| State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505 | | | | | Revised February 15, 2012 1. WELL API NO. 30-015-39848 2. Well Name: DUMP STATE #003H 3. Well Number: 003H 4. Surface Hole Location: | | | | |--|--|-------------------------|---|---|--|------------------------------|--------------------|---| | | | | | | | | | | | □ Amendmen | | | | | | | | | | | | | | | 7. County: | .50658329 | | 04.064832858136 | | Operator Name and Address: REGENERATION ENERGY, CORPORATION | | | | | 9. OGRID: 10. Phone Number: 575-746-9577 | | | | | P. O. Box 210 Artesia 88210 11. Last Fracture Date: 7/5/2012 Frac Performed by: Halliburton | | | | | 12. Production Type: | | | | | 13. Pool Code(s):
24330
15. True Vertical Dep | oth (TVD): | | | | 14. Gross Fra | actured Inter
0,140 ft to | 10,141 ft | • | | 5,847 ft 17. HYDRAULIC FLUID COMP Trade Name Supplier | | SITION AND C | ONCENTRATION: | (CA | | 88 bbls | Ingredient | ov be thrower | | | | | | Abs | tract Service | Additive (% by mass) | | Ingredient
Concentration in
HF Fluid (% by
mass) | | HCL Acid
HYDROCHLORIC
ACID 10-30% | | Solvent | Hydrochloric acid | 764 | 7-01-0 | 100%
30% | | 78.46997%
15.53633% | | Brown 16/30
CRC-16/30
LoSurf-300D | Halliburton
Halliburton
Halliburton | Non-ionic
Surfactant | 1,2,4 | 95-6 | 63-6 | | 100%
100%
1% | 3.47182%
0.7557%
0.00113% | | BE-7™ | riamounton | | Trimethylbenzene
Ethanol
Heavy aromatic | 64-17-5
64742-94-5
91-20-3
127087-87-0 | | | 60%
30% | 0.06788%
0.03394% | | | | | petroleum naphtha
Naphthalene
Poly(oxy-1,2- | | | | 5%
5% | 0.00566%
0.00566% | | | Halliburton | | ethanediyl), alpha-(4-
nonylphenyl)-omega-
hydroxy-, branched
Sodium hydroxide | 1310-73-2 | | | 2% | 0.0015% | | CLA-STA XP
ADDITIVE | Halliburton | Clay
Stabilizer | Sodium hypochlorite
Polyepichlorohydrin,
trimethyl amine | 7681-52-9
51838-31-4 | | | 30%
60% | 0.02257%
0.05227% | | CLA-WEB™ | Halliburton | Additive | quaternized Ammonium salt | Bus | nfidential
siness | | 50% | 0.03445% | | FR-38 | Halliburton | Friction
Reducer | Acetic acid
Ammonium sulfate | 64- | rmation
19-7
nfidential | | 5%
30% | 0.00372%
0.02234% | | SUPERSET W | Halliburton | Activator | Inorganic Salt Methanol | Info
67- | iness
rmation
56-1 | | 60% | 0.07812% | | | | | Ethoxylated
nonylphenol | Bus
Info | nfidential
siness
rmation | | 60% | 0.07812% | | LGC-36 UC | Halliburton | Concentrate | Guar gum
Naphtha, hydrotreated
heavy | 9000-30-0
647 4 2-48-9 | | | 60%
60% | 0.25136%
0.25136% | | BC-140 X2 | Halliburton | Initiator | Ethylene glycol
Monoethanolamine
borate | | 7-21-1
138-87-9 | | 30%
100% | 0.02822%
0.09406% | | SP BREAKER
OptiKleen-WF™ | Halliburton
Halliburton | Breaker
Concentrate | Sodium persulfate
Sodium perborate
tetrahydrate | _ | 5-27-1
86-00-7 | | 100%
100% | 0.65496%
0.02893% | | OPTIFLO-HTE | Halliburton | Breaker | Crystalline silica,
quartz
Walnut hulls | 148
Mixt | 08-60-7
ure | | 30%
100% | 0.00608% | | Ingredients Listed Below This Line Are Part of the | | | 2,7-
Naphthalenedisulfonic
acid, 3-hydroxy-4-[(4-
sulfor-1-naphthalenyl)
azo] -, trisodium salt | | -67-3 | | 0% | 0% | | | | | Acrylamide copolymer
Amine Salt | Cor | prietary
nfidential
siness | | 0%
0% | 0%
0% | | | | | Amine Salts | Cor | rmation
fidential
siness | | 0% | 0% | | | | | Amine Salts | Cor | rmation
nfidential
siness
rmation | | 0% | 0% | | | | | C.I. Pigment Red 5
Crystalline silica,
quartz | 641 | 0-41-9
08-60-7 | | 0%
0% | 0%
0% | | | | | Cured Acrylic Resin | Bus | nfidential
siness
rmation | | 0% | 0% | | | | | Cured Acrylic Resin | Cor | nfidential
siness
rmation | | 0% | 0% | | | | | Defoamer
Enzyme | Pro | prietary
nfidential
siness | | 0%
0% | 0%
0% | | | | | Fatty alcohol polyglycol
ether surfactant | Info | rmation
3-30-5 | | 0% | 0% | | | | | Glycerine
Modified acrylamide | _ | 81-5
prietary | | 0%
0% | 0%
0% | | | | | copolymer Modified acrylate polymer Oxyalkylated Phenolic | ENERGY SE | prietary
nfidential | | 0% | 0% | | | | | Oxyalkylated Phenolic Resin Oxyalkylated Phenolic | Bus
Info | ingential
iness
rmation
infidential | | 0% | 0% | | | | | Resin Quaternary Amine | Bus
Info | indential
iness
rmation
ifidential | | 0% | 0% | | | | | Quaternary Amine | Bus
Info | indential
iness
rmation
infidential | | 0% | 0% | | | | | Quaternary Amine | Bus
Info | iness
rmation
nfidential | | 0% | 0% | | | | 8 | Quaternary | Bus
Info | iness
rmation
53-58-2 | | 0% | 0% | | 18 Las Operator he | | | ammonium
compounds, bis
(hydrogenated tallow
alkyl) dimethyl,salts | 508 | | | 5 70 | 070 | | | | | with bentonite Silica, amorphous - fumed | 19940000 | 1-86-9 | | 0% | 0% | | | | 3 | Sodium acetate Sodium Chloride Sodium sulfate | 127-09-3
7647-14-5
7757-82-6 | | | 0%
0%
0% | 0%
0%
0% | | | | | Trimethylamine, N-
oxide
Water | 773 | 4-78-7
2-18-5 | | 0% | 0% | | Signature: S | reby certify that
igned Electro
/11/2012 | | n shown on this disclosure for
Printed Name: JOEL W | | | | | nowledge and belief
Treasurer | | E-mail Address: jr | miller@pvtn.n | g of information | n beyond MSDS data as des
confidential business informa | | | 10.1200. NN | MOCD does | not require the | | | | | | | | | | |