Form C-101 August 1, 2011

Permit 259930

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

	APPLICATION FOR PERMIT TO DRILL	. RE-ENTER. DEEPEN	. PLUGBACK	OR ADD A ZONE
--	---------------------------------	--------------------	------------	---------------

^	FFLICATION FOR FERMIN TO DRIEL, RE-LINTER, DELFEN, F	-LUGBACK, OK ADD A ZONL
Operator Name and Address		2. OGRID Number
MEWBOURNE OIL CO		14744
P.O. Box 5270		3. API Number
Hobbs, NM 88241		30-025-49192
4. Property Code	5. Property Name	6. Well No.
331196	INLAND 26 23 B2NK STATE COM	001H
	7 Cumface Legation	

7. Surface Location

UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County
N	26	21S	34E	N	280	S	1660	W	Lea

8. Proposed Bottom Hole Location

ſ	UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County
	K	23	21S	34E	K	2542	S	1900	W	Lea

9. Pool Information

GRAMA RIDGE;BONE SPRING, NE	28435

Additional Well Information

11. Work Type	12. Well Type	13. Cable/Rotary	14. Lease Type	15. Ground Level Elevation
New Well	OIL		State	3681
16. Multiple	17. Proposed Depth	18. Formation	19. Contractor	20. Spud Date
N	17963	2nd Bone Spring Sand		8/8/2021
Depth to Ground water		Distance from nearest fresh water well		Distance to nearest surface water

We will be using a closed-loop system in lieu of lined pits

21. Proposed Casing and Cement Program

			repectu cueg :			
Туре	Hole Size	Casing Size	Casing Weight/ft	Setting Depth	Sacks of Cement	Estimated TOC
Surf	17.5	13.375	54.5	1800	1255	0
Int1	12.25	9.625	40	5525	1165	0
Prod	8.75	7	26	10727	660	5325
Liner1	6.125	4.5	13.5	17963	330	9822

Casing/Cement Program: Additional Comments

MOC proposed to drill & test the Bone Springs formation. H2S rule 118 does not apply because MOC has researched the area & no high concentrations were found. Will have on location & working all H2S safety equiptment before Yates formation for safety & insurance purposes. Will stimulate as needed for production.

22. Proposed Blowout Prevention Program

Туре	Working Pressure	Test Pressure	Manufacturer
Annular	2000	1500	Schaffer
Double Ram	3000	3000	Schaffer
Annular	3000	1500	Schaffer

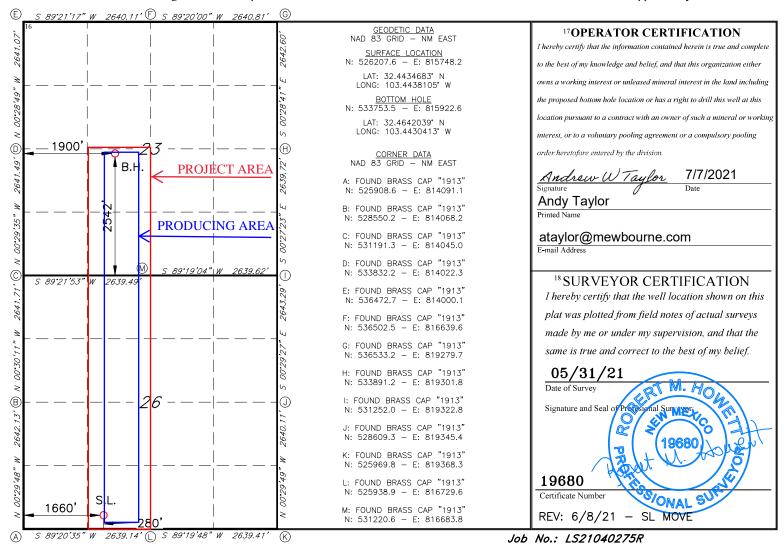
knowledge and be	elief.	s true and complete to the best of my NMAC ⊠ and/or 19.15.14.9 (B) NMAC		OIL CONSERVATION	ON DIVISION
Printed Name:	Electronically filed by Monty Whe	etstone	Approved By:	Paul F Kautz	
Title:	Vice President Operations		Title:	Geologist	
Email Address:	prodmgr@mewbourne.com		Approved Date:	7/16/2021	Expiration Date: 7/16/2023
Date:	7/8/2021	Phone: 903-561-2900	Conditions of Appr	oval Attached	

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720
District II
811 S. First St., Artesia, NM 88210
Phone: (575) 748-1283 Fax: (575) 748-9720
District III
1000 Rio Brazos Road, Aztec, NM 87410
Phone: (505) 334-6178 Fax: (505) 334-6170
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505
Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico
Energy, Minerals & Natural Resources Department
OIL CONSERVATION DIVISION
1220 South St. Francis Dr.
Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT


WELL LOCATION AND ACREAGE DEDICATION PLAT

30-025-49192	² Pool Code 28435	GRAMA RIDGE;BONE S	PRING, NE
⁴ Property Code 331196		operty Name B B2NK STATE COM	⁶ Well Number 1 H
7 OGRID NO. 14744	•	perator Name E OIL COMPANY	⁹ Elevation 3681'

¹⁰ Surface Location

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet From the	East/West line	County
N	26	21S	34E		280	SOUTH	1660	WEST	LEA
			11]	Bottom H	Iole Location	If Different Fr	om Surface		
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
K	23	21S	34E		2542	SOUTH	1900	WEST	LEA
Dedicated Acres 240	s 13 Joint	or Infill 14	Consolidation	Code 15 (Order No.	,			

No allowable will be assigned to this completion until all interest have been consolidated or a non-standard unit has been approved by the division.

