

June 30, 2025

District Supervisor Oil Conservation Division, District 2 811 S. First St. Artesia, New Mexico 88210

REVISED Release Characterization and Remediation Work Plan Addendum Re: ConocoPhillips James E #001 Tubing Line Release Unit Letter G, Section 11, Township 22 South, Range 30 East **Eddy County. New Mexico** Incident ID NRM2007952227

Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips (COP) to assess and evaluate a release that occurred from the tubing associated with the James E #001 well (API #30-015-20996). The release Site is located in Public Land Survey System (PLSS) Unit Letters G, Section 11, Township 22 South, and Range 30 East, Eddy County, New Mexico. The coordinates of the release point are approximately 32.408516°, -103.849337°, as shown in Figures 1 and 2.

BACKGROUND

According to the State of New Mexico C-141 Initial Report (Appendix A), the release was discovered on March 16, 2020. The release occurred as the result of a hole in the tubing line check valve. Approximately 7 barrels (bbls) of produced water and 1.75 bbls of oil were released, of which none were recovered. The release footprint is located on the northern portion of the James E #001 well pad and adjacent pasture extending approximately 485 feet north and north-northwest. The New Mexico Oil Conservation District (NMOCD) received the initial C-141 report form for the release on March 17, 2020. The NMOCD Incident ID for this release is NRM2007952227.

The Initial C-141 Form had inaccurate information, regarding a James E battery location, thus, there were several clarifications needed to be made to the C-141.

- Site Name in the C-141 is erroneously listed as "James E Federal (Lower) Battery". Tetra Tech revised to read James E #001.
- The GPS coordinates provided are erroneously tied to the James E Federal (Lower) Battery. Tetra Tech revised to 32.408516°, -103.849337°
- The James E #001 is in Unit Letter G, not in Unit Letter B as stated on the C-141 Form. Tetra Tech revised.

The revised C-141 with corrections and notes was provided to COP on September 17, 2020, resubmitted and approved by the NMOCD. That revised C-141 is included in Appendix A.

LAND OWNERSHIP

The Site is located on land owned by the Bureau of Land Management (BLM). Prior to conducting remediation activities, this REVISED Remediation Work Plan will be submitted to the BLM for review.

Tetra Tech

INITIAL RESPONSE

In accordance with 19.15.29.8. B. (4) NMAC that states "the responsible party may commence remediation immediately after discovery of a release", COP elected to begin remediation of the impacted area in March 2020. The visibly impacted material within the release footprint, extending from the approximate release location north approximately 450 feet to boring location AH-3, was scraped to an approximate depth of six inches. Approximately 10 cubic yards of impacted material was removed during the initial response activities. Figure 3 depicts the release extent and the scraped area.

SITE VISIT

A Tetra Tech geologist was onsite on July 14, 2020 to assess current site conditions and collect photographs of the impacted area. During the site visit, visually impacted areas were observed along a singular drainage feature extending in a thin winding footprint and terminating approximately 500 feet north of the James E #001 wellhead. This visually impacted area totals approximately 2,030 square feet.

As the release footprint was walked and documented, it was evident that the area immediately north of the well pad contained abundant polyethylene liner material mixed in with the surface soils. As shown on Figure 3, this observed area with liner material measures approximately 200 feet by 200 feet. The release footprint extended over and through the observed liner area and continued into the pasture to the north and west. This area appears to be a former reclaimed reserve pit, based on a cursory review of historical aerial imagery. Photographic documentation of the site visit is included in Appendix B.

INITIAL SITE ASSESSMENT AND SAMPLING RESULTS

In an attempt to achieve horizontal and vertical delineation of the release extent, Tetra Tech personnel conducted soil sampling on February 2, 2021, on behalf of ConocoPhillips. A total of four (4) borings (BH-1 through BH-4) were installed with a truck-mounted air rotary drilling rig. Borehole (BH)-1 was drilled within the release footprint just north of the release source. BH-2 through BH-4 were drilled on the well pad east, south and west of the release footprint. Boring logs, included as Appendix C, present soil descriptions, sample depths, and field screening data from the February 2021 assessment activities. Boring locations are shown in Figure 3.

A total of twenty-four (24) soil samples were collected from the four (4) boring locations. These soil samples were shipped to Pace Analytical (Pace) on February 8, 2021 to be analyzed for chloride via EPA Method SM45000Cl-B, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. Results from the February 2021 soil sampling event are summarized in Table 1. Copies of the analytical laboratory reports and chain-of-custody documentation are included in Appendix D.

The analytical results associated with the initial assessment were inconsistent. The analytical results associated with the BH-1 location (inside the footprint) indicated chloride concentrations below site RRALs down to a depth of 40 feet bgs, and below reclamation requirements in the 44-45 foot interval.

Analytical results associated with the BH-4 location (outside the footprint, on pad) indicated elevated chloride concentrations above reclamation requirements for soils within the upper 4 feet bgs. The concentrations were, however, below the chloride Site RRAL of 20,000 mg/kg. These analytical results indicate impacted soils that are presumed unrelated to the NRM2007952227 release based on the distance from the reported release footprint (approximately 123 feet away).

Analytical results associated with the BH-2 and BH-3 locations (outside the footprint, on pad) are all below Site RRALs for chloride. There were no other analytical results which exceeded the Site RRAL for chloride during the initial assessment. The analytical results associated with the BH-1 boring location exceeded the Site RRAL for TPH at the 2-3 foot depth interval. The remainder of the samples analyzed were below the TPH Site RRAL of 2,500 mg/kg. The analytical results associated with BH-1 through BH-4 were all below the RRAL for BTEX (50 mg/kg).

ADDITIONAL SITE ASSESSMENT ACTIVITIES AND SAMPLING RESULTS

On March 3 and May 5, 2021 Tetra Tech personnel returned to the Site to complete nine (9) soil borings (AH-1 through AH-9) using hand augers to further delineate the impacted areas vertically and horizontally.

AH-1 was installed west of the well pad to laterally bound the concentrations discovered in the vicinity of BH-4. AH-2 and AH-3 were installed within the release extent to attempt to obtain vertical delineation of the NRM2007952227 release. AH-4 through AH-9 were installed outside the release extent to laterally bound the extent of chloride for the release footprint.

A total of nineteen (19) samples were collected from the nine (9) borings and submitted to Pace to be analyzed for TPH (DRO and ORO) by EPA Method 8015, TPH Low Fraction (GRO) by EPA Method 8015D, BTEX by EPA Method 8260B, and chlorides by EPA Method 300.0. Results from borings installed in the pasture (AH-1 through AH-3 and AH-6 through AH-9) are summarized in Table 2. Results from the borings installed within the vicinity of the former reserve pit are summarized in Table 3. Boring locations are shown in Figure 3. Copies of the analytical laboratory reports and chain-of-custody documentation are included in Appendix D.

The analytical results associated with AH-2 indicated elevated chloride concentrations in the upper 3 feet. Analytical results from AH-5 were below reclamation requirements at the 0-1 foot depth interval but indicated elevated chloride concentrations above reclamation requirements in the 2-3 foot depth interval. The analytical results from AH-5 indicate unrelated impact to soil below the surface. There were no other analytical results which exceeded the chloride Site RRAL during the additional assessment activities. The analytical results for AH-1 through AH-9 were all below the RRALs for TPH and BTEX.

REMEDIATION WORK PLAN AND ALTERNATIVE CONFIRMATION SAMPLE PLAN

A Release Characterization Work Plan (Work Plan) was prepared by Tetra Tech on behalf of ConocoPhillips and submitted to NMOCD on July 30, 2021, with fee application payment PO Number 5HXB2-210730-C-1410. The Work Plan described the results of the initial response activities, release assessment and provided characterization of the impact at the site. The Work Plan was denied via email by Robert Hamlet of the NMOCD on Tuesday, November 9, 2021, with the following reasoning:

"The Remediation Plan is denied: The release will need to be fully remediated on pad to the strictest closure criteria standards due to high karst potential. All sample points, except the requested sample points for deferral, must have contaminated soil removed before a deferral request is submitted. The only remediation that should remain are the sample points that are being requested for deferral. If equipment is present, specify exactly which sample points you are asking for a deferral on and the reason the contaminants cannot be removed. Due to the sensitive nature of the site, the alternative sampling plan is denied. Please collect confirmation samples, representing no more than 200 ft2. The liner installation at 4 feet is denied. The entire off-pad portion of the release (including the legacy reserve pit) must be horizontally and vertically delineated/excavated to meet reclamation requirements."

NMOCD email correspondence associated with the rejection is presented in Appendix E.

ADDITIONAL DELINEATION ACTIVITIES AND SAMPLING RESULTS

To comply with the NMOCD denial reasoning, Tetra Tech conducted additional delineation activities at the Site over several events from December 2022 to May 2023. On December 12, 2022, Tetra Tech personnel were onsite to complete three (3) soil borings (AH-10 (2022) through AH-12 (2022)) using hand augers to horizontally delineate the area associated with AH-2 and area west of AH-4. A total of three (3) soil samples were collected at 0-1 feet bgs for laboratory analysis in December 2022.

On February 28, 2023, a total of three (3) borings (BG-1, BH-2A and BH-4A) were installed with an air rotary drilling rig. BH-2A and BH-4A were installed to confirm the previous analytical results and vertically delineate the previously drilled BH-2 and BH-4 borings to a chloride concentration of 600 mg/kg at depths of 15 and 40 feet bgs, respectively. Background (BG)-1 was installed south of the well pad to collect soil samples to determine natural background levels for chloride in the area to a depth of 50 feet bgs. A total of thirty (30) soil samples were collected for laboratory analysis in February 2023. Analytical results from BH-2A and BH-4A are summarized in Table 1. Analytical results from the background boring BG-1 are summarized in Table 4.

On March 22, 2023, a total of fifteen hand auger (15) borings (AH-10 through AH-14, AH-10E through AH-14E and AH-10W through AH-14W) were installed to delineate the area associated with the former reserve pit. AH-10 through AH-14 were installed to a depth of 4 feet bgs within the release footprint while the remainder of the borings were installed to a depth of 1-foot bgs for horizontal delineation. A total of thirty (30) soil samples were collected for laboratory analysis in March 2023. Analytical results from the March 2023 borings are summarized in Table 3.

On May 10, 2023, a total of two (2) borings (BH-5 and BH-6) were installed with an air rotary drilling rig within the release footprint inside the former reserve pit area. BH-5 and BH-6 were installed to depths of 80 feet bgs and 25 feet bgs, respectively, to vertically delineate to a chloride concentration of 600 mg/kg within the former reserve pit area. Additionally, AH-10E-2 was installed via hand auger to horizontally delineate east of AH-10E. A total of twenty-four (24) soil samples were collected in May 2023 for laboratory analysis. Analytical results from the March 2023 borings are summarized in Table 3.

Soil samples were sent to Cardinal Laboratories in Hobbs, New Mexico to be analyzed for chloride via EPA Method SM45000Cl-B, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. Boring locations from the 2022 and 2023 assessment activities are shown in Figure 4. Copies of the analytical laboratory reports and chain-of-custody documentation are included in Appendix D.

The analytical results associated with the area containing AH-14 and BH-5 indicate exceedances of the TPH RRAL (2,500 mg/kg) at the 2-3' foot interval. The remainder of the analytical results from December 2022 to May 2023 were below the TPH RRAL and were non detect for BTEX. AH-10 through AH-14 analytical results indicated chloride concentrations above reclamation requirements for soils in the upper 4 feet bgs. While vertical delineation of chloride was obtained through the analytical results for BH-5 at depths of 79 feet bgs, chloride concentrations vary significantly at the Site and in the surrounding area.

REVISED REMEDIATION WORK PLAN (2023)

Based on the analytical results and revised site characterization, a REVISED Release Characterization Work Plan (REVISED Work Plan) was prepared by Tetra Tech on behalf of ConocoPhillips and submitted to NMOCD on September 5, 2023, with the appropriate fee application. The REVISED Work Plan described the results of the initial response activities, both initial and additional release assessment and provided characterization of the impact at the site. The plan contained a variance request for the placement of a geosynthetic clay liner (GCL) within the excavated areas north of the wellhead, inside the former reserve pit and in the vicinity of BH-4/4A. The REVISED Work Plan was denied via email by Scott Rodgers of the NMOCD on March 18, 2024, with the following reasoning:

Synthetic liners that are placed on top of contamination as a remediation variance in an effort solely to ensure contamination doesn't migrate further is not equal or better protection, as the contamination will remain in place. Variances with a liner request solely to reduce cleanup will be denied. OCD may also require landowner concurrence for any variance request to permanently leave contamination in place. This site is in a mapped High Karst area and will need to be delineated and remediated to the more stringent criteria in Table 1 (Part 29).

REVISED SITE CHARACTERIZATION (2025)

A site characterization was performed and no sinkholes, residences, schools, hospitals, institutions, churches, private domestic water wells, springs, playa lakes, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the distances specified in 19.15.29 New Mexico Administrative Code (NMAC). There is a stream body (watercourse) located less than 300 feet to the south. The Site is in an area of high karst potential based on the BLM Karst Potential Map.

SITE-SPECIFIC KARST SURVEY

COP contracted Goshawk Environmental Consulting, Inc. (Goshawk) to conduct a karst survey of the James E #001 Tubing Line Release and the surrounding area. The survey was conducted in accordance with BLM CFO Karst Survey Requirements and included a resource review, field investigation, and report of findings. The report findings concluded the following: "Although unidentified subsurface karst features

within the survey area are possible, no obvious potential karst features were identified during an extensive survey of the area. Additionally, no impacts to potential karst features by the [contaminants] released from the tubing line were identified." The Goshawk Karst Survey Report is included as Appendix F.

DEPTH-TO-GROUNDWATER DETERMINATION

According to the New Mexico Office of the State Engineers (NMOSE) reporting system, there are no water wells in the Public Land Survey System (PLSS) Section 11, Township 22 South, and Range 30 East. The nearest water well is approximately 2.78 miles away in Section 22 with depth to groundwater at 262 feet below ground surface (bgs).

As the available water level information is from a well further than ½ mile away from the site, ConocoPhillips elected to drill a boring to verify depth to groundwater. On February 28, 2023, a licensed well drilling subcontractor was onsite to drill a groundwater determination borehole (DTW) to 105 feet bgs along the southern edge of the James E #001 well pad. The borehole was temporarily set and screened using 2-inch PVC well materials. No water was present in the well during or after drilling. The well screen and casing were removed, and the borehole was plugged with 3/8-inch bentonite chips. The site characterization data, boring log, and temporary well diagram are included in Appendix G.

REVISED REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil.

Based on the revised site characterization and Goshawk karst survey results and in accordance with Table I of 19.15.29.12 NMAC, the RRALs for the Site are as follows:

Constituent	Site RRALs
Chloride	20,000 mg/kg
TPH (GRO+DRO+MRO)	2,500 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

Additionally, in accordance with the NMOCD guidance *Procedures for Implementation of the Spill Rule* (19.15.29 NMAC) (September 6, 2019), the following reclamation requirements for surface soils (0-4 ft bgs) outside of active oil and gas operations are as follows:

Constituent	Reclamation Requirement
Chloride	600 mg/kg
TPH (GRO+DRO+ORO)	100 mg/kg

REVISED REMEDIATION WORK PLAN ADDENDUM (2025)

Based on the analytical results and revised site characterization, ConocoPhillips proposes to remove the remaining impacted material as shown in Figure 5. Impacted soils will be excavated using heavy equipment (backhoes, hoe rams, and track hoes) to a maximum depth of 4 feet below the surrounding surface. The area around the approximate release point and wellhead will be excavated to a depth of 6 inches bgs through non-aggressive methods to remove surficial staining, if present. Any area containing pressurized lines will be hand-dug or removed via hydro-excavation, and heavy equipment will come no more than 4 ft from any pressurized lines. Areas lacking horizontal delineation (sample locations AH-11E, AH-12W and AH-13E) will be delineated during remedial activities and confirmed through the collection and analysis of confirmation sidewall samples.

Excavated soils will be transported offsite and disposed of at an NMOCD-approved or permitted facility. Confirmation bottom and sidewall samples will be collected for verification of remedial activities, and

analyzed for TPH, BTEX, and chlorides. Once results are received, NMOCD will be notified, and the excavation will then be backfilled with clean material to surface grade. The estimated volume of material to be remediated is approximately 880 cubic yards.

ALTERNATIVE CONFIRMATION SAMPLING PLAN

In accordance with 19.15.29.12(D)(1)(b) NMAC, ConocoPhillips proposes the following alternative confirmation sampling plan to adhere with NMOCD requirements. The proposed confirmation sample locations are depicted in Figure 6. Fifteen (15) confirmation floor samples and eighteen (18) confirmation sidewall samples are proposed for verification of remedial activities. The proposed excavation encompasses a surface area of approximately 6,206 square feet.

These confirmation sidewall and floor samples will be representative of no more than approximately 400 square feet of excavated area in which sampling is proposed. Confirmation samples will be sent to an accredited laboratory for analysis of TPH (Method 8015 modified), BTEX (Method 8260B), and chloride (Method SM4500Cl-B). Once results are received and evaluated, the excavation will then be backfilled with clean material to surface grade.

SITE RECLAMATION AND RESTORATION PLAN

The backfilled areas located outside of the well pad extent will be seeded in the first favorable growing season to aid in revegetation. Based on the location of the Site, the seed mixture for LPC Sand/Shinnery Sites will be used for seeding and planted in the amount specified in the pounds pure live seed per acre. The seed mixture will be spread by a drill equipped with a depth regulator or a hand-held broadcaster and raked. If a hand-held broadcaster is used for dispersal, the pounds pure live seed per acre will be doubled.

Site inspections will be performed to assess the revegetation progress and evaluate the site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the BLM will be contacted to determine an effective method for eradication. If the site does not show revegetation after one growing season, the area will be reseeded as appropriate. The BLM seed mixture details and corresponding pounds pure live seed per acre are included in Appendix H.

CONCLUSION

ConocoPhillips proposes to begin remediation activities at the Site within 120 days of NMOCD plan approval. Upon completion of the proposed work, a final closure report detailing the remediation activities and the results of the confirmation sampling will be submitted to NMOCD.

If you have any questions concerning the soil assessment or the proposed remediation activities for the Site, please call me at (512) 217-7254 or Christian at (512) 338-2861.

Sincerely,

Tetra Tech, Inc.

Ryan C. Dickerson **Project Manager**

Sam Widmer, RMR - ConocoPhillips

Crisha Morgan, BLM

Christian M. Llull, P.G. Program Manager

TETRA TECH. INC.

LIST OF ATTACHMENTS

Figures:

Figure 1 – Overview Map

Figure 2 – Topographic Map

Figure 3 – Approximate Release Extent Map

Figure 4 – Site Assessment Map

Figure 5 – Proposed Remediation Extent

Figure 6 – Alternative Confirmation Sampling Plan

Tables:

Table 1 – Summary of Analytical Results – On-pad Soil Assessment

Table 2 – Summary of Analytical Results – Pasture Soil Assessment

Table 3 – Summary of Analytical Results – Former Reserve Pit Soil Assessment

Table 4 – Summary of Analytical Results – Background Soil Assessment

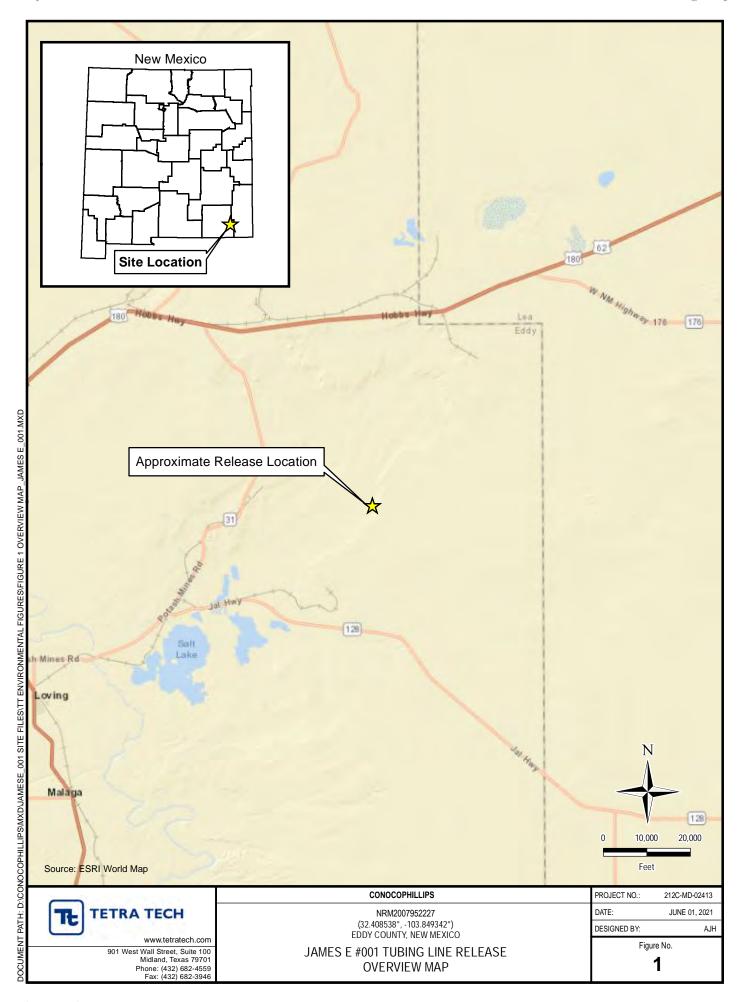
Appendices:

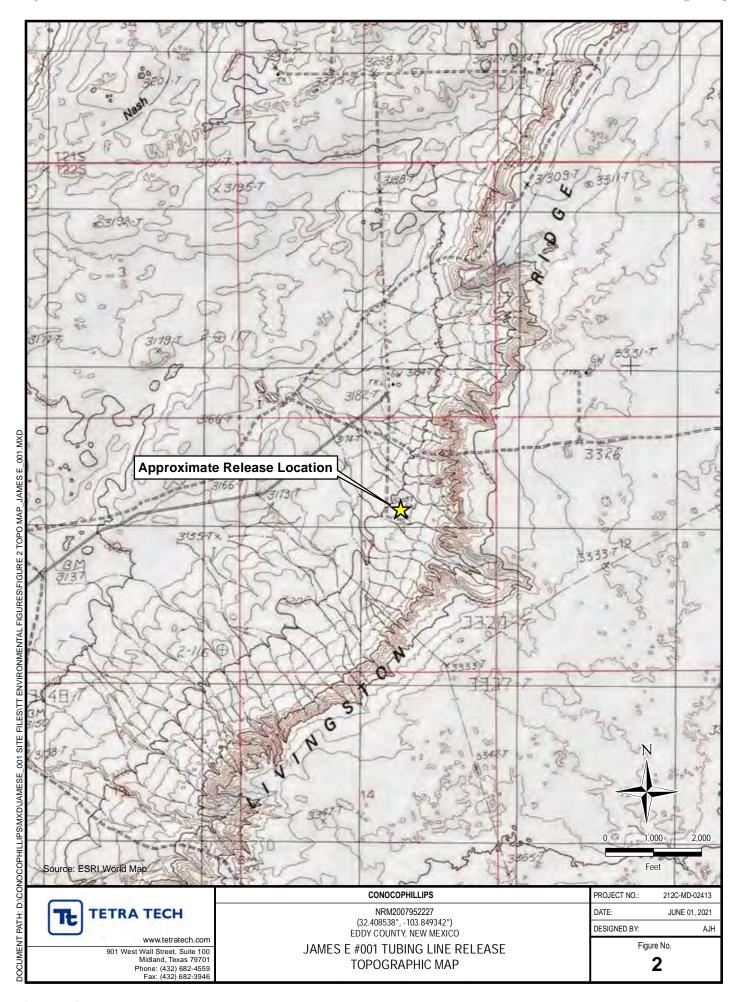
Appendix A - C-141 Forms

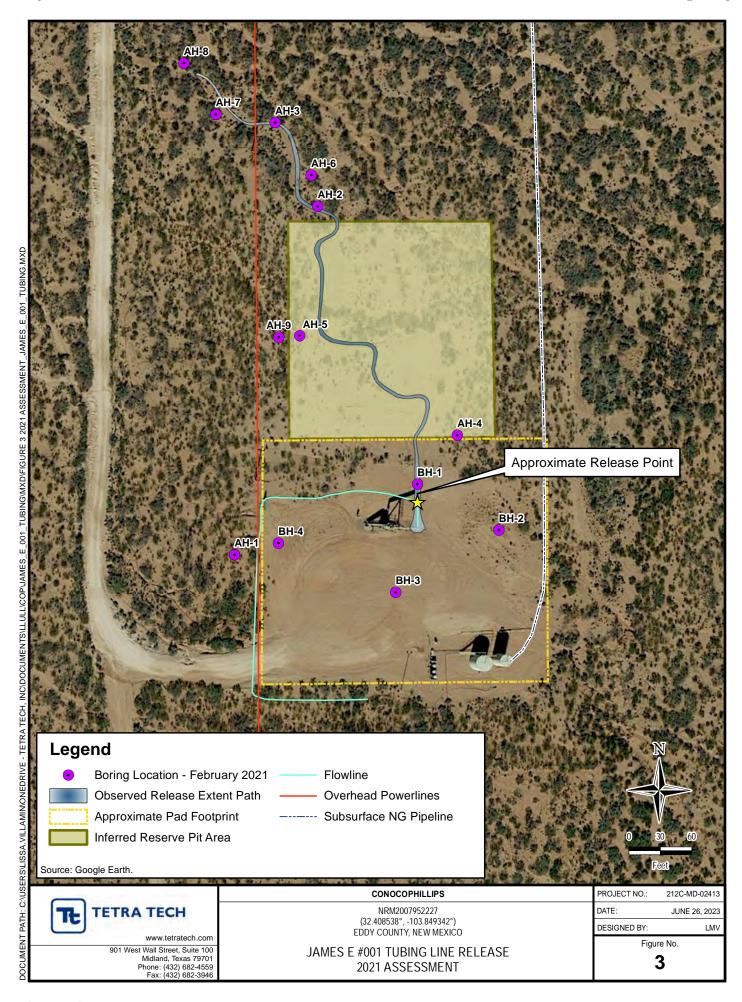
Appendix B – Photographic Documentation

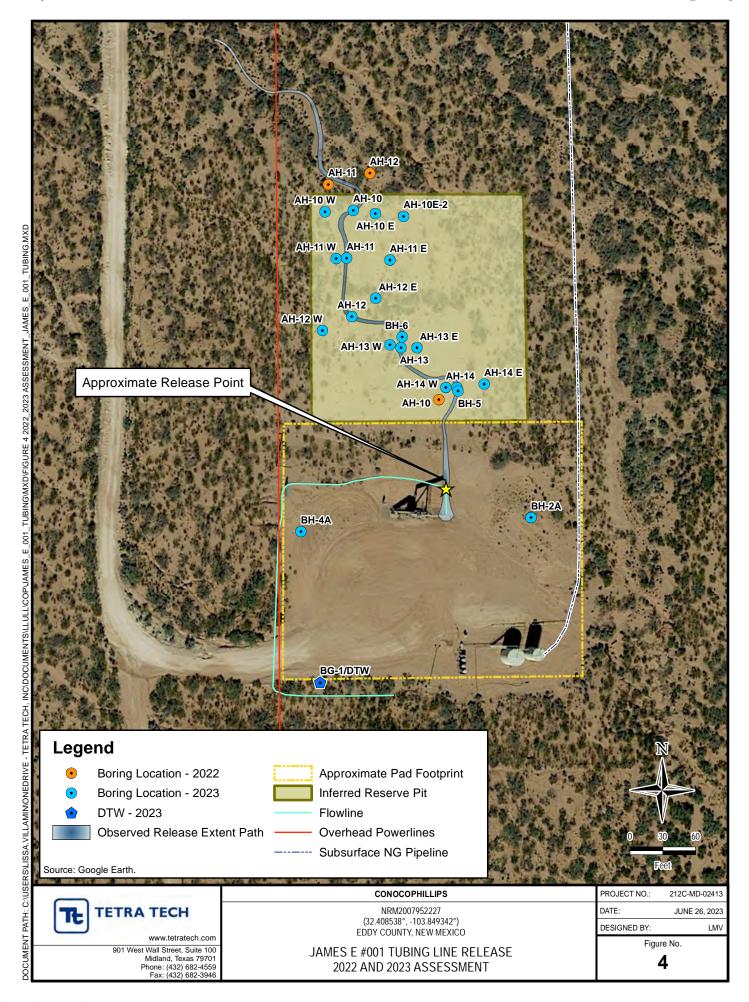
Appendix C – Soil Boring Logs

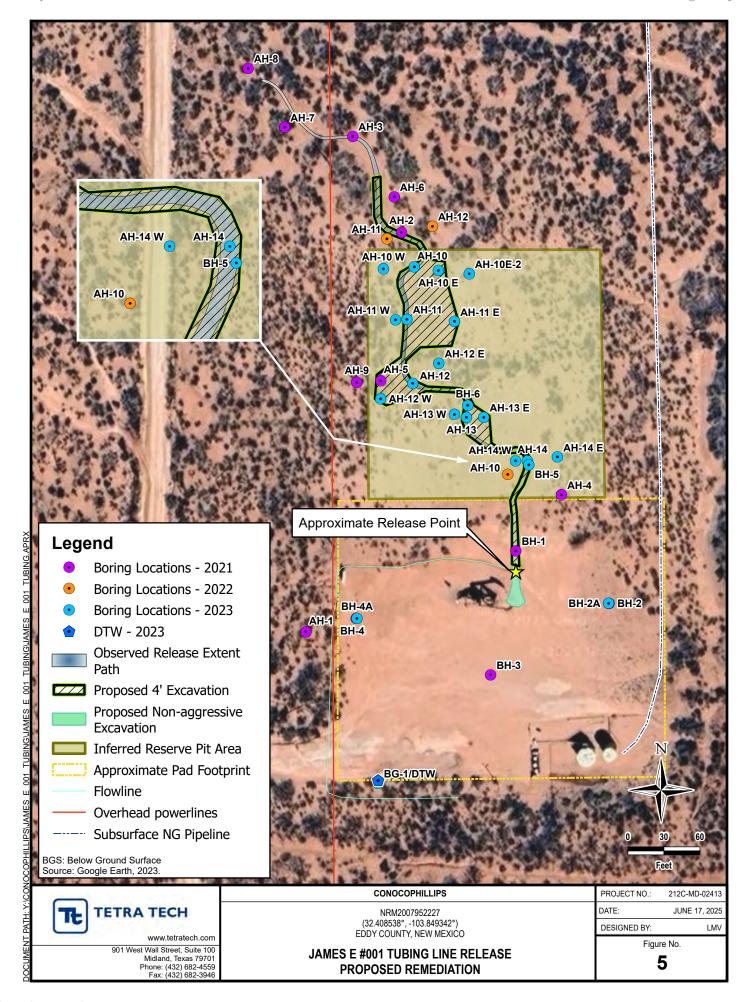
Appendix D – Laboratory Analytical Data

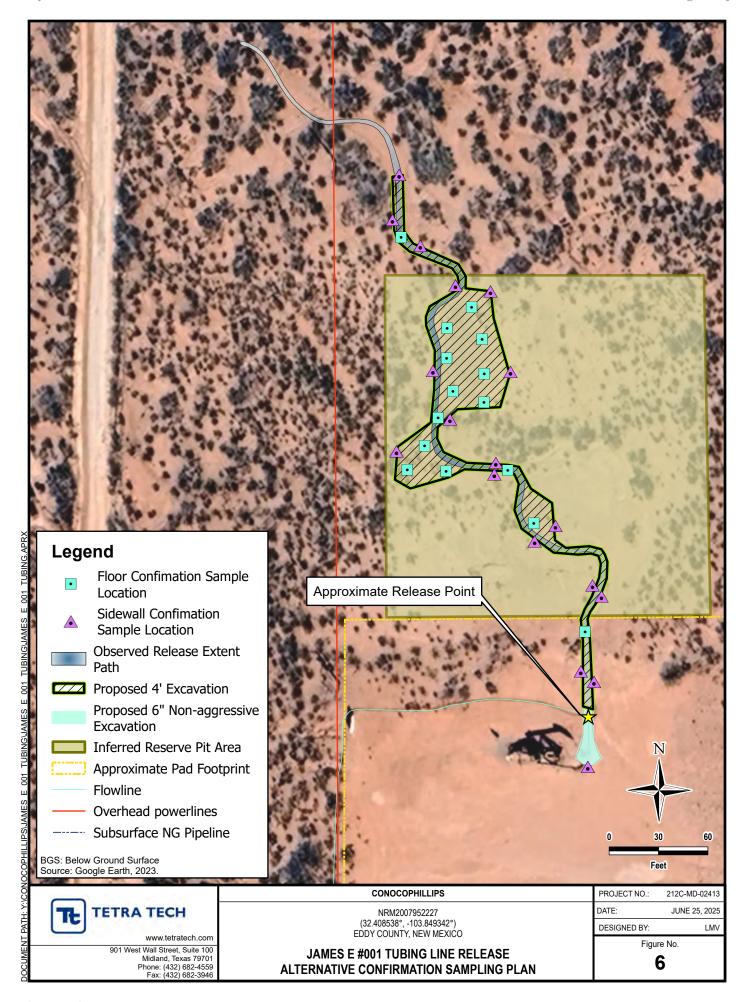

Appendix E - Regulatory Correspondence


Appendix F – Karst Survey Report


Appendix G - REVISED Site Characterization Data


Appendix H – BLM Seed Mixture Details


FIGURES



TABLES

TABLE 1 SUMMARY OF ANALYTICAL RESULTS ON-PAD SOIL ASSESSMENT - NRM2007952227 CONOCOPHILLIPS JAMES E #001 TUBING LINE RELEASE EDDY COUNTY, NM

			F1-14 C	-las Bassiles							BTEX ²								TPH ³			
Samuela ID	Committe Body	Sample Depth Interval	Field Screen	ning Results	Chloride ¹		Benzene		Toluene		Ethylbenzen		Total Xylenes		Total BTEX	GRO⁴		DRO		ORO		Total TPH
Sample ID	Sample Date		Chloride	PID			Benzene		roidelle		Euryipenzen	e	Total Ayleries	•	TOTAL BIEX	C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)
		ft. bgs	рр	m	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		0-1	10000	-	12800		0.00118		0.0059		0.00295		0.00142	J	0.00142	< 0.109		820		1590		2410
		2-3	-	-	7750		0.00117		0.00586		0.00293		0.00762		-	< 0.109		1440		1730		3170
		4-5	-	-	1970		0.00244		0.0122		0.00611		0.0159		-	< 0.115		28.7		32.9		61.6
		6-7	1200	-	883		< 0.00114		< 0.00568		< 0.00284		< 0.00739		-	< 0.107		1.92	J	1.74	ВЈ	3.66
		9-10	-	-	800		< 0.00120		< 0.00601		< 0.00300		< 0.00781		-	< 0.110		3.81	J	4.09	ВЈ	7.90
BH-1	2/2/2021	14-15	900	-	955		< 0.00115		< 0.00577		< 0.00288		< 0.00750		-	< 0.109		< 4.31		< 4.31		-
	2, 2, 2022	19-20	1800	-	2120	J6	< 0.00117		< 0.00585		< 0.00293		< 0.00761		-	< 0.109		4.36		5.46		9.82
		24-25	1400	-	1640		< 0.00114		< 0.00571		< 0.00285		< 0.00742		-	< 0.107		4.34		6.03		10.4
		29-30	1600	-	1730		< 0.00133		< 0.00664		< 0.00332		< 0.00863		-	< 0.116		4.43	J	5.38		9.81
		34-35	1100	-	1190		< 0.00125		< 0.00626		< 0.00313		< 0.00814		-	< 0.113		< 4.50		3.64	J	3.64
		39-40	880	-	931		< 0.00121		< 0.00604		< 0.00302		< 0.00785		-	< 0.110		< 4.41		0.409	J	0.409
		44-45	150	-	199		< 0.00111		< 0.00556		< 0.00278		< 0.00723		-	< 0.106		< 4.23		< 4.23		-
		0-1	300	-	275		< 0.00105		< 0.00527		< 0.00264		< 0.00685		-	< 0.104		2.33	J	5.55		7.88
BH-2	2/2/2021	2-3	260	-	475		< 0.00107		< 0.00535		< 0.00267		< 0.00695			< 0.103		< 4.14		2.97	J	2.97
BH-Z	2/2/2021	4-5	481	-	590		< 0.00108		< 0.00541		< 0.00271		< 0.00704		-	< 0.104		< 4.16		< 4.16		-
		6-7	552		622		< 0.00108		< 0.00540		< 0.00270		< 0.00702		-	< 0.104		2.08	J	2.62	J	4.70
		0-1	-	-	992		<0.050		<0.050		<0.050		<0.150		-	<10.0		<10.0	П	<10.0		-
		2-3	-	-	1040		<0.050		<0.050		<0.050		<0.150		-	<10.0		82.8		<10.0		82.8
	. / /	4-5	-	-	864		<0.050		<0.050		<0.050		<0.150		-	<10.0		<10.0		<10.0		-
BH-2A	2/28/2023	6-7	-	-	800		<0.050		<0.050		<0.050		<0.150			<10.0		<10.0		<10.0		-
		8-9	-	-	640		<0.050		<0.050		<0.050		<0.150		-	<10.0		<10.0		<10.0		-
		14-15	-	-	240		<0.050		<0.050		<0.050		<0.150		-	<10.0		<10.0		<10.0		-
		0-1	100	-	96.9		< 0.00107		< 0.00533		< 0.00267		< 0.00293		-	< 0.103		1.69	J	2.90	J	4.59
	. / . /	2-3	80.4	-	86.6		< 0.00112		< 0.00558		< 0.00279		< 0.00725			< 0.106		< 4.23		< 4.23		
BH-3	2/2/2021	4-5	45.1	-	23.2		< 0.00114		< 0.00570		< 0.00285		< 0.00741			< 0.107		< 4.28		< 4.28		
		6-7	59	-	51.8		< 0.00115		< 0.00573		< 0.00287		< 0.00745		-	< 0.107		< 4.29		< 4.29		-
		0-1	690		2470		< 0.00108		< 0.00540		< 0.00270		< 0.00703		-	< 0.104		< 4.16		0.438	J	0.438
		2-3	-	-	1830		< 0.00108		< 0.00541		< 0.00270		< 0.00703		-	< 0.104		< 4.16		< 4.16		-
BH-4	2/2/2021	4-5	1000	-	1360		< 0.00111		< 0.00557		< 0.00279		< 0.00724		-	< 0.106		< 4.23		< 4.23		-
		6-7	-	-	1410		< 0.00112		< 0.00559		< 0.00280		< 0.00727		-	< 0.106		< 4.24		< 4.24		-
i		0-1	-	-	480		<0.050		<0.050		<0.050		<0.150		-	<10.0	İ	<10.0	ΤĖ	<10.0	Ħ	
		2-3	-	-	1060	H	<0.050	1	<0.050	H	<0.050	H	<0.150		-	<10.0		<10.0	\vdash	<10.0	+	-
		4-5	-	-	1250	H	<0.050	1	<0.050		<0.050	H	<0.150			<10.0		<10.0	\vdash	<10.0	+1	
		6-7	-	-	992	H	<0.050	1	<0.050		<0.050	H	<0.150			<10.0		<10.0	\vdash	<10.0	+1	-
		8-9	-	-	2000	H	<0.050	1	<0.050		<0.050	H	<0.150		-	<10.0		<10.0	\vdash	<10.0	+1	-
BH-4A	2/28/2023	14-15	-	-	1720	H	<0.050	1	<0.050		<0.050	H	<0.150		-	<10.0		<10.0	\vdash	<10.0	+1	-
		19-20	-	-	1800	H	<0.050	1	<0.050		<0.050	H	<0.150		-	<10.0		<10.0	\vdash	<10.0	+1	-
		24-25	-	-	784	H	<0.050		<0.050	H	<0.050	Ħ	<0.150			<10.0		<10.0	H	<10.0	\Box	-
		29-30	-	-	192	H	<0.050		<0.050	H	<0.050	Ħ	<0.150			<10.0		<10.0	H	<10.0	\Box	-
		34-35	-	-	192	H	<0.050		<0.050	H	<0.050	Ħ	<0.150		-	<10.0		<10.0	H	<10.0	\Box	-
		39-40	-	-	128	H	<0.050		<0.050	H	<0.050	Ħ	<0.150		-	<10.0		<10.0	H	<10.0	\Box	-
NOTES:					as indicata avcand	_			or reclamation re			_	I faat has outside o				_					

bgs Below ground surface

ppm Parts per million

mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics DRO Diesel range organics

ORO Oil range organics

Bold and italicized values indicate exceedance of proposed RRALs and/or reclamation requirements for soils above 4 feet bgs outside of oil and gas operations.

Shaded rows indicate intervals proposed for excavation.

1 EPA Method 300.0

2 EPA Method 8260B 3 EPA Method 8015

4 EPA Method 8015D/GRO

QUALIFIERS:

B The same analyte is found in the associated blank.

J The identification of the analyte is acceptable; the reported value is an estimate.

Page 17 of 279

TABLE 2

SUMMARY OF ANALYTICAL RESULTS

PASTURE SOIL ASSESSMENT - NRM2007952227

CONOCOPHILLIPS

JAMES E #001 TUBING LINE RELEASE LEA COUNTY, NM

			Field Screer	sing Posults							BTEX ²								TPH	3		
Sample ID	Sample Date	Sample Depth Interval	rieia screer	iing kesuits	Chloride ¹		Benzene		Toluene		Ethylbenzene		Total Xylenes		Total BTEX	GRO⁴		DRO		ORO		Total TPH
Sample 15	Sample Date		Chloride	PID			Belizelle		Toldelle		Ethylbenzene		Total Aylelles		TOTAL BIEX	C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)
		ft. bgs	pp	ım	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
AH-1	3/3/2021	0-1	-	-	24.2	J	< 0.00153		< 0.00764		< 0.00382		< 0.00994		-	< 0.126		< 5.06		2.65	J	2.65
-7-7	2-3	-	-	35.2		< 0.00105		< 0.00523		< 0.00261		< 0.00680		-	< 0.102		2.74	J	9.01		11.8	
		0-1	-	-	971		< 0.00108		< 0.00540		< 0.00270		< 0.00702		-	< 0.104		18.9		36.7		55.6
AH-2	3/3/2021	2-3	-	-	3020		< 0.00172		< 0.00860		< 0.00430		< 0.0112		-	0.154		< 5.44		1.20	J	1.35
		4-5	-	-	206		< 0.00111		< 0.00554		< 0.00277		< 0.00720		-	< 0.105		8.94		12.8		21.7
AH-3 3/3/2021	2/2/2024	0-1	-	-	400		< 0.00105		< 0.00526		< 0.00263		< 0.00684	1	-	< 0.103		41.3		58.2		99.5
	3/3/2021	2-3	-	-	215		< 0.00104		< 0.00519		< 0.00259		< 0.00674		=	0.0457	ВЈ	3.30	J	5.20		8.55
	3/3/2021	0-1	-	-	< 20.2		< 0.00102		< 0.00510		< 0.00255		< 0.00663	Ī	-	< 0.101		2.81	J	1.75	J	4.56
AH-6	3/3/2021	2-3	-	-	< 20.2		< 0.00102		< 0.00510		< 0.00255		< 0.00662			< 0.101		3.76	J	2.28	J	6.04
	0/0/0004	0-1	-	-	< 20.4		< 0.00104		< 0.00521		< 0.00261		< 0.00678		-	< 0.102		6.92		13.6		20.5
AH-7	3/3/2021	2-3	-	-	< 20.5		< 0.00105		< 0.00526		< 0.00263		< 0.00684		-	< 0.103		2.12	J	4.96		7.08
	2 /2 /2 22 4	0-1	-	-	62.0		< 0.00140		< 0.00701		< 0.00351		< 0.00912	T	-	0.0458	J	2.81	J	4.48	J	7.34
AH-8	3/3/2021	2-3	-	-	17.3	J	< 0.00115		< 0.00577		< 0.00289		< 0.00751		-	< 0.108		3.62	J	4.07	J	7.69
		0-1	384	-	< 21.9		< 0.00119	J3	< 0.00594	J3	< 0.00297	J3	< 0.00773	I	-	< 0.109		< 4.38		6.90		6.90
AH-9	5/5/2021	2-3	1670	-	15.0	J	< 0.00107		< 0.00537		< 0.00269		< 0.00699		-	< 0.104		< 4.15		3.28	J	3.28
AH-11 (2022)	12/12/2022	0-1	69		32.0		<0.050		<0.050		<0.050		<0.150	Ī	=	<10.0		<10.0		<10.0		-
AH-12 (2022)	12/12/2022	0-1	37.3		32.0	i	<0.050		<0.050		<0.050		<0.150	T	_	<10.0		<10.0		<10.0	i	

NOTES:

ft. Feet

bgs Below ground surface ppm Parts per million

mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

DRO Diesel range organics

ORO Oil range organics

1 EPA Method 300.0

2 EPA Method 8260B

3 EPA Method 8015

EPA Method 8015D/GRO

Bold and italicized values indicate exceedance of proposed RRALs and/or reclamation requirements for soils above 4 feet bgs outside of oil and gas operations.

Shaded rows indicate intervals proposed for excavation.

QUALIFIERS:

- B The same analyte is found in the associated blank.
- J The identification of the analyte is acceptable; the reported value is an estimate.
- J3 The associated batch QC was outside the established quality control range for precision.

