Form 3160-3 FORM APPROVED OMB No. 1004-0137 (June 2015) Expires: January 31, 2018 **UNITED STATES** DEPARTMENT OF THE INTERIOR 5. Lease Serial No. BUREAU OF LAND MANAGEMENT APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. DRILL REENTER 1a. Type of work: 1b. Type of Well: Gas Well Oil Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing Single Zone Multiple Zone 2. Name of Operator 9. API Well No. 30 015 48973 10. Field and Pool, or Exploratory 3a. Address 3b. Phone No. (include area code) 4. Location of Well (Report location clearly and in accordance with any State requirements.\*) 11. Sec., T. R. M. or Blk. and Survey or Area At surface At proposed prod. zone 14. Distance in miles and direction from nearest town or post office\* 12. County or Parish 13. State 15. Distance from proposed\* 16. No of acres in lease 17. Spacing Unit dedicated to this well location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 18. Distance from proposed location\* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start\* 23. Estimated duration 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see 2. A Drilling Plan. Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. SUPO must be filed with the appropriate Forest Service Office). 6. Such other site specific information and/or plans as may be requested by the 25. Signature Name (Printed/Typed) Date Title Approved by (Signature) Name (Printed/Typed) Date Title Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction



(Continued on page 2)

\*(Instructions on page 2)



U.S. Department of the Interior **BUREAU OF LAND MANAGEMENT** 

# Application Data Repor

APD ID: 10400067670

Submission Date: 01/10/2021

Highlighted data reflects the most recent changes

**Operator Name: COG OPERATING LLC** 

Well Number: 502H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

#### **Section 1 - General**

Well Name: HAMBONE FEDERAL COM

10400067670 Tie to previous NOS? N

Submission Date: 01/10/2021

**BLM Office:** Carlsbad

APD ID:

**User: MAYTE REYES** 

Title: Regulatory Analyst

Federal/Indian APD: FED

Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM57261

**Lease Acres:** 

Surface access agreement in place?

Allotted?

Reservation:

Agreement in place? NO

Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? YES

**Permitting Agent? NO** 

APD Operator: COG OPERATING LLC

Operator letter of designation:

#### **Operator Info**

**Operator Organization Name: COG OPERATING LLC** 

Operator Address: 600 West Illinois Ave

**Zip:** 79701

**Operator PO Box:** 

**Operator City:** Midland

State: TX

Operator Phone: (432)683-7443

Operator Internet Address: RODOM@CONCHO.COM

### **Section 2 - Well Information**

Well in Master Development Plan? NO **Master Development Plan name:** 

Well in Master SUPO? NO Master SUPO name:

Well in Master Drilling Plan? NO Master Drilling Plan name:

Well Name: HAMBONE FEDERAL COM Well Number: 502H **Well API Number:** 

Field/Pool or Exploratory? Field and Pool Field Name: CORRAL CANYON Pool Name: BONE SPRING,

SOUTH

Is the proposed well in an area containing other mineral resources? USEABLE WATER

Well Name: HAMBONE FEDERAL COM Well Number: 502H

Is the proposed well in an area containing other mineral resources? USEABLE WATER

Is the proposed well in a Helium production area? N Use Existing Well Pad? N New surface disturbance?

Type of Well Pad: MULTIPLE WELL Multiple Well Pad Name: Number: 501H/502H

Well Class: HORIZONTAL

HAMBONE FEDERAL COM

Number of Legs: 1

Well Work Type: Drill Well Type: OIL WELL Describe Well Type:

Well sub-Type: EXPLORATORY (WILDCAT)

Describe sub-type:

Distance to town: 17 Miles Distance to nearest well: 30 FT Distance to lease line: 50 FT

Reservoir well spacing assigned acres Measurement: 640 Acres

Well plat: COG\_Hambone\_502H\_C102\_20210110210313.pdf

#### **Section 3 - Well Location Table**

Survey Type: RECTANGULAR

**Describe Survey Type:** 

Datum: NAD83 Vertical Datum: NAVD88

Survey number: Reference Datum: GROUND LEVEL

| Wellbore | NS-Foot | NS Indicator | EW-Foot | EW Indicator | Twsp | Range | Section | Aliquot/Lot/Tract | Latitude | Longitude | County | State | Meridian | Lease Type | Lease Number | Elevation | MD  | TVD | Will this well produce<br>from this lease? |
|----------|---------|--------------|---------|--------------|------|-------|---------|-------------------|----------|-----------|--------|-------|----------|------------|--------------|-----------|-----|-----|--------------------------------------------|
| SHL      | 222     | FSL          | 165     | FEL          | 26S  | 29E   | 8       | Aliquot           | 32.05025 | -         | EDD    | NEW   | NEW      | F          | NMNM         | 291       | 0   | 0   | N                                          |
| Leg      |         |              | 0       |              |      |       |         | SWSE              | 1        | 104.0006  | Υ      | MEXI  | MEXI     |            | 57261        | 7         |     |     |                                            |
| #1       |         |              |         |              |      |       |         |                   |          | 39        |        | CO    | CO       |            |              |           |     |     |                                            |
| KOP      | 222     | FSL          | 165     | FEL          | 26S  | 29E   | 8       | Aliquot           | 32.05025 | -         | EDD    | NEW   | NEW      | F          | NMNM         | 291       | 0   | 0   | N                                          |
| Leg      |         |              | 0       |              |      |       |         | SWSE              | 1        | 104.0006  | Υ      | 1     | MEXI     |            | 57261        | 7         |     |     |                                            |
| #1       |         |              |         |              |      |       |         |                   |          | 39        |        | CO    | CO       |            |              |           |     |     |                                            |
| PPP      | 100     | FSL          | 165     | FEL          | 26S  | 29E   | 8       | Aliquot           | 32.04991 | -         | EDD    | NEW   | NEW      | F          | NMNM         | -         | 846 | 838 | N                                          |
| Leg      |         |              | 0       |              |      |       |         | SWSE              | 8        | 104.0029  | Υ      | I     | MEXI     |            | 57261        | 546       | 8   | 0   |                                            |
| #1-1     |         |              |         |              |      |       |         |                   |          | 35        |        | СО    | СО       |            |              | 3         |     |     |                                            |

Well Name: HAMBONE FEDERAL COM Well Number: 502H

| Wellbore   | NS-Foot  | NS Indicator | EW-Foot  | EW Indicator | Twsp | Range | Section | Aliquot/Lot/Tract | Latitude      | Longitude     | County   | State       | Meridian  | Lease Type | Lease Number   | Elevation | MD        | TVD      | Will this well produce<br>from this lease? |
|------------|----------|--------------|----------|--------------|------|-------|---------|-------------------|---------------|---------------|----------|-------------|-----------|------------|----------------|-----------|-----------|----------|--------------------------------------------|
| PPP<br>Leg | 263<br>9 | FNL          | 165<br>0 | FEL          | 26S  | 29E   | 8       | Aliquot<br>SWNE   | 32.05703<br>3 | -<br>104.0030 | EDD<br>Y | NEW<br>MEXI | MEXI      | F          | NMNM<br>123925 | -<br>557  | 110<br>00 | 849<br>1 | Υ                                          |
| #1-2       |          |              |          |              |      |       |         |                   |               | 13            |          | CO          | СО        |            |                | 4         |           |          |                                            |
| PPP        | 1        | FSL          | 165      | FEL          | 26S  | 29E   | 5       | Aliquot           | 32.06436      |               | EDD      | NEW         | ' ' - ' ' | F          | NMNM           | -         | 137       | 847      | N                                          |
| Leg        |          |              | 0        |              |      |       |         | SWSE              | 2             | 104.0030      | Υ        |             | MEXI      |            | 124655         | 555       | 40        | 3        |                                            |
| #1-3       |          |              |          |              |      |       |         |                   |               | 93            |          | СО          | СО        |            |                | 6         |           |          |                                            |
| EXIT       | 100      | FNL          | 165      | FEL          | 26S  | 29E   |         | Aliquot           | 32.07867      |               | EDD      | NEW         | NEW       | F          | NMNM           | -         | 188       | 844      | Υ                                          |
| Leg        |          |              | 1        |              |      |       |         | NWNE              | 2             | 104.0032      | Υ        |             | MEXI      |            | 115417         | 552       | 00        | 0        |                                            |
| #1         |          |              |          |              |      |       |         |                   |               | 5             |          | СО          | СО        |            |                | 3         |           |          |                                            |
| BHL        | 50       | FNL          | 165      | FEL          | 26S  | 29E   | 5       | Aliquot           | 32.07880      |               | EDD      | NEW         | 14500     | F          | NMNM           | -         | 188       | 850      | Υ                                          |
| Leg        |          |              | 0        |              |      |       |         | NWNE              | 9             | 104.0032      | Υ        | MEXI        | MEXI      |            | 115417         | 558       | 57        | 5        |                                            |
| #1         |          |              |          |              |      |       |         |                   |               | 51            |          | СО          | CO        |            |                | 8         |           |          |                                            |



# U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

# Drilling Plan Data Report

09/08/2021

**APD ID:** 10400067670

Submission Date: 01/10/2021

Highlighted data reflects the most recent changes

Well Name: HAMBONE FEDERAL COM

Operator Name: COG OPERATING LLC

Well Number: 502H

**Show Final Text** 

Well Type: OIL WELL

Well Work Type: Drill

# **Section 1 - Geologic Formations**

|                  |                                                                                                                                                        | True Vertical                                                                                                                                                                                                                                                                                                                                                                       | Measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Producing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Formation Name   | Elevation                                                                                                                                              | Depth                                                                                                                                                                                                                                                                                                                                                                               | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lithologies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mineral Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| QUATERNARY       | 2917                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                   | Ö                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALLUVIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RUSTLER          | 2840                                                                                                                                                   | 77                                                                                                                                                                                                                                                                                                                                                                                  | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CONGLOMERATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TOP SALT         | 2517                                                                                                                                                   | 400                                                                                                                                                                                                                                                                                                                                                                                 | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SALT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BASE OF SALT     | 269                                                                                                                                                    | 2648                                                                                                                                                                                                                                                                                                                                                                                | 2648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SALT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LAMAR            | 79                                                                                                                                                     | 2838                                                                                                                                                                                                                                                                                                                                                                                | 2838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LIMESTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BELL CANYON      | 32                                                                                                                                                     | 2885                                                                                                                                                                                                                                                                                                                                                                                | 2885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SANDSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CHERRY CANYON    | -775                                                                                                                                                   | 3692                                                                                                                                                                                                                                                                                                                                                                                | 3692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SANDSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NATURAL GAS, OIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BRUSHY CANYON    | -2012                                                                                                                                                  | 4929                                                                                                                                                                                                                                                                                                                                                                                | 4929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SANDSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NATURAL GAS, OIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BONE SPRING LIME | -3633                                                                                                                                                  | 6550                                                                                                                                                                                                                                                                                                                                                                                | 6550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LIMESTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NATURAL GAS, OIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BONE SPRING 1ST  | -4545                                                                                                                                                  | 7462                                                                                                                                                                                                                                                                                                                                                                                | 7462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SANDSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NATURAL GAS, OIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BONE SPRING 2ND  | -5409                                                                                                                                                  | 8326                                                                                                                                                                                                                                                                                                                                                                                | 8326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SANDSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NATURAL GAS, OIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BONE SPRING 3RD  | -6434                                                                                                                                                  | 9351                                                                                                                                                                                                                                                                                                                                                                                | 9351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SANDSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NATURAL GAS, OIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| WOLFCAMP         | -6795                                                                                                                                                  | 9712                                                                                                                                                                                                                                                                                                                                                                                | 9712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SHALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NATURAL GAS, OIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  | RUSTLER  TOP SALT  BASE OF SALT  LAMAR  BELL CANYON  CHERRY CANYON  BRUSHY CANYON  BONE SPRING LIME  BONE SPRING 1ST  BONE SPRING 2ND  BONE SPRING 3RD | QUATERNARY       2917         RUSTLER       2840         TOP SALT       2517         BASE OF SALT       269         LAMAR       79         BELL CANYON       32         CHERRY CANYON       -775         BRUSHY CANYON       -2012         BONE SPRING LIME       -3633         BONE SPRING 1ST       -4545         BONE SPRING 2ND       -5409         BONE SPRING 3RD       -6434 | Formation Name         Elevation         Depth           QUATERNARY         2917         0           RUSTLER         2840         77           TOP SALT         2517         400           BASE OF SALT         269         2648           LAMAR         79         2838           BELL CANYON         32         2885           CHERRY CANYON         -775         3692           BRUSHY CANYON         -2012         4929           BONE SPRING LIME         -3633         6550           BONE SPRING 1ST         -4545         7462           BONE SPRING 2ND         -5409         8326           BONE SPRING 3RD         -6434         9351 | QUATERNARY       2917       0       0         RUSTLER       2840       77       77         TOP SALT       2517       400       400         BASE OF SALT       269       2648       2648         LAMAR       79       2838       2838         BELL CANYON       32       2885       2885         CHERRY CANYON       -775       3692       3692         BRUSHY CANYON       -2012       4929       4929         BONE SPRING LIME       -3633       6550       6550         BONE SPRING 1ST       -4545       7462       7462         BONE SPRING 2ND       -5409       8326       8326         BONE SPRING 3RD       -6434       9351       9351 | Formation Name         Elevation         Depth         Depth of the control | Formation Name         Elevation         Depth         Lithologies         Mineral Resources           QUATERNARY         2917         0         0         ALLUVIUM         NONE           RUSTLER         2840         77         77         CONGLOMERATE         NONE           TOP SALT         2517         400         400         SALT         NONE           BASE OF SALT         269         2648         2648         SALT         NONE           LAMAR         79         2838         2838         LIMESTONE         NONE           BELL CANYON         32         2885         2885         SANDSTONE         NONE           CHERRY CANYON         -775         3692         3692         SANDSTONE         NATURAL GAS, OIL           BONE SPRING LIME         -3633         6550         6550         LIMESTONE         NATURAL GAS, OIL           BONE SPRING 1ST         -4545         7462         7462         SANDSTONE         NATURAL GAS, OIL           BONE SPRING 2ND         -5409         8326         8326         SANDSTONE         NATURAL GAS, OIL           BONE SPRING 3RD         -6434         9351         9351         SANDSTONE         NATURAL GAS, OIL |