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Date: 7/16/2021							
☑ Original Ope	erator & OGRID No.:	[14744] MEW	BOURNE OIL CO				
☐ Amended - Reason for Amendment:							
lote: Form C-129 must be submitted and app Vell(s)/Production Facility – Name of facility	· !				-/		
he well(s) that will be located at the production		n the table belo	w				
	API		Well Location	Footages	Expected	Flared or	0
Well Name			(ULSTR)		MCF/D	Vented	Comments

G

gathering system. MEWBOURNE OIL CO provides (periodically) to County, New Mexico. It will require 3400' of pipeline to connect the facility to Low Pressure TARGA MIDSTREAM SERVICES LLC a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future. In addition, MEWBOURNE OIL CO and TARGA MIDSTREAM SERVICES LLC have periodic conference calls to discuss changes to drilling and completion schedules. Gas from these wells will be processed at TARGA MIDSTREAM SERVICES LLC Processing Plant located in Sec. 29, Twn. 21S, Rng. 37E, Lea County, New Mexico. The actual flow of the gas will be based on compression operating parameters and gathering system pressures.

Flowback Strategy

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on TARGA MIDSTREAM SERVICES LLC system at that time. Based on current information, it is MEWBOURNE OIL CO's belief the system can take this gas upon completion of the well(s).

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - o Only a portion of gas is consumed operating the generator, remainder of gas will be flared
- Compressed Natural Gas On lease
 - Gas flared would be minimal, but might be uneconomical to operate when gas volume declines
- NGL Removal On lease
 - o Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III
1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Form APD Conditions

Permit 259930

PERMIT CONDITIONS OF APPROVAL

Operator Name and Address:	API Number:
MEWBOURNE OIL CO [14744]	30-025-49192
P.O. Box 5270	Well:
Hobbs, NM 88241	INLAND 26 23 B2NK STATE COM #001H

OCD	Condition
Reviewer	
pkautz	Notify OCD 24 hours prior to casing & cement
pkautz	Will require a File As Drilled C-102 and a Directional Survey with the C-104
pkautz	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string
pkautz	1) SURFACE & INTERMEDIATE CASING - Cement must circulate to surface 2) PRODUCTION CASING - Cement must tie back into intermediate casing 3) Liner - Cement must tie back into production casing
pkautz	If cement does not circulate to surface, must run temperature survey or other log to determine top of cement
pkautz	Surface casing must be set 25' below top of Rustler Anhydrite in order to seal off protectable water
pkautz	1)- The Operator is to notify NMOCD by sundry (Form C-103) within ten (10) days of the well being spud 2)- Drilling Sundries Form C-103 (Casing and Cement test are to be submitted within 10 days 3)- Completion Reports & Logs are to be submitted within 45 days 4)- Deviation / Directional Drill Survey are to be filed with or prior to C-104
pkautz	It is the operator's responsibility to monitor cancellation dates of approved APDs. APD's are good for 2 years and may be extended for one year. Only one 1 year extension will be granted if submitted by C-103 before expiration date. After expiration date or after a 1 year extension must submit new APD. If an APD expires and if site construction has occurred, site remediation is required.
pkautz	Stage Tool 1) Must notify OCD Hobbs Office prior to running Stage Tool 2) If using Stage Tool on Surface casing, Stage Tool must be set greater than 350' from surface and a minimum of 200 feet above surface shoe. 3) When using a Stage Tool on Intermediate or Production Casing Stage must be a minimum of 50 feet below previous casing shoe.

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

	٨٦.		1,11111111		1					
This Natural Gas Manag	ement Plan m	ust be submitted wi	ith each Applicati	on for Permit to D	Prill (AP	D) for a 1	new or	recompleted well.		
		Section Ef	1 – Plan De fective May 25,	escription 2021						
I. Operator: Mev	vbourne (Oil Co.	OGRID:	14744		_ Date: _	5/2	5/21		
II. Type: X Original □] Amendment	due to □ 19.15.27.	.9.D(6)(a) NMAC	C 🗆 19.15.27.9.D(6)(b) NN	иас 🗆 (Other.			
If Other, please describe	;									
III. Well(s): Provide the be recompleted from a s	e following infingle well pad	Formation for each or connected to a c	new or recomplet central delivery po	ed well or set of voint.	vells pro	posed to	be dril	led or proposed to		
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D		1		_	
Inland 26/23 B2NK State Com #1H		N 26 21S 34E	280 FSL & 1660 FW	L 2000	3500	3500		1500		
IV. Central Delivery Po V. Anticipated Schedul proposed to be recomple	le: Provide the	Inland 26/23 B2Nk following informa gle well pad or con	tion for each new	or recompleted w	ell or se					
Well Name	API	Spud Date	TD Reached Date	Completion Commencement		Initial F Back D		First Production Date		
Inland 26/23 B2NK State Com #1H		7/28/21	8/28/21	9/28/21		10/13/2	21	10/13/21		
VI. Separation Equipm VII. Operational Prac Subsection A through F VIII. Best Management during active and planne	tices: X Attac of 19.15.27.8 at Practices: §	ch a complete descr NMAC.	ription of the act	ions Operator wil	l take to	comply	with tl	ne requirements of		

