Form C-101

August 1, 2011 Permit 296986

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

•	XTO	ne and Address ENERGY, INC									2. OG	RID Number 5380		
		Holiday Hill Road and, TX 79707									3. API	Number 30-015-4854	40	
4. Property Code 5. Property Name 317788 REMUDA					SOUTH 2	5 STATE					6. Wel	II No. 709H		
						7. 9	Surfa	ace Location						
UL - Lot	Н	Section 25	Township 23S	Range 29		ot Idn H	Feet From		t From 630	E/W Line E	Count	y Eddy		
					8	. Propose	ed Bo	ottom Hole Locati	on					
UL - Lot		Section Township Range Lot Idn Feet From			N/S Line	Feet	From	E/W Line	Count	,				
	М	31	23S	30	30E 4 200		200	S		990 W			Eddy	
						9.	Pool	Information						
FORTY N	NINE	R RIDGE BONE SF	PRING,WEST									96	3526	
						Additio	onal	Well Information						
11. Work T	Гуре New	Well	12. Well Type OIL		13. Cable	/Rotary			14. Lease Type State		15. Ground Level Elevation 3096			
16. Multip			17. Proposed Dept	h	18. Forma				19. Contractor		20. Spud Da			
N 16838					Bone Sp						10/8/2021			
Depth to G	rounc	l water			Distance	rom neares	st fres	sh water well			Distance to r	nearest surface wat	er	

Type	Hole Size	Casing Size	Casing Weight/ft	Setting Depth	Sacks of Cement	Estimated TOC
Surf	17.5	13.375	54.5	319	320	0
Int1	12.25	9.625	40	3219	1440	0
Int2	8.75	7.625	29.7	7650	640	0
Prod	6.75	5	18	16838	820	7250

Casing/Cement Program: Additional Comments

The well will include a tapered string. See attached drilling program for additional casing/cmt information associated with the well.

22. Proposed Blowout Prevention Program

Туре	Working Pressure	Test Pressure	Manufacturer
Double Ram	3000	3000	Cameron
23. I hereby certify that the information given ab	ove is true and complete to the best of my	OIL CONSERVATION	ON DIVISION

knowledge and be I further certify I h	elief.	s true and complete to the best of my NMAC and/or 19.15.14.9 (B) NMAC		OIL CONSERVATION	ON DIVISION	
Signature:						
Printed Name:	Electronically filed by Tiffany Yar	ncey	Approved By:	Kurt Simmons		
Title:	Production Analyst		Title:	Petroleum Specialist - A		
Email Address:	tiffany.yancey@exxonmobil.com	·	Approved Date:	6/21/2021	Expiration Date: 6/21/2023	
Date:	6/7/2021	Phone: 432-215-8939	Conditions of Approval Attached			

District I

District III

1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV

1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462 State of New Mexico

Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION

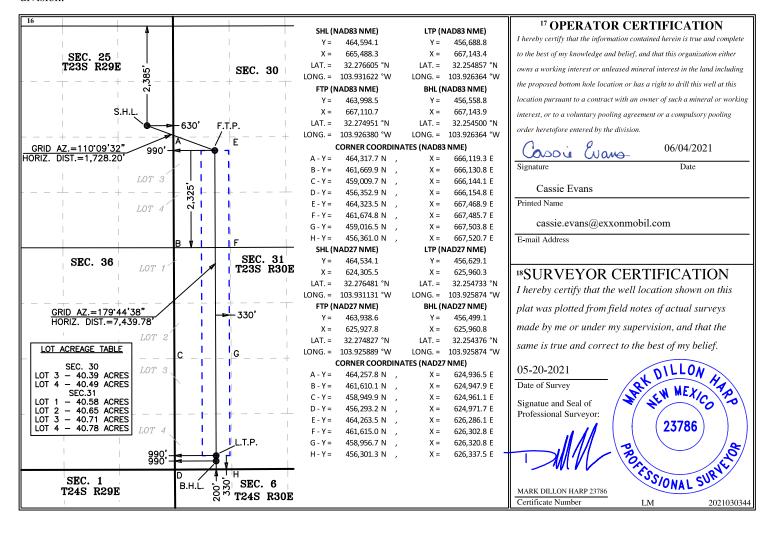
1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102
Revised August 1, 2011
Submit one copy to appropriate
District Office

☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Numbe	¹ API Number		² Pool Code ³ Pool Name		
30-015-		96526	Forty-Niner Ridge; Bone Spring, West		
⁴ Property Code		5 P	⁶ Well Number		
		REMUDA SOUTH 25 STATE			
⁷ OGRID No.		8 O	perator Name	⁹ Elevation	
005380		XTO I	ENERGY, INC.	3,096'	


¹⁰ Surface Location

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
Н	25	23 S	29 E		2,385	NORTH	630	EAST	EDDY

11 Rottom Hole Location If Different From Surface

	Bottom Hole Edeation if Bifferent From Surface									
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County	
4	31	23 S	30 E		200	SOUTH	990	WEST	EDDY	
12 Dedicated Acres	s 13 Joint o	r Infill 14 C	Consolidation	Code 15 Or	der No.					
240										

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Intent	:	As Dril	ed											
API#														
Opei	rator Nar	ne:				Property Name:							Well Number	
						l								
Kick C	off Point	(KOP)												
UL	Section	Township	Range	Lot	Feet		From N	I/S	Feet		Fron	n E/W	County	
Latitu	de				Longitu	ıde							NAD	
					1									
First T	ake Poin	t (FTP)												
UL	Section	Township	Range	Lot	Feet		From N	I/S	Feet		Fron	n E/W	County	
Latitu	de				Longitu	ıde							NAD	
Lact T	ake Poin	+ /I TD\												
UL	Section	Township	Range	Lot	Feet	Fror	m N/S	Feet		From	E/W	Count	:y	
Latitu	de				Longitu	ıde						NAD		
Is this	well the	defining w	ell for th	ne Hori:	zontal Sp	pacing	g Unit?							
Is this	well an i	infill well?			7									
15 (1115	Well dir.				_									
	l is yes pl ng Unit.	ease provi	de API if	availak	ole, Opei	rator I	Name	and w	vell ni	umbei	r for I	Definir	ng well fo	r Horizontal
API#														
Opei	rator Nar	ne:	l			Prop	perty N	ame:						Well Number

KZ 06/29/2018

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Form APD Comments

Permit 296986

PERMIT COMMENTS

Operator Name and Address:	API Number:
XTO ENERGY, INC [5380]	30-015-48540
6401 Holiday Hill Road	Well:
Midland, TX 79707	REMUDA SOUTH 25 STATE #709H

(Created By	Comment	Comment Date
C	evans	The well will include a tapered string. See attached drilling program for additional casing/cmt information associated with the well.	6/7/2021

.

Permit 296986

Form APD Conditions

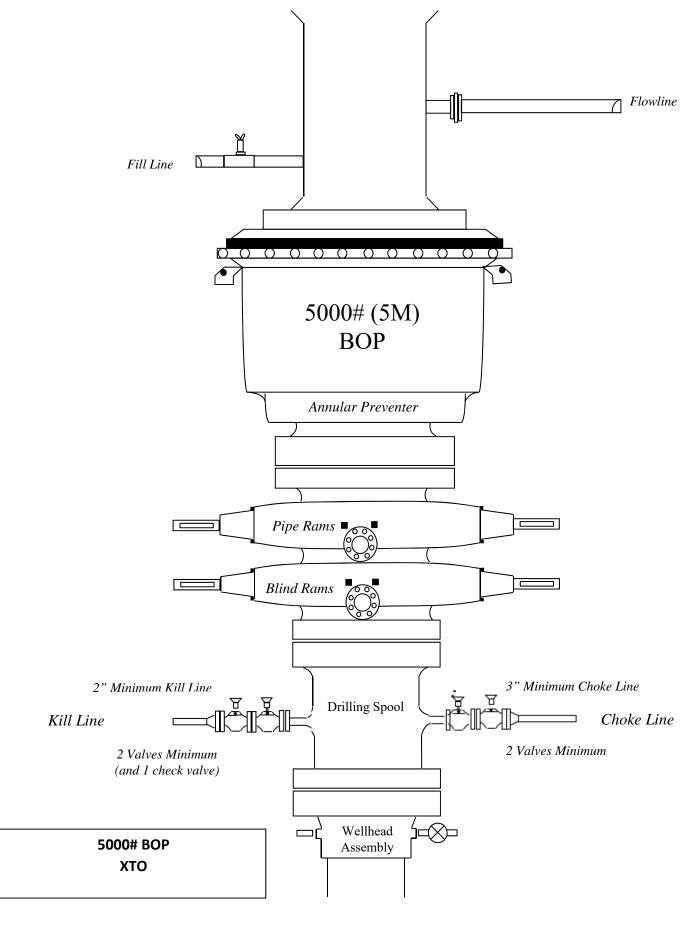
•

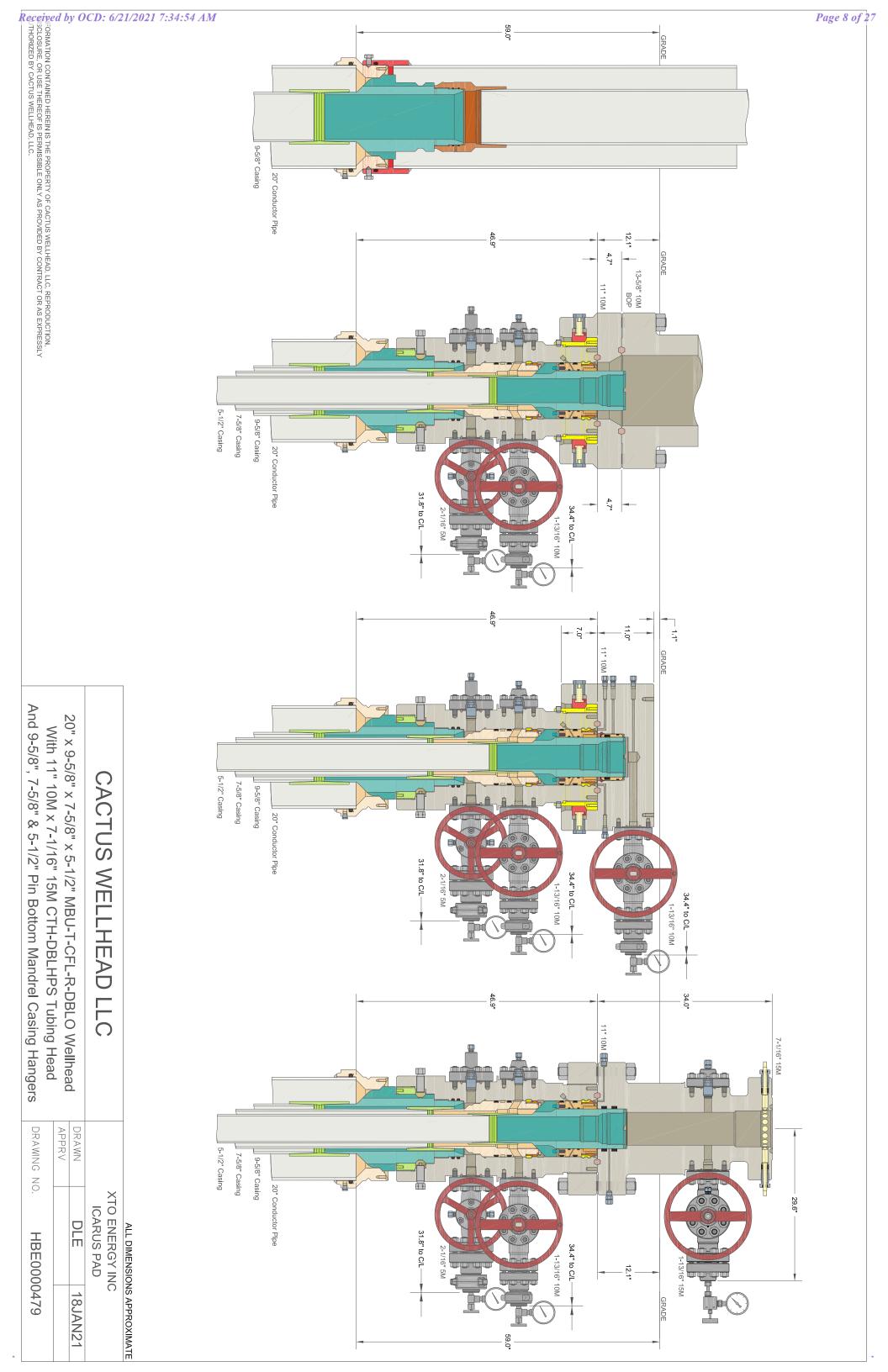
<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 <u>District II</u>

811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410
Phone:(505) 334-6178 Fax:(505) 334-6170


1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462


State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

PERMIT CONDITIONS OF APPROVAL

Operator Name and Address:	API Number:
XTO ENERGY, INC [5380]	30-015-48540
6401 Holiday Hill Road	Well:
Midland, TX 79707	REMUDA SOUTH 25 STATE #709H

OCD Reviewer	Condition
ksimmons	Notify OCD 24 hours prior to casing & cement
ksimmons	Will require a File As Drilled C-102 and a Directional Survey with the C-104
ksimmons	The Operator is to notify NMOCD by sundry (Form C-103) within ten (10) days of the well being spud
kpickford	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string
kpickford	Cement is required to circulate on both surface and intermediate1 strings of casing
kpickford	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system
kpickford	The Operator is to notify NMOCD by sundry (Form C-103) within ten (10) days of the well being spud

HYDROGEN SULFIDE (H2S) CONTINGENCY PLAN

Assumed 100 ppm ROE = 3000'

100 ppm H2S concentration shall trigger activation of this plan.

Emergency Procedures

In the event of a release of gas containing H₂S, the first responder(s) must

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response
- Take precautions to avoid personal injury during this operation.
- Contact operator and/or local officials to aid in operation. See list of phone numbers attached.
- Have received training in the
 - o Detection of H₂S, and
 - o Measures for protection against the gas,
 - o Equipment used for protection and emergency response.

Ignition of Gas source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever this is an ignition of the gas.

Characteristics of H₂S and SO₂

Common Name	Chemical Formula	Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration
Hydrogen Sulfide	H ₂ S	1.189 Air = I	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO ₂	2.21 Air = I	2 ppm	N/A	1000 ppm

Contacting Authorities

All XTO location personnel must liaison with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including directions to site. The following call list of essential and potential responders has been prepared for use during a release. (Operator Name)'s response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER).

CARLSBAD OFFICE – EDDY & LEA COUNTIES

3104 E. Greene St., Carlsbad, NM 88220 Carlsbad, NM	575-887-7329
XTO PERSONNEL: Kendall Decker, Drilling Manager Milton Turman, Drilling Superintendent Jeff Raines, Construction Foreman Toady Sanders, EH & S Manager Wes McSpadden, Production Foreman	903-521-6477 817-524-5107 432-557-3159 903-520-1601 575-441-1147
SHERIFF DEPARTMENTS: Eddy County Lea County	575-887-7551 575-396-3611
NEW MEXICO STATE POLICE:	575-392-5588
FIRE DEPARTMENTS: Carlsbad Eunice Hobbs Jal Lovington	911 575-885-2111 575-394-2111 575-397-9308 575-395-2221 575-396-2359
HOSPITALS: Carlsbad Medical Emergency Eunice Medical Emergency Hobbs Medical Emergency Jal Medical Emergency Lovington Medical Emergency	911 575-885-2111 575-394-2112 575-397-9308 575-395-2221 575-396-2359
AGENT NOTIFICATIONS: For Lea County: Bureau of Land Management – Hobbs New Mexico Oil Conservation Division – Hobbs	575-393-3612 575-393-6161
For Eddy County: Bureau of Land Management - Carlsbad New Mexico Oil Conservation Division - Artesia	575-234-5972 575-748-1283

DRILLING PLAN: BLM COMPLIANCE (Supplement to BLM 3160-3)

XTO Energy Inc.
Remuda South 25 State 709H
Projected TD: 16838' MD / 9026' TVD
SHL: 2385' FNL & 630' FEL , Section 25, T23S, R29E
BHL: 200' FSL & 990' FWL , Section 31, T23S, R30E
Eddy County, NM

1. Geologic Name of Surface Formation

A. Quaternary

2. Estimated Tops of Geological Markers & Depths of Anticipated Fresh Water, Oil or Gas

Formation	Well Depth (TVD)	Water/Oil/Gas
Rustler	69'	Water
Salado	269'	Water
Top of Salt	550'	Water
Base of Salt	3119'	Water
Delaware	3336'	Water
Brushy Canyon	5778'	Water/Oil/Gas
Bone Spring	7048'	Water
1st Bone Spring Ss	8095'	Water/Oil/Gas
2nd Bone Spring Ss	8975'	Water/Oil/Gas
Target/Land Curve	9021'	Water/Oil/Gas

^{***} Hydrocarbons @ Brushy Canyon

No other formations are expected to yield oil, gas or fresh water in measurable volumes. The surface fresh water sands will be protected by setting 13.375 inch casing @ 319' (50' below top of Salado) and circulating cement back to surface. The salt will be isolated by setting 9.625 inch casing at 3219' and circulating cement to surface. The second intermediate will isolate from the salt down to the next casing seat by setting 7.625 inch casing at 7750' and cemented to 200' inside the previous casing string. A 6.75 inch curve and 6.75 inch lateral hole will be drilled to 16838 MD/TD and 5.5 x 5 inch production casing will be set at TD and cemented back up to 2nd intermediate (estimated TOC 7250 feet) per Potash regulations.

3. Casing Design

Hole Size	Depth	OD Csg	Weight	Grade	Collar	New/Used	SF Burst	SF Collapse	SF Tension
17.5	0' – 319'	13.375	54.5	J-55	втс	New	2.84	8.11	49.06
12.25	0' – 3219'	9.625	40	J-55	втс	New	1.90	2.62	4.89
8.75	0' – 3319'	7.625	29.7	RY P-110	Flush Joint	New	3.49	3.30	2.42
8.75	3319' – 7750'	7.625	29.7	HC L-80	Flush Joint	New	2.54	2.73	3.09
6.75	0' – 7650'	5.5	20	RY P-110	Semi-Premium	New	1.05	2.79	2.67
6.75	7650' - 8950'	5.5	23	RY P-110	Semi-Flush	New	1.21	3.12	6.95
6.75	8950' - 16838'	5	18	RY P-110	Semi-Premium	New	1.16	2.87	10.13

- · XTO requests the option to utilize a spudder rig (Atlas Copco RD20 or Equivalent) to set and cement surface and intermediate 1 casing per this Sundry
- · XTO requests to not utilize centralizers in the curve and lateral
- 9.625 Collapse analyzed using 50% evacuation based on regional experience.
- 7.625 Collapse analyzed using 50% evacuation based on regional experience.
- 5.5 Tension calculated using vertical hanging weight plus the lateral weight multiplied by a friction factor of 0.35
- · Test on 2M annular & Casing will be limited to 70% burst of the casing or 1500 psi, whichever is less
- · XTO requests the option to use 5" BTC Float equipment for the the production casing

Wellhead:

Permanent Wellhead - Multibowl System

^{***} Groundwater depth 40' (per NM State Engineers Office).

- A. Starting Head: 13-5/8" 10M top flange x 13-3/8" SOW bottom
- B. Tubing Head: 13-5/8" 10M bottom flange x 7-1/16" 15M top flange
 - · Wellhead will be installed by manufacturer's representatives.
 - $\cdot \ \text{Manufacturer will monitor welding process to ensure appropriate temperature of seal.}$
 - · Operator will test the 7-5/8" casing per BLM Onshore Order 2
 - · Wellhead Manufacturer representative will not be present for BOP test plug installation

4. Cement Program

Surface Casing: 13.375, 54.5 New BTC, J-55 casing to be set at +/- 319'

Tail: 320 sxs Class C + 2% CaCl (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water)

Top of Cement: Surface

Compressives: 12-hr = 250 psi 24 hr = 500 psi

Due to the high probability of not getting cement to surface during conventional top-out jobs in the area, ~10-20 ppb gravel will be added on the backside of the 1" to get cement to surface, if required.

1st Intermediate Casing: 9.625, 40 New BTC, J-55 casing to be set at +/- 3219'

Lead: 1310 sxs Class C (mixed at 12.9 ppg, 1.39 ft3/sx, 10.13 gal/sx water)

Tail: 130 sxs Class C + 2% CaCl (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water)

Top of Cement: Surface

Compressives: 12-hr = 900 psi 24 hr = 1500 psi

2nd Intermediate Casing: 7.625, 29.7 New casing to be set at +/- 7750'

1st Stage

Optional Lead: 160 sxs Class C (mixed at 10.5 ppg, 2.77 ft3/sx, 15.59 gal/sx water)

TOC: 2719

Tail: 180 sxs Class C (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water)

TOC: Brushy Canyon @ 5778

Compressives: 12-hr = 900 psi 24 hr = 1150 psi

2nd Stage

Lead: 0 sxs Class C (mixed at 12.9 ppg, 2.16 ft3/sx, 9.61 gal/sx water) Tail: 300 sxs Class C (mixed at 14.8 ppg, 1.33 ft3/sx, 6.39 gal/sx water)

Top of Cement: 0

Compressives: 12-hr = 900 psi 24 hr = 1150 psi

XTO requests to pump a two stage cement job on the 7-5/8" intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brush Canyon (5778') and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. If cement is not visually confirmed to circulate to surface, the final cement top after the second stage job will be verified by Echo-meter. If necessary, a top out consisting of 1,500 sack of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (2.30 yld, 12.91 ppg) will be executed as a contingency. If cement is still unable to circulate to surface, another Echo-meter run will be performed for cement top verification.

XTO will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program.

XTO will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures.

XTO requests to pump an Optional Lead if well conditions dictate in an attempt to bring cement inside the first intermediate casing. If cement reaches the desired height, the BLM will be notified and the second stage bradenhead squeeze and subsequent TOC verification will be negated.

XTO requests the option to conduct the bradenhead squeeze and TOC verification offline as per standard approval from BLM when unplanned remediation is needed and batch drilling is approved. In the event the bradenhead is conducted, we will ensure the first stage cement job is cemented properly and the well is static with floats holding and no pressure on the csg annulus as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Production Casing: 5, 18 New Semi-Premium, RY P-110 casing to be set at +/- 16838'

Lead: 50 sxs Class C (mixed at 11.5 ppg, 2.69 ft3/sx, 15.00 gal/sx water) Top of Cement: 7250 feet Tail: 770 sxs Class C (mixed at 13.2 ppg, 1.51 ft3/sx, 8.38 gal/sx water) Top of Cement: 8726 feet

Compressives: 12-hr = 1375 psi 24 hr = 2285 psi

XTO requests the option to offline cement and remediate (if needed) all casing strings where batch drilling is approved and if unplanned remediation is needed. XTO will ensure well is static with no pressure on the csg

annulus, as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed when applicable per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops. Offline cement operations will then be conducted after the rig is moved off the current well to the next well in the batch sequence.

5. Pressure Control Equipment

Once the permanent WH is installed on the 13.375 casing, the blow out preventer equipment (BOP) will consist of a 13-5/8" minimum 3M Hydril and a 13-5/8" minimum 3M Double Ram BOP. MASP should not exceed 2708 psi. In any instance where 10M BOP is required by BLM, XTO requests a variance to utilize 5M annular with 10M ram preventers (a common BOP configuration, which allows use of 10M rams in unlikely event that pressures exceed 5M).

All BOP testing will be done by an independent service company. Annular pressure tests will be limited to 50% of the working pressure. When nippling up on the 13.375, 3M bradenhead and flange, the BOP test will be limited to 3000 psi. When nippling up on the 7.625, the BOP will be tested to a minimum of 3000 psi. All BOP tests will include a low pressure test as per BLM regulations. The 3M BOP diagrams are attached. Blind rams will be functioned tested each trip, pipe rams will be functioned tested each day.

A variance is requested to allow use of a flex hose as the choke line from the BOP to the Choke Manifold. If this hose is used, a copy of the manufacturer's certification and pressure test chart will be kept on the rig. Attached is an example of a certification and pressure test chart. The manufacturer does not require anchors.

XTO requests a variance to be able to batch drill this well if necessary. In doing so, XTO will set casing and ensure that the well is cemented properly (unless approval is given for offline cementing) and the well is static. With floats holding, no pressure on the csg annulus, and the installation of a 10K TA cap as per Cactus recommendations, XTO will contact the BLM to skid the rig to drill the remaining wells on the pad. Once surface and both intermediate strings are all completed, XTO will begin drilling the production hole

on each of the wells.

A variance is requested to **ONLY** test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API standard 53 states, that for pad drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken. Based on discussions with the BLM on February 27th 2020, we will request permission to **ONLY** retest broken pressure seals if the following conditions are met: 1. After a full BOP test is conducted on the first well on the pad 2. When skidding to drill an intermediate section that does not penetrate into the Wolfcamp.

6. Proposed Mud Circulation System

INTERVAL	Hole Size	Mud Type	MW	Viscosity	Fluid Loss
INTERVAL	Hole Size	Mud Type (FW/Native 8.		(sec/qt)	(cc)
0' - 319'	17.5	FW/Native	8.4-8.9	35-40	NC
319' - 3219'	12.25	Brine	10-10.5	30-32	NC
3219' to 7750'	8.75	FW / Cut Brine	9.4-9.9	30-32	NC
7750' to 16838'	6.75	ОВМ	10-10.5	50-60	NC - 20

The necessary mud products for weight addition and fluid loss control will be on location at all times.

Spud with fresh water/native mud. Drill out from under 13-3/8" surface casing with brine solution. A 9.8 ppg - 10.2 ppg brine mud will be used while drilling through the salt formation. Use fibrous materials as needed to control seepage and lost circulation. Pump viscous sweeps as needed for hole cleaning. Pump speed will be recorded on a daily drilling report after mudding up. A Pason or Totco will be used to detect changes in loss or gain of mud volume. A mud test will be performed every 24 hours to determine: density, viscosity, strength, filtration and pH as necessary. Use available solids controls equipment to help keep mud weight down after mud up. Rig up solids control equipment to operate as a closed loop system.

7. Auxiliary Well Control and Monitoring Equipment

- A. A Kelly cock will be in the drill string at all times.
- B. A full opening drill pipe stabbing valve having appropriate connections will be on the rig floor at all times.
- C. H2S monitors will be on location when drilling below the 13.375 casing.

8. Logging, Coring and Testing Program

Mud Logger: Mud Logging Unit (2 man) below intermediate casing.

Open hole logging will not be done on this well.

9. Abnormal Pressures and Temperatures / Potential Hazards

None Anticipated. BHT of 155 to 175 F is anticipated. No H2S is expected but monitors will be in place to detect any H2S occurrences. Should these circumstances be encountered the operator and drilling contractor are prepared to take all necessary steps to ensure safety of all personnel and environment. Lost circulation could occur but is not expected to be a serious problem in this area and hole seepage will be compensated for by additions of small amounts of LCM in the drilling fluid. The maximum anticipated bottom hole pressure for this well is 4694 psi.

10. Anticipated Starting Date and Duration of Operations

Anticipated spud date will be after BLM approval. Move in operations and drilling is expected to take 40 days.

Well Plan Report - Remuda 709H

Measured Depth:

16837.58 ft

TVD RKB:

9026.00 ft

Location

Cartographi New Mexico East -NAD 27 System: Northing: 464534.10 ft Easting: 624305.50 ft 3126.00 ft RKB: Ground 3096.00 ft Level: North Reference: Grid Convergence e Angle: 0.21 Deg Remuda S-25 State 705H-709H Site:

Slot: Remuda 709H

Plan Sections	Remuda 709H								
Measured			TVD			Build	Turn	Dogleg	
Depth	Inclination	Azimuth	RKB	Y Offset	X Offset	Rate	Rate	Rate	
(ft)	(Deg)	(Deg)	(ft)	(ft)	(ft)	(Deg/100ft)	(Deg/100ft)	(Deg/100ft) Target	
0	0	0	0	0	0	0	0	0	
3500	0	0	3500	0	0	0	0	0	
4395.89	17.92	98.77	4381.36	-21.19	137.32	2	0	2	
8726.07	17.92	98.77	8501.52	-224.35	1453.93	0	0	0	
9598.01	89.96	179.74	9021	-795.5	1622.3	8.26	9.29	10 FTP 5	
16837.58	89.96	179.74	9026	-8035	1655.3	0	0	0 BHL 5	

Position Uncertainty	Remuda 709H												
Measured			TVD	Highside		Lateral		Vertical		Magnitude	Semi-major	Semi-minor	Semi-minor Tool
Depth	Inclination	Azimuth	RKB	Error	Bias	Error	Bias	Error	Bias	of Bias	Error	Error	Azimuth Used
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(°)
0	0	0	0	0	0	0	0	2.297	0	0	0	0	0 MWD+IFR1+ MS
100	0	0	100	0.468	0	0.468	0	2.299	0	0	0.556	0.358	135 MWD+IFR1+ MS
200	0	0	200	0.983	0	0.983	0	2.307	0	0	1.191	0.717	135 MWD+IFR1+ MS
300	0	0	300	1.403	0	1.403	0	2.321	0	0	1.668	1.075	135 MWD+IFR1+ MS
400	0	0	400	1.797	0	1.797	0	2.34	0	0	2.099	1.434	135 MWD+IFR1+ MS
500	0	0	500	2.179	0	2.179	0	2.364	0	0	2.507	1.792	MS
600	0	0	600	2.554	0	2.554	0	2.394	0	0	2.902	2.151	MS
700	0	0	700	2.925	0	2.925	0	2.428	0	0	3.289	2.509	135 MWD+IFR1+ MS
800	0	0	800	3.293	0	3.293	0	2.467	0	0	3.669	2.868	135 MWD+IFR1+ MS
900	0	0	900	3.659	0	3.659	0	2.511	0	0	4.046	3.226	MS
1000	0	0	1000	4.024	0	4.024	0	2.56	0	0	4.42	3.585	135 MWD+IFR1+ MS
1100	0	0	1100	4.388	0	4.388	0	2.613	0	0	4.791	3.943	135 MWD+IFR1+ MS
1200	0	0	1200	4.751	0	4.751	0	2.67	0	0	5.161	4.302	MS
1300	0	0	1300	5.113	0	5.113	0	2.731	0	0	5.529	4.66	135 MWD+IFR1+ MS
1400	0	0	1400	5.475	0	5.475	0	2.797	0	0	5.896	5.019	135 MWD+IFR1+ MS

1500	0	0	1500	5.836	0	5.836	0	2.866	0	0	6.262	5.377	135	MWD+IFR1+ MS
1600	0	0	1600	6.197	0	6.197	0	2.939	0	0	6.627	5.736	135	MWD+IFR1+ MS
1700	0	0	1700	6.558	0	6.558	0	3.016	0	0	6.992	6.094	135	MWD+IFR1+ MS
1800	0	0	1800	6.919	0	6.919	0	3.096	0	0	7.356	6.452		MWD+IFR1+ MS
1900	0	0	1900	7.279	0	7.279	0	3.179	0	0	7.719	6.811	125	MWD+IFR1+ MS
2000	0	0	2000	7.639	0	7.639	0	3.266	0	0	8.082	7.169		MWD+IFR1+ MS
2100	0	0	2100	7.999	0	7.999	0	3.355	0	0	8.444	7.528		MWD+IFR1+ MS
2200	0	0	2200	8.359	0	8.359	0	3.448	0	0	8.807	7.886	135	MWD+IFR1+ MS
2300	0	0	2300	8.719	0	8.719	0	3.544	0	0	9.169	8.245	135	MWD+IFR1+ MS
2400	0	0	2400	9.079	0	9.079	0	3.643	0	0	9.53	8.603	135	MWD+IFR1+ MS
2500	0	0	2500	9.438	0	9.438	0	3.745	0	0	9.892	8.962	135	MWD+IFR1+ MS
2600	0	0	2600	9.798	0	9.798	0	3.849	0	0	10.253	9.32		MWD+IFR1+ MS
2700	0	0	2700	10.157	0	10.157	0	3.956	0	0	10.614	9.679		MWD+IFR1+ MS
2800	0	0	2800	10.516	0	10.516	0	4.066	0	0	10.975	10.037		MWD+IFR1+ MS
2900	0	0	2900	10.876	0	10.876	0	4.179	0	0	11.335	10.396		MWD+IFR1+ MS
3000	0	0	3000	11.235	0	11.235	0	4.295	0	0	11.696	10.754		MWD+IFR1+ MS
3100	0	0	3100	11.594	0	11.594	0	4.413	0	0	12.056	11.113		MWD+IFR1+ MS
3200	0	0	3200	11.953	0	11.953	0	4.534	0	0	12.417	11.471		MWD+IFR1+ MS
3300	0	0	3300	12.312	0	12.312	0	4.657	0	0	12.777	11.83	125	MWD+IFR1+ MS
3400	0	0	3400	12.671	0	12.671	0	4.783	0	0	13.137	12.188		MWD+IFR1+ MS
3500	0	0	3500	13.031	0	13.031	0	4.912	0	0	13.497	12.547		MWD+IFR1+ MS
3600	2	98.772	3599.98	13.294	0	13.504	0	5.043	0	0	13.85	12.941		MWD+IFR1+ MS
3700	4	98.772	3699.838	13.799	0	13.84	0	5.177	0	0	14.206	13.449		MWD+IFR1+ MS
3800	6	98.772	3799.452	14.279	0	14.176	0	5.314	0	0	14.583	13.925		MWD+IFR1+ MS
3900	8	98.772	3898.702	14.735	0	14.511	0	5.456	0	0	14.983	14.364		MWD+IFR1+ MS
4000	10	98.772	3997.465	15.167	0	14.847	0	5.604	0	0	15.408	14.768		MWD+IFR1+ MS
4100	12	98.772	4095.623	15.576	0	15.182	0	5.759	0	0	15.848	15.144	-4.032	MWD+IFR1+ MS
4200	14	98.772	4193.055	15.964	0	15.518	0	5.922	0	0	16.295	15.502	0.599	MWD+IFR1+ MS
4300	16	98.772	4289.643	16.33	0	15.854	0	6.093	0	0	16.742	15.849	4.454	MWD+IFR1+ MS
4395.892	17.918	98.772	4381.361	16.649	0	16.175	0	6.262	0	0	17.157	16.174		MWD+IFR1+ MS
4400	17.918	98.772	4385.27	16.662	0	16.189	0	6.265	0	0	17.17	16.188	7.041	MWD+IFR1+ MS
4500	17.918	98.772	4480.42	16.977	0	16.519	0	6.42	0	0	17.472	16.518		MWD+IFR1+ MS
4600	17.918	98.772	4575.57	17.304	0	16.86	0	6.582	0	0	17.784	16.859		MWD+IFR1+ MS
4700	17.918	98.772	4670.719	17.635	0	17.203	0	6.748	0	0	18.1	17.203	8.503	MWD+IFR1+ MS
4800	17.918	98.772	4765.869	17.969	0	17.549	0	6.917	0	0	18.42	17.549	9.176	
4900	17.918	98.772	4861.019	18.307	0	17.897	0	7.091	0	0	18.743	17.897	9.869	MWD+IFR1+ MS
5000	17.918	98.772	4956.169	18.649	0	18.248	0	7.268	0	0	19.07	18.247		MWD+IFR1+ MS
5100	17.918	98.772	5051.319	18.993	0	18.6	0	7.449	0	0	19.399	18.598	11.314	MWD+IFR1+ MS
5200	17.918	98.772	5146.469	19.341	0	18.954	0	7.633	0	0	19.732	18.952	12.063	IVIS
5300	17.918	98.772	5241.619	19.691	0	19.31	0	7.821	0	0	20.067	19.306	12.83	IVIS
5400	17.918	98.772	5336.769	20.044	0	19.668	0	8.012	0	0	20.406	19.663	13.612	MWD+IFR1+ MS
5500	17.918	98.772	5431.919	20.4	0	20.028	0	8.206	0	0	20.747	20.021	14.408	MWD+IFR1+ MS
5600	17.918	98.772	5527.068	20.758	0	20.389	0	8.403	0	0	21.09	20.38	15.217	MWD+IFR1+ MS
5700	17.918	98.772	5622.218	21.118	0	20.751	0	8.604	0	0	21.436	20.74	16.036	MWD+IFR1+ MS
5800	17.918	98.772	5717.368	21.481	0	21.115	0	8.807	0	0	21.784	21.101	16.865	MWD+IFR1+ MS
5900	17.918	98.772	5812.518	21.845	0	21.48	0	9.014	0	0	22.135	21.464		MWD+IFR1+ MS
6000	17.918	98.772	5907.668	22.211	0	21.847	0	9.223	0	0	22.488	21.827	18.539	IVIS
6100	17.918	98.772	6002.818	22.58	0	22.214	0	9.436	0	0	22.842	22.192	19.381	MWD+IFR1+ MS
6200	17.918	98.772	6097.968	22.95	0	22.583	0	9.651	0	0	23.199	22.557	20.223	MWD+IFR1+ MS

6300	17.918	98.772	6193.118	23.321	0	22.953	0	9.869	0	0	23.557	22.924	21.062 MWD+IFR1+ MS
6400	17.918	98.772	6288.268	23.695	0	23.324	0	10.089	0	0	23.918	23.291	21.896 MWD+IFR1+ MS
6500	17.918	98.772	6383.417	24.07	0	23.696	0	10.313	0	0	24.28	23.659	22.723 MWD+IFR1+ MS
6600	17.918	98.772	6478.567	24.446	0	24.068	0	10.539	0	0	24.644	24.028	23.54 MWD+IFR1+ MS
6700	17.918	98.772	6573.717	24.824	0	24.442	0	10.767	0	0	25.009	24.397	24.346 MWD+IFR1+ MS
6800	17.918	98.772	6668.867	25.203	0	24.816	0	10.999	0	0	25.376	24.768	25 138 MWD+IFR1+
6900	17.918	98.772	6764.017	25.583	0	25.192	0	11.232	0	0	25.744	25.139	MS MWD+IFR1+ 25.915
7000	17.918	98.772	6859.167	25.964	0	25.568	0	11.469	0	0	26.114	25.51	MS MWD+IFR1+ 26.674
7100	17.918	98.772	6954.317	26.347	0	25.945	0	11.708	0	0	26.485	25.882	MS MWD+IFR1+ 27.414
7200	17.918	98.772	7049.467	26.731	0	26.322	0	11.95	0	0	26.857	26.255	MS MWD+IFR1+ 28.134
7300	17.918	98.772	7144.616	27.116	0	26.7	0	12.194	0	0	27.23	26.629	MS MWD+IFR1+ 28.833
7400	17.918	98.772	7239.766	27.501	0	27.079	0	12.441	0	0	27.605	27.003	MS MWD+IFR1+
7500	17.918	98.772	7334.916	27.888	0	27.459	0	12.69	0	0	27.981	27.378	MS MWD+IFR1+ 30.163
7600	17.918	98.772	7430.066	28.276	0	27.839	0	12.942	0	0	28.357	27.753	MS MWD+IFR1+ 30.793
7700	17.918	98.772	7525.216	28.665	0	28.219	0	13.196	0	0	28.735	28.129	MWD+IFR1+
7800	17.918	98.772	7620.366	29.054	0	28.601	0	13.452	0	0	29.114	28.505	MWD+IFR1+
7900	17.918	98.772	7715.516	29.445	0	28.982	0	13.712	0	0	29.494	28.882	MS MWD+IFR1+
8000	17.918	98.772	7810.666	29.836	0	29.365	0	13.973	0	0	29.874	29.26	MS MWD+IFR1+
8100	17.918	98.772	7905.816	30.228	0	29.747	0	14.237	0	0	30.256	29.638	MS 33 579 MWD+IFR1+
8200	17.918	98.772	8000.965	30.62	0	30.13	0	14.504	0	0	30.638	30.016	MS MWD+IFR1+
8300	17.918	98.772	8096.115	31.014	0	30.514	0	14.773	0	0	31.021	30.395	MS MWD+IFR1+
8400	17.918	98.772	8191.265	31.408	0	30.898	0	15.044	0	0	31.405	30.774	MWD+IFR1+
	17.918	98.772	8286.415	31.802	0	31.283	0	15.318	0	0	31.789	31.154	MS MWD+IFR1+ 35.373
8500					0		0						IVIS MWD+IFR1+
8600 8700	17.918 17.918	98.772 98.772	8381.565 8476.715	32.198	0	31.668 32.053	0	15.594 15.873	0	0	32.174	31.535 31.916	35.764 MS MS MWD+IFR1+
				32.594					0		32.56		36.133 MS MS MWD+IFR1+
8726.074	17.918	98.772	8501.524	32.696	0	32.152	0	15.946	0	0	32.659	32.015	36.156 MS MS 43.345 MWD+IFR1+
8800	20.335	120.247	8571.451	32.858	0	32.463	0	16.156	0	0	32.974	32.435	MWD+IFR1+
8900	26.586	140.103	8663.281	32.866	0	33.973	0	16.568	0	0	34.629	33.192	97.305 MS MS MWD+IFR1+
9000	34.546	152.116	8749.396	33.065	0	35.025	0	17.368	0	0	36.809	33.563	103.608 MS MS MS MWD+IFR1+
9100	43.276	159.926	8827.18	32.983	0	35.509	0	18.658	0	0	38.492	33.883	105.486 MS MS MWD+IFR1+
9200	52.388	165.509	8894.269	32.467	0	35.767	0	20.409	0	0	39.734	34.164	106.962 MS MS MWD+IFR1+
9300	61.703	169.852	8948.625	31.612	0	35.927	0	22.513	0	0	40.6	34.407	108.521 MS MS MWD+IFR1+
9400	71.134	173.487	8988.596	30.641	0	36.032	0	24.83	0	0	41.152	34.616	110.194 MS MS MWD+IFR1+
9500	80.628	176.73	9012.967	29.841	0	36.095	0	27.219	0	0	41.462	34.802	111.872 MS MS MWD+IFR1+
9598.011	89.96	179.738	9021	29.437	0	36.111	0	29.427	0	0	41.607	34.969	113.291 MS MS 113.313 MWD+IFR1+
9600	89.96	179.738	9021.001	29.441	0	36.113	0	29.431	0	0	41.61	34.968	113.313 MS MS 114.062 MWD+IFR1+ MS
9700	89.96	179.738	9021.07	29.646	0	36.222	0	29.637	0	0	41.686	35.001	MAND LIEB1
9800	89.96	179.738	9021.14	29.876	0	36.347	0	29.867	0	0	41.766	35.045	MS MWD+IFR1+
9900	89.96	179.738	9021.209	30.124	0	36.484	0	30.115	0	0	41.852	35.097	MS MWD+IFR1+
10000	89.96	179.738	9021.278	30.39	0	36.633	0	30.381	0	0	41.942	35.156	116.487 MS MWD+IFR1+
10100	89.96	179.738	9021.347	30.675	0	36.793	0	30.665	0	0	42.037	35.223	117.345 MS MS MWD+IFR1+
10200	89.96	179.738	9021.416	30.976	0	36.964	0	30.967	0	0	42.138	35.295	118.229 MS
10300	89.96	179.738	9021.485	31.294	0	37.146	0	31.285	0	0	42.245	35.374	119.139 MWD+IFR1+ MS
10400	89.96	179.738	9021.554	31.629	0	37.34	0	31.62	0	0	42.358	35.458	120.075 MWD+IFR1+ MS
10500	89.96	179.738	9021.623	31.979	0	37.544	0	31.97	0	0	42.477	35.548	121.037 MWD+IFR1+ MS
10600	89.96	179.738	9021.693	32.345	0	37.759	0	32.336	0	0	42.603	35.642	122.023 MWD+IFR1+ MS
10700	89.96	179.738	9021.762	32.725	0	37.985	0	32.716	0	0	42.736	35.741	123.034 MWD+IFR1+ MS
10800	89.96	179.738	9021.831	33.119	0	38.22	0	33.111	0	0	42.877	35.843	124.067 MWD+IFR1+ MS
10900	89.96	179.738	9021.9	33.528	0	38.466	0	33.519	0	0	43.024	35.949	125.122 MWD+IFR1+ MS

11000	89.96	179.738	9021.969	33.949	0	38.722	0	33.941	0	0	43.18	36.057	126.196 MS	WD+IFR1+ S
11100	89.96	179.738	9022.038	34.383	0	38.988	0	34.375	0	0	43.344	36.168	127.287 MS	WD+IFR1+ S
11200	89.96	179.738	9022.107	34.83	0	39.263	0	34.822	0	0	43.517	36.281	128.394 MS	WD+IFR1+ S
11300	89.96	179.738	9022.176	35.288	0	39.548	0	35.28	0	0	43.698	36.395	129.514 MS	
11400	89.96	179.738	9022.245	35.758	0	39.841	0	35.75	0	0	43.888	36.51	130.642 MS	WD+IFR1+ S
11500	89.96	179.738	9022.315	36.238	0	40.144	0	36.231	0	0	44.087	36.626	131.778 MS	WD+IFR1+ S
11600	89.96	179.738	9022.384	36.729	0	40.455	0	36.722	0	0	44.296	36.742	132.916 MS	WD+IFR1+ S
11700	89.96	179.738	9022.453	37.231	0	40.775	0	37.223	0	0	44.514	36.858	134.055 MS	WD+IFR1+ S
11800	89.96	179.738	9022.522	37.741	0	41.103	0	37.734	0	0	44.742	36.974	-44.81 MS	WD+IFR1+ S
11900	89.96	179.738	9022.591	38.261	0	41.439	0	38.254	0	0	44.98	37.089	-43.681 MS	WD+IFR1+ S
12000	89.96	179.738	9022.66	38.79	0	41.784	0	38.783	0	0	45.227	37.202	-42.562	WD+IFR1+ S
12100	89.96	179.738	9022.729	39.328	0	42.136	0	39.321	0	0	45.484	37.315	-41.456 MS	WD+IFR1+ S
12200	89.96	179.738	9022.798	39.874	0	42.495	0	39.866	0	0	45.751	37.427	-40.365 MS	
12300	89.96	179.738	9022.867	40.427	0	42.862	0	40.42	0	0	46.028	37.536	-39.292 MS	
12400	89.96	179.738	9022.937	40.988	0	43.236	0	40.981	0	0	46.314	37.645	-38.24 MS	WD+IFR1+ S
12500	89.96	179.738	9023.006	41.557	0	43.617	0	41.55	0	0	46.61	37.751	-37.21 MS	WD+IFR1+ S
12600	89.96	179.738	9023.075	42.132	0	44.005	0	42.125	0	0	46.916	37.856	-36.204 MS	
12700	89.96	179.738	9023.144	42.714	0	44.4	0	42.707	0	0	47.23	37.959	-35.224 MS	
12800	89.96	179.738	9023.213	43.302	0	44.801	0	43.296	0	0	47.554	38.06	-34.2/1 MS	
12900	89.96	179.738	9023.282	43.897	0	45.208	0	43.89	0	0	47.887	38.16	-33.345	WD+IFR1+ S
13000	89.96	179.738	9023.351	44.497	0	45.622	0	44.491	0	0	48.229	38.258	-32.447 MS	,
13100	89.96	179.738	9023.42	45.103	0	46.041	0	45.097	0	0	48.579	38.354	-31.578 MS	
13200	89.96	179.738	9023.49	45.715	0	46.466	0	45.709	0	0	48.937	38.448	-30.737 MS	
13300	89.96	179.738	9023.559	46.332	0	46.897	0	46.326	0	0	49.304	38.541	-29.925 MS	
13400	89.96	179.738	9023.628	46.953	0	47.333	0	46.947	0	0	49.679	38.632	-29.14 MS	
13500	89.96	179.738	9023.697	47.58	0	47.775	0	47.574	0	0	50.061	38.721	-28.384	WD+IFR1+ S
13600	89.96	179.738	9023.766	48.211	0	48.222	0	48.205	0	0	50.451	38.81	-27.655 MS	WD+IFR1+ S
13700	89.96	179.738	9023.835	48.847	0	48.673	0	48.841	0	0	50.848	38.897	-26.952 MS	
13800	89.96	179.738	9023.904	49.487	0	49.13	0	49.481	0	0	51.252	38.983	-26.276 MS	
13900	89.96	179.738	9023.973	50.131	0	49.592	0	50.125	0	0	51.662	39.067	-25.625 MS	
14000	89.96	179.738	9024.042	50.779	0	50.058	0	50.773	0	0	52.08	39.151	-24.998 MS	
14100	89.96	179.738	9024.112	51.431	0	50.528	0	51.425	0	0	52.503	39.233	-24.395 MS	
14200	89.96	179.738	9024.181	52.086	0	51.003	0	52.081	0	0	52.933	39.315	-23.814 MS	
14300	89.96	179.738	9024.25	52.745	0	51.483	0	52.74	0	0	53.369	39.396	-23.256 MS	
14400	89.96	179.738	9024.319	53.408	0	51.966	0	53.402	0	0	53.811	39.476	-22.718 MS	WD+IFR1+ S
14500	89.96	179.738	9024.388	54.074	0	52.453	0	54.068	0	0	54.258	39.555	-22.2U1 NAS	WD+IFR1+ S
14600	89.96	179.738	9024.457	54.742	0	52.945	0	54.737	0	0	54.71	39.634	-21.703 M	,
14700	89.96	179.738	9024.526	55.414	0	53.44	0	55.409	0	0	55.168	39.712	-21.224 MS	
14800	89.96	179.738	9024.595	56.089	0	53.939	0	56.084	0	0	55.631	39.79	-20.763 MS	
14900	89.96	179.738	9024.664	56.767	0	54.441	0	56.762	0	0	56.099	39.867	-20.319 MS	
15000	89.96	179.738	9024.734	57.447	0	54.947	0	57.442	0	0	56.571	39.944	-19.891 MS	
15100	89.96	179.738	9024.803	58.13	0	55.457	0	58.125	0	0	57.048	40.02	-19.478 MS	
15200	89.96	179.738	9024.872	58.816	0	55.969	0	58.811	0	0	57.53	40.096	-19.081	WD+IFR1+ S
15300	89.96	179.738	9024.941	59.504	0	56.485	0	59.499	0	0	58.016	40.172	-18.697 MS	WD+IFR1+
15400	89.96	179.738	9025.01	60.194	0	57.004	0	60.189	0	0	58.505	40.248	-18.328 MS	S S MD HER1:
15500	89.96	179.738	9025.079	60.887	0	57.526	0	60.882	0	0	58.999	40.323	-17.971 MS	,
15600	89.96	179.738	9025.148	61.582	0	58.052	0	61.577	0	0	59.497	40.399	-17.627 MS	
15700	89.96	179.738	9025.217	62.279	0	58.58	0	62.274	0	0	59.999	40.474	-17.294 MS	
15800	89.96	179.738	9025.287	62.978	0	59.11	0	62.973	0	0	60.504	40.549	-16.973 M\	WD+IFR1+ S

15900	89.96	179.738	9025.356	63.679	0	59.644	0	63.674	0	0	61.013	40.624	-16.663 MWD+IFR1+ MS
16000	89.96	179.738	9025.425	64.382	0	60.18	0	64.377	0	0	61.525	40.7	-16.363 MWD+IFR1+ MS
16100	89.96	179.738	9025.494	65.087	0	60.719	0	65.082	0	0	62.041	40.775	-16.073 MWD+IFR1+ MS
16200	89.96	179.738	9025.563	65.794	0	61.26	0	65.789	0	0	62.56	40.85	-15.792 MWD+IFR1+ MS
16300	89.96	179.738	9025.632	66.502	0	61.804	0	66.498	0	0	63.082	40.925	-15.521 MWD+IFR1+ MS
16400	89.96	179.738	9025.701	67.212	0	62.35	0	67.208	0	0	63.607	41.001	-15.258 MWD+IFR1+ MS
16500	89.96	179.738	9025.77	67.924	0	62.898	0	67.92	0	0	64.135	41.076	-15.004 MWD+IFR1+ MS
16600	89.96	179.738	9025.839	68.637	0	63.449	0	68.633	0	0	64.666	41.152	-14.757 MWD+IFR1+ MS
16700	89.96	179.738	9025.909	69.352	0	64.002	0	69.348	0	0	65.2	41.228	-14.518 MWD+IFR1+ MS
16800	89.96	179.738	9025.978	70.069	0	64.557	0	70.064	0	0	65.736	41.304	-14.286 MWD+IFR1+ MS
16837.58	89.96	179.738	9026	70.337	0	64.765	0	70.333	0	0	65.937	41.333	-14.202 MWD+IFR1+ MS

Plan Targets	Remuda 709H				
Target	Measured Depth	Grid Northing	Grid Easting	TVD MSL Target Shape	
Name	(ft)	(ft)	(ft)	(ft)	
KOP 5	8994.32	464511.6	625927.8	5322 CIRCLE	
FTP 5	9597.89	463738.6	625927.8	5895 CIRCLE	
BHL 5	16837.59	456499.1	625960.8	5900 CIRCLE	

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

<u>Section 1 – Plan Description</u> Effective May 25, 2021

I. Operator: _XTO Energy, Inc			OGRI	D: 005380	Date	e: _06_/_04_/_2021
II. Type: ⊠ Original □	Amendmen	t due to □ 19.1	5.27.9.D(6)(a) NMA	AC □ 19.15.27.9.D(6)(b) NMAC □ Othe	r.
If Other, please describe: _						
III. Well(s): Provide the fobe recompleted from a sing					ells proposed to be d	rilled or proposed to
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water BBL/D
Remuda South 25 State 705H		H-25-23S-29E	2385' FNL & 750' FEI	1500	2600	1000
Remuda South 25 State 706H		H-25-23S-29E	2385' FNL & 720' FEI	1500	2600	1000
Remuda South 25 State 707H		H-25-23S-29E	2385' FNL & 690' FEI		2600	1000
Remuda South 25 State 708H		H-25-23S-29E	2385' FNL & 660' FEI		2600	1000
Remuda South 25 State 709H		H-25-23S-29E	2385' FNL & 630' FEI		2600	1000
IV. Central Delivery Point V. Anticipated Schedule: proposed to be recompleted	Provide the	— e following info	rmation for each nev	w or recompleted we	L	27.9(D)(1) NMAC]
337 11 N.I	API	Spud Date	TD Reached	Completion	Initial Flow Back	First Production
Well Name		1	Date	Commencement	Date	Date
Well Name						
Well Name			2			
		08/09/2021		Date	Not Yet Scheduled	Not Yet Scheduled
Remuda South 25 State 705H Remuda South 25 State 706H		08/09/2021 08/24/2021	08/24/2021		Not Yet Scheduled Not Yet Scheduled	Not Yet Scheduled Not Yet Scheduled
Remuda South 25 State 705H Remuda South 25 State 706H		08/24/2021	08/24/2021 09/08/2021	Date Not Yet Scheduled Not Yet Scheduled	Not Yet Scheduled	Not Yet Scheduled
Remuda South 25 State 705H			08/24/2021	Date Not Yet Scheduled		

- VII. Operational Practices:

 Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

VIII. Best Management Practices:

Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

		EFFECTIV	<u>TE APRIL 1, 2022</u>		
	2022, an operator t complete this section		with its statewide natural g	as capture requirement for the applicable	
	es that it is not requ t for the applicable r		ction because Operator is in	compliance with its statewide natural ga	
X. Anticipated Na	atural Gas Product	ion:			
Well		API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF	
K. Natural Gas Ga	nthering System (No	GGS):			
Operator System		ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in	
roduction operation he segment or port KII. Line Capacity roduction volume KIII. Line Pressur atural gas gatherin Attach Operator	ins to the existing or ion of the natural gas gas. The natural gas gas from the well prior to the order of the control of the	planned interconnect of the significant planned interconnect of the significant planned interconnect of the significant planned interconnect planned interco	the natural gas gathering systemhich the well(s) will be conwich which the well(s) will be conwing will not have capacity to getion. at its existing well(s) connect meet anticipated increases in the increased line pressure.	aticipated pipeline route(s) connecting the em(s), and the maximum daily capacity of nected. Eather 100% of the anticipated natural gasted to the same segment, or portion, of the line pressure caused by the new well(s). ESA 1978 for the information provided in full description of the specific information.	

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \Box Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

☑ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system.

If Operator checks this box, Operator will select one of the following:

Well Shut-In. ⊠ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. ⊠ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- **(b)** power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature:
Printed Name: Cassie Evans
Title: Regulatory Analyst
E-mail Address: cassie.evans@exxonmobil.com
Date: 06/04/2021
Phone: 432.218.3671
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

VI. Separation Equipment:

XTO Permian Operating, LLC. production tank batteries include separation equipment designed to efficiently separate gas from liquid phases to optimize gas capture based on projected and estimated volumes from the targeted pool in conjunction with the total number of wells planned to or existing within the facility. Separation equipment is upgraded prior to well being drilled or completed, if determined to be undersized or needed. The separation equipment is designed and built according to the relevant industry specifications (API Specification 12J and ASME Sec VIII Div I). Other recognized industry publications such as the Gas Processors Suppliers Association (GPSA) are referenced when designing separation equipment to optimize gas capture.

VII. Operational Practices:

1. Subsection B.

- During drilling, flare stacks will be located a minimum of 150 feet from the nearest surface hole location. All gas is captured or combusted. If an emergency or malfunction occurs, gas will be flared or vented for public health, safety and the environment and be properly reported to the NMOCD pursuant to 19.15.27.8.G.
- Measure or estimate the volume of natural gas that is vented, flared or beneficially used during drilling, completion and production operations, regardless of the reason or authorization for such venting or flaring.
- At any point in the well life (drilling, completion, production, inactive) an audio, visual and olfactory (AVO) inspection will be performed weekly (at minimum) to confirm that all production equipment is operating properly and there are no leaks or releases except as allowed in Subsection D of 19.15.27.8 NMAC.

2. Subsection C.

During completion operations, operator does not produce oil or gas but maintains adequate well control through completion operations.

For emergencies, equipment malfunction, or if the operator decides to produce oil and gas during well completion:

- Flowlines will be routed for flowback fluids into a completion or storage tank and, if feasible under well conditions, flare rather than vent and commence operation of a separator as soon as it is technically feasible for a separator to function.
- Measure or estimate the volume of natural gas that is vented, flared or beneficially used during drilling, completion and production operations, regardless of the reason or authorization for such venting or flaring.
- At any point in the well life (drilling, completion, production, inactive) an audio, visual and olfactory (AVO) inspection will be performed weekly (at minimum) to confirm that all production equipment is operating properly and there are no leaks or releases except as allowed in Subsection D of 19.15.27.8 NMAC.

3. Subsection D.

- At any point in the well life (drilling, completion, production, inactive) an audio, visual and olfactory (AVO) inspection will be performed weekly (at minimum) to confirm that all production equipment is operating properly and there are no leaks or releases except as allowed in Subsection D of 19.15.27.8 NMAC.
- Monitor manual liquid unloading for wells on-site or in close proximity (<30 minutes' drive time), take reasonable actions to achieve a stabilized rate and pressure at the earliest practical time, and take reasonable actions to minimize venting to the maximum extent practicable.

 Measure or estimate the volume of natural gas that is vented, flared or beneficially used during drilling, completion and production operations, regardless of the reason or authorization for such venting or flaring.

4. Subsection E.

- All tanks and separation equipment are designed for maximum throughput and pressure to minimize waste
- Flare stack was installed prior to May 25, 2021 but has been designed for proper size and combustion efficiency. Flare currently has a continuous pilot and is located more than 100 feet from any known well and storage tanks.
- At any point in the well life (drilling, completion, production, inactive) an audio, visual and olfactory (AVO) inspection will be performed weekly (at minimum) to confirm that all production equipment is operating properly and there are no leaks or releases except as allowed in Subsection D of 19.15.27.8 NMAC.

5. Subsection F.

- Measurement equipment is installed to measure the volume of natural gas flared from process piping or a flowline piped from the equipment associated with a well and facility associated with the approved application for permit to drill that has an average daily production greater than 60 mcf of natural gas.
- Measurement equipment installed is not designed or equipped with a manifold to allow diversion of natural gas around the metering equipment, except for the sole purpose of inspecting and servicing the measurement equipment, as noted in NMAC 19.15.27.8 Subsection G.

VIII. Best Management Practices:

- 1. During completion operations, operator does not produce oil or gas but maintains adequate well control through completion operations.
- 2. Operator does not flow well (well shut in) during initial production until all flowlines, tank batteries, and oil/gas takeaway are installed, tested, and determined operational.
- 3. Operator equips storage tanks with an automatic gauging system to reduce venting of natural gas.
- 4. Operator reduces the number of blowdowns by looking for opportunities to coordinate repair and maintenance activities.
- 5. Operator combusts natural gas that would otherwise be vented or flared, when feasible.
- 6. Operator has a flare stack designed in accordance with need and to handle sufficient volume to ensure proper combustion efficiency. Flare stacks are equipped with continuous pilots and securely anchored at least 100 feet (at minimum) from storage tanks and wells.
- 7. Operator minimizes venting (when feasible) through pump downs of vessels and reducing time required to purge equipment before returning equipment to service.
- 8. Operator will shut in wells (when feasible) in the event of a takeaway disruption, emergency situation, or other operations where venting or flaring may occur due to equipment failures.