# **Section 2 - Blowout Prevention**

Well Name: HAMBONE FEDERAL COM Well Number: 502H

Pressure Rating (PSI): 3M Rating Depth: 8505

**Equipment:** BOP and BOPE will be installed per Onshore Order #2 requirements prior to drilling below the surface casing and will be rated to the above pressure rating or greater, see attached diagrams. Required safety valves, with appropriate wrenches and subs for the drill string being utilized, will be in the open position and accessible on the rig floor.

Requesting Variance? YES

**Variance request:** A variance is requested for the use of a flexible choke line from the BOP to choke manifold. See attached for specs and hydrostatic test chart. A variance is requested for use of a multibowl wellhead

**Testing Procedure:** The BOP and BOPE will be fully tested per Onshore Order #2 when initially installed, whenever any seal subject to test pressure is broken, and/or following related repairs.

#### **Choke Diagram Attachment:**

COG\_Hambone\_2M\_Choke\_20210110190418.pdf

#### **BOP Diagram Attachment:**

COG\_Hambone\_2M\_BOP\_20210110190429.pdf

Flex\_Hose\_Variance\_\_\_Pioneer\_84\_20190926121403.pdf

Pressure Rating (PSI): 5M Rating Depth: 2860

**Equipment:** BOP and BOPE will be installed per Onshore Order #2 requirements prior to drilling below the surface casing and will be rated to the above pressure rating or greater, see attached diagrams. Required safety valves, with appropriate wrenches and subs for the drill string being utilized, will be in the open position and accessible on the rig floor.

Requesting Variance? YES

**Variance request:** A variance is requested for the use of a flexible choke line from the BOP to choke manifold. See attached for specs and hydrostatic test chart. A variance is re A variance is requested for use of a multibowl wellhead

**Testing Procedure:** The BOP and BOPE will be fully tested per Onshore Order #2 when initially installed, whenever any seal subject to test pressure is broken, and/or following related repairs.

#### **Choke Diagram Attachment:**

COG\_Hambone\_3M\_Choke\_20210110190706.pdf

#### **BOP Diagram Attachment:**

COG\_Hambone\_2M\_BOP\_20210110190723.pdf

Flex\_Hose\_Variance\_\_\_Pioneer\_84\_20190926121639.pdf

# **Section 3 - Casing**

| Casing ID | String Type | Hole Size | Csg Size | Condition | Standard | Tapered String | Top Set MD | Bottom Set MD | Top Set TVD | Bottom Set TVD | Top Set MSL | Bottom Set MSL | Calculated casing<br>length MD | Grade | Weight | Joint Type | Collapse SF | Burst SF | Joint SF Type | Joint SF | Body SF Type | Body SF |
|-----------|-------------|-----------|----------|-----------|----------|----------------|------------|---------------|-------------|----------------|-------------|----------------|--------------------------------|-------|--------|------------|-------------|----------|---------------|----------|--------------|---------|
| 1         | SURFACE     | 17.5      | 13.375   | NEW       | API      | N              | 0          | 360           | 0           | 360            | 2917        | 2557           | 360                            | J-55  | 54.5   | ST&C       | 6.86        | 2.25     | DRY           | 26.2     | DRY          | 26.2    |

Well Name: HAMBONE FEDERAL COM

Well Number: 502H

| Casing ID | String Type      | Hole Size | Csg Size | Condition | Standard | Tapered String | Top Set MD | Bottom Set MD | Top Set TVD | Bottom Set TVD | Top Set MSL | Bottom Set MSL | Calculated casing length MD | Grade     | Weight | Joint Type | Collapse SF | Burst SF | Joint SF Type | Joint SF | Body SF Type | Body SF |
|-----------|------------------|-----------|----------|-----------|----------|----------------|------------|---------------|-------------|----------------|-------------|----------------|-----------------------------|-----------|--------|------------|-------------|----------|---------------|----------|--------------|---------|
|           | INTERMED<br>IATE | 12.2<br>5 | 9.625    | NEW       | API      | N              | 0          | 2860          | 0           | 2860           | 3585        | 57             | 2860                        | J-55      | 40     | LT&C       | 1.71        | 1.21     | DRY           | 4.55     | DRY          | 4.55    |
|           | PRODUCTI<br>ON   | 8.75      | 5.5      | NEW       | API      | N              | 0          | 18857         | 0           | 8505           | 3585        | -5588          | 18857                       | P-<br>110 | 17     | LT&C       | 1.82        | 3.26     | DRY           | 3.08     | DRY          | 3.08    |

Casing ID: 1 String Type: SURFACE

**Inspection Document:** 

**Spec Document:** 

**Tapered String Spec:** 

Casing Design Assumptions and Worksheet(s):

COG\_Hambone\_502H\_Casing\_Prog\_20210110223652.pdf

Casing ID: 2 String Type: INTERMEDIATE

**Inspection Document:** 

**Spec Document:** 

**Tapered String Spec:** 

Casing Design Assumptions and Worksheet(s):

COG\_Hambone\_502H\_Casing\_Prog\_20210110223801.pdf

Well Name: HAMBONE FEDERAL COM Well Number: 502H

#### **Casing Attachments**

Casing ID: 3 String Type: PRODUCTION

**Inspection Document:** 

**Spec Document:** 

**Tapered String Spec:** 

**Casing Design Assumptions and Worksheet(s):** 

COG\_Hambone\_502H\_Casing\_Prog\_20210110223524.pdf

# **Section 4 - Cement**

| String Type  | Lead/Tail | Stage Tool<br>Depth | Top MD | Bottom MD | Quantity(sx) | Yield | Density | Cu Ft | Excess% | Cement type              | Additives         |
|--------------|-----------|---------------------|--------|-----------|--------------|-------|---------|-------|---------|--------------------------|-------------------|
| SURFACE      | Lead      |                     | 0      | 360       | 30           | 1.75  | 13.5    | 52    | 50      | Class C                  | 4% Gel + 1% CaCl2 |
| SURFACE      | Tail      |                     | 0      | 360       | 250          | 1.34  | 14.8    | 335   | 50      | Class C                  | 2% CaCl2          |
| INTERMEDIATE | Lead      |                     | 0      | 2860      | 490          | 2     | 12.7    | 980   | 50      | 35:65:6 C Blend          | N/A               |
| INTERMEDIATE | Tail      |                     | 9320   | 2860      | 250          | 1.34  | 14.8    | 335   | 50      | Class C                  | 2% CaCl           |
| PRODUCTION   | Lead      |                     | 8505   | 1885<br>7 | 710          | 2.5   | 11.9    | 1775  | 20      | 50:50:10 H Blend         | N/A               |
| PRODUCTION   | Tail      |                     | 8505   | 1885<br>7 | 2650         | 1.24  | 14.4    | 3286  | 20      | 50:50:2 Class H<br>Blend | N/A               |

Well Name: HAMBONE FEDERAL COM Well Number: 502H

# **Section 5 - Circulating Medium**

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

**Describe what will be on location to control well or mitigate other conditions:** Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

# **Circulating Medium Table**

| Top Depth | Bottom Depth | Mud Type                   | Min Weight (lbs/gal) | Max Weight (lbs/gal) | Density (lbs/cu ft) | Gel Strength (lbs/100 sqft) | Н | Viscosity (CP) | Salinity (ppm) | Filtration (cc) | Additional Characteristics |
|-----------|--------------|----------------------------|----------------------|----------------------|---------------------|-----------------------------|---|----------------|----------------|-----------------|----------------------------|
| 360       | 2860         | OTHER :<br>Saturated Brine | 10                   | 10.1                 |                     |                             |   |                |                |                 | Saturated Brine            |
| 2860      | 1885<br>7    | OTHER : Cut<br>Brine       | 8.6                  | 9.3                  |                     |                             |   |                |                |                 | Cut Brine                  |
| 0         | 360          | OTHER : Fresh<br>water gel | 8.6                  | 8.8                  |                     |                             |   |                |                |                 | Fresh water gel            |

# **Section 6 - Test, Logging, Coring**

List of production tests including testing procedures, equipment and safety measures:

None planned

List of open and cased hole logs run in the well:

CEMENT BOND LOG, COMPENSATED NEUTRON LOG, GAMMA RAY LOG,

Coring operation description for the well:

None planned

Well Name: HAMBONE FEDERAL COM Well Number: 502H

#### **Section 7 - Pressure**

Anticipated Bottom Hole Pressure: 4115 Anticipated Surface Pressure: 2243

Anticipated Bottom Hole Temperature(F): 145

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

**Contingency Plans geohazards attachment:** 

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

COG\_Hambone\_501H\_502H\_H2S\_Schem\_20210110192743.pdf

COG\_Hambone\_H2S\_SUP\_20210110192755.pdf

#### **Section 8 - Other Information**

# Proposed horizontal/directional/multi-lateral plan submission:

COG\_Hambone\_502H\_AC\_RPT\_20210110224717.pdf

COG\_Hambone\_502H\_Directional\_Plan\_20210110224727.pdf

#### Other proposed operations facets description:

Drilling prog attached.

Cement prog attached.

GCP attached.

#### Other proposed operations facets attachment:

COG\_Hambone\_501H\_502H\_505H\_506H\_GCP\_20210110192927.pdf

COG\_Hambone\_501H\_Cement\_Prog\_20210110192907.pdf

COG\_Hambone\_502H\_Drilling\_Prog\_20210110224739.pdf

### **Other Variance attachment:**



U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

SUPO Data Report

**APD ID:** 10400067670

**Operator Name: COG OPERATING LLC** 

Well Name: HAMBONE FEDERAL COM

Well Type: OIL WELL

Submission Date: 01/10/2021

Well Number: 502H

Well Work Type: Drill

Highlighted data reflects the most recent changes

**Show Final Text** 

# **Section 1 - Existing Roads**

Will existing roads be used? YES

**Existing Road Map:** 

COG\_Hambone\_Existing\_Road\_20210110193058.pdf

**Existing Road Purpose: ACCESS, FLUID TRANSPORT** 

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? YES

Existing Road Improvement Description: Existing roads will be maintained in the same condition or better.

**Existing Road Improvement Attachment:** 

#### **Section 2 - New or Reconstructed Access Roads**

Will new roads be needed? NO

# **Section 3 - Location of Existing Wells**

**Existing Wells Map?** YES

Attach Well map:

COG\_Hambone\_502H\_1Mile\_Data\_20210110212038.pdf

Well Name: HAMBONE FEDERAL COM Well Number: 502H

# Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

**Production Facilities description:** The Hambone Federal 8P Central Tank Battery (CTB) in Sec.8, T26S, R29E will be utilized to produce 3 existing Wolfcamp wells and 3 new 2nd Bone Spring wells (Hambone Federal Com 501H,502H). Each well head will be connected to a buried 4 FP 601HT that will be used to carry oil, water and gas production from each wellhead to their respected test vessel at the CTB; the route for these flowlines will follow the flowline corridor route as shown in the exhibit drawing and attached plats. Furthermore, each well pad will have one buried 4 FP 150 line for gas lift supply from the CTB; the route for this gas lift line will start on the CTB pad where designated by gas line in the exhibit drawing and then following the flowline corridor in the attached plats.