	Section 2 — Enhanced Plan EFFECTIVE APRIL 1, 2022												
Beginning April 1, reporting area must	2022, an operator th complete this section	at is not in compliance	with its statewide natural g	as cap	ture requirement for the applicable								
☐ Operator certifie capture requirement	s that it is not requir for the applicable re	red to complete this sec porting area.	ction because Operator is in	compl	iance with its statewide natural gas								
IX. Anticipated Na	tural Gas Productio	on:											
W	ell ell	API	Anticipated Average Natural Gas Rate MCF/D)	Anticipated Volume of Natural Gas for the First Year MCF								
X. Natural Gas Ga	thering System (NG	GS):		•									
Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Ava	ailable Maximum Daily Capacity of System Segment Tie-in								
production operation the segment or portion the segment or portion. XII. Line Capacity production volume. XIII. Line Pressur natural gas gatherin. Attach Operator. XIV. Confidential: Section 2 as provide.	ns to the existing or prion of the natural gas The natural gas gat from the well prior to Comparison does of g system(s) described s plan to manage pro Ty: Operator assort d in Paragraph (2) of	planned interconnect of gathering system(s) to the thering system will be the date of first production in response to the the confidentiality pursue that a	the natural gas gathering syst which the well(s) will be con will not have capacity to getion. That its existing well(s) connects meet anticipated increases in the increased line pressure. Suant to Section 71-2-8 NMS .27.9 NMAC, and attaches a second which we will be considered in the increased line pressure.	em(s), nected gather ted to the line p	ted pipeline route(s) connecting the and the maximum daily capacity of l. 100% of the anticipated natural gas the same segment, or portion, of the pressure caused by the new well(s). 78 for the information provided in scription of the specific information								

Section 3 - Certifications Effective May 25, 2021

	Effective May 25, 2021
Operator certifies that, aft	ter reasonable inquiry and based on the available information at the time of submittal:
one hundred percent of the	o connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport ne anticipated volume of natural gas produced from the well(s) commencing on the date of first production, arrent and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering
hundred percent of the an into account the current a	ble to connect to a natural gas gathering system in the general area with sufficient capacity to transport one ticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. ox, Operator will select one of the following:
Well Shut-In. ☐ Operato D of 19.15.27.9 NMAC;	r will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection or
	un. Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential sort the natural gas until a natural gas gathering system is available, including:
(a)	power generation on lease;
(b)	power generation for grid;
(c)	compression on lease;
(d)	liquids removal on lease;
(e)	reinjection for underground storage;
(f)	reinjection for temporary storage; reinjection for enhanced oil recovery;
(g)	reinjection for clinaticed on recovery,

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

other alternative beneficial uses approved by the division.

fuel cell production; and

(h)

(i)

- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Bradley Bishop									
Printed Name: BRADLE BISHOP									
Title: REGULATORY MANAGER									
E-mail Address: BBISHOP@MEWBOURNE.COM									
Date: 5-28-21									
Phone: 575-393-5905									
OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)									
Approved By:									
Title:									
Approval Date:									
Conditions of Approval:									

Mewbourne Oil Company

Natural Gas Management Plan - Attachment

- VI. Separation equipment will be sized by construction engineering staff based on stated manufacturer daily throughput capacities and anticipated daily production rates to ensure adequate capacity. Closed vent system piping, compression needs, and VRUs will be sized utilizing ProMax modelling software to ensure adequate capacity for anticipated production volumes and conditions.
- VII. Mewbourne Oil Company (MOC) will take following actions to comply with the regulations listed in 19.15.27.8:
 - A. MOC will maximize the recovery of natural gas by minimizing the waste, as defined by 19.15.2 NMAC, of natural gas through venting and flaring. MOC will ensure that well(s) will be connected to a natural gas gathering system with sufficient capacity to transport natural gas. If there is no adequate takeaway for the gas, well(s) will be shut in until the natural gas gathering system is available.
 - B. All drilling operations will be equipped with a rig flare located at least 100 ft from the nearest surface hole. Rig flare will be utilized to combust any natural gas that is brought to surface during normal drilling operations. In the case of emergency venting or flaring the volumes will be estimated and reported appropriately.
 - C. During completion operations any natural gas brought to surface will be flared. Immediately following the finish of completion operations, all well flow will be directed to permanent separation equipment. Produced natural gas from separation equipment will be sent to sales. It is not anticipated that gas will not meet pipeline standards. However, if natural gas does not meet gathering pipeline quality specifications, MOC will flare the natural gas for 60 days or until the natural gas meets the pipeline quality specifications, whichever is sooner. MOC will ensure that the flare is sized properly and is equipped with automatic igniter or continuous pilot. The gas sample will analyzed twice per week and the gas will be routed into a gathering system as soon as pipeline specifications are met.
 - D. Natural gas will not be flared with the exceptions and provisions listed in the 19.15.27.8 D.(1) through (4). If there is no adequate takeaway for the separator gas, well(s) will be shut in until the natural gas gathering system is available with exception of emergency or malfunction situations. Venting and/or flaring volumes will be estimated and reported appropriately.
 - E. MOC will comply with the performance standards requirements and provisions listed in 19.15.27.8 E.(1) through (8). All equipment will be designed and sized to handle maximum anticipated pressures and throughputs in order to minimize the waste. Production storage tanks constructed after May 25, 2021 will be equipped with automatic gauging system. Flares constructed after May 25, 2021 will be equipped with automatic igniter or continuous pilot. Flares will be located at least 100' from the well and storage tanks unless otherwise approved by the division. MOC will conduct AVO inspections as described in 19.15.27.8 E (5) (a) with frequencies specified in 19.15.27.8 E (5) (b) and (c). All emergencies will be resolved as quickly and safely as feasible to minimize waste.
 - F. The volume of natural gas that is vented or flared as the result of malfunction or emergency during drilling and completions operations will be estimated. The volume of natural gas that is vented, flared or beneficially used during production operations, will be measured or estimated. MOC will install equipment to measure

the volume of natural gas flared from existing process piping or a flowline piped from equipment such as high pressure separators, heater treaters, or vapor recovery units associated with a well or facility associated with a well authorized by an APD issued after May 25, 2021 that has an average daily production greater than 60 Mcf/day. If metering is not practicable due to circumstances such as low flow rate or low pressure venting and flaring, MOC will estimate the volume of vented or flared natural gas. Measuring equipment will conform to industry standards and will not be designed or equipped with a manifold that allows the diversion of natural gas around the metering element except for the sole purpose of inspecting and servicing the measurement equipment.

VIII. For maintenance activities involving production equipment and compression, venting will be limited to the depressurization of the subject equipment to ensure safe working conditions. For maintenance of production and compression equipment the associated producing wells will be shut in to eliminate venting. For maintenance of VRUs all gas normally routed to the VRU will be routed to flare to eliminate venting.

Inten	t	As Dril	led											
API#	ł													
Оре	rator Nai	me:				Property Name:								Well Number
Kick (Off Point	(KOP)												
UL	Section	Township	Range	Lot	Feet		From N	I/S	Feet		From	n E/W	County	
Latit	ude				Longitu	Longitude NAD							NAD	
First ⁻	Take Poir	it (FTP)												
UL	Section	Township	Range	Lot	Feet		From N	I/S	Feet		From	n E/W	County	
Latit	ude				Longitu	Longitude							NAD	
Last 1	Section	t (LTP) Township	Pango	Lot	Feet	Eron	n N/C	Foot		From F	-/\\	Count		
Latit		Township	Range	Lot			n N/S	Feet		From E	-/ vv	Count	У	
Latiti	ude				Longitu	Longitude NAD								
Is this	s well the	defining w	vell for th	e Hori:	zontal Sp	pacing	g Unit?			7				
										_				
Is this	s well an	infill well?												
											· -			
	ll is yes p ng Unit.	iease provi	de API if	avaılak	oie, Opei	rator N	vame	and v	vell ni	umber	tor E	Jetinir	ng well to	or Horizontal
API#	!													
Ope	rator Nai	me:	1			Property Name:							Well Number	
						1								V7.0C/20/2016

KZ 06/29/2018

Mewbourne Oil Company

Lea County, New Mexico NAD 83 Inland 26/23 B2NK State Com #1H

Sec 26, T21S, R34E

SHL: 280' FSL & 1660' FWL, Sec 26 BHL: 2542' FSL & 1900' FWL, Sec 23

Plan: Design #1

Standard Planning Report

07 July, 2021

Hobbs Database:

Company: Mewbourne Oil Company Project: Lea County, New Mexico NAD 83 Site: Inland 26/23 B2NK State Com #1H

Well: Sec 26, T21S, R34E

Wellbore: BHL: 2542' FSL & 1900' FWL, Sec 23 Design #1 Design:

Local Co-ordinate Reference: TVD Reference: MD Reference:

North Reference:

Survey Calculation Method:

Site Inland 26/23 B2NK State Com #1H WELL @ 3709.0usft (Original Well Elev) WELL @ 3709.0usft (Original Well Elev)

1.33

Minimum Curvature

Project Lea County, New Mexico NAD 83

Map System: Geo Datum:

Map Zone:

US State Plane 1983 North American Datum 1983 New Mexico Eastern Zone

System Datum:

Mean Sea Level

Inland 26/23 B2NK State Com #1H Site

Northing: 526,208.00 usft Site Position: 32.4434694 Latitude: From: Мар Easting: 815,748.00 usft Longitude: -103.4438113

Position Uncertainty: 0.0 usft Slot Radius: 13-3/16 "

Well Sec 26, T21S, R34E

Well Position +N/-S 0.0 usft 526,208.00 usft Latitude: 32.4434694 Northing: +E/-W 0.0 usft Easting: 815,748.00 usft Longitude: -103.4438113 **Position Uncertainty** 0.0 usft Wellhead Elevation: 3,709.0 usft **Ground Level:** 3,681.0 usft

0.48 **Grid Convergence:**

BHL: 2542' FSL & 1900' FWL, Sec 23 Wellbore

Declination Magnetics **Model Name** Sample Date Dip Angle Field Strength (°) (°) (nT) 48,405.34146207 IGRF2010 12/31/2014 7.10 60.32

Design Design #1 Audit Notes: **PROTOTYPE** Tie On Depth: 0.0 Version: Phase: Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°)

0.0

0.0

Remarks

Plan Survey Tool Program 7/7/2021 Date

Depth From Depth To

(usft) (usft) Survey (Wellbore) **Tool Name**

0.0

Design #1 (BHL: 2542' FSL & 190 0.0 17,962.7

Plan Sections Dogleg Measured Vertical Build Turn Depth Inclination Azimuth Depth +N/-S +E/-W Rate Rate Rate TFO (°/100usft) (usft) (°) (°) (usft) (usft) (usft) (°/100usft) (°/100usft) (°) Target 0.0 0.00 0.00 0.0 0.0 0.0 0.00 0.00 0.00 0.00 5,575.0 0.00 0.00 5,575.0 0.0 0.0 0.00 0.00 0.00 0.00 5,834.7 5.19 137.69 5,834.4 -8.7 7.9 2.00 2.00 0.00 137.69 9,562.3 5.19 137.69 9,546.7 -258.3 235.1 0.00 0.00 0.00 0.00 -267.0 9,822.1 0.00 0.00 9,806.0 243.0 2.00 -2.00 0.00 180.00 KOP: 10' FSL & 1900' 310.9 10,727.0 90.49 359.50 10,379.0 238.0 10.00 10.00 0.00 -0.5017,962.7 90.49 359.50 10,317.0 7,546.0 175.0 0.00 0.00 0.00 0.00 BHL: 2542' FSL & 19(

Hobbs Database:

Company: Mewbourne Oil Company Project: Lea County, New Mexico NAD 83 Inland 26/23 B2NK State Com #1H Site:

Well: Sec 26, T21S, R34E BHL: 2542' FSL & 1900' FWL, Sec 23

Design: Design #1

4,900.0

5,000.0

5,100.0

5,200.0

0.00

0.00

0.00

0.00

Wellbore:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Inland 26/23 B2NK State Com #1H WELL @ 3709.0usft (Original Well Elev) WELL @ 3709.0usft (Original Well Elev)

Minimum Curvature

0.00

0.00

0.00

0.00

0.0

0.0

0.0

0.0

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

11.	Design #1								
ned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
	FSL & 1660' FWL								
100.0		0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0		0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0		0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0		0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0		0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0		0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0		0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0		0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,200.0	0.00	0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00
2,300.0		0.00	2,300.0	0.0	0.0	0.0	0.00	0.00	0.00
2,400.0	0.00	0.00	2,400.0	0.0	0.0	0.0	0.00	0.00	0.00
2,500.0	0.00	0.00	2,500.0	0.0	0.0	0.0	0.00	0.00	0.00
2,600.0	0.00	0.00	2,600.0	0.0	0.0	0.0	0.00	0.00	0.00
2,700.0		0.00	2,700.0	0.0	0.0	0.0	0.00	0.00	0.00
2,800.0		0.00	2,800.0	0.0	0.0	0.0	0.00	0.00	0.00
2,900.0	0.00	0.00	2,900.0	0.0	0.0	0.0	0.00	0.00	0.00
3,000.0	0.00	0.00	3,000.0	0.0	0.0	0.0	0.00	0.00	0.00
3,100.0		0.00	3,100.0	0.0	0.0	0.0	0.00	0.00	0.00
3,200.0		0.00	3,200.0	0.0	0.0	0.0	0.00	0.00	0.00
3,300.0		0.00	3,300.0	0.0	0.0	0.0	0.00	0.00	0.00
3,400.0	0.00	0.00	3,400.0	0.0	0.0	0.0	0.00	0.00	0.00
3,500.0		0.00	3,500.0	0.0	0.0	0.0	0.00	0.00	0.00
3,600.0		0.00	3,600.0	0.0	0.0	0.0	0.00	0.00	0.00
3,700.0		0.00	3,700.0	0.0	0.0	0.0	0.00	0.00	0.00
3,800.0		0.00	3,800.0	0.0	0.0	0.0	0.00	0.00	0.00
3,900.0	0.00	0.00	3,900.0	0.0	0.0	0.0	0.00	0.00	0.00
4,000.0	0.00	0.00	4,000.0	0.0	0.0	0.0	0.00	0.00	0.00
4,100.0		0.00	4,100.0	0.0	0.0	0.0	0.00	0.00	0.00
4,200.0		0.00	4,200.0	0.0	0.0	0.0	0.00	0.00	0.00
4,300.0		0.00	4,300.0	0.0	0.0	0.0	0.00	0.00	0.00
4,400.0	0.00	0.00	4,400.0	0.0	0.0	0.0	0.00	0.00	0.00
4,500.0		0.00	4,500.0	0.0	0.0	0.0	0.00	0.00	0.00
4,600.0		0.00	4,600.0	0.0	0.0	0.0	0.00	0.00	0.00
4,700.0		0.00	4,700.0	0.0	0.0	0.0	0.00	0.00	0.00
4,800.0		0.00	4,800.0	0.0	0.0	0.0	0.00	0.00	0.00

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

4,900.0

5,000.0

5,100.0

5,200.0

0.00

0.00

0.00

0.00

Hobbs Database:

Wellbore:

Company: Mewbourne Oil Company Lea County, New Mexico NAD 83 Project: Inland 26/23 B2NK State Com #1H Site:

Well: Sec 26, T21S, R34E BHL: 2542' FSL & 1900' FWL, Sec 23

Design: Design #1 Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Inland 26/23 B2NK State Com #1H WELL @ 3709.0usft (Original Well Elev) WELL @ 3709.0usft (Original Well Elev)

Planned S	Survey									
N	leasured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
	5,300.0 5,400.0	0.00 0.00	0.00 0.00	5,300.0 5,400.0	0.0 0.0	0.0 0.0	0.0 0.0	0.00 0.00	0.00 0.00	0.00 0.00
	5,500.0 5,575.0	0.00 0.00	0.00 0.00	5,500.0 5,575.0	0.0 0.0	0.0 0.0	0.0 0.0	0.00 0.00	0.00 0.00	0.00 0.00
	5,600.0	0.50	137.69	5,600.0	-0.1	0.1	-0.1	2.00	2.00	0.00
	5,700.0	2.50	137.69	5,700.0	-2.0	1.8	-2.0	2.00	2.00	0.00
	5,800.0	4.50	137.69	5,799.8	-6.5	5.9	-6.4	2.00	2.00	0.00
	5,834.7	5.19	137.69	5,834.4	-8.7	7.9	-8.5	2.00	2.00	0.00
	5,900.0 6,000.0	5.19 5.19	137.69 137.69	5,899.4 5,999.0	-13.1 -19.8	11.9 18.0	-12.8 -19.3	0.00 0.00	0.00 0.00	0.00 0.00
	6,100.0	5.19	137.69	6,098.6	-26.5	24.1	-25.9	0.00	0.00	0.00
	6,200.0	5.19	137.69	6,198.1	-33.2	30.2	-32.5	0.00	0.00	0.00
	6,300.0	5.19	137.69	6,297.7	-39.9	36.3	-39.0	0.00	0.00	0.00
	6,400.0	5.19	137.69	6,397.3	-46.6	42.4	-45.6	0.00	0.00	0.00
	6,500.0	5.19	137.69	6,496.9	-53.2	48.5	-52.1	0.00	0.00	0.00
	6,600.0	5.19	137.69	6,596.5	-59.9	54.6	-58.7	0.00	0.00	0.00
	6,700.0	5.19	137.69	6,696.1	-66.6	60.6	-65.2	0.00	0.00	0.00
	6,800.0	5.19	137.69	6,795.7	-73.3	66.7	-71.8	0.00	0.00	0.00
	6,900.0	5.19	137.69	6,895.3	-80.0	72.8	-78.3	0.00	0.00	0.00
	7,000.0 7,100.0	5.19 5.19	137.69 137.69	6,994.9 7,094.4	-86.7 -93.4	78.9 85.0	-84.9 -91.4	0.00 0.00	0.00 0.00	0.00 0.00
	7,100.0	5.19	137.69	7,194.0	-100.1	91.1	-91. 4 -98.0	0.00	0.00	0.00
	7,300.0	5.19	137.69	7.293.6	-106.8	97.2	-104.5	0.00	0.00	0.00
	7,400.0	5.19	137.69	7,393.2	-113.5	103.3	-111.1	0.00	0.00	0.00
	7,500.0	5.19	137.69	7,492.8	-120.2	109.4	-117.6	0.00	0.00	0.00
	7,600.0	5.19	137.69	7,592.4	-126.9	115.5	-124.2	0.00	0.00	0.00
	7,700.0	5.19	137.69	7,692.0	-133.6	121.6	-130.7	0.00	0.00	0.00
	7,800.0	5.19	137.69	7,791.6	-140.3	127.7	-137.3	0.00	0.00	0.00
	7,900.0	5.19	137.69	7,891.2	-147.0	133.8	-143.8	0.00	0.00	0.00
	8,000.0	5.19	137.69	7,990.8	-153.7	139.9	-150.4	0.00	0.00	0.00
	8,100.0 8,200.0	5.19 5.19	137.69 137.69	8,090.3 8,189.9	-160.4 -167.1	146.0 152.1	-157.0 -163.5	0.00 0.00	0.00 0.00	0.00 0.00
	8,300.0	5.19	137.69	8,289.5	-173.8	158.2	-170.1	0.00	0.00	0.00
	8,400.0	5.19	137.69	8,389.1	-180.5	164.2	-176.6	0.00	0.00	0.00
	8,500.0	5.19	137.69	8,488.7	-187.2	170.3	-183.2	0.00	0.00	0.00
	8,600.0	5.19	137.69	8,588.3	-193.9	176.4	-189.7	0.00	0.00	0.00
	8,700.0	5.19	137.69	8,687.9	-200.6	182.5	-196.3	0.00	0.00	0.00
	8,800.0	5.19	137.69	8,787.5	-207.3	188.6	-202.8	0.00	0.00	0.00
	8,900.0 9,000.0	5.19 5.19	137.69 137.69	8,887.1 8,986.6	-213.9 -220.6	194.7 200.8	-209.4 -215.9	0.00 0.00	0.00 0.00	0.00 0.00
	9,000.0	5.19	137.69	9,086.2	-220.6 -227.3	200.8	-215.9 -222.5	0.00	0.00	0.00
	9,200.0	5.19	137.69	9,185.8	-234.0	213.0	-229.0	0.00	0.00	0.00
	9,300.0	5.19	137.69	9,285.4	-240.7	219.1	-235.6	0.00	0.00	0.00
	9,400.0	5.19	137.69	9,385.0	-247.4	225.2	-242.1	0.00	0.00	0.00
	9,500.0	5.19	137.69	9,484.6	-254.1	231.3	-248.7	0.00	0.00	0.00
	9,562.3 9,600.0	5.19 4.44	137.69 137.69	9,546.7 9,584.2	-258.3 -260.6	235.1 237.2	-252.8 -255.1	0.00 2.00	0.00 -2.00	0.00 0.00
	9,700.0	2.44	137.69	9,684.0	-265.1	241.3	-259.4	2.00	-2.00	0.00
	9,800.0	0.44	137.69	9,784.0	-266.9	242.9	-261.2	2.00	-2.00	0.00
	9,822.1	0.00	0.00	9,806.0	-267.0	243.0	-261.3	2.00	-2.00	0.00
	KOP: 10' FSL	_ & 1900' FWL (2	26)							
	9,850.0	2.79	359.50	9,834.0	-266.3	243.0	-260.6	10.00	10.00	0.00
	9,900.0	7.79	359.50	9,883.7	-261.7	243.0	-256.0	10.00	10.00	0.00

Database: Hobbs

Company: Mewbourne Oil Company
Project: Lea County, New Mexico NAD 83
Site: Inland 26/23 B2NK State Com #1H

BHL: 2542' FSL & 1900' FWL, Sec 23

Well: Sec 26, T21S, R34E

Design: Design #1

Wellbore:

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Inland 26/23 B2NK State Com #1H WELL @ 3709.0usft (Original Well Elev) WELL @ 3709.0usft (Original Well Elev)

anned Survey									
Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
9,950.0	12.79	359.50	9,932.9	-252.8	242.9	-247.1	10.00	10.00	0.00
10,000.0	17.79	359.50	9,981.1	-239.6	242.8	-233.9	10.00	10.00	0.00
10,050.0	22.79	359.50	10,028.0	-222.3	242.6	-216.6	10.00	10.00	0.00
10,100.0	27.79	359.50	10,073.2	-200.9	242.4	-195.2	10.00	10.00	0.00
10,142.0	31.99	359.50	10,109.6	-180.0	242.2	-174.3	10.00	10.00	0.00
	L & 1900' FWL (10,100.0	100.0	212.2	17 1.0	10.00	10.00	0.00
10,150.0	32.79	359.50	10,116.4	-175.7	242.2	-170.0	10.00	10.00	0.00
	37.79								
10,200.0		359.50	10,157.2	-146.8	242.0	-141.2	10.00	10.00	0.00
10,250.0	42.79	359.50	10,195.3	-114.5	241.7	-108.9	10.00	10.00	0.00
10,300.0	47.79	359.50	10,230.5	-79.0	241.4	-73.4	10.00	10.00	0.00
10,350.0	52.79	359.50	10,262.4	-40.5	241.0	-34.9	10.00	10.00	0.00
10,400.0	57.79	359.50	10,290.8	0.6	240.7	6.2	10.00	10.00	0.00
10,450.0	62.79	359.50	10,315.6	44.0	240.3	49.5	10.00	10.00	0.00
10,500.0	67.79	359.50	10,336.5	89.4	239.9	94.9	10.00	10.00	0.00
10,550.0	72.79	359.50	10,353.4	136.4	239.5	142.0	10.00	10.00	0.00
10,600.0	77.79	359.50	10,366.1	184.8	239.1	190.3	10.00	10.00	0.00
10,650.0	82.79	359.50	10,374.5	234.1	238.6	239.5	10.00	10.00	0.00
10,700.0	87.79	359.50	10,374.5	283.9	238.2	289.3	10.00	10.00	0.00
10,727.0	90.49	359.50	10,379.0	310.9	238.0	316.3	9.99	9.99	0.00
	. & 1900' FWL (2	•	40.070.4	000.0	007.0	000.0	0.00	0.00	0.00
10,800.0	90.49	359.50	10,378.4	383.9	237.3	389.3	0.00	0.00	0.00
10,900.0	90.49	359.50	10,377.5	483.8	236.5	489.2	0.00	0.00	0.00
11,000.0	90.49	359.50	10,376.7	583.8	235.6	589.1	0.00	0.00	0.00
11,100.0	90.49	359.50	10,375.8	683.8	234.7	689.1	0.00	0.00	0.00
11,200.0	90.49	359.50	10,374.9	783.8	233.9	789.0	0.00	0.00	0.00
11,300.0	90.49	359.50	10,374.1	883.8	233.0	889.0	0.00	0.00	0.00
11,400.0	90.49	359.50	10,373.2	983.8	232.1	988.9	0.00	0.00	0.00
11,500.0	90.49	359.50	10,372.4	1,083.8		1,088.9	0.00	0.00	0.00
,				,	231.2	,			
11,600.0	90.49	359.50	10,371.5	1,183.8	230.4	1,188.8	0.00	0.00	0.00
11,700.0	90.49	359.50	10,370.7	1,283.8	229.5	1,288.8	0.00	0.00	0.00
11,800.0	90.49	359.50	10,369.8	1,383.8	228.6	1,388.7	0.00	0.00	0.00
11,900.0	90.49	359.50	10,368.9	1,483.8	227.8	1,488.7	0.00	0.00	0.00
12,000.0	90.49	359.50	10,368.1	1,583.8	226.9	1,588.6	0.00	0.00	0.00
12,100.0	90.49	359.50	10,367.2	1,683.8	226.0	1,688.5	0.00	0.00	0.00
12,200.0	90.49	359.50	10,366.4	1,783.8	225.2	1,788.5	0.00	0.00	0.00
12,300.0	90.49	359.50	10,365.5	1,883.7	224.3	1,888.4	0.00	0.00	0.00
12,400.0	90.49	359.50	10,364.7	1,983.7	223.4	1,988.4	0.00	0.00	0.00
12,500.0	90.49	359.50	10,363.8	2,083.7	222.5	2,088.3	0.00	0.00	0.00
,			,	,		,			0.00
12,600.0	90.49	359.50	10,363.0	2,183.7	221.7	2,188.3	0.00	0.00	
12,700.0	90.49	359.50	10,362.1	2,283.7	220.8	2,288.2	0.00	0.00	0.00
12,800.0	90.49	359.50	10,361.2	2,383.7	219.9	2,388.2	0.00	0.00	0.00
12,900.0	90.49	359.50	10,360.4	2,483.7	219.1	2,488.1	0.00	0.00	0.00
13,000.0	90.49	359.50	10,359.5	2,583.7	218.2	2,588.1	0.00	0.00	0.00
13,100.0	90.49	359.50	10,358.7	2,683.7	217.3	2,688.0	0.00	0.00	0.00
13,200.0	90.49	359.50	10,357.8	2,783.7	216.4	2,787.9	0.00	0.00	0.00
13,300.0	90.49	359.50	10,357.0	2,883.7	215.6	2,887.9	0.00	0.00	0.00
13,400.0	90.49	359.50	10,356.1	2,983.7	214.7	2,987.8	0.00	0.00	0.00
13,500.0	90.49	359.50	10,355.2	3,083.7	213.8	3,087.8	0.00	0.00	0.00
13,600.0	90.49	359.50	10,354.4	3,183.6	213.0	3,187.7	0.00	0.00	0.00
13,700.0	90.49	359.50	10,353.5	3,283.6	212.1	3,287.7	0.00	0.00	0.00
13,800.0	90.49	359.50	10,353.5	3,383.6	211.2	3,387.6	0.00	0.00	0.00
13,800.0	90.49	359.50 359.50	10,352.7	3,383.6 3,483.6	211.2	3,387.6		0.00	0.00
							0.00		
14,000.0	90.49	359.50	10,351.0	3,583.6	209.5	3,587.5	0.00	0.00	0.00
14,100.0	90.49	359.50	10,350.1	3,683.6	208.6	3,687.5	0.00	0.00	0.00

Hobbs Database:

Wellbore:

Company: Mewbourne Oil Company Project: Lea County, New Mexico NAD 83 Inland 26/23 B2NK State Com #1H Site:

Well: Sec 26, T21S, R34E BHL: 2542' FSL & 1900' FWL, Sec 23

Design: Design #1 Local Co-ordinate Reference:

Survey Calculation Method:

TVD Reference: MD Reference: North Reference:

Site Inland 26/23 B2NK State Com #1H WELL @ 3709.0usft (Original Well Elev) WELL @ 3709.0usft (Original Well Elev)

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
14,200.0	90.49	359.50	10,349.2	3,783.6	207.7	3,787.4	0.00	0.00	0.00
14,300.0	90.49	359.50	10,348.4	3,883.6	206.9	3,887.3	0.00	0.00	0.00
14,400.0	90.49	359.50	10,347.5	3,983.6	206.0	3,987.3	0.00	0.00	0.00
14,500.0	90.49	359.50	10,346.7	4,083.6	205.1	4,087.2	0.00	0.00	0.00
14,600.0	90.49	359.50	10,345.8	4,183.6	204.3	4,187.2	0.00	0.00	0.00
14,700.0	90.49	359.50	10,345.0	4,283.6	203.4	4,287.1	0.00	0.00	0.00
14,800.0	90.49	359.50	10,344.1	4,383.6	202.5	4,387.1	0.00	0.00	0.00
14,900.0	90.49	359.50	10,343.2	4,483.6	201.7	4,487.0	0.00	0.00	0.00
15,000.0	90.49	359.50	10,342.4	4,583.5	200.8	4,587.0	0.00	0.00	0.00
15,100.0	90.49	359.50	10,341.5	4,683.5	199.9	4,686.9	0.00	0.00	0.00
15,200.0	90.49	359.50	10,340.7	4,783.5	199.0	4,786.9	0.00	0.00	0.00
15,300.0	90.49	359.50	10,339.8	4,883.5	198.2	4,886.8	0.00	0.00	0.00
15,400.0	90.49	359.50	10,339.0	4,983.5	197.3	4,986.7	0.00	0.00	0.00
15,500.0	90.49	359.50	10,338.1	5,083.5	196.4	5,086.7	0.00	0.00	0.00
15,600.0	90.49	359.50	10,337.2	5,183.5	195.6	5,186.6	0.00	0.00	0.00
15,700.0	90.49	359.50	10,336.4	5,283.5	194.7	5,286.6	0.00	0.00	0.00
15,800.0	90.49	359.50	10,335.5	5,383.5	193.8	5,386.5	0.00	0.00	0.00
15,900.0	90.49	359.50	10,334.7	5,483.5	193.0	5,486.5	0.00	0.00	0.00
16,000.0	90.49	359.50	10,333.8	5,583.5	192.1	5,586.4	0.00	0.00	0.00
16,100.0	90.49	359.50	10,333.0	5,683.5	191.2	5,686.4	0.00	0.00	0.00
16,200.0	90.49	359.50	10,332.1	5,783.5	190.3	5,786.3	0.00	0.00	0.00
16,300.0	90.49	359.50	10,331.2	5,883.4	189.5	5,886.3	0.00	0.00	0.00
16,400.0	90.49	359.50	10,330.4	5,983.4	188.6	5,986.2	0.00	0.00	0.00
16,500.0	90.49	359.50	10,329.5	6,083.4	187.7	6,086.1	0.00	0.00	0.00
16,600.0	90.49	359.50	10,328.7	6,183.4	186.9	6,186.1	0.00	0.00	0.00
16,700.0	90.49	359.50	10,327.8	6,283.4	186.0	6,286.0	0.00	0.00	0.00
16,800.0	90.49	359.50	10,327.0	6,383.4	185.1	6,386.0	0.00	0.00	0.00
16,900.0	90.49	359.50	10,326.1	6,483.4	184.2	6,485.9	0.00	0.00	0.00
17,000.0	90.49	359.50	10,325.2	6,583.4	183.4	6,585.9	0.00	0.00	0.00
17,100.0	90.49	359.50	10,324.4	6,683.4	182.5	6,685.8	0.00	0.00	0.00
17,200.0	90.49	359.50	10,323.5	6,783.4	181.6	6,785.8	0.00	0.00	0.00
17,300.0	90.49	359.50	10,322.7	6,883.4	180.8	6,885.7	0.00	0.00	0.00
17,400.0	90.49	359.50	10,321.8	6,983.4	179.9	6,985.7	0.00	0.00	0.00
17,500.0	90.49	359.50	10,321.0	7,083.4	179.0	7,085.6	0.00	0.00	0.00
17,600.0	90.49	359.50	10,320.1	7,183.3	178.2	7,185.5	0.00	0.00	0.00
17,700.0	90.49	359.50	10,319.3	7,283.3	177.3	7,285.5	0.00	0.00	0.00
17,800.0	90.49	359.50	10,318.4	7,383.3	176.4	7,385.4	0.00	0.00	0.00
17,900.0	90.49	359.50	10,317.5	7,483.3	175.5	7,485.4	0.00	0.00	0.00
17,962.7	90.49	359.50	10,317.0	7,546.0	175.0	7,548.0	0.00	0.00	0.00

Hobbs Database:

Company: Mewbourne Oil Company Project: Lea County, New Mexico NAD 83 Inland 26/23 B2NK State Com #1H Site:

Well: Sec 26, T21S, R34E BHL: 2542' FSL & 1900' FWL, Sec 23

Design: Design #1

Wellbore:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Inland 26/23 B2NK State Com #1H WELL @ 3709.0usft (Original Well Elev) WELL @ 3709.0usft (Original Well Elev)

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
SHL: 280' FSL & 1660' F - plan hits target cer - Point		0.00	0.0	0.0	0.0	526,208.00	815,748.00	32.4434694	-103.4438113
KOP: 10' FSL & 1900' FV - plan hits target cer - Point		0.00	9,806.0	-267.0	243.0	525,941.00	815,991.00	32.4427300	-103.4430309
FTP: 100' FSL & 1900' F - plan hits target cer - Point		0.00	10,109.6	-180.0	242.2	526,028.00	815,990.24	32.4429692	-103.4430310
BHL: 2542' FSL & 1900' - plan hits target cer - Point	0.00 iter	0.00	10,317.0	7,546.0	175.0	533,754.00	815,923.00	32.4642054	-103.4430401
LP: 591' FSL & 1900' FV - plan hits target cer - Point		0.00	10,379.0	310.9	238.0	526,518.90	815,985.97	32.4443185	-103.4430315