Form 3160-3 (June 2015)	3							
UNITED STATE DEPARTMENT OF THE I				Expires: Janu 5. Lease Serial No.	ary 31, 2018			
BUREAU OF LAND MAN								
APPLICATION FOR PERMIT TO D	ORILL OR	REENTER		6. If Indian, Allotee or	Tribe Name			
1a. Type of work: DRILL	REENTER			7. If Unit or CA Agree	ment, Name and No.			
1b. Type of Well: Oil Well Gas Well	Other			8. Lease Name and We	II No			
1c. Type of Completion: Hydraulic Fracturing	Single Zone	Multiple Zone		8. Lease Name and We	II NO.			
		_			[325998]			
2. Name of Operator [6	137]			9. API Well No.				
3a. Address	3b. Phone No. (include area code)				Exploratory [98270]			
4. Location of Well (Report location clearly and in accordance		11. Sec., T. R. M. or B	lk. and Survey or Area					
At surface								
At proposed prod. zone								
14. Distance in miles and direction from nearest town or post of	fice*			12. County or Parish	13. State			
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	16. No of ac	res in lease	17. Spacin	ng Unit dedicated to this	well			
18. Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft.	19. Proposed	l Depth	20. BLM/	BIA Bond No. in file				
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22. Approxi	mate date work will	start*	23. Estimated duration				
	24. Attac	hments						
The following, completed in accordance with the requirements of (as applicable)	of Onshore Oil	and Gas Order No. 1	I, and the H	Iydraulic Fracturing rule	per 43 CFR 3162.3-3			
Well plat certified by a registered surveyor. A Drilling Plan.		Item 20 above).	•	s unless covered by an ex	xisting bond on file (see			
3. A Surface Use Plan (if the location is on National Forest Syste SUPO must be filed with the appropriate Forest Service Office	em Lands, the	5. Operator certific 6. Such other site sp BLM.		mation and/or plans as ma	ay be requested by the			
25. Signature	Name	(Printed/Typed)		D	ate			
Title								
Approved by (Signature)	Name	(Printed/Typed)		D	ate			
Title	Office							
Application approval does not warrant or certify that the application applicant to conduct operations thereon. Conditions of approval, if any, are attached.	int holds legal o	or equitable title to the	nose rights	in the subject lease whic	h would entitle the			
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, of the United States any false, fictitious or fraudulent statements					department or agency			
GCP Rec 04/29/2021								
		CONDIT	IONS					

Released to Imaging: 6/14/2021 2:16:21 PM Approval Date: 03/23/2021

(Continued on page 2)

NSL

REQUIRES NSL

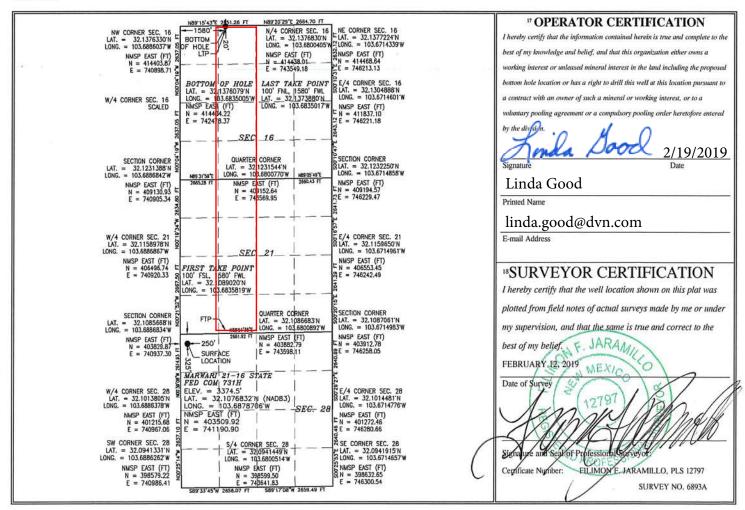
*(Instructions on page 2)

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720
District II
811 S. First St., Artesia, NM 88210
Phone: (575) 748-1283 Fax: (575) 748-9720
District III
1000 Rio Brazos Road, Aztec, NM 87410
Phone: (505) 334-6178 Fax: (505) 334-6170
District IV

1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office


☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

1	API Numbe	r	² Pool Code ³ Pool Name							
			98	270	1	WC-025 G-07 S253216D;UPPER WOLFCAMP				
⁴ Property	Code		⁵ Property Name MARWARI 21-16 STATE FED COM						Well Number	
325998					731H					
7 OGRID	No.		8 Operator Name							
			DEV	ON ENER	RGY PRODUC	CTION COMPA	NY, L.P.		3374.5	
	**				¹⁰ Surface	Location				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County	

D	28	25 S	32 E		325	NORTH	250	WEST	LEA
			пВ	ottom H	ole Location	If Different Fr	om Surface	•	
UL or lot no.	Section 16	Township 25 S	Range 32 E	Lot Idn	Feet from the 20	North/South line NORTH	Feet from the 1580	East/West line WEST	County LEA
¹² Dedicated Acre 320	es ¹³ Joint	or Infill	Consolidatio	n Code			15 Order No.		

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Inten	4	As Dril	led											
Ope	rator Nar	ne: IERGY F	PRODUC	CTION	ı	L	perty N			STAT	FF	ED C	MO [*]	Well Number 731H
	MPANY		ПОВОС	71101	•	IVIZ	1.144731	11 2 1	1-10	OIAI			OW	70111
Kick C	off Point	(KOP)												
UL Section Township Range Lot Feet From N/S Feet From E/W D 28 25S 32E 375 NORTH 1475 WEST							County LEA							
Latitu		233	JZL			Longitude WEST					.01	NAD		
32.1	07526					-10	3.683	916					83	
STATE OF THE STATE	ake Poin													47
UL N	Section 21	Township 25S	Range 32E	Lot	Feet 100		From N SOUT		Feet 1580		From WES	n E/W ST	County LEA	
Latitu		^	01		Longitu		.010						NAD	
32.1	08902	0			103.6	0835	819						83	
Last T	ake Poin	t (LTP)												
UL C	Section 16	Township 25S	Range 32E	Lot	Feet 100	Company of the Company	m N/S RTH	Feet 158	2	From E	7000 X	Count	Э	
Latitu		0	J. 100.00.000		Longitu		.017					NAD		
32.1	37388	0	7		103.6	0835	017					83		
Is this	well the	defining w	vell for the	e Horiz	ontal Sp	oacin	g Unit?]				
ls this	well an i	nfill well?		YES]									
	l is yes pl ng Unit.	ease provi	de API if a	availab	le, Oper	ator	Name	and w	/ell ni	umber	for [Definir	ng well fo	r Horizontal
API#														
Oper	ator Nan	ne:				Prop	perty N	ame:	8					Well Number
Dev	on Ene	rgy Prod	uction C	o., LP		M	arwar	i 21-	16 St	ate Fe	d Co	om		712H
														V7.00/20/201

KZ 06/29/2018

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

0/10/0010

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Original to Appropriate District Office

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

GAS	CA	PT	TIR	\mathbf{E}	PΙ	AN
------------	----	----	-----	--------------	----	----

Date: <u>2/19/2019</u>		
□ Original	Operator & OGRID No.:	Devon Energy Prod Co., LP (6137)
☐ Amended - Reason for Amendme	nt:	
This Gas Capture Plan outlines action completion (new drill, recomplete to	•	ell/production facility flaring/venting for nev
Note: Form C-129 must be submitted and	approved prior to exceeding 60 days allowed b	y Rule (Subsection A of 19.15.18.12 NMAC).
Well(s)/Production Facility - Name	e of facility	
The well(s) that will be located at the	production facility are shown in the table	e below.

Well Name	API	Well Location (ULSTR)	Footages	Expected MCF/D	Flared or Vented	Comments
Marwari 21-16 State Fed Com 731H		UNIT D, SEC 28- T25S-R32E	325 FNL 250 FWL			MARWARI 21 CTB 1

Gathering System and Pipeline Notification

Well(s) will be connected to a production facility after flowback operations are complete, if DCP system is in place. The gas produced from production facility is dedicated to <u>DCP</u> and will be connected to <u>DCP</u> low/high pressure gathering system located in Lea County, New Mexico. It will require 1100' of pipeline to connect the facility to low/high pressure gathering system. <u>Devon</u> provides (periodically) to <u>DCP</u> a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future. In addition, <u>Devon</u> and <u>DCP</u> have periodic conference calls to discuss changes to drilling and completion schedules. Gas from these wells will be processed at <u>DCP</u> Processing Plant located in Sec. 19, Twn. 19S, Rng. 32E, Lea County, New Mexico. The actual flow of the gas will be based on compression operating parameters and gathering system pressures.

Flowback Strategy

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on <u>DCP</u> system at that time. Based on current information, it is <u>Devon's</u> belief the system can take this gas upon completion of the well(s).

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - Only a portion of gas is consumed operating the generator, remainder of gas will be flared
- Compressed Natural Gas On lease
 - o Gas flared would be minimal, but might be uneconomical to operate when gas volume declines
- NGL Removal On lease
 - Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

04/12/2021

APD ID: 10400039091 Submission Date: 02/21/2019

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

Well Name: MARWARI 21-16 STATE FED COM Well Number: 731H

Well Type: OIL WELL Well Work Type: Drill

Highlighted data reflects the most recent changes

Show Final Text

Section 1 - Geologic Formations

Formation	Farmation Name	Florestion	True Vertical		l ide ale ai ee	Minaral Dansuman	Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies		Formation
396895	UNKNOWN	3374	0	0	ALLUVIUM	NONE	N
396896	RUSTLER	2545	829	829	ANHYDRITE	NONE	N
396897	SALADO	2182	1192	1192	SALT	NONE	N
396890	DELAWARE	-1198	4572	4572	SANDSTONE	NATURAL GAS, OIL	N
396891	BONE SPRING	-5161	8535	8535	LIMESTONE	NATURAL GAS, OIL	N
396892	BONE SPRING 1ST	-6092	9466	9466	SANDSTONE	NATURAL GAS, OIL	N
396893	BONE SPRING 2ND	-6777	10151	10151	SANDSTONE	NATURAL GAS, OIL	N
396894	BONE SPRING 3RD	-8002	11376	11376	SANDSTONE	OIL	N
396898	WOLFCAMP	-8443	11817	11817	SHALE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 10M Rating Depth: 12260

Equipment: BOP/BOPE will be installed per Onshore Oil & Gas Order #2 requirements prior to drilling below intermediate casing, a BOP/BOPE system with the above minimum rating will be installed on the wellhead system. BOP/BOPE will be tested by an independent service company per Onshore Oil & Gas Order #2 requirements and MASP (Maximum Anticipated Surface Pressure) calculations. If the system is upgraded, all the components installed will be functional and tested.

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP stack to the choke manifold. See attached for specs for hydrostatic test chart.

Testing Procedure: A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

Choke Diagram Attachment:

10M BOPE CHK DR CLS RKL 20210204130857.pdf

Annular Variance Preventer Summary 20210204130858.pdf

Marwari 21-16 State Fed Com 731H

1. Geologic Formations

TVD of target	12260	Pilot hole depth	N/A
MD at TD:	22664	Deepest expected fresh water	

Basin

Dasin		TT	
	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	995		
Salt	1380		
Base of Salt	4625		
Lamar	4625		
Delaware	4625		
Cherry Canyon	5580		
Brushy Canyon	7170		
1st Bone Spring Lime	8680		
Bone Spring 1st	9665		
Bone Spring 2nd	10310		
3rd Bone Spring Lime	10805		
Bone Spring 3rd	11415		
Wolfcamp	11910		

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program (Primary Design)

	, , , , , , , , , , , , , , , , , , ,	Wt			Casing	Interval	Casing	Interval
Hole Size	Csg. Size	(PPF)	Grade	Conn	From (MD)	To (MD)	From (TVD)	To (TVD)
17 1/2	13 3/8	48	H40	STC	0	1020	0	1020
9 7/8	8 5/8	32	P110	TLW	0	11910	0	11910
7 7/8	5 1/2	17	P110	ВТС	0	22664	0	12260

[•] All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for continengcy casing.

Casing	# Sks	TOC	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	777	Surf	13.2	1.44	Lead: Class C Cement + additives
T 1	494	Surf	9	3.27	Lead: Class C Cement + additives
Int 1	465	4000' above	13.2	1.44	Tail: Class H / C + additives
Int 1	As Needed	Surf	13.2	1.44	Squeeze Lead: Class C Cement + additives
Intermediate	494	Surf	9	3.27	Lead: Class C Cement + additives
Squeeze	465	4000' above	13.2	1.44	Tail: Class H / C + additives
Production	117	9820	9	3.27	Lead: Class H /C + additives
Froduction	1435	11820	13.2	1.44	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Intermediate 1 (Two Stage)	25%
Prod	10%

4. Pressure Control Equipment (Three String Design)

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		✓	Tested to:	
				nular	X	50% of rated working pressure	
Int 1	13-58"	5M	Blind	l Ram	X		
IIIt I	13-36	JIVI	Pipe	Ram		5M	
			Doub	le Ram	X	JIVI	
			Other*			1	
	13-5/8"		Annular (5M)		X	100% of rated working pressure	
D 1 4		53.f	Blind Ram		X		
Production		SIM	5M Pipe Ram			101/4	
			Doub	le Ram	X	10M	
			Other*				
			Annula	ar (5M)			
			Blind Ram Pipe Ram				
						1	
			Doub	le Ram		1	
			Other*				
N A variance is requested for	A variance is requested for the use of a diverter on the surface casing. See attached for schematic.						
Y A variance is requested to 1	un a 5 M a	nnular on a	10M system				

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring
What will be used to monitor the ross of gain of flara.	1 v 1/1 uson/ v isuai iviointoring

6. Logging and Testing Procedures

Logging, (Coring and Testing					
Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the						
X	Completion Report and shumitted to the BLM.					
	No logs are planned based on well control or offset log information.					
	Drill stem test? If yes, explain.					
	Coring? If yes, explain.					

Additional l	ogs planned	Interval		
	Resistivity	Int. shoe to KOP		
	Density	Int. shoe to KOP		
X	CBL	Production casing		
X Mud log		Intermediate shoe to TD		
	PEX			

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	6694
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

N	H2S is present
Y	H2S plan attached.

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed

Marwari 21-16 State Fed Com 731H

from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments	
X	Directional Plan
	Other, describe

Marwari 21-16 State Fed Com 731H

1. Geologic Formations

TVD of target	12295	Pilot hole depth	N/A
MD at TD:	23077	Deepest expected fresh water	

Basin

Dasin	D 41	XX7-4/M*1	
	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
RUSTLER	829		
SALADO	1192		
BONE SPRING	8535		
BONE SPRING 1ST	9466		
BONE SPRING 2ND	10151		
BONE SPRING 3RD	11376		
WOLFCAMP	11817		

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program (Primary Design)

Hole Size	Casing Interval	Csg. Size Wt	Grade Conn	Conn	Min SF	Min SF	Min SF		
Hole Size	From	To	Csg. Size	(PPF)	Grade	Colli	Collapse	Burst	Tension
17 1/2	0	854 TVD	13 3/8	48.0	H40	STC	1.125	1.25	1.6
9 7/8	0	11817 TVD	7 5/8	29.7	P110	Flushmax III	1.125	1.25	1.6
6 3/4	0	TD	5 1/2	20.0	P110	Vam SG	1.125	1.25	1.6
				BLM Minimum Safety Factor			1.125	1	1.6 Dry 1.8 Wet

- All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for continengcy casing.
- Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed.
- A variance is requested for collapse rating on intermediate casing. Operator will keep pipe full while running casing.
- Int casing shoe will be selected based on drilling data/gamma, setting depth with be revised accordingly if needed.
- A variance is requested to wave the centralizer requirement for the Intermediate casing and production casing.
- A variance is requested to set intermediate casing in the curve if hole conditions dictate that a higher shoe strength is required.

Casing Program (Alternative Design)

Hole Size	Casing	Interval	Csg. Size	g Size Wt Gr	Grade	de Conn	Min SF	Min SF	Min SF
Hole Size	From	To	Csg. Size	(PPF)	Graue	Colli	Collapse	Burst	Tension
17 1/2	0	854 TVD	13 3/8	48.0	H40	STC	1.125	1.25	1.6
9 7/8	0	11817 TVD	8 5/8	32.0	P110	TLW	1.125	1.25	1.6
7 7/8	0	TD	5 1/2	17.0	P110	ВТС	1.125	1.25	1.6
				BLM N	Ainimum Sat	fety Factor	1.125	1	1.6 Dry 1.8 Wet

- All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for continengcy casing.
- Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed.
- A variance is requested for collapse rating on intermediate casing. Operator will keep pipe full while running casing.
- Int casing shoe will be selected based on drilling data/gamma, setting depth with be revised accordingly if needed.
- A variance is requested to wave the centralizer requirement for the Intermediate casing and production casing.
- •Variance requested to drill 10.625" hole instead of 9.875" for intermediate 1, the 8.625" connection will change from TLW to BTC.
- A variance is requested to set intermediate casing in the curve if hole conditions dictate that a higher shoe strength is required.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specficition sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating	**
of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	IN
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
(1°01 2 string wens) if yes, is there a contingency casing it lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program (Primary Design)

Casing	# Sks	TOC	Wt. (lb/gal)	Yld (ft3/sack)	Slurry Description
Surface	657	Surf	13.2	1.44	Lead: Class C Cement + additives
Total	742	Surf	9	3.27	Lead: Class C Cement + additives
Int 1	783	4000' above shoe	13.2	1.44	Tail: Class H / C + additives
	570	200' above DV	9	3.27	1st stage Lead: Class C Cement + additives
Int 1 Two Stage	93	500' above shoe	13.2	1.44	1st stage Tail: Class H / C + additives
w/ DV @ TVD of Delaware	412	Surf	9	3.27	2nd stage Lead: Class C Cement + additives
	93	500' above DV	13.2	1.44	2nd stage Tail: Class H / C + additives
Int 1	As Needed	Surf	9	1.44	Squeeze Lead: Class C Cement + additives
Intermediate	742	Surf	9	3.27	Lead: Class C Cement + additives
Squeeze	783	4000' above shoe	13.2	1.44	Tail: Class H / C + additives
Production	63	9790	9.0	3.3	Lead: Class H /C + additives
Floduction	720	11790	13.2	1.4	Tail: Class H / C + additives

If a DV tool is ran the depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Slurry weights will be adjusted based on estimated fracture gradient of the formation. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If cement is not returned to surface during the primary cement job on the surface casing string, a planned top job will be conducted immediately after completion of the primary job.

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Intermediate 1 (Two Stage)	25%
Prod	10%

3. Cementing Program (Alternative Design)

Casing	# Sks	TOC	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	657	Surf	13.2	1.44	Lead: Class C Cement + additives
Total 1	473	Surf	9	3.27	Lead: Class C Cement + additives
Int 1	465	4000' above shoe	13.2	1.44	Tail: Class H / C + additives
	335	Surf	9	3.27	1st stage Lead: Class C Cement + additives
Int 1 Two Stage	55	500' above shoe	13.2	1.44	1st stage Tail: Class H / C + additives
w DV @ ~4500	279	Surf	9	3.27	2nd stage Lead: Class C Cement + additives
	55	500' above DV	13.2	1.44	2nd stage Tail: Class H / C + additives
Int 1	As Needed	Surf	13.2	1.44	Squeeze Lead: Class C Cement + additives
Intermediate	473	Surf	9	3.27	Lead: Class C Cement + additives
Squeeze	465	4000' above shoe	13.2	1.44	Tail: Class H / C + additives
Production	117	9790	9.0	3.3	Lead: Class H /C + additives
Froduction	1494	11790	13.2	1.4	Tail: Class H / C + additives

If a DV tool is ran the depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Slurry weights will be adjusted based on estimated fracture gradient of the formation. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If cement is not returned to surface during the primary cement job on the surface casing string, a planned top job will be conducted immediately after completion of the primary job.

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Intermediate 1 (Two Stage)	25%
Prod	10%

4. Pressure Control Equipment (Three String Design)

ВОР	installed and tested before drilling which hole?	Size?	Min. Require d WP	T	ype	✓	Tested to:
					nular	X	50% of rated working pressure
	Int 1	13-58"	5M	Bline	d Ram	X	
	IIIt 1	13-36	JIVI	Pipe	Ram		5M
				Doub	le Ram	X	JIVI
				Other*			
				Annul	ar (5M)	X	100% of rated working pressure
	Production	13-5/8"	10M	Blind Ram		X	10M
	Floduction			Pipe Ram			
				Doub	le Ram	X	TOW
				Other*			
				Annul	ar (5M)		
				Blind Ram			
				Pipe	Ram		
				Doub	le Ram		
				Other*			
N	A variance is requested for	the use of a	ne use of a diverter on the surface casing. See attached for schematic.				
Y	A variance is requested to r	to run a 5 M annular on a 10M system					

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, C	Logging, Coring and Testing				
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the				
X	Completion Report and sbumitted to the BLM.				
	No logs are planned based on well control or offset log information.				
	Drill stem test? If yes, explain.				
	Coring? If yes, explain.				

Additiona	al logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
X	CBL	Production casing
X	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	6713
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

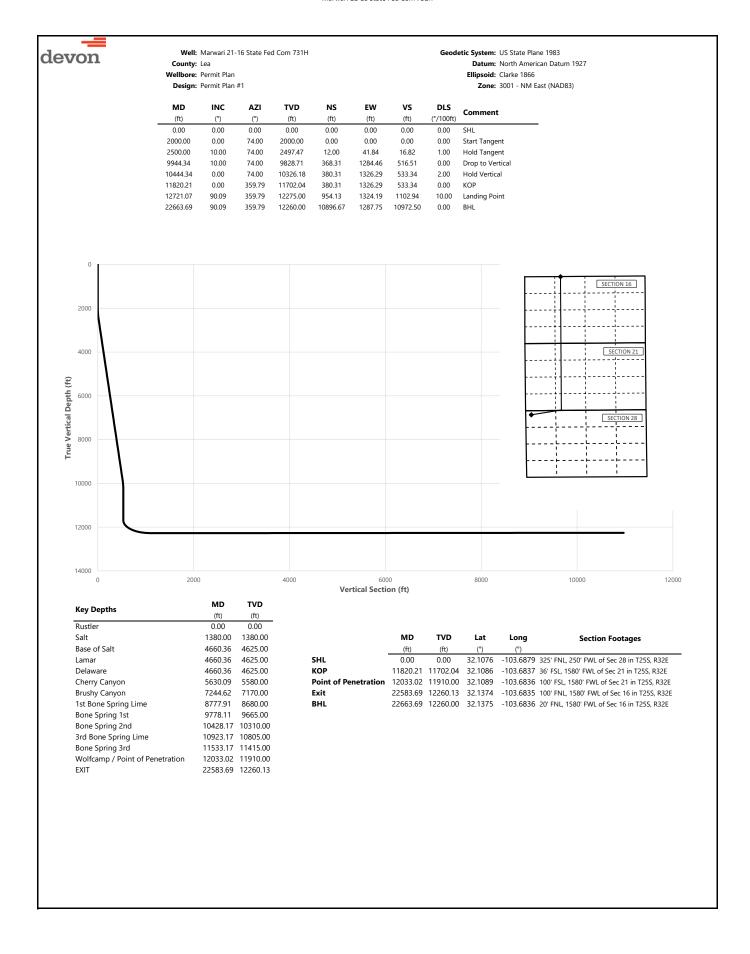
Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

CH	Countered	icasured values and formations will be provided to the BEW.							
N		H2S is present							
Y		H2S plan attached.							

Marwari 21-16 State Fed Com 731H

8. Other facets of operation

Is this a walking operation? Potentially


- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments	1
X	Directional Plan
	Other, describe

 Well:
 Marwari 21-16 State Fed Com 731H
 Geodetic System:
 US State Plane 1983

 County:
 Lea
 Datum:
 North American Datum 1927

 Wellbore:
 Permit Plan
 Ellipsoid:
 Clarke 1866

 Design:
 Permit Plan #1
 Zone:
 3001 - NM East (NAD83)

	Design: Permit Plan #1						Zone: 3001 - NM East (NAD83)				
MD	INC	AZI	TVD	NS	EW	vs	DLS				
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment			
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	SHL			
100.00	0.00	74.00	100.00	0.00	0.00	0.00	0.00				
200.00	0.00	74.00	200.00	0.00	0.00	0.00	0.00				
300.00	0.00	74.00	300.00	0.00	0.00	0.00	0.00				
400.00	0.00	74.00	400.00	0.00	0.00	0.00	0.00				
500.00	0.00	74.00	500.00	0.00	0.00	0.00	0.00				
600.00	0.00	74.00	600.00	0.00	0.00	0.00	0.00				
700.00 800.00	0.00	74.00 74.00	700.00 800.00	0.00	0.00	0.00	0.00				
900.00	0.00	74.00	900.00	0.00	0.00	0.00	0.00				
995.00	0.00	74.00	995.00	0.00	0.00	0.00	0.00	Rustler			
1000.00	0.00	74.00	1000.00	0.00	0.00	0.00	0.00				
1100.00	0.00	74.00	1100.00	0.00	0.00	0.00	0.00				
1200.00	0.00	74.00	1200.00	0.00	0.00	0.00	0.00				
1300.00	0.00	74.00	1300.00	0.00	0.00	0.00	0.00				
1380.00	0.00	74.00	1380.00	0.00	0.00	0.00	0.00	Salt			
1400.00	0.00	74.00	1400.00	0.00	0.00	0.00	0.00				
1500.00	0.00	74.00	1500.00	0.00	0.00	0.00	0.00				
1600.00	0.00	74.00	1600.00	0.00	0.00	0.00	0.00				
1700.00 1800.00	0.00	74.00 74.00	1700.00 1800.00	0.00	0.00	0.00	0.00				
1900.00	0.00	74.00	1900.00	0.00	0.00	0.00	0.00				
2000.00	0.00	74.00	2000.00	0.00	0.00	0.00	0.00	Start Tangent			
2100.00	2.00	74.00	2099.98	0.48	1.68	0.67	2.00				
2200.00	4.00	74.00	2199.84	1.92	6.71	2.70	2.00				
2300.00	6.00	74.00	2299.45	4.33	15.09	6.07	2.00				
2400.00	8.00	74.00	2398.70	7.68	26.80	10.78	2.00				
2500.00	10.00	74.00	2497.47	12.00	41.84	16.82	1.00	Hold Tangent			
2600.00	10.00	74.00	2595.95	16.78	58.53	23.54	0.00				
2700.00	10.00	74.00	2694.43	21.57	75.22	30.25	0.00				
2800.00 2900.00	10.00 10.00	74.00 74.00	2792.91 2891.39	26.36 31.14	91.91 108.61	36.96 43.67	0.00				
3000.00	10.00	74.00	2989.87	35.93	125.30	50.39	0.00				
3100.00	10.00	74.00	3088.35	40.71	141.99	57.10	0.00				
3200.00	10.00	74.00	3186.83	45.50	158.68	63.81	0.00				
3300.00	10.00	74.00	3285.31	50.29	175.37	70.52	0.00				
3400.00	10.00	74.00	3383.79	55.07	192.07	77.23	0.00				
3500.00	10.00	74.00	3482.27	59.86	208.76	83.95	0.00				
3600.00	10.00	74.00	3580.75	64.65	225.45	90.66	0.00				
3700.00	10.00	74.00	3679.23	69.43	242.14	97.37	0.00				
3800.00	10.00	74.00	3777.72	74.22	258.83	104.08	0.00				
3900.00 4000.00	10.00 10.00	74.00 74.00	3876.20 3974.68	79.01	275.53 292.22	110.80	0.00				
4100.00	10.00	74.00	4073.16	83.79 88.58	308.91	117.51 124.22	0.00				
4200.00	10.00	74.00	4171.64	93.37	325.60	130.93	0.00				
4300.00	10.00	74.00	4270.12	98.15	342.29	137.65	0.00				
4400.00	10.00	74.00	4368.60	102.94	358.99	144.36	0.00				
4500.00	10.00	74.00	4467.08	107.72	375.68	151.07	0.00				
4600.00	10.00	74.00	4565.56	112.51	392.37	157.78	0.00				
4660.36	10.00	74.00	4625.00	115.40	402.45	161.83	0.00	Base of Salt, Lamar, Delaware			
4700.00	10.00	74.00	4664.04	117.30	409.06	164.50	0.00				
4800.00	10.00	74.00	4762.52	122.08	425.76	171.21	0.00				
4900.00 5000.00	10.00 10.00	74.00 74.00	4861.00 4959.48	126.87 131.66	442.45 459.14	177.92 184.63	0.00				
5100.00	10.00	74.00	5057.97	131.66	459.14	191.34	0.00				
5200.00	10.00	74.00	5156.45	141.23	492.52	198.06	0.00				
5300.00	10.00	74.00	5254.93	146.02	509.22	204.77	0.00				
5400.00	10.00	74.00	5353.41	150.80	525.91	211.48	0.00				
5500.00	10.00	74.00	5451.89	155.59	542.60	218.19	0.00				
5600.00	10.00	74.00	5550.37	160.38	559.29	224.91	0.00				
5630.09	10.00	74.00	5580.00	161.82	564.31	226.93	0.00	Cherry Canyon			
5700.00	10.00	74.00	5648.85	165.16	575.98	231.62	0.00				
5800.00	10.00	74.00	5747.33	169.95	592.68	238.33	0.00				
5900.00	10.00	74.00	5845.81	174.73	609.37	245.04	0.00				
6000.00	10.00	74.00	5944.29	179.52	626.06	251.76	0.00				
6100.00	10.00 10.00	74.00 74.00	6042.77 6141.25	184.31 189.09	642.75 659.44	258.47 265.18	0.00				
6200.00 6300.00	10.00	74.00 74.00	6141.25 6239.73	193.88	659.44 676.14	265.18 271.89	0.00				
6400.00	10.00	74.00	6338.22	193.66	692.83	271.89	0.00				
6500.00	10.00	74.00	6436.70	203.45	709.52	285.32	0.00				

Well: Marwari 21-16 State Fed Com 731H County: Lea

Wellbore: Permit Plan

Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927

Ellipsoid: Clarke 1866

	Design:	Permit Plan	n #1				Zone: 3001 - NM East (NAD83)			
MD (ft)	INC (°)	AZI (°)	TVD (ft)	NS (ft)	EW (ft)	VS (ft)	DLS (°/100ft)	Comment		
6600.00	10.00	74.00	6535.18	208.24	726.21	292.03	0.00			
6700.00	10.00	74.00	6633.66	213.03	742.91	298.74	0.00			
6800.00	10.00	74.00	6732.14	217.81	759.60	305.46	0.00			
6900.00	10.00	74.00	6830.62	222.60	776.29	312.17	0.00			
7000.00	10.00	74.00	6929.10	227.38	792.98	318.88	0.00			
7100.00	10.00	74.00	7027.58	232.17	809.67	325.59	0.00			
7200.00 7244.62	10.00 10.00	74.00 74.00	7126.06 7170.00	236.96 239.09	826.37 833.81	332.30 335.30	0.00	Brushy Canyon		
7300.00	10.00	74.00	7224.54	241.74	843.06	339.02	0.00	Brushly Carlyon		
7400.00	10.00	74.00	7323.02	246.53	859.75	345.73	0.00			
7500.00	10.00	74.00	7421.50	251.32	876.44	352.44	0.00			
7600.00	10.00	74.00	7519.99	256.10	893.13	359.15	0.00			
7700.00	10.00	74.00	7618.47	260.89	909.83	365.87	0.00			
7800.00	10.00	74.00	7716.95	265.68	926.52	372.58	0.00			
7900.00	10.00	74.00	7815.43	270.46	943.21	379.29	0.00			
8000.00	10.00	74.00	7913.91	275.25	959.90	386.00	0.00			
8100.00	10.00	74.00	8012.39	280.04	976.60	392.72	0.00			
8200.00 8300.00	10.00 10.00	74.00 74.00	8110.87 8209.35	284.82 289.61	993.29 1009.98	399.43 406.14	0.00			
8400.00	10.00	74.00	8307.83	294.39	1009.98	412.85	0.00			
8500.00	10.00	74.00	8406.31	299.18	1043.36	419.57	0.00			
8600.00	10.00	74.00	8504.79	303.97	1060.06	426.28	0.00			
8700.00	10.00	74.00	8603.27	308.75	1076.75	432.99	0.00			
8777.91	10.00	74.00	8680.00	312.48	1089.75	438.22	0.00	1st Bone Spring Lime		
8800.00	10.00	74.00	8701.75	313.54	1093.44	439.70	0.00			
8900.00	10.00	74.00	8800.24	318.33	1110.13	446.41	0.00			
9000.00 9100.00	10.00	74.00	8898.72	323.11	1126.82	453.13	0.00			
9200.00	10.00 10.00	74.00 74.00	8997.20 9095.68	327.90 332.69	1143.52 1160.21	459.84 466.55	0.00			
9300.00	10.00	74.00	9194.16	337.47	1176.90	473.26	0.00			
9400.00	10.00	74.00	9292.64	342.26	1193.59	479.98	0.00			
9500.00	10.00	74.00	9391.12	347.04	1210.28	486.69	0.00			
9600.00	10.00	74.00	9489.60	351.83	1226.98	493.40	0.00			
9700.00	10.00	74.00	9588.08	356.62	1243.67	500.11	0.00			
9778.11	10.00	74.00	9665.00	360.36	1256.71	505.36	0.00	Bone Spring 1st		
9800.00	10.00	74.00	9686.56	361.40	1260.36	506.83	0.00			
9900.00	10.00	74.00	9785.04	366.19	1277.05	513.54	0.00	December 11 Marchael		
9944.34 10000.00	10.00 8.89	74.00 74.00	9828.71	368.31 370.83	1284.46 1293.23	516.51 520.04	0.00 2.00	Drop to Vertical		
10100.00	6.89	74.00	9883.61 9982.66	374.61	1306.42	525.35	2.00			
10200.00	4.89	74.00	10082.13	377.44	1316.28	529.31	2.00			
10300.00	2.89	74.00	10181.90	379.31	1322.80	531.93	2.00			
10400.00	0.89	74.00	10281.84	380.21	1325.96	533.20	2.00			
10428.17	0.32	74.00	10310.00	380.30	1326.25	533.32	2.00	Bone Spring 2nd		
10444.34	0.00	74.00	10326.18	380.31	1326.29	533.34	2.00	Hold Vertical		
10500.00	0.00	359.79	10381.83	380.31	1326.29	533.34	0.00			
10600.00	0.00	359.79	10481.83	380.31	1326.29	533.34	0.00			
10700.00	0.00	359.79 359.79	10581.83	380.31	1326.29	533.34 533.34	0.00			
10800.00 10900.00	0.00	359.79 359.79	10681.83 10781.83	380.31 380.31	1326.29 1326.29	533.34	0.00			
10900.00	0.00	359.79	10761.63	380.31	1326.29	533.34	0.00	3rd Bone Spring Lime		
11000.00	0.00	359.79	10881.83	380.31	1326.29	533.34	0.00			
11100.00	0.00	359.79	10981.83	380.31	1326.29	533.34	0.00			
11200.00	0.00	359.79	11081.83	380.31	1326.29	533.34	0.00			
11300.00	0.00	359.79	11181.83	380.31	1326.29	533.34	0.00			
11400.00	0.00	359.79	11281.83	380.31	1326.29	533.34	0.00			
11500.00	0.00	359.79	11381.83	380.31	1326.29	533.34	0.00	Bana Carrian 2nd		
11533.17	0.00	359.79	11415.00	380.31	1326.29	533.34	0.00	Bone Spring 3rd		
11600.00 11700.00	0.00	359.79 359.79	11481.83 11581.83	380.31 380.31	1326.29 1326.29	533.34 533.34	0.00			
11700.00	0.00	359.79 359.79	11681.83	380.31	1326.29	533.34	0.00			
11820.21	0.00	359.79	11702.04	380.31	1326.29	533.34	0.00	KOP		
11900.00	7.98	359.79	11781.58	385.86	1326.27	538.84	10.00			
12000.00	17.98	359.79	11878.90	408.29	1326.19	561.11	10.00			
12033.02	21.28	359.79	11910.00	419.38	1326.15	572.12	10.00	Wolfcamp / Point of Penetration		
12100.00	27.98	359.79	11970.85	447.28	1326.05	599.81	10.00			
12200.00	37.98	359.79	12054.63	501.64	1325.85	653.78	10.00			
12300.00	47.98	359.79	12127.69	569.73	1325.60	721.36	10.00			
12400.00	57.98	359.79	12187.83	649.47	1325.30	800.52	10.00			
12500.00	67.98	359.79	12233.20	738.44	1324.98	888.84	10.00			

Well: Marwari 21-16 State Fed Com 731H

County: Lea
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927 **Ellipsoid:** Clarke 1866

	Design: Permit Plan #1						Zone: 3001 - NM East (NAD83)			
MD (ft)	INC (°)	AZI (°)	TVD (ft)	NS (ft)	EW (ft)	VS (ft)	DLS (°/100ft)	Comment		
12600.00	77.98	359.79	12262.44	833.93	1324.63	983.63	10.00			
12700.00	87.98	359.79	12274.64	933.06	1324.26	1082.03	10.00			
12721.07	90.09	359.79	12275.00	954.13	1324.19	1102.94	10.00	Landing Point		
12800.00	90.09	359.79	12274.88	1033.05	1323.90	1181.29	0.00			
12900.00	90.09	359.79	12274.73	1133.05	1323.53	1280.56	0.00			
13000.00 13100.00	90.09 90.09	359.79 359.79	12274.58 12274.43	1233.05 1333.05	1323.17 1322.80	1379.82 1479.09	0.00			
13200.00	90.09	359.79	12274.43	1433.05	1322.43	1578.35	0.00			
13300.00	90.09	359.79	12274.13	1533.05	1322.06	1677.62	0.00			
13400.00	90.09	359.79	12273.98	1633.05	1321.70	1776.88	0.00			
13500.00	90.09	359.79	12273.83	1733.05	1321.33	1876.15	0.00			
13600.00	90.09	359.79	12273.68	1833.05	1320.96	1975.41	0.00			
13700.00	90.09	359.79	12273.52	1933.05	1320.60	2074.68	0.00			
13800.00	90.09	359.79	12273.37	2033.05	1320.23	2173.94	0.00			
13900.00 14000.00	90.09 90.09	359.79 359.79	12273.22 12273.07	2133.05 2233.04	1319.86 1319.50	2273.21 2372.47	0.00			
14100.00	90.09	359.79	12273.07	2333.04	1319.13	2471.74	0.00			
14200.00	90.09	359.79	12272.77	2433.04	1318.76	2571.00	0.00			
14300.00	90.09	359.79	12272.62	2533.04	1318.39	2670.27	0.00			
14400.00	90.09	359.79	12272.47	2633.04	1318.03	2769.53	0.00			
14500.00	90.09	359.79	12272.32	2733.04	1317.66	2868.80	0.00			
14600.00	90.09	359.79	12272.17	2833.04	1317.29	2968.06	0.00			
14700.00	90.09	359.79	12272.02	2933.04	1316.93	3067.33	0.00			
14800.00 14900.00	90.09 90.09	359.79 359.79	12271.87 12271.72	3033.04 3133.04	1316.56 1316.19	3166.59 3265.86	0.00			
15000.00	90.09	359.79	12271.56	3233.04	1315.82	3365.12	0.00			
15100.00	90.09	359.79	12271.41	3333.04	1315.46	3464.39	0.00			
15200.00	90.09	359.79	12271.26	3433.03	1315.09	3563.65	0.00			
15300.00	90.09	359.79	12271.11	3533.03	1314.72	3662.92	0.00			
15400.00	90.09	359.79	12270.96	3633.03	1314.36	3762.18	0.00			
15500.00	90.09	359.79	12270.81	3733.03	1313.99	3861.45	0.00			
15600.00 15700.00	90.09 90.09	359.79 359.79	12270.66 12270.51	3833.03 3933.03	1313.62	3960.71 4059.98	0.00			
15800.00	90.09	359.79	12270.31	4033.03	1313.26 1312.89	4159.24	0.00			
15900.00	90.09	359.79	12270.30	4133.03	1312.52	4258.51	0.00			
16000.00	90.09	359.79	12270.06	4233.03	1312.15	4357.77	0.00			
16100.00	90.09	359.79	12269.91	4333.03	1311.79	4457.04	0.00			
16200.00	90.09	359.79	12269.76	4433.03	1311.42	4556.30	0.00			
16300.00	90.09	359.79	12269.61	4533.03	1311.05	4655.57	0.00			
16400.00	90.09	359.79	12269.45	4633.03	1310.69	4754.83	0.00			
16500.00 16600.00	90.09 90.09	359.79 359.79	12269.30 12269.15	4733.02 4833.02	1310.32 1309.95	4854.10 4953.36	0.00			
16700.00	90.09	359.79	12269.00	4933.02	1309.58	5052.63	0.00			
16800.00	90.09	359.79	12268.85	5033.02	1309.22	5151.89	0.00			
16900.00	90.09	359.79	12268.70	5133.02	1308.85	5251.16	0.00			
17000.00	90.09	359.79	12268.55	5233.02	1308.48	5350.42	0.00			
17100.00	90.09	359.79	12268.40	5333.02	1308.12	5449.69	0.00			
17200.00 17300.00	90.09	359.79	12268.25	5433.02	1307.75	5548.95	0.00			
17300.00	90.09 90.09	359.79 359.79	12268.10 12267.95	5533.02 5633.02	1307.38 1307.02	5648.22 5747.48	0.00			
17500.00	90.09	359.79	12267.80	5733.02	1306.65	5846.75	0.00			
17600.00	90.09	359.79	12267.65	5833.02	1306.28	5946.01	0.00			
17700.00	90.09	359.79	12267.50	5933.02	1305.91	6045.28	0.00			
17800.00	90.09	359.79	12267.34	6033.01	1305.55	6144.54	0.00			
17900.00	90.09	359.79	12267.19	6133.01	1305.18	6243.81	0.00			
18000.00 18100.00	90.09 90.09	359.79 359.79	12267.04 12266.89	6233.01 6333.01	1304.81 1304.45	6343.07 6442.34	0.00			
18200.00	90.09	359.79	12266.89	6433.01	1304.45	6541.60	0.00			
18300.00	90.09	359.79	12266.59	6533.01	1303.71	6640.87	0.00			
18400.00	90.09	359.79	12266.44	6633.01	1303.34	6740.13	0.00			
18500.00	90.09	359.79	12266.29	6733.01	1302.98	6839.40	0.00			
18600.00	90.09	359.79	12266.14	6833.01	1302.61	6938.66	0.00			
18700.00	90.09	359.79	12265.99	6933.01	1302.24	7037.93	0.00			
18800.00	90.09	359.79	12265.84	7033.01	1301.88	7137.19	0.00			
18900.00 19000.00	90.09 90.09	359.79 359.79	12265.69 12265.54	7133.01 7233.00	1301.51 1301.14	7236.46 7335.72	0.00			
19100.00	90.09	359.79	12265.34	7333.00	1301.14	7434.99	0.00			
19200.00	90.09	359.79	12265.23	7433.00	1300.70	7534.25	0.00			
19300.00	90.09	359.79	12265.08	7533.00	1300.04	7633.52	0.00			
19400.00	90.09	359.79	12264.93	7633.00	1299.67	7732.78	0.00			

Well: Marwari 21-16 State Fed Com 731H

County: Lea
Wellbore: Permit Plan
Design: Permit Plan #1

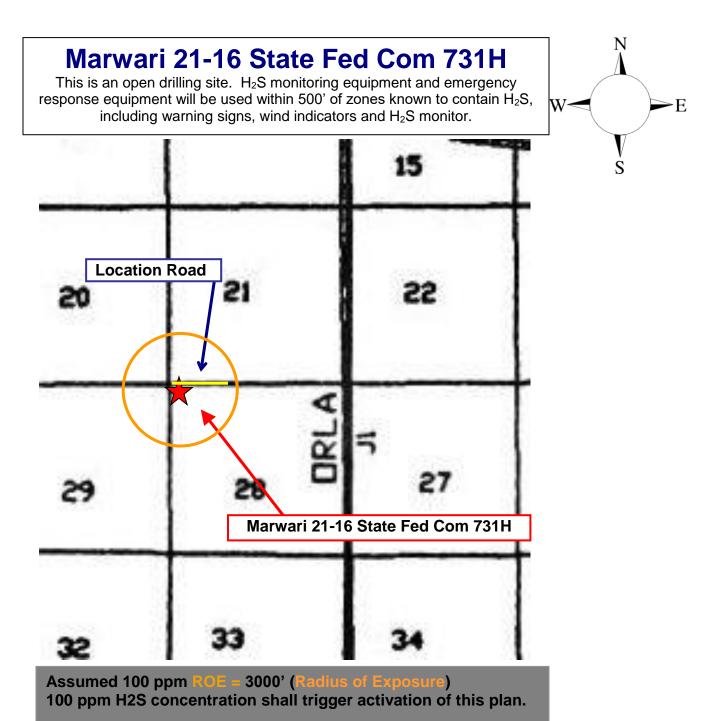
Geodetic System: US State Plane 1983

Datum: North American Datum 1927 **Ellipsoid:** Clarke 1866

Zone: 3001 - NM East (NAD83)

MD	INC	AZI	TVD	NS	EW	VS	DLS	Comment
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
19500.00	90.09	359.79	12264.78	7733.00	1299.31	7832.05	0.00	
19600.00	90.09	359.79	12264.63	7833.00	1298.94	7931.31	0.00	
19700.00	90.09	359.79	12264.48	7933.00	1298.57	8030.58	0.00	
19800.00	90.09	359.79	12264.33	8033.00	1298.21	8129.84	0.00	
19900.00	90.09	359.79	12264.18	8133.00	1297.84	8229.11	0.00	
20000.00	90.09	359.79	12264.03	8233.00	1297.47	8328.37	0.00	
20100.00	90.09	359.79	12263.88	8333.00	1297.11	8427.64	0.00	
20200.00	90.09	359.79	12263.73	8433.00	1296.74	8526.90	0.00	
20300.00	90.09	359.79	12263.58	8532.99	1296.37	8626.17	0.00	
20400.00	90.09	359.79	12263.43	8632.99	1296.00	8725.43	0.00	
20500.00	90.09	359.79	12263.27	8732.99	1295.64	8824.70	0.00	
20600.00	90.09	359.79	12263.12	8832.99	1295.27	8923.96	0.00	
20700.00	90.09	359.79	12262.97	8932.99	1294.90	9023.23	0.00	
20800.00	90.09	359.79	12262.82	9032.99	1294.54	9122.49	0.00	
20900.00	90.09	359.79	12262.67	9132.99	1294.17	9221.76	0.00	
21000.00	90.09	359.79	12262.52	9232.99	1293.80	9321.03	0.00	
21100.00	90.09	359.79	12262.37	9332.99	1293.43	9420.29	0.00	
21200.00	90.09	359.79	12262.22	9432.99	1293.07	9519.56	0.00	
21300.00	90.09	359.79	12262.07	9532.99	1292.70	9618.82	0.00	
21400.00	90.09	359.79	12261.92	9632.99	1292.33	9718.09	0.00	
21500.00	90.09	359.79	12261.77	9732.99	1291.97	9817.35	0.00	
21600.00	90.09	359.79	12261.62	9832.98	1291.60	9916.62	0.00	
21700.00	90.09	359.79	12261.47	9932.98	1291.23	10015.88	0.00	
21800.00	90.09	359.79	12261.32	10032.98	1290.87	10115.15	0.00	
21900.00	90.09	359.79	12261.16	10132.98	1290.50	10214.41	0.00	
22000.00	90.09	359.79	12261.01	10232.98	1290.13	10313.68	0.00	
22100.00	90.09	359.79	12260.86	10332.98	1289.76	10412.94	0.00	
22200.00	90.09	359.79	12260.71	10432.98	1289.40	10512.21	0.00	
22300.00	90.09	359.79	12260.56	10532.98	1289.03	10611.47	0.00	
22400.00	90.09	359.79	12260.41	10632.98	1288.66	10710.74	0.00	
22500.00	90.09	359.79	12260.26	10732.98	1288.30	10810.00	0.00	
22583.69	90.09	359.79	12260.13	10816.67	1287.99	10893.08	0.00	EXIT
22600.00	90.09	359.79	12260.11	10832.98	1287.93	10909.27	0.00	
22663.69	90.09	359.79	12260.00	10896.67	1287.75	10972.50	0.00	BHL

Devon Energy Center 333 West Sheridan Avenue Oklahoma City, Oklahoma 73102-5015


Hydrogen Sulfide (H₂S) Contingency Plan

For

Marwari 21-16 State Fed Com 731H

Sec-28 T-25S R-32E 325' FNL & 250' FWL LAT. = 32.1076832' N (NAD83) LONG = 103.6878706' W

Lea County NM

Escape

Crews shall escape upwind of escaping gas in the event of an emergency release of gas. Escape can be facilitated from the location entrance road. Crews should then block the entrance to the location from the lease road so as not to allow anyone traversing into a hazardous area. The blockade should be at a safe distance outside of the ROE. There are no homes or buildings in or near the ROE.

Assumed 100 ppm ROE = 3000'

100 ppm H₂S concentration shall trigger activation of this plan.

Emergency Procedures

In the event of a release of gas containing H₂S, the first responder(s) must

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response
- Take precautions to avoid personal injury during this operation.
- Contact operator and/or local officials to aid in operation. See list of phone numbers attached.
- Have received training in the
 - Detection of H₂S, and
 - Measures for protection against the gas,
 - Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas

Characteristics of H₂S and SO₂

Common Name	Chemical Formula	Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration
Hydrogen Sulfide	H ₂ S	1.189 Air = 1	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO ₂	2.21 Air = 1	2 ppm	N/A	1000 ppm

Contacting Authorities

Devon Energy Corp. personnel must liaison with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available. The following call list of essential and potential responders has been prepared for use during a release. Devon Energy Corp. Company response must be in coordination with the State of New Mexico's 'Hazardous Materials Emergency Response Plan' (HMER)

Hydrogen Sulfide Drilling Operation Plan

I. HYDROGEN SULFIDE (H₂S) TRAINING

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- 1. The hazards and characteristics of hydrogen sulfide (H₂S)
- 2. The proper use and maintenance of personal protective equipment and life support systems.
- 3. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- 4. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- The effects of H₂S metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- 3. The contents and requirements of the H₂S Drilling Operations Plan and Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H₂S zone (within 3 days or 500 feet) and weekly H₂S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H₂S Drilling Operations Plan and the Public Protection Plan.

II. HYDROGEN SULFIDE TRAINING

Note: All H₂S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H₂S.

1. Well Control Equipment

- A. Flare line
- B. Choke manifold Remotely Operated
- C. Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit
- D. Auxiliary equipment may include if applicable: annular preventer and rotating head.
- E. Mud/Gas Separator

2. Protective equipment for essential personnel:

30-minute SCBA units located at briefing areas, as indicated on well site diagram, with escape units available in the top doghouse. As it may be difficult to communicate audibly while wearing these units, hand signals shall be utilized.

3. H₂S detection and monitoring equipment:

Portable H₂S monitors positioned on location for best coverage and response. These units have warning lights which activate when H₂S levels reach 10 ppm and audible sirens which activate at 15 ppm. Sensor locations:

- Bell nipple
- Possum Belly/Shale shaker
- Rig floor
- Choke manifold
- Cellar

Visual warning systems:

- A. Wind direction indicators as shown on well site diagram
- B. Caution/ Danger signs shall be posted on roads providing direct access to locations. Signs will be painted a high visibility yellow with black lettering of sufficient size to be reasonable distance from the immediate location. Bilingual signs will be used when appropriate.

4. Mud program:

The mud program has been designed to minimize the volume of H₂S circulated to surface. Proper mud weight, safe drilling practices and the use of H₂S scavengers will minimize hazards when penetrating H₂S bearing zones.

5. Metallurgy:

- A. All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold lines, and valves shall be H₂S trim.
- B. All elastomers used for packing and seals shall be H₂S trim.

6. Communication:

- Company personnel have/use cellular telephones in the field.
- B. Land line (telephone) communications at Office

7. Well testing:

- A. Drill stem testing will be performed with a minimum number of personnel in the immediate vicinity, which are necessary to safety and adequately conduct the test. The drill stem testing will be conducted during daylight hours and formation fluids will not be flowed to the surface. All drill-stem-testing operations conducted in an H₂S environment will use the closed chamber method of testing.
- B. There will be no drill stem testing.

Devon En	ergy Corp. Company Call List								
Drilling Su	pervisor – Basin – Mark Kramer	405-823-4796							
EHS Profe	essional – Laura Wright	405-439-8129							
Agency	Call List								
<u>Lea</u>	Hobbs								
County	Lea County Communication Authority	393-3981							
<u>(575)</u>	State Police	392-5588							
	City Police	397-9265							
	Sheriff's Office	393-2515							
	Ambulance	911							
	Fire Department	397-9308							
	LEPC (Local Emergency Planning Committee)	393-2870							
	NMOCD	393-6161							
	US Bureau of Land Management	393-3612							
Eddy	Carlsbad								
County	State Police	885-3137							
(575)	City Police	885-2111							
	Sheriff's Office	887-7551							
	Ambulance	911							
	Fire Department	885-3125							
	LEPC (Local Emergency Planning Committee)	887-3798							
	US Bureau of Land Management	887-6544							
	NM Emergency Response Commission (Santa Fe)	(505) 476-9600							
	24 HR	(505) 827-9126							
	National Emergency Response Center	(800) 424-8802							
	National Pollution Control Center: Direct	(703) 872-6000							
	For Oil Spills	(800) 280-7118							
	Emergency Services	(000) 200 7 1 10							
	Wild Well Control	(281) 784-4700							
	Cudd Pressure Control (915) 699-	(915) 563-3356							
	0139	(313) 303-3330							
	Halliburton	(575) 746-2757							
	B. J. Services	(575) 746-3569							
Give	Native Air – Emergency Helicopter – Hobbs (NM and TX)	(800)642-7828							
GPS	Flight For Life - Lubbock, TX	(806) 743-9911							
position:	Aerocare - Lubbock, TX	(806) 747-8923							
	Med Flight Air Amb - Albuquerque, NM	(575) 842-4433							
	Lifeguard Air Med Svc. Albuquerque, NM	(800) 222-1222							
	Poison Control (24/7)	(575) 272-3115 (800) 364-4366							
	Oil & Gas Pipeline 24 Hour Service								
	NOAA – Website - www.nhc.noaa.gov								

Prepared in conjunction with Dave Small

Commitment Runs Deep

Design Plan
Operation and Maintenance Plan
Closure Plan

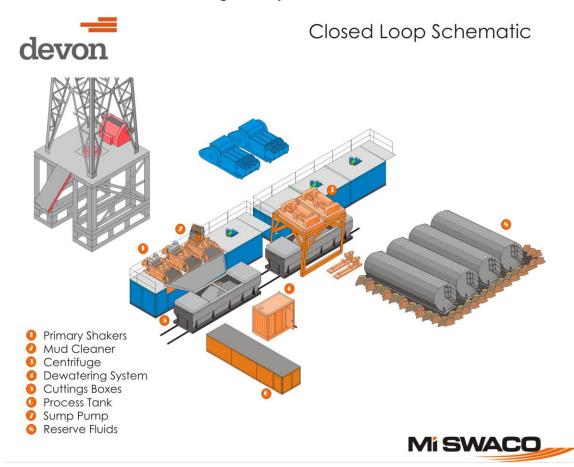
SENM - Closed Loop Systems June 2010

I. Design Plan

Devon uses MI SWACO closed loop system (CLS). The MI SWACO CLS is designed to maintain drill solids at or below 5%. The equipment is arranged to progressively remove solids from the largest to the smallest size. Drilling fluids can thus be reused and savings is realized on mud and disposal costs. Dewatering may be required with the centrifuges to insure removal of ultra fine solids.

The drilling location is constructed to allow storm water to flow to a central sump normally the cellar. This insures no contamination leaves the drilling pad in the event of a spill. Storm water is reused in the mud system or stored in a reserve fluid tank farm until it can be reused. All lubricants, oils, or chemicals are removed immediately from the ground to prevent the contamination of storm water. An oil trap is normally installed on the sump if an oil spill occurs during a storm.

A tank farm is utilized to store drilling fluids including fresh water and brine fluids. The tank farm is constructed on a 20 ml plastic lined, bermed pad to prevent the contamination of the drilling site during a spill. Fluids from other sites may be stored in these tanks for processing by the solids control equipment and reused in the mud system. At the end of the well the fluids are transported from the tank farm to an adjoining well or to the next well for the rig.


Prior to installing a closed-loop system on site, the topsoil, if present, will be stripped and stockpiled for use as the final cover or fill at the time of closure.

Signs will be posted on the fence surrounding the closed-loop system unless the closed-loop system is located on a site where there is an existing well, that is operated by Devon.

II. Operations and Maintenance Plan

Primary Shakers: The primary shakers make the first removal of drill solids from the drilling mud as it leaves the well bore. The shakers are sized to handle maximum drilling rate at optimal screen size. The shakers normally remove solids down to 74 microns.

Mud Cleaner: The Mud Cleaner cleans the fluid after it leaves the shakers. A set of hydrocyclones are sized to handle 1.25 to 1.5 times the maximum circulating rate. This ensures all the fluid is being processed to an average cut point of 25 microns. The wet discharged is dewatered on a shaker equipped with ultra fine mesh screens and generally cut at 40 microns.

Centrifuges: The centrifuges can be one or two in number depending on the well geometry or depth of well. The centrifuges are sized to maintain low gravity solids at 5% or below. They may or may not need a dewatering system to enhance the removal rates. The centrifuges can make a cut point of 8-10 microns depending on bowl speed, feed rate, solids loading and other factors.

The centrifuge system is designed to work on the active system and be flexible to process incoming fluids from other locations. This set-up is also dependant on well factors.

Dewatering System: The dewatering system is a chemical mixing and dosing system designed to enhance the solids removal of the centrifuge. Not commonly used in shallow wells. It may contain pH adjustment, coagulant mixing and dosing, and polymer mixing and dosing. Chemical flocculation binds ultra fine solids into a mass that is within the centrifuge operating design. The

dewatering system improves the centrifuge cut point to infinity or allows for the return of clear water or brine fluid. This ability allows for the ultimate control of low gravity solids.

Cuttings Boxes: Cuttings boxes are utilized to capture drill solids that are discarded from the solids control equipment. These boxes are set upon a rail system that allows for the removal and replacement of a full box of cuttings with an empty one. They are equipped with a cover that insures no product is spilled into the environment during the transportation phase.

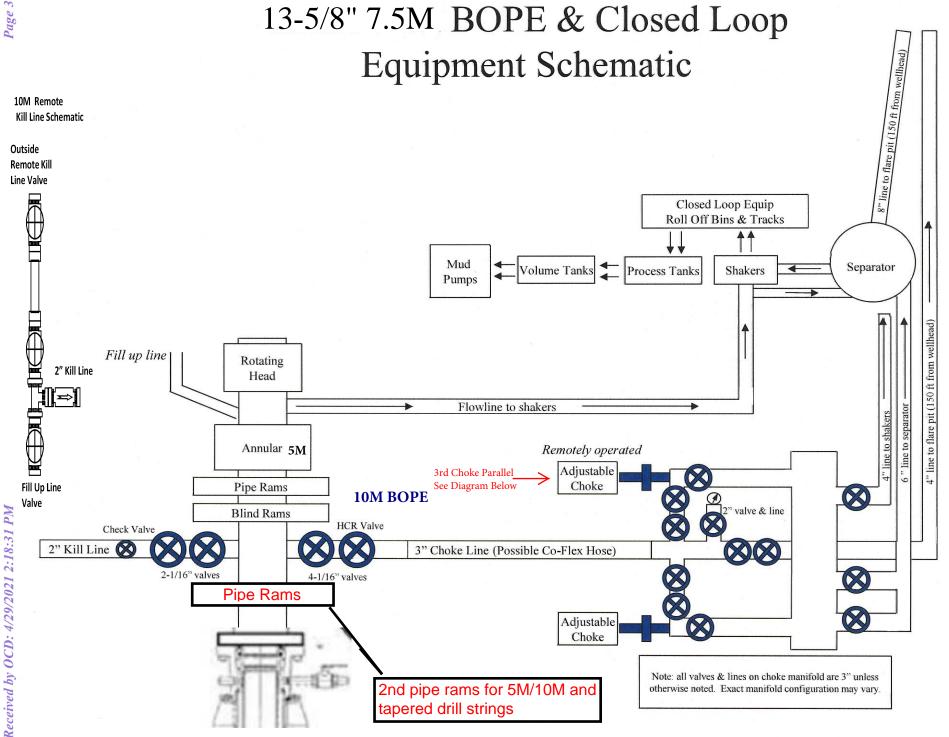
Process Tank: (Optional) The process tank allows for the holding and process of fluids that are being transferred into the mud system. Additionally, during times of lost circulation the process tank may hold active fluids that are removed for additional treatment. It can further be used as a mixing tank during well control conditions.

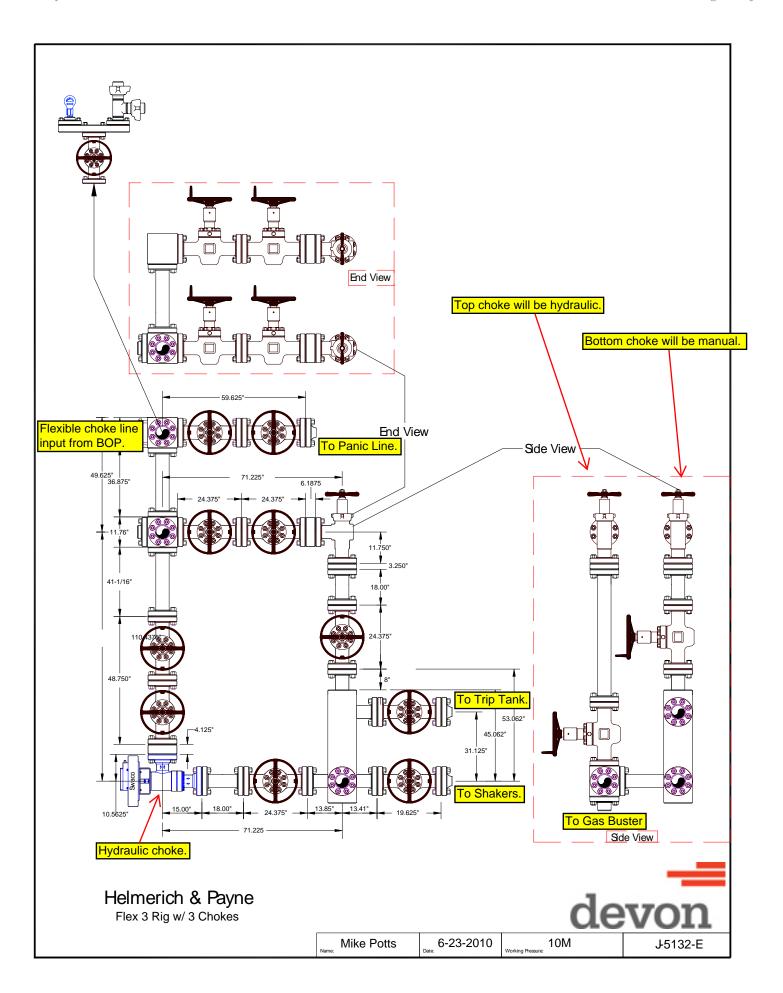
Sump and Sump Pump: The sump is used to collect storm water and the pump is used to transfer this fluid to the active system or to the tank for to hold in reserve. It can also be used to collect fluids that may escape during spills. The location contains drainage ditches that allow the location fluids to drain to the sump.

Reserve Fluids (Tank Farm): A series of frac tanks are used to replace the reserve pit. These are steel tanks that are equipped with a manifold system and a transfer pump. These tanks can contain any number of fluids used during the drilling process. These can include fresh water, cut brine, and saturated salt fluid. The fluid can be from the active well or reclaimed fluid from other locations. A 20 ml liner and berm system is employed to ensure the fluids do not migrate to the environment during a spill.

If a leak develops, the appropriate division district office will be notified within 48 hours of the discovery and the leak will be addressed. Spill prevention is accomplished by maintaining pump packing, hoses, and pipe fittings to insure no leaks are occurring. During an upset condition the source of the spill is isolated and repaired as soon as it is discovered. Free liquid is removed by a diaphragm pump and returned to the mud system. Loose topsoil may be used to stabilize the spill and the contaminated soil is excavated and placed in the cuttings boxes. After the well is finished and the rig has moved, the entire location is scrapped and testing will be performed to determine if a release has occurred.

All trash is kept in a wire mesh enclosure and removed to an approved landfill when full. All spent motor oils are kept in separate containers and they are removed and sent to an approved recycling center. Any spilled lubricants, pipe


dope, or regulated chemicals are removed from soil and sent to landfills approved for these products.


These operations are monitored by Mi Swaco service technicians. Daily logs are maintained to ensure optimal equipment operation and maintenance. Screen and chemical use is logged to maintain inventory control. Fluid properties are monitored and recorded and drilling mud volumes are accounted for in the mud storage farm. This data is kept for end of well review to insure performance goals are met. Lessons learned are logged and used to help with continuous improvement.

A MI SWACO field supervisor manages from 3-5 wells. They are responsible for training personnel, supervising installations, and inspecting sites for compliance of MI SWACO safety and operational policy.

III. Closure Plan

A maximum 340' X 340' caliche pad is built per well. All of the trucks and steel tanks fit on this pad. All fluid cuttings go to the steel tanks to be hauled by various trucking companies to an agency approved disposal.

Devon Energy Annular Preventer Summary

1. Component and Preventer Compatibility Table

The table below, which covers the drilling and casing of the 10M MASP portion of the well, outlines the tubulars and the compatible preventers in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Component	OD	Preventer	RWP
Drillpipe	4.5"	Fixed lower 4.5"	10M
		Upper 4.5-7" VBR	
HWDP	4.5"	Fixed lower 4.5"	10M
		Upper 4.5-7" VBR	
Drill collars and MWD tools	4.75"	Upper 4.5-7" VBR	10M
Mud Motor	4.75"	Upper 4.5-7" VBR	10M
Production casing	5.5"	Upper 4.5-7" VBR	10M
ALL	0-13-5/8"	Annular	5M
Open-hole	-	Blind Rams	10M

6-3/4" Production hole section, 10M requirement

VBR = Variable Bore Ram. Compatible range listed in chart.

2. Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the BHA through the BOPs. The pressure at which control is swapped from the annular to another compatible ram is variable, but the operator will document in the submission their operating pressure limit. The operator may chose an operating pressure less than or equal to RWP, but in no case will it exceed the RWP of the annular preventer.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in Well (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to the upper pipe ram.

Devon Energy Annular Preventer Summary

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close
- 3. Space out drill string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to the upper pipe ram.

General Procedure While Running Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full opening safety valve and close
- 3. Space out string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to compatible pipe ram.

General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams or BSR. (HCR and choke will already be in the closed position.)
- 3. Confirm shut-in
- 4. Notify toolpusher/company representative
- 5. Read and record the following:
 - a. SICP
 - b. Pit gain
 - c. Time
- 6. Regroup and identify forward plan

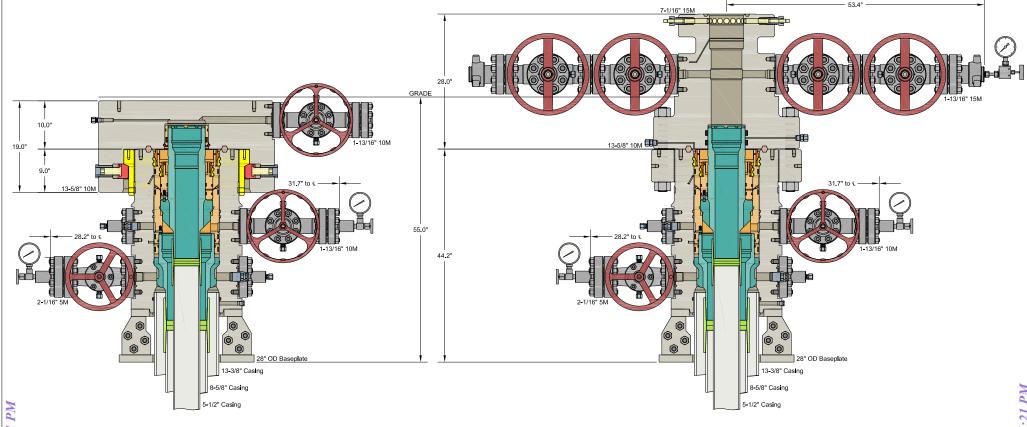
Devon Energy Annular Preventer Summary

General Procedures While Pulling BHA thru Stack

- 1. PRIOR to pulling last joint of drillpipe thru the stack.
 - a. Perform flowcheck, if flowing:
 - b. Sound alarm (alert crew)
 - c. Stab full opening safety valve and close
 - d. Space out drill string with tool joint just beneath the upper pipe ram.
 - e. Shut-in using upper pipe ram. (HCR and choke will already be in the closed position.)
 - f. Confirm shut-in
 - g. Notify toolpusher/company representative
 - h. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - i. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full opening safety valve and close
 - c. Space out drill string with upset just beneath the compatible pipe ram.
 - d. Shut-in using compatible pipe ram. (HCR and choke will already be in the closed position.)
 - e. Confirm shut-in
 - f. Notify toolpusher/company representative
 - g. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - h. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. If possible to pick up high enough, pull string clear of the stack and follow "Open Hole" scenario.
 - c. If impossible to pick up high enough to pull the string clear of the stack:
 - d. Stab crossover, make up one joint/stand of drillpipe, and full opening safety valve and close
 - e. Space out drill string with tooljoint just beneath the upper pipe ram.
 - f. Shut-in using upper pipe ram. (HCR and choke will already be in the closed position.)
 - g. Confirm shut-in
 - h. Notify toolpusher/company representative
 - i. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - i. Regroup and identify forward plan

A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

Devon proposes using a multi-bowl wellhead assembly. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.


- Wellhead will be installed by wellhead representatives.
- If the welding is performed by a third party, the wellhead representative will monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- Wellhead representative will install the test plug for the initial BOP test.
- Wellhead company will install a solid steel body pack-off to completely isolate the lower head after cementing intermediate casing. After installation of the pack-off, the pack-off and the lower flange will be tested to 5M, as shown on the attached schematic.
 Everything above the pack-off will not have been altered whatsoever from the initial nipple up. Therefore the BOP components will not be retested at that time.
- If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head will be cut and top out operations will be conducted.
- Devon will pressure test all seals above and below the mandrel (but still above the casing) to full working pressure rating.
- Devon will test the casing to 0.22 psi/ft or 1500 psi, whichever is greater, as per Onshore Order #2.

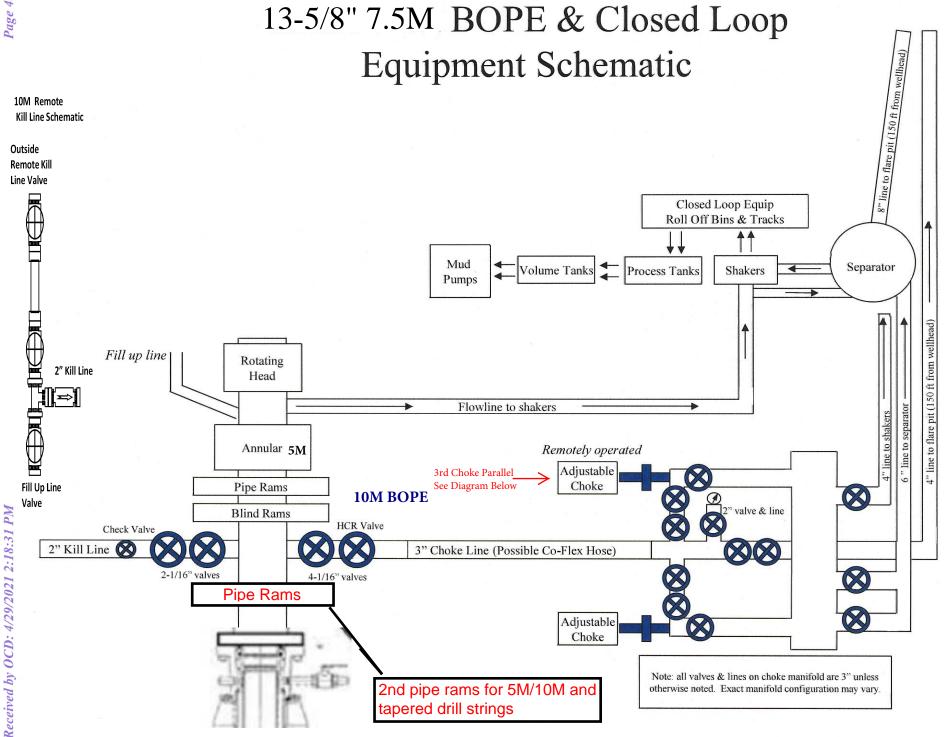
After running the surface casing, a 13-5/8" BOP/BOPE system with a minimum rating of 5M will be installed on the wellhead system and will undergo a 250 psi low pressure test followed by a 5,000 psi high pressure test. The 5,000 psi high and 250 psi low test will cover testing requirements a maximum of 30 days, as per Onshore Order #2. If the well is not complete within 30 days of this BOP test, another full BOP test will be conducted, as per Onshore Order #2.

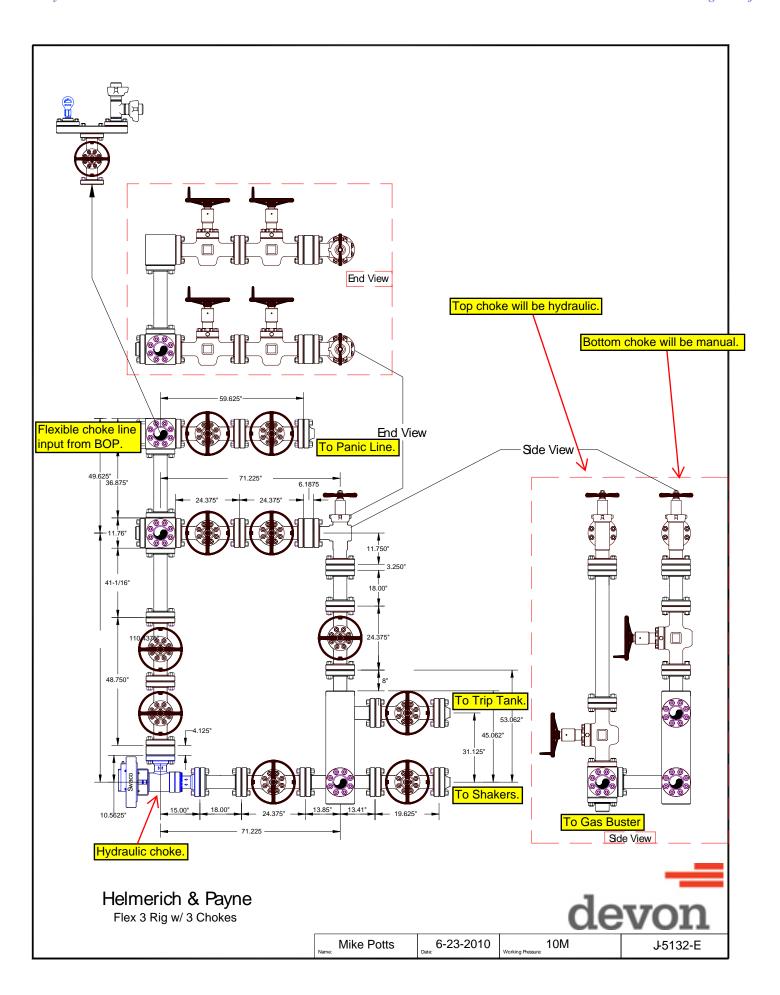
After running the intermediate casing with a mandrel hanger, the 13-5/8" BOP/BOPE system with a minimum rating of 10M will be installed and tested, with 5M annular being tested to 100% of rated working pressure.

The pipe rams will be operated and checked each 24 hour period and each time the drill pipe is out of the hole. These tests will be logged in the daily driller's log. A 2" kill line and 3" choke line will be incorporated into the drilling spool below the ram BOP. In addition to the rams and annular preventer, additional BOP accessories include a kelly cock, floor safety valve, choke lines, and choke manifold rated at 10,000 psi WP.

Devon's proposed wellhead manufactures will be FMC Technologies, Cactus Wellhead, or Cameron.

INFORMATION CONTAINED HEREIN IS THE PROPERTY OF CACTUS WELLHEAD, LLC. REPRODUCTION, DISCLOSURE, OR USE THEREOF IS PERMISSIBLE ONLY AS PROVIDED BY CONTRACT OR AS EXPRESSLY AUTHORIZED BY CACTUS WELLHEAD, LLC.


CACTUS WELLHEAD LLC


13-3/8" x 8-5/8" x 5-1/2" 5M MBU-3T Wellhead System With 8-5/8" & 5-1/2" Pin Down Rotating Mandrel Hangers And 13-5/8" 10M x 7-1/16" 15M CTH-P-DBLHPS Tubing Head

DEVON ENERGY CORPORATION

DRAWN DLE 10MAY18
APPRV

DRAWING NO. ODE0002309

Casing Assumptions and Load Cases

Surface

All casing design assumptions were ran in Stress Check to determine safety factor which meet or exceed both Devon Energy and BLM minimum requirements. All casing strings will be filled while running in hole in order to not exceed collapse rating of the pipe.

Surface Casing Burst Design		
Load Case	External Pressure	Internal Pressure
Pressure Test	Formation Pore Pressure	Max mud weight of next hole- section plus Test psi
Drill Ahead	Formation Pore Pressure	Max mud weight of next hole section
Displace to Gas	Formation Pore Pressure	Dry gas from next casing point

Surface Casing Collapse Design			
Load Case External Pressure Internal Pressure			
Full Evacuation	Water gradient in cement, mud	None	
	above TOC		
Cementing	Wet cement weight	Water (8.33ppg)	

Surface Casing Tension Design		
Load Case Assumptions		
Overpull	100kips	
Runing in hole	3 ft/s	
Service Loads	N/A	

Casing Assumptions and Load Cases

Intermediate

All casing design assumptions were ran in Stress Check to determine safety factor which meet or exceed both Devon Energy and BLM minimum requirements. All casing strings will be filled while running in hole in order to not exceed collapse rating of the pipe.

Intermediate Casing Burst Design				
Load Case External Pressure Internal Pressure				
Pressure Test	Formation Pore Pressure	Max mud weight of next hole-		
		section plus Test psi		
Drill Ahead	Formation Pore Pressure	Max mud weight of next hole		
		section		
Fracture @ Shoe	Formation Pore Pressure	Dry gas		

Intermediate Casing Collapse Design			
Load Case External Pressure Internal Pressure			
Full Evacuation	Water gradient in cement, mud above TOC	None	
Cementing	Wet cement weight	Water (8.33ppg)	

Intermediate Casing Tension Design		
Load Case Assumptions		
Overpull	100kips	
Runing in hole	2 ft/s	
Service Loads	N/A	

Casing Assumptions and Load Cases

Production

All casing design assumptions were ran in Stress Check to determine safety factor which meet or exceed both Devon Energy and BLM minimum requirements. All casing strings will be filled while running in hole in order to not exceed collapse rating of the pipe.

Production Casing Burst Design		
Load Case	External Pressure	Internal Pressure
Pressure Test	Formation Pore Pressure	Fluid in hole (water or produced
		water) + test psi
Tubing Leak	Formation Pore Pressure	Packer @ KOP, leak below
		surface 8.6 ppg packer fluid
Stimulation	Formation Pore Pressure	Max frac pressure with heaviest
		frac fluid

Production Casing Collapse Design			
Load Case External Pressure Internal Pressure			
Full Evacuation	Water gradient in cement, mud above TOC.	None	
Cementing	Wet cement weight	Water (8.33ppg)	

Production Casing Tension Design		
Load Case Assumptions		
Overpull	100kips	
Runing in hole	2 ft/s	
Service Loads	N/A	

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 26361

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	26361
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Create By	Condition	Condition Date
pkautz	Will require a File As Drilled C-102 and a Directional Survey with the C-104	6/14/2021
pkautz	utz Will require a administrative order for non-standard location prior to placing the well on production	
pkautz	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string	6/14/2021