**Production Facilities map:** 

COG\_Hambone\_Federal\_8P\_CTB\_Schematic\_20210110204747.pdf

# Section 5 - Location and Types of Water Supply

#### **Water Source Table**

Water source type: OTHER

Describe type: Brine Water

Water source use type: INTERMEDIATE/PRODUCTION

**CASING** 

Source latitude: Source longitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Water source transport method: TRUCKING

Source land ownership: COMMERCIAL

Source transportation land ownership: COMMERCIAL

Water source volume (barrels): 30000 Source volume (acre-feet): 3.866793

Source volume (gal): 1260000

Well Name: HAMBONE FEDERAL COM Well Number: 502H

Water source type: OTHER

Describe type: Fresh Water

Water source use type:

ICE PAD CONSTRUCTION &

MAINTENANCE STIMULATION

SURFACE CASING

Source latitude: Source longitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Water source transport method: PIPELINE

Source land ownership: PRIVATE

Source transportation land ownership: PRIVATE

Water source volume (barrels): 450000 Source volume (acre-feet): 58.001892

Source volume (gal): 18900000

Water source and transportation map:

COG\_Hambone\_501H\_502H\_Brine\_H2O\_20210110203202.pdf COG\_Hambone\_501H\_502H\_Fresh\_H2O\_20210110203211.pdf

Water source comments: See attached maps

New water well? N

#### **New Water Well Info**

Well latitude: Well Longitude: Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft): Est thickness of aquifer:

**Aquifer comments:** 

Aquifer documentation:

Well depth (ft): Well casing type:

Well casing outside diameter (in.): Well casing inside diameter (in.):

New water well casing?

Used casing source:

Drilling method: Drill material:

Grout material: Grout depth:

Casing length (ft.): Casing top depth (ft.):

Well Name: HAMBONE FEDERAL COM Well Number: 502H

Well Production type:

**Completion Method:** 

Water well additional information:

State appropriation permit:

Additional information attachment:

#### **Section 6 - Construction Materials**

Using any construction materials: YES

**Construction Materials description:** Caliche will be obtained from the actual well site. If caliche does not exist or is not plentiful from the well site, the caliche source will be from a Federal Caliche Pit located in Sec 24-T26S-R29E.

**Construction Materials source location attachment:** 

# **Section 7 - Methods for Handling Waste**

Waste type: DRILLING

Waste content description: Drilling fluids and produced oil land water while drilling and completion operations

Amount of waste: 6000 barrels

Waste disposal frequency: One Time Only

Safe containment description: All drilling waste will be stored safely and disposed of properly

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

**FACILITY** 

Disposal type description:

Disposal location description: Trucked to an approved disposal facility

Waste type: SEWAGE

Waste content description: Human waste and gray water

Amount of waste: 1000 gallons

Waste disposal frequency: One Time Only

Safe containment description: Waste will be properly contained and disposed of properly at a state approved disposal

facility.

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

**FACILITY** 

Disposal type description:

Disposal location description: Trucked to an approved disposal facility

Waste type: GARBAGE

Waste content description: Garbage and trash produced during drilling and completion operations.

Amount of waste: 500 pounds

Waste disposal frequency: One Time Only

Received by OCD: 9/17/2021 8:07:53 AM

Page 15 of 71

Operator Name: COG OPERATING LLC

Well Name: HAMBONE FEDERAL COM Well Number: 502H

**Safe containment description:** Garbage and trash produced during drilling and completion operations will be collected in a trash container and disposed of properly at a state approved disposal facility

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

**FACILITY** 

Disposal type description:

**Disposal location description:** Trucked to an approved disposal facility.

#### **Reserve Pit**

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

### **Cuttings Area**

Cuttings Area being used? NO

Are you storing cuttings on location? Y

Description of cuttings location Roll off cutting containers on tracks

Cuttings area length (ft.) Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

**WCuttings** area liner

Cuttings area liner specifications and installation description

# **Section 8 - Ancillary Facilities**

Are you requesting any Ancillary Facilities?: N

**Ancillary Facilities attachment:** 

Comments: Gas Capture Plan attached

Well Number: 502H Well Name: HAMBONE FEDERAL COM

# **Section 9 - Well Site Layout**

#### Well Site Layout Diagram:

COG Hambone 501H 502H Layout 20210110193201.pdf

Comments:

# **Section 10 - Plans for Surface Reclamation**

Type of disturbance: New Surface Disturbance Multiple Well Pad Name: HAMBONE FEDERAL COM

Multiple Well Pad Number: 501H/502H

#### **Recontouring attachment:**

COG\_Hambone\_501H\_502H\_Reclamation\_20210110203618.pdf

Drainage/Erosion control construction: Proper erosion control methods will be used at the well site to control erosion, runoff, and siltation of the surrounding area. Straw waddles will be used as necessary at the well site to reduce sediment impacts to fragile/sensitive soils.

Drainage/Erosion control reclamation: The interim reclamation will be monitored periodically to ensure that vegetation has re-established and that erosion is controlled.

Well pad proposed disturbance

Well pad interim reclamation (acres):

Well pad long term disturbance

(acres): 3.95

(acres): 3.46

Road proposed disturbance (acres): 0 Road interim reclamation (acres): 0

Road long term disturbance (acres): 0

Powerline proposed disturbance

(acres): 0

Powerline interim reclamation (acres): Powerline long term disturbance

(acres): 0

Pipeline proposed disturbance

Pipeline interim reclamation (acres): 0 Pipeline long term disturbance

(acres): 0

Other interim reclamation (acres): 3.95

(acres): 0

Other proposed disturbance (acres):

Other long term disturbance (acres):

Total proposed disturbance: 7.9

Total interim reclamation: 4.01

Total long term disturbance: 7.41

#### **Disturbance Comments:**

Reconstruction method: If needed, portions of the pad not needed for production operations will be re-contoured to its original state as much as possible. The caliche that is removed will be reused. The stockpiled topsoil will be spread out over reclaimed area and reseeded with BLM approved seed mixture.

Topsoil redistribution: South

Soil treatment: None

Existing Vegetation at the well pad: Shinnery Oak/Mesquite grassland

**Existing Vegetation at the well pad attachment:** 

Existing Vegetation Community at the road: Shinnery Oak/Mesquite grassland

**Existing Vegetation Community at the road attachment:** 

Well Name: HAMBONE FEDERAL COM Well Number: 502H

Existing Vegetation Community at the pipeline: Shinnery Oak/Mesquite grassland

**Existing Vegetation Community at the pipeline attachment:** 

Existing Vegetation Community at other disturbances: N/A

**Existing Vegetation Community at other disturbances attachment:** 

Non native seed used? N

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? N

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? N

Seed harvest description:

Seed harvest description attachment:

**Seed Management** 

**Seed Table** 

**Seed Summary** 

Total pounds/Acre:

Seed Type

Seed reclamation attachment:

**Operator Contact/Responsible Official Contact Info** 

Pounds/Acre

First Name: Last Name:

Phone: Email:

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? N

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Well Name: HAMBONE FEDERAL COM Well Number: 502H

Weed treatment plan description: N/A

Weed treatment plan attachment:

Monitoring plan description: N/A

Monitoring plan attachment:

Success standards: N/A

Pit closure description: N/A

Pit closure attachment:

COG\_Hambone\_Closed\_Loop\_20210110203659.pdf

# **Section 11 - Surface Ownership**

Disturbance type: WELL PAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

**BIA Local Office:** 

**BOR Local Office:** 

**COE Local Office:** 

**DOD Local Office:** 

**NPS Local Office:** 

**State Local Office:** 

**Military Local Office:** 

**USFWS Local Office:** 

Other Local Office:

**USFS** Region:

**USFS Forest/Grassland:** 

**USFS Ranger District:** 

#### **Section 12 - Other Information**

Right of Way needed? N

Use APD as ROW?

ROW Type(s):

**ROW Applications** 

Well Name: HAMBONE FEDERAL COM Well Number: 502H

**SUPO Additional Information:** Surface Use & Operating Plan.

Use a previously conducted onsite? Y

Previous Onsite information: Onsite completed on 07/01/2019 by Gerald Herrera (COG) and Matias Telles (BLM).

# **Other SUPO Attachment**

COG\_Hambone\_Existing\_Road\_20210110203819.pdf COG\_Hambone\_Fed\_Com\_GCP\_20210110203806.docx

COG\_Hambone\_502H\_C102\_20210110212146.pdf



U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

PWD Data Report

PWD disturbance (acres):

**APD ID:** 10400067670 **Submission Date:** 01/10/2021

Operator Name: COG OPERATING LLC

Well Name: HAMBONE FEDERAL COM Well Number: 502H

Well Type: OIL WELL Well Work Type: Drill

#### **Section 1 - General**

Would you like to address long-term produced water disposal? NO

# **Section 2 - Lined Pits**

Would you like to utilize Lined Pit PWD options? N

**Produced Water Disposal (PWD) Location:** 

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Well Name: HAMBONE FEDERAL COM Well Number: 502H

**Lined pit Monitor description:** 

**Lined pit Monitor attachment:** 

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

# **Section 3 - Unlined Pits**

Would you like to utilize Unlined Pit PWD options? N

**Produced Water Disposal (PWD) Location:** 

PWD disturbance (acres): PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

**Unlined pit Monitor description:** 

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

**TDS lab results:** 

Geologic and hydrologic evidence:

State authorization:

**Unlined Produced Water Pit Estimated percolation:** 

Unlined pit: do you have a reclamation bond for the pit?

Well Name: HAMBONE FEDERAL COM Well Number: 502H

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

**Section 4 - Injection** 

Would you like to utilize Injection PWD options? N

**Produced Water Disposal (PWD) Location:** 

PWD surface owner: PWD disturbance (acres):

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

Injection well number: Injection well name:

Assigned injection well API number? Injection well API number:

Injection well new surface disturbance (acres):

**Minerals protection information:** 

Mineral protection attachment:

**Underground Injection Control (UIC) Permit?** 

**UIC Permit attachment:** 

**Section 5 - Surface Discharge** 

Would you like to utilize Surface Discharge PWD options? N

**Produced Water Disposal (PWD) Location:** 

PWD surface owner: PWD disturbance (acres):

Surface discharge PWD discharge volume (bbl/day):

**Surface Discharge NPDES Permit?** 

**Surface Discharge NPDES Permit attachment:** 

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options?  ${\sf N}$ 

**Produced Water Disposal (PWD) Location:** 

PWD surface owner: PWD disturbance (acres):

Other PWD discharge volume (bbl/day):

Released to Imaging: 9/21/2021 1:30:22 PM

Well Name: HAMBONE FEDERAL COM Well Number: 502H

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:



U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

# Bond Info Data Report

09/08/2021

APD ID: 10400067670

Operator Name: COG OPERATING LLC

Submission Date: 01/10/2021

Highlighted data reflects the most recent changes

Well Name: HAMBONE FEDERAL COM

Well Number: 502H

**Show Final Text** 

Well Type: OIL WELL

Well Work Type: Drill

### **Bond Information**

Federal/Indian APD: FED

**BLM Bond number: NMB000215** 

**BIA Bond number:** 

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

**BLM** reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

**Reclamation bond number:** 

**Reclamation bond amount:** 

**Reclamation bond rider amount:** 

Additional reclamation bond information attachment:



U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

# Operator Certification Data Report

# **Operator Certification**

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: MAYTE REYES Signed on: 01/10/2021

Title: Regulatory Analyst

Street Address: 925 N ELDRIDGE PARKWAY

City: HOUSTON State: TX Zip: 77252

Phone: (281)293-1000

Email address: MAYTE.X.REYES@CONOCOPHILLIPS.COM

#### **Field Representative**

Representative Name: Gerald Herrera

Street Address: 2208 West Main Street

City: Artesia State: NM Zip: 88210

Phone: (575)748-6940

Email address: gherrera@concho.com

State of New Mexico DISTRICT I

1825 N. FRENCH DR. HORBS, NR 58240 Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION

1220 SOUTH ST. FRANCIS DR.

Santa Fe, New Mexico 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT

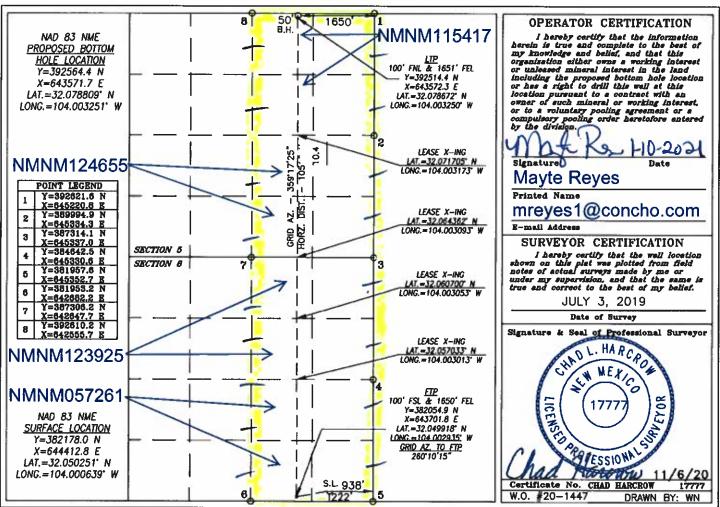
Released to Imaging: 9/21/2021 1:30:22 PM

DISTRICT III 1000 RIO BRAZOS RD., AZTEC, NM 87410 Phone: (505) 334-6176 Fax: (505) 334-6170

DISTRICT II 811 5. FIRST ST., ARTESIA, NM 88210 Phone: (875) 748-1283 Fax: (875) 748-9720

DISTRICT IV 1220 S. ST. FRANCIS DEL. SANTA FR. NM 87605 Phone: (505) 476-3460 Faz: (506) 476-3462

|               | WELL LOCATION AND | ACREAGE DEDICATION PLAT |               |
|---------------|-------------------|-------------------------|---------------|
| API Number    | Pool Code         | Pool Name               |               |
| 30-015-       | 13354             | CORRAL CANYON; BONE S   | SPRING, SOUTH |
| Property Code |                   | porty Name              | Well Number   |
|               | HAMBONE           | FEDERAL COM             | 502H          |
| OGRID No.     |                   | rator Name              | Elevation     |
| 229137        | COG OPE           | RATING, LLC             | 2916.8'       |
|               |                   |                         |               |


#### Surface Location

| UL or lot No. | Section | Township | Range | Lot Idn | Feet from the | North/South line | Feet from the | Bast/West line | County |
|---------------|---------|----------|-------|---------|---------------|------------------|---------------|----------------|--------|
| Р             | 8       | 26-S     | 29-E  |         | 222           | SOUTH            | 938           | EAST           | EDDY   |

#### Bottom Hole Location If Different From Surface

| UL or lot No.  | Section   | Townshi  | p Range       | Lot Idn | Feet from the | North/South line | Feet from the | East/West line | County |
|----------------|-----------|----------|---------------|---------|---------------|------------------|---------------|----------------|--------|
| В              | 5         | 26-3     | S 29-E        |         | 50            | NORTH            | 1650          | EAST           | EDDY   |
| Dedicated Acre | s Joint o | r Infill | Consolidation | Code Or | der No.       |                  |               |                |        |
| 640            |           |          |               |         |               |                  |               |                |        |

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION



### State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

# NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

### <u>Section 1 – Plan Description</u> Effective May 25, 2021

| I. Operator: COG Op                                                                                              | perating LL                                   | C_OGRID:2                    | 29137                           | Date: _(           | <u>)9 / 16 / 21</u> | _         |                                                            |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------|---------------------------------|--------------------|---------------------|-----------|------------------------------------------------------------|
| II. Type: ☒ Original ☐                                                                                           | ☐ Amendment                                   | due to □ 19.15.27.           | 9.D(6)(a) NMA                   | C □ 19.15.27.9.D(  | 6)(b) NMAC □        | Other.    |                                                            |
| If Other, please describe                                                                                        | ::                                            |                              |                                 |                    |                     |           |                                                            |
| III. Well(s): Provide the be recompleted from a s                                                                |                                               |                              |                                 |                    | wells proposed      | to be dri | lled or proposed to                                        |
| Well Name                                                                                                        | Anticipated<br>Gas MCF/D                      | P                            | Anticipated roduced Water BBL/D |                    |                     |           |                                                            |
| Hambone Federal Com 502H                                                                                         | 30-015-                                       | P-8-26S-29E                  | 222 FSL &<br>938 FEL            | ± 1249             | ± 2694              |           | ± 2342                                                     |
| V. Anticipated Schedul proposed to be recomple  Well Name                                                        | le: Provide the                               |                              |                                 |                    | vell or set of we   | lls propo | 7.9(D)(1) NMAC] sed to be drilled or First Production Date |
| Hambone Federal Com 502H                                                                                         | Pending                                       | 4/20/2022                    | ± 25 days from spud             | 8/18/2022          | 8/28/               | 2022      | 9/2/2022                                                   |
| VI. Separation Equipm VII. Operational Prac Subsection A through F VIII. Best Managemer during active and planne | tices: \(\mathbb{Z}\) Attaction of 19.15.27.8 | ch a complete descr<br>NMAC. | iption of the ac                | tions Operator wil | l take to compl     | y with t  | he requirements of                                         |

# Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EFFECTIV                                                                                                                                                                                                            | E APRIL 1, 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Beginning April 1, 2 reporting area must c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     | with its statewide natural ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | as capture requirement for the applicable                                                                                                                                                                                                                                                                              |
| ☐ Operator certifies capture requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     | tion because Operator is in o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | compliance with its statewide natural gas                                                                                                                                                                                                                                                                              |
| IX. Anticipated Nat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ural Gas Producti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on:                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        |
| We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ell .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | API                                                                                                                                                                                                                 | Anticipated Average<br>Natural Gas Rate MCF/D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Anticipated Volume of Natural Gas for the First Year MCF                                                                                                                                                                                                                                                               |
| X. Natural Gas Gat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hering System (NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GGS):                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        |
| Operator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ULSTR of Tie-in                                                                                                                                                                                                     | Anticipated Gathering<br>Start Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Available Maximum Daily Capacity of System Segment Tie-in                                                                                                                                                                                                                                                              |
| production operations the segment or portion the segment or portion in the segment or portion in the segment or portion in the segment or portion volume from the segment of the segment o | s to the existing or pon of the natural gas gas.  The natural gas gas come the well prior to the composition of the well prior to the composition of the composition | planned interconnect of to gathering system(s) to we thering system will to the date of first product does not anticipate the dabove will continue to be duction in response to the terts confidentiality pursuant. | he natural gas gathering systewhich the well(s) will be considered will not have capacity to go tion.  At its existing well(s) connect meet anticipated increases in the increased line pressure.  But to Section 71-2-8 NMS 27.9 NMAC, and attaches a fixed which we have the constant of the content of the constant of the constant of the content of the content of the constant of the content of the c | aticipated pipeline route(s) connecting the em(s), and the maximum daily capacity of nected.  Eather 100% of the anticipated natural gas ted to the same segment, or portion, of the in line pressure caused by the new well(s).  EA 1978 for the information provided in full description of the specific information |

# Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

🗵 Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or ☐ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. If Operator checks this box, Operator will select one of the following: Well Shut-In. 

Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or Venting and Flaring Plan. 

Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including: power generation on lease; (a) power generation for grid; **(b)** compression on lease; (c) (d) liquids removal on lease: reinjection for underground storage; (e) reinjection for temporary storage; **(f)** reinjection for enhanced oil recovery; (g) fuel cell production; and (h)

#### **Section 4 - Notices**

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

other alternative beneficial uses approved by the division.

- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- **(b)** Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

(i)

#### VI. Separation Equipment

How Operator will size separation equipment to optimize gas capture:

All ConocoPhillips production facility equipment will be sized per industry standards (API 12J) with adequate retention time to effectively separate all phases of production. Each project will take into consideration the number of wells and type curves for each formation pool to ensure adequate facility capacity. Design considerations will also include review of all piping, tanks, VRU's and associated equipment to ensure optimized gas capture minimized risk of release.

#### **VII. Operational Practices**

Actions Operator will take to comply with the requirements below:

#### B. Drilling Operations

- During drilling, flare stacks will be located a minimum of 100 feet from the nearest surface hole location. All gas is captured or combusted. If an emergency or malfunction occurs, gas will be flared or vented for public health, safety, and the environment and be properly reported to the NMOCD pursuant to 19.15.27.8.G.
- Measure or estimate the volume of natural gas that is vented, flared or beneficially used during drilling, completion and production operations, regardless of the reason or authorization for such venting or flaring.

#### C. Completion Operations

- During completion operations, operator does not produce oil or gas but maintains adequate well control through completion operations.
- Individual well test separators will be set to properly separate gas and liquids. A
  temporary test separator will be utilized initially to process volumes. In addition,
  separators will be tied into flowback tanks which will be tied into the gas processing
  equipment for sales down a pipeline.

#### D. Venting and flaring during production operations

- During each phase of well life (drilling, completion and production) of a ConocoPhillips well, COP personnel will follow all necessary procedures to ensure both the operation and the equipment are within the NMAC 19.15.27.8 Subsection D guidelines.
- During well operations that require unloading of the well to atmospheric pressure, all reasonable actions will be taken to minimize vented gas
- Through the life of the well all flaring shall be measured, and venting events quantified using the data available and industry best practice.

#### E. Performance standards for separation, storage tank and flare equipment

 All storage tanks and separation equipment are designed minimize risk of liquid or vapor release and optimize gas capture. This includes automation for automatic gauging and pressure monitoring.

- All flare stacks are equipped with auto ignition devices and/or continuous pilots and are designed to operate at maximum combustion efficiency pursuant NMAC 19.15.27.8
   Subsection E. Flares will follow COP spacing guidelines to ensure they are a safe distance from combustibles and operations equipment.
- COP personnel will conduct routine AVO inspections on a regular basis per NMAC 19.15.27.8 Subsection E guidelines.
- F. Measurement of vented and flared natural gas.
  - Measurement equipment will be installed to quantify gas flared during drilling, completion and production of the well.
  - All measurement devices installed will meet accuracy ratings per AGA and API standards.
  - Measurement devices will be installed without manifolds that allow diversion of gas around the metering element, except for the sole purpose of inspection of servicing the measurement device.

#### **VIII. Best Management Practices**

- Operator will curtail or shut in production, within reasonable limits, during upset conditions to minimize venting and flaring.
- When feasible, Operator will use equipment to capture gas that would otherwise be vented or flared
- During completions and production operations Operator will minimize blowdowns to atmosphere
- When feasible, Operator will use electric or air actuated equipment to reduce bleed emissions

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

| Signature: Mayte Reyes                                |
|-------------------------------------------------------|
| Printed Name: Mayte Reyes                             |
| Title: Sr. Regulatory Coodinator                      |
| E-mail Address: mayte.x.reyes@conocophillips.com      |
| Date: 9/16/2021                                       |
| Phone: 575-748-6945                                   |
| OIL CONSERVATION DIVISION                             |
| (Only applicable when submitted as a standalone form) |
| Approved By:                                          |
| Title:                                                |
| Approval Date:                                        |
| Conditions of Approval:                               |
|                                                       |
|                                                       |
|                                                       |
|                                                       |



# U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

# Drilling Plan Data Report

09/08/2021

**APD ID:** 10400067670

Submission Date: 01/10/2021

Highlighted data reflects the most recent changes

Well Name: HAMBONE FEDERAL COM

Operator Name: COG OPERATING LLC

Well Number: 502H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

# **Section 1 - Geologic Formations**

| Formation |                  |           | True Vertical |       |              |                   | Producing |
|-----------|------------------|-----------|---------------|-------|--------------|-------------------|-----------|
| ID        | Formation Name   | Elevation | Depth         | Depth | Lithologies  | Mineral Resources | Formation |
| 1373258   | QUATERNARY       | 2917      | 0             | Ö     | ALLUVIUM     | NONE              | N         |
| 1373261   | RUSTLER          | 2840      | 77            | 77    | CONGLOMERATE | NONE              | N         |
| 1373262   | TOP SALT         | 2517      | 400           | 400   | SALT         | NONE              | N         |
| 1373263   | BASE OF SALT     | 269       | 2648          | 2648  | SALT         | NONE              | N         |
| 1373256   | LAMAR            | 79        | 2838          | 2838  | LIMESTONE    | NONE              | N         |
| 1373257   | BELL CANYON      | 32        | 2885          | 2885  | SANDSTONE    | NONE              | N         |
| 1373264   | CHERRY CANYON    | -775      | 3692          | 3692  | SANDSTONE    | NATURAL GAS, OIL  | N         |
| 1373265   | BRUSHY CANYON    | -2012     | 4929          | 4929  | SANDSTONE    | NATURAL GAS, OIL  | N         |
| 1373266   | BONE SPRING LIME | -3633     | 6550          | 6550  | LIMESTONE    | NATURAL GAS, OIL  | N         |
| 1373267   | BONE SPRING 1ST  | -4545     | 7462          | 7462  | SANDSTONE    | NATURAL GAS, OIL  | N         |
| 1373268   | BONE SPRING 2ND  | -5409     | 8326          | 8326  | SANDSTONE    | NATURAL GAS, OIL  | Y         |
| 1373260   | BONE SPRING 3RD  | -6434     | 9351          | 9351  | SANDSTONE    | NATURAL GAS, OIL  | N         |
| 1373255   | WOLFCAMP         | -6795     | 9712          | 9712  | SHALE        | NATURAL GAS, OIL  | N         |

# **Section 2 - Blowout Prevention**

Well Name: HAMBONE FEDERAL COM Well Number: 502H

Pressure Rating (PSI): 3M Rating Depth: 8505

**Equipment:** BOP and BOPE will be installed per Onshore Order #2 requirements prior to drilling below the surface casing and will be rated to the above pressure rating or greater, see attached diagrams. Required safety valves, with appropriate wrenches and subs for the drill string being utilized, will be in the open position and accessible on the rig floor.

Requesting Variance? YES

**Variance request:** A variance is requested for the use of a flexible choke line from the BOP to choke manifold. See attached for specs and hydrostatic test chart. A variance is requested for use of a multibowl wellhead

**Testing Procedure:** The BOP and BOPE will be fully tested per Onshore Order #2 when initially installed, whenever any seal subject to test pressure is broken, and/or following related repairs.

#### **Choke Diagram Attachment:**

COG\_Hambone\_2M\_Choke\_20210110190418.pdf

#### **BOP Diagram Attachment:**

COG\_Hambone\_2M\_BOP\_20210110190429.pdf

Flex\_Hose\_Variance\_\_\_Pioneer\_84\_20190926121403.pdf

Pressure Rating (PSI): 5M Rating Depth: 2860

**Equipment:** BOP and BOPE will be installed per Onshore Order #2 requirements prior to drilling below the surface casing and will be rated to the above pressure rating or greater, see attached diagrams. Required safety valves, with appropriate wrenches and subs for the drill string being utilized, will be in the open position and accessible on the rig floor.

Requesting Variance? YES

**Variance request:** A variance is requested for the use of a flexible choke line from the BOP to choke manifold. See attached for specs and hydrostatic test chart. A variance is re A variance is requested for use of a multibowl wellhead

**Testing Procedure:** The BOP and BOPE will be fully tested per Onshore Order #2 when initially installed, whenever any seal subject to test pressure is broken, and/or following related repairs.

#### **Choke Diagram Attachment:**

COG\_Hambone\_3M\_Choke\_20210110190706.pdf

#### **BOP Diagram Attachment:**

COG\_Hambone\_2M\_BOP\_20210110190723.pdf

Flex\_Hose\_Variance\_\_\_Pioneer\_84\_20190926121639.pdf

# **Section 3 - Casing**

| Casing ID | String Type | Hole Size | Csg Size | Condition | Standard | Tapered String | Top Set MD | Bottom Set MD | Top Set TVD | Bottom Set TVD | Top Set MSL | Bottom Set MSL | Calculated casing<br>length MD | Grade | Weight | Joint Type | Collapse SF | Burst SF | Joint SF Type | Joint SF | Body SF Type | Body SF |
|-----------|-------------|-----------|----------|-----------|----------|----------------|------------|---------------|-------------|----------------|-------------|----------------|--------------------------------|-------|--------|------------|-------------|----------|---------------|----------|--------------|---------|
| 1         | SURFACE     | 17.5      | 13.375   | NEW       | API      | N              | 0          | 360           | 0           | 360            | 2917        | 2557           | 360                            | J-55  | 54.5   | ST&C       | 6.86        | 2.25     | DRY           | 26.2     | DRY          | 26.2    |

Well Name: HAMBONE FEDERAL COM

Well Number: 502H

| Casing ID | String Type      | Hole Size | Csg Size | Condition | Standard | Tapered String | Top Set MD | Bottom Set MD | Top Set TVD | Bottom Set TVD | Top Set MSL | Bottom Set MSL | Calculated casing length MD | Grade     | Weight | Joint Type | Collapse SF | Burst SF | Joint SF Type | Joint SF | Body SF Type | Body SF |
|-----------|------------------|-----------|----------|-----------|----------|----------------|------------|---------------|-------------|----------------|-------------|----------------|-----------------------------|-----------|--------|------------|-------------|----------|---------------|----------|--------------|---------|
|           | INTERMED<br>IATE | 12.2<br>5 | 9.625    | NEW       | API      | N              | 0          | 2860          | 0           | 2860           | 3585        | 57             | 2860                        | J-55      | 40     | LT&C       | 1.71        | 1.21     | DRY           | 4.55     | DRY          | 4.55    |
|           | PRODUCTI<br>ON   | 8.75      | 5.5      | NEW       | API      | N              | 0          | 18857         | 0           | 8505           | 3585        | -5588          | 18857                       | P-<br>110 | 17     | LT&C       | 1.82        | 3.26     | DRY           | 3.08     | DRY          | 3.08    |

| Casing | Attac | hments |
|--------|-------|--------|
|--------|-------|--------|

Casing ID: 1 String Type: SURFACE

**Inspection Document:** 

**Spec Document:** 

**Tapered String Spec:** 

Casing Design Assumptions and Worksheet(s):

COG\_Hambone\_502H\_Casing\_Prog\_20210110223652.pdf

Casing ID: 2 String Type: INTERMEDIATE

**Inspection Document:** 

**Spec Document:** 

**Tapered String Spec:** 

Casing Design Assumptions and Worksheet(s):

COG\_Hambone\_502H\_Casing\_Prog\_20210110223801.pdf

Well Name: HAMBONE FEDERAL COM Well Number: 502H

### **Casing Attachments**

Casing ID: 3 String Type: PRODUCTION

**Inspection Document:** 

**Spec Document:** 

**Tapered String Spec:** 

Casing Design Assumptions and Worksheet(s):

COG\_Hambone\_502H\_Casing\_Prog\_20210110223524.pdf

# **Section 4 - Cement**

|              |           | 1                   |        |           |              |       |         |       |         |                          | 1                 |
|--------------|-----------|---------------------|--------|-----------|--------------|-------|---------|-------|---------|--------------------------|-------------------|
| String Type  | Lead/Tail | Stage Tool<br>Depth | Top MD | Bottom MD | Quantity(sx) | Yield | Density | Cu Ft | Excess% | Cement type              | Additives         |
| SURFACE      | Lead      |                     | 0      | 360       | 30           | 1.75  | 13.5    | 52    | 50      | Class C                  | 4% Gel + 1% CaCl2 |
| SURFACE      | Tail      |                     | 0      | 360       | 250          | 1.34  | 14.8    | 335   | 50      | Class C                  | 2% CaCl2          |
| INTERMEDIATE | Lead      |                     | 0      | 2860      | 490          | 2     | 12.7    | 980   | 50      | 35:65:6 C Blend          | N/A               |
| INTERMEDIATE | Tail      |                     | 9320   | 2860      | 250          | 1.34  | 14.8    | 335   | 50      | Class C                  | 2% CaCl           |
| PRODUCTION   | Lead      |                     | 8505   | 1885<br>7 | 710          | 2.5   | 11.9    | 1775  | 20      | 50:50:10 H Blend         | N/A               |
| PRODUCTION   | Tail      |                     | 8505   | 1885<br>7 | 2650         | 1.24  | 14.4    | 3286  | 20      | 50:50:2 Class H<br>Blend | N/A               |

Operator Name: COG OPERATING LLC

Well Name: HAMBONE FEDERAL COM Well Number: 502H

## **Section 5 - Circulating Medium**

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

**Describe what will be on location to control well or mitigate other conditions:** Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

## **Circulating Medium Table**

| Top Depth | Bottom Depth | Mud Type                   | Min Weight (lbs/gal) | Max Weight (lbs/gal) | Density (lbs/cu ft) | Gel Strength (lbs/100 sqft) | Н | Viscosity (CP) | Salinity (ppm) | Filtration (cc) | Additional Characteristics |
|-----------|--------------|----------------------------|----------------------|----------------------|---------------------|-----------------------------|---|----------------|----------------|-----------------|----------------------------|
| 360       | 2860         | OTHER :<br>Saturated Brine | 10                   | 10.1                 |                     |                             |   |                |                |                 | Saturated Brine            |
| 2860      | 1885<br>7    | OTHER : Cut<br>Brine       | 8.6                  | 9.3                  |                     |                             |   |                |                |                 | Cut Brine                  |
| 0         | 360          | OTHER : Fresh<br>water gel | 8.6                  | 8.8                  |                     |                             |   |                |                |                 | Fresh water gel            |

### **Section 6 - Test, Logging, Coring**

List of production tests including testing procedures, equipment and safety measures:

None planned

List of open and cased hole logs run in the well:

CEMENT BOND LOG, COMPENSATED NEUTRON LOG, GAMMA RAY LOG,

Coring operation description for the well:

None planned

Operator Name: COG OPERATING LLC

Well Name: HAMBONE FEDERAL COM Well Number: 502H

#### **Section 7 - Pressure**

Anticipated Bottom Hole Pressure: 4115 Anticipated Surface Pressure: 2243

Anticipated Bottom Hole Temperature(F): 145

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

**Contingency Plans geoharzards description:** 

**Contingency Plans geohazards attachment:** 

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

COG\_Hambone\_501H\_502H\_H2S\_Schem\_20210110192743.pdf

COG\_Hambone\_H2S\_SUP\_20210110192755.pdf

#### **Section 8 - Other Information**

### Proposed horizontal/directional/multi-lateral plan submission:

COG\_Hambone\_502H\_AC\_RPT\_20210110224717.pdf

COG\_Hambone\_502H\_Directional\_Plan\_20210110224727.pdf

#### Other proposed operations facets description:

Drilling prog attached.

Cement prog attached.

GCP attached.

#### Other proposed operations facets attachment:

COG\_Hambone\_501H\_502H\_505H\_506H\_GCP\_20210110192927.pdf

COG\_Hambone\_501H\_Cement\_Prog\_20210110192907.pdf

COG\_Hambone\_502H\_Drilling\_Prog\_20210110224739.pdf

### **Other Variance attachment:**

# **DELAWARE BASIN WEST**

ATLAS PROSPECT (NM-E)
HAMBONE FEDERAL PROJECT (ATLAS 2629)
HAMBONE FEDERAL COM #502H

**OWB** 

Plan: PWP1

# **Standard Survey Report**

30 November, 2020

#### Survey Report

Company: **DELAWARE BASIN WEST** Project: ATLAS PROSPECT (NM-E)

Site: HAMBONE FEDERAL PROJECT (ATLAS 2629)

Well: HAMBONE FEDERAL COM #502H

Wellbore: **OWB** PWP1 Design:

Site

Local Co-ordinate Reference:

**TVD Reference: MD Reference:** North Reference:

System Datum:

**Survey Calculation Method:** 

Database:

Well HAMBONE FEDERAL COM #502H

\*KB=30' @ 2946.8usft (TBD) \*KB=30' @ 2946.8usft (TBD)

Minimum Curvature

Mean Sea Level

edm

ATLAS PROSPECT (NM-E) **Project** 

Map System: US State Plane 1927 (Exact solution)

NAD 1927 (NADCON CONUS) Geo Datum:

Map Zone: New Mexico East 3001

HAMBONE FEDERAL PROJECT (ATLAS 2629)

Northing: 382,232.28 usft Site Position: Latitude: 32° 3' 1.622 N Easting: From: Мар 601,211.49 usft Longitude: 104° 0' 23.979 W **Position Uncertainty:** Slot Radius: 13-3/16 " **Grid Convergence:** 0.17° 0.0 usft

Well HAMBONE FEDERAL COM #502H

**Well Position** 32° 3' 0.454 N +N/-S 0.0 usft Latitude: Northing: 382,120.40 usfl +E/-W 0.0 usft Easting: 603,227.40 usfl Longitude: 104° 0' 0.560 W

**Position Uncertainty** 3.0 usft Wellhead Elevation: usf Ground Level: 2,916.8 usft

Wellbore **OWB** 

**Magnetics Model Name** Sample Date Declination **Dip Angle** Field Strength (°) (°) (nT) IGRF2020 11/30/2020 6.79 59.69 47,406.01750584

PWP1 Design

**Audit Notes:** 

Version: Phase: PLAN 0.0 Tie On Depth:

Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°) 0.0 0.0 0.0 355.37

**Survey Tool Program** Date 11/30/2020

From To (usft) (usft) Survey (Wellbore) **Tool Name** Description

0.0 7,950.0 PWP1 (OWB) Standard Keeper 104 Standard Wireline Keeper ver 1.0.4

18,857.6 PWP1 (OWB) MWD+IFR1+MS OWSG MWD + IFR1 + Multi-Station Correction 7,950.0

| Planned Survey              |                    |                |                             |                 |                 |                               |                               |                              |                             |
|-----------------------------|--------------------|----------------|-----------------------------|-----------------|-----------------|-------------------------------|-------------------------------|------------------------------|-----------------------------|
| Measured<br>Depth<br>(usft) | Inclination<br>(°) | Azimuth<br>(°) | Vertical<br>Depth<br>(usft) | +N/-S<br>(usft) | +E/-W<br>(usft) | Vertical<br>Section<br>(usft) | Dogleg<br>Rate<br>(°/100usft) | Build<br>Rate<br>(°/100usft) | Turn<br>Rate<br>(°/100usft) |
| 0.0                         | 0.00               | 0.00           | 0.0                         | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| 100.0                       | 0.00               | 0.00           | 100.0                       | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| 200.0                       | 0.00               | 0.00           | 200.0                       | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| 300.0                       | 0.00               | 0.00           | 300.0                       | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| 400.0                       | 0.00               | 0.00           | 400.0                       | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| 500.0                       | 0.00               | 0.00           | 500.0                       | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| 600.0                       | 0.00               | 0.00           | 600.0                       | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| 700.0                       | 0.00               | 0.00           | 700.0                       | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| 800.0                       | 0.00               | 0.00           | 800.0                       | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| 900.0                       | 0.00               | 0.00           | 900.0                       | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |

Survey Report

Company: DELAWARE BASIN WEST
Project: ATLAS PROSPECT (NM-E)

Site: HAMBONE FEDERAL PROJECT (ATLAS 2629)

Well: HAMBONE FEDERAL COM #502H

Wellbore: OWB
Design: PWP1

**Local Co-ordinate Reference:** 

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Database:

Well HAMBONE FEDERAL COM #502H

\*KB=30' @ 2946.8usft (TBD)

\*KB=30' @ 2946.8usft (TBD)

Grid

Minimum Curvature

| Design:    | FV                         | /P1                |                |                             | Database        | <b>):</b>       |                               | edm                           |                              |                             |
|------------|----------------------------|--------------------|----------------|-----------------------------|-----------------|-----------------|-------------------------------|-------------------------------|------------------------------|-----------------------------|
| Planned    | Survey                     |                    |                |                             |                 |                 |                               |                               |                              |                             |
| <b>M</b> € | easured<br>Depth<br>(usft) | Inclination<br>(°) | Azimuth<br>(°) | Vertical<br>Depth<br>(usft) | +N/-S<br>(usft) | +E/-W<br>(usft) | Vertical<br>Section<br>(usft) | Dogleg<br>Rate<br>(°/100usft) | Build<br>Rate<br>(°/100usft) | Turn<br>Rate<br>(°/100usft) |
|            | 4 000 0                    | 0.00               | 0.00           | 4 000 0                     | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
|            | 1,000.0                    | 0.00               | 0.00           | 1,000.0                     | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
|            | 1,100.0                    | 0.00               | 0.00           | 1,100.0                     | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
|            | 1,200.0                    | 0.00               | 0.00           | 1,200.0                     | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
|            | 1,300.0                    | 0.00               | 0.00           | 1,300.0                     | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
|            | 1,400.0                    | 0.00               | 0.00           | 1,400.0                     | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
|            | 1,500.0                    | 0.00               | 0.00           | 1,500.0                     | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
|            | 1,600.0                    | 0.00               | 0.00           | 1,600.0                     | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
|            | 1,700.0                    | 0.00               | 0.00           | 1,700.0                     | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
|            | 1,800.0                    | 0.00               | 0.00           | 1,800.0                     | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
|            | 1,900.0                    | 0.00               | 0.00           | 1,900.0                     | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
|            | 2,000.0                    | 0.00               | 0.00           | 2,000.0                     | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
|            | 2,100.0                    | 0.00               | 0.00           | 2,100.0                     | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
|            | 2,200.0                    | 0.00               | 0.00           | 2,200.0                     | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
|            | 2,300.0                    | 0.00               | 0.00           | 2,300.0                     | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
|            | 2,400.0                    | 0.00               | 0.00           | 2,400.0                     | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
|            | 2,500.0                    | 0.00               | 0.00           | 2,500.0                     | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| S          |                            | 2.00 TFO 251.0     |                |                             |                 |                 |                               |                               |                              |                             |
|            | 2,600.0                    | 2.00               | 251.06         | 2,600.0                     | -0.6            | -1.7            | -0.4                          | 2.00                          | 2.00                         | 0.00                        |
|            | 2,700.0                    | 4.00               | 251.06         | 2,699.8                     | -2.3            | -6.6            | -1.7                          | 2.00                          | 2.00                         | 0.00                        |
|            | 2,748.8                    | 4.98               | 251.06         | 2,748.5                     | -3.5            | -10.2           | -2.7                          | 2.00                          | 2.00                         | 0.00                        |
| S          | Start 5201.                | 3 hold at 2748     | 3.8 MD         |                             |                 |                 |                               |                               |                              |                             |
|            | 2,800.0                    | 4.98               | 251.06         | 2,799.5                     | -4.9            | -14.4           | -3.8                          | 0.00                          | 0.00                         | 0.00                        |
|            | 2,900.0                    | 4.98               | 251.06         | 2,899.1                     | -7.8            | -22.6           | -5.9                          | 0.00                          | 0.00                         | 0.00                        |
|            | 3,000.0                    | 4.98               | 251.06         | 2,998.7                     | -10.6           | -30.8           | -8.1                          | 0.00                          | 0.00                         | 0.00                        |
|            | 3,100.0                    | 4.98               | 251.06         | 3,098.4                     | -13.4           | -39.0           | -10.2                         | 0.00                          | 0.00                         | 0.00                        |
|            | 3,200.0                    | 4.98               | 251.06         | 3,198.0                     | -16.2           | -47.2           | -12.3                         | 0.00                          | 0.00                         | 0.00                        |
|            | 3,300.0                    | 4.98               | 251.06         | 3,297.6                     | -19.0           | -55.4           | -14.5                         | 0.00                          | 0.00                         | 0.00                        |
|            | 3,400.0                    | 4.98               | 251.06         | 3,397.2                     | -21.8           | -63.6           | -16.6                         | 0.00                          | 0.00                         | 0.00                        |
|            | 3,500.0                    | 4.98               | 251.06         | 3,496.9                     | -24.7           | -71.9           | -18.8                         | 0.00                          | 0.00                         | 0.00                        |
|            | 3,600.0                    | 4.98               | 251.06         | 3,596.5                     | -27.5           | -80.1           | -20.9                         | 0.00                          | 0.00                         | 0.00                        |
|            | 3,700.0                    | 4.98               | 251.06         | 3,696.1                     | -30.3           | -88.3           | -23.1                         | 0.00                          | 0.00                         | 0.00                        |
|            | 3,800.0                    | 4.98               | 251.06         | 3,795.7                     | -33.1           | -96.5           | -25.2                         | 0.00                          | 0.00                         | 0.00                        |
|            | 3,900.0                    | 4.98               | 251.06         | 3,895.3                     | -35.9           | -104.7          | -27.4                         | 0.00                          | 0.00                         | 0.00                        |
|            | 4,000.0                    | 4.98               | 251.06         | 3,995.0                     | -38.7           | -112.9          | -29.5                         | 0.00                          | 0.00                         | 0.00                        |
|            | 4,100.0                    | 4.98               | 251.06         | 4,094.6                     | -41.6           | -121.1          | -31.7                         | 0.00                          | 0.00                         | 0.00                        |
|            | 4,200.0                    | 4.98               | 251.06         | 4,194.2                     | -44.4           | -129.3          | -33.8                         | 0.00                          | 0.00                         | 0.00                        |
|            | 4,300.0                    | 4.98               | 251.06         | 4,293.8                     | -47.2           | -137.5          | -35.9                         | 0.00                          | 0.00                         | 0.00                        |
|            | 4,400.0                    | 4.98               | 251.06         | 4,393.5                     | -50.0           | -145.7          | -38.1                         | 0.00                          | 0.00                         | 0.00                        |
|            | 4,500.0                    | 4.98               | 251.06         | 4,493.1                     | -52.8           | -153.9          | -40.2                         | 0.00                          | 0.00                         | 0.00                        |
|            | 4,600.0                    | 4.98               | 251.06         | 4,592.7                     | -55.6           | -162.1          | -42.4                         | 0.00                          | 0.00                         | 0.00                        |
|            | 4,700.0                    | 4.98               | 251.06         | 4,692.3                     | -58.5           | -170.3          | -44.5                         | 0.00                          | 0.00                         | 0.00                        |
|            | 4,800.0                    | 4.98               | 251.06         | 4,792.0                     | -61.3           | -178.5          | -46.7                         | 0.00                          | 0.00                         | 0.00                        |
|            | 4,900.0                    | 4.98               | 251.06         | 4,891.6                     | -64.1           | -186.7          | -48.8                         | 0.00                          | 0.00                         | 0.00                        |

Survey Report

Company: DELAWARE BASIN WEST
Project: ATLAS PROSPECT (NM-E)

Site: HAMBONE FEDERAL PROJECT (ATLAS 2629)

Well: HAMBONE FEDERAL COM #502H

Wellbore: OWB

Design: PWP1

**Local Co-ordinate Reference:** 

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well HAMBONE FEDERAL COM #502H

\*KB=30' @ 2946.8usft (TBD)

\*KB=30' @ 2946.8usft (TBD)

Grid

Minimum Curvature

| Design:                    | PWP1                     |                |                             | Database        | ):              |                               | edm                           |                              |                             |
|----------------------------|--------------------------|----------------|-----------------------------|-----------------|-----------------|-------------------------------|-------------------------------|------------------------------|-----------------------------|
| Planned Survey             | У                        |                |                             |                 |                 |                               |                               |                              |                             |
| Measure<br>Depth<br>(usft) | ed<br>Inclination<br>(°) | Azimuth<br>(°) | Vertical<br>Depth<br>(usft) | +N/-S<br>(usft) | +E/-W<br>(usft) | Vertical<br>Section<br>(usft) | Dogleg<br>Rate<br>(°/100usft) | Build<br>Rate<br>(°/100usft) | Turn<br>Rate<br>(°/100usft) |
| 5,000                      |                          | 251.06         | 4,991.2                     | -66.9           | -194.9          | -51.0                         | 0.00                          | 0.00                         | 0.00                        |
| 5,100                      |                          | 251.06         | 5,090.8                     | -69.7           | -203.1          | -53.1                         | 0.00                          | 0.00                         | 0.00                        |
| 5,200                      |                          | 251.06         | 5,190.4                     | -72.5           | -211.3          | <b>-</b> 55.3                 | 0.00                          | 0.00                         | 0.00                        |
| 5,300                      | 0.0 4.98                 | 251.06         | 5,290.1                     | -75.4           | -219.5          | -57.4                         | 0.00                          | 0.00                         | 0.00                        |
| 5,400                      | 0.0 4.98                 | 251.06         | 5,389.7                     | -78.2           | -227.8          | -59.5                         | 0.00                          | 0.00                         | 0.00                        |
| 5,500                      | 0.0 4.98                 | 251.06         | 5,489.3                     | -81.0           | -236.0          | -61.7                         | 0.00                          | 0.00                         | 0.00                        |
| 5,600                      |                          | 251.06         | 5,588.9                     | -83.8           | -244.2          | -63.8                         | 0.00                          | 0.00                         | 0.00                        |
| 5,700                      |                          | 251.06         | 5,688.6                     | -86.6           | -252.4          | -66.0                         | 0.00                          | 0.00                         | 0.00                        |
| 5,800                      |                          | 251.06         | 5,788.2                     | -89.4           | -260.6          | -68.1                         | 0.00                          | 0.00                         | 0.00                        |
| 5,900                      | 0.0 4.98                 | 251.06         | 5,887.8                     | -92.3           | -268.8          | -70.3                         | 0.00                          | 0.00                         | 0.00                        |
| 6,000                      |                          | 251.06         | 5,987.4                     | -95.1           | -277.0          | -72.4                         | 0.00                          | 0.00                         | 0.00                        |
| 6,100                      |                          | 251.06         | 6,087.1                     | -97.9           | -285.2          | -74.6                         | 0.00                          | 0.00                         | 0.00                        |
| 6,200                      |                          | 251.06         | 6,186.7                     | -100.7          | -293.4          | -76.7                         | 0.00                          | 0.00                         | 0.00                        |
| 6,300                      |                          | 251.06         | 6,286.3                     | -103.5          | -301.6          | -78.8                         | 0.00                          | 0.00                         | 0.00                        |
| 6,400                      | 0.0 4.98                 | 251.06         | 6,385.9                     | -106.3          | -309.8          | -81.0                         | 0.00                          | 0.00                         | 0.00                        |
| 6,500                      |                          | 251.06         | 6,485.5                     | -109.2          | -318.0          | -83.1                         | 0.00                          | 0.00                         | 0.00                        |
| 6,600                      |                          | 251.06         | 6,585.2                     | -112.0          | -326.2          | -85.3                         | 0.00                          | 0.00                         | 0.00                        |
| 6,700                      |                          | 251.06         | 6,684.8                     | -114.8          | -334.4          | -87.4                         | 0.00                          | 0.00                         | 0.00                        |
| 6,800                      |                          | 251.06         | 6,784.4                     | -117.6          | -342.6          | -89.6                         | 0.00                          | 0.00                         | 0.00                        |
| 6,900                      | 0.0 4.98                 | 251.06         | 6,884.0                     | -120.4          | -350.8          | -91.7                         | 0.00                          | 0.00                         | 0.00                        |
| 7,000                      | 0.0 4.98                 | 251.06         | 6,983.7                     | -123.2          | -359.0          | -93.9                         | 0.00                          | 0.00                         | 0.00                        |
| 7,100                      | 0.0 4.98                 | 251.06         | 7,083.3                     | -126.1          | -367.2          | -96.0                         | 0.00                          | 0.00                         | 0.00                        |
| 7,200                      |                          | 251.06         | 7,182.9                     | -128.9          | -375.4          | -98.2                         | 0.00                          | 0.00                         | 0.00                        |
| 7,300                      |                          | 251.06         | 7,282.5                     | -131.7          | -383.7          | -100.3                        | 0.00                          | 0.00                         | 0.00                        |
| 7,400                      | 0.0 4.98                 | 251.06         | 7,382.2                     | -134.5          | -391.9          | -102.4                        | 0.00                          | 0.00                         | 0.00                        |
| 7,500                      |                          | 251.06         | 7,481.8                     | -137.3          | -400.1          | -104.6                        | 0.00                          | 0.00                         | 0.00                        |
| 7,600                      |                          | 251.06         | 7,581.4                     | -140.1          | -408.3          | -106.7                        | 0.00                          | 0.00                         | 0.00                        |
| 7,700                      |                          | 251.06         | 7,681.0                     | -143.0          | -416.5          | -108.9                        | 0.00                          | 0.00                         | 0.00                        |
| 7,800                      |                          | 251.06         | 7,780.6                     | -145.8          | -424.7          | -111.0                        | 0.00                          | 0.00                         | 0.00                        |
| 7,900                      | 0.0 4.98                 | 251.06         | 7,880.3                     | -148.6          | -432.9          | -113.2                        | 0.00                          | 0.00                         | 0.00                        |
| 7,950                      | 0.1 4.98                 | 251.06         | 7,930.2                     | -150.0          | -437.0          | -114.2                        | 0.00                          | 0.00                         | 0.00                        |
|                            | LS 10.00 TFO 94.         |                | •                           |                 |                 |                               |                               |                              |                             |
| 8,000                      |                          |                | 7,979.8                     | -149.3          | -441.6          | -113.2                        | 10.00                         | 3.56                         | 95.20                       |
| 8,100                      |                          |                | 8,078.0                     | -135.3          | -454.0          | -98.2                         | 10.00                         | 8.64                         | 28.77                       |
| 8,200                      |                          | 334.99         | 8,171.7                     | -104.9          | -470.1          | -66.6                         | 10.00                         | 9.66                         | 7.68                        |
| 8,300                      | 0.0 34.90                | 338.54         | 8,258.2                     | -58.9           | -489.6          | -19.2                         | 10.00                         | 9.85                         | 3.55                        |
| 8,400                      |                          |                | 8,334.9                     | 1.1             | -511.8          | 42.4                          | 10.00                         | 9.91                         | 2.13                        |
| 8,500                      |                          |                | 8,399.4                     | 73.4            | -536.0          | 116.4                         | 10.00                         | 9.94                         | 1.50                        |
| 8,600                      |                          |                | 8,449.8                     | 155.8           | -561.5          | 200.6                         | 10.00                         | 9.95                         | 1.17                        |
| 8,700                      |                          |                | 8,484.5                     | 245.7           | -587.6          | 292.3                         | 10.00                         | 9.96                         | 0.99                        |
| 8,800                      | 0.0 84.61                | 345.22         | 8,502.5                     | 340.5           | -613.4          | 388.9                         | 10.00                         | 9.96                         | 0.90                        |
| 8,857                      |                          |                | 8,505.0                     | 396.4           | -627.9          | 445.8                         | 10.00                         | 9.96                         | 0.87                        |
| Start D                    | LS 2.00 TFO 89.9         | )4             | ·                           |                 |                 |                               |                               |                              |                             |
| 8,900                      | 0.0 90.37                | 346.56         | 8,504.7                     | 437.3           | -638.0          | 487.4                         | 2.00                          | 0.00                         | 2.00                        |

Survey Report

Company: DELAWARE BASIN WEST
Project: ATLAS PROSPECT (NM-E)

Site: HAMBONE FEDERAL PROJECT (ATLAS 2629)

Well: HAMBONE FEDERAL COM #502H

Wellbore: OWB

Design: PWP1

**Local Co-ordinate Reference:** 

TVD Reference:
MD Reference:
North Reference:

**Survey Calculation Method:** 

Well HAMBONE FEDERAL COM #502H

\*KB=30' @ 2946.8usft (TBD)

\*KB=30' @ 2946.8usft (TBD)

Grid

Minimum Curvature

| esign:                     | PWP1                     |                |                             | Database        | <b>)</b> :      |                               | edm                           |                              |                             |
|----------------------------|--------------------------|----------------|-----------------------------|-----------------|-----------------|-------------------------------|-------------------------------|------------------------------|-----------------------------|
| anned Surve                | у                        |                |                             |                 |                 |                               |                               |                              |                             |
| Measure<br>Depth<br>(usft) | ed<br>Inclination<br>(°) | Azimuth<br>(°) | Vertical<br>Depth<br>(usft) | +N/-S<br>(usft) | +E/-W<br>(usft) | Vertical<br>Section<br>(usft) | Dogleg<br>Rate<br>(°/100usft) | Build<br>Rate<br>(°/100usft) | Turn<br>Rate<br>(°/100usft) |
| 9,000                      |                          | 348.56         | 8,504.1                     | 535.0           | -659.5          | 586.5                         | 2.00                          | 0.00                         | 2.00                        |
| 9,100                      | 0.0 90.37                | 350.56         | 8,503.4                     | 633.3           | -677.6          | 686.0                         | 2.00                          | 0.00                         | 2.00                        |
| 9,200                      | 0.0 90.37                | 352.56         | 8,502.8                     | 732.2           | -692.3          | 785.7                         | 2.00                          | 0.00                         | 2.00                        |
| 9,300                      | 0.0 90.37                | 354.56         | 8,502.1                     | 831.6           | -703.5          | 885.7                         | 2.00                          | 0.00                         | 2.00                        |
| 9,400                      | 0.0 90.37                | 356.56         | 8,501.5                     | 931.3           | -711.3          | 985.7                         | 2.00                          | 0.00                         | 2.00                        |
| 9,500                      | 0.0 90.37                | 358.56         | 8,500.8                     | 1,031.2         | -715.5          | 1,085.6                       | 2.00                          | 0.00                         | 2.00                        |
| 9,564                      | 4.3 90.37                | 359.85         | 8,500.4                     | 1,095.5         | -716.4          | 1,149.7                       | 2.00                          | 0.00                         | 2.00                        |
| Start 4                    | 038.6 hold at 956        | 4.3 MD         |                             |                 |                 |                               |                               |                              |                             |
| 9,600                      | 0.0 90.37                | 359.85         | 8,500.2                     | 1,131.2         | -716.5          | 1,185.3                       | 0.00                          | 0.00                         | 0.00                        |
| 9,700                      | 0.0 90.37                | 359.85         | 8,499.5                     | 1,231.2         | -716.8          | 1,285.0                       | 0.00                          | 0.00                         | 0.00                        |
| 9,800                      |                          | 359.85         | 8,498.9                     | 1,331.2         | -717.0          | 1,384.7                       | 0.00                          | 0.00                         | 0.00                        |
| 9,900                      |                          |                | 8,498.2                     | 1,431.2         | -717.3          | 1,484.4                       | 0.00                          | 0.00                         | 0.00                        |
| 10,000                     | 0.0 90.37                | 359.85         | 8,497.6                     | 1,531.2         | -717.5          | 1,584.1                       | 0.00                          | 0.00                         | 0.00                        |
| 10,100                     | 0.0 90.37                | 359.85         | 8,496.9                     | 1,631.2         | -717.8          | 1,683.8                       | 0.00                          | 0.00                         | 0.00                        |
| 10,200                     | 0.0 90.37                | 359.85         | 8,496.3                     | 1,731.2         | -718.1          | 1,783.5                       | 0.00                          | 0.00                         | 0.00                        |
| 10,300                     | 0.0 90.37                | 359.85         | 8,495.6                     | 1,831.2         | -718.3          | 1,883.2                       | 0.00                          | 0.00                         | 0.00                        |
| 10,400                     | 0.0 90.37                | 359.85         | 8,495.0                     | 1,931.2         | -718.6          | 1,982.9                       | 0.00                          | 0.00                         | 0.00                        |
| 10,500                     |                          |                | 8,494.3                     | 2,031.2         | -718.9          | 2,082.6                       | 0.00                          | 0.00                         | 0.00                        |
| 10,600                     | 0.0 90.37                | 359.85         | 8,493.7                     | 2,131.2         | -719.1          | 2,182.2                       | 0.00                          | 0.00                         | 0.00                        |
| 10,700                     | 0.0 90.37                | 359.85         | 8,493.0                     | 2,231.2         | -719.4          | 2,281.9                       | 0.00                          | 0.00                         | 0.00                        |
| 10,800                     | 0.0 90.37                | 359.85         | 8,492.3                     | 2,331.2         | -719.6          | 2,381.6                       | 0.00                          | 0.00                         | 0.00                        |
| 10,900                     | 0.0 90.37                | 359.85         | 8,491.7                     | 2,431.2         | -719.9          | 2,481.3                       | 0.00                          | 0.00                         | 0.00                        |
| 11,000                     | 0.0 90.37                | 359.85         | 8,491.0                     | 2,531.2         | -720.2          | 2,581.0                       | 0.00                          | 0.00                         | 0.00                        |
| 11,100                     |                          | 359.85         | 8,490.4                     | 2,631.2         | -720.4          | 2,680.7                       | 0.00                          | 0.00                         | 0.00                        |
| 11,200                     | 0.0 90.37                | 359.85         | 8,489.7                     | 2,731.2         | -720.7          | 2,780.4                       | 0.00                          | 0.00                         | 0.00                        |
| 11,300                     | 0.0 90.37                | 359.85         | 8,489.1                     | 2,831.1         | -721.0          | 2,880.1                       | 0.00                          | 0.00                         | 0.00                        |
| 11,400                     | 0.0 90.37                | 359.85         | 8,488.4                     | 2,931.1         | -721.2          | 2,979.8                       | 0.00                          | 0.00                         | 0.00                        |
| 11,500                     | 0.0 90.37                | 359.85         | 8,487.8                     | 3,031.1         | -721.5          | 3,079.5                       | 0.00                          | 0.00                         | 0.00                        |
| 11,600                     |                          |                | 8,487.1                     | 3,131.1         | -721.7          | 3,179.2                       | 0.00                          | 0.00                         | 0.00                        |
| 11,700                     | 0.0 90.37                | 359.85         | 8,486.5                     | 3,231.1         | -722.0          | 3,278.9                       | 0.00                          | 0.00                         | 0.00                        |
| 11,800                     |                          | 359.85         | 8,485.8                     | 3,331.1         | -722.3          | 3,378.6                       | 0.00                          | 0.00                         | 0.00                        |
| 11,900                     |                          |                | 8,485.2                     | 3,431.1         | -722.5          | 3,478.3                       | 0.00                          | 0.00                         | 0.00                        |
| 12,000                     | 0.0 90.37                | 359.85         | 8,484.5                     | 3,531.1         | -722.8          | 3,577.9                       | 0.00                          | 0.00                         | 0.00                        |
| 12,100                     |                          |                | 8,483.9                     | 3,631.1         | -723.1          | 3,677.6                       | 0.00                          | 0.00                         | 0.00                        |
| 12,200                     |                          |                | 8,483.2                     | 3,731.1         | -723.3          | 3,777.3                       | 0.00                          | 0.00                         | 0.00                        |
| 12,300                     |                          |                | 8,482.6                     | 3,831.1         | -723.6          | 3,877.0                       | 0.00                          | 0.00                         | 0.00                        |
| 12,400                     |                          |                | 8,481.9                     | 3,931.1         | -723.8          | 3,976.7                       | 0.00                          | 0.00                         | 0.00                        |
| 12,500                     | 0.0 90.37                | 359.85         | 8,481.3                     | 4,031.1         | -724.1          | 4,076.4                       | 0.00                          | 0.00                         | 0.00                        |
| 12,600                     |                          | 359.85         | 8,480.6                     | 4,131.1         | -724.4          | 4,176.1                       | 0.00                          | 0.00                         | 0.00                        |
| 12,700                     | 0.0 90.37                | 359.85         | 8,480.0                     | 4,231.1         | -724.6          | 4,275.8                       | 0.00                          | 0.00                         | 0.00                        |
| 12,800                     | 0.0 90.37                | 359.85         | 8,479.3                     | 4,331.1         | -724.9          | 4,375.5                       | 0.00                          | 0.00                         | 0.00                        |
| 12,900                     | 0.0 90.37                | 359.85         | 8,478.7                     | 4,431.1         | -725.2          | 4,475.2                       | 0.00                          | 0.00                         | 0.00                        |
| 13,000                     | 0.0 90.37                | 359.85         | 8,478.0                     | 4,531.1         | -725.4          | 4,574.9                       | 0.00                          | 0.00                         | 0.00                        |

Survey Report

Company: DELAWARE BASIN WEST
Project: ATLAS PROSPECT (NM-E)

Site: HAMBONE FEDERAL PROJECT (ATLAS 2629)

Well: HAMBONE FEDERAL COM #502H

Wellbore: OWB
Design: PWP1

**Local Co-ordinate Reference:** 

TVD Reference:
MD Reference:
North Reference:

**Survey Calculation Method:** 

Database:

Well HAMBONE FEDERAL COM #502H

\*KB=30' @ 2946.8usft (TBD)
\*KB=30' @ 2946.8usft (TBD)

rid

Minimum Curvature

| gn | . 1 ۷                       | /P1             |                  |                             | Database        | <del>.</del>     |                               | eam                           |                              |                             |
|----|-----------------------------|-----------------|------------------|-----------------------------|-----------------|------------------|-------------------------------|-------------------------------|------------------------------|-----------------------------|
| ne | d Survey                    |                 |                  |                             |                 |                  |                               |                               |                              |                             |
| ļ  | Measured<br>Depth<br>(usft) | Inclination (°) | Azimuth<br>(°)   | Vertical<br>Depth<br>(usft) | +N/-S<br>(usft) | +E/-W<br>(usft)  | Vertical<br>Section<br>(usft) | Dogleg<br>Rate<br>(°/100usft) | Build<br>Rate<br>(°/100usft) | Turn<br>Rate<br>(°/100usft) |
|    | 13,100.0                    | 90.37           | 359.85           | 8,477.4                     | 4,631.1         | -725.7           | 4,674.6                       | 0.00                          | 0.00                         | 0.00                        |
|    | 13,200.0                    | 90.37           | 359.85           | 8,476.7                     | 4,731.1         | -725.9           | 4,774.3                       | 0.00                          | 0.00                         | 0.00                        |
|    | 13,300.0                    | 90.37           | 359.85           | 8,476.1                     | 4,831.1         | -726.2           | 4,873.9                       | 0.00                          | 0.00                         | 0.00                        |
|    | 13,400.0                    | 90.37           | 359.85           | 8,475.4                     | 4,931.1         | -726.5           | 4,973.6                       | 0.00                          | 0.00                         | 0.00                        |
|    | 13,500.0                    | 90.37           | 359.85           | 8,474.8                     | 5,031.1         | -726.7           | 5,073.3                       | 0.00                          | 0.00                         | 0.00                        |
|    | 13,600.0                    | 90.37           | 359.85           | 8,474.1                     | 5,131.1         | -727.0           | 5,173.0                       | 0.00                          | 0.00                         | 0.00                        |
|    | 13,603.0                    | 90.37           | 359.85           | 8,474.1                     | 5,134.1         | -727.0           | 5,176.0                       | 0.00                          | 0.00                         | 0.00                        |
|    |                             | 2.00 TFO 90.96  |                  | 0,474.1                     | 3,134.1         | -121.0           | 3,170.0                       | 0.00                          | 0.00                         | 0.00                        |
|    | 13,607.8                    | 90.37           | 359.95           | 8,474.1                     | 5,138.9         | -727.0           | 5,180.8                       | 2.00                          | -0.03                        | 2.00                        |
|    |                             | 9 hold at 1360  |                  | 0,474.1                     | 3,130.9         | -121.0           | 3,100.0                       | 2.00                          | -0.03                        | 2.00                        |
|    | 13,700.0                    | 90.37           | 359.95           | 8,473.5                     | 5,231.1         | -727.1           | 5,272.7                       | 0.00                          | 0.00                         | 0.00                        |
|    |                             |                 |                  |                             |                 |                  |                               |                               |                              |                             |
|    | 13,800.0                    | 90.37           | 359.95           | 8,472.8                     | 5,331.1         | -727.2           | 5,372.4                       | 0.00                          | 0.00                         | 0.00                        |
|    | 13,900.0                    | 90.37           | 359.95           | 8,472.2                     | 5,431.1         | -727.3           | 5,472.1                       | 0.00                          | 0.00                         | 0.00                        |
|    | 14,000.0                    | 90.37           | 359.95           | 8,471.5                     | 5,531.1         | -727.4           | 5,472.1                       | 0.00                          | 0.00                         | 0.00                        |
|    | 14,000.0                    | 90.37           | 359.95<br>359.95 | 8,470.9                     | 5,631.1         | -727.4<br>-727.5 | 5,671.4                       | 0.00                          | 0.00                         | 0.00                        |
|    |                             |                 |                  |                             |                 |                  | -                             |                               |                              |                             |
|    | 14,200.0                    | 90.37           | 359.95           | 8,470.2                     | 5,731.1         | -727.6           | 5,771.1                       | 0.00                          | 0.00                         | 0.00                        |
|    | 14,300.0                    | 90.37           | 359.95           | 8,469.6                     | 5,831.1         | -727.7           | 5,870.8                       | 0.00                          | 0.00                         | 0.00                        |
|    | 14,400.0                    | 90.37           | 359.95           | 8,468.9                     | 5,931.1         | -727.7           | 5,970.5                       | 0.00                          | 0.00                         | 0.00                        |
|    | 14,500.0                    | 90.37           | 359.95           | 8,468.3                     | 6,031.1         | -727.8           | 6,070.1                       | 0.00                          | 0.00                         | 0.00                        |
|    | 14,600.0                    | 90.37           | 359.95           | 8,467.6                     | 6,131.1         | -727.9           | 6,169.8                       | 0.00                          | 0.00                         | 0.00                        |
|    | 14,700.0                    | 90.37           | 359.95           | 8,467.0                     | 6,231.1         | -728.0           | 6,269.5                       | 0.00                          | 0.00                         | 0.00                        |
|    | 14,800.0                    | 90.37           | 359.95           | 8,466.3                     | 6,331.1         | -728.1           | 6,369.2                       | 0.00                          | 0.00                         | 0.00                        |
|    | 14,900.0                    | 90.37           | 359.95           | 8,465.7                     | 6,431.1         | -728.2           | 6,468.9                       | 0.00                          | 0.00                         | 0.00                        |
|    | 15,000.0                    | 90.37           | 359.95           | 8,465.0                     | 6,531.1         | -728.3           | 6,568.5                       | 0.00                          | 0.00                         | 0.00                        |
|    | 15,100.0                    | 90.37           | 359.95           | 8,464.4                     | 6,631.1         | -728.4           | 6,668.2                       | 0.00                          | 0.00                         | 0.00                        |
|    | 15,200.0                    | 90.37           | 359.95           | 8,463.7                     | 6,731.1         | -728.5           | 6,767.9                       | 0.00                          | 0.00                         | 0.00                        |
|    | 15,300.0                    | 90.37           | 359.95           | 8,463.1                     | 6,831.1         | -728.6           | 6,867.6                       | 0.00                          | 0.00                         | 0.00                        |
|    | 15,400.0                    | 90.37           | 359.95           | 8,462.5                     | 6,931.1         | -728.7           | 6,967.3                       | 0.00                          | 0.00                         | 0.00                        |
|    | 15,500.0                    | 90.37           | 359.95           | 8,461.8                     | 7,031.1         | -728.8           | 7,066.9                       | 0.00                          | 0.00                         | 0.00                        |
|    | 15,600.0                    | 90.37           | 359.95           | 8,461.2                     | 7,131.0         | -728.9           | 7,166.6                       | 0.00                          | 0.00                         | 0.00                        |
|    | 15,700.0                    | 90.37           | 359.95           | 8,460.5                     | 7,231.0         | -729.0           | 7,266.3                       | 0.00                          | 0.00                         | 0.00                        |
|    | 15,800.0                    | 90.37           | 359.95           | 8,459.9                     | 7,331.0         | -729.1           | 7,366.0                       | 0.00                          | 0.00                         | 0.00                        |
|    | 15,900.0                    | 90.37           | 359.95           | 8,459.2                     | 7,431.0         | -729.2           | 7,465.6                       | 0.00                          | 0.00                         | 0.00                        |
|    | 16,000.0                    | 90.37           | 359.95           | 8,458.6                     | 7,531.0         | -729.2           | 7,565.3                       | 0.00                          | 0.00                         | 0.00                        |
|    | 16,100.0                    | 90.37           | 359.95           | 8,457.9                     | 7,631.0         | -729.3           | 7,665.0                       | 0.00                          | 0.00                         | 0.00                        |
|    | 16,200.0                    | 90.37           | 359.95           | 8,457.3                     | 7,731.0         | -729.4           | 7,764.7                       | 0.00                          | 0.00                         | 0.00                        |
|    | 16,271.7                    | 90.37           | 359.95           | 8,456.8                     | 7,802.7         | -729.5           | 7,836.2                       | 0.00                          | 0.00                         | 0.00                        |
|    |                             | 2.00 TFO -89.9  |                  | ,                           | , -             |                  | ,                             |                               |                              |                             |
|    | 16,300.0                    | 90.37           | 359.38           | 8,456.6                     | 7,831.0         | -729.7           | 7,864.4                       | 2.00                          | 0.00                         | -2.00                       |
|    | 16,395.4                    | 90.37           | 357.47           | 8,456.0                     | 7,926.4         | -732.3           | 7,959.7                       | 2.00                          | 0.00                         | -2.00                       |
|    |                             | 1 hold at 1639  |                  | 0,400.0                     | 7,520.4         | -102.0           | 1,505.1                       | 2.00                          | 0.00                         | -2.00                       |
|    | 16,400.0                    | 90.37           | 357.47           | 8,456.0                     | 7,931.0         | -732.5           | 7,964.2                       | 0.00                          | 0.00                         | 0.00                        |
|    | 16,500.0                    | 90.37           | 357.47<br>357.47 | 8,455.3                     | 8,030.9         | -732.5<br>-736.9 | 8,064.2                       | 0.00                          | 0.00                         | 0.00                        |
|    | -                           |                 |                  |                             |                 |                  |                               |                               |                              |                             |
|    | 16,600.0                    | 90.37           | 357.47           | 8,454.7                     | 8,130.8         | -741.3           | 8,164.1                       | 0.00                          | 0.00                         | 0.00                        |

Survey Report

Company: DELAWARE BASIN WEST
Project: ATLAS PROSPECT (NM-E)

Site: HAMBONE FEDERAL PROJECT (ATLAS 2629)

Well: HAMBONE FEDERAL COM #502H

Wellbore: OWB
Design: PWP1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Database:

Well HAMBONE FEDERAL COM #502H

\*KB=30' @ 2946.8usft (TBD)

\*KB=30' @ 2946.8usft (TBD)

Grid

Minimum Curvature

| Measured<br>Depth<br>(usft) | Inclination<br>(°) | