.5	
Isopropyl Alcohol	67-63-0	BRL	nL	1	0.5	
Methyl Butyl Ketone	591-78-6	BRL	nL	1	0.5	
MIBK	108-10-1	BRL	nL	1	0.5	
MTBE	1634-04-4	BRL	nL	1	0.5	
Propylene	115-07-1	BRL	nL	1	0.5	
Tetrahydrofuran	109-99-9	BRL	nL	1	0.5	
Vinyl Acetate	108-05-4	BRL	nL	1	0.5	

QC Type: LCS and LCSD												
	LCS	LCS	LCS	LCSD	LCSD	LCSD		RPD	%Recovery			
Parameter	Spk Added	Result	% Rec	Spk Added	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual		
trans-1,2-Dichloroethylene	5	5.11	102	5	5.24	105	2.5	30	70-130			
Dichlorodifluoromethane	5	5.23	105	5	5.27	105	0.8	30	59-134			
Chloromethane	5	5.17	103	5	5.29	106	2.3	30	55-132			
1,2-Dichlorotetrafluoroetha	5	5.18	104	5	5.30	106	2.3	30	63-142			
Vinyl Chloride	5	5.23	105	5	5.33	107	1.9	30	61-139			
Bromomethane	5	5.02	100	5	5.20	104	3.5	30	63-134			
Chloroethane	5	5.12	102	5	5.34	107	4.2	30	63-127			
Trichlorofluoromethane	5	5.01	100	5	5.11	102	2	30	62-130			
1,1-Dichloroethylene	5	5.08	102	5	5.26	105	3.5	30	61-133			
Methylene chloride	5	4.97	99.4	5	5.11	102	2.8	30	62-117			
1,1,2-Trichloro-1,2,2-trifluo	5	5.01	100	5	5.11	102	2	30	60-131			
1,1-Dichloroethane	5	5.16	103	5	5.31	106	2.9	30	68-126			
cis-1,2-Dichloroethylene	5	4.95	99	5	5.19	104	4.7	30	70-131			
Chloroform	5	4.94	98.8	5	4.98	99.6	0.8	30	68-134			
1,2-Dichloroethane	5	4.84	96.8	5	4.90	98	1.2	30	65-132			
1,1,1-Trichloroethane	5	4.85	97	5	4.90	98	1	30	68-132			
Benzene	5	4.88	97.6	5	5.04	101	3.2	30	69-119			
Carbon tetrachloride	5	4.79	95.8	5	4.87	97.4	1.7	30	68-132			

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

Samples in This QC Batch: 24102006.01

	_									
QC Type: LCS and LCS	D									
	LCS	LCS	LCS	LCSD	LCSD	LCSD		RPD	%Recovery	
Parameter	Spk Added	Result	% Rec	Spk Added	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qua
1,2-Dichloropropane	5	4.93	98.6	5	5.07	101	2.8	30	69-123	
Trichloroethylene	5	4.92	98.4	5	5.04	101	2.4	30	71-123	
cis-1,3-Dichloropropene	5	4.69	93.8	5	4.85	97	3.4	30	70-128	
trans-1,3-Dichloropropene	5	4.69	93.8	5	4.85	97	3.4	30	75-133	
1,1,2-Trichloroethane	5	4.68	93.6	5	4.87	97.4	4	30	73-119	
Toluene	5	4.84	96.8	5	5.01	100	3.4	30	62-127	
1,2-Dibromoethane	5	4.48	89.6	5	4.65	93	3.7	30	74-122	
Tetrachloroethylene	5	4.84	96.8	5	4.97	99.4	2.6	30	66-124	
Chlorobenzene	5	4.46	89.2	5	4.64	92.8	4	30	70-119	
Ethylbenzene	5	4.46	89.2	5	4.59	91.8	2.9	30	70-124	
m- & p-Xylenes	10	8.95	89.5	10	9.37	93.7	4.6	30	61-134	
Styrene	5	4.24	84.8	5	4.46	89.2	5.1	30	73-127	
o-Xylene	5	4.47	89.4	5	4.66	93.2	4.2	30	67-125	
1,1,2,2-Tetrachloroethane	5	4.15	83	5	4.43	88.6	6.5	30	65-127	
1,3,5-Trimethylbenzene	5	4.18	83.6	5	4.42	88.4	5.6	30	67-130	
1,2,4-Trimethylbenzene	5	4.09	81.8	5	4.35	87	6.2	30	66-132	
1,3-Dichlorobenzene	5	3.92	78.4	5	4.29	85.8	9	30	65-130	
1,4-Dichlorobenzene	5	3.84	76.8	5	4.18	83.6	8.5	30	60-131	
1,2-Dichlorobenzene	5	3.69	73.8	5	4.03	80.6	8.8	30	63-129	
1,2,4-Trichlorobenzene	5	3.98	79.6	5	4.72	94.4	17	30	41-142	
Hexachlorobutadiene	5	3.97	79.4	5	4.57	91.4	14.1	30	56-138	
Propylene	5	5.14	103	5	5.19	104	1	30	57-136	
1,3-Butadiene	5	5.36	107	5	5.49	110	2.4	30	60-140	
Ethanol	5	4.95	99	5	5.21	104	5.1	30	59-133	
Acetone	5	5.16	103	5	5.21	104	1	30	58-128	
Isopropyl Alcohol	5	4.16	83.2	5	4.72	94.4	12.6	30	52-134	
Carbon disulfide	5	4.97	99.4	5	5.13	103	3.2	30	57-134	
MTBE	5	5.29	106	5	5.46	109	3.2	30	66-129	
2-Butanone	5	5.24	105	5	5.44	109	3.8	30	67-130	
Ethyl acetate	5	5.16	103	5	5.34	107	3.4	30	65-128	
n-Hexane	5	5.27	105	5	5.37	107	1.9	30	63-131	
Tetrahydrofuran	5	5.20	104	5	5.41	108	4	30	60-123	
Cyclohexane	5	5.16	103	5	5.27	105	2.1	30	70-117	
n-Heptane	5	5.16	103	5	5.26	105	1.9	30	69-131	
MIBK	5	3.65	73	5	4.06	81.2	10.6	30	67-130	
Methyl Butyl Ketone	5	3.63	72.6	5	3.85	77	5.9	30	60-140	
Bromoform	5	4.09	81.8	5	4.31	86.2	5.9	30	66-139	
4-Ethyltoluene	5	4.12	82.4		4.37	87.4	5.9	30	67-129	
•				5						
Benzyl chloride	5	3.54	70.8	5	4.00	80	12.2	30	50-147	
Bromodichloromethane	5	4.74	94.8	5	4.84	96.8	2.1	30	72-128	
Dibromochloromethane	5	4.56	91.2	5	4.69	93.8	2.8	30	70-130	

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

 $\textbf{Samples in This QC Batch} \ : \quad 24102006.01$

QC Type: LCS and LCSI)									
Parameter	LCS Spk Added	LCS Result	LCS % Rec	LCSD Spk Added	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
raiailietei	Spk Added	Result	70 NEC	Spk Added	Nesuit	70 NEC	KFD	CUILIIII	CUILIIIIC	Quai
Vinyl Acetate	5	4.65	93	5	4.83	96.6	3.8	30	56-139	

LABORATORY TERM AND QUALIFIER DEFINITION REPORT

Job ID: 24102006 Date: 10/25/2024

General Term Definition

Back-Wt **Back Weight** Post-Wt Post Weight BRL Below Reporting Limit ppm parts per million cfu Previous Weight colony-forming units Pre-Wt Conc. Concentration Qualifier D.F. **Dilution Factor** RegLimit Regulatory Limit Front-Wt Front Weight RLU Relative Light Unit

J Estimation. Below calibration range but above MDL RPD Relative Percent Difference

LCS Laboratory Check Standard RptLimit Reporting Limit

LCSD Laboratory Check Standard Duplicate SDL Sample Detection Limit

LOD Limit of detection adjusted for %M + DF SQL Below calibration range but above MDL

LOQLimit of Quantitation adjusted for %M + DFsurrSurrogateMSMatrix SpikeTTime

MSD Matrix Spike Duplicate TNTC Too numerous to count

MW Molecular Weight UQL Unadjusted Upper Quantitation Limit

MQL Unadjusted Minimum Quantitation Limit

Qualifier Definition

E Estimation. Above calibration range.

Sample Condition Checklist

A&I	3 JobID : 24102006	ate Received: 10/18/2024 Time Received: 10	:08AM								
Client Name : Permian Basin Environmental Lab, LP											
Ter	nperature: 20.1°C S	ample pH: N/A									
The	ermometer ID : 230292880 p	H Paper ID: N/A									
Per	servative :	ot#:									
		Check Points	Yes	No	N/A						
1.	Cooler Seal present and signed.			Х							
2.	Sample(s) in a cooler.		Х								
3.	If yes, ice in cooler.		Х								
4.	Sample(s) received with chain-of-custody		Х								
5.	C-O-C signed and dated.		Х								
6.	Sample(s) received with signed sample co	stody seal.		Х							
7.	Sample containers arrived intact. (If No c	omment)	Х								
8.	Water Soil Liquid Sludg Matrix:	e Solid Cassette Tube Bulk Badge Food Other									
9.	Samples were received in appropriate cor	tainer(s)	Х								
10.	Sample(s) were received with Proper pres	ervative			Х						
11.	All samples were tagged or labeled.		Х								
12.	Sample ID labels match C-O-C ID's.		Х								
13.	Bottle count on C-O-C matches bottles for	nd.	Х								
14.	Sample volume is sufficient for analyses r	equested.	Х								
15.	Samples were received with in the hold ti	ne.	Х								
16.	VOA vials completely filled.				Х						
17.	Sample accepted.		Х								
18.	Has client been contacted about sub-out				Х						
_					1						
	nments: Include actions taken to resolve er: Air. Received 2 clear tedlar bags. ~MC 10/1										
- 4.10		. -									

Brought by $\;:\;\;$ FedEx

Received by: MClotfelter Check in by/date: MClotfelter / 10/18/2024

ab-s005-1123

Phone: 713-453-6060 www.ablabs.com

Page 18 of 20

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Permian Basin Environmental Lab, LP 1400 Rankin HWY Phone: 432-686-7235 PBELAB_SUB_COC_V2

Page 19 of 20

	Di	Donal Doman								rd, 1			t 7970	1			_									oc_v	2			(
	Project Manager:	Brent Barron PBEL					Job II	D:	2	41	0	20)()	6		_	- "	rojec							TRAC					- 3
	Company Name Company Address:								H							_	-													
	City/State/Zip:	Midland Texas				10/18	1/2024 Per	mia	n Bı	ain	Env	ironi	me	AMS	3	_	-	PIO		O#:										_
	City/State/Zip.		19101														-		Ρ.	U #:										_
	Telephone No:	432-661-4184					Fax No:										_ Re	port	Forn	nat:	X S	Stand	ard	L] TF	₹R₽	L	□NF	DES	5
	Sampler Signature:	N/A	,				e-mail:		bre	ntba	rror	1@р	belal	b.con	1			_												,
115.49% 47%	A Section State of Control		No. Case																-	T	Т		Ana	iyze F	or:	$\overline{\Box}$	\top	\top	┨	
ORDER							•				Prese	ervati	ion &	# of C	ontain	ers	М	atrix	┨	Ì										
5 3 3			and a commental a		<u> </u>	· · · · · · · · · · · · · · · · · · ·		<u> </u>					_	-					1											
IAB # (lab use only)				Seginning Depth	Ending Depth	Date Sampled	Time Sampled	feld Filtered	otal#. of Containers	Œ	HNO _{3 250 poly 1}	1Cl 3 40mL VOA	12504 1 AMBER 500/250POLY	NaOH /Ascorbic Acid 250ML P	NONE SOGML POLY 250 MIL POLY 500 ML	NONE	DW=Drinking Water St. Sludge	GW = Groundwater 5×5oil/Solid NP=Non-Portable - Snerify Other											4 HOUR RUSH	STANDARD
OLAB	4	1J17019		8	_ ш	10/16/2024	15:15	iT	2	Ĭ	I			<u>z .</u>	2 2	X	_	⊌ ≥	X		+	-	+-		+	++	\dashv	+	۲	X
100								ļ	_		Ц	L		_	\perp	<u> </u>			┖			_ _				$\perp \perp$		\bot		L
18 (11)												\vdash		\perp	-	_	_		╀			_	-		+	\bot	+	4		Ļ
			• • •						├	-			\vdash	_		╀			╀		+	+	+		+	+		+	┦	┝
Please a	add tressa@pbelab.co	m to the WOA. Th	ank vou.					l	<u></u>	<u> </u>							<u> </u>			Lab	orato	ry Cor	nmen	ts:						L
			•																							100			N N	
	BARRON		/17/2024	5:00) PM	Received by:	مِت	•								Da			ime	Cus	is on ody s	conta eals c	iner(s n con) tainer ler(e)	(s)		Y		N N	
Relinqu	ished by: Fedty ished by:	10	Date 19/24	Tir 100	ne J	Received by:										Da	te	T	ime	San	ple H by Sa	and D	eliver /Client	ed Rep.	2	1	, , ,		N N	
Relinqu	ished by:		Date		ne	Received by:			tion .						10	Da UG	te: 124	* T	ime 00%	Ten Rec Adji	perateived:	ure U	pon R	eceipt	C Fact	IL 23	30 M	128 DC	છ	

ORIGIN ID:MAFA (432) 686-7235 TRESSA BLEDSOE PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 RANKIN HWY

MIDLAND, TX 79701 UNITED STATES US

SHIP DATE: 170CT24 ACTWGT: 2.00 LB CAD: 107136846/INET4535 DIMS: 13x9x9 IN

BILL SENDER

SAMPLE RECEIVING A & B ENVIRONMENTAL SERVICES 10100 EAST FREEWAY SUITE 100

58CJ5/4FB6/C6C4

DEPT:

HOUSTON TX 77029
(713) 453-6060
NV:
PO:

OCT 5:00P 18 FRI _ STANDARD OVERNIGHT

TRK# 0201 7793 3640 4101

AB HBYA

77029

IAH

TX-US

After printing this label:
CONSIGNEE COPY • PLEASE PLACE IN FRONT OF POUCH
1 Fold the printed page along the horizontal line.
2. Place label in shipping pouch and affix it to your shipment.

other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document declared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$1,000, e.g. FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and ewelny, precious metals, negotiable instruments and other items listed in our Service Guide. Written claims must be filed fedex.com. FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on within strict time limits, see current FedEx Service Guide.

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Kimble Thrash
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: SRS 2009-039 Project Number: SRS 2009-039

Location: Lea County, NM

Lab Order Number: 4K14004

Current Certification

Report Date: 12/10/24

E Tech Environmental & Safety Solutions, Inc. [1] 13000 West County Road 100

Odessa TX, 79765

Project Number: SRS 2009-039 Project Manager: Kimble Thrash

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EFF-1 (111424)	4K14004-01	Air	11/14/24 12:30	11-14-2024 16:15

Project: SRS 2009-039

TO-15 analysis was subcontracted to A&B Houston. Their current certification can be found here: https://www.tceq.texas.gov/assets/public/compliance_compliance_support/qa/labs/a&b_env.pdf

E Tech Environmental & Safety Solutions, Inc. [1]

13000 West County Road 100

Odessa TX, 79765 Project Manager: Kimble Thrash

EFF-1 (111424) 4K14004-01 (Air)

Project: SRS 2009-039

Project Number: SRS 2009-039

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian I	Basin Envii	onmental L	ab, L.P.			
CPA TO-15									
1,1,1-Trichloroethane	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB-
1,1,2,2-Tetrachloroethane	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB
1,1,2-Trichlor-1,2,2-Trifluoroeth	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB
ane									
1,1,2-Trichloroethane	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB
1,1-Dichloroethane	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB
1,1-Dichloroethene	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUE
1,2,4-Trichlorobenzene	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB
1,2,4-Trimethylbenzene	2.95	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUE
1,2-Dibromoethane (EDB)	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUE
1,2-Dichlorobenzene	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUE
1,2-Dichloroethane	ND	1.00	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUI
1,2-Dichloropropane	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUE
1,2-Dichlorotetrafluoroethane	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUE
1,3,5-Trimethylbenzene	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUI
1,3-Butadiene	ND	1.10	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUE
1,3-Dichlorobenzene	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUI
1,4-Dichlorobenzene	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUE
2-Butanone	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUI
4-Ethyltoluene	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUI
Acetone	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SU
Benzene	8.55	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUI
Benzyl Chloride	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUI
Bromodichloromethane	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUE
Bromoform	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUI
Bromomethane	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUE
Carbon disulfide	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUI
Carbon tetrachloride	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUI
Chlorobenzene	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUI
Chloroethane	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUI
Chloroform	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUE
Chloromethane	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUI
cis-1,2-Dichloroethene	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUI
cis-1,3-Dichloropropene	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUI
Cyclohexane	4.75	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUI
Dibromochloromethane	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUI
Dichlorodifluoromethane	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUE
Ethanol	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUI
Ethyl Acetate	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUE

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

E Tech Environmental & Safety Solutions, Inc. [1]

13000 West County Road 100

Odessa TX, 79765

Project: SRS 2009-039 Project Number: SRS 2009-039

Project Manager: Kimble Thrash

EFF-1 (111424) 4K14004-01 (Air)

Analyte	Result	Reporting Limit Ur	its Dilution	Batch	Prepared	Analyzed	Method	Notes
			ian Rasin Ens		•			

Ethylbenzene	8.45	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB-
Hexachlorobutadiene	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB-
Isopropyl alcohol	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB-
Xylene (p/m)	29.0	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB-
Methyl Butyl Ketone	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB-8
Methylene chloride	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB-8
MIBK	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB-8
Methyl tert-butyl ether	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB-8
n-Heptane	11.2	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB-
n-Hexane	3.05	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB-
Xylene (o)	10.4	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB-8
Propylene	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB-
Styrene	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB-
Tetrachloroethene	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB-8
Tetrahydrofuran	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB-8
Toluene	29.8	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB-8
trans-1,2-Dichloroethylene	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB-8
trans-1,3-Dichloropropene	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB-8
Trichloroethylene	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB-
Trichlorofluoromethane	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB-
Vinyl acetate	ND	2.50	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB-
Vinyl chloride	ND	1.05	ppm	1	P4L0510	11/15/24 16:18	11/15/24 16:18	TO-15	SUB-8

E Tech Environmental & Safety Solutions, Inc. \cite{black}

13000 West County Road 100

Odessa TX, 79765

Project: SRS 2009-039

Project Number: SRS 2009-039 Project Manager: Kimble Thrash

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Allalyte	Result	Lillit	Onits	Level	Result	70KEC	Lillits	KFD	Lillit	INC

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

E Tech Environmental & Safety Solutions, Inc. [1]

13000 West County Road 100

Odessa TX, 79765

Project: SRS 2009-039

Project Number: SRS 2009-039 Project Manager: Kimble Thrash

Notes and Definitions

SUB-8 Subcontract of analyte/analysis to A&B Labs Houston.

NPBEL Ct Chain of Custody was not generated at PBELAB

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Drew	Darror			
Report Approved By:			Date:	12/10/2024	

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

PBELAB

Project Manager:

Company Name:

City/State/Zip:

Telephone No:

Sampler Signature:

4K14004

FIELD CODE

Company Address:

Kimble Thrash

P.O. Box 6228

(432) 563-2200

Midland, TX 79711

Etech Environmental & Safety Solutions, Inc.

eginning Depth

Ending Depth

	۲
	F

(lab use only)

ORDER #:

AB # (lab use only)

EFF-1 (111424)		_	11/14/2024	1230		2				T	X		Air	X		+	_	†	T	Ħ		+	+	\dashv	+
									\top							\top	十	+-			十	+	\forall	\dashv	十
																	1	1	1		十		$\dagger \dagger$		\top
								T								1	\top	1				_	+	+	+
								T	П					\top	\lnot	十	\top	†			1	\top	\dagger		-
								T							寸		+				十	\top	+	+	
								Τ								\top	+	†	\Box		十	╅		+	+
			1								Ť				7	\top	1	+-	\vdash			+	+	+	十
																	1		H	H	\top	+	$+ \dagger$	\dashv	╁
		<u>.</u>						T						1 1	十	+	1	+			+		11	_	+
pecial Instructions: Please invoice directly to Plains A/P 33	3 Clay S	St., Ho	uston, TX 7700	2 and refere	nce	the S	RS ni	ımbe	er in tl	ne Pr	oject	Nam	e.	<u> </u>		aboi	le Co	ntair	ners I	Intact	t?		السلم	Y	N N
elinquished by:		me 2 lS	Received by:							•		Dat	te	Time	L	OCs abels usto	s on (conta	ainer((s)		ı		Y Y	N N
elinquished by:			Received by:									Dat	te	Custody seals on container(s) Y N Custody seals on cooler(s) Y N Sample Hand Delivered Y N by Sampler/Client Rep. ? Y N											
elinquished by: Date	Tir	me	Reseived by PE	Dad on	<u> </u>						†	Dat	ril 1	Time کاریا		by empe eceiv ajust	eratu	rier? re Up	oon F	UPS Recei	ipt:	HL	FedE ometo :		ne Sta OF

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Sampled

Date

Time Sampled

CH:

Project Name: SRS 2009-039

Project #: SRS 2009-039

Project Loc: Lea County, NM

TCLP

TOTAL

PO #:

Report Format: Standard

e-mail: kimble@etechenv.com; shane@etechenv.com; camille.bryant@plains.com; karolanne.hudgens@plains.com

Matrix

W ≈ Groundwater

Phone: 432-686-7235

TRRP

Analyze For:

Permian Basin Environmental Lab, LP

Preservation & # of Containers

LaoH

1400 Rankin HWY Midland, Texas 79701

Fax No: (432) 563-2213

otal #. of Containe

N N N N N

Received by OCD: 10/6/2025 12:51:49 PM

Released to Imaging: 10/14/2025 3:29:08 PM

Page 7 of 22

NPDES

SH TAT (Pre-Schedule) 24, 48,

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Permian Basin Environmental Lab, LP 1400 Rankin HWY Midland, Texas 79701 **Phone: 432-686-7235**PBELAB_SUB_COC_V2

	Project Manager:	Brent Barron								, -							Pro	ect l	Nam	ie:_		SI	JBC	ON.	TRA	СТ				
	Company Name	PBEL												Pro	ject	#:_														
	Company Address:	1400 Rankin H) Rankin HWY											Pı																
	City/State/Zip:	Midland Texas	s 79701																РО	#:_										
	Telephone No:	432-661-4184	ļ				Fax No:										Repo	rt Fo	rma	at: X Standard TRRP								□ N	NPDE:	S
	Sampler Signature:	N/A					e-mail:		brer	ntbai	ron@	®pbe	lab.	com				_												
																							Ana	alyze	For:					
ORDER #	.								Ī	n	rocor	otion	0 #	of Co	ntaine	**	Matr	iv												
ONDEN 1	· ·						:			P	reserv				ltaine	15	IVIALI	IX.										ı l		
LAB # (lab use only)	4	K14004		Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	T Total #. of Containers	ICE	HNO _{3 250 poly 1}	HCI 3 40mL VOA	NaOH /Assorbic Acid 250MI Pa	NaOH/Zn	NONE 500ML POLY 250 MIL POLY 500 ML WM AMBER GLASS	X NONE	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid	_	X T0-15										24 HOUR RUSH	X STANDARD
																												Щ	丄	Ш
																														Ш
Please add tressa@pbelab.com to the WOA. Thank you.			hank you.																rator											
																								ntact? pace?				Y Y	N N	
BRENT B	ARRON	11	1/14/2024	5:00) PM	Received by:	Da								Dat	:e	Tin	ne l	abel	s on o	onta	iner(Y Y	N N		
																			C	Custo	dy se	als o	n coo	ler(s)				Υ	N	
Relinqui	shed by:		Date	Tir	ne	Received by:										Dat	:e	Tin	ne S		le Ha y Sam			red t Rep.	?			Y Y	N N	
Relinqui	shed by:		Date	Tir	me	Received by:										Dat	:e	Tin	F	b Temp Recei	y Cou	rier?		UPS Receip	D	HL tor	FedI	Ex Lo	one Sta	ar ⁰

Total Number of Pages:

Laboratory Analysis Report

Job ID: 24111780

10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

Client Project Name: Subcontract

Report To: Client Name: Permian Basin Environmental Lab, LP

> Attn: **Brent Barron**

Client Address: 1400 Rankin Hwy City, State, Zip: Midland, Texas, 79701

P.O.#.: Sample Collected By:

Date Collected: 11/14/24

A&B Labs has analyzed the following samples...

Client Sample ID Matrix A&B Sample ID 4K14004 Air 24111780.01

-1

Amit Bembde Analyst:

Released By: Gobinath Rangasamy Title: Project Manager Date: 11/22/2024

This Laboratory is NELAP (T104704213-23-31) accredited. Effective: 04/01/2024; Expires: 03/31/2025

Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

ab-q210-0321

Date Received: 11/15/2024 10:29

24.1.17578

Job ID: 24111780

Date: 11/22/2024

Attn: Brent Barron

24111780.01

Air

Lab Sample ID:

Sample Matrix:

Client Name : Permian Basin Environmental Lab, LP

Project Name: Subcontract

Client Sample ID: 4K14004

Date Collected: 11/14/24 Time Collected: 12:30

Other Information:

Test Method	Parameter/Test Description	M.W.	Results(nl)	RptLimit(nl)	InjVol(cc)	ug/M3	ppm	Q	Date/Time
EPA TO-15	Volatile Organic Compounds in Air b	y GCMS							
	1,1,1-Trichloroethane	133.4	BRL	0.5	0.2CC	< 13640.1	< 2.5000		11/15/24
	1,1,2,2-Tetrachloroethane	167.85	BRL	0.5	0.2CC	< 17162.6	< 2.5000		11/15/24
	1,1,2-Trichloro-1,2,2-trifluoroethane	187.38	BRL	0.5	0.2CC	< 19159.5	< 2.5000		11/15/24
	1,1,2-Trichloroethane	133.41	BRL	0.5	0.2CC		< 2.5000		11/15/24
	1,1-Dichloroethane	98.96	BRL	0.5	0.2CC	< 10118.6	< 2.5000		11/15/24
	1,1-Dichloroethylene	96.94	BRL	0.5	0.2CC	< 9912.1	< 2.5000		11/15/24
	1,2,4-Trichlorobenzene	181.45	BRL	0.5	0.2CC	< 18553.2	< 2.5000		11/15/24
	1,2,4-Trimethylbenzene	120.19	0.59	0.5	0.2CC		2.9500		11/15/24
	1,2-Dibromoethane	187.87	BRL	0.5	0.2CC	< 19209.6	< 2.5000		11/15/24
	1,2-Dichlorobenzene	147.00	BRL	0.5	0.2CC	< 15030.7	< 2.5000		11/15/24
	1,2-Dichloroethane	98.96	BRL	0.2	0.2CC		< 1.0000		11/15/24
	1,2-Dichloropropane	112.99	BRL	0.5	0.2CC	< 11553.2	< 2.5000		11/15/24
	1,2-Dichlorotetrafluoroethane	170	BRL	0.5	0.2CC	< 17382.4	< 2.5000		11/15/24
	1,3,5-Trimethylbenzene	120.19	BRL	0.5	0.2CC	< 12289.4	< 2.5000		11/15/24
	1,3-Butadiene	54.09	BRL	0.22	0.2CC		< 1.1000		11/15/24
	1,3-Dichlorobenzene	147.00	BRL	0.5	0.2CC	< 15030.7	< 2.5000		11/15/24
	1,4-Dichlorobenzene	147.00	BRL	0.5	0.2CC	< 15030.7	< 2.5000		11/15/24
	2-Butanone	72.11	BRL	0.5	0.2CC		< 2.5000		11/15/24
	4-Ethyltoluene	120	BRL	0.5	0.2CC	< 12269.9	< 2.5000		11/15/24
	Acetone ² Benzene	58.08 78.11	BRL 1.71	0.5 0.2	0.2CC 0.2CC	< 5938.7	< 2.5000 8.5500		11/15/24 11/15/24
	Benzyl chloride	126.59	BRL	0.5	0.2CC		< 2.5000		11/15/24
	Bromodichloromethane ¹	163.83	BRL	0.5	0.2CC	_	< 2.5000		11/15/24
	Bromoform	252.75	BRL	0.5	0.2CC	< 25843.6	< 2.5000		11/15/24
	Bromomethane	94.94	BRL	0.5	0.2CC		< 2.5000		11/15/24
	Carbon disulfide ²	76.14	BRL	0.5	0.2CC	< 7785.3	< 2.5000		11/15/24

ab-q212-0321

Job ID: 24111780

Date: 11/22/2024

Attn: Brent Barron

Client Name : Permian Basin Environmental Lab, LP

Project Name: Subcontract

Client Sample ID: 4K14004 Lab Sample ID: 24111780.01

Date Collected: 11/14/24 Sample Matrix: Air

Time Collected: 12:30 Other Information:

Tost Mathed		MAN	Results(nl)	Dott imit/pl\	Ini\/ol/os\	ua/M2	nnm	0	Data/Time
	Parameter/Test Description	M.W.	Results(III)	RptLimit(nl)	THINOI(CC)	ug/M3	ppm	Q	Date/Time
EPA TO-15	Volatile Organic Compounds in Air b	y GCMS							
	Carbon tetrachloride	153.82	BRL	0.5	0.2CC		< 2.5000		11/15/24
	Chlorobenzene	112.56	BRL	0.5	0.2CC	< 11509.2	< 2.5000		11/15/24
	Chloroethane	65.42	BRL	0.5	0.2CC	< 6689.2	< 2.5000		11/15/24
	Chloroform	119.38	BRL	0.5	0.2CC	< 12206.5	< 2.5000		11/15/24
	Chloromethane	50.49	BRL	0.5	0.2CC		< 2.5000		11/15/24
	cis-1,2-Dichloroethylene	96.94	BRL	0.5	0.2CC		< 2.5000		11/15/24
	cis-1,3-Dichloropropene	110.97	BRL	0.5	0.2CC	< 11346.6	< 2.5000		11/15/24
	Cyclohexane	84.16	0.95	0.5	0.2CC	16350.1	4.7500		11/15/24
	Dibromochloromethane ²	208.29	BRL	0.5	0.2CC	< 21297.5	< 2.5000		11/15/24
	Dichlorodifluoromethane	120	BRL	0.5	0.2CC	< 12269.9	< 2.5000		11/15/24
	Ethanol ²	46.07	BRL	0.5	0.2CC		< 2.5000		11/15/24
	Ethyl acetate ²	88.11	BRL	0.5	0.2CC	< 9009.2	< 2.5000		11/15/24
	Ethylbenzene	106.17	1.69	0.5	0.2CC	36692.7	8.4500		11/15/24
	Hexachlorobutadiene	258	BRL	0.5	0.2CC	< 26380.4	< 2.5000		11/15/24
	Isopropyl Alcohol ²	60.1	BRL	0.5	0.2CC		< 2.5000		11/15/24
	m- & p-Xylenes	106.17	5.79	1	0.2CC	125710. 5	28.9500		11/15/24
	Methyl Butyl Ketone ²	100	BRL	0.5	0.2CC	< 10224.9	< 2.5000		11/15/24
	Methylene chloride	84.93	BRL	0.5	0.2CC	< 8684.0	< 2.5000		11/15/24
	MIBK	100.16	BRL	0.5	0.2CC	< 10241.3	< 2.5000		11/15/24
	MTBE	88.15	BRL	0.5	0.2CC	< 9013.3	< 2.5000		11/15/24
	n-Heptane	100.21	2.24	0.5	0.2CC	45904.0	11.2000		11/15/24
	n-Hexane	86.18	0.61	0.5	0.2CC		3.0500		11/15/24
	o-Xylene	106.17		0.5	0.2CC		10.4000		11/15/24
	Propylene	42.08	BRL	0.5	0.2CC		< 2.5000		11/15/24
	Styrene	104	BRL	0.5	0.2CC		< 2.5000		11/15/24
	Tetrachloroethylene	165.83	BRL	0.5	0.2CC		< 2.5000		11/15/24
	Tetrahydrofuran ²	72.11	BRL	0.5	0.2CC		< 2.5000		11/15/24
	Toluene	92.14	5.96	0.5	0.2CC	112301. 5	29.8000		11/15/24
	trans-1,2-Dichloroethylene	96.94	BRL	0.5	0.2CC		< 2.5000		11/15/24

ab-q212-0321

Q.b

Job ID: 24111780

Date: 11/22/2024

Attn: Brent Barron

24111780.01

Air

Client Name : Permian Basin Environmental Lab, LP

Project Name: Subcontract

Client Sample ID: 4K14004

Date Collected: 11/14/24 Time Collected: 12:30

Other Information:

Test Method	Parameter/Test Description	M.W.	Results(nl)	RptLimit(nl)	InjVol(cc)	ug/M3	ppm	Q	Date/Time
EPA TO-15	Volatile Organic Compounds in Air b	y GCMS							
	trans-1,3-Dichloropropene	110.97	BRL	0.5	0.2CC	< 11346.6	< 2.5000		11/15/24
	Trichloroethylene	131.39	BRL	0.5	0.2CC	< 13434.6	< 2.5000		11/15/24
	Trichlorofluoromethane	137.37	BRL	0.5	0.2CC	< 14046.0	< 2.5000		11/15/24
	Vinyl Acetate	86.09	BRL	0.5	0.2CC	< 8802.7	< 2.5000		11/15/24
	Vinyl Chloride	62.5	BRL	0.21	0.2CC	< 2684.0	< 1.0500		11/15/24

Total [VOC] calculated 21.62

434685. 481

Lab Sample ID:

Sample Matrix:

108.100

EPA TO-- 15 Sample Analysis -- GC/MS

Lab ID	24111780.01
Date Acquired	15 Nov 2024 5:01 pm
Analyst	AVBEMBDE
Sample Run ID	X111507.D
tedlar bag (cc)	1000
Injection Volume (cc)	0.2

Compound Name	CAS#	R.T.	M.W	Nanoliters	Vol.(L)	ug/l	ppm
Cyclohexane, methyl-	108-87-2	12.6	98	3.3	0.0002	66.135	16.500
Heptane, 2-methyl-	592-27-8	14.268	114	1.6	0.0002	37.301	8.000
Heptane, 3-methyl-	589-81-1	14.55	114	1.1	0.0002	25.644	5.500
Octane	111-65-9	17.6	114	5	0.0002	116.564	25.000
Nonane	111-84-2	18.57	128	3.6	0.0002	94.233	18.000

TIC* REPORT

A&B Job Sample ID:	Method Blank
--------------------	--------------

Analysis Date: 11/15/2024

est Method	Parameter/Test Description	CAS#	RT	MW	Reading(nI)**	ppm (v/v)	μg/m³	Analys
O-15	None							AVB
				I				1

^{*} TIC: Tentatively identified compounds.

Phone: 713-453-6060 www.ablabs.com

^{**}The values are estimated relative to the nearest internal standards and only major peaks are reported.

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

QC Batch ID: Qb241121106 Created Date: 11/21/24 Created By: AVBembde

 $\textbf{Samples in This QC Batch} \ : \quad 24111780.01$

QC Type: Method Blank						
Parameter	CAS #	Result	Units	D.F.	RptLimit	Qua
trans-1,2-Dichloroethylene	156-60-5	BRL	nL	1	0.5	
Dichlorodifluoromethane	75-71-8	BRL	nL	1	0.5	
Chloromethane	74-87-3	BRL	nL	1	0.5	
1,2-Dichlorotetrafluoroetha	76-14-2	BRL	nL	1	0.5	
Vinyl Chloride	75-01-4	BRL	nL	1	0.21	
Bromomethane	74-83-9	BRL	nL	1	0.5	
Chloroethane	75-00-3	BRL	nL	1	0.5	
Trichlorofluoromethane	75-69-4	BRL	nL	1	0.5	
1,1-Dichloroethylene	75-35-4	BRL	nL	1	0.5	
Methylene chloride	75-09-2	BRL	nL	1	0.5	
1,1,2-Trichloro-1,2,2-trifluo	76-13-1	BRL	nL	1	0.5	
1,1-Dichloroethane	75-34-3	BRL	nL	1	0.5	
cis-1,2-Dichloroethylene	156-59-2	BRL	nL	1	0.5	
Chloroform	67-66-3	BRL	nL	1	0.5	
1,2-Dichloroethane	107-06-2	BRL	nL	1	0.2	
1,1,1-Trichloroethane	71-55-6	BRL	nL	1	0.5	
Benzene	71-43-2	BRL	nL	1	0.2	
Carbon tetrachloride	56-23-5	BRL	nL	1	0.5	
1,2-Dichloropropane	78-87-5	BRL	nL	1	0.5	
Trichloroethylene	79-01-6	BRL	nL	1	0.5	
cis-1,3-Dichloropropene	10061-01-5	BRL	nL	1	0.5	
trans-1,3-Dichloropropene	10061-02-6	BRL	nL	1	0.5	
1,1,2-Trichloroethane	79-00-5	BRL	nL	1	0.5	
Toluene	108-88-3	BRL	nL	1	0.5	
1,2-Dibromoethane	106-93-4	BRL	nL	1	0.5	
Tetrachloroethylene	127-18-4	BRL		1	0.5	
Chlorobenzene	108-90-7	BRL	nL	1	0.5	
			nL			
Ethylbenzene	100-41-4	BRL	nL !	1	0.5	
m- & p-Xylenes	179601-23-1	BRL	nL	1	1	
Styrene	100-42-5	BRL	nL	1	0.5	
o-Xylene	95-47-6	BRL	nL	1	0.5	
1,1,2,2-Tetrachloroethane	79-34-5	BRL	nL	1	0.5	
1,3,5-Trimethylbenzene	108-67-8	BRL	nL	1	0.5	
1,2,4-Trimethylbenzene	95-63-6	BRL	nL	1	0.5	
1,3-Dichlorobenzene	541-73-1	BRL	nL	1	0.5	
1,4-Dichlorobenzene	106-46-7	BRL	nL	1	0.5	
1,2-Dichlorobenzene	95-50-1	BRL	nL	1	0.5	
1,2,4-Trichlorobenzene	120-82-1	BRL	nL	1	0.5	
Hexachlorobutadiene	87-68-3	BRL	nL	1	0.5	
1,3-Butadiene	106-99-0	BRL	nL	1	0.22	
2-Butanone	78-93-3	BRL	nL	1	0.5	
1-Ethyltoluene	622-96-8	BRL	nL	1	0.5	

Refer to the Definition page for terms.

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

QC Batch ID: Qb241121106 Created Date: 11/21/24 Created By: AVBembde

 $\textbf{Samples in This QC Batch} \ : \quad 24111780.01$

QC Type: Method Blank						
Parameter	CAS #	Result	Units	D.F.	RptLimit	Qual
Acetone	67-64-1	BRL	nL	1	0.5	
Benzyl chloride	100-44-7	BRL	nL	1	0.5	
Bromodichloromethane	75-27-4	BRL	nL	1	0.5	
Bromoform	75-25-2	BRL	nL	1	0.5	
Carbon disulfide	75-15-0	BRL	nL	1	0.5	
Cyclohexane	110-82-7	BRL	nL	1	0.5	
Dibromochloromethane	124-48-1	BRL	nL	1	0.5	
Ethanol	64-17-5	BRL	nL	1	0.5	
Ethyl acetate	141-78-6	BRL	nL	1	0.5	
n-Heptane	142-82-5	BRL	nL	1	0.5	
n-Hexane	110-54-3	BRL	nL	1	0.5	
Isopropyl Alcohol	67-63-0	BRL	nL	1	0.5	
Methyl Butyl Ketone	591-78-6	BRL	nL	1	0.5	
MIBK	108-10-1	BRL	nL	1	0.5	
MTBE	1634-04-4	BRL	nL	1	0.5	
Propylene	115-07-1	BRL	nL	1	0.5	
Tetrahydrofuran	109-99-9	BRL	nL	1	0.5	
Vinyl Acetate	108-05-4	BRL	nL	1	0.5	

QC Type: LCS and LCS	D									
	LCS	LCS	LCS	LCSD	LCSD	LCSD	222	RPD	%Recovery	0 1
Parameter	Spk Added	Result	% Rec	Spk Added	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
trans-1,2-Dichloroethylene	5	4.55	91	5	4.65	93	2.2	30	67-124	
Dichlorodifluoromethane	5	5.79	116	5	5.96	119	2.9	30	59-128	
Chloromethane	5	4.89	97.8	5	4.98	99.6	1.8	30	59-132	
1,2-Dichlorotetrafluoroetha	5	5.11	102	5	5.19	104	1.6	30	63-121	
Vinyl Chloride	5	4.83	96.6	5	4.89	97.8	1.2	30	64-127	
Bromomethane	5	4.65	93	5	4.69	93.8	0.9	30	63-134	
Chloroethane	5	4.61	92.2	5	4.58	91.6	0.7	30	63-127	
Trichlorofluoromethane	5	4.98	99.6	5	5.15	103	3.4	30	62-126	
1,1-Dichloroethylene	5	4.51	90.2	5	4.54	90.8	0.7	30	61-133	
Methylene chloride	5	4.34	86.8	5	4.39	87.8	1.2	30	62-115	
1,1,2-Trichloro-1,2,2-trifluo	5	4.61	92.2	5	4.72	94.4	2.4	30	66-126	
1,1-Dichloroethane	5	4.59	91.8	5	4.68	93.6	1.9	30	68-126	
cis-1,2-Dichloroethylene	5	4.43	88.6	5	4.47	89.4	0.9	30	70-121	
Chloroform	5	4.57	91.4	5	4.65	93	1.7	30	68-134	
1,2-Dichloroethane	5	4.86	97.2	5	4.95	99	1.8	30	65-128	
1,1,1-Trichloroethane	5	4.94	98.8	5	5.05	101	2.2	30	68-125	
Benzene	5	4.52	90.4	5	4.58	91.6	1.3	30	69-119	
Carbon tetrachloride	5	5.07	101	5	5.20	104	2.5	30	68-132	

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

QC Batch ID: Qb241121106 Created Date: 11/21/24 Created By: AVBembde

Samples in This QC Batch: 24111780.01

QC Type: LCS and LCS	D									
Parameter	LCS Spk Added	LCS Result	LCS % Rec	LCSD Spk Added	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qua
1,2-Dichloropropane	5	4.53	90.6	5	4.54	90.8	0.2	30	69-123	
Trichloroethylene	5	4.67	93.4	5	4.70	94	0.6	30	71-123	
cis-1,3-Dichloropropene	5	4.74	94.8	5	4.76	95.2	0.4	30	70-128	
trans-1,3-Dichloropropene	5	4.74	94.8	5	4.76	95.2	0.4	30	75-133	
1,1,2-Trichloroethane	5	4.47	89.4	5	4.56	91.2	2	30	73-119	
Toluene	5	4.65	93	5	4.62	92.4	0.6	30	66-119	
1,2-Dibromoethane	5	4.56	91.2	5	4.62	92.4	1.3	30	74-122	
Tetrachloroethylene	5	5.06	101	5	5.14	103	1.6	30	66-124	
Chlorobenzene	5	4.52	90.4	5	4.63	92.6	2.4	30	70-119	
Ethylbenzene	5	4.61	92.2	5	4.61	92.2	0	30	70-124	
m- & p-Xylenes	10	9.15	91.5	10	9.16	91.6	0.1	30	61-134	
Styrene	5	4.56	91.2	5	4.55	91	0.2	30	73-127	
o-Xylene	5	4.68	93.6	5	4.58	91.6	2.2	30	67-125	
1,1,2,2-Tetrachloroethane	5	4.50	90	5	4.48	89.6	0.4	30	65-127	
1,3,5-Trimethylbenzene	5	5.17	103	5	4.82	96.4	7	30	67-130	
1,2,4-Trimethylbenzene	5	5.25	105	5	4.83	96.6	8.3	30	66-132	
1,3-Dichlorobenzene	5	4.92	98.4	5	4.71	94.2	4.4	30	65-130	
1,4-Dichlorobenzene	5	4.76	95.2	5	4.53	90.6	5	30	60-131	
1,2-Dichlorobenzene	5	5.04	101	5	4.69	93.8	7.2	30	63-129	
1,2,4-Trichlorobenzene	5	5.08	102	5	5.52	110	8.3	30	41-142	
Hexachlorobutadiene	5	5.07	101	5	5.34	107	5.2	30	56-138	
Propylene	5	5.05	101	5	5.19	104	2.7	30	57-136	
1,3-Butadiene	5	4.64	92.8	5	4.77	95.4	2.8	30	66-134	
Ethanol	5	4.68	93.6	5	5.11	102	8.8	30	59-125	
Acetone	5	4.39	87.8	5	4.54	90.8	3.4	30	58-128	
Isopropyl Alcohol	5	4.30	86	5	4.82	96.4	11.4	30	52-134	
Carbon disulfide	5	4.21	84.2	5	4.29	85.8	1.9	30	57-134	
MTBE	5	4.95	99	5	5.01	100	1.2	30	66-126	
2-Butanone	5	4.24	84.8	5	4.39	87.8	3.5	30	67-130	
Ethyl acetate	5	4.37	87.4	5	4.38	87.6	0.2	30	65-128	
n-Hexane	5	4.47	89.4	5	4.53	90.6	1.3	30	63-120	
Tetrahydrofuran	5	4.29	85.8	5	4.41	88.2	2.8	30	64-123	
Cyclohexane	_	4.47	89.4	5	4.52	90.4	1.1	30	70-117	
n-Heptane	5	4.38	87.6	5	4.45	89	1.6	30	69-123	
MIBK	5	3.72	74.4	5	4.43	82.4	10.2	30	67-130	
Methyl Butyl Ketone	5	3.99	79.8	5	4.12	87.4	9.1	30	60-140	
Bromoform	5	3.99 4.87	97.4	5	4.37	97.6	0.2	30	66-139	
						96.2				
4-Ethyltoluene	5	5.12	102	5	4.81		6.2	30	67-129 50 147	
Benzyl chloride	5	4.51	90.2	5	4.50	90	0.2	30	50-147	
Bromodichloromethane	5	4.75	95	5	4.82	96.4	1.5	30	72-128 70-130	
Dibromochloromethane	5	4.92	98.4	5	5.01	100	1.8	30	70-130	

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

QC Batch ID: Qb241121106 Created Date: 11/21/24 Created By: AVBembde

Samples in This QC Batch: 24111780.01

QC Type: LCS and LCS	D									
Parameter	LCS Spk Added	LCS Result	LCS % Rec	LCSD Spk Added	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
Vinyl Acetate	5	4.02	80.4	5	4.19	83.8	4.1	30	56-139	

LABORATORY TERM AND QUALIFIER DEFINITION REPORT

Job ID: 24111780 Date: 11/22/2024

General Term Definition

Back-Wt **Back Weight** Post-Wt Post Weight BRL Below Reporting Limit ppm parts per million cfu Previous Weight colony-forming units Pre-Wt Conc. Concentration Qualifier D.F. **Dilution Factor** RegLimit Regulatory Limit Front-Wt Front Weight RLU Relative Light Unit

J Estimation. Below calibration range but above MDL RPD Relative Percent Difference

LCS Laboratory Check Standard RptLimit Reporting Limit

LCSD Laboratory Check Standard Duplicate SDL Sample Detection Limit

LOD Limit of detection adjusted for %M + DF SQL Below calibration range but above MDL

LOQLimit of Quantitation adjusted for %M + DFsurrSurrogateMSMatrix SpikeTTime

MSD Matrix Spike Duplicate TNTC Too numerous to count

MW Molecular Weight UQL Unadjusted Upper Quantitation Limit

MQL Unadjusted Minimum Quantitation Limit

Qualifier Definition

Sample Condition Checklist

A&B JobID : 24111780 Date Received : 11/15/2024 Time Received : 10:													
Clie	nt Name : Permian Basin Environi	nental Lab, LP											
Ter													
The	rmometer ID : 230292880	pH Paper ID : N/A											
Per	servative :	Lot#:	1										
		Check Points	Yes	No	N/A								
1.	Cooler Seal present and signed.			Х									
2.	Sample(s) in a cooler.		Χ										
3.	If yes, ice in cooler.			Х									
4.	Sample(s) received with chain-of-custo	dy.	Х										
5.	C-O-C signed and dated.		Х										
6.	Sample(s) received with signed sample	custody seal.		Х									
7.	Sample containers arrived intact. (If No	comment)	Х										
8.	Water Soil Liquid Slu Matrix:	lge Solid Cassette Tube Bulk Badge Food Other											
9.	Samples were received in appropriate c	ontainer(s)	Χ										
10.	Sample(s) were received with Proper p	eservative			Х								
11.	All samples were tagged or labeled.		Х										
12.	Sample ID labels match C-O-C ID's.		Х										
13.	Bottle count on C-O-C matches bottles	ound.	Х										
14.	Sample volume is sufficient for analyses	requested.	Х										
15.	Samples were received with in the hold	time.	Х										
16.	VOA vials completely filled.				Х								
17.	Sample accepted.		Х										
18.	Has client been contacted about sub-ou	t			Х								
_													
	Comments : Include actions taken to resolve discrepancies/problem: Other: Air. Received 2 clear tedlar bags. ~MC 11/15/2024												
		•											

Brought by : FedEx

Received by: MClotfelter Check in by/date: MClotfelter / 11/15/2024

ab-s005-1123

Phone: 713-453-6060 www.ablabs.com

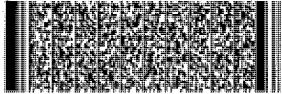
Page 20 of 22

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Permian Basin Environmental Lab, LP 1400 Rankin HWY Midland Texas 79701 Phone: 432-686-7235 PBELAB_SUB_COC_V2

Page 21 of 22

							Mic	dlan	ıd, T	exa	s 7	9701																	7
יי מאנבאטייי	Project Manager:	Brent Barron				Job	ιīi	<u>.</u>	2	41	٦.	17	ጸበ) -		Pro	ject	Nar	ne:		SU	BC	TNC	RAC	<u>T</u>				7:
	Company Name	PBEL							Í	iiii	!! !!		ĬĬ				Pro	jec	t #:										2/0/2
	Company Address:	1400 Rankin HWY							ĮĬ					l MS		Р	rojed	et L	oc:_										020
	City/State/Zip:	Midland Texas 7970	1			11/15/2024	Pet	mia	in Bi	BIN	Envi	ironm		- CMO		•		PC	#:										7:31
	Telephone No:	432-661-4184				_ Fax No:										Repo	rt Fo)rm	at: X	St	andaı	rđ		TR	(RP	Г] אפו	DES	49 F
	Sampler Signature:	N/A				_ e-mail:		bre	ntba	rron	@pt	elab.	com																M
																	ŀ	\neg		Т		Anal	yze Fo	r: —	П	\top	\dashv		
ORDER	enger by the Landson H: 1286 Charles Barrey	karasi malebasi n Lagasi ng Karasi				:			F	rese	rvatio	on & #	of Co	ntaine	rs	Matr	ix												
小说(ab use only)		K14004	Beginning Denth	Ending Depth	Date Sampled 11/14/2024	Time Sampled	Field Filtered	7 Total #. of Containers	ICE	HNO _{3 250 poly 1}		H ₂ SO ₄ 1 AMBER 500/250POLY	NaOH/Zn	NONE SOOML POLY 250 MIL POLY 500 ML WM AMBER GLASS	X	DW=Drinking Water SL*Sludge W= GW = Groundwater S*Soil/Soild	NP=Nan-Patable Specify Other	X TO-15				-						24 HOUR RUSH	X STANDARD
]	Н		Н		\dashv	-				_		\dashv		╁	H	\dashv	+	+	+	+	+	┟┼	_
																								上					
4 658											\dashv	+	-	ļ			_	_	- -	-	$\left \cdot \right $			\dotplus	$\vdash \vdash$	\dashv	┦┦	$oxed{oxed}$	
Please a	add tressa@pbelab.co	m to the WOA. Thank yo	<u>l</u> u.	1		1	<u>}</u>				1.	I	<u>.I.</u>	J	J	<u> </u>			Sampl VOCs	e Cor Free	itaine of Hea	rs Int idspa	act? ce?			Y Y		N	
	BARRON	11/14/20		:00 PM	Received by:	Edto									Dat	te	Tin	ıe	Labels Custo Custo	on c dy se dy se	ontain als on als on	ier(s) conti coole	ainer(2r(s)	s)		Y Y		N N N	
Relinqu	ished by:	Date		Time 029											Dat		Tin	1e	Sampl by by	e Har / Sam / Cour	nd Del pler/C ier?	ivere lient l	d : Rep. ? IPS:	рні	F	Y Y edfy	Lone	N N: Star	9
Relinqu	ished by:	Date	<u></u>	Time	Received by:									0.0	Dai	r H4	Tin In	іе <i>0</i> 1	Tempi Receiv Adiust	eratu ed: ed:	e Upo ス 2. フフ	on Re	ceipt. *C	Facto	1000t 47.87 2.12	نو)	4 r	2/	


BILL SENDER

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 RANKIN HWY

ACTWGT: 2.00 LB CAD: 107136846/INET4535 DIMS: 13x9x9 IN

MIDEAND; TX 79701 UNITED STATES US

SAMPLE RECEIVING 10100 EAST FREEWAY SUITE 100

FRI - 15 NOV 5:00P STANDARD OVERNIGHT

7799 6659 1216

AB HBYA

77029

Page 22 of 22

dectared valué,

edÉx for any

other for

within strict til

jewelry, p

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Kimble Thrash
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: SRS 2009-039 Project Number: SRS 2009-039

Location: Lea County, NM

Lab Order Number: 4L11009

Current Certification

Report Date: 12/25/24

E Tech Environmental & Safety Solutions, Inc. [1] 13000 West County Road 100

Odessa TX, 79765

Project: SRS 2009-039
Project Number: SRS 2009-039
Project Manager: Kimble Thrash

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EFF-1 (121024)	4L11009-01	Air	12/10/24 13:30	12-11-2024 09:35

TO-15 analysis was subcontracted to A&B Houston. Their current certification can be found here: https://www.tceq.texas.gov/assets/public/compliance_compliance_support/qa/labs/a&b_env.pdf

E Tech Environmental & Safety Solutions, Inc. [1]

13000 West County Road 100

Odessa TX, 79765 Project Manager: Kimble Thrash

EFF-1 (121024) 4L11009-01 (Air)

Project: SRS 2009-039

Project Number: SRS 2009-039

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian I	Basin Envii	onmental L	ab, L.P.			
CPA TO-15									
1,1,1-Trichloroethane	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUB
1,1,2,2-Tetrachloroethane	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUB
1,1,2-Trichlor-1,2,2-Trifluoroeth	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUB
ane 1,1,2-Trichloroethane	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUE
1,1-Dichloroethane	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUE
1,1-Dichloroethene	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUE
1,2,4-Trichlorobenzene	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUI
1,2-Dibromoethane (EDB)	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUE
1,2-Dichlorobenzene	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUE
1,2-Dichloroethane	ND ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUI
			ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	
1,2-Dichloropropane	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUI
1,2-Dichlorotetrafluoroethane	ND	0.0250	ppm	1	P4L2403 P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUI
1,3-Butadiene	ND	0.0110	ppm						SUI
1,3-Dichlorobenzene	ND	0.0250		1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SU
1,4-Dichlorobenzene	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SU
2-Butanone	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SU
4-Ethyltoluene	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SU
Acetone	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SU
Benzene	ND	0.0100	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SU
Benzyl Chloride	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SU
Bromodichloromethane	0.149	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SU
Bromoform	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SU
Bromomethane	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SU
Carbon disulfide	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SU
Carbon tetrachloride	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SU
Chlorobenzene	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SU
Chloroethane	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUI
Chloroform	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SU
Chloromethane	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SU
cis-1,2-Dichloroethene	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUI
cis-1,3-Dichloropropene	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SU
Cyclohexane	0.728	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SU
Dibromochloromethane	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SU
Dichlorodifluoromethane	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SU
Ethanol	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SU
Ethyl Acetate	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUI
Ethylbenzene	0.338	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUI
Isopropyl alcohol	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUI

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

E Tech Environmental & Safety Solutions, Inc. [1]

13000 West County Road 100

Odessa TX, 79765

Vinyl chloride

Project: SRS 2009-039
Project Number: SRS 2009-039

Project Manager: Kimble Thrash

EFF-1 (121024) 4L11009-01 (Air)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian I	Basin Envir	ronmental L	ab, L.P.			
PA TO-15									
Xylene (p/m)	0.630	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUE
Methyl Butyl Ketone	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUE
Methylene chloride	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUI
MIBK	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUI
Methyl tert-butyl ether	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUI
n-Heptane	4.37	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUI
n-Hexane	0.358	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUI
Xylene (o)	0.164	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUE
Propylene	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUI
Styrene	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUE
Tetrachloroethene	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUE
Tetrahydrofuran	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUE
Toluene	2.86	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUE
trans-1,2-Dichloroethylene	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUE
trans-1,3-Dichloropropene	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUE
Trichloroethylene	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUE
Trichlorofluoromethane	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUI
Vinyl acetate	ND	0.0250	ppm	1	P4L2403	12/11/24 07:00	12/12/24 08:00	TO-15	SUE

P4L2403

0.0105

12/11/24 07:00

12/12/24 08:00

TO-15

SUB-8

E Tech Environmental & Safety Solutions, Inc. \cite{black}

13000 West County Road 100

Odessa TX, 79765

Project: SRS 2009-039

Project Number: SRS 2009-039 Project Manager: Kimble Thrash

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

E Tech Environmental & Safety Solutions, Inc. [1]

13000 West County Road 100

Odessa TX, 79765

Project: SRS 2009-039

Project Number: SRS 2009-039 Project Manager: Kimble Thrash

Notes and Definitions

SUB-8 Subcontract of analyte/analysis to A&B Labs Houston.

NPBEL CC Chain of Custody was not generated at PBELAB

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Drew	Darror			
Report Approved By:			Date:	12/25/2024	

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

32												
Ť.												
	900	777	100									
8		ESS Pro-			-	2			4		dillo	×
•	₩,	455	#	2000	-	AW	,	M		٣,	~	4
96	989 3000000		٠	eggy Sonroll			390			100 E		4
2000		200										

Relinquished by:

(Project Manager:	CHAIN OF Kimble Thrash	CUST	TODY	RECORD AI	ND ANALY	Pe 14	rmia 00 F	an B Ranl	Basin kin H	Env iW Y			tal L	: ab, I	LP	P	roje		-		Sī			ne:		-686	-723	5		-		Page 7 of 21
	Company Name:	Etech Environmental	& Sa	ifety S	Solutions, In	с.										_			Pro	jec	t #:	SR	Sź	200	9-0	39							
	Company Address:	P.O. Box 6228														_		Pro	ojed	et L	oc:	Lea	a C	ou	ntÿ,	ΝN	1						
	City/State/Zip:	Midland, TX 79711																		PC	#:		/										
	Telephone No:	(432) 563-2200		<u> </u>		Fax No:	<u>(4</u>	32)	56	3-2	213					_	Re	por	t F	orm	at:	Ŋ	/ Sta⊦	ndai	a		т	RRF	5		NPI	DES	
	Sampler Signature:	Permital Basilia Environmental Lab, LP 1400 Realistic HWY Midland, Texas 79701 Project Name: SRS 2009-0996 ** Project Name: SRS 2009-0996 ** Project Loc: Los County, NM Project Loc: Loc																															
use	only)																				******												
	14 11009								_							_		_					LP:		İ		1	T	T	T	П	48, 72	
DEF	**: 701100 1				1		1	Г	十	Prese	rvatio	n & #	of Co	ontain	ers	+-		Ę				101	AL:		\dashv	\dashv	+	+	+	┿	\vdash) 24,	
LAB # (lab use only)	FIEL	.D CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	lce	HNO3	нсі	H ₂ SO ₄	NaOH Na S O	None	Other (Specify)		= Groundwater	-Potable														RUSH †AT (Pre-Schedul	Standard TAT
					12/10/2024	1330		2						>				_							寸	寸	T	T	T	T	П	Ħ	
									<u> </u>																					I			
							_		\vdash		-	+	+	+	-	\downarrow				_	_	\dashv	_		\dashv	\dashv	+	+	+	_			
							-	-	\vdash		\dashv	-	+	+	+	+					\dashv	\dashv	\dashv	-	\dashv	+	+	+	-	+		\dashv	
													\top	\top		\dagger		-					\dashv		\dagger	\dashv	\dagger	+	\dagger	\dagger	$ \cdot $	\exists	
									L					\perp		I										\prod							
			ļ	ļ					\vdash			_	+	-	-	\downarrow		_				\dashv	4	_	\perp	\dashv	\perp	_	_	-		_	
		,					H	┢	\vdash		\dashv	+	+		+	+		_			\dashv	+	1	\dashv	+	\dashv	+	+	+	+	H	\dashv	
ihquis	shed by:	Date /	07	ime 35	Received by:	2 and refere	nce	the	SRS	i nun	nber	in th	e Pr	ojec	D	ate				,	Sam VOC Labe Cust Cust	iple (Cs Fr els o tody tody	Con ee d n cc sea sea	tain of Ho ontai Is or Is or	ers Ir eads; iner(s n con n coo	ntact pace s) ntain oler(s	t? ∋? ier(s)				i	N N N N	
	shed by:	· ·				Stedroe	,							li	, D	ate	4	_	Time		ا ا Tem	by Sa by Co opera	amp ourie	ler/C er? e Un	lient on R	Rep JPS lecei	D int:	herm	nome		Lone	N Sta	r

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Permian Basin Environmental Lab, LP 1400 Rankin HWY Midland Toyas 70701 **Phone: 432-686-7235**PBELAB_SUB_COC_V2

	BCONTRACT
Company Name PBEL Project #:	
Company Address: 1400 Rankin HWY Project Loc:	
Telephone No: 432-661-4184 Fax No: Report Format: X Standard	d TRRP NPDES
Sampler Signature: N/A e-mail: brentbarron@pbelab.com	
ORDER #: Preservation & # of Containers Matrix	Analyze For:
LAB # (lab use only) Beginning Depth Ending Depth Time Sampled Time Sampled Time Sampled Time Sampled Time Sampled Total #. of Containers ICE HNO.3.250.poly 1 HCI 3.40mL VOA H ₂ SO ₄ 1 AMBER 500/250POLY NaOH /Ascorbic Acid 250ML Pe NaOH /Ascorbic Acid 250ML Pe NoNE NoNE NONE OWNE 24 Hour Rush STANDARD	
4L11009-01	X
	\bot
	
Please add tressa@pbelab.com to woa's. Laboratory Comm Sample Container: VOCs Free of Head	rs Intact? Y N
Relinquished by: Brent Barron 12/11/2024 17:00 Received by: Date Time Labels on containing Custody seals on c Custody seals on c Custody seals on c	er(s) Y N container(s) Y N
Relinquished by: Date Time Received by: Date Time Sample Hand Delivery by Sampler/Cli	vered Y N ient Rep. ? Y N
Relinquished by: Date Time Received by: Date Time Received by: Date Time Received: Adjusted:	UPS DHL FedEx Lone Star on Receipt: °C °C Factor Page 8 of 21

Total Number of Pages:

Laboratory Analysis Report

Job ID: 24121545

10100 East Freeway, Suite 100, Houston, TX 77029 tel: 713-453-6060, fax: 713-453-6091, http://www.ablabs.com

Client Project Name : Subcontract

Report To: Client Name: Permian Basin Environmental Lab, LP

Attn: Brent Barron

Client Address: 1400 Rankin Hwy
City, State, Zip: Midland, Texas, 79701

P.O.#.: Sample Collected By:

Date Collected: 12/10/24

A&B Labs has analyzed the following samples...

 Client Sample ID
 Matrix
 A&B Sample ID

 4L11009-01
 Air
 24121545.01

R. Wit

Analyst: Amit Bembde

Alla

Released By: Gobinath Rangasamy
Title: Project Manager
Date: 12/19/2024

This Laboratory is NELAP (T104704213-23-31) accredited. Effective: 04/01/2024; Expires: 03/31/2025

Scope: Non-Potable Water, Drinking Water, Air, Solid, Biological Tissue, Hazardous Waste

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

This report cannot be reproduced, except in full, without prior written permission of A&B Labs. Results shown relate only to the items tested. Results apply to the sample as received. Samples are assumed to be in acceptable condition unless otherwise noted. Blank correction is not made unless otherwise noted. Air concentrations reported are based on field sampling information provided by client. Soil samples are reported on a wet weight basis unless otherwise noted. Uncertainty estimates are available on request.

ab-q210-0321

Page 9 of 21

Date Received: 12/12/2024 11:00

Report Number: RPT24121

Job ID: 24121545

Date: 12/19/2024

Attn: Brent Barron

Client Name: Permian Basin Environmental Lab, LP

Project Name: Subcontract

Client Sample ID: Lab Sample ID: 4L11009-01 24121545.01

Date Collected: Sample Matrix: 12/10/24 Air 13:30

Time Collected: Other Information:

Test Method	Parameter/Test Description	M.W.	Results(nl)	RptLimit(nl)	InjVol(cc)	ug/M3	ppm Q	Date/Time
EPA TO-15	Volatile Organic Compounds in Air	by GCMS						
	1,1,1-Trichloroethane	133.4	BRL	0.5	20CC	< 136.4	< 0.0250	12/12/24
	1,1,2,2-Tetrachloroethane	167.85	BRL	0.5	20CC	< 171.6	< 0.0250	12/12/24
	1,1,2-Trichloro-1,2,2-trifluoroethane	187.38	BRL	0.5	20CC	< 191.6	< 0.0250	12/12/24
	1,1,2-Trichloroethane	133.41	BRL	0.5	20CC	< 136.4	< 0.0250	12/12/24
	1,1-Dichloroethane	98.96	BRL	0.5	20CC	< 101.2	< 0.0250	12/12/24
	1,1-Dichloroethylene	96.94	BRL	0.5	20CC	< 99.1	< 0.0250	12/12/24
	1,2,4-Trichlorobenzene	181.45	BRL	0.5	20CC	< 185.5	< 0.0250	12/12/24
	1,2,4-Trimethylbenzene	120.19	BRL	0.5	20CC	< 122.9	< 0.0250	12/12/24
	1,2-Dibromoethane	187.87	BRL	0.5	20CC	< 192.1	< 0.0250	12/12/24
	1,2-Dichlorobenzene	147.00	BRL	0.5	20CC	< 150.3	< 0.0250	12/12/24
	1,2-Dichloroethane	98.96	BRL	0.2	20CC	< 40.5	< 0.0100	12/12/24
	1,2-Dichloropropane	112.99	BRL	0.5	20CC	< 115.5	< 0.0250	12/12/24
	1,2-Dichlorotetrafluoroethane	170	BRL	0.5	20CC	< 173.8	< 0.0250	12/12/24
	1,3,5-Trimethylbenzene	120.19	BRL	0.5	20CC	< 122.9	< 0.0250	12/12/24
	1,3-Butadiene	54.09	BRL	0.22	20CC	< 24.3	< 0.0110	12/12/24
	1,3-Dichlorobenzene	147.00	BRL	0.5	20CC	< 150.3	< 0.0250	12/12/24
	1,4-Dichlorobenzene	147.00	BRL	0.5	20CC	< 150.3	< 0.0250	12/12/24
	2-Butanone	72.11	BRL	0.5	20CC	< 73.7	< 0.0250	12/12/24
	4-Ethyltoluene	120	BRL	0.5	20CC	< 122.7	< 0.0250	12/12/24
	Acetone ²	58.08	BRL	0.5	20CC	< 59.4	< 0.0250	12/12/24
	Benzene	78.11	BRL	0.2	20CC	< 31.9	< 0.0100	12/12/24
	Benzyl chloride	126.59	BRL	0.5	20CC	< 129.4	< 0.0250	12/12/24
	Bromodichloromethane ¹	163.83	2.98	0.5	20CC	998.4	0.1490	12/12/24
	Bromoform	252.75	BRL	0.5	20CC	< 258.4	< 0.0250	12/12/24
	Bromomethane	94.94	BRL	0.5	20CC	< 97.1	< 0.0250	12/12/24
	Carbon disulfide ²	76.14	BRL	0.5	20CC	< 77.9	< 0.0250	12/12/24
	Carbon tetrachloride	153.82	BRL	0.5	20CC	< 157.3	< 0.0250	12/12/24
	Chlorobenzene	112.56	BRL	0.5	20CC	< 115.1	< 0.0250	12/12/24
	Chloroethane	65.42	BRL	0.5	20CC	< 66.9	< 0.0250	12/12/24
	Chloroform	119.38	BRL	0.5	20CC	< 122.1	< 0.0250	12/12/24
	Chloromethane	50.49	BRL	0.5	20CC	< 51.6	< 0.0250	12/12/24
	cis-1,2-Dichloroethylene	96.94	BRL	0.5	20CC	< 99.1	< 0.0250	12/12/24
	cis-1,3-Dichloropropene	110.97	BRL	0.5	20CC	< 113.5	< 0.0250	12/12/24
	Cyclohexane	84.16	14.56	0.5	20CC	2505.9	0.7280 E	12/12/24
	Dibromochloromethane ²	208.29	BRL	0.5	20CC	< 213.0	< 0.0250	12/12/24
	Dichlorodifluoromethane	120	BRL	0.5	20CC	< 122.7	< 0.0250	12/12/24
	Ethanol ²	46.07	BRL	0.5	20CC	< 47.1	< 0.0250	12/12/24
	Ethyl acetate ²	88.11	BRL	0.5	20CC	< 90.1	< 0.0250	12/12/24
	Ethylbenzene	106.17	6.77	0.5	20CC	1469.9	0.3385	12/12/24
	Hexachlorobutadiene	258	BRL	0.5	20CC	< 263.8	< 0.0250	12/12/24

ab-q212-0321

Job ID: 24121545

Date: 12/19/2024

Attn: Brent Barron

24121545.01

Air

38357.7

39

9.594

Lab Sample ID:

Sample Matrix:

Client Name : Permian Basin Environmental Lab, LP

Project Name: Subcontract

Client Sample ID: 4L11009-01

Date Collected: 12/10/24
Time Collected: 13:30

Other Information:

Total [VOC] calculated

Test Method	Parameter/Test Description	M.W.	Results(nl)	RptLimit(nl)	InjVol(cc)	ug/M3	ppm	Q	Date/Time
EPA TO-15	Volatile Organic Compounds in Air b	y GCMS							
	Isopropyl Alcohol ²	60.1	BRL	0.5	20CC	< 61.5	< 0.0250		12/12/24
	m- & p-Xylenes	106.17	12.6	1	20CC	2735.7	0.6300	E	12/12/24
	Methyl Butyl Ketone ²	100	BRL	0.5	20CC	< 102.2	< 0.0250		12/12/24
	Methylene chloride	84.93	BRL	0.5	20CC	< 86.8	< 0.0250		12/12/24
	MIBK	100.16	BRL	0.5	20CC	< 102.4	< 0.0250		12/12/24
	MTBE	88.15	BRL	0.5	20CC	< 90.1	< 0.0250		12/12/24
	n-Heptane	100.21	87.42	0.5	20CC	17914.8	4.3710	E	12/12/24
	n-Hexane	86.18	7.16	0.5	20CC	1261.9	0.3580		12/12/24
	o-Xylene	106.17	3.28	0.5	20CC	712.1	0.1640		12/12/24
	Propylene	42.08	BRL	0.5	20CC	< 43.0	< 0.0250		12/12/24
	Styrene	104	BRL	0.5	20CC	< 106.3	< 0.0250		12/12/24
	Tetrachloroethylene	165.83	BRL	0.5	20CC	< 169.6	< 0.0250		12/12/24
	Tetrahydrofuran ²	72.11	BRL	0.5	20CC	< 73.7	< 0.0250		12/12/24
	Toluene	92.14	57.1	0.5	20CC	10759.1	2.8550	E	12/12/24
	trans-1,2-Dichloroethylene	96.94	BRL	0.5	20CC	< 99.1	< 0.0250		12/12/24
	trans-1,3-Dichloropropene	110.97	BRL	0.5	20CC	< 113.5	< 0.0250		12/12/24
	Trichloroethylene	131.39	BRL	0.5	20CC	< 134.3	< 0.0250		12/12/24
	Trichlorofluoromethane	137.37	BRL	0.5	20CC	< 140.5	< 0.0250		12/12/24
	Vinyl Acetate	86.09	BRL	0.5	20CC	< 88.0	< 0.0250		12/12/24
	Vinyl Chloride	62.5	BRL	0.21	20CC	< 26.8	< 0.0105		12/12/24

191.87

EPA TO-- 15 Sample Analysis -- GC/MS

Lab ID	24121545.01
Date Acquired	12 Dec 2024 12:17 pm
Analyst	AVBEMBDE
Sample Run ID	X121125.D
tedlar bag (cc)	1000
Injection Volume (cc)	20

Compound Name	CAS#	R.T.	M.W	Nanoliters	Vol.(L)	ug/l	ppm
Cyclopentane, methyl-	96-37-7	8.923	84	7.6	0.02	1.306	0.380
Hexane, 2-methyl-	591-76-4	10.4	100	25.9	0.02	5.297	1.295
Pentane, 2,3-dimethyl-	565-59-3	10.524	100	10.6	0.02	2.168	0.530
Hexane, 3-methyl-	589-34-4	10.76	100	38.5	0.02	7.873	1.925
Cyclopentane, 1.3-dimethyl-	2453-00-1	11.18	98	17.6	0.02	3.527	0.880
Isopropylcyclobutane	872-56-0	11.28	98	31.4	0.02	6.293	1.570
Cyclohexane, methyl-	108-87-2	12.6	98	157.8	0.02	31.625	7.890
Cyclohexane, 1,1-dimethyl-	590-66-9	12.726	112	20.88	0.02	4.782	1.044
Cyclopentane, 1,2,4-trimethyl-	2815-58-9	13.337	112	41.7	0.02	9.551	2.085
Heptane, 2-methyl-	592-27-8	14.33	114	12.8	0.02	2.984	0.640
Heptane, 3-methyl-	589-81-1	14.627	114	7.6	0.02	1.772	0.380
Cyclohexane, 1,3-dimethyl-, cis	638-04-0	14.83	112	10.63	0.02	2.435	0.532
Octane	111-65-9	15.568	128	11.7	0.02	3.063	0.585

TIC* REPORT

A&B Job Sample ID: Method Blani		A&B	Job Sa	ımple	ID:	Method	Blank
---------------------------------	--	-----	--------	-------	-----	--------	-------

Analysis Date: 12/11/2024

est Method	Parameter/Test Description	CAS#	RT	MW	Reading(nl)**	ppm (v/v)	μg/m³	Analys
O-15	None							AVB
		I		I				1

^{*} TIC: Tentatively identified compounds.

Phone: 713-453-6060 www.ablabs.com

^{**}The values are estimated relative to the nearest internal standards and only major peaks are reported.

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

 $\textbf{Samples in This QC Batch} \ : \quad 24121545.01$

QC Type: Method Blank						
Parameter	CAS #	Result	Units	D.F.	RptLimit	Qua
trans-1,2-Dichloroethylene	156-60-5	BRL	nL	1	0.5	
Dichlorodifluoromethane	75-71-8	BRL	nL	1	0.5	
Chloromethane	74-87-3	BRL	nL	1	0.5	
1,2-Dichlorotetrafluoroetha	76-14-2	BRL	nL	1	0.5	
Vinyl Chloride	75-01-4	BRL	nL	1	0.21	
Bromomethane	74-83-9	BRL	nL	1	0.5	
Chloroethane	75-00-3	BRL	nL	1	0.5	
Trichlorofluoromethane	75-69-4	BRL	nL	1	0.5	
1,1-Dichloroethylene	75-35-4	BRL	nL	1	0.5	
Methylene chloride	75-09-2	BRL	nL	1	0.5	
1,1,2-Trichloro-1,2,2-trifluo	76-13-1	BRL	nL	1	0.5	
1,1-Dichloroethane	75-34-3	BRL	nL	1	0.5	
cis-1,2-Dichloroethylene	156-59-2	BRL	nL	1	0.5	
Chloroform	67-66-3	BRL	nL	1	0.5	
1,2-Dichloroethane	107-06-2	BRL	nL	1	0.2	
1,1,1-Trichloroethane	71-55-6	BRL	nL	1	0.5	
Benzene	71-43-2	BRL	nL	1	0.2	
Carbon tetrachloride	56-23-5	BRL	nL	1	0.5	
1,2-Dichloropropane	78-87-5	BRL	nL	1	0.5	
Trichloroethylene	79-01-6	BRL	nL	1	0.5	
cis-1,3-Dichloropropene	10061-01-5	BRL	nL	1	0.5	
trans-1,3-Dichloropropene	10061-02-6	BRL	nL	1	0.5	
1,1,2-Trichloroethane	79-00-5	BRL	nL	1	0.5	
Toluene	108-88-3	BRL	nL	1	0.5	
1,2-Dibromoethane	106-93-4	BRL	nL	1	0.5	
Tetrachloroethylene	127-18-4	BRL		1	0.5	
Chlorobenzene	108-90-7	BRL	nL	1	0.5	
			nL			
Ethylbenzene	100-41-4	BRL	nL !	1	0.5	
m- & p-Xylenes	179601-23-1	BRL	nL	1	1	
Styrene	100-42-5	BRL	nL	1	0.5	
o-Xylene	95-47-6	BRL	nL	1	0.5	
1,1,2,2-Tetrachloroethane	79-34-5	BRL	nL	1	0.5	
1,3,5-Trimethylbenzene	108-67-8	BRL	nL	1	0.5	
1,2,4-Trimethylbenzene	95-63-6	BRL	nL	1	0.5	
1,3-Dichlorobenzene	541-73-1	BRL	nL	1	0.5	
1,4-Dichlorobenzene	106-46-7	BRL	nL	1	0.5	
1,2-Dichlorobenzene	95-50-1	BRL	nL	1	0.5	
1,2,4-Trichlorobenzene	120-82-1	BRL	nL	1	0.5	
Hexachlorobutadiene	87-68-3	BRL	nL	1	0.5	
1,3-Butadiene	106-99-0	BRL	nL	1	0.22	
2-Butanone	78-93-3	BRL	nL	1	0.5	
1-Ethyltoluene	622-96-8	BRL	nL	1	0.5	

Refer to the Definition page for terms.

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

 $\textbf{Samples in This QC Batch} \ : \quad 24121545.01$

QC Type: Method Blank	(
Parameter	CAS #	Result	Units	D.F.	RptLimit	Qual
Acetone	67-64-1	BRL	nL	1	0.5	
Benzyl chloride	100-44-7	BRL	nL	1	0.5	
Bromodichloromethane	75-27-4	BRL	nL	1	0.5	
Bromoform	75-25-2	BRL	nL	1	0.5	
Carbon disulfide	75-15-0	BRL	nL	1	0.5	
Cyclohexane	110-82-7	BRL	nL	1	0.5	
Dibromochloromethane	124-48-1	BRL	nL	1	0.5	
Ethanol	64-17-5	BRL	nL	1	0.5	
Ethyl acetate	141-78-6	BRL	nL	1	0.5	
n-Heptane	142-82-5	BRL	nL	1	0.5	
n-Hexane	110-54-3	BRL	nL	1	0.5	
Isopropyl Alcohol	67-63-0	BRL	nL	1	0.5	
Methyl Butyl Ketone	591-78-6	BRL	nL	1	0.5	
MIBK	108-10-1	BRL	nL	1	0.5	
MTBE	1634-04-4	BRL	nL	1	0.5	
Propylene	115-07-1	BRL	nL	1	0.5	
Tetrahydrofuran	109-99-9	BRL	nL	1	0.5	
Vinyl Acetate	108-05-4	BRL	nL	1	0.5	

QC Type: LCS and LCS	D									
	LCS	LCS	LCS	LCSD	LCSD	LCSD		RPD	%Recovery	
Parameter	Spk Added	Result	% Rec	Spk Added	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
trans-1,2-Dichloroethylene	5	5.01	100	5	4.89	97.8	2.4	30	67-124	
Dichlorodifluoromethane	5	5.53	111	5	6.05	121	9	30	59-128	
Chloromethane	5	5.52	110	5	5.36	107	2.9	30	59-132	
1,2-Dichlorotetrafluoroetha	5	5.80	116	5	5.67	113	2.3	30	63-121	
Vinyl Chloride	5	5.16	103	5	5.03	101	2.6	30	64-127	
Bromomethane	5	5.20	104	5	5.08	102	2.3	30	63-134	
Chloroethane	5	4.86	97.2	5	4.76	95.2	2.1	30	63-127	
Trichlorofluoromethane	5	6.22	124	5	6.04	121	2.9	30	62-126	
1,1-Dichloroethylene	5	4.85	97	5	4.72	94.4	2.7	30	61-133	
Methylene chloride	5	4.75	95	5	4.64	92.8	2.3	30	62-115	
1,1,2-Trichloro-1,2,2-trifluo	5	5.55	111	5	5.34	107	3.9	30	66-126	
1,1-Dichloroethane	5	4.99	99.8	5	4.90	98	1.8	30	68-126	
cis-1,2-Dichloroethylene	5	4.69	93.8	5	4.63	92.6	1.3	30	70-121	
Chloroform	5	5.36	107	5	5.22	104	2.6	30	68-134	
1,2-Dichloroethane	5	5.97	119	5	5.82	116	2.5	30	65-128	
1,1,1-Trichloroethane	5	6.19	124	5	6.01	120	3	30	68-125	
Benzene	5	4.87	97.4	5	4.71	94.2	3.3	30	69-119	
Carbon tetrachloride	5	6.51	130	5	6.33	127	2.8	30	68-132	

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

Samples in This QC Batch: 24121545.01

QC Type: LCS and LCS	D									
Parameter	LCS Spk Added	LCS Result	LCS % Rec	LCSD Spk Added	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qua
1,2-Dichloropropane	5	5.01	100	5	4.87	97.4	2.8	30	69-123	
Trichloroethylene	5	5.42	108	5	5.27	105	2.8	30	71-123	
cis-1,3-Dichloropropene	5	5.21	104	5	5.08	102	2.5	30	70-128	
trans-1,3-Dichloropropene	5	5.21	104	5	5.08	102	2.5	30	75-133	
1,1,2-Trichloroethane	5	5.13	103	5	5.00	100	2.6	30	73-119	
Toluene	5	4.98	99.6	5	4.87	97.4	2.2	30	66-119	
1,2-Dibromoethane	5	5.28	106	5	5.17	103	2.1	30	74-122	
Tetrachloroethylene	5	5.76	115	5	5.56	111	3.5	30	66-124	
Chlorobenzene	5	5.40	108	5	5.16	103	4.5	30	70-119	
Ethylbenzene	5	5.45	109	5	5.27	105	3.4	30	70-124	
m- & p-Xylenes	10	10.7	107	10	10.3	103	3.9	30	61-134	
Styrene	5	5.21	104	5	5.10	102	2.1	30	73-127	
o-Xylene	5	5.42	108	5	5.26	105	3	30	67-125	
1,1,2,2-Tetrachloroethane	5	5.19	104	5	5.24	105	1	30	65-127	
1,3,5-Trimethylbenzene	5	5.52	110	5	5.55	111	0.5	30	67-130	
1,2,4-Trimethylbenzene	5	5.40	108	5	5.52	110	2.2	30	66-132	
1,3-Dichlorobenzene	5	5.30	106	5	5.43	109	2.4	30	65-130	
1,4-Dichlorobenzene	5	5.13	103	5	5.26	105	2.5	30	60-131	
1,2-Dichlorobenzene	5	5.19	104	5	5.41	108	4.2	30	63-129	
1,2,4-Trichlorobenzene	5	5.20	104	5	6.11	122	16.1	30	41-142	
Hexachlorobutadiene	5	5.52	110	5	6.26	125	12.6	30	56-138	
Propylene	5	5.72	114	5	5.58	112	2.5	30	57-136	
1,3-Butadiene	5	5.15	103	5	5.00	100	3	30	66-134	
Ethanol	5	4.45	89	5	4.80	96	7.6	30	59-125	
Acetone	5	4.84	96.8	5	4.66	93.2	3.8	30	58-128	
Isopropyl Alcohol	5	3.66	73.2	5	4.24	84.8	14.7	30	52-134	
Carbon disulfide	5	4.64	92.8	5	4.55	91	2	30	57-134	
MTBE	5	5.11	102	5	5.12	102	0.2	30	66-126	
2-Butanone	5	4.88	97.6	5	4.92	98.4	0.2	30	67-130	
Ethyl acetate	5	4.56	91.2	5	4.49	89.8	1.5	30	65-128	
n-Hexane	5	4.65	93	5	4.55	91	2.2	30	63-120	
Tetrahydrofuran	5	4.82	96.4	5	4.35 4.85	91	0.6	30	64-123	
Cyclohexane	_	5.01	100		4.86	97.2	3	30	70-117	
n-Heptane	5	5.30	106	5 5	5.05	101	4.8	30	69-123	
n-neptane MIBK	5	3.98	79.6		5.05 4.19	83.8	5.1		67-123 67-130	
Methyl Butyl Ketone		3.98 4.32	79.6 86.4	5	4.19 4.65	93		30		
Metnyi Butyi Ketone Bromoform	5			5			7.4	30	60-140 66-130	
	5	6.22	124	5	6.05	121	2.8	30	66-139 67-130	
4-Ethyltoluene	5	5.37	107	5	5.41	108	0.7	30	67-129	
Benzyl chloride	5	4.89	97.8	5	5.27	105	7.5	30	50-147	
Bromodichloromethane	5	5.85	117	5	5.67	113	3.1	30	72-128	
Dibromochloromethane	5	6.06	121	5	5.85	117	3.5	30	70-130	

Analysis: Volatile Organic Compounds in Air by GCMS Method: EPA TO-15 Reporting Units: nL

Samples in This QC Batch: 24121545.01

QC Type: LCS and LCS	D									
Parameter	LCS Spk Added	LCS Result	LCS % Rec	LCSD Spk Added	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
raiailletei	Spk Added	Result	70 KEC	эрк Аййей	Result	70 KEC	KPD	CUILIIIII	CUILIIIII	Quai
Vinyl Acetate	5	5.06	101	5	5.00	100	1.2	30	56-139	

LABORATORY TERM AND QUALIFIER DEFINITION REPORT

Job ID: 24121545 Date: 12/19/2024

General Term Definition

Back-Wt **Back Weight** Post-Wt Post Weight BRL Below Reporting Limit ppm parts per million cfu Previous Weight colony-forming units Pre-Wt Conc. Concentration Qualifier D.F. **Dilution Factor** RegLimit Regulatory Limit Front-Wt Front Weight RLU Relative Light Unit

J Estimation. Below calibration range but above MDL RPD Relative Percent Difference

LCS Laboratory Check Standard RptLimit Reporting Limit

LCSD Laboratory Check Standard Duplicate SDL Sample Detection Limit

LOD Limit of detection adjusted for %M + DF SQL Below calibration range but above MDL

LOQLimit of Quantitation adjusted for %M + DFsurrSurrogateMSMatrix SpikeTTime

MSD Matrix Spike Duplicate TNTC Too numerous to count

MW Molecular Weight UQL Unadjusted Upper Quantitation Limit

MQL Unadjusted Minimum Quantitation Limit

Qualifier Definition

E Estimation. Above calibration range.

Sample Condition Checklist

AX	3 JobID : 24121545	Date Received: 12/12/2024 Time Received: 11:	00AM		
Clie	ent Name : Permian Basin Environr	nental Lab, LP			
Ter	nperature : 21.0°C	Sample pH: NA			
The	ermometer ID : IR7	pH Paper ID : NA			
Pei	servative :	Lot#:	ı		
		Check Points	Yes	No	N/A
1.	Cooler Seal present and signed.			Χ	
2.	Sample(s) in a cooler.		Х		
3.	If yes, ice in cooler.			Χ	
4.	Sample(s) received with chain-of-custo	dy.	Х		
5.	C-O-C signed and dated.		Х		
6.	Sample(s) received with signed sample	custody seal.		Χ	
7.	Sample containers arrived intact. (If No	comment)	х		
8.	Water Soil Liquid Slue	dge Solid Cassette Tube Bulk Badge Food Other			
9.	Samples were received in appropriate o	ontainer(s)	Х		
10.	Sample(s) were received with Proper pr	reservative			Х
11.	All samples were tagged or labeled.		Х		
12.	Sample ID labels match C-O-C ID's.		Х		
13.	Bottle count on C-O-C matches bottles f	ound.	Χ		
14.	Sample volume is sufficient for analyses	requested.	Χ		
15.	Samples were received with in the hold	time.	Х		
16.	VOA vials completely filled.				Х
17.	Sample accepted.		Х		
18.	Has client been contacted about sub-ou	t			Х
	nments : Include actions taken to resolv er=Air (Clear Tedlar Bags). AM 12/12/24	e discrepancies/problem:			
Juli					

Brought by $\;:\;\;$ FedEx

Received by: MClotfelter Check in by/date: Amber / 12/12/2024

ab-s005-1123

Phone: 713-453-6060 www.ablabs.com

Page 19 of 21

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Permian Basin Environmental Lab, LP 1400 Rankin HWY

Phone: 432-686-7235 PBELAB_SUB_COC_V2

	Project Manager:	Brent Barron	·				Μį	dia	nd, `	[ex	as 7	970	1				Рго	ject	Nan	ne:		SU	JBC	TNC	RAC	т				CD:
	Company Name	PBEL																		- : #:										n/n/
	Company Address:	1400 Rankin HWY				•	1										Þ			oc:										1202
	City/State/Zip:	Midland Texas 79701					1										•	,-	PO	_										14
	Telephone No:	432-661-4184		_		Fax No				•						—) Jana	- F		""— et: X					TR					1:47
	Sampler Signature:					e-mail:		hre	nths	rror	n@pl	holak				_ '	rapo	,,,,,	J11114	3L. ^	30	anua	ıu	L	און	RP	<u>L</u>] NPC	DES	PW
3. 7 mm Wh. 1999.						C III ali.	•		1 KD2	1101	اطها	Deial	J.CUII					· [Analy	/ze Fo	r:			 -		_
ORDER																														
			T		1 " T	-	T	1	[rese	ervatio		_	onta		_	Matr	ix	Ì											
LAB#(lab use only):			Beginning Depth	Ending Depth	Sampled	Time Sampled	leid Filtered ***	otal #. of Containers		HNO _{3 250 poly 1}	HCl 3 40mL VOA	H ₂ SO ₄ 1 AMBER 500/250POLY	NaOH /Ascorbic Acid 250ML P	33	love 125 ml amber hoston round	DW-Drinking Water St-Studge	GW = Groundwater S=Soil/Solid	otable Specify Other											24 Hour Rush	IRD
48 #	Fi	ELD CODE	eginn	guįpu	Date	Time	eid Filte	otal #. c	핑	NO32	Cl 3 4	SO ₄	A S	N8232U3	75 ml	N=Drink	N=Grot	²P∗Non-Potable	10-15										된	AND
OLAB	4L	11009-01			12/10/2024	13:30	E	2	¥	I	T	<u> </u>	2 2	X	' ' '		AIR	-	X	_	+	H	-+	+	 		+	┼╾╅		X
. A . A												+	┪	Ť		╁		7		-	+		\top	+	+-		十	\square	\dashv	<u>^</u>
4044	Job ID:24																													
	2/2024 Permian Bas	in Environme AMS					i																				\top		1	_
	<u> </u>						,																					П		
riease ac	id tressa@pbelab.com	n to woa's.					ŧ												L	abora ample	tory Con	Comn	nents rs Inta	:\; /\ ict?		+ 7,41	<u>ර</u> ්		N	
Relinquis Brent Bar	*	12/11/2024	17:	00	Received by:	į	(Da	ate		Tin	ne L	ocs i abels ustod	ree o on co ly sea	t Hea ntain Is on i	dspac er(s) conta	er iner(s) 1/2		Ф		N N N	
Relinquis FO	DUC	Date	Tin		Received by:		}								Da	ate		Tim	ie S	ample by	Han Samo	d Deli ler/Cl	ivered ient R	i (S) ep. ? PS			_*Y Y ~	Lone	A	18 July 18
lelinquisl	hed by:	Date	Tin		Received by:	OR	- 18 A-3-8	٠		· · · · ·		a.	inter Language State	17	Д	ate 24		Tim))¦c	ie T	empe leceivi djusti						Ç		* ***	عار <u>ما</u>	6.77C"S
					3	0	Page	12 (of 13		······································				100,00		<u>***1</u>	, va :	<u></u> -[D#1	230	29	288	0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Pag	e 20) of 2	21	4756

RIGIN ID:MAFA
RESSA BLEDSOE

- (432) 686-723

RESSA BLEDSUE ERMIAN BASIN ENVIRONMENTAL LAB, LP.

MIDLAND, TX 79701

SHIP DATE: 11DEC24 ACTWGT: 2.00 LB CAD: 107136846/INEF453 DIMS: 132029 IN

BILL SENDER .

O SAMPLE RECEIVING

A & B ENVIRONMENTAL SERVICES

10100 EAST FREEWAY SUITE 100

HOUSTON TX 77029

(713) 453-6060 INV

ne 8444 9853

THU - 12 DEC 5:00P STANDARD OVERNIGHT

77029

TX-US IAF

AB HBYA

age 21 of 21

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 512515

CONDITIONS

Operator:	OGRID:
PLAINS MARKETING L.P.	34053
333 Clay Street Suite 1900	Action Number:
Houston, TX 77002	512515
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By	Condition	Condition Date
shanna.smith	Continue to monitor and sample monitor wells MW-1 and MW-5 quarterly. PAH annually monitor well MW-1.	10/14/2025
shanna.smith	Semi-annual monitor and sample monitor wells MW-2, MW-3, MW-4, MW-6, and MW-8 for BTEX by EPA Method 8260.	10/14/2025
shanna.smith	Continue to monitor and gauge monitor well MW-7 due to decreasing groundwater levels.	10/14/2025
shanna.smith	Continue to use AFR on a monthly basis on monitor wells MW-1 and MW-5.	10/14/2025
shanna.smith	Continue to utilize SVE for recovery and monthly emission sampling from monitor well MW-1.	10/14/2025
shanna.smith	Please be advised that OCD approval of this report does not relieve the owner/operator of responsibility should operations pose a threat to ground water, surface water, human health or the environment. In addition, OCD approval does not relieve the owner/operator of responsibility for compliance with an OCD, federal, state, or local laws and/or regulations.	10/14/2025