Received by NCDS/24/2021 9:47:41 AM U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Sundry Print Report 02/23/2021
Well Name: YUKON 20 FED COM	Well Location: T24S / R34E / SEC 20 / NENW /	County or Parish/State:
Well Number: 708H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM17241	Unit or CA Name:	Unit or CA Number:
US Well Number:	Well Status: Approved Application for Permit to Drill	Operator: EOG RESOURCES INCORPORATED

Notice of Intent

Type of Submission: Notice of Intent

Date Sundry Submitted: 01/15/2021

Type of Action APD Change

Time Sundry Submitted: 08:00

Date proposed operation will begin: 03/28/2021

Procedure Description: EOG respectfully requests an amendment to our approved APD for this well to reflect the following changes: Change well number to 308H Change target formation to First Bone Spring Sand Adjust casing and cement program to accommodate shallower target

Application

Received by OCD: 2/24/2021 9:47:41 AM Well Name: YUKON 20 FED COM	Well Location: T24S / R34E / SEC 20 / NENW /	County or Parish/State: Page 2 of
Well Number: 708H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM17241	Unit or CA Name:	Unit or CA Number:
US Well Number:	Well Status: Approved Application for Permit to Drill	Operator: EOG RESOURCES INCORPORATED

Section 1 - General		
APD ID: 10400047712	Tie to previous NOS?	Submission Date: 09/19/2019
BLM Office: CARLSBAD	User: Lisa Trascher	Title: Regulatory Specialist
Federal/Indian APD: FED	Is the first lease penetra	ted for production Federal or Indian? FED
Lease number: NMNM17241	Lease Acres:	
Surface access agreement in place?	Allotted?	Reservation:
Agreement in place? NO	Federal or Indian agreer	ment:
Agreement number:		
Agreement name:		
Keep application confidential? N		
Permitting Agent? NO	APD Operator: EOG RES	SOURCES INCORPORATED
Operator letter of designation:		

Operator Info

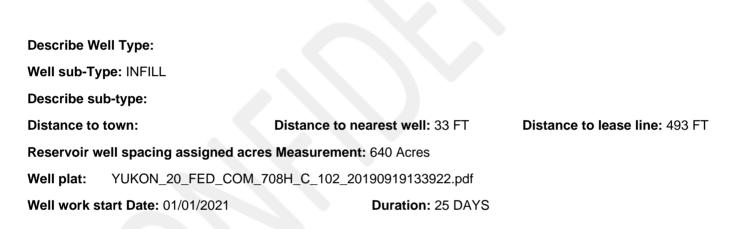
Operator Organization Name: EOG RESOURCES INCORPORATED
Operator Address: 1111 BAGBY SKY LOBBY2
Operator PO Box:
Operator City: HOUSTON State: TX
Operator Phone: (713)651-7000
Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO **Master Development Plan name:** Well in Master SUPO? NO Master SUPO name: Well in Master Drilling Plan? NO Master Drilling Plan name: Well Name: YUKON 20 FED COM Well Number: 708H Well API Number: Field/Pool or Exploratory? Field and Pool Field Name: WC025 G09 Pool Name: WC-025 G-09 S253309P;UPPER WOLFCAMP S253309P; UPPER WOLFCAMP

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL

Is the proposed well in a Helium production area? N Use Existing Well Pad? N Type of Well Pad: MULTIPLE WELL Well Class: HORIZONTAL


Well Work Type: Drill Well Type: OIL WELL Multiple Well Pad Name: YUKON 20 FED COM Number of Legs: 1

Zip: 77002

New surface disturbance? Number: 707H/708H

Received by OCD: 2/24/2021 9:47:41 AM Well Name: YUKON 20 FED COM	Well Location: T24S / R34E / SEC 20 / NENW /	County or Parish/State: Page 3 of 38
Well Number: 708H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM17241	Unit or CA Name:	Unit or CA Number:
US Well Number:	Well Status: Approved Application for Permit to Drill	Operator: EOG RESOURCES INCORPORATED

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL

Section 3 - Well Location Table

Survey Type: RECTANGULAR Describe Survey Type:

Datum: NAD83

Survey number:

Vertical Datum: NAVD88

Reference Datum: KELLY BUSHING

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
SHL	493	FNL	212	FW	24S	34E	20	Aliquot	32.20896		LEA	NEW		F	NMNM	353	0	0	Y
Leg #1			2	L				NENW	39	103.9360 06		MEXI CO	MEXI CO		017241	8			
#1 KOP	50	FNL	171	5\//	24S	34E	20	Aliquot	32.21083		LEA	NEW		F	NMNM		116	116	Y
Leg	50		6	гvv L	243	34⊏	20	NENW		- 103.4992	LEA	MEXI		l		- 809	57	28	Ť
#1			-							98		со	со			0			
PPP	100	FNL	171	FW	24S	34E	20	Aliquot	32.21004	-	LEA	NEW	NEW	F	NMNM	-	118	118	Y
Leg			6	L				NENW	45	103.4949		MEXI			017241	830	77	40	
#1-1										312		со	со			2			
EXIT	100	FSL	171	FW	24S	34E	29	Aliquot	32.18156	-	LEA	NEW		F	NMNM	-	223	121	Y
Leg			6	L				SESW	6	103.4949		MEXI			028881	856	41	05	
#1										485		со	со			1			

eceived by OCD: 2/24/2021 9:47:41 AM Well Name: YUKON 20 FED COM

Well Location: T24S / R34E / SEC 20 / NENW /

Type of Well: OIL WELL

County or Parish/State: Page 4 of

38

Allottee or Tribe Name:

Lease Number: NMNM17241

Unit or CA Name:

Unit or CA Number:

US Well Number:

Well Number: 708H

Well Status: Approved Application for Permit to Drill

Operator: EOG RESOURCES INCORPORATED

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	DM	TVD	Will this well produce from this lease?
BHL	100	FSL	171 6	FW	24S	34E		Aliquot	32.18156 6	- 103.4949	LEA		NEW MEXI		NMNM 028881	- 856	223 41	121 05	Y
Leg #1			0	L				SESW	0	485		CO	CO		020001	7	41	05	

Drilling Plan

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical Depth	Measured Depth	Lithologies	Mineral Resources	Producing Formation
1384288	PERMIAN	3491	0	0	ALLUVIUM	NONE	N
1384289	RUSTLER	2601	890	890	ANHYDRITE	NONE	N
1384290	TOP SALT	2061	1430	1430	SALT	NONE	N
1384292	BASE OF SALT	-1409	4900	4900	SALT	NONE	N
1384293	LAMAR	-1670	5161	5161	LIMESTONE	NONE	N
1384294	BELL CANYON	-1696	5187	5187	SANDSTONE	NATURAL GAS, OIL	N
1384295	CHERRY CANYON	-2074	5565	5565	SANDSTONE	NATURAL GAS, OIL	N
1384296	BRUSHY CANYON	-4110	7601	7601	SANDSTONE	NATURAL GAS, OIL	N
1384291	BONE SPRING LIME	-5587	9078	9078	LIMESTONE	NONE	N
1384297	FIRST BONE SPRING SAND	-6540	10031	10031	SANDSTONE	NATURAL GAS, OIL	N
1384298	BONE SPRING 2ND	-6944	10435	10435	SANDSTONE	NATURAL GAS, OIL	N
1384299	BONE SPRING 3RD	-8132	11623	11623	SANDSTONE	NATURAL GAS, OIL	N
1384300	WOLFCAMP	-8599	12090	12090	SHALE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Received by OCD: 2/24/2021 9:47:41 AM Well Name: YUKON 20 FED COM	Well Location: T24S / R34E / SEC 20 / NENW /	County or Parish/State: Page 5 of
Well Number: 708H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM17241	Unit or CA Name:	Unit or CA Number:
US Well Number:	Well Status: Approved Application for Permit to Drill	Operator: EOG RESOURCES INCORPORATED

Pressure Rating (PSI): 10M

Rating Depth: 12105

Equipment: The minimum blowout preventer equipment (BOPE) shown in Exhibit #1 will consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer and an annular preventer (10,000-psi WP). Both units will be hydraulically operated and the ram-type will be equipped with blind rams on bottom and drill pipe rams on top. A multi-bowl wellhead system will be utilized. After running the 9-5/8" surface casing, a 9-5/8" BOP/BOPE system with a minimum working pressure of 10,000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 10,000 psi pressure test. This pressure test will be repeated at least every 30 days, as per Onshore Order No. 2. The minimum working pressure of the BOP and related BOPE required for drilling below the surface casing shoe shall be 10,000 psi. The multi-bowl wellhead will be installed by vendor's representative(s). A copy of the installation instructions for the Cactus Multi-Bowl WH system has been sent to the NM BLM office in Carlsbad, NM. The wellhead will be installed by a third party welder while being monitored by WH vendor's representative. All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type. A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 5000 psi. Casing strings will be tested as per Onshore Order No. 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater. **Requesting Variance?** YES

Variance request: Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line). Variance is requested to use a 5,000 psi annular BOP with the 10,000 psi BOP stack. Variance is requested to waive the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation. Variance is also requested to waive any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation. Variance is also requested to waive any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation. Variance is also requested to waive the annular clearance requirements for the 5 1/2" casing by 7 5/8" casing annulus to the proposed top of cement. EOG requests permission to allow deviation from the 0.422" annulus clearance requirement from Onshore Order #2 under the following conditions: - Annular clearance to meet or exceed 0.422" between intermediate casing ID and production casing coupling only on the first 500' overlap between both casing strings. - Annular clearance less than 0.422" is acceptable for the curve and lateral portions of the production open hole section. EOG Resources also requests approval to implement Casing Design B (pg. 8-9). BLM will be notified of elected design at spud.

Testing Procedure: Pipe rams and blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

Choke Diagram Attachment:

10_M_Choke_Manifold_20190508145233.pdf

Co_Flex_Hose_Certification_20190508145234.pdf

Co_Flex_Hose_Test_Chart_20190508145234.pdf

BOP Diagram Attachment:

EOG_BLM_10M_Annular_Variance___13.375_in_20190508145333.pdf

10_M_BOP_Diagram_9.675_in_20190508145331.pdf

EOG_BLM_10M_Annular_Variance___9.675_in_20190508145332.pdf

10_M_BOP_Diagram_13.375_in_20190508145331.pdf

Received by OCD: 2/24/2021 9:47:41 AM Well Name: YUKON 20 FED COM	Well Location: T24S / R34E / SEC 20 / NENW /	County or Parish/State: Page 6 of 3
Well Number: 708H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM17241	Unit or CA Name:	Unit or CA Number:
US Well Number:	Well Status: Approved Application for Permit to Drill	Operator: EOG RESOURCES

Section 3 - Casing

														_	_							
Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	
1	SURFACE	12.2 5	9.625	NEW	API	Ν	0	1090	0	1090	3538	2448	1090	J-55	40	LT&C	1.12 5	1.25	BUOY	1.6	BUOY	1.
	PRODUCTI ON	6.75	5.5	NEW	API	N	0	10540	0	10540	3491	-7002	10540	OTH ER		OTHER - DWC/C-IS MS	1.12 5	1.25	BUOY	1.6	BUOY	1.
	INTERMED IATE	8.75	7.625	NEW	API	N	0	11040	0	11040	3491	-7502		HCP -110		OTHER - FXL	1.12 5	1.25	BUOY	1.6	BUOY	1.
	PRODUCTI ON	6.75	5.5	NEW	API	N	10540	11040	10540	11040	-7002	-7502		OTH ER	-	OTHER - VAM SFC	1.12 5	1.25	BUOY	1.6	BUOY	1.
	PRODUCTI ON	6.75	5.5	NEW	API	N	11040	22341	11040	12105	-7502	-8567		OTH ER		OTHER - DWC/C-IS MS	1.12 5	1.25	BUOY	1.6	BUOY	1.

Casing Attachments

Casing ID: 1

String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Yukon_20_Fed_Com_708H_Permit_Info_20190919134814.pdf

Received by OCD: 2/24/2021 9:47:41 AM Well Name: YUKON 20 FED COM	Well Location: T24S / R34E / SEC 20 / NENW /	County or Parish/State: Page 7 of 38
Well Number: 708H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM17241	Unit or CA Name:	Unit or CA Number:
US Well Number:	Well Status: Approved Application for Permit to Drill	Operator: EOG RESOURCES INCORPORATED

Casing Attachments

 Casing ID:
 2
 String Type: PRODUCTION

 Inspection Document:
 Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

5.500in_20.00_VST_P110EC_DWC_C_IS_MS_Spec_Sheet_20190919134832.pdf

See_previously_attached_Drill_Plan_20190919134832.pdf

Casing ID: 3	String Type: PRODUCTION
Inspection Document:	

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Please_see_previously_attached_drill_plan_20180910200917.pdf

5.500in_20.00_VST_P110EC_VAM_SFC_20190916090418.pdf

Casing ID: 4 String Type:INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Please_see_previously_attached_drill_plan_20180913084044.pdf

7.625in_29.70_P110HC_FXL_20190916090606.pdf

Received by OCD: 2/24/2021 9:47:41 AM Well Name: YUKON 20 FED COM	Well Location: T24S / R34E / SEC 20 / NENW /	County or Parish/State: Page 8 of 38
Well Number: 708H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM17241	Unit or CA Name:	Unit or CA Number:
US Well Number:	Well Status: Approved Application for Permit to Drill	Operator: EOG RESOURCES INCORPORATED

Casing Attachments

 Casing ID:
 5
 String Type: PRODUCTION

 Inspection Document:
 Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Please_see_previously_attached_drill_plan_20180913083920.pdf

5.500in_20.00_VST_P110EC_DWC_C_IS_MS_Spec_Sheet_20190916090459.pdf

Section	4 - Ce	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Lead		0	0	0	0	0	0	0	0	0

PRODUCTION	Lead	0	0	0	0	0	0	0	0	0

SURFACE	Lead	0	890	950	1.73	13.5	1643. 5	25	Class C	Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)
SURFACE	Tail	890	1090	80	1.34	14.8	107.2	25	Class C	Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 890')
INTERMEDIATE	Lead	0	7600	1000	2.3	12.7	2300	25	Class C	2nd Stage Bradenhead Squeeze Class C + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ Surface)
INTERMEDIATE	Tail	7600	1104 0	440	1.11	14.2	488.4	25	Class C	Class C + 0.6% Halad-9 + 0.45% HR-601 + 3% Microbond (TOC @ 7,600')

eived by OCD: 2/24/2021 9:47:41 AM Well Name: YUKON 20 FED COM Page 9 of 38 Well Location: T24S / R34E / SEC 20 / **County or Parish/State:** NENW / Well Number: 708H Type of Well: OIL WELL Allottee or Tribe Name: Lease Number: NMNM17241 Unit or CA Name: Unit or CA Number: **US Well Number:** Well Status: Approved Application for **Operator: EOG RESOURCES** INCORPORATED Permit to Drill

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Lead		1054 0	2234 1	950	1.31	14.2	1244. 5	25		Class H + 0.4% Halad- 344 + 0.35% HR-601 + 3% Microbond (TOC @ 10,540')

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: (A) A Kelly cock will be kept in the drill string at all times. (B) A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times. (C) H2S monitoring and detection equipment will be utilized from surface casing point to TD. **Describe the mud monitoring system utilized:** Mud weights up to 14 ppg, may be utilized in well kill scenario. The highest mud weight needed to balance formation is expected to be 11.5 ppg. In order to maintain hole stability, mud weights up to 14.0 ppg may be utilized. An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate. Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
1090	1104 0	SALT SATURATED	10	10.2							
1104 0	1165 7	OIL-BASED MUD	8.7	9.4							
0	1090	WATER-BASED MUD	8.6	8.8							
1165 7	1211 9	OIL-BASED MUD	10	14							Mud weights up to 14 ppg, may be utilized in well kill scenario.

Received by OCD: 2/24/2021 9:47:41 AM Well Name: YUKON 20 FED COM	Well Location: T24S / R34E / SEC 20 / NENW /	County or Parish/State: Page 10 of 38
Well Number: 708H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM17241	Unit or CA Name:	Unit or CA Number:
US Well Number:	Well Status: Approved Application for Permit to Drill	Operator: EOG RESOURCES INCORPORATED

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Open-hole logs are not planned for this well. List of open and cased hole logs run in the well:

DIRECTIONAL SURVEY,

Coring operation description for the well: None

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 8803

Anticipated Surface Pressure: 6139

Anticipated Bottom Hole Temperature(F): 181

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Yukon_20_Fed_Com_708H_H2S_Plan_Summary_20190919135036.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Yukon_20_Fed_Com_708H_Planning_Report_20190919135102.pdf Yukon_20_Fed_Com_708H_Wall_Plot_20190919135102.pdf

Other proposed operations facets description:

EOG requests to pump a two stage cement job on the 7-5/8" intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon (7,494') and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of 1,000 sacks of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (2.30 yld, 12.91 ppg) will be executed as a contingency. The final cement top will be verified by Echo-meter.

EOG will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program.

EOG will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures.

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

(A) EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and cement on the subject well. After WOC 8 hours or 500 psi compressive strength (whichever is greater), the Surface Rig will move off so the wellhead can be installed. A welder will cut the casing to the proper height and weld on the wellhead (both "A" and "B" sections). The weld will be tested to 1000 psi. All valves will be

I	eceived by OCD: 2/24/2021 9:47:41 AM Well Name: YUKON 20 FED COM	Well Location: T24S / R34E / SEC 20 / NENW /	County or Parish/State: Page 11 of 38
	Well Number: 708H	Type of Well: OIL WELL	Allottee or Tribe Name:
	Lease Number: NMNM17241	Unit or CA Name:	Unit or CA Number:
	US Well Number:	Well Status: Approved Application for Permit to Drill	Operator: EOG RESOURCES INCORPORATED

closed and a wellhead cap will be installed (diagram attached). If the timing between rigs is such that EOG Resources would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

Other proposed operations facets attachment:

Yukon_20_Fed_Com_708H_Permit_Info_20190919135054.pdf Yukon_20_Fed_Com_708H_Rig_Layout_20190919135054.pdf Wellhead_9.675_in_20190509124528.pdf Wellhead_13.375_in_20190509124529.pdf 7.625in_29.70_P110HC_FXL_20190509124527.pdf 5.500in_20.00_VST_P110EC_VAM_SFC_20190509124527.pdf 5.500in_20.00_VST_P110EC_DWC_C_IS_MS_Spec_Sheet_20190509124526.pdf

Other Variance attachment:

EOG_BLM_10M_Annular_Variance____9.675_in_20190509124742.pdf 10_M_BOP_Diagram_13.375_in_20190509124741.pdf Co_Flex_Hose_Certification_20190509124741.pdf Co_Flex_Hose_Test_Chart_20190509124741.pdf EOG_BLM_10M_Annular_Variance___13.375_in_20190509124743.pdf 10_M_BOP_Diagram_9.675_in_20190509124740.pdf

SUPO

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

YUKON_20_FED_COM_708H_Vicinity_20190919135132.pdf Existing Road Purpose: ACCESS,FLUID TRANSPORT

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

YUKON_20_FED_COM_INFRA_REV1_20190916093144.pdf YUKON_20_FED_COM_708H_Padsite_20190919135224.pdf YUKON_20_FED_COM_708H_Wellsite_20190919135224.pdf New road type: RESOURCE

eceived by OCD: 2/24/2021 9:47:4 Well Name: YUKON 20 FED (Well Location: T24S / R34E / SEC 20 NENW /	/ County or Parish/State: Page 12 of					
Well Number: 708H	Type of Well: OIL WELL	Allottee or Tribe Name:					
Lease Number: NMNM17241	Unit or CA Name:	Unit or CA Number:					
US Well Number:	Well Status: Approved Application for Permit to Drill	Operator: EOG RESOURCES INCORPORATED					
Length: 3752 F	eet Width (ft.): 30						
Max slope (%): 2	Max grade (%): 20						
Army Corp of Engineers (ACOE	E) permit required? N						
ACOE Permit Number(s):							
New road travel width: 30							
New road access erosion control: Newly constructed or reconstructed roads will be constructed as outlined in the BLM "Gold Book" and to meet the standards of the anticipated traffic flow and all anticipated weather requirements as needed. Construction will include ditching, draining, crowning and capping or sloping and dipping the roadbed as necessary to provide a well-constructed and safe road. We plan to grade and water twice a year.							
provide a well-constructed and sa	afe road. We plan to grade and water twice a year.	bing the roadbed as necessary to					
provide a well-constructed and sa New road access plan or profile	afe road. We plan to grade and water twice a year. e prepared? N	bing the roadbed as necessary to					
	afe road. We plan to grade and water twice a year. e prepared? N ent:	bing the roadbed as necessary to					

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: 6" of Compacted Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: An adequate amount of topsoil/root zone will be stripped by dozer from the proposed well location and stockpiled along the side of the well location as depicted on the well site diagram / survey plat. **Access other construction information:**

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: CULVERT

Drainage Control comments: An appropriately sized culvert will be installed where drainages cross the access road.

Road Drainage Control Structures (DCS) description: N/A

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

YUKON_20_FED_COM_708H_Radius_20190919135242.pdf

Received by OCD: 2/24/2021 9:47:41 AM Well Name: YUKON 20 FED COM	Well Location: T24S / R34E / SEC 20 / NENW /	County or Parish/State: Page 13 of 38
Well Number: 708H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM17241	Unit or CA Name:	Unit or CA Number:
US Well Number:	Well Status: Approved Application for Permit to Drill	Operator: EOG RESOURCES

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Yukon 20 Fed Com CTB is located in the NE/4 of Section 20.

Production Facilities map:

YUKON_20_FED_COM_CTB_SEC_20_S_20190916094205.pdf YUKON_20_FED_COM_707H_708H_FL_REV1_S_20190919131838.pdf YUKON_20_FED_COM_ELEC_SEC_20_S_20190916094204.pdf YUKON_20_FED_COM_ELEC_SEC_21_PRIVATE_S_20190916094204.pdf YUKON_20_FED_COM_ELEC_SEC_21_USA_S_20190916094205.pdf YUKON_20_FED_COM_ELEC_SEC_28_S_20190916094204.pdf YUKON_20_FED_COM_GAS_SEC_20_S_20190916094204.pdf YUKON_20_FED_COM_GAS_SEC_21_S_20190916094204.pdf YUKON_20_FED_COM_INFRA_REV1_20190916094204.pdf YUKON_20_FED_COM_SEC_20_RD_REV2_S_20190916094029.pdf YUKON_20_FED_COM_WATER_SEC_20_S_20190916100840.pdf

Section 5 - Location and Types of Water Supply

Water Source Tab	ole	
Water source type: RECYCLED		
Water source use type:	OTHER	Describe use type: Water will be supplied from the f water source map. This location will be drilled using a (outlined in the drilling program). The water will be ob in the area or recycled treated water and hauled to lo using existing and proposed roads depicted on the pr these cases where a poly pipeline is used to transpor proper authorizations will be secured by the contractor
Source latitude:		Source longitude:
Source datum:		
Water source permit type:	WATER RIGHT	
Water source transport method:	PIPELINE	
	TRUCKING	
Source land ownership: FEDERA	L	
Source transportation land owned	rship: FEDERAL	
Water source volume (barrels): 1		Source volume (acre-feet): 0.00012889
Source volume (gal): 42		

R	eceived by OCD: 2/24/2021 9:47:41 AM Well Name: YUKON 20 FED COM	Well Location: T24S / R34E / SEC 20 / NENW /	County or Parish/State: Page 14 of 38
	Well Number: 708H	Type of Well: OIL WELL	Allottee or Tribe Name:
	Lease Number: NMNM17241	Unit or CA Name:	Unit or CA Number:
	US Well Number:	Well Status: Approved Application for Permit to Drill	Operator: EOG RESOURCES INCORPORATED

Water source and transportation map:

Yukon_Water_and_Caliche_Map_20190916094812.pdf

Water source comments:

New water well? N

New Water Well Info

Well latitude:	Well Longitude:	Well datum:
Well target aquifer:		
Est. depth to top of aquifer(ft):	Est thickness of aquifer	:
Aquifer comments:		
Aquifer documentation:		
Well depth (ft):	Well casing type:	
Well casing outside diameter (in.):	Well casing inside diamet	er (in.):
New water well casing?	Used casing source:	
Drilling method:	Drill material:	
Grout material:	Grout depth:	
Casing length (ft.):	Casing top depth (ft.):	
Well Production type:	Completion Method:	
Water well additional information:		
State appropriation permit:		
Additional information attachment:		

Section 6 - Construction Materials

Using any construction materials: YES

Construction Materials description: Caliche will be supplied from pits shown on the attached caliche source map. Caliche utilized for the drilling pad will be obtained either from an existing approved mineral pit, or by benching into a hill, which will allow the pad to be level with existing caliche from the cut, or extracted by "Flipping" the well location. A mineral material permit will be obtained from BLM prior to excavating any caliche on Federal Lands. Amount will vary for each pad. The procedure for "Flipping" a well location is as follows: * -An adequate amount of topsoil/root zone (usually top 6 inches of soil) will be stripped from the proposed well location and stockpiled along the side of the well location as depicted on the well site diagram/survey plat. -An area will be used within the proposed well site dimensions to excavate caliche. Subsoil will be removed and stockpiled within the surveyed well pad dimensions. -Once caliche/surfacing mineral is found, the mineral material will be excavated and stock piled within the approved drilling pad dimensions. -Then, subsoil will be pushed back in the excavated hole and caliche will be spread accordingly across the entire well pad and road (if available). -Neither caliche, nor subsoil will be stock piled outside of the well pad dimensions. Topsoil will be stockpiled along the edge of the pad as depicted in the Well Site Layout or survey plat. * In the event that no caliche is found onsite, caliche will be hauled in from a BLM approved caliche pit or other established mineral pit. A BLM mineral material permit will be acquired prior to obtaining any mineral material from BLM pits or federal land.

Construction Materials source location attachment:

Yukon_Water_and_Caliche_Map_20190916095144.pdf

Received by OCD: 2/24/2021 9:47:41 AM Well Name: YUKON 20 FED COM	Well Location: T24S / R34E / SEC 20 / NENW /	County or Parish/State: Page 15 of 38
Well Number: 708H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM17241	Unit or CA Name:	Unit or CA Number:
US Well Number:	Well Status: Approved Application for Permit to Drill	Operator: EOG RESOURCES INCORPORATED

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drill fluids and produced oil and water from the well during drilling and completion operations will be stored safely and disposed of properly in an NMOCD approved disposal facility. Garbage and trash produced during drilling and completion operations will be collected in a trash container and disposed of properly. Human waste and grey water will be properly contained of and disposed of properly. After drilling and completion operations; trash, chemicals, salts, frac sand, and other waste material will be removed and disposed of properly at a state approved disposal facility. Amount of waste: 0 barrels

Waste disposal frequency : Daily

Safe containment description: Steel Tanks

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL **Disposal location ownership: COMMERCIAL**

FACILITY **Disposal type description:**

Disposal location description: Trucked to NMOCD approved disposal facility

Reserve Pit

Reserve Pit being used? N

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? Y

Description of cuttings location Closed Loop System. Drill cuttings will be disposed of into steel tanks and taken to an NMOCD approved disposal facility. **Cuttings area length (ft.)**

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Received by OCD: 2/24/2021 9:47:41 AM Well Name: YUKON 20 FED COM	Well Location: T24S / R34E / SEC 20 / NENW /	County or Parish/State: Page 16 of 38
Well Number: 708H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM17241	Unit or CA Name:	Unit or CA Number:
US Well Number:	Well Status: Approved Application for Permit to Drill	Operator: EOG RESOURCES

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: N Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

YUKON_20_FED_COM_708H_Padsite_20190919135401.pdf YUKON_20_FED_COM_708H_Wellsite_20190919135401.pdf Yukon_20_Fed_Com_708H_Rig_Layout_20190919135415.pdf **Comments:** Exhibit 2A-Wellsite & Exhibit 2B-Padsite Rig Layout Exhibit 4

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: YUKON 20 FED COM Multiple Well Pad Number: 707H/708H

Recontouring attachment:

YUKON_20_FED_COM_708H_Reclamation_20190919135438.pdf

Drainage/Erosion control construction: Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.

Drainage/Erosion control reclamation: The interim reclamation will be monitored periodically to ensure that vegetation has reestablished and that erosion is controlled.

Well pad proposed disturbance	Well pad interim reclamation (acres): 0) Well pad long term disturbance
(acres): 0 Road proposed disturbance (acres): 0		(acres): 0 Road long term disturbance (acres): 0
(acres): 0	Powerline interim reclamation (acres): 0 Pipeline interim reclamation (acres): 0	(acres): 0
Pipeline proposed disturbance	ripenne internir reclamation (acres).	Pipeline long term disturbance
(acres): 0	Other interim reclamation (acres): 0	(acres): 0
Other proposed disturbance (acres): 0	Total interim reclamation: 0	Other long term disturbance (acres): 0
Total proposed disturbance: 0		Total long term disturbance: 0

Disturbance Comments: All Interim and Final reclamation must be within 6 months. Interim must be within 6 months of completion and final within 6 months of abandonment plugging. Dual pad operations may alter timing.

Reconstruction method: In areas planned for interim reclamation, all the surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads. Areas planned for interim reclamation will be recontoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to re-seeding will not be steeper than a 3:1 ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be recontoured to the above ratios during interim reclamation.

Topsoil redistribution: Topsoil will be evenly respread and aggressively revegetated over the entire disturbed area not needed for all-weather operations including cuts and fills. To seed the area, the proper BLM seed mixture, free of noxious weeds, will be used. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours

Received by OCD: 2/24/2021 9:47:41 AM Well Name: YUKON 20 FED COM	Well Location: T24S / R34E / SEC 20 / NENW /	County or Parish/State: Page 17 of 38
Well Number: 708H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM17241	Unit or CA Name:	Unit or CA Number:
US Well Number:	Well Status: Approved Application for Permit to Drill	Operator: EOG RESOURCES INCORPORATED

prior to seeding, dozer tracking, or other imprinting in order to break the soil crust and create seed germination micro-sites.

Soil treatment: Re-seed according to BLM standards. All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not redisturbed, and that erosion is controlled.

Existing Vegetation at the well pad: Grass, forbs, and small woody vegetation, such as mesquite will be excavated as the topsoil is removed. Large woody vegetation will be stripped and stored separately and respreads evenly on the site following topsoil respreading. Topsoil depth is defined as the top layer of soil that contains 80% of the roots. In areas to be heavily disturbed, the top 6 inches of soil material, will be stripped and stockpiled on the perimeter of the well location and along the perimeter of the access road to control run-on and run-off, to keep topsoil viable, and to make redistribution of topsoil more efficient during interim reclamation. Stockpiled topsoil should include vegetative material. Topsoil will be clearly segregated and stored separately from subsoils.

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: All disturbed areas, including roads, pipelines, pads, will be recontoured to the contour existing prior to the initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to recontouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation. **Existing Vegetation Community at the road attachment:**

Existing Vegetation Community at the pipeline: All disturbed areas, including roads, pipelines, pads, will be recontoured to the contour existing prior to the initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to recontouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation. **Existing Vegetation Community at the pipeline attachment:**

Existing Vegetation Community at other disturbances: All disturbed areas, including roads, pipelines, pads, will be recontoured to the contour existing prior to the initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to recontouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation. **Existing Vegetation Community at other disturbances attachment:**

Non native seed used? N

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? ${\sf N}$

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? N

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table

ish/State: Page 18 of
be Name:
mber:
B RESOURCES ED

	Seed Summary		Total pounds/Acre:
	Seed Type	Pounds/Acre	
Seed	reclamation attachmen	t:	
	Operator Contact/F	Responsible Offici	al Contact Info
Fir	st Name:		Last Name:
Ph	one:		Email:
Seed	bed prep:		
Seed	BMP:		

Seed method:

Existing invasive species? N

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not redisturbed, erosion is controlled, and free of noxious weeds. Weeds will be treated if found. Weed treatment plan attachment:

Monitoring plan description: Reclamation will be completed within 6 months of well plugging. All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not redisturbed, erosion is controlled, and free of noxious weeds.

Monitoring plan attachment:

Success standards: N/A

Pit closure description: NA

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: WELL PAD

Describe:

Surface Owner: PRIVATE OWNERSHIP

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

Received by OCD: 2/24/2021 9:47:41 AM Well Name: YUKON 20 FED COM	Well Location: T24S / R34E / SEC 20 / NENW /	County or Parish/State: Page 19 of 38
Well Number: 708H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM17241	Unit or CA Name:	Unit or CA Number:
US Well Number:	Well Status: Approved Application for Permit to Drill	Operator: EOG RESOURCES INCORPORATED
USFS Region:		
USFS Forest/Grassland:	USFS Ranger District:	
Fee Owner: COG Operating LLC - A Management Dept Phone: (432)683-7443	TTN Surface Fee Owner Address: 600 Email:	West Illinois Ave.
Surface use plan certification: NO Surface use plan certification docu	iment:	
Surface access agreement or bond	: AGREEMENT	
Surface Access Agreement Need of	lescription: surface use agreement	
Surface Access Bond BLM or Fore	est Service:	
BLM Surface Access Bond number	n:	
USFS Surface access bond number	er:	

Section 12 - Other Information

Use APD as ROW?

Right of Way needed? N ROW Type(s):

ROW Applications

SUPO Additional Information: An onsite meeting was conducted 5/2018. Poly lines are planned to transport water for operations. Will truck if necessary. See attached SUPO Plan. **Use a previously conducted onsite?** N

Previous Onsite information:

Other SUPO Attachment

YUKON_20_FED_COM_708H_Location_20190919135505.pdf SUPO_YUKON_20_FED_COM_708H_20190919135512.pdf Gas_Capture_Enterprise_Regency_Yukon20FedCom701H_711H_20190916100638.pdf

PWD

Received by OCD: 2/24/2021 9:47:41 AM Well Name: YUKON 20 FED COM	Well Location: T24S / R34E / SEC 20 / NENW /	County or Parish/State: Page 20 of
Well Number: 708H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM17241	Unit or CA Name:	Unit or CA Number:
US Well Number:	Well Status: Approved Application for Permit to Drill	Operator: EOG RESOURCES INCORPORATED

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? N Produced Water Disposal (PWD) Location: **PWD** surface owner: Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit specifications: Pit liner description: Pit liner manufacturers information: Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal permit: Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule attachment: Lined pit reclamation description: Lined pit reclamation attachment: Leak detection system description: Leak detection system attachment: Lined pit Monitor description: Lined pit Monitor attachment: Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Lined pit bond number: Lined pit bond amount: Additional bond information attachment:

PWD disturbance (acres):

Received by OCD: 2/24/2021 9:47:41 AM Well Name: YUKON 20 FED COM	Well Location: T24S / R34E / SEC 20 / NENW /	County or Parish/State: Page 21 of 38
Well Number: 708H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM17241	Unit or CA Name:	Unit or CA Number:
US Well Number:	Well Status: Approved Application for Permit to Drill	Operator: EOG RESOURCES INCORPORATED

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD disturbance (acres):

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? $\ensuremath{\mathbb{N}}$

Received by OCD: 2/24/2021 9:47:41 AM Well Name: YUKON 20 FED COM	Well Location: T24S / R34E / SEC 20 / NENW /		County or Parish/State: Page 22 of	
Well Number: 708H	Type of Well: OIL WELL		Allottee or Tribe Name:	
Lease Number: NMNM17241	Unit or CA Name:		Unit or CA Number:	
US Well Number:	Well Status: Approved Approved Approved Approximation Drill	pplication for	Operator: EOG RESOURCES INCORPORATED	
Produced Water Disposal (PWD) Location	1:			
PWD surface owner:	PW	PWD disturbance (acres):		
Injection PWD discharge volume (bbl/day)):			
Injection well mineral owner:				
Injection well type:				
Injection well number:	Inje	ection well name	ə:	
Assigned injection well API number?	Inje	ection well API r	number:	
Injection well new surface disturbance (ad	cres):			
Minerals protection information:				
Mineral protection attachment:				
Underground Injection Control (UIC) Perm	nit?			
UIC Permit attachment:				
Section 5 - Surface Discharge				
Would you like to utilize Surface Discharge PWD options? N				
Produced Water Disposal (PWD) Location	1:			
PWD surface owner:	PW	PWD disturbance (acres):		
Surface discharge PWD discharge volume	e (bbl/day):			
Surface Discharge NPDES Permit?				
Surface Discharge NPDES Permit attachm	nent:			
Surface Discharge site facilities information	on:			
Surface discharge site facilities map:				
Section 6 - Other				
Would you like to utilize Other PWD optio	ns? N			
Produced Water Disposal (PWD) Location	1:			
PWD surface owner:	PW	/D disturbance (acres):	
Other PWD discharge volume (bbl/day):				
Other PWD type description:				
Other PWD type attachment:				
Have other regulatory requirements been	met?			
Other regulatory requirements attachmen	it:			
Other regulatory requirements attachmen	t: Operator Certifica	ation		

•

Received by OCD: 2/24/2021 9:47:41 AM Well Name: YUKON 20 FED COM	Well Location: T24S / R34E / SEC 20 / NENW /	County or Parish/State: Page 23 of 3
Well Number: 708H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM17241	Unit or CA Name:	Unit or CA Number:
US Well Number:	Well Status: Approved Application for Permit to Drill	Operator: EOG RESOURCES INCORPORATED

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Lisa Trascher Signed on: 01/15/2021					
Title: Regulatory Specialist					
Street Address: 5509 Champions	s Drive				
City: Midland	State: TX	Zip: 79706			
Phone: (432)247-6331					
Email address: lisa_trascher@ec	ogresources.com				
Field Representative	e				
Street Address:					
City:	State:	Zip:			
Phone:					
Email address:					

N	OI Attachments
Proced	lure Description
	YUKON_20_FED_COM_
	Yukon_20_Fed_Com_30

Received by OCD: 2/24/2021 9:47:41 AM Well Name: YUKON 20 FED COM	Well Location: T24S / R34E / SEC 20 / NENW /	County or Parish/State: Page 24 of 38
Well Number: 708H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM17241	Unit or CA Name:	Unit or CA Number:
US Well Number:	Well Status: Approved Application for Permit to Drill	Operator: EOG RESOURCES INCORPORATED

Yukon_20_Fed_Com_308H_Permit_Info___Rev_Name__TD__csg_12.21.2020_20210115075806.pdf

Yukon_20_Fed_Com_308H_Planning_Report_20210115075806.pdf

Operator Certification

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a submission of Form 3160-5 or a Sundry Notice.

•	•
Name: EOG RESOU	RCES INCORPORATED

Operator Electronic Signature: FOLLIS

Title: Sr. Regulatory Administrator

Street Address: NOT ENTERED

City: NOT ENTERED

State: NOT ENTERED

Phone: (303) 572-9000

Email address: NOT ENTERED

Field Representative

Representative Name:		
Street Address:		
City:	State:	Zip:
Phone:		
Email address:		

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS BLM POC Phone: 5752342234 Disposition: Approved Signature: Chris Walls

BLM POC Title: Petroleum Engineer BLM POC Email Address: cwalls@blm.gov Disposition Date: 02/23/2021

Signed on: JAN 15, 2021 07:58 AM

 District I

 1625 N. French Dr., Hobbs, NM 88240

 Phone: (575) 393-6161 Fax: (575) 393-0720

 District II

 811 S. First St., Artesia, NM 88210

 Phone: (575) 748-1283 Fax: (575) 748-9720

 District III

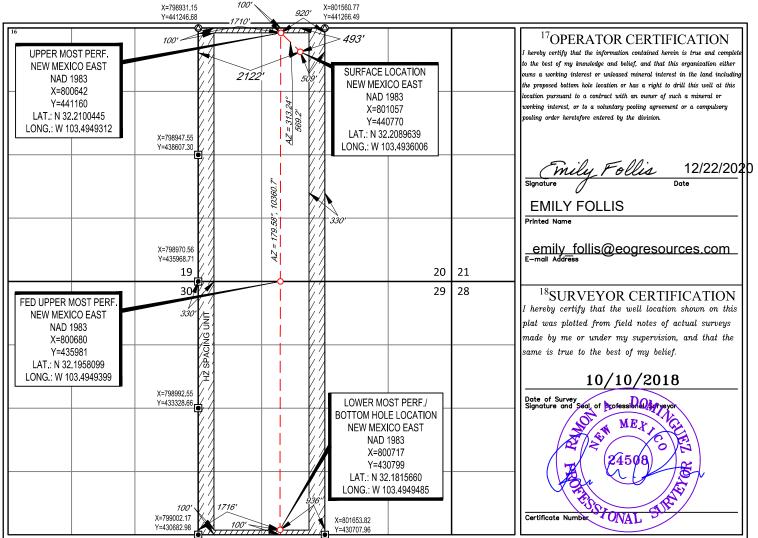
 1000 Rio Brazos Road, Aztec, NM 87410

 Phone: (505) 334-6178 Fax: (505) 334-6170

 District IV

 1220 S. St. Francis Dr., Santa Fe, NM 87505

 Phone: (505) 476-3460 Fax: (505) 476-3462


State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

FORM C-102
Revised August 1, 2011
Submit one copy to appropriate
District Office

AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT ²Pool Code 96434 ¹API Number ³Pool Name 3002546975 RED HILLS; BONE SPRING, NORTH ⁴Property Code ⁵Property Name Well Number YUKON 20 FED COM #308H 327233 ⁸Operator Name ⁹Elevation ⁷OGRID No. 3538 7377 EOG RESOURCES, INC. ¹⁰Surface Location UL or lot no. Township Rang Lot Idn Feet from the North/South line Feet from the East/West line County Section NORTH 20 24-S34 - E493' 2122' WEST LEA С ¹¹Bottom Hole Location If Different From Surface UL or lot no. Section Township Range Lot Idn Feet from the North/South line Feet from the East/West line County 1716' 100' SOUTH Ν 2924-S 34-EWEST LEA ²Dedicated Acres ³Joint or Infill ⁴Consolidation Code ⁵Order No. 640.00

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Released to Imaging: 3/5/2021 10:32:00 AM

S:\SURVEY\EOG_MIDLAND\YUKON_20_FED_COM\FINAL_PRODUCTS\LO_YUKON_20_FED_COM_308H.DWG 9/16/2020 11:49:11 AM bgregory

Revised Permit Information 12/21/2020:

Well Name: Yukon 20 Fed Com #308H

Location:

SHL: 493' FNL & 2122' FWL, Section 20, T-24-S, R-34-E, Lea Co., N.M. BHL: 100' FSL & 1716' FWL, Section 29, T-24-S, R-34-E, Lea Co., N.M.

Casing Program:

Hole		Csg				DF _{min}	DF _{min}	DF _{min}
Size	Interval	OD	Weight	Grade	Conn	Collapse	Burst	Tension
17.5"	0'-1,140'	13.375"	54.5#	J-55	STC	1.125	1.25	1.60
12.25"	0'-4,000'	9.625"	40#	J-55	LTC	1.125	1.25	1.60
12.25"	4,000' - 5,050'	9.625"	40#	HCK-55	LTC	1.125	1.25	1.60
8.75"	0'-10,452'	5.5"	17#	HCP-110	LTC	1.125	1.25	1.60
8.5"	10,452' –	5.5"	17#	HCP-110	LTC	1.125	1.25	1.60
	20,386'							

Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 12-1/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 12-1/4" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 8-3/4" and 8-1/2" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" and 8-1/2" hole interval to maximize cement bond and zonal isolation.

Yld No. Wt. Depth Sacks Ft³/sk **Slurry Description** ppg 510 Lead: Class C + 4.0% Bentonite + 0.5% CaCl₂ + 0.25 lb/sk 1,140' 1.73 13.5 Cello-Flake (TOC @ Surface) 160 14.8 1.34 Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 940') 5,050' 740 12.7 2.22 Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface) 320 14.8 1.21 Tail: Class C + 10% NaCl + 3% MagOx (TOC @ 4,040') 20,386' 530 11.0 3.21 Lead: Class C + 3% CaCl2 + 3% Microbond (TOC @ 4,550') 2,590 14.4 1.2 Tail: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC @ 9,702')

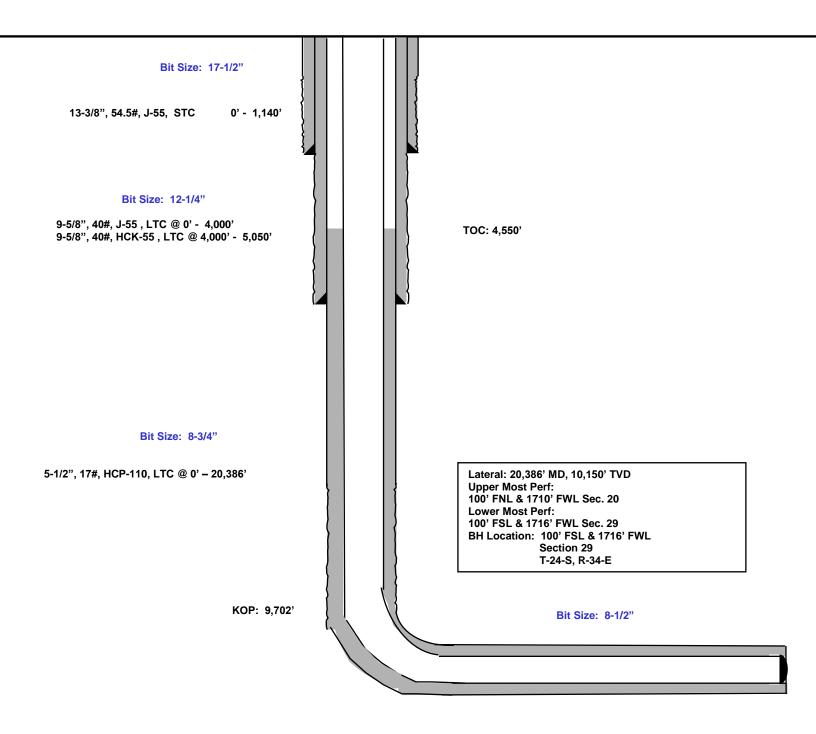
Cementing Program:

.

Additive	Purpose
Bentonite Gel	Lightweight/Lost circulation prevention
Calcium Chloride	Accelerator
Cello-flake	Lost circulation prevention
Sodium Metasilicate	Accelerator
MagOx	Expansive agent
Sodium Chloride	Accelerator
FL-62	Fluid loss control
Halad-344	Fluid loss control
Halad-9	Fluid loss control
HR-601	Retarder
Microbond	Expansive Agent

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0-1,140'	Fresh - Gel	8.6-8.8	28-34	N/c
1,140' – 5,050'	Brine	8.6-8.8	28-34	N/c
5,050' - 20,386'	Oil Base	8.8-9.5	58-68	N/c - 6


KB: 3,563'

GL: 3,538'

493' FNL 2122' FWL Section 20 T-24-S, R-34-E

Proposed Wellbore Revised 12/21/2020

API: 30-025-46974

EOG Resources - Midland

Lea County, NM (NAD 83 NME) Yukon 20 Fed Com #308H

OH

Plan: Plan #0.1 RT

Standard Planning Report

08 December, 2020

Planning Report

Database: Company: Project: Site: Well: Wellbore: Design:			ME)	TVD Refere MD Referer North Refe	ice:	kb = kb = Grid	#308H 25' @ 3563.0usft 25' @ 3563.0usft num Curvature	
Project	Lea County, I	NM (NAD 83 NM	IE)					
Map System: Geo Datum: Map Zone:	US State Plane North Americar New Mexico Ea	n Datum 1983		System Datu	m:	Mean S	Sea Level	
Site	Yukon 20 Fee	d Com						
Site Position: From: Position Uncertainty:	Мар	0.0 usft	Northing: Easting: Slot Radius:		07.00 usft Lo	titude: ngitude: id Convergence	9:	32° 12' 30.615 N 103° 29' 21.259 W 0.45 °
Well	#308H							
Well Position	+N/-S +E/-W	157.0 usft -1,350.0 usft	Northing: Easting:		440,770.00 ust 801,057.00 ust	ft Longitu	de:	32° 12' 32.273 N 103° 29' 36.957 W
Position Uncertainty		0.0 usft	Wellhead Ele	vation:		Ground	Level:	3,538.0 usft
Wellbore	OH							
Magnetics	Model Na	ame	Sample Date	Declinati (°)	on	Dip Angle (°))	Field Strength (nT)
	IG	RF2020	12/8/2020		6.57		59.92	47,546.02600491
Design	Plan #0.1 RT							
Audit Notes: Version:			Phase:	PLAN	Tie Or	Depth:	0.0	
Vertical Section:		(u	rom (TVD) sft)).0	+N/-S (usft) 0.0	+E/-W (usft) 0.0		Direction (°) 181.95	
Plan Survey Tool Pro	gram	Date 12/8/2	.020					
Depth From (usft)	Depth To (usft)	Survey (Wellbo	ore)	Tool Name	I	Remarks		
1 0.0	20,385.5	Plan #0.1 RT (0	DH)	EOG MWD+IFF MWD + IFR1	81			

Planning Report

Database:	EDM	Local Co-ordinate Reference:	Well #308H
Company:	EOG Resources - Midland	TVD Reference:	kb = 25' @ 3563.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 25' @ 3563.0usft
Site:	Yukon 20 Fed Com	North Reference:	Grid
Well:	#308H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.1 RT		

Plan Sections

easured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,583.1	5.66	317.09	1,582.6	10.2	-9.5	2.00	2.00	0.00	317.09	
7,389.2	5.66	317.09	7,360.4	429.8	-399.5	0.00	0.00	0.00	0.00	
7,672.2	0.00	0.01	7,643.0	440.0	-409.0	2.00	-2.00	0.00	180.00	
9,701.7	0.00	0.01	9,672.5	440.0	-409.0	0.00	0.00	0.00	0.00	KOP(Yukon 20 Fed
9,922.2	26.46	180.00	9,885.2	390.0	-409.0	12.00	12.00	81.65	180.00	FTP(Yukon 20 Fed (
10,451.7	90.00	179.60	10,149.9	-37.5	-406.9	12.00	12.00	-0.08	-0.44	
15,203.4	90.00	179.60	10,150.0	-4,789.0	-374.0	0.00	0.00	0.00	0.00	Fed Perf 1(Yukon 20
20,385.5	90.00	179.62	10,150.0	-9,971.0	-339.0	0.00	0.00	0.00	86.34	PBHL(Yukon 20 Fed

Planning Report

Database:	EDM	Local Co-ordinate Reference:	Well #308H
Company:	EOG Resources - Midland	TVD Reference:	kb = 25' @ 3563.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 25' @ 3563.0usft
Site:	Yukon 20 Fed Com	North Reference:	Grid
Well:	#308H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH		
Design:	Plan #0.1 RT		

Planned Survey

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$)0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
900.0 0.00 0.00 900.0 0.0 0.0 0.00 0.00 0.00 0.00 1,000.0 0.00 0.00 1,000.0 0.0 0.0 0.00 <t< td=""><td></td></t<>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\left[\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\left[\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$)0
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	00
2,300.0 5.66 317.09 2,296.0 62.0 -57.7 -60.0 0.00 0.00 0.0 2,400.0 5.66 317.09 2,395.6 69.3 -64.4 -67.0 0.00 0.00 0.0 2,500.0 5.66 317.09 2,495.1 76.5 -71.1 -74.0 0.00 0.00 0.0 2,600.0 5.66 317.09 2,594.6 83.7 -77.8 -81.0 0.00 0.00 0.0 2,700.0 5.66 317.09 2,694.1 90.9 -84.5 -88.0 0.00 0.00 0.0 2,800.0 5.66 317.09 2,793.6 98.2 -91.3 -95.0 0.00 0.00 0.0 2,900.0 5.66 317.09 2,893.1 105.4 -98.0 -102.0 0.00 0.00 0.0 3,000.0 5.66 317.09 2,992.6 112.6 -104.7 -109.0 0.00 0.00 0.0 0.00 0.0 0.0)0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$)0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	00
2,700.0 5.66 317.09 2,694.1 90.9 -84.5 -88.0 0.00 0.00 0.0 2,800.0 5.66 317.09 2,793.6 98.2 -91.3 -95.0 0.00 0.00 0.0 2,900.0 5.66 317.09 2,893.1 105.4 -98.0 -102.0 0.00 0.00 0.0 3,000.0 5.66 317.09 2,992.6 112.6 -104.7 -109.0 0.00 0.00 0.0 3,100.0 5.66 317.09 3,092.1 119.8 -111.4 -116.0 0.00 0.00 0.0 3,200.0 5.66 317.09 3,191.7 127.1 -118.1 -123.0 0.00 0.00 0.0 3,300.0 5.66 317.09 3,291.2 134.3 -124.8 -130.0 0.00 0.00 0.0	00
2,800.0 5.66 317.09 2,793.6 98.2 -91.3 -95.0 0.00 0.00 0.0 2,900.0 5.66 317.09 2,893.1 105.4 -98.0 -102.0 0.00 0.00 0.0 3,000.0 5.66 317.09 2,992.6 112.6 -104.7 -109.0 0.00 0.00 0.0 3,100.0 5.66 317.09 3,092.1 119.8 -111.4 -116.0 0.00 0.00 0.0 3,200.0 5.66 317.09 3,191.7 127.1 -118.1 -123.0 0.00 0.00 0.0 3,300.0 5.66 317.09 3,291.2 134.3 -124.8 -130.0 0.00 0.00 0.0	00
2,900.05.66317.092,893.1105.4-98.0-102.00.000.000.03,000.05.66317.092,992.6112.6-104.7-109.00.000.000.03,100.05.66317.093,092.1119.8-111.4-116.00.000.000.03,200.05.66317.093,191.7127.1-118.1-123.00.000.000.03,300.05.66317.093,291.2134.3-124.8-130.00.000.000.0	00
3,000.0 5.66 317.09 2,992.6 112.6 -104.7 -109.0 0.00 0.00 0.0 0.00)0
3,000.05.66317.092,992.6112.6-104.7-109.00.000.000.03,100.05.66317.093,092.1119.8-111.4-116.00.000.000.03,200.05.66317.093,191.7127.1-118.1-123.00.000.000.03,300.05.66317.093,291.2134.3-124.8-130.00.000.000.00	00
3,100.05.66317.093,092.1119.8-111.4-116.00.000.000.03,200.05.66317.093,191.7127.1-118.1-123.00.000.000.03,300.05.66317.093,291.2134.3-124.8-130.00.000.000.0	
3,200.05.66317.093,191.7127.1-118.1-123.00.000.000.000.3,300.05.66317.093,291.2134.3-124.8-130.00.000.000.	
3,400.0 5.66 317.09 3,390.7 141.5 -131.5 -137.0 0.00 0.00 0.	00
3,500.0 5.66 317.09 3,490.2 148.7 -138.3 -144.0 0.00 0.00 0.	
3,600.0 5.66 317.09 3,589.7 156.0 -145.0 -151.0 0.00 0.00 0.	
3,700.0 5.66 317.09 3,689.2 163.2 -151.7 -157.9 0.00 0.00 0.)0
3,800.0 5.66 317.09 3,788.7 170.4 -158.4 -164.9 0.00 0.00 0.)0
3,900.0 5.66 317.09 3,888.2 177.6 -165.1 -171.9 0.00 0.00 0.	00
	00
	00
4,200.0 5.66 317.09 4,186.8 199.3 -185.3 -192.9 0.00 0.00 0.	
	00
4,400.0 5.66 317.09 4,385.8 213.8 -198.7 -206.9 0.00 0.00 0.	00
	00
4,600.0 5.66 317.09 4,584.8 228.2 -212.1 -220.9 0.00 0.00 0.	
	00
	00
4,900.0 5.66 317.09 4,883.4 249.9 -232.3 -241.9 0.00 0.00 0.	00
	00
5,100.0 5.66 317.09 5,082.4 264.4 -245.7 -255.9 0.00 0.00 0.	
	00

12/8/2020 4:24:19PM

Planning Report

Database:	EDM	Local Co-ordinate Reference:	Well #308H
Company:	EOG Resources - Midland	TVD Reference:	kb = 25' @ 3563.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 25' @ 3563.0usft
Site:	Yukon 20 Fed Com	North Reference:	Grid
Well:	#308H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH		
Design:	Plan #0.1 RT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,300.0	5.66	317.09	5,281.4	278.8	-259.2	-269.8	0.00	0.00	0.00
5,400.0	5.66	317.09	5,380.9	286.0	-265.9	-276.8	0.00	0.00	0.00
5,500.0	5.66	317.09	5,480.4	293.3	-272.6	-283.8	0.00	0.00	0.00
5,600.0	5.66	317.09	5,579.9	300.5	-279.3	-290.8	0.00	0.00	0.00
5,700.0	5.66	317.09	5,679.5	307.7	-286.0	-297.8	0.00	0.00	0.00
5,800.0	5.66	317.09	5,779.0	314.9	-292.7	-304.8	0.00	0.00	0.00
5,000.0	0.00	517.05	5,115.0		-232.1	-304.0	0.00	0.00	0.00
5,900.0	5.66	317.09	5,878.5	322.2	-299.5	-311.8	0.00	0.00	0.00
6,000.0	5.66	317.09	5,978.0	329.4	-306.2	-318.8	0.00	0.00	0.00
6,100.0	5.66	317.09	6,077.5	336.6	-312.9	-325.8	0.00	0.00	0.00
6,200.0	5.66	317.09	6,177.0	343.8	-319.6	-332.8	0.00	0.00	0.00
6,300.0	5.66	317.09	6,276.5	351.1	-326.3	-339.8	0.00	0.00	0.00
6,400.0	5.66	317.09	6,376.0	358.3	-333.0	-346.8	0.00	0.00	0.00
6,500.0	5.66	317.09	6,475.6	365.5	-339.8	-353.8	0.00	0.00	0.00
6,600.0	5.66	317.09	6,575.1	372.7	-346.5	-360.8	0.00	0.00	0.00
6,700.0	5.66	317.09	6,674.6	372.7 380.0	-346.5 -353.2	-360.8	0.00	0.00	0.00
6,800.0	5.66	317.09	6,774.1	387.2	-353.2 -359.9	-307.7 -374.7	0.00	0.00	0.00
0,000.0	00.6	317.09	0,774.1			-3/4./			
6,900.0	5.66	317.09	6,873.6	394.4	-366.6	-381.7	0.00	0.00	0.00
7,000.0	5.66	317.09	6,973.1	401.6	-373.3	-388.7	0.00	0.00	0.00
7,100.0	5.66	317.09	7,072.6	408.9	-380.1	-395.7	0.00	0.00	0.00
7,200.0	5.66	317.09	7,172.1	416.1	-386.8	-402.7	0.00	0.00	0.00
7,300.0	5.66	317.09	7,271.7	423.3	-393.5	-409.7	0.00	0.00	0.00
7 200 2	5.66	217.00	7,360.4	429.8	-399.5	445.0	0.00	0.00	0.00
7,389.2		317.09				-415.9			
7,400.0	5.44	317.09	7,371.2	430.5	-400.2	-416.7	2.00	-2.00	0.00
7,500.0	3.44	317.09	7,470.9	436.2	-405.5	-422.2	2.00	-2.00	0.00
7,600.0	1.44	317.09	7,570.8	439.3	-408.4	-425.2	2.00	-2.00	0.00
7,672.2	0.00	0.01	7,643.0	440.0	-409.0	-425.8	2.00	-2.00	0.00
7,700.0	0.00	0.00	7,670.8	440.0	-409.0	-425.8	0.00	0.00	0.00
7,800.0	0.00	0.00	7,770.8	440.0	-409.0	-425.8	0.00	0.00	0.00
7,900.0	0.00	0.00	7,870.8	440.0	-409.0	-425.8	0.00	0.00	0.00
8,000.0	0.00	0.00	7,970.8	440.0	-409.0	-425.8	0.00	0.00	0.00
8,100.0	0.00	0.00	8,070.8	440.0	-409.0	-425.8	0.00	0.00	0.00
0.000.0	0.00	0.00			400.0	405.0		0.00	0.00
8,200.0	0.00	0.00	8,170.8	440.0	-409.0	-425.8	0.00	0.00	0.00
8,300.0	0.00	0.00	8,270.8	440.0	-409.0	-425.8	0.00	0.00	0.00
8,400.0	0.00	0.00	8,370.8	440.0	-409.0	-425.8	0.00	0.00	0.00
8,500.0	0.00	0.00	8,470.8	440.0	-409.0	-425.8	0.00	0.00	0.00
8,600.0	0.00	0.00	8,570.8	440.0	-409.0	-425.8	0.00	0.00	0.00
8,700.0	0.00	0.00	8,670.8	440.0	-409.0	-425.8	0.00	0.00	0.00
8,800.0	0.00	0.00	8,770.8	440.0	-409.0	-425.8	0.00	0.00	0.00
8,900.0	0.00	0.00	8,870.8	440.0	-409.0	-425.8	0.00	0.00	0.00
9,000.0	0.00	0.00	8,970.8	440.0	-409.0	-425.8	0.00	0.00	0.00
9,100.0	0.00	0.00	9,070.8	440.0	-409.0	-425.8	0.00	0.00	0.00
9,200.0	0.00	0.00	9,170.8	440.0	-409.0	-425.8	0.00	0.00	0.00
9,300.0	0.00	0.00	9,270.8	440.0	-409.0	-425.8	0.00	0.00	0.00
9,400.0	0.00	0.00	9,370.8	440.0	-409.0	-425.8	0.00	0.00	0.00
9,500.0	0.00	0.00	9,470.8	440.0	-409.0	-425.8	0.00	0.00	0.00
9,600.0	0.00	0.00	9,570.8	440.0	-409.0	-425.8	0.00	0.00	0.00
9,701.7	0.00	0.01	9,672.5	440.0	-409.0	-425.8	0.00	0.00	0.00
	20 Fed Com #30								
9,725.0	2.79	180.00	9,695.7	439.4	-409.0	-425.3	12.00	12.00	0.00
9,750.0	5.79	180.00	9,720.7	437.6	-409.0	-423.4	12.00	12.00	0.00
9,775.0	8.79	180.00	9,745.5	434.4	-409.0	-420.2	12.00	12.00	0.00
9,800.0	11.79	180.00	9,770.1	429.9	-409.0	-415.8	12.00	12.00	0.00
9,825.0	14.79	180.00	9,794.4	424.2	-409.0	-410.0	12.00	12.00	0.00

Planning Report

Database:	EDM	Local Co-ordinate Reference:	Well #308H
Company:	EOG Resources - Midland	TVD Reference:	kb = 25' @ 3563.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 25' @ 3563.0usft
Site:	Yukon 20 Fed Com	North Reference:	Grid
Well:	#308H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH		
Design:	Plan #0.1 RT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,850.0	17.79	180.00	9,818.4	417.2	-409.0	-403.0	12.00	12.00	0.00
9,875.0	20.79	180.00	9,842.0	408.9	-409.0	-394.8	12.00	12.00	0.00
9,900.0	23.79	180.00	9,865.1	399.4	-409.0	-385.3	12.00	12.00	0.00
9,922.2	26.46 20 Fed Com #308	180.00	9,885.2	390.0	-409.0	-375.9	12.00	12.00	0.00
9,925.0	26.79	179.99	9,887.7	388.7	-409.0	-374.6	12.00	12.00	-0.21
9,950.0	29.79	179.95	9,909.7	376.9	-409.0	-362.8	12.00	12.00	-0.18
9,975.0	32.79	179.91	9,931.1	363.9	-409.0	-349.8	12.00	12.00	-0.15
10,000.0	35.79	179.88	9,951.7	349.8	-409.0	-335.7	12.00	12.00	-0.13
10,025.0	38.79	179.85	9,971.6	334.7	-408.9	-320.6	12.00	12.00	-0.11
10,050.0	41.79	179.82	9,990.7	318.5	-408.9	-304.4	12.00	12.00	-0.10
10,075.0	44.79	179.80	10,008.9	301.4	-408.8	-287.3	12.00	12.00	-0.09
10,100.0	47.79	179.78	10,026.1	283.3	-408.7	-269.3	12.00	12.00	-0.08
10,125.0	50.79	179.76	10,042.5	264.4	-408.7	-250.3	12.00	12.00	-0.07
10,150.0	53.79	179.75	10,057.7	244.6	-408.6	-230.6	12.00	12.00	-0.07
10,175.0	56.79	179.73	10,072.0	224.0	-408.5	-210.0	12.00	12.00	-0.06
10,200.0	59.79	179.72	10,085.1	202.8	-408.4	-188.8	12.00	12.00	-0.06
10,225.0	62.79	179.70	10,097.1	180.8	-408.3	-166.9	12.00	12.00	-0.05
10,250.0	65.79	179.69	10,108.0	158.3	-408.2	-144.4	12.00	12.00	-0.05
10,275.0	68.79	179.68	10,117.6	135.3	-408.0	-121.3	12.00	12.00	-0.05
10,300.0	71.79	179.67	10,126.0	111.7	-407.9	-97.8	12.00	12.00	-0.05
10,325.0	74.79	179.66	10,133.2	87.8	-407.8	-73.9	12.00	12.00	-0.05
10,350.0	77.79	179.65	10,139.1	63.5	-407.6	-49.6	12.00	12.00	-0.04
10,375.0	80.79	179.63	10,143.8	38.9	-407.5	-25.1	12.00	12.00	-0.04
10,400.0	83.79	179.62	10,147.1	14.2	-407.3	-0.3	12.00	12.00	-0.04
10,425.0	86.79	179.61	10,149.2	-10.7	-407.1	24.6	12.00	12.00	-0.04
10,451.7	90.00	179.60	10,149.9	-37.5	-406.9	51.3	12.00	12.00	-0.04
10,500.0	90.00	179.60	10,149.9	-85.7	-406.6	99.5	0.00	0.00	0.00
10,600.0	90.00	179.60	10,149.9	-185.7	-405.9	199.4	0.00	0.00	0.00
10,700.0	90.00	179.60	10,149.9	-285.7	-405.2	299.3	0.00	0.00	0.00
10,800.0	90.00	179.60	10,149.9	-385.7	-404.5	399.2	0.00	0.00	0.00
10,900.0	90.00	179.60	10,150.0	-485.7	-403.8	499.2	0.00	0.00	0.00
11,000.0	90.00	179.60	10,150.0	-585.7	-403.1	599.1	0.00	0.00	0.00
11,100.0	90.00	179.60	10,150.0	-685.7	-402.5	699.0	0.00	0.00	0.00
11,200.0	90.00	179.60	10,150.0	-785.7	-401.8	798.9	0.00	0.00	0.00
11,300.0	90.00	179.60	10,150.0	-885.7	-401.1	898.8	0.00	0.00	0.00
11,400.0	90.00	179.60	10,150.0	-985.7	-400.4	998.7	0.00	0.00	0.00
11,500.0	90.00	179.60	10,150.0	-1,085.7	-399.7	1,098.7	0.00	0.00	0.00
11,600.0	90.00	179.60	10,150.0	-1,185.7	-399.0	1,198.6	0.00	0.00	0.00
11,700.0	90.00	179.60	10,150.0	-1,285.7	-398.3	1,298.5	0.00	0.00	0.00
11,800.0	90.00	179.60	10,150.0	-1,385.7	-397.6	1,398.4	0.00	0.00	0.00
11,900.0	90.00	179.60	10,150.0	-1,485.7	-396.9	1,498.3	0.00	0.00	0.00
12,000.0	90.00	179.60	10,150.0	-1,585.7	-396.2	1,598.2	0.00	0.00	0.00
12,100.0	90.00	179.60	10,150.0	-1,685.7	-395.5	1,698.2	0.00	0.00	0.00
12,200.0	90.00	179.60	10,150.0	-1,785.7	-394.8	1,798.1	0.00	0.00	0.00
12,300.0	90.00	179.60	10,150.0	-1,885.7	-394.1	1,898.0	0.00	0.00	0.00
12,400.0	90.00	179.60	10,150.0	-1,985.7	-393.4	1,997.9	0.00	0.00	0.00
12,500.0	90.00	179.60	10,150.0	-2,085.7	-392.7	2,097.8	0.00	0.00	0.00
12,600.0	90.00	179.60	10,150.0	-2,185.7	-392.1	2,197.7	0.00	0.00	0.00
12,700.0	90.00	179.60	10,150.0	-2,285.7	-391.4	2,297.7	0.00	0.00	0.00
12,800.0	90.00	179.60	10,150.0	-2,385.7	-390.7	2,397.6	0.00	0.00	0.00
12,900.0	90.00	179.60	10,150.0	-2,485.7	-390.0	2,497.5	0.00	0.00	0.00
13,000.0	90.00	179.60	10,150.0	-2,585.7	-389.3	2,597.4	0.00	0.00	0.00
13,100.0	90.00	179.60	10,150.0	-2,685.7	-388.6	2,697.3	0.00	0.00	0.00

Planning Report

Database:	EDM	Local Co-ordinate Reference:	Well #308H
Company:	EOG Resources - Midland	TVD Reference:	kb = 25' @ 3563.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 25' @ 3563.0usft
Site:	Yukon 20 Fed Com	North Reference:	Grid
Well:	#308H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH		
Design:	Plan #0.1 RT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,200.0	90.00	179.60	10,150.0	-2,785.7	-387.9	2,797.2	0.00	0.00	0.00
13,300.0	90.00	179.60	10,150.0	-2,885.7	-387.2	2,897.2	0.00	0.00	0.00
13,400.0		179.60	10,150.0	-2,985.7	-386.5	2,997.1	0.00	0.00	0.00
13,500.0		179.60	10,150.0	-3,085.7	-385.8	3,097.0	0.00	0.00	0.00
13,600.0		179.60	10,150.0	-3,185.7	-385.1	3,196.9	0.00	0.00	0.00
13,700.0		179.60	10,150.0	-3,285.7	-384.4	3,296.8	0.00	0.00	0.00
13,800.0	90.00	179.60	10,150.0	-3,385.7	-383.7	3,396.7	0.00	0.00	0.00
13,900.0	90.00	179.60	10,150.0	-3,485.6	-383.0	3,496.7	0.00	0.00	0.00
14,000.0	90.00	179.60	10,150.0	-3,585.6	-382.3	3,596.6	0.00	0.00	0.00
14,100.0	90.00	179.60	10,150.0	-3,685.6	-381.7	3,696.5	0.00	0.00	0.00
14,200.0	90.00	179.60	10,150.0	-3,785.6	-381.0	3,796.4	0.00	0.00	0.00
14,300.0	90.00	179.60	10,150.0	-3,885.6	-380.3	3,896.3	0.00	0.00	0.00
14,400.0	90.00	179.60	10,150.0	-3,985.6	-379.6	3,996.2	0.00	0.00	0.00
14,500.0		179.60	10,150.0	-4,085.6	-378.9	4,096.2	0.00	0.00	0.00
14,600.0		179.60	10,150.0	-4,185.6	-378.2	4,196.1	0.00	0.00	0.00
14,700.0		179.60	10,150.0	-4,285.6	-377.5	4,296.0	0.00	0.00	0.00
14,800.0	90.00	179.60	10,150.0	-4,385.6	-376.8	4,395.9	0.00	0.00	0.00
14,900.0		179.60	10,150.0	-4,485.6	-376.1	4,495.8	0.00	0.00	0.00
15,000.0	90.00	179.60	10,150.0	-4,585.6	-375.4	4,595.7	0.00	0.00	0.00
15,100.0		179.60	10,150.0	-4,685.6	-374.7	4,695.6	0.00	0.00	0.00
15,203.4	90.00	179.60	10,150.0	-4,789.0	-374.0	4,798.9	0.00	0.00	0.00
Fed Perf 1(Yukon 20 Fed Co	m #308H)							
15,300.0	90.00	179.60	10,150.0	-4,885.6	-373.3	4,895.5	0.00	0.00	0.00
15,400.0	90.00	179.60	10,150.0	-4,985.6	-372.6	4,995.4	0.00	0.00	0.00
15,500.0	90.00	179.60	10,150.0	-5,085.6	-371.9	5,095.3	0.00	0.00	0.00
15,600.0	90.00	179.60	10,150.0	-5,185.6	-371.3	5,195.2	0.00	0.00	0.00
15,700.0	90.00	179.60	10,150.0	-5,285.6	-370.6	5,295.1	0.00	0.00	0.00
15,800.0	90.00	179.61	10,150.0	-5,385.6	-369.9	5,395.1	0.00	0.00	0.00
15,900.0	90.00	179.61	10,150.0	-5,485.6	-369.2	5,495.0	0.00	0.00	0.00
16,000.0	90.00	179.61	10,150.0	-5,585.6	-368.5	5,594.9	0.00	0.00	0.00
16,100.0	90.00	179.61	10,150.0	-5,685.6	-367.8	5,694.8	0.00	0.00	0.00
16,200.0	90.00	179.61	10,150.0	-5,785.6	-367.1	5,794.7	0.00	0.00	0.00
16,300.0	90.00	179.61	10,150.0	-5,885.6	-366.4	5,894.6	0.00	0.00	0.00
16,400.0		179.61	10,150.0	-5,985.6	-365.8	5,994.6	0.00	0.00	0.00
16,500.0		179.61	10,150.0	-6,085.6	-365.1	6,094.5	0.00	0.00	0.00
16,600.0		179.61	10,150.0	-6,185.6	-364.4	6,194.4	0.00	0.00	0.00
16,700.0		179.61	10,150.0	-6,285.6	-363.7	6,294.3	0.00	0.00	0.00
16,800.0	90.00	179.61	10,150.0	-6,385.6	-363.0	6,394.2	0.00	0.00	0.00
16,900.0		179.61	10,150.0	-6,485.6	-362.3	6,494.1	0.00	0.00	0.00
17,000.0		179.61	10,150.0	-6,585.6	-361.7	6,594.1	0.00	0.00	0.00
17,100.0	90.00	179.61	10,150.0	-6,685.6	-361.0	6,694.0	0.00	0.00	0.00
17,200.0		179.61	10,150.0	-6,785.6	-360.3	6,793.9	0.00	0.00	0.00
17,300.0	90.00	179.61	10,150.0	-6,885.6	-359.6	6,893.8	0.00	0.00	0.00
17,400.0		179.61	10,150.0	-6,985.6	-358.9	6,993.7	0.00	0.00	0.00
17,500.0		179.61	10,150.0	-7,085.6	-358.3	7,093.6	0.00	0.00	0.00
17,600.0		179.61	10,150.0	-7,185.6	-357.6	7,193.6	0.00	0.00	0.00
17,700.0		179.61	10,150.0	-7,285.6	-356.9	7,293.5	0.00	0.00	0.00
17,800.0	90.00	179.61	10,150.0	-7,385.6	-356.2	7,393.4	0.00	0.00	0.00
17,900.0		179.61	10,150.0	-7,485.6	-355.6	7,493.3	0.00	0.00	0.00
18,000.0		179.61	10,150.0	-7,585.6	-354.9	7,593.2	0.00	0.00	0.00
18,100.0		179.61	10,150.0	-7,685.6	-354.2	7,693.1	0.00	0.00	0.00
18,200.0		179.61	10,150.0	-7,785.5	-353.5	7,793.1	0.00	0.00	0.00
18,300.0		179.62	10,150.0	-7,885.5	-352.9	7,893.0	0.00	0.00	0.00

Planning Report

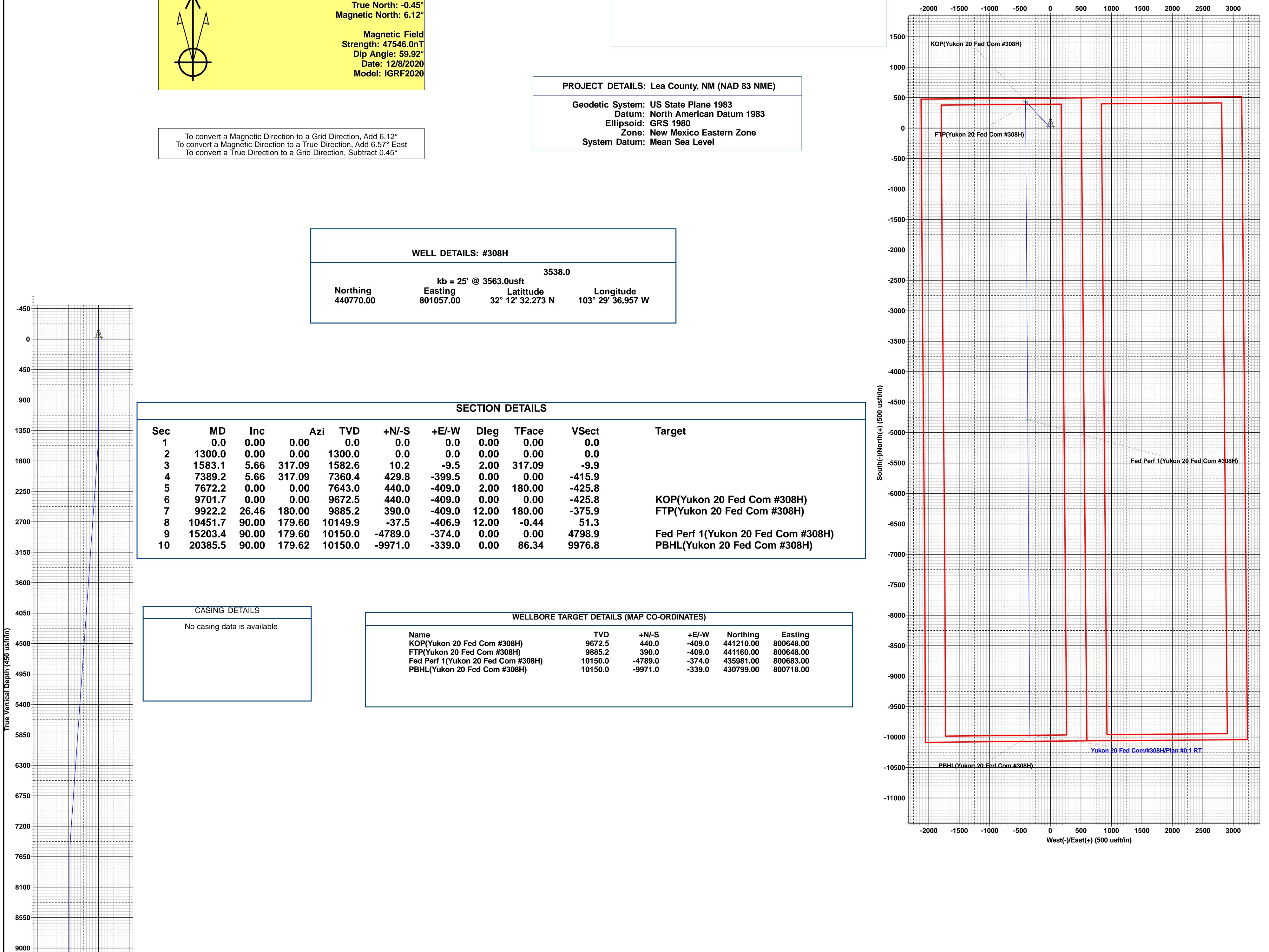
Database:	EDM	Local Co-ordinate Reference:	Well #308H
Company:	EOG Resources - Midland	TVD Reference:	kb = 25' @ 3563.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 25' @ 3563.0usft
Site:	Yukon 20 Fed Com	North Reference:	Grid
Well:	#308H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.1 RT		

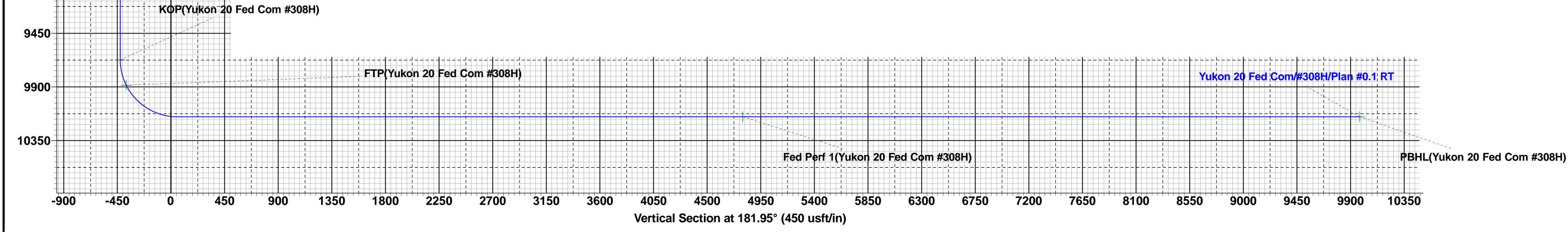
Planned Survey

18,400.0 18,500.0 18,600.0 18,700.0	90.00 90.00	179.62	10.150.0			(usft)	(°/100usft)	(°/100usft)	(°/100usft)
18,600.0			10,100.0	-7,985.5	-352.2	7,992.9	0.00	0.00	0.00
- ,		179.62	10,150.0	-8,085.5	-351.5	8,092.8	0.00	0.00	0.00
18,700.0	90.00	179.62	10,150.0	-8,185.5	-350.8	8,192.7	0.00	0.00	0.00
	90.00	179.62	10,150.0	-8,285.5	-350.2	8,292.7	0.00	0.00	0.00
18,800.0	90.00	179.62	10,150.0	-8,385.5	-349.5	8,392.6	0.00	0.00	0.00
18,900.0	90.00	179.62	10,150.0	-8,485.5	-348.8	8,492.5	0.00	0.00	0.00
19,000.0	90.00	179.62	10,150.0	-8,585.5	-348.2	8,592.4	0.00	0.00	0.00
19,100.0	90.00	179.62	10,150.0	-8,685.5	-347.5	8,692.3	0.00	0.00	0.00
19,200.0	90.00	179.62	10,150.0	-8,785.5	-346.8	8,792.2	0.00	0.00	0.00
19,300.0	90.00	179.62	10,150.0	-8,885.5	-346.2	8,892.2	0.00	0.00	0.00
19,400.0	90.00	179.62	10,150.0	-8,985.5	-345.5	8,992.1	0.00	0.00	0.00
19,500.0	90.00	179.62	10,150.0	-9,085.5	-344.8	9,092.0	0.00	0.00	0.00
19,600.0	90.00	179.62	10,150.0	-9,185.5	-344.2	9,191.9	0.00	0.00	0.00
19,700.0	90.00	179.62	10,150.0	-9,285.5	-343.5	9,291.8	0.00	0.00	0.00
19,800.0	90.00	179.62	10,150.0	-9,385.5	-342.9	9,391.7	0.00	0.00	0.00
19,900.0	90.00	179.62	10,150.0	-9,485.5	-342.2	9,491.7	0.00	0.00	0.00
20,000.0	90.00	179.62	10,150.0	-9,585.5	-341.5	9,591.6	0.00	0.00	0.00
20,100.0	90.00	179.62	10,150.0	-9,685.5	-340.9	9,691.5	0.00	0.00	0.00
20,200.0	90.00	179.62	10,150.0	-9,785.5	-340.2	9,791.4	0.00	0.00	0.00
20,300.0	90.00	179.62	10,150.0	-9,885.5	-339.6	9,891.3	0.00	0.00	0.00
20,385.5	90.00	179.62	10,150.0	-9,971.0	-339.0	9,976.8	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
KOP(Yukon 20 Fed Corr - plan hits target cent - Point	0.00 er	0.01	9,672.5	440.0	-409.0	441,210.00	800,648.00	32° 12' 36.659 N	103° 29' 41.677 W
FTP(Yukon 20 Fed Com - plan hits target cent - Point	0.00 er	0.00	9,885.2	390.0	-409.0	441,160.00	800,648.00	32° 12' 36.164 N	103° 29' 41.682 W
Fed Perf 1(Yukon 20 Fec - plan hits target cent - Point	0.00 er	0.01	10,150.0	-4,789.0	-374.0	435,981.00	800,683.00	32° 11' 44.915 N	103° 29' 41.745 W
PBHL(Yukon 20 Fed Coı - plan hits target cent - Point	0.00 er	0.00	10,150.0	-9,971.0	-339.0	430,799.00	800,718.00	32° 10' 53.636 N	103° 29' 41.807 W

leog resources


eived by OCD: 2/24/2021 9:47:41 AM


Lea County, NM (NAD 83 NME)

Yukon 20 Fed Com #308H

Plan #0.1 RT

West(-)/East(+) (500 usft/in)

Lea County, NM (NAD 83 NME) Yukon 20 Fed Com #308H OH Plan #0.1 RT 16:23, December 08 2020

District II

Action 18718

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS OF APPROVAL

Operator:				OGRID:	Action Number:	Action Type:	
EOG RESOURCES INC	P.O. Box 2267	Midland, TX79702		7377	18718	C-103A	
OCD Reviewer			Cond	Condition			
pkautz			None				