TABLE 3 SUMMARY OF ANALYTICAL RESULTS FORMER RESERVE PIT SOIL ASSESSMENT - NRM2007952227 CONOCOPHILLIPS JAMES E #001 TUBING LINE RELEASE

EDDY COUNTY, NM

March Marc										BTEX ²				TPH ³							
Charles	Sample ID	Sample Date	=	Field Screening Resu	ılts Chloride ¹	Renzene		Toluene		Ethylhenzene		Total Yylenes	Total RTEY	GRO⁴		DRO		ORO		Total TPH	
Heat 1977 Pot	Sample 10	Sample Date		Chloride PID		Delizerie		Toluelle		Ltifyiberizerie		Total Aylenes	TOTAL	C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)	
### \$1,000 2.3			ft. bgs	ppm	mg/kg Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	
## 16 \$2 \$2 \$2 \$2 \$3 \$4 \$4 \$4 \$4 \$4 \$4 \$4	AH-4	3/3/2021				1							-	-	B J		\perp		J	1.50	
All			2-3		518	< 0.00107		< 0.00534		< 0.00267		< 0.00694	-	< 0.103		3.92	J	6.69		10.6	
A-10	AH-5	3/3/2021	0-1		< 20.7	< 0.00107		< 0.00533		< 0.00266		< 0.00692	-	0.0550	B J	6.58	\perp	15.1		21.7	
#1277023			2-3		812	< 0.00166		< 0.00829		< 0.00415		< 0.0108	-	< 0.133		< 5.31		1.46	J	1.46	
Miles Mile	AH-10 (2022)	12/12/2022	0-1	61.2 -	16.0	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-	
### A			0-1		288	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-	
MildS	AH-10	3/22/2023			352								-	<10.0						-	
An in													-				++			-	
M-H0C-2 5/10/2023 0-1 - 112			3-4		1,330	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-	
### AF-10W 37272033 0-1 5.5.0	AH-10E	3/22/2023	0-1		2,400	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-	
AH-11 3/2/2023	AH-10E-2	5/10/2023	0-1		112	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-	
All-11 All-12 All-12 All-13 All-13 All-13 All-13 All-14 All-13 All-13 All-14 All-13 All-14 All-13 All-13 All-14 All-13 All-15 All-14 All-15 All-15 All-15 All-15 All-15 All-16 All-17 All-17 All-18 All-17 All-18 All-18 All-18 All-19 AH-10W	3/22/2023	0-1		16.0	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-		
AH-11 3/72/703 2 3 . 1,840			0-1		592	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-	
1,840	ΔH-11	3/22/2023	1-2		1,150	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-	
AH-11E 3/22/2023 0-1 - 976	7.11.22	3/22/2023	2-3		1,840	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-	
AH-11W 3/2//023 0-1 - 176			3-4		1,880	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0			
AH-12E 3/72/7023 0-1	AH-11E	3/22/2023	0-1	-	976	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-	
AH-12	AH-11W	3/22/2023	0-1		176	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-	
AH-12			0-1		128	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-	
2-3 - 1,310	ΔH-12	3/22/2023	1-2		672	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-	
AH-12E 3/22/2023 0-1 - 144	7.1. 12	3, 22, 2323	2-3		1,310	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-	
AH-12W 3/22/2023 0-1 - 832			3-4		1,740	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-	
AH-13E 3/22/2023 0-1	AH-12E	3/22/2023	0-1		144	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-	
AH-13	AH-12W	3/22/2023	0-1		832	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-	
AH-13 3/22/2023			0-1		384	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-	
2-3 - 1,040	ΔH-13	3/22/2023	1-2		336	<0.050		<0.050		<0.050		<0.150	1	<10.0		<10.0		<10.0		-	
AH-13E 3/22/2023 0-1 - 1,220 <0.050 <0.050 <0.050 <0.050	All 13	3/22/2023	2-3		1,040	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-	
AH13W 3/22/2023 0-1 288 < 0.050			3-4	-	1,250	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-	
AH-14 AH-14E AH-14 Bayes A	AH-13E	3/22/2023	0-1		1,220	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-	
AH-14 AH	AH13W	3/22/2023	0-1		288	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-	
AH-14 3/22/2023 2-3 5,520 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050			0-1		896	<0.050		<0.050		<0.050		<0.150	-	<10.0		144		22.22		166.22	
2-3 5,520 <0.050 <0.050 <0.050	AU 14	2/22/2022	1-2		2,280	<0.050		<0.050		<0.050		<0.150	-	<10.0		695		192		887	
AH-14E 3/22/2023 0-1 80.0 <0.050 <0.050 <0.050 <0.150 - <10.0 <10.0 <10.0	AH-14	3/ 22/ 2023	2-3		5,520	<0.050		<0.050		<0.050		<0.150	-	<10.0		2,490		606		3,096	
			3-4	-	4,320	<0.050		<0.050		<0.050		<0.150	-	<10.0		889		168		1,057	
	AH-14E	3/22/2023	0-1		80.0	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-	
AH14W 3/22/2023 0-1 - 544 <0.050 <0.050 <0.050 - <10.0 <10.0 <10.0	AH14W	3/22/2023	0-1		544	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-	

TABLE 3

SUMMARY OF ANALYTICAL RESULTS

FORMER RESERVE PIT SOIL ASSESSMENT - NRM2007952227

CONOCOPHILLIPS

JAMES E #001 TUBING LINE RELEASE

EDDY COUNTY, NM

											BTEX ²							TPI	H ³		
Sample ID	Sample Date	Sample Depth Interval	Field Screeni	ng Results	Chlorid	e ¹	Ronzono		Toluene		Ethylbenzene		Total Xylenes	Total BTEX	GRO⁴		DRO		ORO		Total TPH
Sample ID	Sample Date		Chloride	PID			Benzene		roiuene		Ethylbenzene		Total Aylenes	TOTAL DIEX	C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)
		ft. bgs	ppn	n	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		5-6	-	-	2600		<0.050		<0.050		<0.050		<0.150	-	<10.0		412		111		523
		7-8	-	-	3280		<0.050		<0.050		<0.050		<0.150	-	<10.0		134		<10.0		134
		9-10	-	-	2880		<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-
		14-15	-	-	4800		<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-
		19-20	-	-	5200		<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-
		24-25	-	-	6260		<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-
BH-5 5/10		29-30	-	-	4320	QM-07	<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-
	5/10/2023	34-35	-	-	3920		<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-
		39-40	-	-	5200		<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-
		44-45	-	-	4400		<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-
		49-50	-	-	5760		<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-
		54-55	-	-	4640		<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-
		59-60	-	-	4560		<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-
		64-65	-	-	4160		<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-
		69-70	-	-	4320		<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-
		74-75	-	-	3600		<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-
		79-80	-	-	240		<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-
		5-6	-	-	1360		<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-
		7-8	-	-	2480		<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-
DU C	F /10 /2022	9-10	-	-	6000		<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-
BH-6 5/1	5/10/2023	14-15	-	-	6400		<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-
		19-20	-	-	5200		<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-
		24-25	-	-	3760		<0.050		<0.050		<0.050		<0.150	-	<10.0		<10.0		<10.0		-

NOTES:

Feet

bgs Below ground surface

ppm Parts per million mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

DRO Diesel range organics ORO Oil range organics

Bold and italicized values indicate exceedance of proposed RRALs and/or reclamation requirements for soils above 4 feet bgs outside of oil and gas operations.

Shaded rows indicate intervals proposed for excavation.

1 EPA Method SM4500Cl-B

2 EPA Method 8021B 3 EPA Method 8015

4 EPA Method 8015D/GRO

QUALIFIERS:

B The same analyte is found in the associated blank.

J The identification of the analyte is acceptable; the reported value is an estimate.

TABLE 4

SUMMARY OF ANALYTICAL RESULTS BACKGROUND SOIL ASSESSMENT - NRM2007952227 CONOCOPHILLIPS JAMES E #001 TUBING LINE RELEASE EDDY COUNTY, NM

Sample ID	Sample Date	Sample Depth Interval	Chloride	1
		ft. bgs	mg/kg	Q
		0-1	16	
		2-3	144	
		4-5	384	
		6-7	480	
		9-10	720	
		14-15	1200	
BG-1	2/28/2023	19-20	976	
		24-25	320	
		29-30	224	
		34-35	160	
		39-40	176	
		44-45	48	
		49-50	80	

NOTES:

ft. Feet

bgs Below ground surface ppm Parts per million

mg/kg Milligrams per kilogram
1 EPA Method 300.0

APPENDIX A C-141 Forms

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	NRM2007952227
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

£2.											
Responsible Party Conec	•Phillips		OGRID	217817							
Contact Name - Charles	Beauvais		Contact	Telephone +575-	-988-2043						
Contact email - charles.r	.beauvais@conocop	hillips.com	Incident	Incident # (assigned by OCD) NRM2007952227							
Contact mailing address	– 15 W London Rd,	Loving, NM 88	220								
		Location	of Release S	Source							
Latitude 32.4123 32	.408516°		Longitude	-103.8486 -1	103.849337°						
		(NAD 83 in de	cimal degrees to 5 dec								
Site Name: James E Fed	eral (Lower) Battery	James E #002	Site Type	: Battery Tubing	g Line Valve						
Date Release Discovered:	03/16/2020		API# (if a	pplicable) NMNM	10479142 lease code 30-015-20996						
Unit Letter Section	Township	Range		inty							
B G 11	22S 3	30E	Eddy County	ldy County							
		. 🗖									
Surface Owner: State	Federal ☐ Trib	al Private (/	Vame: BLM)						
		Nature and	Volume of	Release							
77.5-4											
Material Crude Oil	Volume Released			Volume Rece	e volumes provided below) overed (bbls) 0						
☐ Produced Water	Volume Released	1 1		Volume Reco							
Z Troduced Water	Is the concentratio		blarida in the	✓ Yes ☐ N							
	produced water >1		monde in the	□ I es □ I	NO						
☐ C•ndensate	Volume Released			Volume Reco	overed (bbls)						
☐ Natural Gas	Volume Released	(Mcf)		Volume Reco	overed (Mcf)						
ther (describe)	Volume/Weight R	eleased (provide	e units)	Volume/Wei	ght Recovered (provide units)						
Cause of Release	L										
Check valve on the tubing	r line developed a cr	mall hole due to	corrocion on the	hottom of the val	lva						
Check valve on the tubility	g illie developed a si	man note due to	corrosion on the	bottom of the val	IIVE.						

Received by OCD: 7/2/2025/2:42:13 PMM e of New Mexico
Page 2 Oil Conservation Division

	rage ascort
Incident ID	NRM2007952227
District RP	
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the respo	nsible party consider this a major release?
19.15.29.7(A) NMAC?	An authorized release of a volume, exclude	ling gas, in excess of 25 bbls.
☐ Yes ⊠ No		
If YES, was immediate r	notice given to the OCD? By whom? To wh	nom? When and by what means (phone, email, etc)?
	Initial R	esponse
The responsible	e party must undertake the following actions immediate	ly unless they could create a safety hazard that would result in injury
☐ The source of the rel	lease has been stopped.	
∑ The impacted area h	as been secured to protect human health and	the environment.
Released materials h	nave been contained via the use of berms or	likes, absorbent pads, or other containment devices.
All free liquids and i	recoverable materials have been removed an	d managed appropriately.
Per 19.15.29.8 B. (4) NN	MAC the responsible party may commence i	emediation immediately after discovery of a release. If remediation
has begun, please attach	a narrative of actions to date. If remedial	efforts have been successfully completed or if the release occurred blease attach all information needed for closure evaluation.
regulations all operators are public health or the enviror failed to adequately investi	e required to report and/or file certain release not nment. The acceptance of a C-141 report by the G gate and remediate contamination that pose a thre	best of my knowledge and understand that pursuant to OCD rules and ifications and perform corrective actions for releases which may endanger DCD does not relieve the operator of liability should their operations have eat to groundwater, surface water, human health or the environment. In responsibility for compliance with any other federal, state, or local laws
Printed Name:	wes Begavas	Title: Environmental Coordinator
Signature:	Q Down H	Date: 3/17/2020
email: charles, r. bo	equivais @ conocophillips.com	Telephone: 575-988-2043
NRM2007952227 incid	lent number. C-141 resubmitted with co	rections via the payment portal on 9/17/2020. crb
OCD Only		
Received by: Ramon:	a Marcus	Date: _3/19/2020

NRM007952227

Incident ID District RP Facility ID Application ID

Site Assessment/Characterization

This information must be provided to the appropriate district office no tales than 20 days after the release discovery date.		
What is the shallowest depth to groundwater beneath the area affected by the release?	>105	(ft bgs)
Did this release impact groundwater or surface water?	☐ Yes	✓ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes	V No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes	✓ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	Yes	☑ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes	✓ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes	✓ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes	☑ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes	✓ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes	✓ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes	☑ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes	✓ No
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes	✓ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	tical exte	nts of soil
Characterization Report Checklist: Each of the following items must be included in the report.		
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well	ls.	

Ch	Characterization Report Checklist: Each of the following items must be included in the report.				
١					
	Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.				
	Field data				
	Data table of soil contaminant concentration data				
	Depth to water determination				
	Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release				
	Boring or excavation logs				
	Photographs including date and GIS information				
	Topographic/Aerial maps				
	Laboratory data including chain of custody				
1					

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 7/2/2025 2:42:13 PM Form C-141 State of New Mexico Page 4 Oil Conservation Division

	Page 25 of 2	<i>79</i>
Incident ID	NRM007952227	
District RP		
Facility ID		
Application ID		

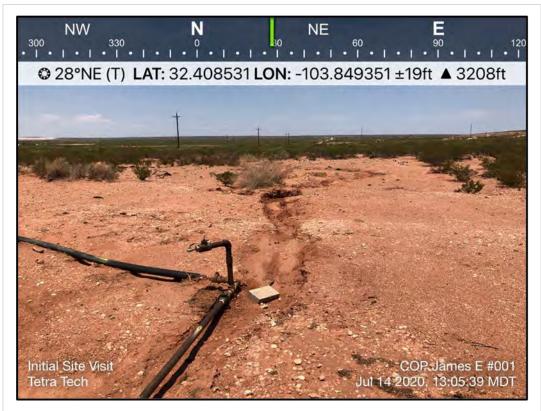
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.				
Printed Name: Sam Widmer	Title: Principal Program Manager			
Signature: San Widner email: Sam Widner@conocophillips.com	Date:			
email:5454CA5BAD33498 Sam.Widmer@conocophillips.com	Telephone:907-227-1777			
OCD Only				
Received by:	Date:			

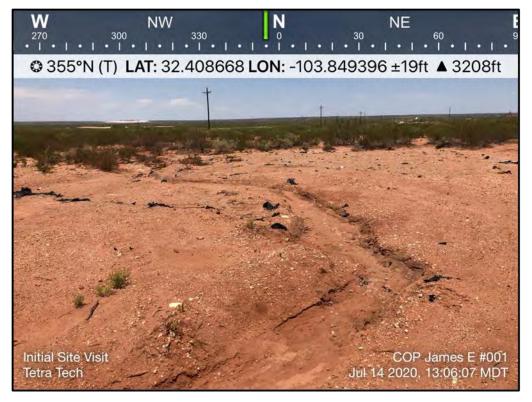
Remediation Plan Checklist: Each of the following items must be included in the plan.

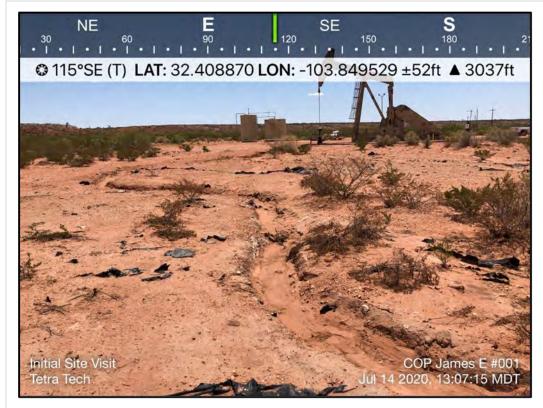
	Page 26 of 27	9
Incident ID	NRM007952227	
District RP		
Facility ID		
Application ID		

Remediation Plan

Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)				
Deferral Requests Only: Each of the following items must be conjugate to the second se	firmed as part of any request for deferral of remediation.			
Contamination must be in areas immediately under or around prodeconstruction.	oduction equipment where remediation could cause a major facility			
Extents of contamination must be fully delineated.				
Contamination does not cause an imminent risk to human health.	the environment, or groundwater.			
I hereby certify that the information given above is true and complete rules and regulations all operators are required to report and/or file complete which may endanger public health or the environment. The acceptar liability should their operations have failed to adequately investigate surface water, human health or the environment. In addition, OCD a responsibility for compliance with any other federal, state, or local later than the printed Name: Sam Widmer	ertain release notifications and perform corrective actions for releases ace of a C-141 report by the OCD does not relieve the operator of and remediate contamination that pose a threat to groundwater, cceptance of a C-141 report does not relieve the operator of			
Signature: Sam Widner	Date: Jul-01-2025			
email:5454CA5BAD33498 Sam.Widmer@conocophillips.com	Telephone: 907-227-1777			
OCD Only				
Received by:	Date:			
Approved Approved with Attached Conditions of A	Approval			
Signature:	Date:			

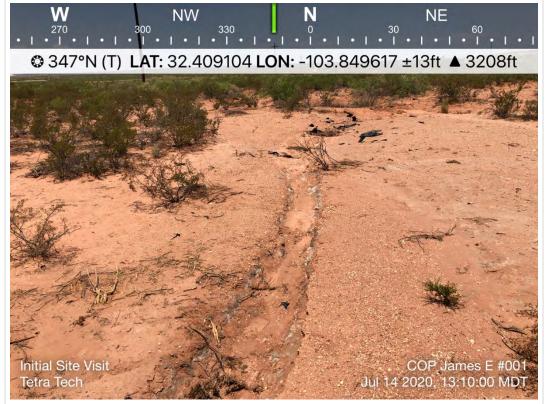

APPENDIX B Photographic Documentation


TETRA TECH, INC. PROJECT NO. 212C-MD-02413	DESCRIPTION	View facing north of the James E #001 signage.	1
	SITE NAME	James E #001 Tubing Line Release	7/14/2020

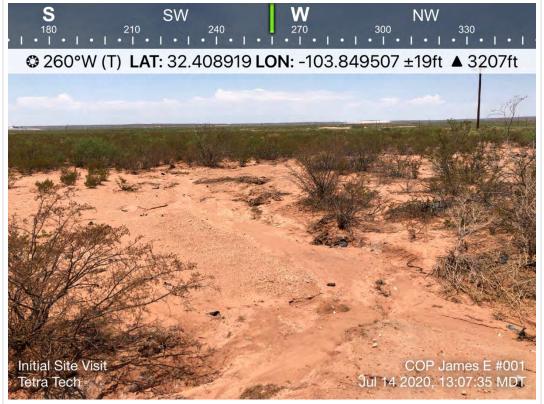

TETRA TECH, INC. PROJECT NO. 212C-MD-02413	DESCRIPTION	View facing southeast of the approximate release point.	2
	SITE NAME	James E #001 Tubing Line Release	7/14/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View facing northeast of the approximate release point, release footprint and associated hand dig/excavation.	3
212C-MD-02413	SITE NAME	James E #001 Tubing Line Release	7/14/2020

TETRA TECH, INC. PROJECT NO. 212C-MD-02413	DESCRIPTION	View facing north of the release footprint and associated hand dig/excavation.	4
	SITE NAME	James E #001 Tubing Line Release	7/14/2020


TETRA TECH, INC. PROJECT NO. 212C-MD-02413	DESCRIPTION	View facing east southeast of release footprint and associated hand dig/excavation.	5
	SITE NAME	James E #001 Tubing Line Release	7/14/2020

TETRA TECH, INC. PROJECT NO. 212C-MD-02413	DESCRIPTION	View facing east of the footprint, and hand dig/excavation.	6
	SITE NAME	James E #001 Tubing Line Release	7/14/2020


TETRA TECH, INC. PROJECT NO. 212C-MD-02413	DESCRIPTION	View facing south southeast of hand dig/excavation.	7
	SITE NAME	James E #001 Tubing Line Release	7/14/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View north of the release footprint and hand dig/excavation.	8
212C-MD-02413	SITE NAME	James E #001 Tubing Line Release	7/14/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View east of the release footprint and hand dig/excavation.	9
212C-MD-02413	SITE NAME	James E #001 Tubing Line Release	7/14/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View west of the release footprint and hand dig/excavation.	10
212C-MD-02413	SITE NAME	James E #001 Tubing Line Release	7/14/2020

APPENDIX C Soil Boring Logs

212C-MD-02413 TETRA TECH						L	OG OF BORING BH-1			Page 1 of 2							
Proje	Project Name: James E #001 Tubing Line Release																
Bore	Borehole Location: GPS: 32.408585°, -103.849342° Surface Elevation: 3209 ft																
Borehole Number: BH-1 Boreh								E	Boreho Diame	ole ter (in.): 8		Date Started: 2/2/2021	Date F	inished	i: 2/2/2021		
	ш		bbm)	(mdd	ERY (%)	TENT (%)	of)		DEX			While Drilling		/ATER LEVEL OBSERVATIO Z Dry ft Upon Completion of E		Ā	Dry_ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	UOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	М	ATE	RIAL DESCRIPTION		DEPTH (ft)	REMARKS
_		M	10000								0 .0	-CALICHE brown SIL odor	- Lig	ght tan, cemented, with occasion SAND (SM), with staining, with n	nal o	_	BH-1 (0-1')
- -		$\left\langle \cdot \right\rangle$	10000								0 0	- SM - SII 1	ΓY S	AND: Light reddish brown, dry,		3	BH-1 (2-3')
5		\bigvee	10000									loose, non	n-cer	nented, with no staining, with no	odor	_	BH-1 (4-5')
- -		M	1200													_ _	BH-1 (6-7')
- -		M										CD CAN	ID	addiala haassa days araint lanna		9	
10_		$\left\langle \cdot \right\rangle$										non-ceme	nted	eddish brown, dry-moist, loose, , with no staining, with no odor		_	BH-1 (9-10')
-		\bigvee														_	
		\mathbb{N}	900													_	BH-1 (14-15')
-		M														_	(- '
- -		$\left\langle \cdot \right\rangle$														_	
20		\bigwedge	1800													_	BH-1 (19-20')
_		M														_	
_		\bigvee															
25		\mathbb{N}	1400														BH-1 (24-25')
Sampler Types: Spoon Acetate Liner Types: Shelby Vane Shear Bulk Sample California Grab Sample Test Pit Operation Types: Continuous Flight Auger Wash Rotary						is er	Hand Auger Air Rotary Direct Push Core Barrel	Note Ana Sur	s: llytical samples are shown in the face elevations are estimated fr	e remar om Goo	ks col	umn above. arth data.					

212C-MD-02413	TE TETRA	TECH	LOG OF BORING BH-1	Page 2 of 2				
Project Name: James E #001 Tubing Line Release								
Borehole Location: GPS: 32.408585°, -103.849342° Surface Elevation: 3209 ft								
Borehole Number: BH-1 Borehole Diameter (in.): 8 Date Started: 2/2/2021 Date Finished: 2/2/2021								
OI:	ppm) ERY (%) ENT (%)	EX	WATER LEVEL OBSERVATIONS While Drilling □ Dry ft Upon Completion of Drilling □ Remarks:	Ory_ft				
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD		DRY DENSITY (pcf) T LIQUID LIMIT D PLASTICITY INDEX MINUS NO. 200 (%)	MATERIAL DESCRIPTION (E) HE HE HE HE HE HE HE HE HE H	REMARKS				
30 16				BH-1 (29-30') BH-1 (34-35') BH-1 (39-40')				
Sampler Types: Spoon Shelby Shelby Sample Sample Grab Sample Test Pit Sample Sample Test Pit Sample Acetate Liner Types: Hand Auger Air Rotary Air Rotary Direct Push Core Barrel Notes: Analytical samples are shown in the remarks column above. Surface elevations are estimated from Google Earth data.								

212C-MD-02413	TE TETRA	TECH	LOG OF BORING BH-2	Page 1 of 1					
Project Name: James E #001 Tubing Line Release									
Borehole Location: GPS: 32.408463°, -103.849091° Surface Elevation: 3209 ft									
Borehole Number:	BH-2	Borel Diam	hole beter (in.): 8 Date Started: 2/2/2021 Date Finished:	2/2/2021					
a (Ma	pm) RY (%) ENT (%)	W W	WATER LEVEL OBSERVATIONS	Ory_ft					
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (ppm)	─ ──	DRY DENSITY (pcf) LIQUID LIMIT PLASTICITY INDEX MINUS NO. 200 (%)	MATERIAL DESCRIPTION (2) HE	REMARKS					
300 - 260 - 260 - 260 - 252			- SM- SILTY SAND: Light reddish brown, dry, loose, non-cemented, with no staining, with no odor	BH-2 (0-1') BH-2 (2-3') BH-2 (4-5')					
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Bottom of borehole at 7.0 feet.						
Sampler Types: Spoin Acetate Liner Types: Shelby Vane Shear Rotary Bulk Sample California Sample Test Pit Core Barrel Sample Test Pit Sample Care Spoon Types: Hand Auger Analytical samples are shown in the remarks column above. Surface elevations are estimated from Google Earth data.									
Logger: Joe Tyler		Drilling Equipment: A	Air Rotany Driller: Scarborough Drilling						

212C-MD-02413	TE TETRATECH		LOG OF BORING BH-3	Page 1 of 1
Project Name: James	E #001 Tubing Line Relea	ıse	1	
Borehole Location: GPS	S: 32.408301°, -103.849411°		Surface Elevation: 3209 ft	
Borehole Number: BH-	-3	Boreh Diame	nole eter (in.): 8 Date Started: 2/2/2021 Date Finished: 2/2/	/2021
(mdd	ERY (%) ENT (%) f)		WATER LEVEL OBSERVATIONS While Drilling □ Dry ft Upon Completion of Drilling □ Dry ft Remarks:	
1 III 0 7	SAMPLE RECOVERY (%) MOISTURE CONTENT (%) DRY DENSITY (pcf) IQUID LIMIT PLASTICITY INDEX	MINUS NO. 200 (%) GRAPHIC LOG	MATERIAL DESCRIPTION (a) He did not be a considered as a con	EMARKS
100 -			-CALICHE- Light tan, cemented, with occasional brown SILTY SAND (SM), with staining, with no odor BH-3 (6	2-3') 4-5')
			Bottom of borehole at 7.0 feet.	
Sampler Split Spoon Shelby	Acetate Liner	ary 🔼	Hand Auger Notes: Analytical samples are shown in the remarks column at Surface elevations are estimated from Google Earth da	pove.
Bulk Sample M Grab Sample	California Test Pit Cont Fligh Rota		Direct Push Core Barrel	

212C-MD-02413	TE TETRAT	TECH	LOG OF BORING BH-4	Page 1 of 1
Project Name: Ja	ı ames E #001 Tubing	g Line Release		
Borehole Location:	GPS: 32.408431°, -	-103.849773°	Surface Elevation: 3209 ft	
Borehole Number:	BH-4	Borel Diam	hole heter (in.): 8 Date Started: 2/2/2021 Date Finished:	2/2/2021
Q (Wd	pm) RY (%) ENT (%)	W W	WATER LEVEL OBSERVATIONS	Ory_ft
DEPTH (ft) OPERATION TYPE SAMPLE THE CHLORIDE FIELD SCREENING (ppm)		DRY DENSITY (pd) LIQUID LIMIT DRASTICITY INDEX MINUS NO. 200 (%)		REMARKS
- 690 - 1000 5			-SM- SILTY SAND: Light reddish brown, dry, loose, non-cemented, with no staining, with no odor	BH-4 (0-1') BH-4 (2-3') BH-4 (4-5')
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Bottom of borehole at 7.0 feet.	
Sampler Split Types: Spo She Bulk Sam Gral	by Vane Shear California	Operation Types: Mud Rotary Continuous Flight Auger Wash Rotary	Hand Auger Air Rotary Direct Push Core Barrel Notes: Analytical samples are shown in the remarks colus surface elevations are estimated from Google Ea	mn above. rth data.
Logger: Joe Tyler		Drilling Equipment: A	Air Rotany Driller: Scarborough Drilling	

APPENDIX D Laboratory Analytical Data

Ss

Cn

Sr

Qc

Gl

Al

Sc

ANALYTICAL REPORT

February 15, 2021

ConocoPhillips - Tetra Tech

Sample Delivery Group: L1315214

Samples Received: 02/09/2021

Project Number: 212-MD-02413

Description: James E #001 Tubing Line Release

Site: LEA COUNTY, NM

Report To: Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Chris McCord
Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

PROJECT:

212-MD-02413

12065 Lebanon Rd Mount Juliet, TN 37122

615-758-5858

800-767-5859

www.pacenational.com

SDG: L1315214

DATE/TIME:

02/15/21 17:32

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	8
Sr: Sample Results	9
BH-1 (0-1) L1315214-01	9
BH-1 (2-3) L1315214-02	10
BH-1 (4-5) L1315214-03	11
BH-1 (6-7) L1315214-04	12
BH-1 (9-10) L1315214-05	13
BH-1 (14-15) L1315214-06	14
BH-1 (19-20) L1315214-07	15
BH-1 (24-25) L1315214-08	16
BH-1 (29-30) L1315214-09	17
BH-1 (34-35) L1315214-10	18
BH-1 (39-40) L1315214-11	19
BH-1 (44-45) L1315214-12	20
BH-2 (0-1) L1315214-13	21
BH-2 (2-3) L1315214-14	22
BH-2 (4-5) L1315214-15	23
BH-2 (6-7) L1315214-16	24
BH-3 (0-1) L1315214-17	25
BH-3 (2-3) L1315214-18	26
BH-3 (4-5) L1315214-19	27
BH-3 (6-7) L1315214-20	28
BH-4 (0-1) L1315214-21	29
BH-4 (2-3) L1315214-22	30
BH-4 (4-5) L1315214-23	31
BH-4 (6-7) L1315214-24	32
Qc: Quality Control Summary	33
Total Solids by Method 2540 G-2011	33
Wet Chemistry by Method 300.0	37
Volatile Organic Compounds (GC) by Method 8015D/GRO	39
Volatile Organic Compounds (GC/MS) by Method 8260B	42
Semi-Volatile Organic Compounds (GC) by Method 8015	44
GI: Glossary of Terms	48
Al: Accreditations & Locations	49
Sc: Sample Chain of Custody	50

5114/0 10 14045044 04 0 14 1			Collected by Joe Tyler	Collected date/time 02/02/21 10:00	Received da 02/09/21 08	
BH-1 (0-1) L1315214-01 Solid			Jue Tylei	02/02/21 10:00	02/09/21 00	.13
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1619462	1	02/11/21 15:43	02/11/21 15:58	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1619602	20	02/11/21 14:54	02/12/21 01:27	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1619141	1	02/09/21 16:04	02/12/21 03:12	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1618956	1	02/09/21 16:04	02/09/21 22:26	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1620089	10	02/12/21 06:18	02/12/21 19:48	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-1 (2-3) L1315214-02 Solid			Joe Tyler	02/02/21 10:10	02/09/21 08	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1619462	1	02/11/21 15:43	02/11/21 15:58	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1619602	20	02/11/21 14:54	02/12/21 01:36	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1619141	1	02/09/21 16:04	02/12/21 03:34	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1618956	1	02/09/21 16:04	02/09/21 22:45	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1620091	10	02/12/21 16:32	02/13/21 04:36	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-1 (4-5) L1315214-03 Solid			Joe Tyler	02/02/21 10:20	02/09/21 08	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1619463	1	02/11/21 13:24	02/11/21 13:30	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1619602	10	02/11/21 14:54	02/12/21 01:46	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1619141	1	02/09/21 16:04	02/12/21 03:56	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1618956	2	02/09/21 16:04	02/09/21 23:04	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1620091	1	02/12/21 16:32	02/13/21 03:56	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-1 (6-7) L1315214-04 Solid			Joe Tyler	02/02/21 10:30	02/09/21 08	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1619463	1	02/11/21 13:24	02/11/21 13:30	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1619602	5	02/11/21 14:54	02/12/21 01:55	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1619141	1	02/09/21 16:04	02/12/21 04:18	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1618956	1	02/09/21 16:04	02/09/21 23:23	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1620091	1	02/12/21 16:32	02/13/21 02:35	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-1 (9-10) L1315214-05 Solid			Joe Tyler	02/02/21 10:40	02/09/21 08	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1619463	1	02/11/21 13:24	02/11/21 13:30	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1619602	1	02/11/21 14:54	02/12/21 02:05	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1619874	1	02/09/21 16:04	02/11/21 13:30	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1618956	1	02/09/21 16:04	02/09/21 23:42	AV	Mt. Juliet, TN
0 11/1 11 0 1 0 1 0 1 1001 11 11 1007		_				

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1620091

02/12/21 16:32

02/13/21 02:21

JDG

SAMPLE SUMMARY

			Collected by Joe Tyler	Collected date/time 02/02/21 10:50	Received da 02/09/21 08	
BH-1 (14-15) L1315214-06 Solid			Jue Tylei	02/02/21 10.50	02/03/21 06	. ເວ
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
T. 10 11 1 14 11 10510 0 001	11104040 400		date/time	date/time	L/DIII/	
Total Solids by Method 2540 G-2011	WG1619463	1	02/11/21 13:24	02/11/21 13:30	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1619602	5	02/11/21 14:54	02/12/21 02:34	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1619874 WG1618956	1.01	02/09/21 16:04	02/11/21 13:52	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1620091	1 1	02/09/21 16:04 02/12/21 16:32	02/10/21 00:01 02/13/21 02:48	AV JDG	Mt. Juliet, TN Mt. Juliet, TN
Semi-volatile Organic Compounds (GC) by Method 8015	WG1020091	'	02/12/21 10.32	02/13/21 02.40	300	Mit. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-1 (19-20) L1315214-07 Solid			Joe Tyler	02/02/21 11:00	02/09/21 08	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1619463	1	02/11/21 13:24	02/11/21 13:30	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1621055	5	02/13/21 14:39	02/13/21 21:18	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1619874	1	02/09/21 16:04	02/11/21 14:14	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1618956	1	02/09/21 16:04	02/10/21 00:20	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1620945	1	02/12/21 23:11	02/13/21 16:50	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-1 (24-25) L1315214-08 Solid			Joe Tyler	02/02/21 11:20	02/09/21 08	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1619463	1	02/11/21 13:24	02/11/21 13:30	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1621055	5	02/13/21 14:39	02/13/21 21:46	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1619874	1	02/09/21 16:04	02/11/21 14:36	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1618956	1	02/09/21 16:04	02/10/21 00:38	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1620945	1	02/12/21 23:11	02/13/21 17:03	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-1 (29-30) L1315214-09 Solid			Joe Tyler	02/02/21 11:40	02/09/21 08	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1619463	1	02/11/21 13:24	02/11/21 13:30	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1621055	5	02/13/21 14:39	02/13/21 22:05	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1619874	1	02/09/21 16:04	02/11/21 14:58	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1618956	1	02/09/21 16:04	02/10/21 00:57	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1620093	1	02/12/21 07:45	02/12/21 21:09	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-1 (34-35) L1315214-10 Solid			Joe Tyler	02/02/21 12:00	02/09/21 08	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1619463	1	02/11/21 13:24	02/11/21 13:30	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1621055	5	02/13/21 14:39	02/13/21 22:14	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1619874	1	02/09/21 16:04	02/11/21 15:20	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1618956	1	02/09/21 16:04	02/10/21 01:16	AV	Mt. Juliet, TN

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1620093

02/12/21 07:45

02/12/21 21:22

JDG

					D	
DILL (00 40) 1404504444 0 111			Collected by Joe Tyler	Collected date/time 02/02/21 12:20	Received da 02/09/21 08	
BH-1 (39-40) L1315214-11 Solid			Joe Tylei	02/02/21 12.20	02/03/2100	.13
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1619463	1	02/11/21 13:24	02/11/21 13:30	KDW	Mt. Juliet, T
Wet Chemistry by Method 300.0	WG1621055	5	02/13/21 14:39	02/13/21 22:24	MCG	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1619874	1	02/09/21 16:04	02/11/21 15:42	BMB	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1618956	1	02/09/21 16:04	02/10/21 01:35	AV	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1620093	1	02/12/21 07:45	02/12/21 21:35	JDG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
BH-1 (44-45) L1315214-12 Solid			Joe Tyler	02/02/21 12:40	02/09/21 08	:15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1619463	1	02/11/21 13:24	02/11/21 13:30	KDW	Mt. Juliet, T
Net Chemistry by Method 300.0	WG1621055	1	02/13/21 14:39	02/13/21 22:52	MCG	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1619874	1	02/09/21 16:04	02/11/21 16:04	BMB	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1618956	1	02/09/21 16:04	02/10/21 01:54	AV	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1620093	1	02/12/21 07:45	02/12/21 21:49	JDG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	ite/time
BH-2 (0-1) L1315214-13 Solid			Joe Tyler	02/02/21 13:00	02/09/21 08	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1619464	1	02/11/21 13:16	02/11/21 13:22	KDW	Mt. Juliet, T
Net Chemistry by Method 300.0	WG1621055	1	02/13/21 14:39	02/13/21 23:02	MCG	Mt. Juliet, 1
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1619874	1.01	02/09/21 16:04	02/11/21 16:27	BMB	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1618956	1	02/09/21 16:04	02/10/21 02:13	AV	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1620093	1	02/12/21 07:45	02/12/21 22:02	JDG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
BH-2 (2-3) L1315214-14 Solid			Joe Tyler	02/02/21 13:10	02/09/21 08	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1619464	1	02/11/21 13:16	02/11/21 13:22	KDW	Mt. Juliet, T
Net Chemistry by Method 300.0	WG1621055	1	02/13/21 14:39	02/13/21 23:11	MCG	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1619874	1	02/09/21 16:04	02/11/21 16:49	BMB	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1618956	1	02/09/21 16:04	02/10/21 02:32	AV	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1620093	1	02/12/21 07:45	02/12/21 22:15	JDG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
BH-2 (4-5) L1315214-15 Solid			Joe Tyler	02/02/21 13:20	02/09/21 08	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Total Solids by Mothod 2540 C 2011	WC1C10.4.C.4	1	date/time	date/time	NDM	M+ holiat T
Total Solids by Method 2540 G-2011	WG1619464	1	02/11/21 13:16	02/11/21 13:22	KDW	Mt. Juliet, T
Wet Chemistry by Method 300.0	WG1621055	1	02/13/21 14:39	02/13/21 23:21	MCG	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1619874	1	02/09/21 16:04	02/11/21 17:14	BMB	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1618956	1	02/09/21 16:04	02/10/21 02:51	AV	Mt. Juliet, T

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1620093

02/12/21 07:45

02/12/21 22:29

JDG

	07 (1111 22)	3 0 11111	,,,,,,,,			
BH-2 (6-7) L1315214-16 Solid			Collected by Joe Tyler	Collected date/time 02/02/21 13:30	Received da 02/09/21 08	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Metriod	batcii	Dilution	date/time	date/time	Allalyst	Location
Total Solids by Method 2540 G-2011	WG1619464	1	02/11/21 13:16	02/11/21 13:22	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1621055	1	02/13/21 14:39	02/13/21 23:30	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1620406	1	02/09/21 16:04	02/13/21 23:30	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1620400 WG1618956	1	02/09/21 16:04	02/10/21 03:10	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1620093	1	02/12/21 07:45	02/12/21 22:42	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
BH-3 (0-1) L1315214-17 Solid			Joe Tyler	02/02/21 14:00	02/09/21 08	.10
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1619464	1	02/11/21 13:16	02/11/21 13:22	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1621055	1	02/13/21 14:39	02/13/21 23:40	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1620406	1	02/09/21 16:04	02/12/21 03:34	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1618956	1	02/09/21 16:04	02/10/21 03:29	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1620093	1	02/12/21 07:45	02/12/21 22:55	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-3 (2-3) L1315214-18 Solid			Joe Tyler	02/02/21 14:10	02/09/21 08	:15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1619464	1	02/11/21 13:16	02/11/21 13:22	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1621055	1	02/13/21 14:39	02/13/21 23:49	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1620406	1	02/09/21 16:04	02/12/21 03:55	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1619010	1	02/09/21 16:04	02/10/21 02:46	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1620093	1	02/12/21 07:45	02/12/21 23:09	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-3 (4-5) L1315214-19 Solid			Joe Tyler	02/02/21 14:20	02/09/21 08	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,	
Total Solids by Method 2540 G-2011	WG1619464	1	02/11/21 13:16	02/11/21 13:22	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1621055	1	02/13/21 14:39	02/13/21 23:59	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1620406	1	02/09/21 16:04	02/12/21 04:16	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1619010	1	02/09/21 16:04	02/10/21 03:05	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1620093	1	02/12/21 07:45	02/12/21 23:22	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-3 (6-7) L1315214-20 Solid			Joe Tyler	02/02/21 14:30	02/09/21 08	:15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1619464	1	02/11/21 13:16	02/11/21 13:22	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1621055	1	02/13/21 14:39	02/14/21 00:08	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1620406	1	02/09/21 16:04	02/12/21 04:37	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1620400 WG1619010	1	02/09/21 16:04	02/10/21 03:24	JHH	Mt. Juliet, TN
Comit Veletile Overenia Compounds (CC) by Method 2005	WC1C10001	1	02/03/21 10:04	02/10/21 03.24	JIIII	Mt. Juliet, TN

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1620093

02/12/21 07:45

02/12/21 23:35

JDG

			Collected by	Collected date/time		
BH-4 (0-1) L1315214-21 Solid			Joe Tyler	02/02/21 15:00	02/09/21 08	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1619464	1	02/11/21 13:16	02/11/21 13:22	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1621055	5	02/13/21 14:39	02/14/21 00:18	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1620406	1	02/09/21 16:04	02/12/21 04:58	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1619010	1	02/09/21 16:04	02/10/21 03:43	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1620093	1	02/12/21 07:45	02/12/21 23:49	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-4 (2-3) L1315214-22 Solid			Joe Tyler	02/02/21 15:10	02/09/21 08	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1619464	1	02/11/21 13:16	02/11/21 13:22	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1621055	5	02/13/21 14:39	02/14/21 00:47	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1620406	1	02/09/21 16:04	02/12/21 05:19	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1619010	1	02/09/21 16:04	02/10/21 04:02	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1620093	1	02/12/21 07:45	02/13/21 00:29	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-4 (4-5) L1315214-23 Solid			Joe Tyler	02/02/21 15:20	02/09/21 08	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1619478	1	02/11/21 12:41	02/11/21 12:49	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1621055	5	02/13/21 14:39	02/14/21 00:56	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1620406	1	02/09/21 16:04	02/12/21 05:39	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1619010	1	02/09/21 16:04	02/10/21 04:21	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1620093	1	02/12/21 07:45	02/13/21 00:42	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-4 (6-7) L1315214-24 Solid			Joe Tyler	02/02/21 15:30	02/09/21 08	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1619478	1	02/11/21 12:41	02/11/21 12:49	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1621055	5	02/13/21 14:39	02/14/21 01:06	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1620406	1	02/09/21 16:04	02/12/21 06:00	JHH	Mt. Juliet, TN

WG1619010

WG1620093

1

1

02/09/21 16:04

02/12/21 07:45

02/10/21 04:40

02/13/21 00:55

JHH

JDG

Mt. Juliet, TN

Mt. Juliet, TN

Volatile Organic Compounds (GC/MS) by Method 8260B

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

3 _

Chris McCord Project Manager

ONE LAB. NAT Page 48 of 279

Collected date/time: 02/02/21 10:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	91.8		1	02/11/2021 15:58	WG1619462

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	12800		201	436	20	02/12/2021 01:27	WG1619602

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0236	0.109	1	02/12/2021 03:12	WG1619141
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-120		02/12/2021 03:12	WG1619141

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

3	- 1	(/ - /	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000551	0.00118	1	02/09/2021 22:26	WG1618956
Toluene	U		0.00153	0.00590	1	02/09/2021 22:26	WG1618956
Ethylbenzene	U		0.000869	0.00295	1	02/09/2021 22:26	WG1618956
Total Xylenes	0.00142	<u>J</u>	0.00104	0.00767	1	02/09/2021 22:26	WG1618956
(S) Toluene-d8	96.3			<i>75.0-131</i>		02/09/2021 22:26	WG1618956
(S) 4-Bromofluorobenzene	101			67.0-138		02/09/2021 22:26	WG1618956
(S) 1,2-Dichloroethane-d4	90.9			70.0-130		02/09/2021 22:26	WG1618956

Sc

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	820		17.5	43.6	10	02/12/2021 19:48	WG1620089
C28-C40 Oil Range	1590		2.99	43.6	10	02/12/2021 19:48	WG1620089
(S) o-Terphenyl	45.7			18.0-148		02/12/2021 19:48	WG1620089

ConocoPhillips - Tetra Tech

ONE LAB. NATRAGE 49 of 279

Collected date/time: 02/02/21 10:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.1		1	02/11/2021 15:58	WG1619462

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	7750		200	434	20	02/12/2021 01:36	WG1619602

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0236	0.109	1	02/12/2021 03:34	WG1619141
(S) a,a,a-Trifluorotoluene(FID)	115			77.0-120		02/12/2021 03:34	WG1619141

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

•		, ,	•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000548	0.00117	1	02/09/2021 22:45	WG1618956
Toluene	U		0.00152	0.00586	1	02/09/2021 22:45	WG1618956
Ethylbenzene	U		0.000864	0.00293	1	02/09/2021 22:45	WG1618956
Total Xylenes	U		0.00103	0.00762	1	02/09/2021 22:45	WG1618956
(S) Toluene-d8	95.8			<i>75.0-131</i>		02/09/2021 22:45	WG1618956
(S) 4-Bromofluorobenzene	100			67.0-138		02/09/2021 22:45	WG1618956
(S) 1,2-Dichloroethane-d4	91.8			70.0-130		02/09/2021 22:45	WG1618956

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1440		17.5	43.4	10	02/13/2021 04:36	WG1620091
C28-C40 Oil Range	1730		2.98	43.4	10	02/13/2021 04:36	WG1620091
(S) o-Terphenyl	85.3			18.0-148		02/13/2021 04:36	WG1620091

ConocoPhillips - Tetra Tech

ONE LAB. NATRAGE 50 of 279

Collected date/time: 02/02/21 10:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	87.1		1	02/11/2021 13:30	WG1619463

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1970		106	230	10	02/12/2021 01:46	WG1619602

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0249	0.115	1	02/12/2021 03:56	WG1619141
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		02/12/2021 03:56	WG1619141

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.00114	0.00244	2	02/09/2021 23:04	WG1618956
Toluene	U		0.00318	0.0122	2	02/09/2021 23:04	WG1618956
Ethylbenzene	U		0.00180	0.00611	2	02/09/2021 23:04	WG1618956
Total Xylenes	U		0.00215	0.0159	2	02/09/2021 23:04	WG1618956
(S) Toluene-d8	95.4			75.0-131		02/09/2021 23:04	WG1618956
(S) 4-Bromofluorobenzene	101			67.0-138		02/09/2021 23:04	WG1618956
(S) 1,2-Dichloroethane-d4	94.8			70.0-130		02/09/2021 23:04	WG1618956

	<u> </u>	` '	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	28.7		1.85	4.59	1	02/13/2021 03:56	WG1620091
C28-C40 Oil Range	32.9		0.315	4.59	1	02/13/2021 03:56	WG1620091
(S) o-Terphenyl	64.7			18.0-148		02/13/2021 03:56	WG1620091

ONE LAB. NAT Page 51 of 279

Collected date/time: 02/02/21 10:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	93.6		1	02/11/2021 13:30	WG1619463

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	833		49.2	107	5	02/12/2021 01:55	WG1619602

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0232	0.107	1	02/12/2021 04:18	WG1619141
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		02/12/2021 04:18	WG1619141

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000531	0.00114	1	02/09/2021 23:23	WG1618956
Toluene	U		0.00148	0.00568	1	02/09/2021 23:23	WG1618956
Ethylbenzene	U		0.000838	0.00284	1	02/09/2021 23:23	WG1618956
Total Xylenes	U		0.00100	0.00739	1	02/09/2021 23:23	WG1618956
(S) Toluene-d8	94.3			75.0-131		02/09/2021 23:23	WG1618956
(S) 4-Bromofluorobenzene	101			67.0-138		02/09/2021 23:23	WG1618956
(S) 1,2-Dichloroethane-d4	93.4			70.0-130		02/09/2021 23:23	WG1618956

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.92	<u>J</u>	1.72	4.27	1	02/13/2021 02:35	WG1620091
C28-C40 Oil Range	1.74	<u>B J</u>	0.293	4.27	1	02/13/2021 02:35	WG1620091
(S) o-Terphenyl	56.8			18.0-148		02/13/2021 02:35	WG1620091

ONE LAB. NATRAGE 52 of 279

Collected date/time: 02/02/21 10:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	90.9		1	02/11/2021 13:30	WG1619463

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	800		10.1	22.0	1	02/12/2021 02:05	WG1619602

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0239	0.110	1	02/11/2021 13:30	WG1619874
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		02/11/2021 13:30	WG1619874

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•		, ,	•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000561	0.00120	1	02/09/2021 23:42	WG1618956
Toluene	U		0.00156	0.00601	1	02/09/2021 23:42	WG1618956
Ethylbenzene	U		0.000885	0.00300	1	02/09/2021 23:42	WG1618956
Total Xylenes	U		0.00106	0.00781	1	02/09/2021 23:42	WG1618956
(S) Toluene-d8	93.9			75.0-131		02/09/2021 23:42	WG1618956
(S) 4-Bromofluorobenzene	101			67.0-138		02/09/2021 23:42	WG1618956
(S) 1,2-Dichloroethane-d4	96.7			70.0-130		02/09/2021 23:42	WG1618956

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.81	<u>J</u>	1.77	4.40	1	02/13/2021 02:21	WG1620091
C28-C40 Oil Range	4.09	BJ	0.302	4.40	1	02/13/2021 02:21	WG1620091
(S) o-Terphenyl	65.9			18.0-148		02/13/2021 02:21	WG1620091

ONE LAB. NAT Paga 53 of 279

Collected date/time: 02/02/21 10:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.9		1	02/11/2021 13:30	WG1619463

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	955		49.5	108	5	02/12/2021 02:34	WG1619602

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0236	0.109	1.01	02/11/2021 13:52	WG1619874
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		02/11/2021 13:52	WG1619874

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000539	0.00115	1	02/10/2021 00:01	WG1618956
Toluene	U		0.00150	0.00577	1	02/10/2021 00:01	WG1618956
Ethylbenzene	U		0.000850	0.00288	1	02/10/2021 00:01	WG1618956
Total Xylenes	U		0.00102	0.00750	1	02/10/2021 00:01	WG1618956
(S) Toluene-d8	95.0			75.0-131		02/10/2021 00:01	WG1618956
(S) 4-Bromofluorobenzene	99.9			67.0-138		02/10/2021 00:01	WG1618956
(S) 1,2-Dichloroethane-d4	96.9			70.0-130		02/10/2021 00:01	WG1618956

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.73	4.31	1	02/13/2021 02:48	WG1620091
C28-C40 Oil Range	U		0.295	4.31	1	02/13/2021 02:48	WG1620091
(S) o-Terphenyl	51.8			18.0-148		02/13/2021 02:48	WG1620091

ONE LAB. NAT Page 54 of 279

Collected date/time: 02/02/21 11:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.2		1	02/11/2021 13:30	<u>WG1619463</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	2120	<u>J6</u>	49.9	109	5	02/13/2021 21:18	WG1621055

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0235	0.109	1	02/11/2021 14:14	WG1619874
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120		02/11/2021 14:14	WG1619874

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000547	0.00117	1	02/10/2021 00:20	WG1618956
Toluene	U		0.00152	0.00585	1	02/10/2021 00:20	WG1618956
Ethylbenzene	U		0.000863	0.00293	1	02/10/2021 00:20	WG1618956
Total Xylenes	U		0.00103	0.00761	1	02/10/2021 00:20	WG1618956
(S) Toluene-d8	94.9			75.0-131		02/10/2021 00:20	WG1618956
(S) 4-Bromofluorobenzene	99.4			67.0-138		02/10/2021 00:20	WG1618956
(S) 1,2-Dichloroethane-d4	92.6			70.0-130		02/10/2021 00:20	WG1618956

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.36		1.75	4.34	1	02/13/2021 16:50	WG1620945
C28-C40 Oil Range	5.46		0.297	4.34	1	02/13/2021 16:50	WG1620945
(S) o-Terphenvl	72.9			18.0-148		02/13/2021 16:50	WG1620945

ONE LAB. NATRAGASS of 279

Collected date/time: 02/02/21 11:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	93.4		1	02/11/2021 13:30	WG1619463

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1640		49.3	107	5	02/13/2021 21:46	WG1621055

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0232	0.107	1	02/11/2021 14:36	WG1619874
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		02/11/2021 14:36	WG1619874

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•		· · ·					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000533	0.00114	1	02/10/2021 00:38	WG1618956
Toluene	U		0.00148	0.00571	1	02/10/2021 00:38	WG1618956
Ethylbenzene	U		0.000842	0.00285	1	02/10/2021 00:38	WG1618956
Total Xylenes	U		0.00100	0.00742	1	02/10/2021 00:38	WG1618956
(S) Toluene-d8	96.2			<i>75.0-131</i>		02/10/2021 00:38	WG1618956
(S) 4-Bromofluorobenzene	99.9			67.0-138		02/10/2021 00:38	WG1618956
(S) 1,2-Dichloroethane-d4	90.3			70.0-130		02/10/2021 00:38	WG1618956

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.34		1.72	4.28	1	02/13/2021 17:03	WG1620945
C28-C40 Oil Range	6.03		0.293	4.28	1	02/13/2021 17:03	WG1620945
(S) o-Terphenyl	85.5			18.0-148		02/13/2021 17:03	WG1620945

ONE LAB. NAT Page 56 of 279

Collected date/time: 02/02/21 11:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	85.9		1	02/11/2021 13:30	WG1619463

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1730		53.5	116	5	02/13/2021 22:05	WG1621055

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0252	0.116	1	02/11/2021 14:58	WG1619874
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		02/11/2021 14:58	<u>WG1619874</u>

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

ŭ		·	•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000620	0.00133	1	02/10/2021 00:57	WG1618956
Toluene	U		0.00173	0.00664	1	02/10/2021 00:57	WG1618956
Ethylbenzene	U		0.000978	0.00332	1	02/10/2021 00:57	WG1618956
Total Xylenes	U		0.00117	0.00863	1	02/10/2021 00:57	WG1618956
(S) Toluene-d8	96.5			<i>75.0-131</i>		02/10/2021 00:57	WG1618956
(S) 4-Bromofluorobenzene	100			67.0-138		02/10/2021 00:57	WG1618956
(S) 1,2-Dichloroethane-d4	90.2			70.0-130		02/10/2021 00:57	WG1618956

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.43	<u>J</u>	1.87	4.65	1	02/12/2021 21:09	WG1620093
C28-C40 Oil Range	5.38		0.319	4.65	1	02/12/2021 21:09	WG1620093
(S) o-Terphenyl	81.5			18.0-148		02/12/2021 21:09	WG1620093

ONE LAB. NAT Page 57. of 279

Collected date/time: 02/02/21 12:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	88.8		1	02/11/2021 13:30	WG1619463

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1190		51.8	113	5	02/13/2021 22:14	WG1621055

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0244	0.113	1	02/11/2021 15:20	WG1619874
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		02/11/2021 15:20	<u>WG1619874</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•		, ,	•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000585	0.00125	1	02/10/2021 01:16	WG1618956
Toluene	U		0.00163	0.00626	1	02/10/2021 01:16	WG1618956
Ethylbenzene	U		0.000923	0.00313	1	02/10/2021 01:16	WG1618956
Total Xylenes	U		0.00110	0.00814	1	02/10/2021 01:16	WG1618956
(S) Toluene-d8	96.8			75.0-131		02/10/2021 01:16	WG1618956
(S) 4-Bromofluorobenzene	101			67.0-138		02/10/2021 01:16	WG1618956
(S) 1,2-Dichloroethane-d4	95.9			70.0-130		02/10/2021 01:16	WG1618956

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.81	4.50	1	02/12/2021 21:22	WG1620093
C28-C40 Oil Range	3.64	<u>J</u>	0.308	4.50	1	02/12/2021 21:22	WG1620093
(S) o-Terphenyl	86.0			18.0-148		02/12/2021 21:22	WG1620093

ConocoPhillips - Tetra Tech

ONE LAB. NAT Page 58 of 279

Collected date/time: 02/02/21 12:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.6		1	02/11/2021 13:30	<u>WG1619463</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	931		50.8	110	5	02/13/2021 22:24	WG1621055

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0239	0.110	1	02/11/2021 15:42	WG1619874
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120		02/11/2021 15:42	WG1619874

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

ŭ		·					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000564	0.00121	1	02/10/2021 01:35	WG1618956
Toluene	U		0.00157	0.00604	1	02/10/2021 01:35	WG1618956
Ethylbenzene	U		0.000890	0.00302	1	02/10/2021 01:35	WG1618956
Total Xylenes	U		0.00106	0.00785	1	02/10/2021 01:35	WG1618956
(S) Toluene-d8	96.5			75.0-131		02/10/2021 01:35	WG1618956
(S) 4-Bromofluorobenzene	99.7			67.0-138		02/10/2021 01:35	WG1618956
(S) 1,2-Dichloroethane-d4	89.6			70.0-130		02/10/2021 01:35	WG1618956

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.78	4.41	1	02/12/2021 21:35	WG1620093
C28-C40 Oil Range	0.409	<u>J</u>	0.302	4.41	1	02/12/2021 21:35	WG1620093
(S) o-Terphenyl	79.3			18.0-148		02/12/2021 21:35	WG1620093

ONE LAB. NAT Page 52 of 279

Collected date/time: 02/02/21 12:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.7		1	02/11/2021 13:30	WG1619463

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	199		9.72	21.1	1	02/13/2021 22:52	WG1621055

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0229	0.106	1	02/11/2021 16:04	WG1619874
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120		02/11/2021 16:04	WG1619874

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•		, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000520	0.00111	1	02/10/2021 01:54	WG1618956
Toluene	U		0.00145	0.00556	1	02/10/2021 01:54	WG1618956
Ethylbenzene	U		0.000820	0.00278	1	02/10/2021 01:54	WG1618956
Total Xylenes	U		0.000979	0.00723	1	02/10/2021 01:54	WG1618956
(S) Toluene-d8	97.4			75.0-131		02/10/2021 01:54	WG1618956
(S) 4-Bromofluorobenzene	98.4			67.0-138		02/10/2021 01:54	WG1618956
(S) 1,2-Dichloroethane-d4	91.3			70.0-130		02/10/2021 01:54	WG1618956

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.23	1	02/12/2021 21:49	WG1620093
C28-C40 Oil Range	U		0.289	4.23	1	02/12/2021 21:49	WG1620093
(S) o-Terphenyl	69.8			18.0-148		02/12/2021 21:49	WG1620093

ONE LAB. NAT Page 60 of 279

Collected date/time: 02/02/21 13:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.4		1	02/11/2021 13:22	WG1619464

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	275		9.45	20.5	1	02/13/2021 23:02	WG1621055

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1.01	02/11/2021 16:27	WG1619874
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120		02/11/2021 16:27	<u>WG1619874</u>

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	1 \		<u>′</u>				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000492	0.00105	1	02/10/2021 02:13	WG1618956
Toluene	U		0.00137	0.00527	1	02/10/2021 02:13	WG1618956
Ethylbenzene	U		0.000777	0.00264	1	02/10/2021 02:13	WG1618956
Total Xylenes	U		0.000928	0.00685	1	02/10/2021 02:13	WG1618956
(S) Toluene-d8	97.6			<i>75.0-131</i>		02/10/2021 02:13	WG1618956
(S) 4-Bromofluorobenzene	97.9			67.0-138		02/10/2021 02:13	WG1618956
(S) 1,2-Dichloroethane-d4	91.6			70.0-130		02/10/2021 02:13	WG1618956

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.33	<u>J</u>	1.65	4.11	1	02/12/2021 22:02	WG1620093
C28-C40 Oil Range	5.55		0.281	4.11	1	02/12/2021 22:02	WG1620093
(S) o-Terphenyl	70.6			18.0-148		02/12/2021 22:02	WG1620093

ConocoPhillips - Tetra Tech

ONE LAB. NAT Page 61 of 279

Collected date/time: 02/02/21 13:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.6		1	02/11/2021 13:22	<u>WG1619464</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	475		9.52	20.7	1	02/13/2021 23:11	WG1621055

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0225	0.103	1	02/11/2021 16:49	WG1619874
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		02/11/2021 16:49	<u>WG1619874</u>

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

•							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000500	0.00107	1	02/10/2021 02:32	WG1618956
Toluene	U		0.00139	0.00535	1	02/10/2021 02:32	WG1618956
Ethylbenzene	U		0.000788	0.00267	1	02/10/2021 02:32	WG1618956
Total Xylenes	U		0.000941	0.00695	1	02/10/2021 02:32	WG1618956
(S) Toluene-d8	98.0			75.0-131		02/10/2021 02:32	WG1618956
(S) 4-Bromofluorobenzene	96.3			67.0-138		02/10/2021 02:32	WG1618956
(S) 1,2-Dichloroethane-d4	91.6			70.0-130		02/10/2021 02:32	WG1618956

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.67	4.14	1	02/12/2021 22:15	WG1620093
C28-C40 Oil Range	2.97	<u>J</u>	0.284	4.14	1	02/12/2021 22:15	WG1620093
(S) o-Terphenyl	85.3			18.0-148		02/12/2021 22:15	WG1620093

ONE LAB. NAT Page 62 of 279

Collected date/time: 02/02/21 13:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.0		1	02/11/2021 13:22	WG1619464

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	590		9.58	20.8	1	02/13/2021 23:21	WG1621055

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	02/11/2021 17:14	WG1619874
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120		02/11/2021 17:14	WG1619874

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	'	, , ,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000505	0.00108	1	02/10/2021 02:51	WG1618956
Toluene	U		0.00141	0.00541	1	02/10/2021 02:51	WG1618956
Ethylbenzene	U		0.000798	0.00271	1	02/10/2021 02:51	WG1618956
Total Xylenes	U		0.000953	0.00704	1	02/10/2021 02:51	WG1618956
(S) Toluene-d8	96.5			<i>75.0-131</i>		02/10/2021 02:51	WG1618956
(S) 4-Bromofluorobenzene	99.1			67.0-138		02/10/2021 02:51	WG1618956
(S) 1,2-Dichloroethane-d4	89.5			70.0-130		02/10/2021 02:51	WG1618956

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.16	1	02/12/2021 22:29	WG1620093
C28-C40 Oil Range	U		0.285	4.16	1	02/12/2021 22:29	WG1620093
(S) o-Terphenyl	90.3			18.0-148		02/12/2021 22:29	WG1620093

ONE LAB. NAT Page 63 of 279

Collected date/time: 02/02/21 13:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.2		1	02/11/2021 13:22	WG1619464

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	622		9.57	20.8	1	02/13/2021 23:30	WG1621055

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	02/12/2021 03:14	WG1620406
(S) a,a,a-Trifluorotoluene(FID)	98.0			77.0-120		02/12/2021 03:14	WG1620406

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000504	0.00108	1	02/10/2021 03:10	WG1618956
Toluene	U		0.00140	0.00540	1	02/10/2021 03:10	WG1618956
Ethylbenzene	U		0.000796	0.00270	1	02/10/2021 03:10	WG1618956
Total Xylenes	U		0.000950	0.00702	1	02/10/2021 03:10	WG1618956
(S) Toluene-d8	95.9			<i>75.0-131</i>		02/10/2021 03:10	WG1618956
(S) 4-Bromofluorobenzene	99.4			67.0-138		02/10/2021 03:10	WG1618956
(S) 1,2-Dichloroethane-d4	90.9			70.0-130		02/10/2021 03:10	WG1618956

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.08	<u>J</u>	1.67	4.16	1	02/12/2021 22:42	WG1620093
C28-C40 Oil Range	2.62	<u>J</u>	0.285	4.16	1	02/12/2021 22:42	WG1620093
(S) o-Terphenyl	79.2			18.0-148		02/12/2021 22:42	WG1620093

ONE LAB. NATRAGE 64 of 279

Collected date/time: 02/02/21 14:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.8		1	02/11/2021 13:22	WG1619464

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	96.9		9.50	20.7	1	02/13/2021 23:40	WG1621055

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	02/12/2021 03:34	WG1620406
(S) a,a,a-Trifluorotoluene(FID)	97.2			77.0-120		02/12/2021 03:34	WG1620406

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000498	0.00107	1	02/10/2021 03:29	WG1618956
Toluene	U		0.00139	0.00533	1	02/10/2021 03:29	WG1618956
Ethylbenzene	U		0.000786	0.00267	1	02/10/2021 03:29	WG1618956
Total Xylenes	U		0.000938	0.00693	1	02/10/2021 03:29	WG1618956
(S) Toluene-d8	97.1			75.0-131		02/10/2021 03:29	WG1618956
(S) 4-Bromofluorobenzene	102			67.0-138		02/10/2021 03:29	WG1618956
(S) 1,2-Dichloroethane-d4	90.4			70.0-130		02/10/2021 03:29	WG1618956

Sc

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.69	<u>J</u>	1.66	4.13	1	02/12/2021 22:55	WG1620093
C28-C40 Oil Range	2.90	<u>J</u>	0.283	4.13	1	02/12/2021 22:55	WG1620093
(S) o-Terphenyl	<i>75.8</i>			18.0-148		02/12/2021 22:55	WG1620093

ONE LAB. NAT Paga 65 of 279

Collected date/time: 02/02/21 14:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.6		1	02/11/2021 13:22	WG1619464

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	86.6		9.73	21.2	1	02/13/2021 23:49	WG1621055

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0229	0.106	1	02/12/2021 03:55	WG1620406
(S) a,a,a-Trifluorotoluene(FID)	97.9			77.0-120		02/12/2021 03:55	WG1620406

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

		•					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000521	0.00112	1	02/10/2021 02:46	WG1619010
Toluene	U		0.00145	0.00558	1	02/10/2021 02:46	WG1619010
Ethylbenzene	U		0.000822	0.00279	1	02/10/2021 02:46	WG1619010
Total Xylenes	U		0.000981	0.00725	1	02/10/2021 02:46	WG1619010
(S) Toluene-d8	96.6			75.0-131		02/10/2021 02:46	WG1619010
(S) 4-Bromofluorobenzene	92.9			67.0-138		02/10/2021 02:46	WG1619010
(S) 1,2-Dichloroethane-d4	89.9			70.0-130		02/10/2021 02:46	WG1619010

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.23	1	02/12/2021 23:09	WG1620093
C28-C40 Oil Range	U		0.290	4.23	1	02/12/2021 23:09	WG1620093
(S) o-Terphenyl	70.9			18.0-148		02/12/2021 23:09	WG1620093

ONE LAB. NAT Page 66 of 279

Collected date/time: 02/02/21 14:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.4		1	02/11/2021 13:22	<u>WG1619464</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	23.2		9.85	21.4	1	02/13/2021 23:59	WG1621055

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0232	0.107	1	02/12/2021 04:16	WG1620406
(S) a,a,a-Trifluorotoluene(FID)	97.4			77.0-120		02/12/2021 04:16	WG1620406

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

· ·		·					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000532	0.00114	1	02/10/2021 03:05	WG1619010
Toluene	U		0.00148	0.00570	1	02/10/2021 03:05	WG1619010
Ethylbenzene	U		0.000840	0.00285	1	02/10/2021 03:05	WG1619010
Total Xylenes	U		0.00100	0.00741	1	02/10/2021 03:05	WG1619010
(S) Toluene-d8	95.1			75.0-131		02/10/2021 03:05	WG1619010
(S) 4-Bromofluorobenzene	92.5			67.0-138		02/10/2021 03:05	WG1619010
(S) 1,2-Dichloroethane-d4	88.6			70.0-130		02/10/2021 03:05	WG1619010

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.72	4.28	1	02/12/2021 23:22	WG1620093
C28-C40 Oil Range	U		0.293	4.28	1	02/12/2021 23:22	WG1620093
(S) o-Terphenyl	76.3			18.0-148		02/12/2021 23:22	WG1620093

ONE LAB. NATRAGE 67. of 279

Collected date/time: 02/02/21 14:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	93.2		1	02/11/2021 13:22	WG1619464

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	51.8		9.87	21.5	1	02/14/2021 00:08	WG1621055

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0233	0.107	1	02/12/2021 04:37	WG1620406
(S) a,a,a-Trifluorotoluene(FID)	97.6			77.0-120		02/12/2021 04:37	WG1620406

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

			•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000535	0.00115	1	02/10/2021 03:24	WG1619010
Toluene	U		0.00149	0.00573	1	02/10/2021 03:24	WG1619010
Ethylbenzene	U		0.000845	0.00287	1	02/10/2021 03:24	WG1619010
Total Xylenes	U		0.00101	0.00745	1	02/10/2021 03:24	WG1619010
(S) Toluene-d8	96.1			75.0-131		02/10/2021 03:24	WG1619010
(S) 4-Bromofluorobenzene	93.1			67.0-138		02/10/2021 03:24	WG1619010
(S) 1,2-Dichloroethane-d4	87.8			70.0-130		02/10/2021 03:24	WG1619010

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.73	4.29	1	02/12/2021 23:35	WG1620093
C28-C40 Oil Range	U		0.294	4.29	1	02/12/2021 23:35	WG1620093
(S) o-Terphenyl	73.4			18.0-148		02/12/2021 23:35	WG1620093

SAMPLE RESULTS - 21 L1315214

ONE LAB. NATRAGE 68 of 279

Collected date/time: 02/02/21 15:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.1		1	02/11/2021 13:22	<u>WG1619464</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	2470		47.9	104	5	02/14/2021 00:18	WG1621055

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	02/12/2021 04:58	WG1620406
(S) a,a,a-Trifluorotoluene(FID)	97.1			77.0-120		02/12/2021 04:58	WG1620406

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	1	, , ,	<u>'</u>				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000505	0.00108	1	02/10/2021 03:43	WG1619010
Toluene	U		0.00141	0.00540	1	02/10/2021 03:43	WG1619010
Ethylbenzene	U		0.000797	0.00270	1	02/10/2021 03:43	WG1619010
Total Xylenes	U		0.000951	0.00703	1	02/10/2021 03:43	WG1619010
(S) Toluene-d8	97.2			75.0-131		02/10/2021 03:43	WG1619010
(S) 4-Bromofluorobenzene	92.6			67.0-138		02/10/2021 03:43	WG1619010
(S) 1,2-Dichloroethane-d4	88.5			70.0-130		02/10/2021 03:43	WG1619010

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.67	4.16	1	02/12/2021 23:49	WG1620093
C28-C40 Oil Range	0.438	<u>J</u>	0.285	4.16	1	02/12/2021 23:49	WG1620093
(S) o-Terphenyl	63.1			18.0-148		02/12/2021 23:49	WG1620093

ONE LAB. NATRAGE 62 of 279

Collected date/time: 02/02/21 15:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.1		1	02/11/2021 13:22	<u>WG1619464</u>

²Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1830		47.9	104	5	02/14/2021 00:47	WG1621055

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	02/12/2021 05:19	WG1620406
(S) a,a,a-Trifluorotoluene(FID)	97.3			77.0-120		02/12/2021 05:19	WG1620406

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

•		•					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000505	0.00108	1	02/10/2021 04:02	WG1619010
Toluene	U		0.00141	0.00541	1	02/10/2021 04:02	WG1619010
Ethylbenzene	U		0.000797	0.00270	1	02/10/2021 04:02	WG1619010
Total Xylenes	U		0.000952	0.00703	1	02/10/2021 04:02	WG1619010
(S) Toluene-d8	96.4			75.0-131		02/10/2021 04:02	WG1619010
(S) 4-Bromofluorobenzene	93.2			67.0-138		02/10/2021 04:02	WG1619010
(S) 1,2-Dichloroethane-d4	87.6			70.0-130		02/10/2021 04:02	WG1619010

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.16	1	02/13/2021 00:29	WG1620093
C28-C40 Oil Range	U		0.285	4.16	1	02/13/2021 00:29	WG1620093
(S) o-Terphenyl	68.5			18.0-148		02/13/2021 00:29	WG1620093

ONE LAB. NAT Page 70 of 279

Collected date/time: 02/02/21 15:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.6		1	02/11/2021 12:49	WG1619478

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1360		48.6	106	5	02/14/2021 00:56	WG1621055

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0229	0.106	1	02/12/2021 05:39	WG1620406
(S) a,a,a-Trifluorotoluene(FID)	97.6			77.0-120		02/12/2021 05:39	WG1620406

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000520	0.00111	1	02/10/2021 04:21	WG1619010
Toluene	U		0.00145	0.00557	1	02/10/2021 04:21	WG1619010
Ethylbenzene	U		0.000821	0.00279	1	02/10/2021 04:21	WG1619010
Total Xylenes	U		0.000981	0.00724	1	02/10/2021 04:21	WG1619010
(S) Toluene-d8	96.1			75.0-131		02/10/2021 04:21	WG1619010
(S) 4-Bromofluorobenzene	93.3			67.0-138		02/10/2021 04:21	WG1619010
(S) 1,2-Dichloroethane-d4	87.0			70.0-130		02/10/2021 04:21	WG1619010

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.23	1	02/13/2021 00:42	WG1620093
C28-C40 Oil Range	U		0.290	4.23	1	02/13/2021 00:42	WG1620093
(S) o-Terphenyl	72.4			18.0-148		02/13/2021 00:42	WG1620093

ONE LAB. NAT Page 71 of 279

Collected date/time: 02/02/21 15:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.4		1	02/11/2021 12:49	WG1619478

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1410		48.7	106	5	02/14/2021 01:06	WG1621055

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	02/12/2021 06:00	WG1620406
(S) a,a,a-Trifluorotoluene(FID)	97.1			77.0-120		02/12/2021 06:00	WG1620406

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	<u>'</u>	, , ,	<u>'</u>				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000522	0.00112	1	02/10/2021 04:40	WG1619010
Toluene	U		0.00145	0.00559	1	02/10/2021 04:40	WG1619010
Ethylbenzene	U		0.000824	0.00280	1	02/10/2021 04:40	WG1619010
Total Xylenes	U		0.000984	0.00727	1	02/10/2021 04:40	WG1619010
(S) Toluene-d8	96.7			75.0-131		02/10/2021 04:40	WG1619010
(S) 4-Bromofluorobenzene	93.0			67.0-138		02/10/2021 04:40	WG1619010
(S) 1,2-Dichloroethane-d4	89.4			70.0-130		02/10/2021 04:40	WG1619010

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.71	4.24	1	02/13/2021 00:55	WG1620093
C28-C40 Oil Range	U		0.290	4.24	1	02/13/2021 00:55	WG1620093
(S) o-Terphenyl	77.4			18.0-148		02/13/2021 00:55	WG1620093

QUALITY CONTROL SUMMARY

ONE LAB. NAT Page 72 of 279

Total Solids by Method 2540 G-2011

L1315214-01,02

Method Blank (MB)

(MB) R3621956-1 0)2/11/21 15:58			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00200			

L1315205-11 Original Sample (OS) • Duplicate (DUP)

•			
(OS) I 1315205-11	02/11/21 15:58 •	(DUP) R3621956-3	02/11/21 15:58
(00) 1010200 11	02/11/21 10.00	(001)1100210000	02/11/21 10.00

(00, 1.0.0200 02, 1, 2	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	84.8	86.5	1	2.01		10

(LCS) R3621956-2 02/11/21 15:58

(LCS) R3621956-2 02/11/21 15:58					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ONE LAB. NATRAGE 73. of 279

Total Solids by Method 2540 G-2011

L1315214-03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

(MB) R3622003-1 02	2/11/21 13:30			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1315214-08 Original Sample (OS) • Duplicate (DUP)

(OS) L1315214-08 02/11/2	[/] 21 13:30 • (DUP) F	3622003-3	J2/11/21 13:	.30		
	Original Result	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	93.4	93.6	1	0.260		10

(LCS) R3622003-2 02/11	/21 13:30				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ONE LAB. NAT Page 74 of 279

L1315214-13,14,15,16,17,18,19,20,21,22

Total Solids by Method 2540 G-2011

Method Blank (MB)

(MB) R3621997-1 (02/11/21 13:22			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

Ss

L1315214-19 Original Sample (OS) • Duplicate (DUP)

	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	93.4	93.3	1	0.139		10

(LCS) R3621997-2 02/11/2	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ONE LAB. NAT Page 75 of 279

Total Solids by Method 2540 G-2011

L1315214-23,24

Method Blank (MB)

(MB) R3621987-1 0)2/11/21 12:49			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00200			

Ss

L1315221-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1315221-01	02/11/21 12:49 •	(DLIP)	R3621987-3	02/11/21 12:49
(03) [1313221-01	02/11/21 12.73	(DOI)	113021307-3	02/11/21 12.73

,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	72.3	78.4	1	8.10		10

[†]Cn

(LCS) R3621987-2 02	2/11/21 12:49
---------------------	---------------

(LCS) R3621987-2 02/11/21	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	99.9	85.0-115	

ONE LAB. NAT Page 76 of 279

Wet Chemistry by Method 300.0

L1315214-01,02,03,04,05,06

20

Method Blank (MB)

Chloride

(MB) R3621915-1 02/11/21	l 19:16			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1314754-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1314754-01 02/11/21 2	23:05 • (DUP) R	3621915-3	02/11/21 23:1	4		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%

13.1

29.9

(OS) L1315663-05 02/12/21 03:21 • (DUP) R3621915-6 02/12/21 03:31

34.1

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	1630	1540	5	5.37		20

(LCS) R3621915-2 02/11/21 19:25

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	194	97.1	90.0-110	

L1315214-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1315214-01 02/12/21 00:58 • (MS) R3621915-4 02/12/21 01:08 • (MSD) R3621915-5 02/12/21 01:17

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	545	13700	15000	14700	254	199	1	80.0-120	EV	<u>E V</u>	2.01	20

ONE LAB. NAT Page 77. of 279

Wet Chemistry by Method 300.0

L1315214-07,08,09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24

Method Blank (MB)

(MB) R3622393-1 02/13/	21 20:23			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1315214-08 Original Sample (OS) • Duplicate (DUP)

(OS) L1315214-08	02/13/21 21:46 • (DUP) R3622393-5 02/13/21 21:55	
	0 : : 10 0 10 0	

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	1640	1690	5	3.02		20

L1315214-24 Original Sample (OS) • Duplicate (DUP)

(OS) | 1315214-24 | 02/14/21 | 01:06 • (DLIP) | P3622393-6 | 02/14/21 | 01:15

(03) [1313214-24 02/14/21]	Original Result (dry)			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	1410	1210	5	15.3		20

Laboratory Control Sample (LCS)

(LCS) R3622393-2 02/13/21 20:33

,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	195	97.7	90.0-110	

L1315214-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1315214-07 02/13/21 21:18 • (MS) R3622393-3 02/13/21 21:27 • (MSD) R3622393-4 02/13/21 21:36

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	109	2120	2590	2520	85.3	72.6	5	80.0-120		<u>J6</u>	2.68	20

ONE LAB. NAT Page 78 of 279

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1315214-01,02,03,04

Method Blank (MB)

(MB) R3622002-1 02/11/2	21 22:08			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	117			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3622002-2 02/11/	21 23:38				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	4.08	74.2	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			102	77.0-120	

L1315190-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) LISISI90-01 02/12/2	21 U7.39 • (IVIS) R	3622002-3 02	2/12/21 06.01 • ((IVISD) R36220	02-4 02/12/2	100.23							
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
TPH (GC/FID) Low Fraction	623	364	896	1210	85.5	136	100	10.0-151		<u>J3</u>	30.0	28	
(S) a.a.a-Trifluorotoluene(FID)					109	116		77.0-120					

ONE LAB. NAT Page 79 of 279

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1315214-05,06,07,08,09,10,11,12,13,14,15

Method Blank (MB)

(MB) R3621832-3 02/11/2	1 11:18			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	116			77.0-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3621832-1 02/11/21	.CS) R3621832-1 02/11/21 10:00 • (LCSD) R3621832-2 02/11/21 10:22											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%		
TPH (GC/FID) Low Fraction	5.50	5.09	5.73	92.5	104	72.0-127			11.8	20		
(S) a,a,a-Trifluorotoluene(FID)				102	102	77.0-120						

L1314775-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1314775-01	02/11/21 13:08 · (N	AS) R3621832-4	02/11/21 19:48 • ((MSD)	R3621832-5	02/11/21 20:10

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg				%	%		%			%	%	
TPH (GC/FID) Low Fraction	138	4.77	156	193	113	139	25	10.0-151			21.2	28	
(S) a a a-Trifluorotoluene(FID)					110	117		77.0-120					

ConocoPhillips - Tetra Tech

ONE LAB. NAT Page 80 of 279

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1315214-16,17,18,19,20,21,22,23,24

Method Blank (MB)

(MB) R3622509-2 02/11/21 22:05							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
TPH (GC/FID) Low Fraction	U		0.0217	0.100			
(S) a,a,a-Trifluorotoluene(FID)	98.6			77.0-120			

Laboratory Control Sample (LCS)

(LCS) R3622509-1 02/11/2	21 21:23				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	6.12	111	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			105	77.0-120	

(OS) L1316198-01 02/12/21 02:32 • (MS) R3622509-3 02/12/21 07:03 • (MSD) R3622509-4 02/12/21 07:23

(03) [1310130-01 02/12/2	, ,	Original Result (dry)		. ,	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	232	U	157	150	67.7	64.6	28.7	10.0-151			4.78	28
(S) a a a-Trifluorotoluene(FID)					105	105		77.0-120				

Reserve 6 1/2/2025 2:42:13 PM

QUALITY CONTROL SUMMARY

ONE LAB. NAT Page 81 of 279

Volatile Organic Compounds (GC/MS) by Method 8260B

L1315214-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17

Method Blank (MB)

(MB) R3621596-2 02/09/					
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	97.1			75.0-131	
(S) 4-Bromofluorobenzene	98.2			67.0-138	
(S) 1,2-Dichloroethane-d4	94.0			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3621596-1 02	2/09/21 20:13				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.124	99.2	70.0-123	
Ethylbenzene	0.125	0.113	90.4	74.0-126	
Toluene	0.125	0.107	85.6	75.0-121	
Xylenes, Total	0.375	0.353	94.1	72.0-127	
(S) Toluene-d8			89.4	75.0-131	
(S) 4-Bromofluorobenz	rene		109	67.0-138	
(S) 1 2-Dichloroethane-	-d4		106	70.0-130	

L1315214-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1315214-05 02/09/2	OS) L1315214-05 02/09/21 23:42 • (MS) R3621596-3 02/10/21 03:48 • (MSD) R3621596-4 02/10/21 04:07											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.150	U	0.203	0.202	135	134	1	10.0-149			0.593	37
Ethylbenzene	0.150	U	0.185	0.190	123	126	1	10.0-160			2.56	38
Toluene	0.150	U	0.189	0.190	126	126	1	10.0-156			0.635	38
Xylenes, Total	0.450	U	0.556	0.561	123	125	1	10.0-160			0.860	38
(S) Toluene-d8					96.0	95.5		75.0-131				
(S) 4-Bromofluorobenzene					99.7	100		67.0-138				
(S) 1,2-Dichloroethane-d4					87.4	92.6		70.0-130				

ONE LAB. NATRAGA 82 of 279

Volatile Organic Compounds (GC/MS) by Method 8260B <u>L1315214-18,19,20,21,22,23,24</u>

67.0-138

70.0-130

Method Blank (MB)

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

`				
(MB) R3621568-2 02	/10/21 01:29			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	0.000525	<u>J</u>	0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	96.8			75.0-131

²Tc

⁵Sr

Laboratory Control Sample (LCS)

96.1

96.3

(LCS) R3621568-1 C	02/09/21 22:01
--------------------	----------------

()					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	l
Benzene	0.125	0.117	93.6	70.0-123	
Ethylbenzene	0.125	0.101	80.8	74.0-126	
Toluene	0.125	0.104	83.2	75.0-121	
Xylenes, Total	0.375	0.305	81.3	72.0-127	
(S) Toluene-d8			92.8	75.0-131	
(S) 4-Bromofluorobenzene			99.2	67.0-138	
(S) 1,2-Dichloroethane-d4			98.3	70.0-130	

ONE LAB. NAT Page 83 of 279

Semi-Volatile Organic Compounds (GC) by Method 8015

L1315214-01

Method Blank (MB)

(MB) R3622321-1 02/12/	/21 15:35			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	0.795	<u>J</u>	0.274	4.00
(S) o-Terphenyl	78.4			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3622321-2 02/12	LCS) R3622321-2 02/12/21 15:48								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
C10-C28 Diesel Range	50.0	38.1	76.2	50.0-150					
(S) o-Terphenyl			72.1	18.0-148					

L1315655-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1315655-01 02/12/21 16:28 • (MS) R3622321-3 02/12/21 16:41 • (MSD) R3622321-4 02/12/21 16:55

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	55.0	U	37.3	49.5	67.7	89.3	1	50.0-150		<u>J3</u>	28.1	20
(S) o-Terphenyl					62.7	83.6		18.0-148				

ONE LAB. NAT Page 84 of 279

Semi-Volatile Organic Compounds (GC) by Method 8015

L1315214-02,03,04,05,06

Method Blank (MB)

Analyte

C10-C28 Diesel Range

(S) o-Terphenyl

(MB) R3622277-1 02/12	2/21 23:25			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	1.70	<u>J</u>	0.274	4.00
(S) o-Terphenyl	69.7			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3622277-2 02/12	LCS) R3622277-2 02/12/21 23:39								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
C10-C28 Diesel Range	50.0	37.6	75.2	50.0-150					
(S) o-Terphenyl			94.6	18.0-148					

86.0

L1314998-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1314998-01 02/12/21 23:53 • (MS) R3622277-3 02/13/21 00:06 • (MSD) R3622277-4 02/13/21 00:20

Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	⁹ Sc
mg/kg				%	%		%			%	%	
48.9	U	47.9	47.9	75.5	75.0	1	50.0-150			0.000	20	

18.0-148

89.1

Reserve 6/12 0 6/19 3/2/2025 2:42:13 PM

QUALITY CONTROL SUMMARY

ONE LAB. NAT Page 85 of 279

Semi-Volatile Organic Compounds (GC) by Method 8015

L1315214-09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24

Method Blank (MB)

(MB) R3622322-1 02/12	/21 16:01			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	88.3			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3622322-2 02/12/21 16:15									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
C10-C28 Diesel Range	50.0	47.4	94.8	50.0-150					
(S) o-Terphenyl			89.5	18.0-148					

L1315214-21 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1315214-21	02/12/21 23:49 •	(MS	R3622322-3	02/13/21 00:02 •	(MSD	R3622322-4	02/13/21 00:16

(US) LISISZ14-21 UZ/12	/21 23.49 • (IVIS) R	3022322-3 02	/13/21 00.02 •	(IVISD) KS0223	02/13/2	1 00.10							L
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	L
C10-C28 Diesel Range	51.5	U	42.5	39.9	82.6	78.4	1	50.0-150			6.31	20	
(S) o-Terphenyl					71.1	68.7		18.0-148					

ONE LAB. NAT Page 86 of 279

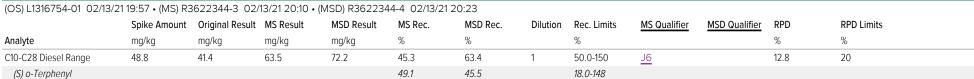
Semi-Volatile Organic Compounds (GC) by Method 8015

L1315214-07,08

Method Blank (MB)

(MB) R3622344-1 02/13	(MB) R3622344-1 02/13/21 16:23					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/kg		mg/kg	mg/kg		
C10-C28 Diesel Range	U		1.61	4.00		
C28-C40 Oil Range	U		0.274	4.00		
(S) o-Terphenyl	71.6			18.0-148		

(LCS) R3622344-2 02/13/21 16:36									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
C10-C28 Diesel Range	50.0	34.3	68.6	50.0-150					
(S) o-Terphenyl			69.7	18.0-148					



Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qual	lifier	Description

В	The same analyte is found in the associated blank.
Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
V	The sample concentration is too high to evaluate accurate spike recoveries.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design four laboratories. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN, 37122

Alskak 17-026 Newdad M100032021-1 Arizona AZ0612 New Jensphile 2975 Arkansas 88-0469 New Jensey-NELAP 1N0003 Calfornia 2932 New Mexico¹ 1N0003 Colorado TN00003 New York 11742 Connecticut PH-0197 North Carolina¹ En/375 Florida 887487 North Carolina¹ M270 Georgia NELAP North Carolina¹ 41 Georgia¹ 923 North Carolina³ 41 Idaho 1N0003 Ohio-VAP CL0069 Illinois 200008 Ohio-VAP CL0069 Illinois 200008 Oklahoma 9915 Illinois 364 Pennsylvania 8-02979 Kentucky¹ Ky9010 South Dakota n/a Kentucky² 16 South Dakota n/a Kentucky² 16 South Dakota n/a Louisiana LA018 Texas 1104704245-20-18 <th>Alabama</th> <th>40660</th> <th>Nebraska</th> <th>NE-OS-15-05</th>	Alabama	40660	Nebraska	NE-OS-15-05
Arkansas 88-0469 New Jersey-NELAP TN0002 California 2932 New Mexico¹ TN00003 Colorado TN00003 New Mexico¹ TN00003 Connecticut PH-0197 North Carolina Env375 Florida E87487 North Carolina¹ DW21704 Georgia NELAP North Carolina¹ DW21704 Georgia¹ 923 North Carolina¹ 41 Georgia¹ 923 North Dakota R-140 Idaho 1N00003 Oklahoma 9915 Illinois 200008 Oklahoma 9915 Indiana C-TN-01 Oregon TN200002 Iowa 364 Pennsylvania 68-02979 Kentucky² Kentucky² South Carolina 40000356 Kentucky² 16 South Carolina 80404002 Kentucky² 16 South Carolina 10 Louisiana AJ0792 Tenessexe¹ 2006 Majand 324 Utah T	Alaska	17-026	Nevada	TN000032021-1
California 2932 New Mexico ¹ TN00003 Colorado TN00003 New York 11742 Connecticut PH-0197 North Carolina ¹ DW21704 Florida E87487 North Carolina ¹ DW21704 Georgia NELAP North Carolina ³ 41 Georgia ¹ 923 North Dakota R-140 Idaho TN00003 Ohio-VAP CL0069 Illinois 200008 Oklahoma 9915 Indiana C-TN-01 Oregon TN200002 Iowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky ¹ 6 KY90010 South Carolina 84004002 Kentucky ² 1 16 South Dakota n/a Louisiana LA018 Texas T104704245-20-18 Maine TN00003 Texas ° LAB0152 Maryland 324 Utah TN000032021-11 Missachustts M-TN003 Yermont	Arizona	AZ0612	New Hampshire	2975
Colorado TN00003 New York 11742 Connecticut PH-197 North Carolina Env375 Florida E87487 North Carolina¹ DW21704 Georgia NELAP North Carolina³ 41 Georgia¹ 923 North Dakota R-140 Idaho TN00003 Ohio-VAP CL0069 Illinois 200008 Oklahoma 9915 Indiana C-TN-01 Oregon TN20002 Iowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky¹6 Ky90010 South Carolina 84004002 Kentucky² 16 South Dakota n/a Louisiana Al30792 Tennessee¹⁴ 2006 Louisiana LA018 Texas T104704245-20-18 Maine TN00003 Texas ³ LAB0152 Manyland 324 Utah TN000032021-11 Massachusetts M-TN003 Vermont VT20	Arkansas	88-0469	New Jersey-NELAP	TN002
Connecticut PH-0197 North Carolina Env375 Florida E87487 North Carolina DW21704 Georgia NELAP North Carolina 41 Georgia 923 North Dakota R-140 Idaho 1700003 Ohio-VAP CL0069 Illinois 200008 Oklahoma 9915 Indiana C-TN-01 Oregon 1700002 Iowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky¹ 6 K'99010 South Carolina 84004002 Kentucky² 1 16 South Dakota 16 Louisiana AJ30792 Tennessee¹ 4 2006 Louisiana LA018 Texas 1104704245-20-18 Maire 1700003 Texas LAB0152 Maire 1700003 Yermont V72006 Michigan 9958 Virginia 110033 Miscouri 340 West Virginia 233 <	California	2932	New Mexico ¹	TN00003
Florida E87487 North Carolina 1 DW21704 Georgia NELAP North Carolina 3 41 Georgia 1 923 North Dakota R-140 Idaho TN00003 Ohio-VAP CL0069 Illinols 20008 Oklahoma 9915 Indiana C-TN-01 Oregon TN200002 Iowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky 16 K'y9010 South Carolina 84004002 Kentucky 2 16 South Dakota n/a Louisiana Al30792 Tennessee 14 2006 Louisiana LA018 Texas TLABOTA22-20-18 Maine TN00003 Texas 5 LAB0152 Maryland 324 Utah TN000032021-11 Massachusetts M-TN003 Yermont YT2006 Michigan 9958 Yirginia 233 Misssissippl TN00003 West Virginia 233	Colorado	TN00003	New York	11742
Georgia NELAP North Carolina 3 41 Georgia 1 923 North Dakota R-140 Idaho TN00003 Ohio-VAP CL069 Illinois 200008 Ohio-WAP CL069 Ildiana C-TN-01 Oregon TN200002 Iowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky 1 6 K'99010 South Carolina 84004002 Kentucky 2 16 South Dakota n/a Louisiana LA018 Texas T104704245-20-18 Louisiana LA018 Texas T104704245-20-18 Maine TN0003 Texas 5 LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Virginia 110033 Michigan 9958 Virginia 110033 Minnesota 047-99-395 Washington C847 Missouri 340 Wisconsin 980939310<	Connecticut	PH-0197	North Carolina	Env375
Georgia 1 923 North Dakota R-140 Idaho TN00003 Ohio-VAP CL0069 Illinois 200008 Oklahoma 9915 Indiana C-TN-01 Oregon TN200002 Iowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky 16 KY90010 South Carolina 84004002 Kentucky 2 16 South Dakota n/a Louisiana LA018 Texas T104704245-20-18 Louisiana LA018 Texas T104704245-20-18 Maine TN00003 Texas 5 LAB0152 Maryland 324 Utah TN000032021-11 Massachusetts M-TN003 Vermont VT2006 Mischigan 9958 Washington C847 Missassippi TN00003 West Virginia 233 Missosiri 340 West Virginia 233 Missouri 340 West Virginia 233 <td>Florida</td> <td>E87487</td> <td>North Carolina ¹</td> <td>DW21704</td>	Florida	E87487	North Carolina ¹	DW21704
Idaho TN00003 Ohio-VAP CL0069 Illinois 200008 Oklahoma 9915 Indiana C-TN-01 Oregon TN200002 Iowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky¹6 Ky90010 South Carolina 84004002 Kentucky²2 16 South Dakota n/a Louisiana LA018 Texas T104704245-20-18 Maine TN00003 Texas T104704245-20-18 Maryland 324 Utah TN000032021-11 Massachusetts M-TN003 Vermont V72006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Missispipi TN00003 West Virginia 233 Missouri 340 Wisconsin 999093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 MGLO2 D	Georgia	NELAP	North Carolina ³	41
Illinois 200008 Oklahoma 9915 Indiana C-TN-01 Oregon TN200002 Iowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky¹ KY90010 South Carolina 84004002 Kentucky² 16 South Dakota n/a Louisiana Al30792 Tennessee¹⁴ 2006 Louisiana LA018 Texas T104704245-20-18 Maine TN00003 Texas LAB0152 Maryland 324 Utah TN000032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 MIHA-LAP, LLE EMLAP	Georgia ¹	923	North Dakota	R-140
Indiana C-TN-01 Oregon TN200002 Iowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky 16 KY90010 South Carolina 84004002 Kentucky 2 16 South Dakota n/a Louisiana Al30792 Tennessee 14 2006 Louisiana LA018 Texas T104704245-20-18 Maine TN00003 Texas 5 LAB0152 Maryland 324 Utah TN000032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-99-395 Washington C847 Missouri 340 Wisconsin 998093910 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD <td>Idaho</td> <td>TN00003</td> <td>Ohio-VAP</td> <td>CL0069</td>	Idaho	TN00003	Ohio-VAP	CL0069
lowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky 16 KY90010 South Carolina 84004002 Kentucky 2 16 South Dakota n/a Louisiana Al30792 Tennessee 1-4 2006 Louisiana LA018 Texas T104704245-20-18 Maine TN00003 Texas 5 LAB0152 Maryland 324 Utah TN000032021-11 Massachusetts M-TN003 Vermont V72006 Minnesota 047-999-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP, LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01 Canada 1461.01 USDA P330-15-00234	Illinois	200008	Oklahoma	9915
Kansas E-10277 Rhode Island LA000356 Kentucky ¹⁶ KY90010 South Carolina 84004002 Kentucky ² 16 South Dakota n/a Louisiana Al30792 Tennessee ^{1 4} 2006 Louisiana LA018 Texas T104704245-20-18 Maine TN00003 Texas ⁵ LAB0152 Maryland 324 Utah TN000032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP, LLC EMLAP 100789 A2LA – ISO 17025 ⁵ 1461.02 DOD 1461.01 Canada 1461.01 USDA P330-15-00234	Indiana	C-TN-01	Oregon	TN200002
Kentucky ¹⁶ KY90010 South Carolina 84004002 Kentucky ² 16 South Dakota n/a Louisiana Al30792 Tennessee ^{1.4} 2006 Louisiana LA018 Texas T104704245-20-18 Maine TN00003 Texas ⁵ LAB0152 Maryland 324 Utah TN000032021-11 Massachusetts M-TN003 Vermont V72006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 ⁵ 1461.02 DOD 1461.01 Canada 1461.01 USDA P330-15-00234	lowa	364	Pennsylvania	68-02979
Kentucky 2 16 South Dakota n/a Louisiana Al30792 Tennessee 1 4 2006 Louisiana LA018 Texas T104704245-20-18 Maine TN00003 Texas 5 LAB0152 Maryland 324 Utah TN000032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississispipi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP, LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01 Canada 1461.01 USDA P330-15-00234	Kansas	E-10277	Rhode Island	LAO00356
Louisiana Al30792 Tennessee 1 4 2006 Louisiana LA018 Texas T104704245-20-18 Maine TN00003 Texas 5 LAB0152 Maryland 324 Utah TN000032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississispipi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01 Canada 1461.01 USDA P330-15-00234	Kentucky 16	KY90010	South Carolina	84004002
Louisiana LA018 Texas T104704245-20-18 Maine TN00003 Texas 5 LAB0152 Maryland 324 Utah TN000032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississispipi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01 Canada 1461.01 USDA P330-15-00234	Kentucky ²	16	South Dakota	n/a
Maine TN00003 Texas 5 LAB0152 Maryland 324 Utah TN000032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississisppi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01 Canada 1461.01 USDA P330-15-00234	Louisiana	Al30792	Tennessee 14	2006
Maryland 324 Utah TN000032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississisppi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01 Canada 1461.01 USDA P330-15-00234	Louisiana	LA018	Texas	T104704245-20-18
Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA - ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA - ISO 17025 5 1461.02 DOD 1461.01 Canada 1461.01 USDA P330-15-00234	Maine	TN00003	Texas ⁵	LAB0152
Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 ⁵ 1461.02 DOD 1461.01 Canada 1461.01 USDA P330-15-00234	Maryland	324	Utah	TN000032021-11
Minnesota 047-999-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA - ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA - ISO 17025 5 1461.02 DOD 1461.01 Canada 1461.01 USDA P330-15-00234	Massachusetts	M-TN003	Vermont	VT2006
Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01 Canada 1461.01 USDA P330-15-00234	Michigan	9958	Virginia	110033
Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01 Canada 1461.01 USDA P330-15-00234	Minnesota	047-999-395	Washington	C847
Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 ⁵ 1461.02 DOD 1461.01 Canada 1461.01 USDA P330-15-00234	Mississippi	TN00003	West Virginia	233
A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 ⁵ 1461.02 DOD 1461.01 Canada 1461.01 USDA P330-15-00234	Missouri	340	Wisconsin	998093910
A2LA – ISO 17025 5 1461.02 DOD 1461.01 Canada 1461.01 USDA P330-15-00234	Montana	CERT0086	Wyoming	A2LA
Canada 1461.01 USDA P330-15-00234	A2LA – ISO 17025	1461.01	AIHA-LAP, LLC EMLAP	100789
	A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
EPA-Crypto TN00003	Canada	1461.01	USDA	P330-15-00234
	EPA-Crypto	TN00003		

Pace Analytical National 1313 Point Mallard Parkway SE Suite B Decatur, AL, 35601

Alabama	40160
ANSI National Accreditation Board	L2239

Pace Analytical National 660 Bercut Dr. Ste. C Sacramento, CA, 95811

California	2961	Oregon	CA300002
Minnesota	006-999-465	Washington	C926
North Dakota	D_21/I		

Pace Analytical National 6000 South Eastern Avenue Ste 9A Las Vegas, NV, 89119

Nevada NV009412021-1

Pace Analytical National 1606 E. Brazos Street Suite D Victoria, TX, 77901

T	T40 470 4000 00 40	
Texas	T104704328-20-18	

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Page 89 of 279 Page: 1 of 3

G027

Tetra Tech, Inc.

901 West Wall Street, Suite 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946

11315214

Client Name:	Conoco Phillips	Site Manager: Christian Llull ANALYSIS REQUEST (Circle or Specify Method No.)						-																			
4						£_		ul @4	otrot-	oh com	_	1			(Ci	ircl								No	0.)		
Project Name:	James E #001 Tubing Line Release	Contact Info):		one: (ch.com			1			1		1			1		11	1	F	11	1
Project Location: (county, state)	Lea County, New Mexico	Project #:		212	2C-MI	D-02	2413					1		-													, a
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7	79701]	1	5										E.m.fl	list)	П	
Receiving Laboratory:	Pace Analytical	Sampler Sig	gnature:		Joe '	Tyle	r]		OHO - MHO	Se Hg	Se Hg								porpor	attached		
Comments: COPTET	RA Acctnum											8260B			Cd Cr Pb	Cd Cr Pb Se Hg		+	4	8270C/625	\vdash	+		000	ees)	H	+
		SAME	PLING	M	ATRI	x F		ERV	ATIVE		(Y/N)	BTEX		GHO - D	Ag As Ba C	y As Ba		atiles	8260B / 624		80		1 1	ate TDS	lance		
LAB#	SAMPLE IDENTIFICATION	YEAR: 2021		T	П	Т	Τ	П	T	J H		8021B	900	N C	Ils Ag	als Ag	Volatiles	lo Vol	1. 82	emi. V	82/6	estos)	0.00	Sulfate	on Ba	L .	
(LAB USE)		DATE	TIME	WATER	SOIL	3	HNO	ICE	NONE	# CONTAINERS	FILTERED		TPH TX1005	PAH 8270C		TCLP Metals Ag As Ba	TCLP Vol	TCLP Semi Volatiles	GC/MS Vol.	GC/MS Semi, Vol.	PCB's 8082 / 608	PLM (Asbestos)	Chloride 300.0	Chloride	General Water Chemistry Anion/Cation Balance	TPH 8015R	HOLD
-01	BH-1 (0'-1')	02/02/21	1000		х		T	X		1	N	х		х									Х		4	R.	
ur	BH-1 (2'-3')	02/02/21	1010	T	х			х	./	1	N	х		X					T			id a	х	30	1		
45	BH-1 (4'-5')	02/02/21	1020	Г	Х		1	х	48	1	N	х		X									Х				
-eu	BH-1 (6'-7')	02/02/21	1030	Г	х			X		1	N	х		X	Т	П				П			Х	T			
-e5	BH-1 (9'-10')	02/02/21	1040		х			Х		1	N	х		X									Х			П	
-cf	BH-1 (14'-15')	02/02/21	1050	Г	Х			X		1	N	х		Х									Х			П	
-17	BH-1 (19'-20')	02/02/21	1100		Х			X		1	N	Х		X									Х			П	
-18	BH-1 (24'-25')	02/02/21	1120		Х			X		1	N	X		X.									Х				
-25	BH-1 (29'-30')	02/02/21	1140		Х			X		1	N	х		Х									Х			-	
70	Bh-1 (34'-35')	02/02/21	1200		Х			Х	1	1	N	х		X									х			П	
Relinquished by:	Date: Time: Date: Time: Date: Time:	Received by	K		19	2-8	ate:	21	l	Time	6		0	NL'	Υ		200	X S	tanda		me Da	N 24	hr	48 hr	72	hr	
Relinquished by:		35 Fed	EX		9		Sate:	2	(_	5.	35	Sam	ple 1	emp	eratu	ire	[jes Aut			-O III.	12	Hite	
remitquismed by.	Date. Time:	Valle	y hie	a	Per.			2/2	1	8							[s	pecia	I Rep	ort Lim	nits or	TRRE	Rep	ort		
		ÓRIĞINA	AF COPY									(Circ	cle)	HAN	D DE	ELIVE	ERE) FE	EDE)	U	PS '	Track	ing#:				

1.7-1=1.6 AG

Analysis Request of Chain of Custody Record

Page 90 of 279
Page: 2 of 3

TE	Tetra Tech, Inc.				901	Midl	and, I (432	Texas 2) 682	et, Su s 7970 2-4559 2-3940	9	100																	
Client Name:	Conoco Phillips	Site Manager	:	Chr	ristian	Llull									0:	-										,		
Project Name:	James E #001 Tubing Line Release	Contact Info:			ail: ch				ratech	h.com		1	1			rcie	9 0	or s	spe)	ly I	Me	tho	l l	NO	.)	H	1
Project Location: (county, state)	Lea County, New Mexico	Project #:		212	C-MI	0-024	13																4					
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Tex	as 79701											(0)			6									d list)			
Receiving Laboratory	: Pace Analytical	Sampler Sign	nature:		Joe 7	Tyler							OBO - MBO		Se Hg	Pb Se Hg									attached list)	-7		
Comments: COPTI	ETRA Acctnum											8260B	- 1		Cd Cr Pb	Ö	+	+	PG.	8270C/625	-	H		TDS	us (see a			+
		SAMP	LING	М	ATRI	x PI		RVA	TIVE D	3S	(Z	втех	TX1005 (Ext to C35)		As Ba	As Ba		atiles	ang / 6	ol. 82					Chemis	lance		10
	Section in the section of	YEAR: 2021			П	\top	П	T	П	INE	3	10	05 (E	0	s Ag	Ils Ag	tiles	Nole	82	Semi. Vol.	2/6		stos)	Sulfate	ater (on Ba	_	
LAB# (LAB USE)	SAMPLE IDENTIFICATION	DATE	TIME	WATER	SOIL	HC.	HNO3	ICE	NONE	# CONTAINERS	FILTERED (Y/N)		TPH TX10	PAH 8270C	Total Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Metals Ag As Ba Cd	TCLP Volatiles	TCLP Semi Volatiles	GC/MS Vol. 8260B / 624	GC/MS Se	PCB's 8082 / 608	NORM	PLM (Asbestos)	e l	General Water Chemistry (see	Anion/Cation Balance	TPH 8015R	HOLD
-11	BH-1 (39'-40')	02/02/21	1220	T	х			Х		1	N	Х)	(I	I			1	х		2		
41	BH-1 (44'-45')	02/02/21	1240	T	Х			X		1	N	Х)										1	Х	1			
73	BH-2 (0'-1')	02/02/21	1300		Х			X		1	N	Х)	(Х				
-14	BH-2 (2'-3')	02/02/21	1310		X			Х	1	1	N	Х)	<										Х				
75	BH-2 (4'-5')	02/02/21	1320		х			X		1	N	Х)	<							\perp		1	Х	\perp			
-16	BH-2 (6'-7')	02/02/21	1330		х			X		1	N	Х)	(1	L			Х				
-17	BH-3 (0'-1')	02/02/21	1400		х			Х		1	N	Х)	<						1		Ш		Х	1			
-18	BH-3 (2'-3')	02/02/21	1410		X			X		1	N	Х)	< _					1					Х	1			1
79	BH-3 (4'-5')	02/02/21	1420		X	3		Х	1	1	N	Х	1	×					1		L			Х	\perp			
70	BH-3 (6'-7')	02/02/21	1430		X			X		1	N	Х	. 3	X										Х				
Relinquished by:	Joe Tyle 2.8-21 14° Date: Time: Date: Time:	Received by	tu)	2.	3-2 ate:	((0	Time	0			NL	Y		REMARKS: X Standard RUSH: Same Day 24 hr. 48 hr. 72 hr.											
Relinquished by:	- /	33 Edt			2	8	2/ ate:	_	1	Si3		San	nple T	ple Temperature Rush Charges Authorized														

(Circle) HAND DELIVERED FEDEX UPS Tracking #:

Page 91 of 279

Received by OCD: 7/2/2025 2:42:13 PM
Analysis Request of Chain of Custody Record Page: 3 of 3

Tetra Tech, Inc.					901	Mid	fland el (43	all Stre , Texa 32) 68 32) 68	as 79 32-458	59	00								4	1	13	15	52	.14	1			
Client Name:	Conoco Phillips	Site Manage	er:	Chri	stian	ı Llul	1					T											EST					\neg
Project Name:	James E #001 Tubing Line Release	Contact Info	0:					ıll@te -1667		ch.con	1	1	1	1	(C	ircl	e	or \$	Spe	cit	y I	VIe:	tho	d N	lo.	1	Ŧ	i
Project Location: (county, state)	Lea County, New Mexico	Project #:		212	C-MI	D-02	413					11			1													П
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texa	as 79701										11											1		st)			П
Receiving Laborato	ry: Pace Analytical	Sampler Sig	gnature:		Joe 1	Tyler						11	0	Out Out	se Hg	Se Hg									(see attached list)			19
Comments: COF	PTETRA Acctnum											8260B			d Cr Pb	Ag As Ba Cd Cr Pb Se Hg	+	+	4	C/625	H		-	S		+	+	100
		SAME	LING	MA	TRIX	X PF		ERVA			î	BTEX	TX1005 (Ext to C35)		As Ba C	As Ba (tiles	8260B / 624	Semi. Vol. 8270C/625	80			te TDS	hemistr	ance		П
LAB#	SAMPLE IDENTIFICATION	YEAR: 2021							\top	INE	D (Y/N)	18	005 (E	-	Is Ag	als Ag	tiles	Semi Volatiles	1. 826	mi. Vo	8082 / 608		bestos)	Sulfate	ater C	on Bal		
(LAB USE)		DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE	ACINE	# CONTAINERS	FILTERED		TPH TX1005			rcLP Metals	rcLP Volatiles	TCLP Sem	GC/MS Vol.			NORM	PLM (Asbestos)	Chloride		Anion/Cation Balance	P. 1 00 12	ПОСР
-21	BH-4 (0'-1')	02/02/21	1500	$\overline{}$	X	-	-	X		1	N	Х)		-			- 10		0	0.	Z) X	(0	X F		Ħ
-21	BH-4 (2'-3')	02/02/21	1510	T	x	\top		х		1	N	X	1		+	Н	+	+	+	†	Н		×		H			
-27	BH-4 (4'-5')	02/02/21	1520	П	X	1		X	ar Jin a	1	N	×	1		†	Н	\forall	\dagger	†	1	H		×	1	Н	1	+	Н
-24	BH-4 (6'-7')	02/02/21	1530	П	x	1		Х		1	N	Х	7				1	#	1				Х	(#	П
Relinquished by:	Joe Tyl 2.8-21 14:3 Date: Time: Date: Time:	Received by:	tr)2	Da Da	B S R I I te:	OC Si ottle orrec uffic AD So	igned es ar est bo cient creen	Preseri/Accorrive ottles to the control of the cont	nt/In urate inta s use ume s 5 mR/	ct: d: ent: hr:	LAI	NL'	N N N N N N N N N N N N N N N N N N N	Pres	Zer .Co	MAR X S	ks:	hec	e: _ k: _	У	N	48	hr	72 hr.		
Relinquished by:	2-8-21 15:3 Date: Time:	Received by:	t Un	00	2.	8- Da	2 (te:	lah	1	S'3 Time:	C	Sam	ple T	empe	eratu	re			lush (Charg	ges Au	uthor						
		ORIGINA	L COPY	0			-		-			(Circ	cle)	IAN	D DE	LIVE	RED) FE	DEX	(U	PS	Tra	cking	#: _				

1.7-1=1.6 mm

Pace Analytical® ANALYTICAL REPORT

March 16, 2021

Ss

ConocoPhillips - Tetra Tech

Sample Delivery Group:

L1324058

Samples Received:

03/06/2021

Project Number:

212-MD-02413

Description:

James E. #001

Report To:

Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122

615-758-5858

800-767-5859

www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	7
Sr: Sample Results	8
AH 1 (0'-1') L1324058-01	8
AH 1 (2'-3') L1324058-02	9
AH 2 (0'-1') L1324058-03	10
AH 2 (2'-3') L1324058-04	11
AH 2 (4'-5') L1324058-05	12
AH 3 (0'-1') L1324058-06	13
AH 3 (2'-3') L1324058-07	14
AH 4 (0'-1') L1324058-08	15
AH 4 (2'-3') L1324058-09	16
AH 5 (0'-1') L1324058-10	17
AH-5 (2'-3') L1324058-11	18
AH-6 (0'-1') L1324058-12	19
AH-6 (2'-3') L1324058-13	20
AH-7 (0'-1') L1324058-14	21
AH-7 (2'-3') L1324058-15	22
AH-8 (0'-1') L1324058-16	23
AH-8 (2'-3') L1324058-17	24
Qc: Quality Control Summary	25
Total Solids by Method 2540 G-2011	25
Wet Chemistry by Method 300.0	28
Volatile Organic Compounds (GC) by Method 8015D/GRO	29
Volatile Organic Compounds (GC/MS) by Method 8260B	32
Semi-Volatile Organic Compounds (GC) by Method 8015	35
GI: Glossary of Terms	37

Al: Accreditations & Locations

Sc: Sample Chain of Custody

38 39

SAMPLE SUMMARY

	O7 ((())	3 0 11111	*17 (1 (1			
ALL1 (01.11) 1.122.40E9 01 Colid			Collected by Adrian Garcia	Collected date/time 03/03/21 08:00	Received da 03/06/21 10:	
AH 1 (0'-1') L1324058-01 Solid						
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
T-1-1 C-1'-1- h., M-4h - 1 25 40 C 2044	WC1C24707		date/time	date/time	CMIV	MA LUCE A TAI
Total Solids by Method 2540 G-2011	WG1631707	1	03/09/21 17:09	03/09/21 17:17	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1633355	1	03/13/21 17:07	03/13/21 21:06	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1633406	1	03/08/21 15:10	03/12/21 05:46	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1631712 WG1633146	1 1	03/08/21 15:10 03/12/21 22:34	03/10/21 00:17 03/13/21 15:48	JAH JN	Mt. Juliet, TN Mt. Juliet, TN
Semi-volatile Organic Compounds (SC) by Method 8015	WG1033140	'	03/12/21 22.34	03/13/21 13.40	JIN	Mit. Juliet, TN
			Collected by	Collected date/time		
AH 1 (2'-3') L1324058-02 Solid			Adrian Garcia	03/03/21 08:30	03/06/21 10:	05
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
T 10 III. 1 III. III. 10 10 10 10 10 10 10 10 10 10 10 10 10			date/time	date/time	0141/	
Total Solids by Method 2540 G-2011	WG1631707	1	03/09/21 17:09	03/09/21 17:17	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1633355	1	03/13/21 17:07	03/13/21 21:43	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1633406	1	03/08/21 15:10	03/12/21 06:08	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1631712	1	03/08/21 15:10	03/10/21 00:36	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1633146	1	03/12/21 22:34	03/13/21 16:02	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH 2 (0'-1') L1324058-03 Solid			Adrian Garcia	03/03/21 09:00	03/06/21 10:	05
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1631707	1	03/09/21 17:09	03/09/21 17:17	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1633355	10	03/13/21 17:07	03/13/21 21:53	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1633406	1	03/08/21 15:10	03/12/21 06:30	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1631712	1	03/08/21 15:10	03/10/21 00:55	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1633146	1	03/12/21 22:34	03/13/21 19:39	JN	Mt. Juliet, TN
			Callacted by	Callacted data/time	Doseived de	to/timo
			Collected by	Collected date/time		
AH 2 (2'-3') L1324058-04 Solid			Adrian Garcia	03/03/21 09:30	03/06/21 10:	05
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1631707	1	03/09/21 17:09	03/09/21 17:17	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1633355	10	03/13/21 17:07	03/13/21 22:02	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1633406	1	03/08/21 15:10	03/12/21 06:52	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1631712	1	03/08/21 15:10	03/10/21 01:14	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1633146	1	03/12/21 22:34	03/13/21 16:18	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH 2 (4'-5') L1324058-05 Solid			Adrian Garcia	03/03/2110:00	03/06/21 10:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1631778	1	03/09/21 16:59	03/09/21 17:07	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1633355	1	03/13/21 17:07	03/13/21 22:12	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1633406	1	03/08/21 15:10	03/12/21 07:14	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1632002	1	03/08/21 15:10	03/10/21 08:42	JBE	Mt. Juliet, TN
			00/40/04/00/04	00/40/04 40 50		* * · · · · · · · · · · · · · · · · · ·

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1633146

03/12/21 22:34

03/13/21 19:52

JN

Mt. Juliet, TN

SAMPLE SUMMARY

	0, 22 (,,, ,,,,,,			
AH 3 (0'-1') L1324058-06 Solid			Collected by Adrian Garcia	Collected date/time 03/03/2110:30	Received da 03/06/21 10:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1631778	1	03/09/21 16:59	03/09/21 17:07	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1633355	1	03/13/21 17:07	03/13/21 22:40	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1633406	1	03/08/21 15:10	03/12/21 07:36	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1632002	1	03/08/21 15:10	03/10/21 09:01	JBE	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1633146	1	03/12/21 22:34	03/13/21 20:05	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH 3 (2'-3') L1324058-07 Solid			Adrian Garcia	03/03/21 11:00	03/06/21 10:	05
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1631778	1	03/09/21 16:59	03/09/21 17:07	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1633355	1	03/13/21 17:07	03/03/21 17:07	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1633935 WG1632935	1	03/08/21 15:10	03/11/21 22:08	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1632002	1	03/08/21 15:10	03/10/21 09:20	JBE	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1633146	1	03/12/21 22:34	03/13/21 16:31	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH 4 (0'-1') L1324058-08 Solid			Adrian Garcia	03/03/21 11:30	03/06/21 10:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1631778	1	03/09/21 16:59	03/09/21 17:07	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1633355	1	03/13/21 17:07	03/13/21 23:00	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1632935	1	03/08/21 15:10	03/11/21 22:32	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1632002	1	03/08/21 15:10	03/10/21 09:39	JBE	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1633146	1	03/12/21 22:34	03/13/21 16:44	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH 4 (2'-3') L1324058-09 Solid			Adrian Garcia	03/03/21 12:00	03/06/21 10:	05
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1631778	1	03/09/21 16:59	03/09/21 17:07	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1633355	1	03/13/21 17:07	03/13/21 23:09	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1632935	1	03/08/21 15:10	03/11/21 22:55	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1632002	1	03/08/21 15:10	03/10/21 09:58	JBE	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1633146	1	03/12/21 22:34	03/13/21 16:57	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
AH 5 (0'-1') L1324058-10 Solid			Adrian Garcia	03/03/2112:30	03/06/21 10:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1631778	1	03/09/21 16:59	03/09/21 17:07	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1633355	1	03/13/21 17:07	03/13/21 23:19	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1632935	1	03/08/21 15:10	03/11/21 23:18	ADM	Mt. Juliet, TN
Valetile Occasio Commonde (CC/MC) by Mathead 02C0D	WC4C22002	4	02/00/24 45:40	02/10/21/10:17	IDE	NAC THE TAIL

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1632002

WG1633146

1

03/08/21 15:10

03/12/21 22:34

JBE

JN

Mt. Juliet, TN

Mt. Juliet, TN

03/10/21 10:17

03/13/21 20:18

SAMPLE SUMMARY

	07 (1111)	J () 11111	*17 (1 (1			
AH-5 (2'-3') L1324058-11 Solid			Collected by Adrian Garcia	Collected date/time 03/03/2114:10	Received da 03/06/21 10:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
The third	Baten	Blidtion	date/time	date/time	ruidiyse	Location
Total Solids by Method 2540 G-2011	WG1631778	1	03/09/21 16:59	03/09/21 17:07	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1633355	1	03/13/21 17:07	03/13/21 23:28	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1632938	1	03/08/21 15:10	03/11/21 18:18	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1632002	1	03/08/21 15:10	03/10/21 10:35	JBE	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1633146	1	03/12/21 22:34	03/13/21 19:13	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-6 (0'-1') L1324058-12 Solid			Adrian Garcia	03/03/2114:20	03/06/21 10:	05
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1631778	1	03/09/21 16:59	03/09/21 17:07	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1633355	1	03/13/21 17:07	03/13/21 23:38	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1632938	1	03/08/21 15:10	03/11/21 18:40	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1632002	1	03/08/21 15:10	03/10/21 10:54	JBE	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1633146	1	03/12/21 22:34	03/13/21 19:00	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-6 (2'-3') L1324058-13 Solid			Adrian Garcia	03/03/2114:30	03/06/21 10:	05
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1631778	1	03/09/21 16:59	03/09/21 17:07	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1633355	1	03/13/21 17:07	03/13/21 23:47	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1632938	1	03/08/21 15:10	03/11/21 19:02	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1632002	1	03/08/21 15:10	03/10/21 11:13	JBE	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1633146	1	03/12/21 22:34	03/13/21 19:26	JN	Mt. Juliet, TN
ALL 7 (0141) 142240E0 44 Colid			Collected by Adrian Garcia	Collected date/time 03/03/2114:40	Received da 03/06/21 10:	
AH-7 (0'-1') L1324058-14 Solid						
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1631778	1	03/09/21 16:59	03/09/21 17:07	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1633355	1	03/13/21 17:07	03/13/21 23:57	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1632938	1	03/08/21 15:10	03/11/21 19:24	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1632002	1	03/08/21 15:10	03/10/21 11:32	JBE	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1633148	1	03/12/21 22:41	03/13/21 15:21	JN	Mt. Juliet, TN
AH-7 (2'-3') L1324058-15 Solid			Collected by Adrian Garcia	Collected date/time 03/03/2114:50	Received da 03/06/21 10:	
	D-1-I-	Dileti-				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1631779	1	03/11/21 12:48	03/11/21 13:05	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1633355	1	03/13/21 17:07	03/14/21 00:06	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1632938	1	03/08/21 15:10	03/11/21 19:46	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1632669	1	03/08/21 15:10	03/11/21 02:32	BMB	Mt. Juliet, TN
0 11/1 11/1 0 1 0 1 1 100/1 14 1/1 100/1						

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1633148

03/12/21 22:41

03/13/21 15:33

JN

Mt. Juliet, TN

Semi-Volatile Organic Compounds (GC) by Method 8015

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	ite/time
AH-8 (0'-1') L1324058-16 Solid			Adrian Garcia	03/03/2115:00	03/06/21 10:	05
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1631779	1	03/11/21 12:48	03/11/21 13:05	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1633355	1	03/13/21 17:07	03/14/21 00:35	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1632938	1	03/08/21 15:10	03/11/21 20:08	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1632669	1	03/08/21 15:10	03/11/21 02:50	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1633148	1	03/12/21 22:41	03/13/21 15:46	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-8 (2'-3') L1324058-17 Solid			Adrian Garcia	03/03/2115:20	03/06/21 10:	05
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1631779	1	03/11/21 12:48	03/11/21 13:05	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1633355	1	03/13/21 17:07	03/14/21 00:44	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1632938	1	03/08/21 15:10	03/11/21 20:30	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1632669	1	03/08/21 15:10	03/11/21 03:09	BMB	Mt. Juliet, TN

WG1633148

1

03/12/21 22:41

03/13/21 15:59

JN

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Recrined by OCD: 7/2/2025 2:42:13 PM

SAMPLE RESULTS - 01

Total Solids by Method 2540 G-2011

Collected date/time: 03/03/21 08:00

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>	
Analyte	%			date / time		
Total Solids	79.1		1	03/09/2021 17:17	WG1631707	

Ср ²та

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	24.2	<u>J</u>	11.6	25.3	1	03/13/2021 21:06	WG1633355

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0274	0.126	1	03/12/2021 05:46	WG1633406
(S) a,a,a-Trifluorotoluene(FID)	90.4			77.0-120		03/12/2021 05:46	WG1633406

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•	'	, ,	•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000714	0.00153	1	03/10/2021 00:17	WG1631712
Toluene	U		0.00199	0.00764	1	03/10/2021 00:17	WG1631712
Ethylbenzene	U		0.00113	0.00382	1	03/10/2021 00:17	WG1631712
Total Xylenes	U		0.00135	0.00994	1	03/10/2021 00:17	WG1631712
(S) Toluene-d8	102			75.0-131		03/10/2021 00:17	WG1631712
(S) 4-Bromofluorobenzene	90.9			67.0-138		03/10/2021 00:17	WG1631712
(S) 1,2-Dichloroethane-d4	84.2			70.0-130		03/10/2021 00:17	WG1631712

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		2.04	5.06	1	03/13/2021 15:48	WG1633146
C28-C40 Oil Range	2.65	<u>J</u>	0.346	5.06	1	03/13/2021 15:48	WG1633146
(S) o-Terphenyl	61.2			18.0-148		03/13/2021 15:48	WG1633146

ConocoPhillips - Tetra Tech

SAMPLE RESULTS - 02

Page 100 of 279

Collected date/time: 03/03/21 08:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.8		1	03/09/2021 17:17	WG1631707

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	35.2		9.41	20.5	1	03/13/2021 21:43	WG1633355

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0222	0.102	1	03/12/2021 06:08	WG1633406
(S) a,a,a-Trifluorotoluene(FID)	88.7			77.0-120		03/12/2021 06:08	WG1633406

Volatile Organic Compounds (GC/MS) by Method 8260B

	•						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000488	0.00105	1	03/10/2021 00:36	WG1631712
Toluene	U		0.00136	0.00523	1	03/10/2021 00:36	WG1631712
Ethylbenzene	U		0.000771	0.00261	1	03/10/2021 00:36	WG1631712
otal Xylenes	U		0.000920	0.00680	1	03/10/2021 00:36	WG1631712
(S) Toluene-d8	102			75.0-131		03/10/2021 00:36	WG1631712
(S) 4-Bromofluorobenzene	91.9			67.0-138		03/10/2021 00:36	WG1631712
(S) 1,2-Dichloroethane-d4	84.2			70.0-130		03/10/2021 00:36	WG1631712

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.74	<u>J</u>	1.65	4.09	1	03/13/2021 16:02	WG1633146
C28-C40 Oil Range	9.01		0.280	4.09	1	03/13/2021 16:02	WG1633146
(S) o-Terphenyl	69.9			18.0-148		03/13/2021 16:02	WG1633146

Cn

Gl

9 of 41

Page 101 of 279

SAMPLE RESULTS - 03

Collected date/time: 03/03/21 09:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.2		1	03/09/2021 17:17	WG1631707

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	971		95.7	208	10	03/13/2021 21:53	WG1633355

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	03/12/2021 06:30	WG1633406
(S) a,a,a-Trifluorotoluene(FID)	90.5			77.0-120		03/12/2021 06:30	WG1633406

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000504	0.00108	1	03/10/2021 00:55	WG1631712
oluene	U		0.00140	0.00540	1	03/10/2021 00:55	WG1631712
thylbenzene	U		0.000796	0.00270	1	03/10/2021 00:55	WG1631712
otal Xylenes	U		0.000950	0.00702	1	03/10/2021 00:55	WG1631712
(S) Toluene-d8	103			75.0-131		03/10/2021 00:55	WG1631712
(S) 4-Bromofluorobenzene	91.8			67.0-138		03/10/2021 00:55	WG1631712
(S) 1,2-Dichloroethane-d4	82.4			70.0-130		03/10/2021 00:55	WG1631712

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

•	J 1	(/	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	18.9		1.67	4.16	1	03/13/2021 19:39	WG1633146
C28-C40 Oil Range	36.7		0.285	4.16	1	03/13/2021 19:39	WG1633146
(S) o-Terphenyl	54.2			18.0-148		03/13/2021 19:39	WG1633146

Page 102 of 279

SAMPLE RESULTS - 04

Collected date/time: 03/03/21 09:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	73.5		1	03/09/2021 17:17	WG1631707

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	3020		125	272	10	03/13/2021 22:02	WG1633355

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.154		0.0295	0.136	1	03/12/2021 06:52	WG1633406
(S) a,a,a-Trifluorotoluene(FID)	88.8			77.0-120		03/12/2021 06:52	<u>WG1633406</u>

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000803	0.00172	1	03/10/2021 01:14	WG1631712
Toluene	U		0.00224	0.00860	1	03/10/2021 01:14	WG1631712
Ethylbenzene	U		0.00127	0.00430	1	03/10/2021 01:14	WG1631712
Total Xylenes	U		0.00151	0.0112	1	03/10/2021 01:14	WG1631712
(S) Toluene-d8	102			75.0-131		03/10/2021 01:14	WG1631712
(S) 4-Bromofluorobenzene	91.8			67.0-138		03/10/2021 01:14	WG1631712
(S) 1,2-Dichloroethane-d4	83.7			70.0-130		03/10/2021 01:14	WG1631712

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		2.19	5.44	1	03/13/2021 16:18	WG1633146
C28-C40 Oil Range	1.20	<u>J</u>	0.373	5.44	1	03/13/2021 16:18	WG1633146
(S) o-Terphenyl	58.9			18.0-148		03/13/2021 16:18	WG1633146

11 of 41

Page 103 of 279

SAMPLE RESULTS - 05

Collected date/time: 03/03/21 10:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.9		1	03/09/2021 17:07	WG1631778

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	206		9.70	21.1	1	03/13/2021 22:12	WG1633355

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0229	0.105	1	03/12/2021 07:14	WG1633406
(S) a,a,a-Trifluorotoluene(FID)	89.4			77.0-120		03/12/2021 07:14	WG1633406

Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000517	0.00111	1	03/10/2021 08:42	WG1632002
Toluene	U		0.00144	0.00554	1	03/10/2021 08:42	WG1632002
Ethylbenzene	U		0.000816	0.00277	1	03/10/2021 08:42	WG1632002
Total Xylenes	U		0.000975	0.00720	1	03/10/2021 08:42	WG1632002
(S) Toluene-d8	109			<i>75.0-131</i>		03/10/2021 08:42	WG1632002
(S) 4-Bromofluorobenzene	98.3			67.0-138		03/10/2021 08:42	WG1632002
(S) 1,2-Dichloroethane-d4	92.1			70.0-130		03/10/2021 08:42	WG1632002

Sc

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.94		1.70	4.22	1	03/13/2021 19:52	WG1633146
C28-C40 Oil Range	12.8		0.289	4.22	1	03/13/2021 19:52	WG1633146
(S) o-Terphenvl	62.2			18.0-148		03/13/2021 19:52	WG1633146

SAMPLE RESULTS - 06

Page 104 of 279

Collected date/time: 03/03/21 10:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.5		1	03/09/2021 17:07	WG1631778

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	400		9.44	20.5	1	03/13/2021 22:40	WG1633355

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	03/12/2021 07:36	WG1633406
(S) a,a,a-Trifluorotoluene(FID)	90.3			77.0-120		03/12/2021 07:36	WG1633406

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000491	0.00105	1	03/10/2021 09:01	WG1632002
Toluene	U		0.00137	0.00526	1	03/10/2021 09:01	WG1632002
Ethylbenzene	U		0.000775	0.00263	1	03/10/2021 09:01	WG1632002
Total Xylenes	U		0.000926	0.00684	1	03/10/2021 09:01	WG1632002
(S) Toluene-d8	107			75.0-131		03/10/2021 09:01	WG1632002
(S) 4-Bromofluorobenzene	103			67.0-138		03/10/2021 09:01	WG1632002
(S) 1,2-Dichloroethane-d4	95.4			70.0-130		03/10/2021 09:01	WG1632002

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	41.3		1.65	4.10	1	03/13/2021 20:05	WG1633146
C28-C40 Oil Range	58.2		0.281	4.10	1	03/13/2021 20:05	WG1633146
(S) o-Terphenyl	47.1			18.0-148		03/13/2021 20:05	WG1633146

Page 105 of 279

SAMPLE RESULTS - 07

Collected date/time: 03/03/21 11:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	98.2		1	03/09/2021 17:07	WG1631778

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	215		9.37	20.4	1	03/13/2021 22:50	WG1633355

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0457	ВЈ	0.0221	0.102	1	03/11/2021 22:08	WG1632935
(S) a,a,a-Trifluorotoluene(FID)	95.3			77.0-120		03/11/2021 22:08	WG1632935

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg	quamor	mg/kg	mg/kg	2	date / time	<u> </u>
Benzene	U		0.000484	0.00104	1	03/10/2021 09:20	WG1632002
Toluene	U		0.00135	0.00519	1	03/10/2021 09:20	WG1632002
Ethylbenzene	U		0.000765	0.00259	1	03/10/2021 09:20	WG1632002
Total Xylenes	U		0.000913	0.00674	1	03/10/2021 09:20	WG1632002
(S) Toluene-d8	107			<i>75.0-131</i>		03/10/2021 09:20	WG1632002
(S) 4-Bromofluorobenzene	99.3			67.0-138		03/10/2021 09:20	WG1632002
(S) 1,2-Dichloroethane-d4	93.5			70.0-130		03/10/2021 09:20	WG1632002

Semi-Volatile Organic Compounds (GC) by Method 8015

•	J 1	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.30	<u>J</u>	1.64	4.07	1	03/13/2021 16:31	WG1633146
C28-C40 Oil Range	5.20		0.279	4.07	1	03/13/2021 16:31	WG1633146
(S) o-Terphenyl	70.6			18.0-148		03/13/2021 16:31	WG1633146

14 of 41

Page 106 of 279

SAMPLE RESULTS - 08

Collected date/time: 03/03/21 11:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	82.2		1	03/09/2021 17:07	WG1631778

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		11.2	24.3	1	03/13/2021 23:00	WG1633355

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0913	ВЈ	0.0264	0.122	1	03/11/2021 22:32	WG1632935
(S) a,a,a-Trifluorotoluene(FID)	98.1			77.0-120		03/11/2021 22:32	WG1632935

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	*						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000669	0.00143	1	03/10/2021 09:39	WG1632002
Toluene	U		0.00186	0.00716	1	03/10/2021 09:39	WG1632002
Ethylbenzene	U		0.00106	0.00358	1	03/10/2021 09:39	WG1632002
Total Xylenes	U		0.00126	0.00931	1	03/10/2021 09:39	WG1632002
(S) Toluene-d8	108			<i>75.0-131</i>		03/10/2021 09:39	WG1632002
(S) 4-Bromofluorobenzene	96.5			67.0-138		03/10/2021 09:39	WG1632002
(S) 1,2-Dichloroethane-d4	93.6			70.0-130		03/10/2021 09:39	WG1632002

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.96	4.87	1	03/13/2021 16:44	WG1633146
C28-C40 Oil Range	1.41	<u>J</u>	0.333	4.87	1	03/13/2021 16:44	WG1633146
(S) o-Terphenyl	62.4			18.0-148		03/13/2021 16:44	WG1633146

ConocoPhillips - Tetra Tech

Collected date/time: 03/03/21 12:00

Page 107 of 279

SAMPLE RESULTS - 09

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.7		1	03/09/2021 17:07	WG1631778

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	518		9.51	20.7	1	03/13/2021 23:09	WG1633355

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	03/11/2021 22:55	WG1632935
(S) a,a,a-Trifluorotoluene(FID)	96.8			77.0-120		03/11/2021 22:55	WG1632935

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000499	0.00107	1	03/10/2021 09:58	WG1632002
Toluene	U		0.00139	0.00534	1	03/10/2021 09:58	WG1632002
Ethylbenzene	U		0.000787	0.00267	1	03/10/2021 09:58	WG1632002
Total Xylenes	U		0.000940	0.00694	1	03/10/2021 09:58	WG1632002
(S) Toluene-d8	107			75.0-131		03/10/2021 09:58	WG1632002
(S) 4-Bromofluorobenzene	102			67.0-138		03/10/2021 09:58	WG1632002
(S) 1,2-Dichloroethane-d4	96.4			70.0-130		03/10/2021 09:58	WG1632002

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.92	<u>J</u>	1.66	4.14	1	03/13/2021 16:57	WG1633146
C28-C40 Oil Range	6.69		0.283	4.14	1	03/13/2021 16:57	WG1633146
(S) o-Terphenvl	72.6			18.0-148		03/13/2021 16:57	WG1633146

Collected date/time: 03/03/21 12:30

Page 108 of 279

SAMPLE RESULTS - 10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.9		1	03/09/2021 17:07	<u>WG1631778</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.50	20.7	1	03/13/2021 23:19	WG1633355

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0550	ВЈ	0.0224	0.103	1	03/11/2021 23:18	WG1632935
(S) a,a,a-Trifluorotoluene(FID)	95.2			77.0-120		03/11/2021 23:18	WG1632935

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

		· · · · · ·					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000497	0.00107	1	03/10/2021 10:17	WG1632002
Toluene	U		0.00138	0.00533	1	03/10/2021 10:17	WG1632002
Ethylbenzene	U		0.000785	0.00266	1	03/10/2021 10:17	WG1632002
Total Xylenes	U		0.000937	0.00692	1	03/10/2021 10:17	WG1632002
(S) Toluene-d8	106			<i>75.0-131</i>		03/10/2021 10:17	WG1632002
(S) 4-Bromofluorobenzene	101			67.0-138		03/10/2021 10:17	WG1632002
(S) 1,2-Dichloroethane-d4	96.0			70.0-130		03/10/2021 10:17	WG1632002

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	<u> </u>	. ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6.58		1.66	4.13	1	03/13/2021 20:18	WG1633146
C28-C40 Oil Range	15.1		0.283	4.13	1	03/13/2021 20:18	WG1633146
(S) o-Terphenyl	74.2			18.0-148		03/13/2021 20:18	WG1633146

Page 109 of 279

SAMPLE RESULTS - 11

Collected date/time: 03/03/21 14:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	75.3		1	03/09/2021 17:07	WG1631778

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	812		12.2	26.6	1	03/13/2021 23:28	WG1633355

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0288	0.133	1	03/11/2021 18:18	WG1632938
(S) a,a,a-Trifluorotoluene(FID)	93.9			77.0-120		03/11/2021 18:18	WG1632938

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000774	0.00166	1	03/10/2021 10:35	WG1632002
Toluene	U		0.00216	0.00829	1	03/10/2021 10:35	WG1632002
Ethylbenzene	U		0.00122	0.00415	1	03/10/2021 10:35	WG1632002
Total Xylenes	U		0.00146	0.0108	1	03/10/2021 10:35	WG1632002
(S) Toluene-d8	105			75.0-131		03/10/2021 10:35	WG1632002
(S) 4-Bromofluorobenzene	101			67.0-138		03/10/2021 10:35	WG1632002
(S) 1,2-Dichloroethane-d4	97.5			70.0-130		03/10/2021 10:35	WG1632002

	<u> </u>	\	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		2.14	5.31	1	03/13/2021 19:13	WG1633146
C28-C40 Oil Range	1.46	<u>J</u>	0.364	5.31	1	03/13/2021 19:13	WG1633146
(S) o-Terphenyl	54.2			18.0-148		03/13/2021 19:13	WG1633146

SAMPLE RESULTS - 12

Collected date/time: 03/03/21 14:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	99.0		1	03/09/2021 17:07	<u>WG1631778</u>

²Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.30	20.2	1	03/13/2021 23:38	WG1633355

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0219	0.101	1	03/11/2021 18:40	WG1632938
(S) a,a,a-Trifluorotoluene(FID)	93.2			77.0-120		03/11/2021 18:40	WG1632938

[°]Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000477	0.00102	1	03/10/2021 10:54	WG1632002
Toluene	U		0.00133	0.00510	1	03/10/2021 10:54	WG1632002
Ethylbenzene	U		0.000752	0.00255	1	03/10/2021 10:54	WG1632002
Total Xylenes	U		0.000898	0.00663	1	03/10/2021 10:54	WG1632002
(S) Toluene-d8	108			75.0-131		03/10/2021 10:54	WG1632002
(S) 4-Bromofluorobenzene	99.5			67.0-138		03/10/2021 10:54	WG1632002
(S) 1,2-Dichloroethane-d4	93.3			70.0-130		03/10/2021 10:54	WG1632002

•	J 1	`	/ /				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.81	<u>J</u>	1.63	4.04	1	03/13/2021 19:00	WG1633146
C28-C40 Oil Range	1.75	<u>J</u>	0.277	4.04	1	03/13/2021 19:00	WG1633146
(S) o-Terphenyl	69.5			18.0-148		03/13/2021 19:00	WG1633146

Collected date/time: 03/03/21 14:30

Page 111 of 279

SAMPLE RESULTS - 13

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	99.1		1	03/09/2021 17:07	WG1631778

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.29	20.2	1	03/13/2021 23:47	WG1633355

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0219	0.101	1	03/11/2021 19:02	WG1632938
(S) a,a,a-Trifluorotoluene(FID)	94.5			77.0-120		03/11/2021 19:02	WG1632938

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000476	0.00102	1	03/10/2021 11:13	WG1632002
Toluene	U		0.00132	0.00510	1	03/10/2021 11:13	WG1632002
Ethylbenzene	U		0.000751	0.00255	1	03/10/2021 11:13	WG1632002
Total Xylenes	U		0.000897	0.00662	1	03/10/2021 11:13	WG1632002
(S) Toluene-d8	107			75.0-131		03/10/2021 11:13	WG1632002
(S) 4-Bromofluorobenzene	103			67.0-138		03/10/2021 11:13	WG1632002
(S) 1,2-Dichloroethane-d4	96.6			70.0-130		03/10/2021 11:13	WG1632002

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.76	<u>J</u>	1.63	4.04	1	03/13/2021 19:26	WG1633146
C28-C40 Oil Range	2.28	<u>J</u>	0.277	4.04	1	03/13/2021 19:26	WG1633146
(S) o-Terphenyl	73.0			18.0-148		03/13/2021 19:26	WG1633146

Cn

Gl

Collected date/time: 03/03/21 14:40

Page 112 of 279

SAMPLE RESULTS - 14

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.9		1	03/09/2021 17:07	<u>WG1631778</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.40	20.4	1	03/13/2021 23:57	WG1633355

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0222	0.102	1	03/11/2021 19:24	WG1632938
(S) a,a,a-Trifluorotoluene(FID)	92.3			77.0-120		03/11/2021 19:24	WG1632938

Volatile Organic Compounds (GC/MS) by Method 8260B

			*				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000487	0.00104	1	03/10/2021 11:32	WG1632002
Toluene	U		0.00136	0.00521	1	03/10/2021 11:32	WG1632002
Ethylbenzene	U		0.000769	0.00261	1	03/10/2021 11:32	WG1632002
Total Xylenes	U		0.000918	0.00678	1	03/10/2021 11:32	WG1632002
(S) Toluene-d8	107			75.0-131		03/10/2021 11:32	WG1632002
(S) 4-Bromofluorobenzene	98.9			67.0-138		03/10/2021 11:32	WG1632002
(S) 1,2-Dichloroethane-d4	93.1			70.0-130		03/10/2021 11:32	WG1632002

Semi-Volatile Organic Compounds (GC) by Method 8015

	<u> </u>	,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6.92		1.64	4.09	1	03/13/2021 15:21	WG1633148
C28-C40 Oil Range	13.6		0.280	4.09	1	03/13/2021 15:21	WG1633148
(S) o-Terphenyl	72.1			18.0-148		03/13/2021 15:21	WG1633148

Ss Cn

Page 113 of 279 SAMPLE RESULTS - 15

Collected date/time: 03/03/21 14:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.4		1	03/11/2021 13:05	WG1631779

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.44	20.5	1	03/14/2021 00:06	WG1633355

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	03/11/2021 19:46	WG1632938
(S) a,a,a-Trifluorotoluene(FID)	93.9			77.0-120		03/11/2021 19:46	WG1632938

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000492	0.00105	1	03/11/2021 02:32	WG1632669
Toluene	U		0.00137	0.00526	1	03/11/2021 02:32	WG1632669
Ethylbenzene	U		0.000776	0.00263	1	03/11/2021 02:32	WG1632669
Total Xylenes	U		0.000926	0.00684	1	03/11/2021 02:32	WG1632669
(S) Toluene-d8	108			75.0-131		03/11/2021 02:32	WG1632669
(S) 4-Bromofluorobenzene	102			67.0-138		03/11/2021 02:32	WG1632669
(S) 1,2-Dichloroethane-d4	94.1			70.0-130		03/11/2021 02:32	WG1632669

Gl

	<u> </u>		,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.12	J	1.65	4.10	1	03/13/2021 15:33	WG1633148
C28-C40 Oil Range	4.96		0.281	4.10	1	03/13/2021 15:33	WG1633148
(S) o-Terphenyl	66.6			18.0-148		03/13/2021 15:33	WG1633148

Recrired by OCD: 7/2/2025 2:42:13 PM

SAMPLE RESULTS - 16

Collected date/time: 03/03/21 15:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	83.3		1	03/11/2021 13:05	WG1631779

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	62.0		11.1	24.0	1	03/14/2021 00:35	WG1633355

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0458	<u>J</u>	0.0261	0.120	1	03/11/2021 20:08	WG1632938
(S) a,a,a-Trifluorotoluene(FID)	92.6			77.0-120		03/11/2021 20:08	WG1632938

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Benzene	U		0.000655	0.00140	1	03/11/2021 02:50	WG1632669	
Toluene	U		0.00182	0.00701	1	03/11/2021 02:50	WG1632669	
Ethylbenzene	U		0.00103	0.00351	1	03/11/2021 02:50	WG1632669	
Total Xylenes	U		0.00123	0.00912	1	03/11/2021 02:50	WG1632669	
(S) Toluene-d8	107			75.0-131		03/11/2021 02:50	WG1632669	
(S) 4-Bromofluorobenzene	103			67.0-138		03/11/2021 02:50	WG1632669	
(S) 1,2-Dichloroethane-d4	94.0			70.0-130		03/11/2021 02:50	WG1632669	

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.81	<u>J</u>	1.93	4.80	1	03/13/2021 15:46	WG1633148
C28-C40 Oil Range	4.48	<u>J</u>	0.329	4.80	1	03/13/2021 15:46	WG1633148
(S) o-Terphenyl	56.9			18.0-148		03/13/2021 15:46	WG1633148

Collected date/time: 03/03/21 15:20

Page 115 of 279

SAMPLE RESULTS - 17

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.8		1	03/11/2021 13:05	<u>WG1631779</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	17.3	<u>J</u>	9.91	21.5	1	03/14/2021 00:44	WG1633355

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0234	0.108	1	03/11/2021 20:30	WG1632938
(S) a,a,a-Trifluorotoluene(FID)	94.0			77.0-120		03/11/2021 20:30	WG1632938

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000539	0.00115	1	03/11/2021 03:09	WG1632669
Toluene	U		0.00150	0.00577	1	03/11/2021 03:09	WG1632669
Ethylbenzene	U		0.000851	0.00289	1	03/11/2021 03:09	WG1632669
Total Xylenes	U		0.00102	0.00751	1	03/11/2021 03:09	WG1632669
(S) Toluene-d8	108			<i>75.0-131</i>		03/11/2021 03:09	WG1632669
(S) 4-Bromofluorobenzene	98.4			67.0-138		03/11/2021 03:09	WG1632669
(S) 1,2-Dichloroethane-d4	89.8			70.0-130		03/11/2021 03:09	WG1632669

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.62	<u>J</u>	1.73	4.31	1	03/13/2021 15:59	WG1633148
C28-C40 Oil Range	4.07	<u>J</u>	0.295	4.31	1	03/13/2021 15:59	WG1633148
(S) o-Terphenyl	64.9			18.0-148		03/13/2021 15:59	WG1633148

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Page 116 of 279

L1324058-01,02,03,04

Method Blank (MB)

 MB R3629383-1
 03/09/21 17:17

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 %
 %

 Total Solids
 0.00100

1 C

Ss

[†]Cn

L1324050-15 Original Sample (OS) • Duplicate (DUP)

(OS) L1324050-15 03/09/21 17:17 • (DUP) R3629383-3 03/09/21 17:17

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	97.4	97.2	1	0.221		10

ိQင

Laboratory Control Sample (LCS)

(LCS) R3629383-2 03/09/21 17:17

(LCS) 1(3023303-2 03/03/	Spike Amount LCS	CS Result LCS Rec.	Rec. Limits LCS Qualifier
Analyte	% %	%	%
otal Solids	50.0 50.0	0.0 100	85.0-115

Page 117 of 279

Total Solids by Method 2540 G-2011

L1324058-05,06,07,08,09,10,11,12,13,14

(MB) R3629381-1 03	3/09/21 17:07			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

3

L1324058-08 Original Sample (OS) • Duplicate (DUP)

	,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
An	alyte	%	%		%		%
Tot	al Solids	82.2	82.4	1	0.247		10

⁵Sr

Laboratory Control Sample (LCS)

(LCS) R3629381-2 03/09/2117:07

(LC3) K3029361-2 03/09/	/211/.0/				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 118 of 279

L1324058-15,16,17

Total Solids by Method 2540 G-2011 Method Blank (MB)

	<u>'</u>			
(MB) R3630147-1 03/1	11/21 13:05			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1324065-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1324065-03 03/11/21 13:05 • (DUP) R3630147-3 03/11/21 13:05

	Original Resu	lt DUP Result	Dilution	DUP RPD	DUP Qualifier	RPD ts		
Analyte	%	%		%				
Total Solids	80.7	78.5	1	2.86				

Laboratory Control Sample (LCS)

Total Solids

50.0

50.0

100

85.0-115

(LCS) R3630147-2 03/11/21 13:05						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	%	%	%	%		

[†]Cn

Page 119 of 279

Wet Chemistry by Method 300.0

L1324058-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17

Method Blank (MB)

(MB) R3630539-1 03/	3/21 20:14			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

²Tc

L1324058-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1324058-01 03/13/21 21:06 • (DUP) R3630539-3 03/13/21 21:15

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	24.2	24.6	1	1.95	J	20

Cn

⁶Qc

L1326630-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1326630-01 03/14/21 00:54 • (DUP) R3630539-6 03/14/21 01:03

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	115	114	1	0.930		20

Laboratory Control Sample (LCS)

(LCS) R3630539-2 03/13/21 20:23

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	194	96.9	90.0-110	

L1324058-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1324058-01 03/13/21 21:06 • (MS) R3630539-4 03/13/21 21:24 • (MSD) R3630539-5 03/13/21 21:34

(03) 21324030 01 03/13	3/21 21.00 · (IVIS)	10000000 + 0	5/15/21 21.24 - 1	(1413D) 1130303	000/10/2	1 2 1.5 +							
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Chloride	632	24.2	602	603	91.4	91.6	1	80.0-120			0.226	20	

Page 120 of 279

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1324058-07,08,09,10

Method Blank (MB)

(MB) R3629979-3 03/11/2	(MB) R3629979-3 03/11/21 16:44						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
TPH (GC/FID) Low Fraction	0.0715	<u>J</u>	0.0217	0.100			
(S) a,a,a-Trifluorotoluene(FID)	97.3			77.0-120			

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3629979-1 03/11/2	115:35 • (LCSD)) R3629979-2	03/11/21 15:58							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	5.83	5.44	106	98.9	72.0-127			6.92	20
(S) a,a,a-Trifluorotoluene(FID)				108	108	77.0-120				

L1323889-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1323889-02 03/11/21 20:59 • (MS) R3629979-4 03/12/21 02:06 • (MSD) R3629979-5 03/12/21 02:29

(00) 21020000 02 00/11/2	1 20.00 (1110) 1	(0020070 1 0	5/12/21 02.00	(11102) 110023	373 0 00/12/2	02.23						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	121	U	77.5	81.0	64.0	66.9	25	10.0-151			4.42	28
(S) a,a,a-Trifluorotoluene(FID)					104	106		77.0-120				

ConocoPhillips - Tetra Tech

Page 121 of 279

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1324058-11,12,13,14,15,16,17

Method Blank (MB)

(MB) R3631003-2 03/11/2	21 17:46				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	97.3			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3631003-1 03/11/2	LCS) R3631003-1 03/11/21 16:21									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
TPH (GC/FID) Low Fraction	5.50	4.65	84.5	72.0-127						
(S) a,a,a-Trifluorotoluene(FID)			104	77.0-120						

Page 122 of 279

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1324058-01,02,03,04,05,06

Method Blank (MB)

(MB) R3631004-2 03/12/21 04:24							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
TPH (GC/FID) Low Fraction	U		0.0217	0.100			
(S) a,a,a-Trifluorotoluene(FID)	95.1			77.0-120			

Laboratory Control Sample (LCS)

(LCS) R3631004-1 03/12/21 03:22											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	mg/kg	mg/kg	%	%							
TPH (GC/FID) Low Fraction	5.50	6.01	109	72.0-127							
(S) a,a,a-Trifluorotoluene(FID)			112	77.0-120							

L1324117-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(C	05) 1324117-01	03/12/21 11:38 • (1)	MS) R3631004-3	03/12/21 13:06 • ((MSD)	R3631004-4	03/12/21 13:28

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
TPH (GC/FID) Low Fraction	255	U	184	193	72.2	75.7	46.3	10.0-151			4.77	28	
(S) a,a,a-Trifluorotoluene(FID)					99.1	98.8		77.0-120					

Page 123 of 279

Volatile Organic Compounds (GC/MS) by Method 8260B

L1324058-01,02,03,04

Method Blank (MB)

(MB) R3630193-2 03/09/2	21 22:41				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	103			75.0-131	
(S) 4-Bromofluorobenzene	93.4			67.0-138	
(S) 1,2-Dichloroethane-d4	85.5			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3630193-1 03/09/	21 21:44				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.125	100	70.0-123	
Ethylbenzene	0.125	0.122	97.6	74.0-126	
Toluene	0.125	0.125	100	75.0-121	
Xylenes, Total	0.375	0.348	92.8	72.0-127	
(S) Toluene-d8			99.8	75.0-131	
(S) 4-Bromofluorobenzene			91.9	67.0-138	
(S) 1.2-Dichloroethane-d4			89.5	70.0-130	

L1323804-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	1.00	0.151	1.02	1.17	86.9	102	8	10.0-149			13.7	37
Ethylbenzene	1.00	0.400	1.30	1.42	90.0	102	8	10.0-160			8.82	38
Toluene	1.00	0.800	1.70	1.78	90.0	98.0	8	10.0-156			4.60	38
Xylenes, Total	3.00	3.28	6.01	5.78	91.0	83.3	8	10.0-160			3.90	38
(S) Toluene-d8					98.9	102		75.0-131				
(S) 4-Bromofluorobenzene					95.3	94.2		67.0-138				
(S) 1.2-Dichloroethane-d4					85 <i>2</i>	85.9		70 0-130				

Page 124 of 279

Volatile Organic Compounds (GC/MS) by Method 8260B L1324058-05,06,07,0

L1324058-05,06,07,08,09,10,11,12,13,14

Method Blank (MB)

(S) Toluene-d8

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

(MB) R3629321-3 03/10/2	21 05:52			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	106			75.0-131
(S) 4-Bromofluorobenzene	102			67.0-138
(S) 1,2-Dichloroethane-d4	95.3			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3629321-1 03/10/	21 04:36 • (LCSE) R3629321-2	2 03/10/21 04:5	5						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Benzene	0.125	0.110	0.115	88.0	92.0	70.0-123			4.44	20
Ethylbenzene	0.125	0.116	0.120	92.8	96.0	74.0-126			3.39	20
Toluene	0.125	0.115	0.119	92.0	95.2	75.0-121			3.42	20
Xylenes, Total	0.375	0.336	0.355	89.6	94.7	72.0-127			5.50	20

75.0-131

67.0-138

70.0-130

L1324058-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

107

101

96.3

107

103

97.3

(OS) L1324058-05 03/10/21 08:42 • (MS) R3629321-4 03/10/21 12:28 • (MSD) R3629321-5 03/10/21 12:47

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.138	U	0.115	0.117	83.2	84.8	1	10.0-149			1.90	37
Ethylbenzene	0.138	U	0.124	0.129	89.6	92.8	1	10.0-160			3.51	38
Toluene	0.138	U	0.122	0.127	88.0	92.0	1	10.0-156			4.44	38
Xylenes, Total	0.415	U	0.364	0.368	87.7	88.5	1	10.0-160			0.908	38
(S) Toluene-d8					105	108		75.0-131				
(S) 4-Bromofluorobenzene					102	98.5		67.0-138				
(S) 1,2-Dichloroethane-d4					95.4	90.9		70.0-130				

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Page 125 of 279

L1324058-15,16,17

Method Blank (MB)

(MB) R3631008-2 03/11/21	l 02:13				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	107			75.0-131	
(S) 4-Bromofluorobenzene	99.9			67.0-138	
(S) 1,2-Dichloroethane-d4	95.4			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3631008-1 03/11/2	21 01:16				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.106	84.8	70.0-123	
Ethylbenzene	0.125	0.112	89.6	74.0-126	
Toluene	0.125	0.116	92.8	75.0-121	
Xylenes, Total	0.375	0.321	85.6	72.0-127	
(S) Toluene-d8			110	75.0-131	
(S) 4-Bromofluorobenzene			97.4	67.0-138	
(S) 1,2-Dichloroethane-d4			94.4	70.0-130	

L1324058-15 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1324058-15 03/11/21 02:32 • (MS) R3631008-3 03/11/21 08:49 • (MSD) R3631008-4 03/11/21 09:07

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.132	U	0.118	0.113	89.6	85.6	1	10.0-149			4.57	37
Ethylbenzene	0.132	U	0.123	0.118	93.6	89.6	1	10.0-160			4.37	38
Toluene	0.132	U	0.121	0.121	92.0	92.0	1	10.0-156			0.000	38
Xylenes, Total	0.395	U	0.354	0.347	89.6	88.0	1	10.0-160			1.80	38
(S) Toluene-d8					106	108		75.0-131				
(S) 4-Bromofluorobenzene					99.4	99.5		67.0-138				
(S) 1,2-Dichloroethane-d4					97.0	93.1		70.0-130				

Page 126 of 279

Semi-Volatile Organic Compounds (GC) by Method 8015

L1324058-01,02,03,04,05,06,07,08,09,10,11,12,13

Method Blank (MB)

(MB) R3630440-1 03/13	3/21 11:41			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	67.7			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3630440-2 03/13	/21 11:54				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	40.0	80.0	50.0-150	
(S) o-Terphenyl			81.4	18.0-148	

(OS) L1324058-09 03/13/21 16:57 • (MS) R3630440-3 03/13/21 17:10 • (MSD) R3630440-4 03/13/21 17:23

(03) 11324030-03 03/	13/21 10.37 (1413)	13030440-3 0	3/13/21 17.10 • ((VISD) (VS050+	TO-T 03/13/21	17.25							
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	L
C10-C28 Diesel Range	51.7	3.92	44.9	44.3	79.2	78.3	1	50.0-150			1.39	20	
(S) o-Terphenyl					62.8	64.5		18.0-148					

Page 127 of 279

Semi-Volatile Organic Compounds (GC) by Method 8015

L1324058-14,15,16,17

Method Blank (MB)

(MB) R3630521-1 03/13/	21 14:56			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	64.3			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3630521-2 03/13	3/21 15:08				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	36.6	73.2	50.0-150	
(S) o-Terphenyl			<i>7</i> 5.5	18.0-148	

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
-----------	-------------

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.

D A	Athen Nieutenan	120CF alara	- Dal Marria		TNI 07400
Pace Analy	yticai Nationai	12065 Lebanor	1 Ka Mount	. Juliet,	IIN 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

1324058

Page 130 of 279
Page: 1 of 2

Tetra Tech, Inc.				Midla Tel	nd, (432	Texa 2) 68	eet, S as 797 32-455 32-394	9	0	H239																	
Client Name:	Conoco Phillips	Site Manager	r:	Chr	istian I	Llull									(0)	I						UES		NIc			
Project Name:	James E. #001	Contact Info			ail: chr					h.com			-	-			e o		pe		 	em		l No).) 		1
Project Location: (county, state)	Lea County, New Mexico	Project #:	1	212	C-MD	-024	13	•																			
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79	9701							3 7					(0)		0								A liet)	dell D		
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:		Adria	n Ga	rcia		1					30 - MH	b Se Hg	ob Se Hg								attache	allacric		
Comments: COPTET	RA Acctnum											8260B	C35)	8015M (GRO - DRO - ORO - MRO)	otal Metals Ag As Ba Cd Cr Pb Se Hg	CLP Metals Ag As Ba Cd Cr Pb			24	3C/MS Semi. Vol. 8270C/625				TDS see	General water Chemistry (see attached list) Anion/Cation Balance		7
		SAMP	LING	M	ATRIX	PF		ERV.	ATIVE OD		(N/N)	BTEX	Ext to C	3RO - E	As Ba	g As Ba		latiles	9 / 8097	/ol. 82	808	-		Sulfate T	alance		
	SAMPLE IDENTIFICATION	YEAR: 2020				T				CONTAINERS	()	8021B	TX1005 (Ext to	8015M (tals Ag	etals A	P Volatiles	emi Vo	Vol. 82	Semi. \	3082 / 6	spestos	300.0	Sul	Water ation B	15R	
LAB USE ONLY		DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE	NONE	# CON	FILTERED	BTEX 8		TPH 80	Total Me	TCLP M	TCLP Vo	TCLP Semi Volatiles	GC/MS Vol. 8260B / 624	GC/MS	PCB's 8082 / 608	PLM (Asbestos)	Chloride	Chloride	General water Chemi Anion/Cation Balance	TPH 801	НОГР
-01	AH 1 (0'-1')	03/03/21	800		X			X		1	N	X		Х									X				4
a	AH 1 (2'-3')	03/03/21	830		X			Х		1	N	Х		X		1	84						X			П	
03	AH 2 (0'-1')	03/03/21	900		Х			Х		1	N	Х		Х						Ш	1		X				
04	AH 2 (2'-3')	03/03/21	930		X			X		1	N	Х	1	X									X				
05	AH 2 (4'-5')	03/03/21	1000		X			Х		1	N	X		X									X				
06	AH 3 (0'-1')	03/03/21	1030		X			Х		1	N	Х	14.	Χ									Х				
07	AH 3 (2'-3')	03/03/21	1100		X			Х		1	N	Х		X	-								Х				
08	AH 4 (0'-1')	03/03/21	1130	0.00	X			Х		1	N	Х		X									X		4	\sqcup	d
09	AH 4 (2'-3')	03/03/21	1200		X			X		1	N	X		X									X		4		
w	AH 5 (0'-1')	03/03/21	1230		X			X		1	N	X		X					110				X				
Relinquished by: Relinquished by:	Date: Time: 3/5/21 /3:3: 3: Date: Time:	Received by	the	_	73	3-5	ate: ate:	21	. 1	Time	35	Sa	(ONI	JSE LY perat		[X	KS: Stand	ard	ne D	ay 2	4 hr.	48 hr	r. 72	hr.	
GOSTA	3-5-21 14:30	Second	4	i	3-5	5-2	2(ate:	VIII.		14:		a	2	1/2	7	ay	[Rush	Charg	es Au	uthoriz	ed				
Relinquished by:	Date: Time:	Received b	PRas		3	-6				loc	-			16										RP Rep	ort		
		ORIGIN	AL COPY	1				1-	7	10	tay	0	ircle) HA	ND D	DELIV	'ERE	D F	EDE	X UI	PS	Track	king i	:			

1324058 Page 131 of 279

	Tetra Tech, Inc.					Midla	and, (432	Texa 2) 68	eet, Si as 797 2-455 32-394	'01 9						7							51					
Client Name:	Conoco Phillips	Site Manager	r:	Chri	istian	Llull		17.							(C)	rol				IS F				d N	o)			
Project Name:	James E. #001	Contact Info:			ail: ch ne: (5					h.com		1	-								y i.					11	1	
Project Location: (county, state)	Lea County, New Mexico	Project #:	Project #: 212C-MD-02413									45																
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Tex	as 79701	+										100	101		6									d list)			
Receiving Laboratory	Pace Analytical	Sampler Sig	nature:		Adria	n Ga	rcia	1					Carr	- 01	b Se Hg	Pb Se Hg	Pb Se Hg									attached		
Comments: COPT	ETRA Acctnum											8260B	C35)	0-01	Cd Cr P	Cd Cr F			24	8270C/625				TDS	ees)			
		SAMP	LING	M	ATRI	x Pi		RV	ATIVE DD		(Y/N)	BTEX	(Ext to C	OHE OHE	J As Ba	Ag As Ba		latiles	9 / 8097	/ol. 827	808		6	ate	Chemis	didinco		
LAB# (LAB USE ONLY)	SAMPLE IDENTIFICATION	YEAR: 2020 DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE	NONE	# CONTAINERS	FILTERED (Y	BTEX 8021B	TPH TX1005 (Ext to		Total Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Metals A	TCLP Volatiles	TCLP Semi Volatiles	GC/MS Vol. 8260B / 624	GC/MS Semi. Vol.	PCB's 8082/608	NORM	Chloride 300.0	A COL	General Water Chemistry	TPH 8015R	НОГР	
(ONE! /	AH-5 (2'-3')	03/03/21	1410		X			Х		1	N	Х		X									X					
12	AH-6 (0'-1')	03/03/21	1420		X			X		1	N	Х		X									X		7			
13	AH-6 (2'-3')	03/03/21	1430		X			Х		1	N	Х		X							2.3		X					
14	AH-7 (0'-1')	03/03/21	1440		X			X		1	N	X		X									X					
	AH-7 (2'-3')	03/03/21	1450		X			Х		1	N	X		X								1	X					
16	AH-8 (0'-1')	03/03/21	1500		X			Х	,	1	N	X		X		15							X				1	
17	AH-8 (2'-3')	03/03/21	1520		X			X		1	N	X		X									×					
		V V																			100							
Relinquished by: Relinquished by: Relinquished by:	Date: Time:	Nifte	A ppas		3	35	ate:	((0	Time 13 Time 4:3 Time	多 3 3 3 3		imple	Temp	perat	ure 44	[F	Stand RUSH Rush Speci	ard I: Sa Charg	ges A	Author	ized or TF	RRP R	hr. 7	2 hr.		
		ORIGIN	AL COPY	/					tol			(0	ircle)	HA	ND D	ELIV	ERE	D F	EDE	X U	IPS	Tra	cking	#: _				

Pace Analytical National Center for Testing & Inno	vation	
Cooler Receipt Form		
Client: COPTETRA	13240	58
Cooler Received/Opened On: 3 / 6 / 21 Temperature:	-4	
Received By: Michael Pappas		
Signature: Wappas	Maria.	
Receipt Check List NP	Yes	No
COC Seal Present / Intact?		
COC Signed / Accurate?		
Bottles arrive intact?		37
Correct bottles used?		
Sufficient volume sent?		21
If Applicable		
VOA Zero headspace?		
Preservation Correct / Checked?		

Pace Analytical® ANALYTICAL REPORT

Ss

ConocoPhillips - Tetra Tech

Sample Delivery Group:

L1350285

Samples Received:

05/08/2021

Project Number:

212-MD-02413

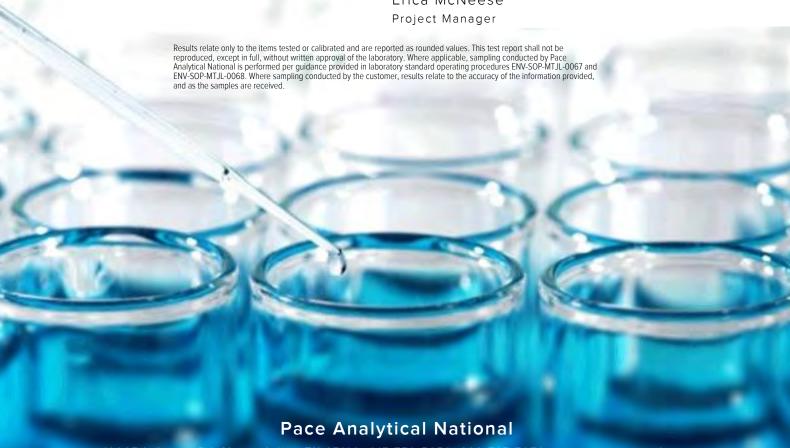
Description:

James E #001 Tubing Line Release

Report To:

Christian Llull

901 West Wall


Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Enicay Nesse

Erica McNeese Project Manager

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
AH-9 (0-1) L1350285-01	5
AH-9 (2-3) L1350285-02	6
Qc: Quality Control Summary	7
Total Solids by Method 2540 G-2011	7
Wet Chemistry by Method 300.0	8
Volatile Organic Compounds (GC) by Method 8015D/GRO	9
Volatile Organic Compounds (GC/MS) by Method 8260B	10
Semi-Volatile Organic Compounds (GC) by Method 8015	11
GI: Glossary of Terms	12
Al: Accreditations & Locations	13
Sc: Sample Chain of Custody	14

SAMPLE SUMMARY

			Collected by	Collected date/time	e Received da	te/time
AH-9 (0-1) L1350285-01 Solid			Andrew Garcia	05/05/21 11:00	05/08/21 09	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1670301	1	05/13/21 20:36	05/13/21 21:11	KDW	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1672343	1	05/18/21 00:10	05/18/21 05:29	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1669406	1	05/12/21 13:55	05/13/21 10:22	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1669720	1	05/12/21 13:55	05/13/21 12:53	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1670825	1	05/14/21 18:12	05/17/21 02:59	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	e Received da	te/time
AH-9 (2-3) L1350285-02 Solid			Andrew Garcia	05/05/21 11:30	05/08/21 09	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1670301	1	05/13/21 20:36	05/13/21 21:11	KDW	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1672343	1	05/18/21 00:10	05/18/21 05:38	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1669406	1	05/12/21 13:55	05/13/21 10:44	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1669720	1	05/12/21 13:55	05/13/21 13:12	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1670825	1	05/14/21 18:12	05/17/21 02:46	CAG	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Erica McNeese Project Manager

SAMPLE RESULTS - 01

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.4		1	05/13/2021 21:11	<u>WG1670301</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		10.1	21.9	1	05/18/2021 05:29	WG1672343

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0237	0.109	1	05/13/2021 10:22	WG1669406
(S) a,a,a-Trifluorotoluene(FID)	91.7			77.0-120		05/13/2021 10:22	WG1669406

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U	<u>J3</u>	0.000555	0.00119	1	05/13/2021 12:53	WG1669720
Toluene	U	<u>J3</u>	0.00155	0.00594	1	05/13/2021 12:53	WG1669720
Ethylbenzene	U	<u>J3</u>	0.000876	0.00297	1	05/13/2021 12:53	WG1669720
Total Xylenes	U		0.00105	0.00773	1	05/13/2021 12:53	WG1669720
(S) Toluene-d8	121			75.0-131		05/13/2021 12:53	WG1669720
(S) 4-Bromofluorobenzene	94.0			67.0-138		05/13/2021 12:53	WG1669720
(S) 1,2-Dichloroethane-d4	105			70.0-130		05/13/2021 12:53	WG1669720

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.76	4.38	1	05/17/2021 02:59	WG1670825
C28-C40 Oil Range	6.90		0.300	4.38	1	05/17/2021 02:59	WG1670825
(S) o-Terphenyl	47.6			18.0-148		05/17/2021 02:59	WG1670825

212-MD-02413

Page 138 of 279

SAMPLE RESULTS - 02

Collected date/time: 05/05/21 11:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.4		1	05/13/2021 21:11	WG1670301

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	15.0	<u>J</u>	9.54	20.7	1	05/18/2021 05:38	WG1672343

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	05/13/2021 10:44	WG1669406
(S) a,a,a-Trifluorotoluene(FID)	91.7			77.0-120		05/13/2021 10:44	WG1669406

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000502	0.00107	1	05/13/2021 13:12	WG1669720
Toluene	U		0.00140	0.00537	1	05/13/2021 13:12	WG1669720
Ethylbenzene	U		0.000792	0.00269	1	05/13/2021 13:12	WG1669720
Total Xylenes	U		0.000946	0.00699	1	05/13/2021 13:12	WG1669720
(S) Toluene-d8	128			75.0-131		05/13/2021 13:12	WG1669720
(S) 4-Bromofluorobenzene	124			67.0-138		05/13/2021 13:12	WG1669720
(S) 1,2-Dichloroethane-d4	108			70.0-130		05/13/2021 13:12	WG1669720

Sc

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.67	4.15	1	05/17/2021 02:46	WG1670825
C28-C40 Oil Range	3.28	<u>J</u>	0.284	4.15	1	05/17/2021 02:46	WG1670825
(S) o-Terphenyl	51.1			18.0-148		05/17/2021 02:46	WG1670825

ConocoPhillips - Tetra Tech

PAGE:

Page 139 of 279

L1350285-01,02 Total Solids by Method 2540 G-2011

Method Blank (MB)

(MB) R3654578-1 05/13/21 21:11 MB Result MB Qualifier MB MDL Analyte

MB RDL % % %

Total Solids 0.00100

L1350269-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1350269-01 05/13/21 21:11 • (DUP) R3654578-3 05/13/21 21:11

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	83.7	84.3	1	0.762		10

Laboratory Control Sample (LCS)

(LCS) R3654578-2 05/13/21 21:11

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Sc

GI

Ss

[†]Cn

Page 140 of 279

Wet Chemistry by Method 300.0

L1350285-01,02

Method Blank (MB)

(MB) R3655619-1 05/18/	21 03:07			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1348718-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1348718-01 05/18/21 03:35 • (DUP) R3655619-3 05/18/21 03:44

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	99.8	100	1	0.674		20

L1351233-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1351233-06 05/18/21 06:54 • (DUP) R3655619-6 05/18/21 07:04

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	U	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3655619-2 05/18/21 03:16

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	204	102	90.0-110	

L1348718-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1348718-01 05/18/21 03:35 • (MS) P3655619-4 05/18/21 03:54 • (MSD) P3655619-5 05/18/21 04:03

(03) 21340710 01 03/10/	33) 213-40710 01 03/10/21 03:33 - (1113) 1/3033013 + 03/10/21 03:34 - (11132) 1/3033013 3 03/10/21 04:03												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Chloride	500	99.8	639	638	108	108	1	80.0-120			0.257	20	

Page 141 of 279

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1350285-01,02

Method Blank (MB)

(MB) R3654968-2 05/13/	(MB) R3654968-2 05/13/21 04:42										
	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	mg/kg		mg/kg	mg/kg							
TPH (GC/FID) Low Fraction	U		0.0217	0.100							
(S) a,a,a-Trifluorotoluene(FID)	98.2			77.0-120							

Laboratory Control Sample (LCS)

(LCS) R3654968-1 05/13/2	(LCS) R3654968-1 05/13/21 03:58												
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier								
Analyte	mg/kg	mg/kg	%	%									
TPH (GC/FID) Low Fraction	5.50	5.09	92.5	72.0-127									
(S) a,a,a-Trifluorotoluene(FID)			107	77.0-120									

L1350296-19 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1350296-19 05/13/21 11:06 • (MS) R3654968-3 05/13/21 14:45 • (MSD) R3654968-4 05/13/21 15:07

(00) 2.000200 10 00/10/2	()		, .o, = (0.07						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	101	U	97.5	104	96.5	103	25	10.0-151			6.45	28
(S) a,a,a-Trifluorotoluene(FID)					110	112		77.0-120				

ConocoPhillips - Tetra Tech

Page 142 of 279

Volatile Organic Compounds (GC/MS) by Method 8260B

L1350285-01,02

Method Blank (MB)

Analyte	MB Result	MB Qualifier			
Analyto		WD Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	94.3			75.0-131	
(S) 4-Bromofluorobenzene	97.5			67.0-138	
(S) 1,2-Dichloroethane-d4	117			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3654371-1 05/13/2	21 02:08					E
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	1
Analyte	mg/kg	mg/kg	%	%		L
Benzene	0.125	0.106	84.8	70.0-123		
Ethylbenzene	0.125	0.132	106	74.0-126		
Toluene	0.125	0.133	106	75.0-121		ſ
Xylenes, Total	0.375	0.374	99.7	72.0-127		
(S) Toluene-d8			126	75.0-131		L
(S) 4-Bromofluorobenzene			95.0	67.0-138		
(S) 1,2-Dichloroethane-d4			121	70.0-130		

L1350285-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(US) L135U285-U1	U5/13/21 12:53 • (IVIS) R	30543/1-3 05/1	3/21 13:51 • (IVISD) R36543/1-4	05/13/21 14:10
	Snika Amount	Original Posult	MSD Posult	

\ /	, ,		,	,								
	Spike Amount (dry)	Original Result (dry)		MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.149	U	0.0895	0.136	60.2	91.2	1	10.0-149		<u>J3</u>	40.9	37
Ethylbenzene	0.149	U	0.111	0.169	74.5	114	1	10.0-160		<u>J3</u>	41.6	38
Toluene	0.149	U	0.112	0.176	75.2	118	1	10.0-156		<u>J3</u>	44.6	38
Xylenes, Total	0.446	U	0.323	0.445	72.5	99.7	1	10.0-160			31.6	38
(S) Toluene-d8					125	120		75.0-131				
(S) 4-Bromofluorobenzene					101	82.6		67.0-138				
(S) 1,2-Dichloroethane-d4					112	105		70.0-130				

Page 143 of 279

Semi-Volatile Organic Compounds (GC) by Method 8015

L1350285-01,02

Method Blank (MB)

(MB) R3655265-1 05/17/21 01:14					
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	
(S) o-Terphenyl	52.7			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3655265-2 05/17/21 01:27							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	mg/kg	mg/kg	%	%			
C10-C28 Diesel Range	50.0	32.2	64.4	50.0-150			
(S) o-Terphenyl			52.4	18.0-148			

L1350296-14 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1350296-14 05/17/21 04:43 • (MS) R3655265-3 05/17/21 04:56 • (MSD) R3655265-4 05/17/21 05:09

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	51.0	2.37	32.3	28.8	58.6	51.7	1	50.0-150			11.2	20
(S) o-Terphenyl					30.7	27.0		18.0-148				

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations an	d Delinitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qual	ifier	\Box	escri)	ption

J	The identification of the analyte is acceptable; the reported value is an estimate.
13	The associated batch QC was outside the established quality control range for precision

Pace Analytical National	12065 Lebanon Rd Mount Juli	et TN 37122
i ace Analytical National	12000 Lebanon Na Mount Jun	JL, IIN J/122

		<u> </u>	
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Page 146 of 279
Page: 1 of 1

Analysis Request of Chain of Custody Record 901 West Wall Street, Suite 100 Tetra Tech, Inc. Midland, Texas 79701 U350285 Tel (432) 682-4559 Fax (432) 682-3946 **ANALYSIS REQUEST** Site Manager: Conoco Phillips Christian Llull Client Name: (Circle or Specify Method No.) Email: Christian.Llull@tetratech.com James E #001 Tubing Line Release **Project Name:** Contact Info: Phone: (512) 565-0190 **Project Location:** Project #: 212C-MD-02413 Eddy County, NM (county, state) Accounts Payable Invoice to: 901 West Wall Street, Suite 100 Midland, Texas 79701 Sampler Signature: Pace Analytical Andrew Garcia Receiving Laboratory: COPTETRA Acctnum Comments: PRESERVATIVE SAMPLING MATRIX METHOD YEAR: 2021 SAMPLE IDENTIFICATION LAB# LAB USE TIME SOIL DATE ONLY AH-9 (0'-1') 05/05/21 1100 X AH-9 (2'-3') 05/05/21 X X 1130 Time: REMARKS: LAB USE Andrew Garcia 5/5/21 5:30pm X Standard ONLY Received by: RUSH: Same Day 24 hr. 48 hr. 72 hr. Time: Sample Temperature Rush Charges Authorized 1.74/2/8 Received by Relinquished by: Date: Special Report Limits or TRRP Report Sample Receipt Checklist COC Seal Present/Intact: Y/N N VOA Zero Headspace: _Y_N N Pres.Correct/Check: _Y_N COC Signed/Accurate: (Circle) HAND DELIVERED FEDEX UPS Tracking #: Bottles arrive intact:

December 15, 2022

CHRISTIAN LLULL
TETRA TECH
901 WEST WALL STREET , STE 100
MIDLAND, TX 79701

RE: JAMES E #1

Enclosed are the results of analyses for samples received by the laboratory on 12/12/22 15:19.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keine

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 12/12/2022 Sampling Date: 12/12/2022 Reported: 12/15/2022 Sampling Type: Soil

** (See Notes) Project Name: JAMES E #1 Sampling Condition: Project Number: 212C-MD-02413 Sample Received By: Shalyn Rodriguez

Project Location: EDDY COUNTY, NM

Sample ID: AH - 10 (0-1') (H225847-01)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/13/2022	ND	2.23	112	2.00	1.25	
Toluene*	<0.050	0.050	12/13/2022	ND	2.23	112	2.00	1.41	
Ethylbenzene*	<0.050	0.050	12/13/2022	ND	2.17	109	2.00	0.453	
Total Xylenes*	<0.150	0.150	12/13/2022	ND	6.66	111	6.00	0.413	
Total BTEX	<0.300	0.300	12/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107	% 69.9-14	0						
Chloride, SM4500CI-B	de, SM4500Cl-B mg/kg		Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/13/2022	ND	400	100	400	3.92	
TPH 8015M	mg,	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/13/2022	ND	197	98.6	200	0.758	
DRO >C10-C28*	<10.0	10.0	12/13/2022	ND	204	102	200	0.639	
EXT DRO >C28-C36	<10.0	10.0	12/13/2022	ND					
Surrogate: 1-Chlorooctane	84.0	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	91.2	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 12/12/2022 Sampling Date: 12/12/2022

Reported: 12/15/2022 Sampling Type: Soil

Project Name: JAMES E #1 Sampling Condition: ** (See Notes)
Project Number: 212C-MD-02413 Sample Received By: Shalyn Rodriguez

Project Location: EDDY COUNTY, NM

Sample ID: AH - 11 (0-1') (H225847-02)

BTEX 8021B	mg	/kg	Analyze	ed By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/13/2022	ND	2.23	112	2.00	1.25	
Toluene*	<0.050	0.050	12/13/2022	ND	2.23	112	2.00	1.41	
Ethylbenzene*	< 0.050	0.050	12/13/2022	ND	2.17	109	2.00	0.453	
Total Xylenes*	<0.150	0.150	12/13/2022	ND	6.66	111	6.00	0.413	
Total BTEX	<0.300	0.300	12/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107	% 69.9-14	0						
Chloride, SM4500CI-B	mg	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/13/2022	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/13/2022	ND	197	98.6	200	0.758	
DRO >C10-C28*	<10.0	10.0	12/13/2022	ND	204	102	200	0.639	
EXT DRO >C28-C36	<10.0	10.0	12/13/2022	ND					
Surrogate: 1-Chlorooctane	75.5	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	82.1	% 46.3-17	78						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 12/12/2022 Sampling Date: 12/12/2022

Reported: 12/15/2022 Sampling Type: Soil

Project Name: JAMES E #1 Sampling Condition: ** (See Notes)
Project Number: 212C-MD-02413 Sample Received By: Shalyn Rodriguez

Analyzed By: JH/

Project Location: EDDY COUNTY, NM

mg/kg

Sample ID: AH - 12 (0-1') (H225847-03)

BTEX 8021B

DILX GOZID	11197	ng .	Alldiyzo	a by. 5117					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/13/2022	ND	2.23	112	2.00	1.25	
Toluene*	<0.050	0.050	12/13/2022	ND	2.23	112	2.00	1.41	
Ethylbenzene*	<0.050	0.050	12/13/2022	ND	2.17	109	2.00	0.453	
Total Xylenes*	<0.150	0.150	12/13/2022	ND	6.66	111	6.00	0.413	
Total BTEX	<0.300	0.300	12/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/13/2022	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/13/2022	ND	197	98.6	200	0.758	
DRO >C10-C28*	<10.0	10.0	12/13/2022	ND	204	102	200	0.639	
EXT DRO >C28-C36	<10.0	10.0	12/13/2022	ND					
Surrogate: 1-Chlorooctane	54.9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	60.1	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client is subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Delivered By: (Circle One) Sampler - UPS - Bus - Other:	Relinquished By: Relinquished By: Relinquished By:	PLEASE NOTE: Liability and analyses. All claims including service. In no event shall Card		W.	1 1	1 HRC PP.U	Lab I.D.	FOR LAB USE ONLY	Sampler Name:	Project Location:		36.	ne #:	City:	Address:	Project Manager:	Company Name:	
	out of or related to the performance of services here. Date: Date: Date:	PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in contract or fort, shall be limited to the amount paid by the client for the pLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy to analyses. All claims including those for negligence and any other causes whatsoever shall be deemed waived unless made in writing and received by Cardinal within 30 days after completion of the analyses. All claims including those for negligence and any other causes whatsoever shall be deemed when the contract of the strength of the contract of the contract of the strength of the contract of the contract of the strength of the contract of		N-1260-1"	A-11(0-1)		Sample I.D.	Se Marie	OFFIC RICKERS	Edde Counts No	Specific A Lotte House	Project Owner	201-40-10412 Fax #:	State:		Charles Link	ener Phrilles	575) 393-2326 FAX (575) 393-2476
Observed Temp. °C 23.2 Sample Condition Corrected Temp. °C 21. (0 1 Yes 1 Yes	Time: Date: Received By: Received By: Received By: Received By: Received By:	edy for any claim arising whether based in contract shall be deemed waived unless made in writing ar including without limitation, business interruptions,		8) ×	>>> >>>	-#	G)RAB OR (C)OMP CONTAINERS GROUNDWATER WASTEWATER SOIL DIL SLUDGE	\neg			142 May 241			Zip:				3-2476
CHECKED BY:	Podreigney	t or tort, shall be limited to the amount paid and received by Cardinal within 30 days after loss of use, or loss of profits incurred by clinics heard upon any of the above stated read		× 12/1/22	X	X	OTHER: ACID/BASE: CE / COOL OTHER:	PRESERV. SAMPLING	1	Phone #:	State: Zip:	City:	Address: by enail	Attn: Christian L	Company: Tota Te	P.O. #:	BILL TO	
Turnaround Time: Standard Bac Rush Coo Correction Factor -0.6°C	Verbal Result:	applicable		3		XXX	TPH BTEX Chlorde							Chill	Tech		ANALTSIS	ANALYCIO
Bacteria (only) Sample Condition Cool Intact Observed Temp. °C Yes Yes No Corrected Temp. °C	dress:																O KEWOEST	

Page 6 of 6

March 02, 2023

CHRISTIAN LLULL
TETRA TECH
901 WEST WALL STREET , STE 100
MIDLAND, TX 79701

RE: JAMES E #001 RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 02/28/23 13:22.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keine

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 02/28/2023 Sampling Date: 02/28/2023

Reported: 03/02/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Shalyn Rodriguez

Project Location: COP - EDDY COUNTY, NM

Sample ID: BG - 1 (0-1') (H230923-01)

Chloride, SM4500CI-B	mg/kg		Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	03/01/2023	ND	416	104	400	0.00	

Sample ID: BG - 1 (2'-3') (H230923-02)

Chloride SM4500Cl-R

cilioriac, Siri+300ci B	mg/ kg		Analyze	a by. AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	03/01/2023	ND	416	104	400	0.00	

Analyzed By: AC

Sample ID: BG - 1 (4'-5') (H230923-03)

Chloride, SM4500CI-B	loride, SM4500Cl-B mg/kg		Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	384	16.0	03/01/2023	ND	416	104	400	0.00	

Sample ID: BG - 1 (6'-7') (H230923-04)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	480	16.0	03/01/2023	ND	432	108	400	3 77	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Analytical Results For:

TETRA TECH CHRISTIAN LLULL

901 WEST WALL STREET , STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 02/28/2023 Sampling Date: 02/28/2023

Reported: 03/02/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Project Number: 212C-MD-02413 Sample Received By: Shalyn Rodriguez

Project Location: COP - EDDY COUNTY, NM

Sample ID: BG - 1 (9'-10)') (H230923-	05)							
Chloride, SM4500CI-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	720	16.0	03/01/2023	ND	432	108	400	3.77	
Sample ID: BG - 1 (14'-1	.5') (H230923	-06)							
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1200	16.0	03/01/2023	ND	432	108	400	3.77	
Sample ID: BG - 1 (19'-2	20') (H230923	-07)							
Chloride, SM4500CI-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	976	16.0	03/01/2023	ND	432	108	400	3.77	
Sample ID: BG - 1 (24'-2	25') (H230923	-08)							
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	320	16.0	03/01/2023	ND	432	108	400	3.77	

chioride, 314-300ci-b	ilig	/ Ng	Allalyze	u by. AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	320	16.0	03/01/2023	ND	432	108	400	3.77	

Sample ID: BG - 1 (29'-30') (H230923-09)

Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	224	16.0	03/01/2023	ND	432	108	400	3.77	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keene

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 02/28/2023 Sampling Date: 02/28/2023

Reported: 03/02/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Project Number: 212C-MD-02413 Sample Received By: Shalyn Rodriguez

Project Location: COP - EDDY COUNTY, NM

Sample ID: BG - 1 (34'-35') (H230923-10)

Chloride, SM4500Cl-B mg/kg			Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	03/01/2023	ND	432	108	400	3.77	

Sample ID: BG - 1 (39'-40') (H230923-11)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	03/01/2023	ND	432	108	400	3.77	

Sample ID: BG - 1 (44'-45') (H230923-12)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	03/01/2023	ND	432	108	400	3.77	

Sample ID: BG - 1 (49'-50') (H230923-13)

Chloride, SM4500Cl-B m		mg/	kg	Analyze	d By: AC					
	Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chlo	ride	80.0	16.0	03/01/2023	ND	432	108	400	3.77	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celecy D. Keene

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 02/28/2023 Sampling Date: 02/28/2023

Reported: 03/02/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Shalyn Rodriguez

Analyzed By: JH

Project Location: COP - EDDY COUNTY, NM

mg/kg

Sample ID: BH - 2A (0-1') (H230923-14)

BTEX 8021B

DILX OUZID	iiig/	, kg	Andryzo	u by. 511					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/02/2023	ND	2.09	105	2.00	0.931	
Toluene*	<0.050	0.050	03/02/2023	ND	2.10	105	2.00	1.27	
Ethylbenzene*	<0.050	0.050	03/02/2023	ND	2.24	112	2.00	1.30	
Total Xylenes*	<0.150	0.150	03/02/2023	ND	6.88	115	6.00	0.803	
Total BTEX	<0.300	0.300	03/02/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	992	16.0	03/01/2023	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2023	ND	216	108	200	6.33	
DRO >C10-C28*	<10.0	10.0	03/01/2023	ND	208	104	200	7.05	
EXT DRO >C28-C36	<10.0	10.0	03/01/2023	ND					
Surrogate: 1-Chlorooctane	109	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey & Keens

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 02/28/2023 Sampling Date: 02/28/2023

Reported: 03/02/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Shalyn Rodriguez

Analyzed By: JH

Project Location: COP - EDDY COUNTY, NM

mg/kg

Sample ID: BH - 2A (2'-3') (H230923-15)

BTEX 8021B

DILX OUZID	ıııg,	, kg	Allulyzo	.u Dy. 311					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/02/2023	ND	2.09	105	2.00	0.931	
Toluene*	<0.050	0.050	03/02/2023	ND	2.10	105	2.00	1.27	
Ethylbenzene*	<0.050	0.050	03/02/2023	ND	2.24	112	2.00	1.30	
Total Xylenes*	<0.150	0.150	03/02/2023	ND	6.88	115	6.00	0.803	
Total BTEX	<0.300	0.300	03/02/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	107	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1040	16.0	03/01/2023	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2023	ND	216	108	200	6.33	
DRO >C10-C28*	82.8	10.0	03/01/2023	ND	208	104	200	7.05	
EXT DRO >C28-C36	<10.0	10.0	03/01/2023	ND					
Surrogate: 1-Chlorooctane	94.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	96.5	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 02/28/2023 Sampling Date: 02/28/2023

Reported: 03/02/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Project Number: Sample Received By: 212C-MD-02413 Shalyn Rodriguez

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 2A (4'-5') (H230923-16)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/02/2023	ND	2.09	105	2.00	0.931	
Toluene*	<0.050	0.050	03/02/2023	ND	2.10	105	2.00	1.27	
Ethylbenzene*	<0.050	0.050	03/02/2023	ND	2.24	112	2.00	1.30	
Total Xylenes*	<0.150	0.150	03/02/2023	ND	6.88	115	6.00	0.803	
Total BTEX	<0.300	0.300	03/02/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	109 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg/	'kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	864	16.0	03/01/2023	ND	432	108	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2023	ND	216	108	200	6.33	
DRO >C10-C28*	<10.0	10.0	03/01/2023	ND	208	104	200	7.05	
EXT DRO >C28-C36	<10.0	10.0	03/01/2023	ND					
Surrogate: 1-Chlorooctane	103 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	100 9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 02/28/2023 Sampling Date: 02/28/2023

Reported: 03/02/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Project Number: 212C-MD-02413 Sample Received By: Shalyn Rodriguez

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 2A (6'-7') (H230923-17)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/02/2023	ND	2.09	105	2.00	0.931	
Toluene*	<0.050	0.050	03/02/2023	ND	2.10	105	2.00	1.27	
Ethylbenzene*	<0.050	0.050	03/02/2023	ND	2.24	112	2.00	1.30	
Total Xylenes*	<0.150	0.150	03/02/2023	ND	6.88	115	6.00	0.803	
Total BTEX	<0.300	0.300	03/02/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg/	'kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	800	16.0	03/01/2023	ND	432	108	400	3.77	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2023	ND	216	108	200	6.33	
DRO >C10-C28*	<10.0	10.0	03/01/2023	ND	208	104	200	7.05	
EXT DRO >C28-C36	<10.0	10.0	03/01/2023	ND					
Surrogate: 1-Chlorooctane	104 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	101 9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 02/28/2023 Sampling Date: 02/28/2023

Reported: 03/02/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Sample Received By: Project Number: 212C-MD-02413 Shalyn Rodriguez

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 2A (8'-9') (H230923-18)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/02/2023	ND	2.09	105	2.00	0.931	
Toluene*	< 0.050	0.050	03/02/2023	ND	2.10	105	2.00	1.27	
Ethylbenzene*	< 0.050	0.050	03/02/2023	ND	2.24	112	2.00	1.30	
Total Xylenes*	<0.150	0.150	03/02/2023	ND	6.88	115	6.00	0.803	
Total BTEX	<0.300	0.300	03/02/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 %	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	640	16.0	03/01/2023	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2023	ND	216	108	200	6.33	
DRO >C10-C28*	<10.0	10.0	03/01/2023	ND	208	104	200	7.05	
EXT DRO >C28-C36	<10.0	10.0	03/01/2023	ND					
Surrogate: 1-Chlorooctane	109 %	6 48.2-13	4						
Surrogate: 1-Chlorooctadecane	105 %	6 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 02/28/2023 Sampling Date: 02/28/2023

Reported: 03/02/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Shalyn Rodriguez

Analyzed By: JH

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 2A (14'-15') (H230923-19)

BTEX 8021B

DIEX 8021B	ilig	/ kg	Allalyze	u by. Jn					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/02/2023	ND	2.09	105	2.00	0.931	
Toluene*	<0.050	0.050	03/02/2023	ND	2.10	105	2.00	1.27	
Ethylbenzene*	<0.050	0.050	03/02/2023	ND	2.24	112	2.00	1.30	
Total Xylenes*	<0.150	0.150	03/02/2023	ND	6.88	115	6.00	0.803	
Total BTEX	<0.300	0.300	03/02/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	117	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	240	16.0	03/01/2023	ND	432	108	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2023	ND	216	108	200	6.33	
DRO >C10-C28*	<10.0	10.0	03/01/2023	ND	208	104	200	7.05	
EXT DRO >C28-C36	<10.0	10.0	03/01/2023	ND					
Surrogate: 1-Chlorooctane	97.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.3	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 02/28/2023 Sampling Date: 02/28/2023

Reported: 03/02/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Shalyn Rodriguez

Applyzod By: 14

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 4A (0-1') (H230923-22)

RTFY 8021R

BIEX 8021B	mg	/ kg	Anaiyze	а ву: ЈН					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/02/2023	ND	2.09	105	2.00	0.931	
Toluene*	<0.050	0.050	03/02/2023	ND	2.10	105	2.00	1.27	
Ethylbenzene*	<0.050	0.050	03/02/2023	ND	2.24	112	2.00	1.30	
Total Xylenes*	<0.150	0.150	03/02/2023	ND	6.88	115	6.00	0.803	
Total BTEX	X <0.300 0.300		03/02/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	119	% 71.5-13	4						
Chloride, SM4500CI-B	g		Analyze	ed By: AC					
Analyte	•		Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	480	16.0	6.0 03/01/2023 ND			108	400	3.77	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2023	ND	216	108	200	6.33	
DRO >C10-C28*	<10.0	10.0	03/01/2023	ND	208	104	200	7.05	
EXT DRO >C28-C36	<10.0	10.0	03/01/2023	ND					
Surrogate: 1-Chlorooctane	83.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	79.6	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 02/28/2023 Sampling Date: 02/28/2023

Reported: 03/02/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Sample Received By: Project Number: 212C-MD-02413 Shalyn Rodriguez

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 4A (2'-3') (H230923-23)

BTEX 8021B	mg/	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/02/2023	ND	2.09	105	2.00	0.931	
Toluene*	<0.050	0.050	03/02/2023	ND	2.10	105	2.00	1.27	
Ethylbenzene*		03/02/2023	ND	2.24	112	2.00	1.30		
Total Xylenes*	<0.150	0.150	03/02/2023	ND	6.88	115	6.00	0.803	
Total BTEX	te: 4-Bromofluorobenzene (PID 117 % 71.5-13		03/02/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID			4						
Chloride, SM4500CI-B			Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1060	16.0	03/01/2023	ND	432	108	400	3.77	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2023	ND	216	108	200	6.33	
DRO >C10-C28*	<10.0	10.0	03/01/2023	ND	208	104	200	7.05	
EXT DRO >C28-C36	<10.0	10.0	03/01/2023	ND					
Surrogate: 1-Chlorooctane	85.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	79.7	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 02/28/2023 Sampling Date: 02/28/2023

Reported: 03/02/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Project Number: Sample Received By: Shalyn Rodriguez 212C-MD-02413

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 4A (4'-5') (H230923-24)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte		Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	Result Reporting Limit <0.050 0.050 <0.050 0.050 <0.050 0.050 <0.050 0.050 <0.150 0.150 <0.300 0.300 aurobenzene (PID 118% 71.5-134 mg/kg Result Reporting Limit 1250 16.0 mg/kg Result Reporting Limit <10.0 10.0 <10.0 10.0 <10.0 10.0	03/01/2023	ND	2.07	103	2.00	17.2		
Toluene*	<0.050	0.050	03/01/2023	ND	2.00	99.9	2.00	17.4	
Ethylbenzene*	<0.050	0.050	03/01/2023	ND	1.95	97.5	2.00	19.9	
Total Xylenes*	<0.150	0.150	03/01/2023	ND	6.15	102	6.00	20.6	
Total BTEX			03/01/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	· · · · · · · · · · · · · · · · · · ·		4						
Chloride, SM4500CI-B	,		Analyze	d By: AC					
Analyte			Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1250	16.0	03/01/2023	ND	432	108	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2023	ND	216	108	200	6.33	
DRO >C10-C28*	<10.0	10.0	03/01/2023	ND	208	104	200	7.05	
EXT DRO >C28-C36	<10.0	10.0	03/01/2023	ND					
Surrogate: 1-Chlorooctane	97.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	92.0	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 02/28/2023 Sampling Date: 02/28/2023

Reported: 03/02/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Project Number: Sample Received By: Shalyn Rodriguez 212C-MD-02413

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 4A (6'-7') (H230923-25)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	Analyte Result Reporting Limit < 0.050	03/02/2023	ND	2.07	103	2.00	17.2		
Toluene*	<0.050 0.050 <0.150 0.150 <0.300 0.300	0.050	03/02/2023	ND	2.00	99.9	2.00	17.4	
Ethylbenzene*	<0.050	0.050	03/02/2023	ND	1.95	97.5	2.00	19.9	
Total Xylenes*	<0.150	0.150	03/02/2023	ND	6.15	102	6.00	20.6	
Total BTEX	<0.300 0.300		03/02/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	116	% 71.5-13	4						
Chloride, SM4500CI-B	- G		Analyze	d By: AC					
Analyte	,		Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	992	16.0	03/01/2023	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2023	ND	216	108	200	6.33	
DRO >C10-C28*	<10.0	10.0	03/01/2023	ND	208	104	200	7.05	
EXT DRO >C28-C36	<10.0	10.0	03/01/2023	ND					
Surrogate: 1-Chlorooctane	104	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	99.7	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 02/28/2023 Sampling Date: 02/28/2023

Reported: 03/02/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Sample Received By: Project Number: 212C-MD-02413 Shalyn Rodriguez

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 4A (8'-9') (H230923-26)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	03/02/2023	ND	2.07	103	2.00	17.2		
Toluene*	<0.050	0.050	03/02/2023	ND	2.00	99.9	2.00	17.4	
Ethylbenzene*	<0.050	0.050	03/02/2023	ND	1.95	97.5	2.00	19.9	
Total Xylenes*	<0.150	0.150	03/02/2023	ND	6.15	102	6.00	20.6	
Total BTEX	: 4-Bromofluorobenzene (PID 116 % 71.5-13		03/02/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID			4						
Chloride, SM4500Cl-B			Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2000	16.0	03/01/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2023	ND	216	108	200	6.33	
DRO >C10-C28*	<10.0	10.0	03/01/2023	ND	208	104	200	7.05	
EXT DRO >C28-C36	<10.0	10.0	03/01/2023	ND					
Surrogate: 1-Chlorooctane	103 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	101 9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 02/28/2023 Sampling Date: 02/28/2023

Reported: 03/02/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Shalyn Rodriguez

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 4A (14'-15') (H230923-27)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	<pre></pre>	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/02/2023	ND	2.07	103	2.00	17.2	
Toluene*	<0.050	0.050	03/02/2023	ND	2.00	99.9	2.00	17.4	
Ethylbenzene*	<0.050	0.050	03/02/2023	ND	1.95	97.5	2.00	19.9	
Total Xylenes*	<0.150	0.150	03/02/2023	ND	6.15	102	6.00	20.6	
Total BTEX	<0.300 0.300		03/02/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID			4						
Chloride, SM4500Cl-B	14500CI-B mg/kg		Analyze	d By: AC					
Analyte	Analyte Result Reporting Li		nit Analyzed Method Blank			% Recovery	True Value QC	RPD	Qualifier
Chloride	· ·		03/01/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2023	ND	214	107	200	4.48	
DRO >C10-C28*	<10.0	10.0	03/01/2023	ND	208	104	200	6.02	
EXT DRO >C28-C36	<10.0	10.0	03/01/2023	ND					
Surrogate: 1-Chlorooctane	97.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	99.9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 02/28/2023 Sampling Date: 02/28/2023

Reported: 03/02/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Sample Received By: Project Number: 212C-MD-02413 Shalyn Rodriguez

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 4A (19'-20') (H230923-28)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	 <0.050 0.050 <0.050 0.050 <0.050 <0.150 <0.300 0.300 B mg/kg Result Reporting Limit 1800 16.0 mg/kg Result Reporting Limit <10.0 10.0 <10.0 10.0 <10.0 10.0	03/02/2023	ND	2.07	103	2.00	17.2		
Toluene*	<0.050	0.050	03/02/2023	ND	2.00	99.9	2.00	17.4	
Ethylbenzene*	<0.050	0.050	03/02/2023	ND	1.95	97.5	2.00	19.9	
Total Xylenes*	<0.150	0.150	03/02/2023	ND	6.15	102	6.00	20.6	
Total BTEX	<0.300	0.300	03/02/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID			4						
Chloride, SM4500CI-B			Analyze	d By: AC					
Analyte	nalyte Result Reporting Li		Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1800	16.0	03/01/2023 ND		432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2023	ND	214	107	200	4.48	
DRO >C10-C28*	<10.0	10.0	03/01/2023	ND	208	104	200	6.02	
EXT DRO >C28-C36	<10.0	10.0	03/01/2023	ND					
Surrogate: 1-Chlorooctane	102 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	105 9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 02/28/2023 Sampling Date: 02/28/2023

Reported: 03/02/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Sample Received By: Project Number: 212C-MD-02413 Shalyn Rodriguez

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 4A (24'-25') (H230923-29)

BTEX 8021B	mg/	'kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	Chlorooctane	03/02/2023	ND	2.07	103	2.00	17.2		
Toluene*	<0.050	0.050	03/02/2023	ND	2.00	99.9	2.00	17.4	
Ethylbenzene*	<0.050	0.050	03/02/2023	ND	1.95	97.5	2.00	19.9	
Total Xylenes*	<0.150	0.150	03/02/2023	ND	6.15	102	6.00	20.6	
Total BTEX	<0.300	0.300	03/02/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID			4						
Chloride, SM4500CI-B	mg/	/kg	Analyze	d By: AC					
Analyte			Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	784	16.0	03/01/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2023	ND	214	107	200	4.48	
DRO >C10-C28*	<10.0	10.0	03/01/2023	ND	208	104	200	6.02	
EXT DRO >C28-C36	<10.0	10.0	03/01/2023	ND					
Surrogate: 1-Chlorooctane	94.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.0	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 02/28/2023 Sampling Date: 02/28/2023

Reported: 03/02/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Shalyn Rodriguez

Applyzed By: 1H /

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 4A (29'-30') (H230923-30)

RTFY 8021R

BIEX 8021B	mg	/ kg	Anaiyze	ea By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/02/2023	ND	2.07	103	2.00	17.2	
Toluene*	<0.050	0.050	03/02/2023	ND	2.00	99.9	2.00	17.4	
Ethylbenzene*	<0.050	0.050	03/02/2023	ND	1.95	97.5	2.00	19.9	
Total Xylenes*	<0.150	0.150	03/02/2023	ND	6.15	102	6.00	20.6	
Total BTEX	<0.300 0.300		03/02/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114	% 71.5-13	4						
Chloride, SM4500CI-B	(Analyze	ed By: AC					
Analyte			Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	192	16.0	03/01/2023	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2023	ND	214	107	200	4.48	
DRO >C10-C28*	<10.0	10.0	03/01/2023	ND	208	104	200	6.02	
EXT DRO >C28-C36	<10.0	10.0	03/01/2023	ND					
Surrogate: 1-Chlorooctane	103	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	106	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 02/28/2023 Sampling Date: 02/28/2023

Reported: 03/02/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Shalyn Rodriguez

Analyzed By: JH/

Project Location: COP - EDDY COUNTY, NM

mg/kg

Sample ID: BH - 4A (34'-35') (H230923-31)

BTEX 8021B

	9,	9	7	7: 5::.,					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/02/2023	ND	2.07	103	2.00	17.2	
Toluene*	<0.050	0.050	03/02/2023	ND	2.00	99.9	2.00	17.4	
Ethylbenzene*	<0.050	0.050	03/02/2023	ND	1.95	97.5	2.00	19.9	
Total Xylenes*	<0.150	0.150	03/02/2023	ND	6.15	102	6.00	20.6	
Total BTEX	<0.300 0.300 mosfluorobenzene (PID 111 % 71.5		03/02/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	111	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	I-B mg/kg		Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	,		03/01/2023	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2023	ND	214	107	200	4.48	
DRO >C10-C28*	<10.0	10.0	03/01/2023	ND	208	104	200	6.02	
EXT DRO >C28-C36	<10.0	10.0	03/01/2023	ND					
Surrogate: 1-Chlorooctane	95.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	98.9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 02/28/2023 Sampling Date: 02/28/2023

Reported: 03/02/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Shalyn Rodriguez

Analyzed By: JH/

Project Location: COP - EDDY COUNTY, NM

mg/kg

Sample ID: BH - 4A (39'-40') (H230923-32)

BTEX 8021B

DILX GOZID	ıııg,	, kg	Andryzo	a by. 5117					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/02/2023	ND	2.07	103	2.00	17.2	
Toluene*	<0.050	0.050	03/02/2023	ND	2.00	99.9	2.00	17.4	
Ethylbenzene*	<0.050	0.050	03/02/2023	ND	1.95	97.5	2.00	19.9	
Total Xylenes*	<0.150	0.150	03/02/2023	ND	6.15	102	6.00	20.6	
Total BTEX	<0.300 0.300		03/02/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	115	% 71.5-13	4						
Chloride, SM4500CI-B			Analyze	d By: AC					
Analyte	nalyte Result Reporting L		Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	Analyte Result Reporting Li		03/01/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2023	ND	214	107	200	4.48	
DRO >C10-C28*	<10.0	10.0	03/01/2023	ND	208	104	200	6.02	
EXT DRO >C28-C36	<10.0	10.0	03/01/2023	ND					
Surrogate: 1-Chlorooctane	94.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	98.7	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Notes and Definitions

QR-04 The RPD for the BS/BSD was outside of historical limits.

BS-3 Blank spike recovery outside of lab established statistical limits, but still within method limits. Data is not adversely affected.

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

BG-1 (34*35*) BG-1 (34*35*) BG-1 (34*35*) RJANE NOTE: Lutting perclamage, calculate method for any data setting a set of any Carlos (34*35*) RJANE NOTE: Lutting perclamage, calculate method and perclamage and district network of any calculate method in the perclamage and district network of any of the state of the performance of section between perclamages and any of the state of the performance of section between perclamages and district the performance of section between the Carlos (and perclamage) and of the state of the performance of section between the Carlos (and the state of performance of section between the Carlos (and performance) and of the state of the section between the Carlos (and the state of performance) and of the state of the section between the Carlos (and the state of the section between the Carlos (and the state of the section between the Carlos (and the state of the section between the Carlos (and the state of the section between the Carlos (and the state of the state of the state of the section between the Carlos (and the state of the section between the Carlos (and the state of the section between the Carlos (and the state of the section between the Carlos (and the state of the section between the Carlos (and the state of the section between the Carlos (and the state of the section between the Carlos (and the state of the section between the Carlos (and the state of the section between the carlos (and the state of the section between the carlos (and the state of the section between the carlos (and the state of the section between the carlos (and the section between the section between the carlos (and the section between the section between the carlos (and the section	MU-1 (27-20) BG-1 (34'-35') RUMI WITE Limits well brought. Carriers leading well demonstrated or measured and carriers in label to incidental or measured and carriers arithing out of or related to the performance of the succession arithing out of or older to the performance of the succession arithing out of or older to the performance of the succession arithing out of or older to the performance of the succession arithing out of or older to the performance of the succession arithing out of or older to the performance of the succession arithing out of or older to the performance of the succession arithing out of or older to the performance of the succession arithing out of the succession arithing out of the succession are succession.	BG-1 (34*-35 BG-1 (34*-35 BG-1 (34*-35 Author Hotte: Luckiny and Dynamys. Conductor's Residing ment and Contributed and below the Endocated or consequence and Contributed and and and and and and and and and an	BG	DU-1 (47-500	X DC 1 (20:30	G BG-1 (24'-25')	7 BG-1 (19-20')	BG-1 (14'-15')	BG-1 (9'-10')		3' BG-1 (4'-5')	a BG-1 (2'-3')	BG-1 (0-1")	83	COSTONE CONTA	Sampler Name: Colton Bickerstaff	Project ocation: Eddy County New Maxico	Project Name: James E #001 Release	Project #: 212C-MD-02413	Phone #: (512)565-0190	City: Austin	Address: 8911 Capital o Texas Hwy, Suite 2310	Project Manager: Christian Llull	Company Name: Tetra Tech	(5
Date:	SCI aum		eraid or some generals famages, including without limitation, business or related to the performance of services hereunder by Cardinal, regar		2)	(3)))	3						Sample I.D.		taff	New Mexico	~ I	13 Project Owner:	0 Fax#:	State:	Hwy, Suite 2310			(575) 393-2326 FAX (575) 393-2476
	Rece	Roce	siness interuption, airess interuption of v		G	G	G	G	G	G	G	G	G	(G)RAB OR (C)OMP.							TX Zip:				M 88240
Observed Temp. "C San	Received By:	Roceived By:	one and or ten, and ten, loss of use, whether such claim	1	1	1	-	-	1	1	1	1	1	# CONTAINERS GROUNDWATER	1				Con						
Sample Condition Cool Intact		teic	used in operation or tall, shall be lead in the amount paid by the retemptions, less of use, or loss of profits incurred by client, these of whether such claim is based upon any of the above	X	X	×	×	×	X	×	X	X	ì	WASTEWATER SOIL OIL SLUDGE	MATRIX				ConocoPhillips						
Λ	1) YU	curred by client, it is a store at											OTHER:	200	Fax #:	0)S City:	Addres	Attn: C	Compa	P.O. #:		
CHECKED BY: (Initials)	0	M	s subsidiaries, abel reasons or otherwise.	X 20		X 20	4					X 20		ACID/BASE: ICE / COOL OTHER:	YEBV	,		Zin:		Address: EMAIL	Attn: Christian Llull	Company: Tetra Tech		BILL TO	THE PERSON
	RE	All			2/28/2023	2/28/2023	2/28/2023	2/28/2023	2/28/2023	2/28/2023	2/28/2023	2/28/2023	Н	SAMPLING DATE TI	CAMBI			*			ull	Tech		. 70	
Turnitourd Time: Standar Rush: Will, Standard TAT Thermometer ID #113	REMARKS:	Verbal Result:	excutary stope for negatience and any other cause											ME	5										
Standard		□ Yes mailed. Pl	pigence and an			-	-	+	+	+	-			TPH 8015M BTEX 8021B	_	_	_	_	_	_	_	_	-		
Racteria (s □ No Please provide Ema	A costs caree wat	X	X	X	×	×	×	×	×	×	X	Chloride SM4	50	0C	I-E	3							
Bacteria only Sample Condition si Inhact Observed Temp. 10		Adt e Email add	and and another	_				-		-										_	_	_		ANALY	
9, 'C Yes Yes		Add'l Phone #: l address: Chris	Devise Derroom																					ALYSIS REQUEST	
		tian.Llull@t	ase made in will	_			-	-			-					_	_	_		_			-	UEST	
Corrected Temp, "C		Add*I Phone #: address: Christian.Lluli@tetratech.com	лиш ре очентод намед илена лише in writing and received by Curdonal witten au days alter																						
		3	by Cardinal William				-																		
			orie selector			-	+	+	+	-	-		\mathbb{H}		_	_	_	_	_	_	_	_	-		

Page 23 of 26

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Delivered By: (Circle One) Sampler - UPS - Bus - Other:	Relinquished By:			Relinquished By: Colton Bickerstaff	overs shall Cardinal be liable for a efficient or successors arising to	AD E		18 E	[7]	16	S	14 1	/3 E	Ø	-	Lab I.D.	ORLABUSE ONLY	Project Location: Eddy County, New Mexico Sampler Name: Colton Bickerstaff	Project Name: James E #001 Release	Project #: 2	Phone #: (City: Austin	Address: 8911 Capital o Texas Hwy, Suite 2310	Project Manager: Christian Llull	Company Name: Tetra Tech		
	One)				olton Bickerstaff	noidental or consequental dama if of or valued to the performance	BH-2A (19'-20')	BH-2A (14'15')	BH-2A (8'-9')	BH-2A (6'-7')	BH-2A (4'-5')	BH-2A (2'-3')	BH-2A (0-1')	BG-1 (49'-50')	BG-1 (44'-45')	BG-1 (39'-40')	Sample I.D.		Iton Bickerstaff	es E #001 Release	212C-MD-02413	(512)565-0190		ital o Texas Hwy,	hristian Llull	etra Tech	(575) 39
1	Observed Temp. *C	Time:	Date:	Time: 332	Date: 2/28/23	eard that Cardiol In Bable to incidental o consequental damages, including whout frinders, bashess interruptions, has of use, or has of profits incurred by cherc, the subsidiaries. affiliates or successors arising out of or induced to the performances of services interruption by Cardinal, regardless of whether such chain is based upon any of the above subsidiari reasons or otherwise.	exclusive remedy for any claim arrang w										le I.D.		Mexico		Project Owner:	Fax#:	State:	Suite 2310			(575) 393-2326 FAX (575) 393-2476
- 6	_	_	Rec	9	Rec	regardess o	G G	G	G	G	G	G	G	G	G	G	(G)RAB OR (C)OMP.		ı				TX Zip:				93-2476
1, 1	10		Received By:	8	Received By	d whether	1	-	-	1	1	1	1	1	1	-	# CONTAINERS	1					9:				0, 0
DD	San		By:	D	By:	such clai	or lort, site		Н								GROUNDWATER WASTEWATER				Con						
ON ON ON	Sample Condition		9	3		m is base	×	×	×	×	×	×	×	×	X	X	0011				ConocoPhillips						
F 1	onditio			0		d upon ar	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0		-	-	-	_	-	-	-	_	OIL SLUDGE	2			hillips						
	5		1	1	2	y of the a	Page 1										OTHER:	ŀ	Phone	State:	city:	Ad	Att	Co	P.C		囲
Λ	C			X		thorn state	X X	×	X	X	54	×	X	×	×	×	ACID/BASE: ICE / COOL OTHER:		Phone #:	te:	Y:	dress	n: Ch	mpan	P.O. #:		
X)	CHECKED BY:			2		subsidiari od reason	7		^	^	^	^	î	^	^	î	OTHER:		1"			Address: EMAIL	Attn: Christian Llull	y: Tet		BI	
1	D BY:		0	5		s or otherwise.	2/28/2023 analyses. All claims	2/28/2023	2/28/2023	2/28/2023	2/28/2923	228/2023	128/2023	2/28/2023	2/28/2023	2/28/2023	DATE	CAN.		Zip:		IL.	Llull	Company: Tetra Tech		BILL TO	\$100 PM
Rush: MA. Section 1/AT Thermometer ID #113 Correction Factor -0.5°C	Turnaround Time:		REMARKS:	All Results are emailed.	Verbal Result:		is including those for										SAMPLING TIME	1				V					
ID #113	Standard			are email	ult: U		for negligeno	×	X	×	X	X	×				TPH 8015M	_	_	_				_			
。 □							X X	×	X	×	×	X	X				BTEX 8021B										
Casi Mad	Bacteria			Please provide Ema	□ No		X X	×	X	×	X	×	X	×	X	×	Chloride SM4	50	0CI	-B							
Oblan	Bacteria (only) Sampi			de Email			alsoever sha																			ANAI	
- C	ple Condition			il address: Christian.Llull@tetratech.com	Add'l Phone #:		all be deeme			4							-									ANALYSIS REQUEST	
				Chris	none #:		d watered or																			REQ	
			1	tian.LI	П		fess mad																			UES.	
Corrected Temp.				Uli@ter	П		in with	Г									1 8 -									7	
ลี้ กั				ratech	Ш		and feco	T				Г		П													
				,com			Med by Co	-	-	_	-	-	-	_	-	-		_		_	_	_	_	_	-		
							easied unless made in willing and received by Cardinal willian 30 days	-					_	_	_	-		_	_	_	_	_	_	_			
							is 30 days with	H				_			_		HOLD	_			_		_	_	_		

Page 24 of 26

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

		Delivered By: (Circle One) Sampler - UPS - Bus - Other:		Relinquished By:	Kelinquisneu	Dalinguished	event shall Cardinal be liable for incidental or consequental damages, including affiliation or successors which gould of or related to the performance of services.	4	400	X	2	200	84	H H	N N	25	2	Lab I.D.	Sampler Name	Project Locatio	Project Name:	Project #:	Phone #:	City: Austin	Address: 8911	Project Manage	Company Name: Tetra Tech	
		ircle One) Bus - Other:	•	Зу:	by, conton bickerstain	Relinquished By: Colton Bickerstaff		BH-4A (29'-30')	BH-4A (24'-25')	BH-4A (19'-20')	BH-4A (14'-15')	BH-4A (8'-9')	BH-4A (6'-7')	BH-4A (4'-5')	BH-4A (2'-3')	BH-4A (0-1')	BH-2A (24'-25')	Sample I.D.	Sampler Name: Colton Bickerstaff	Project Location: Eddy County, New Mexico	Project Name: James E #001 Release	212C-MD-02413	(512)565-0190		Address: 8911 Capital o Texas Hwy, Suite 2310	Project Manager: Christian Llull	e: Tetra Tech	Т.
	N.S.N.	Observed Temp. °C .	Time:	Date:	Time: 722	Date: 2/28/23	8 2 1	haise sensedy for any olden stating whether										I.D.		xico		Project Owner:	Fax#:	State: T	te 2310			
	0	5	Ц	R	7	R	ross inter-		G	G	G	G	G	G	G	G	G	(G)RAB OR (C)OMP.	1					TX Zip:				
	6	6.		Received By:	800	Pier	of wheth	G I	-	-	-	1	-	1	1	-	-	# CONTAINERS						P:				ľ
	4	708		ed By	2	d Bv	loss of us	act or bot										GROUNDWATER	1			Co						١
		Sample Condition Cool Intact		"	2		chim is b	Y V	×	×	X	×	×	×	X	×	×	WASTEWATER SOIL				ConocoPhillips						1
	1	Condi			2		of profits	8				_	_		_		_	OIL NATRIX				Philli						
		ition		1	5		nowned nany of t	arrount	_	L		L	L	L	L	L	H	OTHER:	-	7 70	S		A	A	C	P	_	4
	_				6		by client the above	Della All Died		Τ					T		T		Tax a	Phone #:	State:	City:	ddres	ttn: C	ompa	P.O. #:		
	X)	CHECI			5		its subsidi	X	×	×	×	×	×	×	×	×	×	ACID/BASE: ICE / COOL OTHER :		.99			Address: EMAIL	Attn: Christian Llull	any: Te		B	
	1	CHECKED BY:			ナ		eres, ors or otherwise.	paid by the client for analyses. All claims	2/28/2023	2/28/2023	2/28/2023	2/28/2023	2/28/2023	2/28/2023	2/28/2023	2/28/2023	2/28/2023	DATE T			Zip:		AL.	n Liuil	Company: Tetra Tech		BILL TO	
	Thermometer ID #113 Correction Factor -0.5°C	Turnaround Time: Stan Rush: N/4, Standard TAT		REMARKS:	All Results are emailed. Please provide Email address: Christian.Liuli@tetratech.com	Verbal Resu		Te including those for negliger										TIME										
	ID #113	Standard			ire email			or negligeno	×	×	×	×	×	×	×	×	×	TPH 8015M			_							
	n				ed. Plea	Yes		x and any other	×	×	×	×	×	×	×	×	×	BTEX 8021B										
		Bacteria Cool Istaci			se prov	□ No		X X	×	×	×	×	×	×	×	×	×	Chloride SM4	50	0C	I-B							
		Becteris (only) Sam d Intact Obser			ide Emai			hatsoner si		T																	ANAL	
	_	ple Condition wed Temp. "C			laddres	Add'I P		all be desired		I																	LYSIS	
	04 0 44 0 45 0 45 0 45 0 45 0 45 0 45 0				s: Chris	Add'I Phone #:																					REQUEST	
l					stian.L			riesa mad	T	T	T	Γ	Τ		Π	Γ	Τ										UEST	1
l	Corrected Temp.				E LI			e in with	T	T	T	T	Т	T	T	T	T]	
l	O. da				tratech			g and rece	t	Ť	t	t	Ť	T	T	t	T										1	
					,com			waved unless made in writing and received by Cardinal	+	t	+	+	+	+	+	+	+			_	_	_	_	_		_	1	
١								dinal vatives 30	+	$^{+}$	+	t	+	t	+	t	+				_			_	_	_	1	
								30 days are	+	+	+	+	+	+	+	+	×	HOLD	_	_	_	_	_	_	_	_	1	

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

	Delivered By: (Circle One) Sampler - UPS - Bus - Other:	Relinquished By:	Relinquished By	overt shall Cardinal be liable affiliates of successors arisin	PLEASE PARTY AND				12	35	83	8	Lab I.D.	FOR LAB USE CHLY	Sampler Name: 0	Project Location	Project Name: Ja	Project #:	Phone #:	City: Austin	Address: 8911 C	Project Manager: Christian Llull	Company Name: Tetra Tech
	le One) us - Other:		Relinquished By: Colton Bickerstaff	sent et all Custinal be liable for insidental or consequential damages efficies or successors arising out of or reliabel to the performance of					BH-4A (49'-50')	BH-4A (44'-45')	BH-4A (39'-40')	BH-4A (34'-35')	Sample I.D.		Sampler Name: Colton Bickerstaff	Project Location: Eddy County, New Mexico	Project Name: James E #001 Release	212C-MD-02413	(512)565-0190		Address: 8911 Capital o Texas Hwy, Suite 2310	Christian Llull	Tetra Tech
	Observed Temp. "C Corrected Temp. "C U	Time:	Date: 2/28/23	The second of th									le I.D.			Mexico	0	Project Owner:	Fax#:	State:	Suite 2310		
	NE	7	2	iness inter ingardes	Н	+	+	-	G	G	G	G	(G)RAB OR (C)OMP.	4						TX Z			
	Cu	Received By:	Received By	ruptions.	Н	+	+	+	1	3 1	j 1	3 1	# CONTAINERS	+						Zip:			
	_\	ed B	E B	bas of use, or bother such claim is		+	+					Н	GROUNDWATER	1				C					
	Sample Condition Cool Intact Office Office No O No.	*	9/2	use, or k									WASTEWATER					ConocoPhillips					
	mple Cond of Intact		2	based :		+	\perp	4	×	×	×	-	SOIL SOIL	MATR				oPhi					
	e n/m dition		0	of upon any		+	+			Т			SLUDGE	X				llips	-				
			5	of the a		#	=						OTHER:	1	Fax #:	Pho	State:	City:	Ado	Attı	Col	P.O. #:	
(\times		2	client, its	Н	+	+	4	_		- 2		ACID/BASE: ICE / COOL OTHER :	Sago	#	Phone #:	te:	7.	dress	n: Ch	mpar	.#:	
	E STEC		6	subsidia fod rese		+			×	X	î	Ŷ	OTHER:	PRV					Address: EMAIL	ristia	y: Te		B
	(Initials)	0	5	aries. ons or otherwise.	The state of the s				2/28/2023	2/28/2023	2/28/2023	2/28/2023	DATE	SAM			Zip:		AIL	Attn: Christian Llull	Company: Tetra Tech		BILL TO
	Turnaround Time: Standar Rush: WA, Invaded TAT Thermometer ID #113 Correction Factor -0.5°C	KEMAKAS	Verbal Result:		has been seen and any other states								TIME TIME	PLING									
	Standard		are email		Н	+	+	+	×	X	×	×	TPH 8015M	_			_		-				
	· · · · · · · · · · · · · · · · · · ·		nailed. Plea				T		×	X	×	×	BTEX 8021B		Ī								
	Bechria Cool Intact		Please provide			İ			×	×	×	×	Chloride SM4	15	00	CI-	В						
	(only) Sa		9		allufaronari alta																		ANAL
	arved Temp. 'C		Add'I Phone #: address: Chris																				YSIS
1	# 0 # 1		AddT Phone #: ail address: Christian.Lluli@tetratech.com																				ALYSIS REQUEST
			an.Liuil			1	+		L	L	L										_	_	EST
	Corrected Temp. "C		@tetrate		- Indiana	_	+	-	-		L			_	_		_	_		_	_	_	
	a		ch.com		The state of the s	_	-		-				*		_		_						
					shall be described unliked anothin to selfine and received by Cardinal within 30 days offer	+	+	+			_			_	_	_	_		_		_		
					30 days ofte	+	+	-	X	X	-	-	HOLD	_	_	_	_	_	_	_	_		

Page 26 of 26

March 27, 2023

RYAN DICKERSON
TETRA TECH
901 WEST WALL STREET , STE 100
MIDLAND, TX 79701

RE: JAMES E #001 RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 03/22/23 14:27.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keene

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

TETRA TECH RYAN DICKERSON 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 10 (0-1') (H231321-01)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/24/2023	ND	2.25	112	2.00	7.82	
Toluene*	<0.050	0.050	03/24/2023	ND	2.24	112	2.00	6.91	
Ethylbenzene*	<0.050	0.050	03/24/2023	ND	2.20	110	2.00	6.76	
Total Xylenes*	<0.150	0.150	03/24/2023	ND	6.84	114	6.00	6.00	
Total BTEX	<0.300	0.300	03/24/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.9	% 71.5-13	4						
Chloride, SM4500CI-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	288	16.0	03/27/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	183	91.6	200	4.68	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	188	94.2	200	6.26	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	74.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	76.9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Analyzed By: JH/

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 10 (1'-2') (H231321-02)

BTEX 8021B

	<u> </u>			· , · ,					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/24/2023	ND	2.25	112	2.00	7.82	
Toluene*	<0.050	0.050	03/24/2023	ND	2.24	112	2.00	6.91	
Ethylbenzene*	<0.050	0.050	03/24/2023	ND	2.20	110	2.00	6.76	
Total Xylenes*	<0.150	0.150	03/24/2023	ND	6.84	114	6.00	6.00	
Total BTEX	<0.300	0.300	03/24/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.5	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	352	16.0	03/27/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	183	91.6	200	4.68	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	188	94.2	200	6.26	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	84.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.1	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Analytical Results For:

TETRA TECH RYAN DICKERSON 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Project Number: Sample Received By: 212C-MD-02413 Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 10 (2'-3') (H231321-03)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/24/2023	ND	2.25	112	2.00	7.82	
Toluene*	< 0.050	0.050	03/24/2023	ND	2.24	112	2.00	6.91	
Ethylbenzene*	<0.050	0.050	03/24/2023	ND	2.20	110	2.00	6.76	
Total Xylenes*	< 0.150	0.150	03/24/2023	ND	6.84	114	6.00	6.00	
Total BTEX	<0.300	0.300	03/24/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.9	% 71.5-13	4						
Chloride, SM4500CI-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	464	16.0	03/27/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	183	91.6	200	4.68	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	188	94.2	200	6.26	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	87.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	91.4	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Analyzed By: 1H /

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 10 (3'-4') (H231321-04)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	a By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/24/2023	ND	2.25	112	2.00	7.82	
Toluene*	<0.050	0.050	03/24/2023	ND	2.24	112	2.00	6.91	
Ethylbenzene*	<0.050	0.050	03/24/2023	ND	2.20	110	2.00	6.76	
Total Xylenes*	<0.150	0.150	03/24/2023	ND	6.84	114	6.00	6.00	
Total BTEX	<0.300	0.300	03/24/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1330	16.0	03/27/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	183	91.6	200	4.68	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	188	94.2	200	6.26	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	85.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	89.2	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Analyzed By: JH/

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 11 (0-1') (H231321-05)

BTEX 8021B

Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/24/2023	ND	2.25	112	2.00	7.82	
Toluene*	<0.050	0.050	03/24/2023	ND	2.24	112	2.00	6.91	
Ethylbenzene*	<0.050	0.050	03/24/2023	ND	2.20	110	2.00	6.76	
Total Xylenes*	<0.150	0.150	03/24/2023	ND	6.84	114	6.00	6.00	
Total BTEX	<0.300	0.300	03/24/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.5	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	592	16.0	03/27/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	183	91.6	200	4.68	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	188	94.2	200	6.26	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	85.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	91.6	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey & Keene

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 11 (1'-2') (H231321-06)

BTEX 8021B	mg	/kg	Analyze	ed By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/24/2023	ND	2.25	112	2.00	7.82	
Toluene*	<0.050	0.050	03/24/2023	ND	2.24	112	2.00	6.91	
Ethylbenzene*	<0.050	0.050	03/24/2023	ND	2.20	110	2.00	6.76	
Total Xylenes*	<0.150	0.150	03/24/2023	ND	6.84	114	6.00	6.00	
Total BTEX	<0.300	0.300	03/24/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1150	16.0	03/27/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	183	91.6	200	4.68	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	188	94.2	200	6.26	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	84.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.7	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey & Keene

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Analyzed By: JH

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 11 (2'-3') (H231321-07)

BTEX 8021B

	9,	9	7	7: 5::					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2023	ND	2.13	107	2.00	14.0	
Toluene*	<0.050	0.050	03/25/2023	ND	2.34	117	2.00	14.1	
Ethylbenzene*	<0.050	0.050	03/25/2023	ND	2.44	122	2.00	12.5	
Total Xylenes*	<0.150	0.150	03/25/2023	ND	7.42	124	6.00	12.5	
Total BTEX	<0.300	0.300	03/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1840	16.0	03/27/2023	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	183	91.6	200	4.68	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	188	94.2	200	6.26	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	89.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.1	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Analyzed By: JH

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 11 (3'-4') (H231321-08)

BTEX 8021B

DILX GOZID	11197	K9	Allulyzo	.u by. 511					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2023	ND	2.13	107	2.00	14.0	
Toluene*	<0.050	0.050	03/25/2023	ND	2.34	117	2.00	14.1	
Ethylbenzene*	<0.050	0.050	03/25/2023	ND	2.44	122	2.00	12.5	
Total Xylenes*	<0.150	0.150	03/25/2023	ND	7.42	124	6.00	12.5	
Total BTEX	<0.300	0.300	03/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	'kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1880	16.0	03/27/2023	ND	432	108	400	3.64	
TPH 8015M	mg,	'kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	183	91.6	200	4.68	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	188	94.2	200	6.26	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	94.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.1	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 12 (0-1') (H231321-09)

BTEX 8021B	mg	/kg	Analyze	ed By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2023	ND	2.13	107	2.00	14.0	
Toluene*	<0.050	0.050	03/25/2023	ND	2.34	117	2.00	14.1	
Ethylbenzene*	<0.050	0.050	03/25/2023	ND	2.44	122	2.00	12.5	
Total Xylenes*	<0.150	0.150	03/25/2023	ND	7.42	124	6.00	12.5	
Total BTEX	<0.300	0.300	03/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	115	% 71.5-13	4						
Chloride, SM4500CI-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	03/27/2023	ND	432	108	400	3.64	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	183	91.6	200	4.68	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	188	94.2	200	6.26	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	91.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.0	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Freene

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Analyzed By: JH

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 12 (1'-2') (H231321-10)

BTEX 8021B

DILX GOZID	ıııg,	, kg	Allulyzo	.u Dy. 311					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2023	ND	2.13	107	2.00	14.0	
Toluene*	<0.050	0.050	03/25/2023	ND	2.34	117	2.00	14.1	
Ethylbenzene*	<0.050	0.050	03/25/2023	ND	2.44	122	2.00	12.5	
Total Xylenes*	<0.150	0.150	03/25/2023	ND	7.42	124	6.00	12.5	
Total BTEX	<0.300	0.300	03/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	124	% 71.5-13	4						
Chloride, SM4500CI-B	mg	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	672	16.0	03/27/2023	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	183	91.6	200	4.68	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	188	94.2	200	6.26	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	87.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	89.8	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Analyzed By: JH

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 12 (2'-3') (H231321-11)

BTEX 8021B

	91	9	7	7: 5::					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2023	ND	2.13	107	2.00	14.0	
Toluene*	<0.050	0.050	03/25/2023	ND	2.34	117	2.00	14.1	
Ethylbenzene*	<0.050	0.050	03/25/2023	ND	2.44	122	2.00	12.5	
Total Xylenes*	<0.150	0.150	03/25/2023	ND	7.42	124	6.00	12.5	
Total BTEX	<0.300	0.300	03/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg/	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1310	16.0	03/27/2023	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	183	91.6	200	4.68	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	188	94.2	200	6.26	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	82.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	84.2	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH RYAN DICKERSON 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Project Number: Sample Received By: 212C-MD-02413 Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 12 (3'-4') (H231321-12)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2023	ND	2.13	107	2.00	14.0	
Toluene*	<0.050	0.050	03/25/2023	ND	2.34	117	2.00	14.1	
Ethylbenzene*	<0.050	0.050	03/25/2023	ND	2.44	122	2.00	12.5	
Total Xylenes*	<0.150	0.150	03/25/2023	ND	7.42	124	6.00	12.5	
Total BTEX	<0.300	0.300	03/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1740	16.0	03/27/2023	ND	432	108	400	3.64	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	183	91.6	200	4.68	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	188	94.2	200	6.26	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	88.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	91.2	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 13 (0-1') (H231321-13)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2023	ND	2.13	107	2.00	14.0	
Toluene*	<0.050	0.050	03/25/2023	ND	2.34	117	2.00	14.1	
Ethylbenzene*	<0.050	0.050	03/25/2023	ND	2.44	122	2.00	12.5	
Total Xylenes*	<0.150	0.150	03/25/2023	ND	7.42	124	6.00	12.5	
Total BTEX	<0.300	0.300	03/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	118	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	384	16.0	03/27/2023	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	183	91.6	200	4.68	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	188	94.2	200	6.26	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	84.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	87.9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Applyzod By: 14

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 13 (1'-2') (H231321-14)

RTFY 8021R

BIEX 8021B	mg	/ kg	Anaiyze	а ву: ЈН					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2023	ND	2.13	107	2.00	14.0	
Toluene*	<0.050	0.050	03/25/2023	ND	2.34	117	2.00	14.1	
Ethylbenzene*	<0.050	0.050	03/25/2023	ND	2.44	122	2.00	12.5	
Total Xylenes*	<0.150	0.150	03/25/2023	ND	7.42	124	6.00	12.5	
Total BTEX	<0.300	0.300	03/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	117	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	336	16.0	03/27/2023	ND	432	108	400	3.64	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	183	91.6	200	4.68	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	188	94.2	200	6.26	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	86.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.2	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH RYAN DICKERSON 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Project Number: Sample Received By: 212C-MD-02413 Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 13 (2'-3') (H231321-15)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2023	ND	2.13	107	2.00	14.0	
Toluene*	<0.050	0.050	03/25/2023	ND	2.34	117	2.00	14.1	
Ethylbenzene*	<0.050	0.050	03/25/2023	ND	2.44	122	2.00	12.5	
Total Xylenes*	<0.150	0.150	03/25/2023	ND	7.42	124	6.00	12.5	
Total BTEX	<0.300	0.300	03/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1040	16.0	03/27/2023	ND	432	108	400	3.64	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	183	91.6	200	4.68	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	188	94.2	200	6.26	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	88.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.0	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 13 (3'-4') (H231321-16)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2023	ND	2.13	107	2.00	14.0	
Toluene*	<0.050	0.050	03/25/2023	ND	2.34	117	2.00	14.1	
Ethylbenzene*	<0.050	0.050	03/25/2023	ND	2.44	122	2.00	12.5	
Total Xylenes*	<0.150	0.150	03/25/2023	ND	7.42	124	6.00	12.5	
Total BTEX	<0.300	0.300	03/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	120	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1250	16.0	03/27/2023	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	185	92.7	200	14.2	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	183	91.7	200	9.94	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	90.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	101	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Applyzod By: 14

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 14 (0-1') (H231321-17)

RTFY 8021R

B1EX 8021B	mg	/ kg	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2023	ND	2.13	107	2.00	14.0	
Toluene*	<0.050	0.050	03/25/2023	ND	2.34	117	2.00	14.1	
Ethylbenzene*	<0.050	0.050	03/25/2023	ND	2.44	122	2.00	12.5	
Total Xylenes*	<0.150	0.150	03/25/2023	ND	7.42	124	6.00	12.5	
Total BTEX	<0.300	0.300	03/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	896	16.0	03/27/2023	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	185	92.7	200	14.2	
DRO >C10-C28*	144	10.0	03/24/2023	ND	183	91.7	200	9.94	
EXT DRO >C28-C36	22.2	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	88.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	111	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH RYAN DICKERSON 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Applyzod By: 14

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 14 (1'-2') (H231321-18)

RTFY 8021R

BIEX 8021B	mg	/ kg	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2023	ND	2.13	107	2.00	14.0	
Toluene*	<0.050	0.050	03/25/2023	ND	2.34	117	2.00	14.1	
Ethylbenzene*	<0.050	0.050	03/25/2023	ND	2.44	122	2.00	12.5	
Total Xylenes*	<0.150	0.150	03/25/2023	ND	7.42	124	6.00	12.5	
Total BTEX	<0.300	0.300	03/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	121	% 71.5-13	4						
Chloride, SM4500CI-B	mg	/kg	Analyze	Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2280	16.0	03/27/2023	ND	432	108	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	185	92.7	200	14.2	
DRO >C10-C28*	695	10.0	03/24/2023	ND	183	91.7	200	9.94	
EXT DRO >C28-C36	192	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	83.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	161	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Applyzod By: 14

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 14 (2'-3') (H231321-19)

RTFY 8021R

B1EX 8021B	mg	/кд	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2023	ND	2.13	107	2.00	14.0	
Toluene*	<0.050	0.050	03/25/2023	ND	2.34	117	2.00	14.1	
Ethylbenzene*	<0.050	0.050	03/25/2023	ND	2.44	122	2.00	12.5	
Total Xylenes*	<0.150	0.150	03/25/2023	ND	7.42	124	6.00	12.5	
Total BTEX	<0.300	0.300	03/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	117	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5520	16.0	03/27/2023	ND	432	108	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	185	92.7	200	14.2	
DRO >C10-C28*	2490	10.0	03/24/2023	ND	183	91.7	200	9.94	
EXT DRO >C28-C36	606	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	85.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	145	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Analyzed By: JH

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 14 (3'-4') (H231321-20)

BTEX 8021B

BIEX 8021B	ilig/	, kg	Allalyze	u by. Jn					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2023	ND	2.13	107	2.00	14.0	
Toluene*	<0.050	0.050	03/25/2023	ND	2.34	117	2.00	14.1	
Ethylbenzene*	<0.050	0.050	03/25/2023	ND	2.44	122	2.00	12.5	
Total Xylenes*	<0.150	0.150	03/25/2023	ND	7.42	124	6.00	12.5	
Total BTEX	<0.300	0.300	03/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.8	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4320	16.0	03/27/2023	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	185	92.7	200	14.2	
DRO >C10-C28*	889	10.0	03/24/2023	ND	183	91.7	200	9.94	
EXT DRO >C28-C36	168	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	101	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	185	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Analytical Results For:

TETRA TECH RYAN DICKERSON 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 10 E (0-1') (H231321-21)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2023	ND	2.13	107	2.00	14.0	
Toluene*	<0.050	0.050	03/25/2023	ND	2.34	117	2.00	14.1	
Ethylbenzene*	<0.050	0.050	03/25/2023	ND	2.44	122	2.00	12.5	
Total Xylenes*	<0.150	0.150	03/25/2023	ND	7.42	124	6.00	12.5	
Total BTEX	<0.300	0.300	03/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 %	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2400	16.0	03/27/2023	ND	432	108	400	3.64	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	185	92.7	200	14.2	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	183	91.7	200	9.94	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	84.0 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	92.6	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 10 W (0-1') (H231321-22)

BTEX 8021B	mg	/kg	Analyze	ed By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2023	ND	2.13	107	2.00	14.0	
Toluene*	<0.050	0.050	03/25/2023	ND	2.34	117	2.00	14.1	
Ethylbenzene*	< 0.050	0.050	03/25/2023	ND	2.44	122	2.00	12.5	
Total Xylenes*	<0.150	0.150	03/25/2023	ND	7.42	124	6.00	12.5	
Total BTEX	<0.300	0.300	03/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	115	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	03/27/2023	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	185	92.7	200	14.2	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	183	91.7	200	9.94	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	79.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	86.1	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Analyzed By: JH

Project Location: COP - EDDY COUNTY, NM

mg/kg

Sample ID: AH - 11 E (0-1') (H231321-23)

BTEX 8021B

DILX GOZID	11197	, kg	Allulyzo	u by. 511					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2023	ND	2.13	107	2.00	14.0	
Toluene*	<0.050	0.050	03/25/2023	ND	2.34	117	2.00	14.1	
Ethylbenzene*	<0.050	0.050	03/25/2023	ND	2.44	122	2.00	12.5	
Total Xylenes*	<0.150	0.150	03/25/2023	ND	7.42	124	6.00	12.5	
Total BTEX	<0.300	0.300	03/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	976	16.0	03/27/2023	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	185	92.7	200	14.2	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	183	91.7	200	9.94	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	85.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	91.5	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Analyzed By: JH

Project Location: COP - EDDY COUNTY, NM

mg/kg

Sample ID: AH - 11 W (0-1') (H231321-24)

BTEX 8021B

DILX GOZID	ıııg,	, kg	Allulyzo	.u by. 511					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2023	ND	2.13	107	2.00	14.0	
Toluene*	<0.050	0.050	03/25/2023	ND	2.34	117	2.00	14.1	
Ethylbenzene*	<0.050	0.050	03/25/2023	ND	2.44	122	2.00	12.5	
Total Xylenes*	<0.150	0.150	03/25/2023	ND	7.42	124	6.00	12.5	
Total BTEX	<0.300	0.300	03/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	119	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	03/27/2023	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	185	92.7	200	14.2	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	183	91.7	200	9.94	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	87.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.6	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keens

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 12 E (0-1') (H231321-25)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2023	ND	2.13	107	2.00	14.0	
Toluene*	<0.050	0.050	03/25/2023	ND	2.34	117	2.00	14.1	
Ethylbenzene*	<0.050	0.050	03/25/2023	ND	2.44	122	2.00	12.5	
Total Xylenes*	<0.150	0.150	03/25/2023	ND	7.42	124	6.00	12.5	
Total BTEX	<0.300	0.300	03/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	03/27/2023	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	185	92.7	200	14.2	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	183	91.7	200	9.94	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	91.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	98.0	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Analyzed By: JH

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 12 W (0-1') (H231321-26)

BTEX 8021B

DIEX 6021B	ilig	/ kg	Allalyze	u by. Jn					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/25/2023	ND	2.13	107	2.00	14.0	
Toluene*	<0.050	0.050	03/25/2023	ND	2.34	117	2.00	14.1	
Ethylbenzene*	<0.050	0.050	03/25/2023	ND	2.44	122	2.00	12.5	
Total Xylenes*	<0.150	0.150	03/25/2023	ND	7.42	124	6.00	12.5	
Total BTEX	<0.300	0.300	03/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	111	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	832	16.0	03/27/2023	ND	432	108	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	185	92.7	200	14.2	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	183	91.7	200	9.94	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	115	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	123	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keens

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 13 E (0-1') (H231321-27)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/24/2023	ND	2.01	101	2.00	1.25	
Toluene*	<0.050	0.050	03/24/2023	ND	2.03	102	2.00	0.780	
Ethylbenzene*	<0.050	0.050	03/24/2023	ND	2.03	101	2.00	0.839	
Total Xylenes*	<0.150	0.150	03/24/2023	ND	6.10	102	6.00	1.22	
Total BTEX	<0.300	0.300	03/24/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1220	16.0	03/27/2023	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	185	92.7	200	14.2	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	183	91.7	200	9.94	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	79.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	86.5	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Analyzed By: JH/

Project Location: COP - EDDY COUNTY, NM

mg/kg

Sample ID: AH - 13 W (0-1') (H231321-28)

BTEX 8021B

	<u> </u>								
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/24/2023	ND	2.01	101	2.00	1.25	
Toluene*	<0.050	0.050	03/24/2023	ND	2.03	102	2.00	0.780	
Ethylbenzene*	<0.050	0.050	03/24/2023	ND	2.03	101	2.00	0.839	
Total Xylenes*	<0.150	0.150	03/24/2023	ND	6.10	102	6.00	1.22	
Total BTEX	<0.300	0.300	03/24/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	288	16.0	03/27/2023	ND	416	104	400	7.41	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	185	92.7	200	14.2	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	183	91.7	200	9.94	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	85.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.3	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keens

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Analyzed By: JH/

Project Location: COP - EDDY COUNTY, NM

mg/kg

Sample ID: AH - 14 E (0-1') (H231321-29)

BTEX 8021B

	9,	9	7	7: 5::.,					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/24/2023	ND	2.01	101	2.00	1.25	
Toluene*	<0.050	0.050	03/24/2023	ND	2.03	102	2.00	0.780	
Ethylbenzene*	<0.050	0.050	03/24/2023	ND	2.03	101	2.00	0.839	
Total Xylenes*	<0.150	0.150	03/24/2023	ND	6.10	102	6.00	1.22	
Total BTEX	<0.300	0.300	03/24/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	03/27/2023	ND	416	104	400	7.41	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	185	92.7	200	14.2	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	183	91.7	200	9.94	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	84.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.1	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH RYAN DICKERSON 901 WEST WALL STREET , STE 100MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 03/22/2023 Sampling Date: 03/22/2023

Reported: 03/27/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 14 W (0-1') (H231321-30)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/24/2023	ND	2.01	101	2.00	1.25	
Toluene*	<0.050	0.050	03/24/2023	ND	2.03	102	2.00	0.780	
Ethylbenzene*	<0.050	0.050	03/24/2023	ND	2.03	101	2.00	0.839	
Total Xylenes*	<0.150	0.150	03/24/2023	ND	6.10	102	6.00	1.22	
Total BTEX	<0.300	0.300	03/24/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	544	16.0	03/27/2023	ND	416	104	400	7.41	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/24/2023	ND	185	92.7	200	14.2	
DRO >C10-C28*	<10.0	10.0	03/24/2023	ND	183	91.7	200	9.94	
EXT DRO >C28-C36	<10.0	10.0	03/24/2023	ND					
Surrogate: 1-Chlorooctane	87.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.2	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
BS-3	Blank spike recovery outside of lab established statistical limits, but still within method limits. Data is not adversely affected.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client; is subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keene

CARDINAL Laboratories

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Company Name: Tetra Tech							_			-						-	-			
									_	BILL TO					ANALYS	YSIS REQUEST	UEST			
Project Manager: Ryan Dickerson	son						70	P.O. #:	14						_			-		
Address: 8911 Capital o Texas Hwy, Suite 2310	Hwy, Suite 2310						0	omp	any:	Company: Tetra Tech		_						_		
City: Austin	State: TX	Zip:	**				A	ttn: F	tyan	Attn: Ryan Dickerson		_			_			_		
Phone #: (512)565-0190	90 Fax#:						A	ddre	Address: EMAIL	MAIL		_						_		
Project #: 212C-MD-02413	1413 Project Owner:			Cor	ConocoPhillips	hillip	SC	City:				_			_			_		
Project Name: James E #001 Release	Release							State:		Zip:				В	_					
Project Location: Eddy County, NM	y, NM						P	Phone #:	31:					CI-	_					
Sampler Name: Colton Bickerstaff	staff						77	Fax #:				_		00	_	-				
CHITAGE CHITA		1		П	MA	MATRIX	1	PRE	PRESERV.	H	SAMPLING	_		45	_					
S. S.	Sample I.D.)RAB OR (C)OMP.	CONTAINERS	ROUNDWATER	ASTEWATER		UDGE HER:	ID/BASE:	E/COOL HER:			PH 8015M	TEX 80211	chloride SM						
/ AH-10 (0-1)	9	G		\rightarrow	_		\rightarrow			3/22/2023		×	×	×						
Z AH-10 (1'-2")	2")	G	-		×		4.		×	3/22/2023		×	X	×						
3 AH-10 (2:-3')	35	G	-		X				×	3/22/2023		×	×	×						
Q AH-10 (3'-4')	(1)	G	-		X				×	3/22/2023		X	X	×						
< AH-11 (0-1')	(5)	G	1		X		_		X	3/22/2023		X	X	X						
6 AH-11 (1:-2")	2")	G	1		X				×	3/22/2023		X	×	×						
7 AH-11 (2'-3")	3')	G	1		X		_		×	3/22/2023		X	×	X	_					
8 AH-11 (3'4")	45	G	-		X		H		X	3/22/2023		X	X	X						
7 AH-12 (0-1'))	G	1		X		-		×	3/22/2023		×	X	×						
/o AH-12 (1'-2')	NH-12 (1'-2')	G	1	of or total or	X	8		N D	X	X 3/22/2023 X X X Sent to the analysis. All chims including thate the negligence and any other causes	ins including those !	X	X	X X	ner shall	be doorred waived	uniess made ir	writing and rece	valued unless made in writing and received by Cardinal within 30 days after	With 00 days at
d shall Cardinal be liable for incidental or consequences or successors arising out of or related to the	ent that Carried is lead for incidental or consequental sampse, including willout imitation; bashnass interruptions, leas of use, or leas of profits incurred by client, its substitutions are consequent as a consequent and of the performance of services inervated by Cardinal, inguitidas of whether such client is based upon any of the above stated imissions of otherwise.	gardiess o	futethe	ss of us	arris bas	of posts	any of S	by client	atided in	sideries.										
Relinquished By: Colton Bickerstaff	erstaff	Rec	Received By	B		7	1	A		The state of the s	Verbal Result: ☐ Yes ☐ No Add'! Phone #: Aff Results are emailed. Please provide Email address: Ryan.Dickerson@tetratech.com	R: O	Yes led, Ple	□ No ase provide	Email add	d'I Phone f dress: Rya	n.Dickers	on@tetrate	ch.com	
Relinquished By:	Date: Time:	Rec	Received By:	d By:			1	9		1	REMARKS:									
Delivered By: (Circle One) Sampler - UPS - Bus - Other:	Observed Temp. "C Corrected Temp. "C	120	1 - 00	D 8 8	Sample Condition Cool Intact	tact	lon		0 = 2	CHECKED BY: (Initials)	Turnaround Time: Standau Rush: NA Sumbard TAT Thermometer ID #113	Stand TAT ID #113	Standard	Bacteria (orby) Sample Cool Infact Observed	oly) Sample Co Observed Te	Condition d Temps, "C	760			
EORMAN 3 2 10/07/24																	No. See	A dissert manager		

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

	Delivered By: (Circle One) Sampler - UPS - Bus - O		Relinquished By:	1	Relinquished	PLEASE NOTE: Lummy I exert shall Cardinal be I affiliates or successors a	2		1		/	-					H23/32/	ampler Name	roject Location	roject Name:	Project #:	Phone #:	City: Austin	ddress: 8911	roject Manage	Company Name: Tetra Tech	
	Delivered By: (Circle One) Sampler - UPS - Bus - Other:		By:	1	Relinquished By: Collen Bickerstaff	AUDISE ROTE. Listing the burnish. Corporal many an arrow and an arrow of the second process of profits incurred by clearl, its subsections. Next had Corporal to be the processor of consequents of many including valued inflation. Exceeds interruptions, less of use, or less of profits incurred by clearl, its subsections. Autiliates or successors arising out of or related to the performance of services horsunder by Carolinal, regardless of whether such claim is based upon any of the above stated resource or difference or the control of the second sections.	O AH-14 (3'-4")	9 AH-14 (2'-3")	8 AH-14 (1'-2')	7 AH-14 (0-1')	6 AH-13 (3'-4')	S AH-13 (2'-3')	_		Z AH-12 (3'-4')	AH-12 (2'-3')	Sample I.D.	Sampler Name: Colton Bickerstaff	Project Location: Eddy County, NM	Project Name: James E #001 Release	212C-MD-02413	(512)565-0190		Address: 8911 Capital o Texas Hwy, Suite 2310	Project Manager: Ryan Dickerson	e: Tetra Tech	
	Corrected Temp. *C	Time:	Date:	Time 437	Date: 3/22/23	ges, including without limitation, business a of services horsunder by Cardinal, reg	(e I.D.				Project Owner:	Fax#:	State: TX	uite 2310			(5/5) 393-2326 FAX (5/5) 383-24/6
;	700	Н	Rec	0	Rec	a interrupt	G	G	G	G	G	G	G	G	G	G	(G)RAE OR (C)OMP.						Zip:				24/0
	(Received By:	1	Received By:	sons, but	discontract or total by it	-	-	-	-	-	1		-	-	# CONTAINERS						Ĩ				
	₽ 8 8		By:	N	Ву:	such de	25	\vdash	-	-	-	-	L	_	-	-	GROUNDWATER WASTEWATER				Conc						١
No No	Cool Intact			1	,	or loss of	×	×	×	×	×	×	×	×	×	×	SOIL A				coPh						
8	Sample Condition Cool Intact			6		profits in	200	F	-	F	F	F	F	F	F	F	OIL SLUDGE				ConocoPhillips						
	9			1		my of the	and to the amount paid by the					E					OTHER:	rax #:	Ph	State:		Ado	Attr	Cor	P.O. #:		1
				A		about th	by Dw. cli	1	J	U	J	U	V	V	V	V	ACID/BASE:	31	Phone #:	te:	Y.	Address: EMAIL	n: Rya	mpan	#		8
1	(Init			1		and rem	X Sard Str. Com	×	×	×	×	×	×	1	×	ŕ	OTHER:	100	"			EM4	an Dic	y: Te		BI	
,	(Initials)			X	111	ons of otherwise.	X 3/22/2023	3/22/2023	3/22/2023	3/22/2023	3/22/2023	3/22/2023	3/22/2023	3/22/2023	3/22/2023	3/22/2025	DATE T	campi		Zip:		1	Attn: Ryan Dickerson	Company: Tetra Tech		BILL TO	
Correction Factor -0.5°C	Flush: N/A, Stan		REMARKS:		Verbal Result:		ms including those for										TIME	NO.									
ctor 40	N N				re ema		Y negligence	×	×	×	×	×	×	×	×	×	TPH 8015M										
S.C.	- I				□ Yes nailed, Ple		nce and any other	< ×	×	×	×	×	×	×	×	×	BTEX 8021B										
	8				□ No		offer cause	< ×	×	×	×	×	×	×	×	×	Chloride SM4	50	0C	I-B							
	Bacteria (only) Samp				vide Ema		virialization is	T	T	T	T	T	T	T	T	T										ANAL	
	ryad Temp. 'C						shall be doesned	\dagger	+	t	+	+	t	t	T	t								Ī		LYSI	
0 5	1 6 8				Add'l Phone #: address: Ryan		emed was	Ť	Ť	t	Ť	Ť	T	T	T	T										YSIS REQUEST	
0 ** 0 **	1				yan.D		ed unles	+	+	+	+	+	+	+	+	+		_	_	_	_	_	_	_	-	200	
					ickers		s made in	1	1	1	1	+	1	1	+	1		_	_	_		_	_	_	_	TS	
Conscled Temp. *C					on@te		with a	1				1		1	1	1											1
ď					Add'l Phone #: address: Ryan,Dickerson@tetratech.com		nd receive																				
					n.com		waived unless made in writing and received by Cardinal within 30 days when	+	+	+	+	+	1	+	+	+										1	
							Sinal Wife's	+	+	+	+	+	+	+	+	+		_	_	_	_		_		_	1	
							n 30 days	1	1	1	1	1	1	1	1	1			_	_		_	_	_	_	-	
		_	_		_	1	after completion of the appl	1	1	1	1	\perp	1	1	\perp	1		_	_	_	_	_	_	_			Ц

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

CARDINALLaboratories

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

(575) 393: Company Name: Tetra Tech	(575) 393-2326 FAX (575) 393-2476		віст то		ANALYSIS REQUEST
Project Manager: Ryan Dickerson			P.O.#:		
Address: 8911 Capital o Texas Hwy, Suite 2310	ite 2310		Company: Tetra Tech		_
City: Austin	State: TX Zip:		Attn: Ryan Dickerson		
(512)565-0190	Fax#:		Address: EMAIL		
Project #: 212C-MD-02413	Project Owner:	ConocoPhillips	City:		
Project Name: James E #001 Release			State: Zip:		В
Project Location: Eddy County, NM			Phone #:		CI
Sampler Name: Colton Bickerstaff			Fax#:		600
		L	200		50
Lab I.D.	AP.	MATRIX	PRESERV. SAMPLING	М	5M4:
Sample I.D.	(G)RAB OR (C)OM	# CONTAINERS GROUNDWATER WASTEWATER SOIL OIL SLUDGE	OTHER: ACID/BASE: ICE/COOL OTHER:	TPH 8015	Chloride S
2/ AH-10E (0-1")	G	×		H	×
32 AH-10W (0-1')	G	1 X I	X 3/22/2023	X X	×
35 AH-11E (0-1')	G	1 X I	X 3/22/2023	X X	X
(I-0) MII-HV / DE	G	1 X I	X 3/22/2023	X X	X
	G	1 X	X 3/22/2023	X X	X
-	G	1 X	X 3222003	X X	×
	G	1 X	X 3/22/2023	X X	X
38 AH-13W (0-1)	G	1 X	X 3/22/2023	XX	×
29 AH-14E (0-1")	G	1 X	X 3/22/2023	XX	×
	G	1 X	X 30202023	X X	Х
PLEASE NOTE: Leady and Dismaps. Consol's housing and other sections metally any claims assurptance benefit invasitate for the invitable its executages by the claims by the section of the consequent of dismaps, a relating by the metall invitable invitable invitable in the property of the consequent of dismaps, a relating by the absolute in the claims and the consequent of dismaps, a relating by the absolute in the consequent of the property of the absolute in the consequent of the consequent of the property of the absolute in the consequent of the absolute in the consequent of the c	alain mendy be ay dian worsy meme tamai ni samat at bi, alain alain alain asama pada ya alainta be a ma a, estaday yama di indoo, hakena kitangalan, laa alain alain alain alain alain alain alain alainda a sabadana di assessi imusuda by Cadinal, ngadasa di kitabo such cian la based upon ay di Pe akwa sibad inasona o	n contract or but, shall be landed to the amount offense, how of uses, or lows of profits incurre of whether such claim is based upon any of	t paid by the client for the larelysess. All claims of by client, its subsidiences. The above stated reasons or otherwise.	ns including those for negligence and any other cause	effer cause whatsomer shall be deemed walved unless made in writing and received by Candinal within 30 days after
Relinquished By: Colton Bickerstaff	Date: 3/22/23 Rec	Received By		Verbal Result: ☐ Yes	Verbal Result: ☐ Yes ☐ No ☐ Add'l Phone #:
Sed .	LE 7:3411	Hamiska	Wholes	All Results are emailed. Pk	ase provide Email address: Kya
Relinquished By:	Dâte: Rec	Received By:	Carre	REMARKS:	
Delivered By: [Circle One] Sampler - UPS - Bus - Other:	Observed Temp. 'C 4. 8	Sample Condition Cool latest	CHECKED BY: (Initials)	Tananoual Time: Standard Ranh: No. Standard TAT Thermometer ID #113 Correction Factor -0.5°C	Bucteria (only) Sample CoodBook Cood Indact Observed Temps C
			,		

May 15, 2023

CHRISTIAN LLULL
TETRA TECH
901 WEST WALL STREET , STE 100
MIDLAND, TX 79701

RE: JAMES E #001 RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 05/10/23 12:43.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keine

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 05/10/2023 Sampling Date: 05/10/2023

Reported: 05/15/2023 Sampling Type: Soil
Project Name: JAMES E #001 RELEASE Sampling Condition: Cool

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Applyand By 14

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 5 (5'-6') (H232327-01)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/12/2023	ND	2.08	104	2.00	6.56	
Toluene*	<0.050	0.050	05/12/2023	ND	2.05	103	2.00	7.10	
Ethylbenzene*	<0.050	0.050	05/12/2023	ND	2.04	102	2.00	7.17	
Total Xylenes*	<0.150	0.150	05/12/2023	ND	6.23	104	6.00	6.45	
Total BTEX	<0.300	0.300	05/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2600	16.0	05/11/2023	ND	432	108	400	7.14	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/11/2023	ND	178	88.9	200	0.0624	
DRO >C10-C28*	412	10.0	05/11/2023	ND	163	81.7	200	4.11	
EXT DRO >C28-C36	111	10.0	05/11/2023	ND					
Surrogate: 1-Chlorooctane	89.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	114	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 05/10/2023 Sampling Date: 05/10/2023

Reported: 05/15/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 5 (7'-8') (H232327-02)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/12/2023	ND	2.08	104	2.00	6.56	
Toluene*	<0.050	0.050	05/12/2023	ND	2.05	103	2.00	7.10	
Ethylbenzene*	<0.050	0.050	05/12/2023	ND	2.04	102	2.00	7.17	
Total Xylenes*	<0.150	0.150	05/12/2023	ND	6.23	104	6.00	6.45	
Total BTEX	<0.300	0.300	05/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3280	16.0	05/11/2023	ND	432	108	400	7.14	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/11/2023	ND	178	88.9	200	0.0624	
DRO >C10-C28*	134	10.0	05/11/2023	ND	163	81.7	200	4.11	
EXT DRO >C28-C36	<10.0	10.0	05/11/2023	ND					
Surrogate: 1-Chlorooctane	83.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	94.0	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

(432) 682-3946

Received: 05/10/2023 Sampling Date: 05/10/2023

Reported: 05/15/2023 Sampling Type: Soil

Fax To:

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Analyzed By: 1H /

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 5 (9'-10') (H232327-03)

RTFY 8021R

BIEX 8021B	mg	/ Kg	Anaiyze	ea By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/11/2023	ND	2.06	103	2.00	2.36	
Toluene*	<0.050	0.050	05/11/2023	ND	2.17	109	2.00	3.01	
Ethylbenzene*	<0.050	0.050	05/11/2023	ND	2.26	113	2.00	1.52	
Total Xylenes*	<0.150	0.150	05/11/2023	ND	6.68	111	6.00	2.04	
Total BTEX	<0.300	0.300	05/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PI	D 110	% 71.5-13	34						
Chloride, SM4500CI-B	mg	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2880	16.0	05/11/2023	ND	432	108	400	7.14	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/11/2023	ND	178	88.9	200	0.0624	
DRO >C10-C28*	<10.0	10.0	05/11/2023	ND	163	81.7	200	4.11	
EXT DRO >C28-C36	<10.0	10.0	05/11/2023	ND					
Surrogate: 1-Chlorooctane	83.4	% 48.2-13	34						
Surrogate: 1-Chlorooctadecane	86.7	% 49.1-14	18						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 05/10/2023 Sampling Date: 05/10/2023

Reported: 05/15/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Analyzed By: JH/

Project Location: COP - EDDY COUNTY, NM

mg/kg

Sample ID: BH - 5 (14'-15') (H232327-04)

BTEX 8021B

DILX GOZID	ıııg,	, kg	Andryzo	a by. 5117					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/12/2023	ND	2.06	103	2.00	2.36	
Toluene*	<0.050	0.050	05/12/2023	ND	2.17	109	2.00	3.01	
Ethylbenzene*	<0.050	0.050	05/12/2023	ND	2.26	113	2.00	1.52	
Total Xylenes*	<0.150	0.150	05/12/2023	ND	6.68	111	6.00	2.04	
Total BTEX	<0.300	0.300	05/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	110	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4800	16.0	05/11/2023	ND	432	108	400	7.14	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/11/2023	ND	178	88.9	200	0.0624	
DRO >C10-C28*	<10.0	10.0	05/11/2023	ND	163	81.7	200	4.11	
EXT DRO >C28-C36	<10.0	10.0	05/11/2023	ND					
Surrogate: 1-Chlorooctane	85.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 05/10/2023 Sampling Date: 05/10/2023

Reported: 05/15/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Project Number: Sample Received By: 212C-MD-02413 Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 5 (19'-20') (H232327-05)

BTEX 8021B	mg/	'kg	Analyzed By: JH/						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/12/2023	ND	2.06	103	2.00	2.36	
Toluene*	<0.050	0.050	05/12/2023	ND	2.17	109	2.00	3.01	
Ethylbenzene*	<0.050	0.050	05/12/2023	ND	2.26	113	2.00	1.52	
Total Xylenes*	<0.150	0.150	05/12/2023	ND	6.68	111	6.00	2.04	
Total BTEX	<0.300	0.300	05/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	109 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5200	16.0	05/11/2023	ND	432	108	400	7.14	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/11/2023	ND	178	88.9	200	0.0624	
DRO >C10-C28*	<10.0	10.0	05/11/2023	ND	163	81.7	200	4.11	
EXT DRO >C28-C36	<10.0	10.0	05/11/2023	ND					
Surrogate: 1-Chlorooctane	82.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	85.6	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 05/10/2023 Sampling Date: 05/10/2023

Reported: 05/15/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 5 (24'-25') (H232327-06)

BTEX 8021B	mg	/kg	Analyze	ed By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/12/2023	ND	2.06	103	2.00	2.36	
Toluene*	<0.050	0.050	05/12/2023	ND	2.17	109	2.00	3.01	
Ethylbenzene*	<0.050	0.050	05/12/2023	ND	2.26	113	2.00	1.52	
Total Xylenes*	<0.150	0.150	05/12/2023	ND	6.68	111	6.00	2.04	
Total BTEX	<0.300	0.300	05/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	112	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	6260	16.0	05/11/2023	ND	432	108	400	7.14	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/11/2023	ND	178	88.9	200	0.0624	
DRO >C10-C28*	<10.0	10.0	05/11/2023	ND	163	81.7	200	4.11	
EXT DRO >C28-C36	<10.0	10.0	05/11/2023	ND					
Surrogate: 1-Chlorooctane	76.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	79.7	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 05/10/2023 Sampling Date: 05/10/2023

Reported: 05/15/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 5 (29'-30') (H232327-07)

BTEX 8021B	mg	/kg	Analyze	ed By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/12/2023	ND	2.06	103	2.00	2.36	
Toluene*	<0.050	0.050	05/12/2023	ND	2.17	109	2.00	3.01	
Ethylbenzene*	<0.050	0.050	05/12/2023	ND	2.26	113	2.00	1.52	
Total Xylenes*	<0.150	0.150	05/12/2023	ND	6.68	111	6.00	2.04	
Total BTEX	<0.300	0.300	05/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	112	% 71.5-13	4						
Chloride, SM4500CI-B	mg	/kg	Analyze	ed By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4320	16.0	05/11/2023	ND	432	108	400	3.77	QM-07
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/11/2023	ND	178	88.9	200	0.0624	
DRO >C10-C28*	<10.0	10.0	05/11/2023	ND	163	81.7	200	4.11	
EXT DRO >C28-C36	<10.0	10.0	05/11/2023	ND					
Surrogate: 1-Chlorooctane	85.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	87.8	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Freene

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 05/10/2023 Sampling Date: 05/10/2023

Reported: 05/15/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Project Number: Sample Received By: 212C-MD-02413 Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 5 (34'-35') (H232327-08)

BTEX 8021B	mg/kg		Analyzed By: JH/						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/12/2023	ND	2.06	103	2.00	2.36	
Toluene*	<0.050	0.050	05/12/2023	ND	2.17	109	2.00	3.01	
Ethylbenzene*	<0.050	0.050	05/12/2023	ND	2.26	113	2.00	1.52	
Total Xylenes*	<0.150	0.150	05/12/2023	ND	6.68	111	6.00	2.04	
Total BTEX	<0.300	0.300	05/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg/kg		Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3920	16.0	05/11/2023	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/11/2023	ND	178	88.9	200	0.0624	
DRO >C10-C28*	<10.0	10.0	05/11/2023	ND	163	81.7	200	4.11	
EXT DRO >C28-C36	<10.0	10.0	05/11/2023	ND					
Surrogate: 1-Chlorooctane	86.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	90.2	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 05/10/2023 Sampling Date: 05/10/2023

Reported: 05/15/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 5 (39'-40') (H232327-09)

BTEX 8021B	mg/kg		Analyzed By: JH/						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/12/2023	ND	2.06	103	2.00	2.36	
Toluene*	<0.050	0.050	05/12/2023	ND	2.17	109	2.00	3.01	
Ethylbenzene*	<0.050	0.050	05/12/2023	ND	2.26	113	2.00	1.52	
Total Xylenes*	<0.150	0.150	05/12/2023	ND	6.68	111	6.00	2.04	
Total BTEX	<0.300	0.300	05/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5200	16.0	05/11/2023	ND	432	108	400	3.77	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/11/2023	ND	183	91.6	200	3.53	
DRO >C10-C28*	<10.0	10.0	05/11/2023	ND	168	84.2	200	8.20	
EXT DRO >C28-C36	<10.0	10.0	05/11/2023	ND					
Surrogate: 1-Chlorooctane	88.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	94.9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 05/10/2023 Sampling Date: 05/10/2023

Reported: 05/15/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Analyzed By: 1H /

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 5 (44'-45') (H232327-10)

RTFY 8021R

B1EX 8021B	mg/	кg	Anaiyze	a By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/12/2023	ND	2.06	103	2.00	2.36	
Toluene*	<0.050	0.050	05/12/2023	ND	2.17	109	2.00	3.01	
Ethylbenzene*	<0.050	0.050	05/12/2023	ND	2.26	113	2.00	1.52	
Total Xylenes*	<0.150	0.150	05/12/2023	ND	6.68	111	6.00	2.04	
Total BTEX	<0.300	0.300	05/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4400	16.0	05/11/2023	ND	432	108	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/11/2023	ND	183	91.6	200	3.53	
DRO >C10-C28*	<10.0	10.0	05/11/2023	ND	168	84.2	200	8.20	
EXT DRO >C28-C36	<10.0	10.0	05/11/2023	ND					
Surrogate: 1-Chlorooctane	77.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	84.0	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 05/10/2023 Sampling Date: 05/10/2023

Reported: 05/15/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 5 (49'-50') (H232327-11)

BTEX 8021B	mg	/kg	Analyze	ed By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/12/2023	ND	2.06	103	2.00	2.36	
Toluene*	<0.050	0.050	05/12/2023	ND	2.17	109	2.00	3.01	
Ethylbenzene*	<0.050	0.050	05/12/2023	ND	2.26	113	2.00	1.52	
Total Xylenes*	<0.150	0.150	05/12/2023	ND	6.68	111	6.00	2.04	
Total BTEX	<0.300	0.300	05/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5760	16.0	05/11/2023	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/11/2023	ND	183	91.6	200	3.53	
DRO >C10-C28*	<10.0	10.0	05/11/2023	ND	168	84.2	200	8.20	
EXT DRO >C28-C36	<10.0	10.0	05/11/2023	ND					
Surrogate: 1-Chlorooctane	93.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	101	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 05/10/2023 Sampling Date: 05/10/2023

Reported: 05/15/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 5 (54'-55') (H232327-12)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/12/2023	ND	2.06	103	2.00	2.36	
Toluene*	<0.050	0.050	05/12/2023	ND	2.17	109	2.00	3.01	
Ethylbenzene*	<0.050	0.050	05/12/2023	ND	2.26	113	2.00	1.52	
Total Xylenes*	<0.150	0.150	05/12/2023	ND	6.68	111	6.00	2.04	
Total BTEX	<0.300	0.300	05/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4640	16.0	05/11/2023	ND	432	108	400	3.77	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/11/2023	ND	183	91.6	200	3.53	
DRO >C10-C28*	<10.0	10.0	05/11/2023	ND	168	84.2	200	8.20	
EXT DRO >C28-C36	<10.0	10.0	05/11/2023	ND					
Surrogate: 1-Chlorooctane	92.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	98.9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 05/10/2023 Sampling Date: 05/10/2023

Reported: 05/15/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Analyzed By: 1H /

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 5 (59'-60') (H232327-13)

RTFY 8021R

B1EX 8021B	mg/	кg	Anaiyze	a By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/12/2023	ND	2.06	103	2.00	2.36	
Toluene*	<0.050	0.050	05/12/2023	ND	2.17	109	2.00	3.01	
Ethylbenzene*	<0.050	0.050	05/12/2023	ND	2.26	113	2.00	1.52	
Total Xylenes*	<0.150	0.150	05/12/2023	ND	6.68	111	6.00	2.04	
Total BTEX	<0.300	0.300	05/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4560	16.0	05/11/2023	ND	432	108	400	3.77	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/11/2023	ND	183	91.6	200	3.53	
DRO >C10-C28*	<10.0	10.0	05/11/2023	ND	168	84.2	200	8.20	
EXT DRO >C28-C36	<10.0	10.0	05/11/2023	ND					
Surrogate: 1-Chlorooctane	94.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	101 9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 05/10/2023 Sampling Date: 05/10/2023

Reported: 05/15/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Analyzed By: 1H /

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 5 (64'-65') (H232327-14)

RTFY 8021R

B1EX 8021B	mg	/кд	Anaiyze	a By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/12/2023	ND	2.06	103	2.00	2.36	
Toluene*	<0.050	0.050	05/12/2023	ND	2.17	109	2.00	3.01	
Ethylbenzene*	<0.050	0.050	05/12/2023	ND	2.26	113	2.00	1.52	
Total Xylenes*	<0.150	0.150	05/12/2023	ND	6.68	111	6.00	2.04	
Total BTEX	<0.300	0.300	05/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4160	16.0	05/11/2023	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/11/2023	ND	183	91.6	200	3.53	
DRO >C10-C28*	<10.0	10.0	05/11/2023	ND	168	84.2	200	8.20	
EXT DRO >C28-C36	<10.0	10.0	05/11/2023	ND					
Surrogate: 1-Chlorooctane	94.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	102	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 05/10/2023 Sampling Date: 05/10/2023

Reported: 05/15/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 5 (69'-70') (H232327-15)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/12/2023	ND	2.06	103	2.00	2.36	
Toluene*	<0.050	0.050	05/12/2023	ND	2.17	109	2.00	3.01	
Ethylbenzene*	<0.050	0.050	05/12/2023	ND	2.26	113	2.00	1.52	
Total Xylenes*	<0.150	0.150	05/12/2023	ND	6.68	111	6.00	2.04	
Total BTEX	<0.300	0.300	05/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 %	% 71.5-13	4						
Chloride, SM4500CI-B	mg/	'kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4320	16.0	05/11/2023	ND	432	108	400	3.77	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/11/2023	ND	183	91.6	200	3.53	
DRO >C10-C28*	<10.0	10.0	05/11/2023	ND	168	84.2	200	8.20	
EXT DRO >C28-C36	<10.0	10.0	05/11/2023	ND					
Surrogate: 1-Chlorooctane	88.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	95.1	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 05/10/2023 Sampling Date: 05/10/2023

Reported: 05/15/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Project Number: Sample Received By: 212C-MD-02413 Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 5 (74'-75') (H232327-16)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/12/2023	ND	2.06	103	2.00	2.36	
Toluene*	<0.050	0.050	05/12/2023	ND	2.17	109	2.00	3.01	
Ethylbenzene*	<0.050	0.050	05/12/2023	ND	2.26	113	2.00	1.52	
Total Xylenes*	<0.150 0.150 <0.300 0.300 benzene (PID 111 % 71.5-13- mg/kg		05/12/2023	ND	6.68	111	6.00	2.04	
Total BTEX	<0.300	0.300	05/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3600	16.0	05/11/2023	ND	432	108	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/11/2023	ND	183	91.6	200	3.53	
DRO >C10-C28*	<10.0	10.0	05/11/2023	ND	168	84.2	200	8.20	
EXT DRO >C28-C36	<10.0	10.0	05/11/2023	ND					
Surrogate: 1-Chlorooctane	91.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	99.2	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 05/10/2023 Sampling Date: 05/10/2023

Reported: 05/15/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 5 (79'-80') (H232327-17)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/12/2023	ND	2.06	103	2.00	2.36	
Toluene*	<0.050	0.050	05/12/2023	ND	2.17	109	2.00	3.01	
Ethylbenzene*	<0.050	0.050	05/12/2023	ND	2.26	113	2.00	1.52	
Total Xylenes*	<0.150	0.150	05/12/2023	ND	6.68	111	6.00	2.04	
Total BTEX	<0.300	0.300	05/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 %	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	240	16.0	05/11/2023	ND	432	108	400	3.77	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/11/2023	ND	193	96.6	200	0.452	
DRO >C10-C28*	<10.0	10.0	05/11/2023	ND	175	87.5	200	2.19	
EXT DRO >C28-C36	<10.0	10.0	05/11/2023	ND					
Surrogate: 1-Chlorooctane	106 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103 9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 05/10/2023 Sampling Date: 05/10/2023

Reported: 05/15/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Analyzed By: JH/

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 6 (5'-6') (H232327-18)

BTEX 8021B

	9/	9	7	7: 5::.,					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/12/2023	ND	2.06	103	2.00	2.36	
Toluene*	<0.050	0.050	05/12/2023	ND	2.17	109	2.00	3.01	
Ethylbenzene*	<0.050	0.050	05/12/2023	ND	2.26	113	2.00	1.52	
Total Xylenes*	<0.150	0.150	05/12/2023	ND	6.68	111	6.00	2.04	
Total BTEX	<0.300	0.300	05/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	112	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1360	16.0	05/11/2023	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/11/2023	ND	193	96.6	200	0.452	
DRO >C10-C28*	<10.0	10.0	05/11/2023	ND	175	87.5	200	2.19	
EXT DRO >C28-C36	<10.0	10.0	05/11/2023	ND					
Surrogate: 1-Chlorooctane	101	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.8	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keens

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 05/10/2023 Sampling Date: 05/10/2023

Reported: 05/15/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Analyzed By: JH/

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 6 (7'-8') (H232327-19)

BTEX 8021B

	9/	9	7	1 1 ,					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/12/2023	ND	2.06	103	2.00	2.36	
Toluene*	<0.050	0.050	05/12/2023	ND	2.17	109	2.00	3.01	
Ethylbenzene*	<0.050	0.050	05/12/2023	ND	2.26	113	2.00	1.52	
Total Xylenes*	<0.150	0.150	05/12/2023	ND	6.68	111	6.00	2.04	
Total BTEX	<0.300	0.300	05/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2480	16.0	05/11/2023	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/11/2023	ND	193	96.6	200	0.452	
DRO >C10-C28*	<10.0	10.0	05/11/2023	ND	175	87.5	200	2.19	
EXT DRO >C28-C36	<10.0	10.0	05/11/2023	ND					
Surrogate: 1-Chlorooctane	103	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	99.9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Freene

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 05/10/2023 Sampling Date: 05/10/2023

Reported: 05/15/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Analyzed By: JH/

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 6 (9'-10') (H232327-20)

BTEX 8021B

	9/	9	7	7: 5::.,					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/12/2023	ND	2.06	103	2.00	2.36	
Toluene*	<0.050	0.050	05/12/2023	ND	2.17	109	2.00	3.01	
Ethylbenzene*	<0.050	0.050	05/12/2023	ND	2.26	113	2.00	1.52	
Total Xylenes*	<0.150	0.150	05/12/2023	ND	6.68	111	6.00	2.04	
Total BTEX	<0.300	0.300	05/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	6000	16.0	05/11/2023	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/11/2023	ND	193	96.6	200	0.452	
DRO >C10-C28*	<10.0	10.0	05/11/2023	ND	175	87.5	200	2.19	
EXT DRO >C28-C36	<10.0	10.0	05/11/2023	ND					
Surrogate: 1-Chlorooctane	103	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.4	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Freene

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 05/10/2023 Sampling Date: 05/10/2023

Reported: 05/15/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Analyzed By: JH/

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 6 (14'-15') (H232327-21)

BTEX 8021B

DILX GOZID	iiig/	ng .	Allulyzo	a by. 5117					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/12/2023	ND	2.06	103	2.00	2.36	
Toluene*	<0.050	0.050	05/12/2023	ND	2.17	109	2.00	3.01	
Ethylbenzene*	<0.050	0.050	05/12/2023	ND	2.26	113	2.00	1.52	
Total Xylenes*	<0.150	0.150	05/12/2023	ND	6.68	111	6.00	2.04	
Total BTEX	<0.300	0.300	05/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	116	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	6400	16.0	05/11/2023	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/11/2023	ND	193	96.6	200	0.452	
DRO >C10-C28*	<10.0	10.0	05/11/2023	ND	175	87.5	200	2.19	
EXT DRO >C28-C36	<10.0	10.0	05/11/2023	ND					
Surrogate: 1-Chlorooctane	111 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	108	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 05/10/2023 Sampling Date: 05/10/2023

Reported: 05/15/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Applyzod By: 1H /

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 6 (19'-20') (H232327-22)

RTFY 8021R

B1EX 8021B	mg,	кg	Anaiyze	a By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/12/2023	ND	2.06	103	2.00	2.36	
Toluene*	<0.050	0.050	05/12/2023	ND	2.17	109	2.00	3.01	
Ethylbenzene*	<0.050	0.050	05/12/2023	ND	2.26	113	2.00	1.52	
Total Xylenes*	<0.150	0.150	05/12/2023	ND	6.68	111	6.00	2.04	
Total BTEX	<0.300	0.300	05/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5200	16.0	05/11/2023	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/11/2023	ND	193	96.6	200	0.452	
DRO >C10-C28*	<10.0	10.0	05/11/2023	ND	175	87.5	200	2.19	
EXT DRO >C28-C36	<10.0	10.0	05/11/2023	ND					
Surrogate: 1-Chlorooctane	113 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 05/10/2023 Sampling Date: 05/10/2023

Reported: 05/15/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Project Number: 212C-MD-02413 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: BH - 6 (24'-25') (H232327-23)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/12/2023	ND	2.09	105	2.00	5.29	
Toluene*	<0.050	0.050	05/12/2023	ND	2.15	108	2.00	5.08	
Ethylbenzene*	<0.050	0.050	05/12/2023	ND	2.11	106	2.00	6.93	
Total Xylenes*	<0.150	0.150	05/12/2023	ND	6.61	110	6.00	6.42	
Total BTEX	<0.300	0.300	05/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 %	71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3760	16.0	05/11/2023	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/11/2023	ND	193	96.6	200	0.452	
DRO >C10-C28*	<10.0	10.0	05/11/2023	ND	175	87.5	200	2.19	
EXT DRO >C28-C36	<10.0	10.0	05/11/2023	ND					
Surrogate: 1-Chlorooctane	103 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.2	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 05/10/2023 Sampling Date: 05/10/2023

Reported: 05/15/2023 Sampling Type: Soil

Project Name: JAMES E #001 RELEASE Sampling Condition: Cool & Intact Sample Received By: Project Number: 212C-MD-02413 Tamara Oldaker

Project Location: COP - EDDY COUNTY, NM

Sample ID: AH - 10E - 2 (0-1') (H232327-24)

BTEX 8021B	mg/	'kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/12/2023	ND	2.09	105	2.00	5.29	
Toluene*	<0.050	0.050	05/12/2023	ND	2.15	108	2.00	5.08	
Ethylbenzene*	<0.050	0.050	05/12/2023	ND	2.11	106	2.00	6.93	
Total Xylenes*	<0.150	0.150	05/12/2023	ND	6.61	110	6.00	6.42	
Total BTEX	<0.300	0.300	05/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 5	% 71.5-13	4						
Chloride, SM4500CI-B	mg/	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	05/11/2023	ND	432	108	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/11/2023	ND	193	96.6	200	0.452	
DRO >C10-C28*	<10.0	10.0	05/11/2023	ND	175	87.5	200	2.19	
EXT DRO >C28-C36	<10.0	10.0	05/11/2023	ND					
Surrogate: 1-Chlorooctane	108 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103 9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Notes and Definitions

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

ecovery.

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Delivered By: (Circle One)
Sampler - UPS - Bus - Other: H232327 Relinquished By: Relinquished By: Colton Bickerstaff Lab I.D. Sampler Name: Colton Bickerstaff Project Location: Eddy County, New Mexico Project Name: James E #001 Release Project #: City: Austin Address: 8911 Capital o Texas Hwy, Suite 2310 Company Name: Tetra Tech Phone #: Project Manager: Christian Llull FORM-006 R 3.2 10/07/21 0 BH-5 (44'-45') BH-5 (29'-30') BH-5 (39'-40') BH-5 (24'-25') BH-5 (34'-35') BH-5 (19'-20') BH-5 (7'-8') BH-5 (14'-15" BH-5 (9'-10') BH-5 (5'-6') (512)565-0190 212C-MD-02413 Sample I.D. Corn. 1- Temp. "C Fax #: Project Owner: Date: 5/10/23 State: 200 × 9 G 9 G G (G)RAB OR (C)OMP 9 Zip: Cool Intact ConocoPhillips WASTEWATER MATRIX SLUDGE OTHER Fax #: City: State: Phone #: Address: EMAIL Attn: Christian Llull Company: Tetra Tech CHECKED BY: (Initials) BILL TO 5/10/2023 Zip: 5/10/2023 DATE SAMPLING | Verbal Result: □ Yes □ No □ Add'l Phone #: | Alf Results are emailed. Please provide Email address: Christian.Liuli@tetratech.com Correction Factor Rush MA, Standard TAT TIME sand Time: #113 **TPH 8015M** BTEX 8021B Chloride SM4500CI-B ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

December Project Owner: ConcoPhillips Congress EAML	FORM-006	Sample IPS - Bus - Of	Table of the state	Relinquished By	PLEASE NOTE: Locally, and I event shall Continual be hable	70	18	11	11	-	14		10		Address: 8911 City: Austin Phone #: Project #: Project Name: Project Locatit Sampler Name TOR JOHN COLD. Lab I.D. ##234334	Project Manag
Company: Tetra Tech Adm: Christian Ltdl	R 3.2 10/07/21	us - Other:		re out of or related to the performance of the Colton Bickerstaff	Dimegra: Cardina'n facility and clients ex- for incidental or consequental damages	BH-6 (9-10)	BH-6 (3-6)	BH-5 (79-80°)		DIT-2 (09-/0)		_	DIT ((50- 60)		Capital o Texas Hwy, \$ (512)565-0190 212C-MD-02413 James E #001 Release nn: Eddy County, New I : Colton Bickerstaff Sample	Project Manager: Christian Llull
Company: Tetra Tech Adm: Orifistian Ltdl Adm: O			Time:	Date: 5/10/23	the state of the s										State: F: cct Owner:	
Company: Tetra Tech Adm: Christian Ltdl		200	Rece	Rece	G	9	G	G	G	G	G	G	G	G	(C)PAR OR (C)OMB	
Company: Tetra Tech Adm: Christian Ltdl	-		wed B	ived B	I	-	-	1	1	-	-		-	-	W CONTAINERS	1
SAMPLING SAMPLI		Sample	y:	of claim is	of Mary 1st									E	WASTEWATER Cond	
SAMPLING SAMPLI		Condi	}	hadel up	X	×	X	×	×	×	×	×	×	×	SOIL MATR	
SAMPLING SAMPLI		tion		The law of the law of	Thomas w											
SAMPLING SAMPLI		1	d	Ny chert.	All Al Dise										OTHER Phon	
SAMPLING SAMPLI		- TAND		The state of the s	X	X	X	×	×	×	×	×	×	X	ICE/COOL ESERV ##	
TIME TPH 8015M TPH 8015M X X X X X X X X X X X X X X X X X X X		(ED BY:	J	ST. TOWN	\$102023 u analyses, All other	5/10/2023	5/16/2/23	5/10/2023	3/10/2023	5/10/2023	5/10/2023	5/10/2023	5/11/2023	510/2023	Tetra Tech ttan Llull MAIL Zip: SAN	BILL TO
Dardow		Rush WA Band	REMARKS:	Yerbai Result All Results ar											PLING	2
Charles		Standa **113 or -0.5°C		e emaile	X	×	×:	×	× ;	4	×	×	×	×	TPH 8015M	
Datisiv		□ *		Yes (×	×	×	4 >	4	×	×	×	×	BTEX 8021B	
Datisiv		Bacter Bacter		No No	X	×	×	χ,	< >	4	× ;	× :	×	×	Chloride SM4500CL-B	
Dates		ci Obs		vide En		1	+	+	†	t	+	+	+	+	эмэний эмчэниег-в	b
Called				Add		+	+	+	+	+	+	+	+	+		ANAL
Cading		□ Ves		1 Phon	H	+	+	$^{+}$	+	+	+	+	+	+		SIS
Cading		1		e #:	H	+	+	+	+	+	+	+	+	+		LYSIS REQUEST
Dates	Correcte			n.Liuild	H	+	+	+	+	+	+	+	+	+		JEST
Dates	O' Tame? D			tetrate	H	+	+	+	+	1	+	1	1	+		
Dates				ch.com	Ц	1										
				Cardinal		1										
39 30 30 30 30 30 30 30 30 30 30 30 30 30				within 30 days									T	T		
No other is	_			ays after t		1					1	1	1	1		

Page 28 of 29

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

FORM-on	Sampler - UPS - Bus - Other	B	Relinquished By:	eri shall Cardinal be lad lians of succession an elinquished B	PLEASE NOTE: 1			0	ne	2	م	2	Lab I.D.	Scalvenación.	Sampler Nam	Project neat	Project Mana	Drainet #	Phone #-	City: Austin	Project Mana	
FORMOR B 3 3 10m704	Sus - Other:		Relinquished By:	went shall Cardinal be lacks for incidental or consequential density affiliates or executation, arising out of or related to the performance Rellinguished Rv: College Rickness Affiliation (College Rickness Affiliation)	AND Character of the Annual Control of the Control			_	_	_	-	BH-6 (14'-15')	~	SCHUMENE CANA.	Sampler Name: C. H. County, New Mexico	Project Location: Edd. Court Nelease	212C-MD-02413	0610-696/	(243)222 0400	Address: 8911 Capital o Texas Hwy, Suite 2310	Project Manager: Christian Llull	
	Corrected Temp. "C 3. 4	Time:	Shire STAILS	Marie W									le I.D.		Mexico		Project Owner:	Fax #:	State: TX	100		
	000	Received By:	Received By					G	9	0	2 0	2	(G)RAB OR (C)OMP.						(Zip:			
		ved	bavi	re, loss	4	+	+	-	-	-		4	# CONTAINERS				Н		2			
	Samp	Ву:	DA.	of use, p uch clair	+	+	+	+	+	+	1	4	GROUNDWATER				Co					
- No	Sample Cond Cool Mact			this of a base		\top	11	×	×	1>	< >		WASTEWATER SOIL				0000			Ш		
8	Sample Condition Cool Intact		M	d upon a	-	$\overline{\mathbf{H}}$	-	F	F	Ŧ	Ŧ		DIL SLUDGE				ConocoPhillips					
	3		10	nearl per curred by ny of the	+	\pm	+	+	-	+	+	4	OTHER:	77	70		-	7	1			
	0 0	(1	client, in client, in above str	-			I				-		Fax #:	Phone #:	State:	City:	ddre	Attn: (omp	P.O. #:	
~	(Initials)		110	disconnected tot, which lemed to the smooth paid by the claim for the application, to 64 of use, or base of peofits incurred by client, its subsequences of whether such claim is based upon any of the above extent reprocess	+	+	+	×	×	×	×		CE / COOL PRESERV.		*			Address: EMAIL	Christ	any:		
1	BY:	1		tir zw. aralyses, All claims beldiares, reagons or otherwise.				5100023	5:10:2023	5/(0.2023	5/10/2023	DAIR	SAM			Zip:		MAIL	Attn: Christian Llull	Company: Tetra Tech		BILL TO
Thermometer ID #113 Correction Factor -0.5°C	Turnaround Time:	REMARKS:	Werbal Result:	a including these for regulgence								HIME	SAMPLING									-
415	Standard TAT		email	oglige.			П	×	X	×	×	7	TPH 8015M		-	-	-	_	_	_	-	
,,,			□ Yes lailed, Pi	or and any other	T	İ	11	×	×	X	×	۰	3TEX 8021B		_	_	_	_	_	_	+	
	8		ease p	of miles	+	H	++	1	^	_	1	-										
	Bacteria/ Cost Mact		rovide	under som	-	1	1	×	×	×	×	C	Chloride SM450	000	I-I	В						
	dy) Sample Condition Clustreed Temp. 'C		Emai	8 8 80				П													A	4
_	() Sample Condition CLustreed Temp. 'C		Add	8		\vdash	+	H	+			-		-	_	_	_	_	_	_	- ALY	
	8 8		Phon ess: C	80 (20)	T	+	+	H	+					_	_	_	_	_	_	_	30	000
			hristia	20	H	4	1	Н	4			L									AT C	
			n.Llul	nach.																	ANALYSIS REQUEST	
Collected Tomas Gr			@tetr	n setting					T												1=	1
4			s ☐ No Add'I Phone #: Please provide Email address: Christian.Lluil@tetratech.com	and rposs	П				1	1	1	Т					_	_			1	
			E CO	unless made in witing and received by Cardinal	H	+	H	-	+	+	+	_		_	_							
				The last	H	+		-	1	-	1	_										
				within 30 days arts					1													
				S affects					1	1	1				_		_	_		-		

APPENDIX E Regulatory Correspondence

Dickerson, Ryan

From: OCDOnline@state.nm.us

Sent: Tuesday, November 9, 2021 11:31 AM

To: Llull, Christian

Subject: The Oil Conservation Division (OCD) has rejected the application, Application ID: 38912

⚠ CAUTION: This email originated from an external sender. Verify the source before opening links or attachments. ⚠

To whom it may concern (c/o Christian Llull for CONOCOPHILLIPS COMPANY),

The OCD has rejected the submitted Application for administrative approval of a release notification and corrective action (C-141), for incident ID (n#) nRM2007952227, for the following reasons:

The Remediation Plan is denied: The release will need to be fully remediated on pad to the strictest closure criteria standards due to high karst potential. All sample points, except the requested sample points for deferral, must have contaminated soil removed before a deferral request is submitted. The only remediation that should remain are the sample points that are being requested for deferral. If equipment is present, specify exactly which sample points you are asking for a deferral on and the reason the contaminants cannot be removed. Due to the sensitive nature of the site, the alternative sampling plan is denied. Please collect confirmation samples, representing no more than 200 ft2. The liner installation at 4 feet is denied. The entire off-pad portion of the release (including the legacy reserve pit) must be horizontally and vertically delineated/excavated to meet reclamation requirements.

The rejected C-141 can be found in the OCD Online: Permitting - Action Status, under the Application ID: 38912. Please review and make the required correction(s) prior to resubmitting.

If you have any questions why this application was rejected or believe it was rejected in error, please contact me prior to submitting an additional C-141.

Thank you, **Robert Hamlet** 575-748-1283 Robert.Hamlet@state.nm.us

New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505

APPENDIX F Karst Survey Report

KARST SURVEY OF THE PROPOSED James E #001 Tubing Line Release EDDY COUNTY, NEW MEXICO

SECTION 11; TOWNSHIP 22S; RANGE 30E

NUMBER: NMNM 0479142

Report Prepared for:

Bureau of Land Management Carlsbad Field Office 620 E. Greene Street Carlsbad, New Mexico 88220

On Behalf of:

ConocoPhillips 925 N. Eldridge Parkway Houston, TX 77079

Report Prepared by:

Goshawk Environmental Consulting, Inc. P.O. Box 735 Buda, Texas 78610

April 2025

TABLE OF CONTENTS

	BACKGROUND	
2.0	METHODOLOGY	1
2.1	RESOURCE REVIEW	2
2.2	FIELD INVESTIGATION	3
3.0	CONCLUSIONS AND RECOMMENDATIONS	3
REFERENCES3		

APPENDICES

- **MAPS** Α
- В **PHOTOGRAPHS**

1.0 BACKGROUND

An accidental release of contaminates occurred on a ConocoPhillips (Conoco) tubing line, resulting in approximately 0.05 acres of contaminates being released within a high karst potential occurrence zone.

The release was within gypsum karst terrain, a landform characterized by underground drainage through solutionally enlarged conduits. Gypsum karst terrain may contain sinkholes, sinking streams, caves, and springs. Sinkholes that lead to underground drainages and voids are common. These karst features, as well as occasional fissures and discontinuities in the bedrock, provide the primary sources for rapid recharge of the groundwater aquifers in the region.

The Bureau of Land Management (BLM) categorizes all areas within the Carlsbad Field Office (CFO) as areas with low, medium, high, or critical karst potential occurrence zones. These zones are based on geology, occurrence of known caves, density of karst features, and potential impacts to freshwater aquifers. The release occurred in a high karst potential occurrence zone (Map 1), on federally owned land (Map 2).

High karst potential occurrence zones are defined by the BLM as areas in known soluble rock types that exist at surface level or within 300 feet of the surface but may have a shallow insoluble overburden or soils that mask surface features. These areas may contain isolated karst features, such as caves and sinkholes. Sinkholes and cave entrances collect water and can accumulate rich, organic materials and soils. The stable microclimate near cave entrances supports a greater diversity and density of plant life, which provides habitat for a greater diversity and density of wildlife. The interior of the cave supports a large variety of troglobitic, or cave environment-dependent, species. Troglobitic species have adapted specifically to the cave environment due to constant temperatures, constant high humidity, and total darkness.

2.0 METHODOLOGY

Goshawk Environmental Consulting, Inc. (Goshawk) conducted a karst survey of the release, which included a resource review, field investigation, and report of findings. The resource review was performed prior to the field investigation to gather site-specific information and evaluate the potential for karst features within the release area. The field investigation included an extensive search for karst features, with special attention given to areas identified in the resource review as potential karst areas. Additionally, former land use practices and modifications were evaluated.

The karst survey was performed in accordance with BLM CFO Karst Survey Requirements. Utilizing GIS software, a 200-meter karst survey corridor was placed around the release area. The resulting survey area covered 47.09 acres. The surveyors walked the survey area systematically, attempting to maintain survey transects spaced no farther than 50 meters apart. Maintaining transects at 50-meter intervals was not always possible due to vegetation and other surface restrictions. Goshawk utilized Avenza Maps to record possible karst features located during the field investigation, as well as to record the surveyor's tracks. Digital photographs of the survey area were taken to document current conditions.

2.1 RESOURCE REVIEW

The resource review included inspection of the US Geological Survey (USGS) Livingston Ridge, New Mexico topographic quadrangle; Federal Emergency Management Administration (FEMA) National Flood Hazard Data; Geologic Map of New Mexico; Natural Resources Conservation Service (NRCS) Soil Survey Geographic (SSURGO) database; and recent aerial orthoimagery.

2.1.1 USGS Topographic Map

The USGS topographic quadrangle (Map 3) indicates the release area is on gently to moderately sloping terrain. Mapped elevations range from approximately 3,000 to 3,210 feet above mean sea level. The topographic map indicates the karst survey area is within grassland (white background). One unimproved road is mapped intersecting the southeastern corner of the pad on which the release occurred. There are no mapped water features indicated within the release area. However, there are three unnamed tributaries within 350 feet of the release area. The release area is drained by overland sheet flow toward the northwest into the multiple unnamed tributaries dissecting the area. There are no features on the topographic map that would suggest potential karst within the survey area.

2.1.2 FEMA National Flood Hazard Data

The FEMA National Flood Hazard data indicates the karst survey area is within Zone X, which is defined as areas outside special flood hazard area (Map 4). The nearest floodplain is approximately 4.8 miles north of the release area.

2.1.3 Geologic Map of New Mexico

The geologic map (Map 5) indicates the survey area is underlain by the Piedmont alluvial deposits (Qp). Piedmont alluvial deposits are associated with higher gradient tributaries that border major stream valleys, alluvium from piedmont slopes, and alluvial fans (King 1948). Though it is not uncommon for any of the geologic formations of the area to exhibit karst features, the Geologic Map of New Mexico does not provide specific evidence that karst features may exist within the survey area.

2.1.4 Soils Map

The NRCS SSURGO spatial data (Map 6) indicates the soil map units underlying the survey area are Pajarito-Dune land complex (PD). The Pajarito-Dune land complex series consists of very deep and well-drained fine sand soils. These soils are typically found on plains and alluvial fans. Runoff is very slow and permeability is moderately rapid (United States Department of Agriculture). The soil map units do not provide specific evidence of karst features within the survey area.

2.1.5 Aerial Orthoimagery

The aerial orthoimagery (Map 7) indicates the survey area is within a sparse shrubland vegetative community. The unimproved road depicted on the topographic map is visible on the aerial orthoimagery as a caliche access road. Channelization within the unnamed tributaries are visible along the tributary corridors. There is no evidence on the aerial orthoimagery that would suggest potential karst features within the survey area.

PH: 737-888-1136

WWW.GOSHAWKENV.COM

2.2 FIELD INVESTIGATION

Goshawk conducted the field investigation on 25 March 2025 within the karst survey area. The field investigation was conducted on foot by Zane Homesley (Surveyor 1) and Thomas Norris (Surveyor 2). The GPS tracks for the karst surveyors are indicated in Map 8.

Terrain within the survey area was gently to moderately sloping (Photo 1). A caliche well pad was located directly south of the release area. The caliche road identified during the field investigation was consistent with that shown on the aerial orthoimagery.

The vegetative community observed during the field investigation was consistent with that shown on the topographic map and aerial orthoimagery. The shrubland areas appeared to be closely associated with loamy soils (Photo 2). The primary species noted within the shrublands included creosote, honey mesquite, broom snakeweed, prickly pear, fourwing saltbrush, and yucca. Vegetative coverage was estimated at 40-45 percent with good visibility of the ground surface. No potential karst features were observed within the survey area during the field investigation; however, subsurface voids not visible on the surface may still exist.

3.0 SUMMARY

Although unidentified subsurface karst features within the survey area are possible, no obvious potential karst features were identified during an extensive survey of the area. Additionally, no impacts to potential karst features by the contaminates released from the tubing line were identified.

REFERENCES

King, Philip B.

1948

Geology of the Southern Guadalupe Mountains Texas. Geological Survey Professional Paper #215. Pp. 91 and 155. United States Department of the Interior. United States Printing Office, Washington.

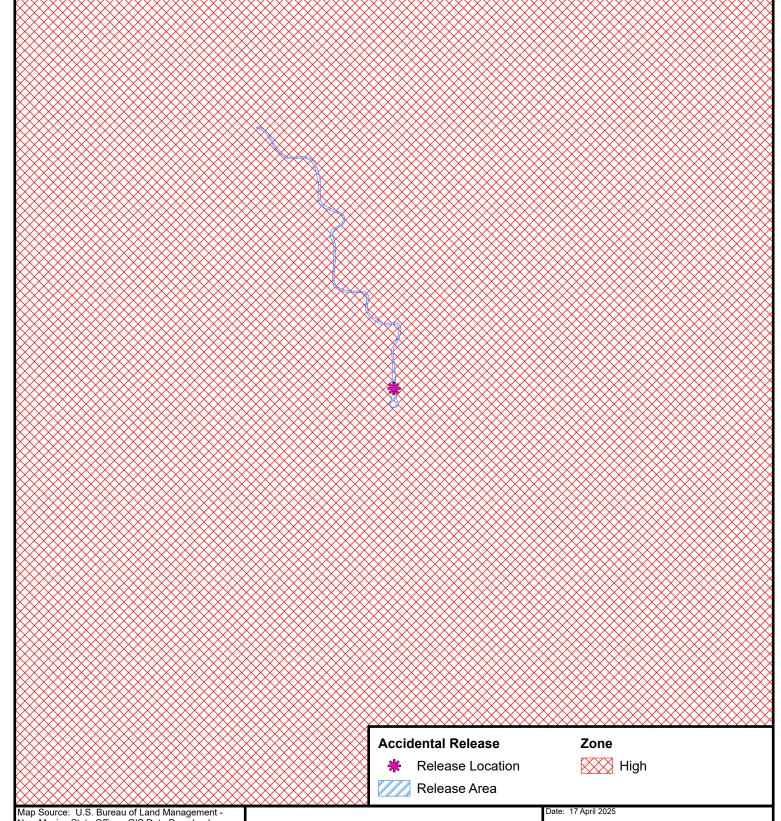
New Mexico Bureau of Geology and Mineral Resources

2003 Geologic Map of New Mexico, Scale 1:500,000.

US Department of Agriculture

2007

Electronic document, https://soilseries.sc.egov.usda.gov/osdname.aspx, accessed 17 April 2025.

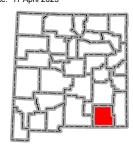


APPENDIX A MAPS

BUDA, TX 78610

Map Source: U.S. Bureau of Land Management - New Mexico State Office - GIS Data Download.

150 Feet



Map 1

Karst Potential Occurence Zones Eddy County, New Mexico

James E #001 Tubing Line

Township 22S; Range 30E; Section 11

Accidental Release

Release Location

Release Area

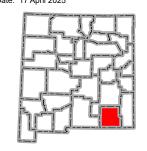
Surface Ownership

Bureau of Land Management

Map Source: U.S. Bureau of Land Management -New Mexico State Office - GIS Data Download.

0

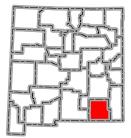
75


150 Feet

Map 2

Surface Ownership Eddy County, New Mexico

James E #001 Tubing Line



3,000 6,000 Feet

Eddy County, New Mexico

James E #001 Tubing Line

Accidental Release

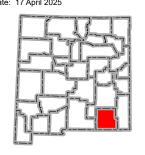
Release Location

Release Area

Geologic Map Units within Survey Area

Qp=Piedmont alluvial deposits

Map Source: New Mexico Bureau of Geology and Mineral Resources, 2003, Geologic Map of New Mexico, 1:500,000.


150 Feet

Map 5 Geologic Map

Eddy County, New Mexico

James E #001 Tubing Line

Release Location

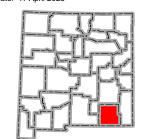
🖊 Release Area

Soil Map Units within Proposed Action

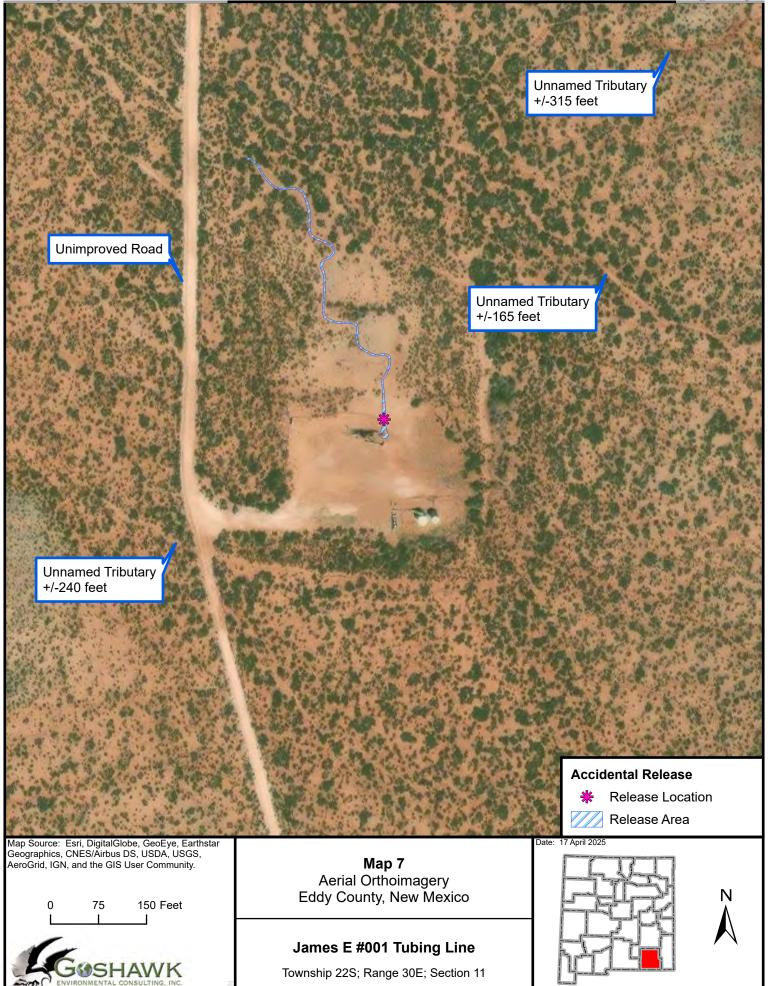
PD=Pajarito-Dune land complex

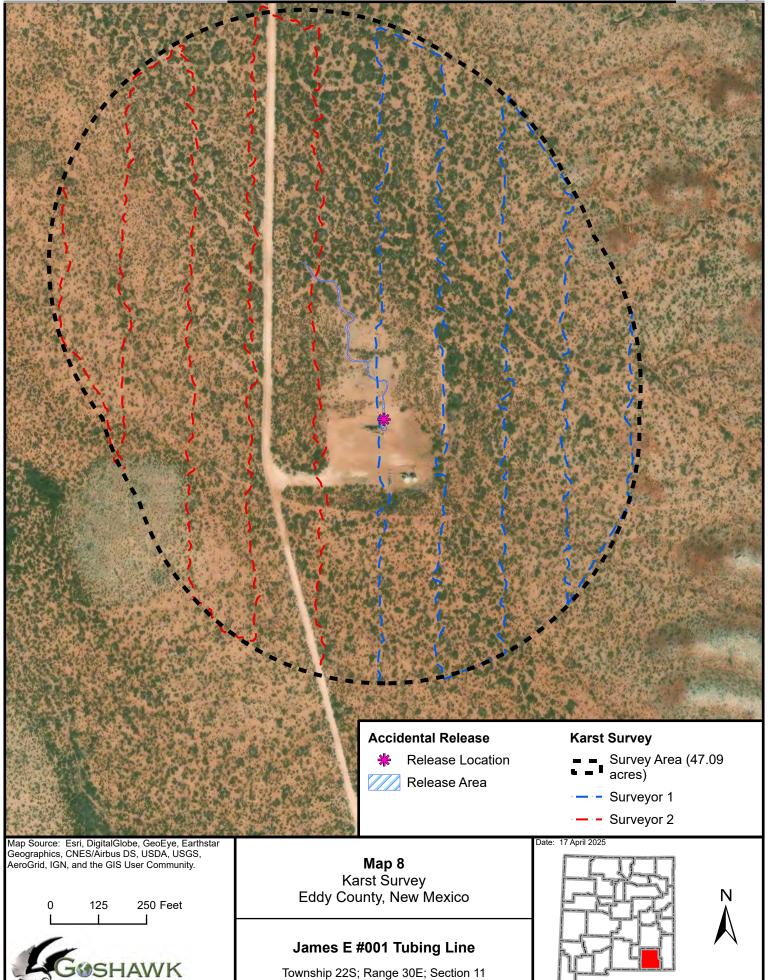
Map Source: USDA/NRCS - National Geospatial Center of Excellence. Soil Survey Geographic (SSURGO) Eddy County, New Mexico.

0


'5

150 Feet




Map 6 NRCS SSURGO Eddy County, New Mexico

James E #001 Tubing Line

APPENDIX B PHOTOS

P.O. BOX 735

BUDA, TX 78610

Photo #:

Date: 25 March 2025

Gently to Moderately Sloping Terrain within Release Area

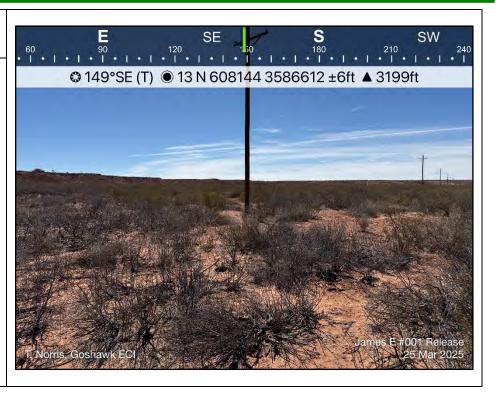
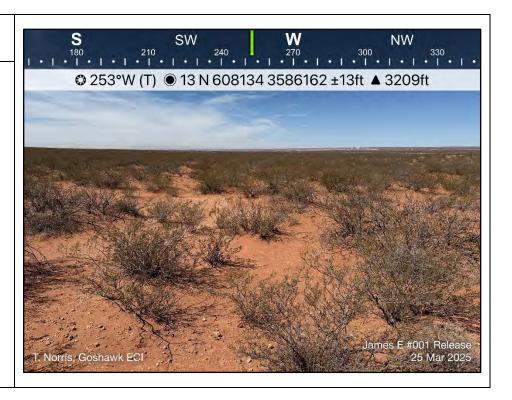
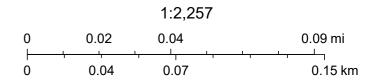



Photo #: 2

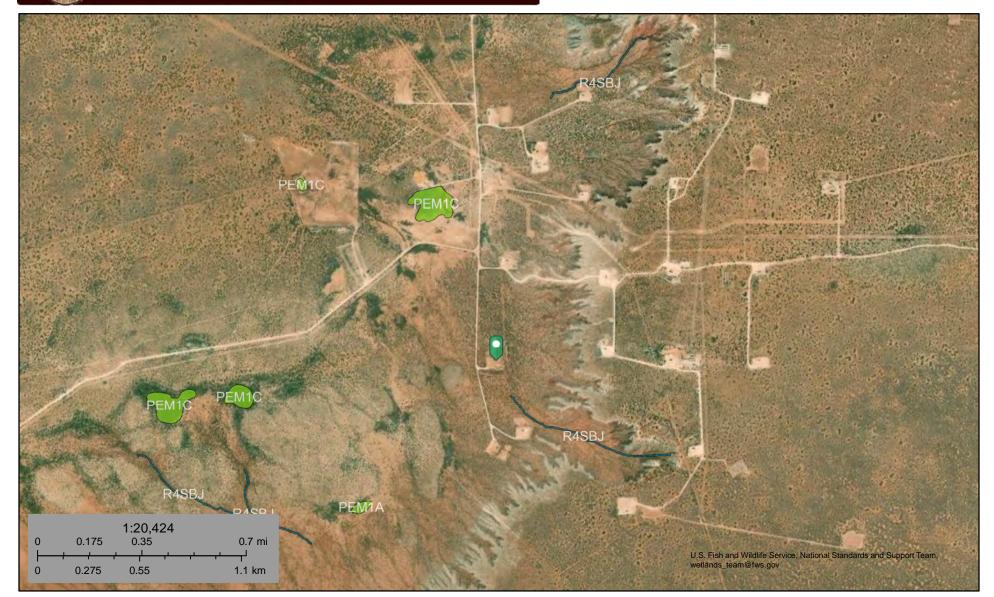
Date: 25 March 2025

Typical Shrubland Vegetation Associated with Loamy Soils Within Release Area


APPENDIX G REVISED Site Characterization Data

OCD Hydrology

6/16/2025, 2:15:16 PM


OSE Streams

Maxar, Microsoft, NM OSE

National Wetlands

June 16, 2025

Wetlands

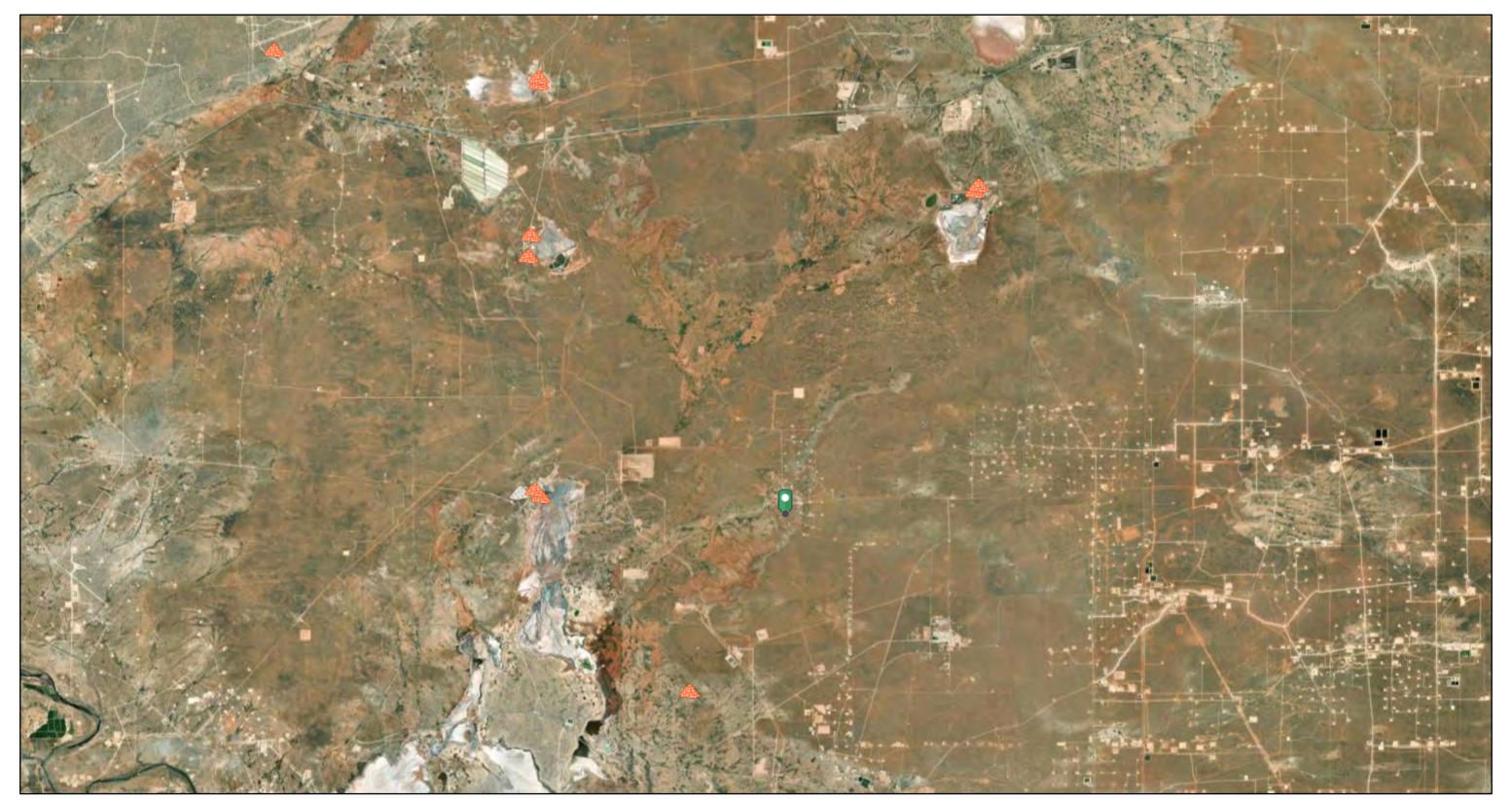
Estuarine and Marine Deepwater

Estuarine and Marine Wetland

Freshwater Emergent Wetland

Freshwater Pond

Lake

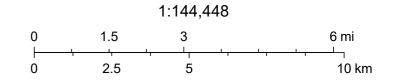

Freshwater Forested/Shrub Wetland

Other

Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Active Mines in New Mexico

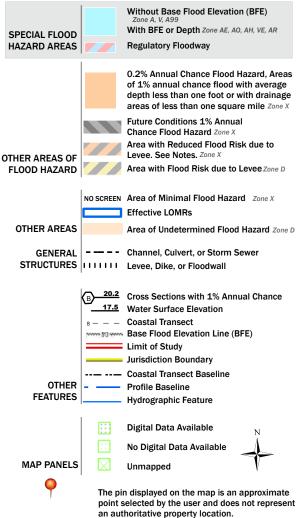

6/16/2025, 2:23:44 PM Registered Mines

Aggregate, Stone etc. 🗴

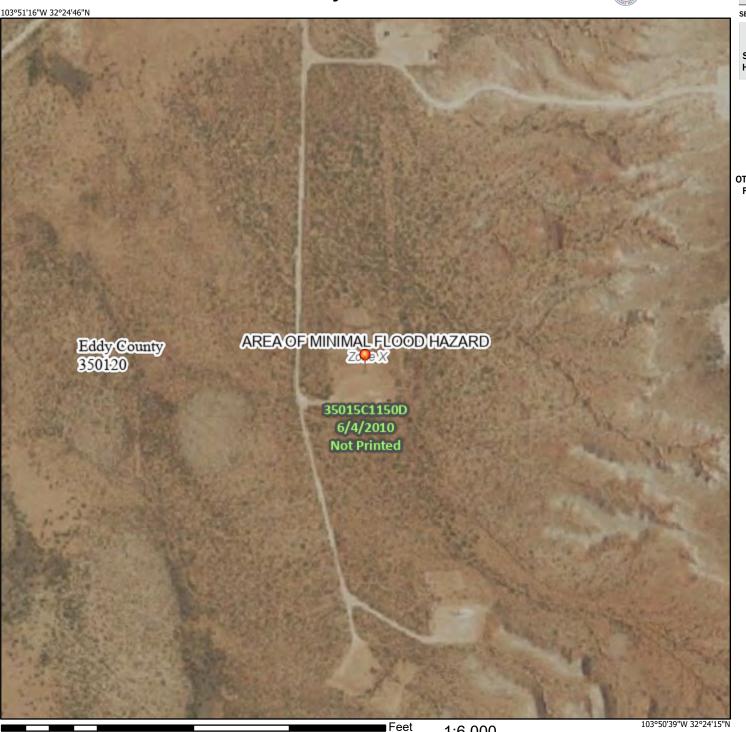
Aggregate, Stone etc.

Potash

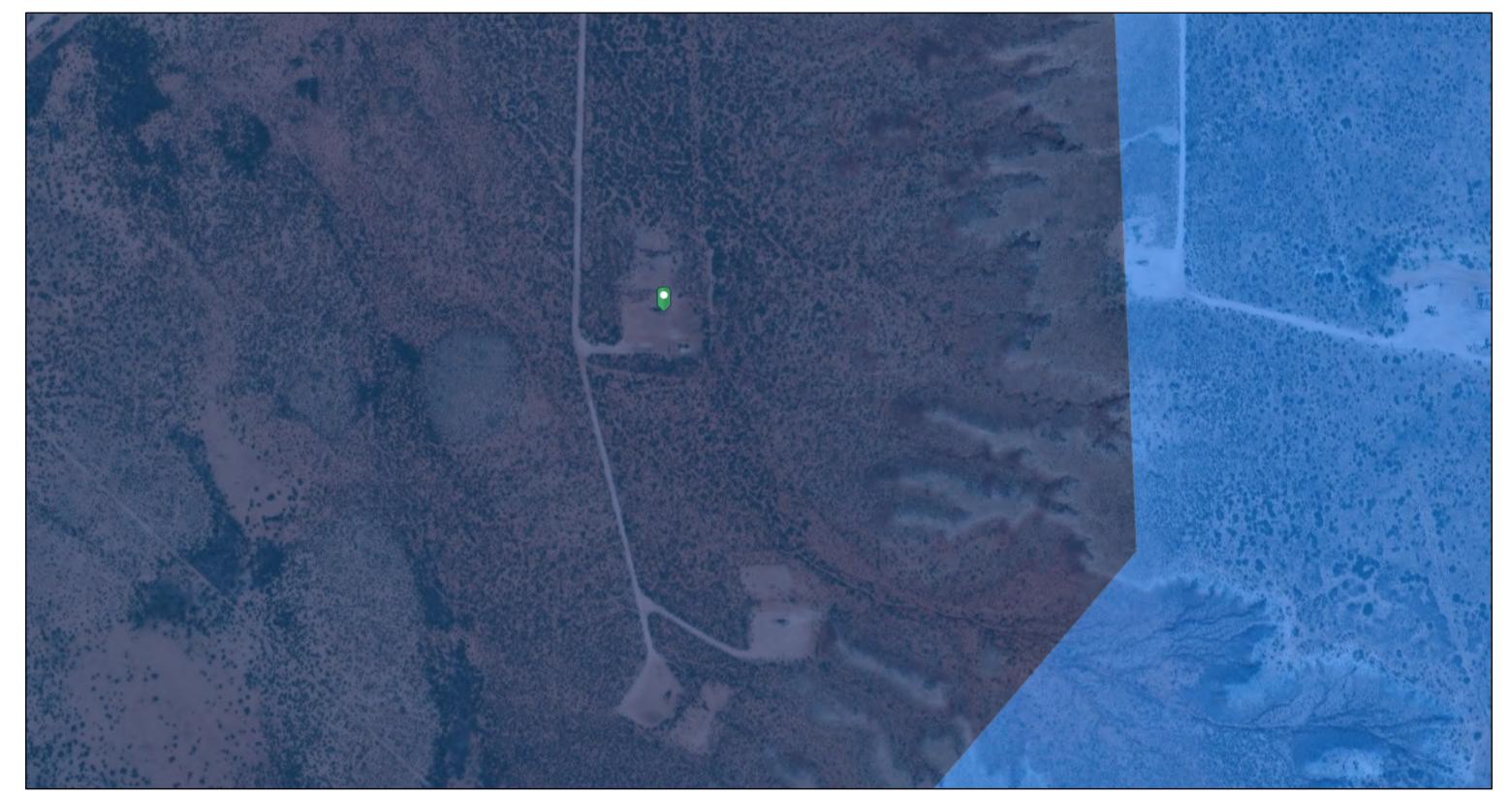
Aggregate, Stone etc. Aglt

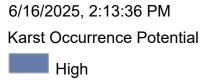

Earthstar Geographics

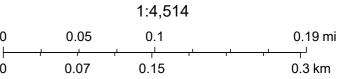
National Flood Hazard Layer FIRMette


SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards


The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 6/16/2025 at 7:27 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.


This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.


2,000

OCD Karst Potential

BLM, OCD, New Mexico Tech, Maxar

New Mexico Office of the State Engineer

Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a

(R=POD has been replaced, O=orphaned, C=the file is

(quarters are

water right file.)	closed)			larges									(meters)		(In feet)		
POD Number	Code	Sub basin	County	Q64	Q16	Q4	Sec	Tws	Range	X	Y	Мар	Distance	Well Depth	Depth Water		
C 04528 POD1		CUB	ED	NW	SW	SW	12	22S	30E	608886.4	3585625.1		959				
<u>C 02749</u>		CUB	ED	NW	NW	NW	18	22S	31E	610556.0	3585146.0 *		2619	640			
<u>C 02750</u>		CUB	ED	NW	NW	NW	18	22S	31E	610556.0	3585146.0 *	•	2619	741			
<u>C 02751</u>		CUB	ED	NW	NW	NW	18	22S	31E	610556.0	3585146.0 *	•	2619	637			
<u>C 02723</u>		CUB	ED	NE	NE	SW	15	22S	30E	606282.0	3584363.0 *	•	2729	651			
C 03234 EXPLORE		CUB	ED	NW	NE	SW	35	21S	30E	607695.0	3589207.0 *	•	2950	410			
<u>C 03003</u>		CUB	ED	SW	NW	SW	31	21S	31E	610511.0	3588970.0 *		3527	650			
C 02950 EXPL		CUB	ED	SE	NE	SE	23	22S	30E	608740.0	3582576.0 *	•	3762	845			
<u>C 03002</u>		CUB	ED	SE	NE	SE	06	22S	31E	611933.0	3587375.0 *	•	3880	668			
<u>C 02637</u>		CUB	ED	NW	SW	SW	24	22S	30E	608950.0	3582377.0 *	•	3993	759			
<u>C 03015</u>		CUB	ED	NW	SE	SW	22	22S	30E	606099.0	3582353.0 *	•	4473	1316	262	1054	
C 04773 POD1		CUB	ED	SE	SE	SE	24	22S	30E	610415.0	3582262.6	•	4603	55			
<u>C 02748</u>		CUB	ED	NW	NE	SW	17	22S	31E	612576.0	3584364.0 *	•	4780	3856			
C 02683		CUB	ED	SW	NW	NW	20	22S	31E	612184.0	3583356.0 *	•	4950	840			

Average Depth to Water: 262 feet

Minimum Depth: 262 feet

Maximum Depth: 262 feet

Record Count: 14

Basin/County Search:

County: ED

UTM Filters (in meters):

Easting: 608204.74 **Northing:** 3586300.45

Radius: 5000

* UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

212C-MD-02413 TETRA TECH		TECH	LOG OF BORING James E 001 DTW	Page 1 of 2			
Project Name: Ja	Project Name: James E #001 Tubing Line Release						
Borehole Location:	Borehole Location: GPS Coordinates: 32.408042°, -103.849478° Surface Elevation (ft): 3209						
Borehole Number:	James E 001 DTV	V Bore Dian	hole started: 2/28/2023 Date Finish	ned: 2/28/2023			
PES	WERY (%)	X	WATER LEVEL OBSERVATIONS While Drilling Variety of Drylling Remarks:	ng <u>I DRY</u> ft			
DEPTH (ft) OPERATION TYPES SAMPLE STANDARD G STANDARD TEST	PID (Ppm) SAMPLE RECOVERY (%) MOISTURE CONTENT (%)	DRY DENSITY (pcf) LIQUID LIMIT DENSITICITY INDEX MINUS NO. 200 (%)	MATERIAL DESCRIPTION	WELL DIAGRAM			
55 10 15 20 25 30 40 45 Sampler Spli			SP- SAND: Reddish brown, partially cemented, fine-grained, with trace caliche, dry. SP- SAND: Reddish brown, loose, coarse to fine-grained, poorly sorted, with moderate to trace caliche, dry. SP- SAND: Light tan to light brown, loose, coarse to fine-grained, moderatley to poorly sorted, with caliche gravel, dry. SW- SAND: Light tan, loose, fine to very fine-grained, with trace caliche, dry. SW- SAND: Light tan, loose, coarse to fine-grained, with occasional caliche fragments, dry.	Bentonite Chip Seal			
Type's: Spoon Vane Shear Shelby Vane Shear Shelby California Bulk Sample Sample Sonic Types: Types: Mud Rotary Continuous Flight Auger Hollow Stem Auger			Auger Air Rotary Direct Push HSA Notes: Surface elevation is an approximate value obtain Earth data.	ned from Google			
Logger: Colton Bicke	erstaff	Drilling Equipment: A	ir Rotary Driller: Scarborough Drilling				

Borefroide Number: James E 001 DTW Borefroide Number: James E 001 DTW Borefroide Number: James E 001 DTW Borefroide Number: James E 001 DTW Borefroide Number: James E 001 DTW Borefroide Number: James E 001 DTW Borefroide Number: James E 001 DTW Borefroide Number: James E 001 DTW Borefroide Number: James E 001 DTW WATER LEVEL OBSERVATIONS VATER LEVEL OBSERVATIONS WATER LEVEL OBSERVATIONS WATERIAL DESCRIPTION BE WELL DIAGRAM WATERIAL DESCRIPTION BE WELL DIAGRAM WATERIAL DESCRIPTION BE WELL DIAGRAM WELL DIAGRAM SW- SAND Brown to reddish brown, losse, fine to very SW- SAND Brown to reddish brown, losse, fine to very SW- SAND Brown to reddish brown, losse, fine to very SW- SAND Brown to reddish brown, losse, fine to very SW- SAND Brown to reddish brown, losse, fine to very SW- SAND Brown to reddish brown, losse, fine to very SW- SAND Brown to reddish brown, losse, fine to very SW- SAND Brown to reddish brown, losse, fine to very SW- SAND Brown to reddish brown, losse, fine to very SW- SAND Brown to reddish brown, losse, fine to very SW- SAND Brown to reddish brown, losse, fine to very SW- SAND Brown to reddish brown, losse, fine to very SW- SAND Brown to reddish brown, losse, fine to very SW- SAND Brown to reddish brown, losse, fine to very SW- SAND Brown to reddish brown, losse, fine to very SW- Sand Brown Brown Brown SW- SAND Brown to reddish brown, losse, fine to very SW- Sand Brown Brown Brown SW- SAND Brown to reddish brown, losse, fine to very SW- Sand Brown Brown SW- SAND Brown to reddish brown, losse, fine to very SW- Sand Brown Brown SW- SAND Brown to reddish brown, losse, fine to very SW- Sand Brown Brown SW- SAND Brown to reddish brown, losse, fine to very SW- Sand Brown SW- SAND Brown to reddish brown, losse, fine to very SW- Sand Brown SW- SAND Brown to reddish brown, losse, fine to very SW- SAND Brown to reddish brown, losse, fine to very SW- SAND Brown to reddish brown, losse, fine to very SW- SAND Brown to reddish brown, losse, fine to very SW- SAND Brown to redd	Service Number: James E 001 DTW Borehold Number: James E 001 DTW Borehold Number: James E 001 DTW Borehold Number: James E 001 DTW Borehold Number: James E 001 DTW Borehold Number: James E 001 DTW N	212C-MD-02413	TE TETRAT	TECH	LOG OF BORING James E 001 DTW	Page 2 of 2		
Borehole Number: James E 001 DTW Post	British District	Project Name: Jame	es E #001 Tubing	Line Release				
Wildle Drilling WATER LEVEL OBSERVATIONS WATER	While Drilling Special Poly is a special property of the prope	Borehole Location: G	GPS Coordinates: 32.4		Surface Elevation (ft): 3209			
WATER LEVEL OBSERVATIONS White Drilling Spring WATER LEVEL OBSERVATIONS White Drilling Spring WATER LEVEL OBSERVATIONS WHITE A LEVEL OBSERVATIONS White Drilling Spring WATER LEVEL OBSERVATIONS White Drilling Spring WATER LEVEL OBSERVATIONS WHITE A LEVEL OBSERVATIONS WATER LEVEL OBSERVATIONS	While Drilling Special Poly is a special property of the prope	Borehole Number: J	ames E 001 DTW	V Boreh Diame	ole eter (in.): 8 Date Started: 2/28/2023 Date Finished:	2/28/2023		
Sampler Specific Scale Liner Types: Sampler Specific Scale Liner Types: Sampler Specific Scale Liner Types: Sampler Scale Mad Scale Liner Types: Sampler Scale Liner Types: Sampler Scale Scale Liner Types: Sampler Scale Scale Liner Types: Sampler Scale Scale Liner Types: Sampler Scale Scale Liner Types: Sampler Scale Scale Liner Types: Sampler Scale Liner Types: S	SW. SAND. Brown to reddish brown, lose, fine to very fine-grained, dry. SSW. SAND. Brown to reddish brown, lose, fine to very fine-grained, dry. SSW. SAND. Brown to reddish brown, lose, fine to very fine-grained, dry. Bottom of borehole at 105.0 feet. Bottom of borehole at 105.0 feet. Sampler Sport Spor	<i>ω</i>	ERY (%)	X X	WATER LEVEL OBSERVATIONS While Drilling	<u>▼ DRY</u> ft		
Sampler Sampler Short Spot Short Spot Short Spot Short Spot Short	Sempler Spite Acetate Liner Spite Water Shour Sh	DEPTH (ft) OPERATION TYPE SAMPLE STANDARD FEST TEST	(ppm) SAMPLE RECOVE MOISTURE CONT	∝ ⊢	MATERIAL DESCRIPTION (変) 世間	WELL DIAGRAM		
		60 65 70 75 80 90 95 Sampler Types: Split Spoon Shelby Bulk Sample	Acetate Liner Vane Shear California	Operation Types: Mud Rotary Flight Auger	SW- SAND: Brown to reddish brown, loose, fine to very fine-grained, dry. Auger	1=1 1		

APPENDIX H BLM Seed Mixture Details

(27)

BLM Serial #:

Company Reference:

3.2 Seed Mixture for LPC Sand/Shinnery Sites

The holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be <u>no</u> primary or secondary noxious weeds in the seed mixture. Seed will be tested and the viability testing of seed will be done in accordance with State law(s) and within nine (9) months prior to purchase. Commercial seed will be either certified or registered seed. The seed container will be tagged in accordance with State law(s) and available for inspection by the authorized officer.

Seed will be planted using a drill equipped with a depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture will be evenly and uniformly planted over the disturbed area (smaller/heavier seeds have a tendency to drop the bottom of the drill and are planted first). The holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed will be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre are to be doubled. The seeding will be repeated until a satisfactory stand is established as determined by the authorized officer. Evaluation of growth will not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

<u>Species</u>	<u>lb/acre</u>
Plains Bristlegrass	5lbs/A
Sand Bluestem	5lbs/A
Little Bluestem	3lbs/A
Big Bluestem	6lbs/A
Plains Coreopsis	2lbs/A
Sand Dropseed	1lbs/A

^{*}Pounds of pure live seed: Pounds of seed **x** percent purity **x** percent germination = pounds pure live seed

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116

Online Phone Directory

https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 481213

QUESTIONS

Operator:	OGRID:		
CONOCOPHILLIPS COMPANY	217817		
600 W. Illinois Avenue	Action Number:		
Midland, TX 79701	481213		
	Action Type:		
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)		

QUESTIONS

Prerequisites				
Incident ID (n#)	nRM2007952227			
Incident Name	NRM2007952227 JAMES # #001 @ 30-015-20996			
Incident Type	Release Other			
Incident Status	Remediation Plan Received			
Incident Well	[30-015-20996] JAMES E #001			

Location of Release Source				
Please answer all the questions in this group.				
Site Name	JAMES ##001			
Date Release Discovered	03/16/2020			
Surface Owner	Federal			

Incident Details				
Please answer all the questions in this group.				
Incident Type	Release Other			
Did this release result in a fire or is the result of a fire	No			
Did this release result in any injuries	No			
Has this release reached or does it have a reasonable probability of reaching a watercourse	No			
Has this release endangered or does it have a reasonable probability of endangering public health	No			
Has this release substantially damaged or will it substantially damage property or the environment	No			
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No			

Nature and Volume of Release	
Material(s) released, please answer all that apply below. Any calculations or specific justifications fo	or the volumes provided should be attached to the follow-up C-141 submission.
Crude Oil Released (bbls) Details	Cause: Corrosion Valve Crude Oil Released: 2 BBL Recovered: 0 BBL Lost: 2 BBL.
Produced Water Released (bbls) Details	Cause: Corrosion Valve Produced Water Released: 7 BBL Recovered: 0 BBL Lost: 7 BBL.
Is the concentration of chloride in the produced water >10,000 mg/l	Yes
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 481213

Operator:	OGRID:			
CONOCOPHILLIPS COMPANY	217817			
600 W. Illinois Avenue	Action Number:			
Midland TX 79701	481213			

QUESTIONS (continued)

Action Type: [C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Nature and Volume of Release (continued)				
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.			
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No			
Reasons why this would be considered a submission for a notification of a major release	Unavailable.			
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.				

Initial Response				
The responsible party must undertake the following actions immediately unless they could create a s	afety hazard that would result in injury.			
The source of the release has been stopped	True			
The impacted area has been secured to protect human health and the environment	True			
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True			
All free liquids and recoverable materials have been removed and managed appropriately	True			
If all the actions described above have not been undertaken, explain why Not answered.				
If all the actions described above have not been undertaken, explain why Not answered. Per Paragraph (4) of Subsection B of 19.15.29 8 NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please prepare and attach a parretive of				

Per Paragraph (4) of Subsection B of 19.15.29.8 NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of actions to date in the follow-up C-141 submission. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of Subsection A of 19.15.29.11 NMAC), please prepare and attach all information needed for closure evaluation in the follow-up C-141 submission.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Name: Christian LLuLL
Title: Project Manager
Email: christian.llull@tetratech.com
Date: 07/02/2025

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116

Online Phone Directory
https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Action 481213

QUESTIONS (continued)

Operator:	OGRID:
CONOCOPHILLIPS COMPANY	217817
600 W. Illinois Avenue	Action Number:
Midland, TX 79701	481213
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Site Characterization	
Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.	
What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 100 and 500 (ft.)
What method was used to determine the depth to ground water	Direct Measurement
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:	
A continuously flowing watercourse or any other significant watercourse	Between 500 and 1000 (ft.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Greater than 5 (mi.)
Any other fresh water well or spring	Greater than 5 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Between 1 and 5 (mi.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Greater than 5 (mi.)
Categorize the risk of this well / site being in a karst geology	None
A 100-year floodplain	Greater than 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	No

Remediation Plan		
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
Requesting a remediation plan approval with this submission	Yes	
Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination a	ssociated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
Soil Contamination Sampling: (Provide the highest observable value for each, in million	grams per kilograms.)	
Chloride (EPA 300.0 or SM4500 Cl B)	12800	
TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M)	3170	
GRO+DRO (EPA SW-846 Method 8015M)	2490	
BTEX (EPA SW-846 Method 8021B or 8260B)	0	
Benzene (EPA SW-846 Method 8021B or 8260B)	0	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed e which includes the anticipated timelines for beginning and completing the remediation.	fforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,	
On what estimated date will the remediation commence	10/02/2025	
On what date will (or did) the final sampling or liner inspection occur	10/12/2025	
On what date will (or was) the remediation complete(d)	10/11/2025	
What is the estimated surface area (in square feet) that will be reclaimed	7400	
What is the estimated volume (in cubic yards) that will be reclaimed	880	
What is the estimated surface area (in square feet) that will be remediated	7400	
What is the estimated volume (in cubic yards) that will be remediated	880	
These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed.		

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Released to Imaging: 10/14/2025 1:10:00 PM

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 481213

QUESTIONS (continued)

Operator:	OGRID:
CONOCOPHILLIPS COMPANY	217817
600 W. Illinois Avenue	Action Number:
Midland, TX 79701	481213
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Remediation Plan (continued)		
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants:		
Yes		
fEEM0112334510 HALFWAY DISPOSAL AND LANDFILL		
Not answered.		

Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Name: Christian LLuLL
Title: Project Manager
Email: christian.llull@tetratech.com

Date: 07/02/2025

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 481213

QUESTIONS (continued)

Operator:	OGRID:
CONOCOPHILLIPS COMPANY	217817
600 W. Illinois Avenue	Action Number:
Midland, TX 79701	481213
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Deferral Requests Only	
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.	
Requesting a deferral of the remediation closure due date with the approval of this submission	No

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 481213

QUESTIONS (continued)		
Operator:	OGRID:	
CONOCOPHILLIPS COMPANY	217817	
600 W. Illinois Avenue	Action Number:	
Midland, TX 79701	481213	
	Action Type:	
	[C-141] Site Char / Remediation Plan C-141 (C-141-y-Plan)	

QUESTIONS Sampling Event Information Last sampling notification (C-141N) recorded (Unavailable.) Remediation Closure Request Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed. Requesting a remediation closure approval with this submission No

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 481213

CONDITIONS

Operator:	OGRID:
CONOCOPHILLIPS COMPANY	217817
600 W. Illinois Avenue	Action Number:
Midland, TX 79701	481213
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

CONDITIONS

Created By	Condition	Condition Date
michael.buchanan	Site Characterization and Workplan is approved.	10/14/2025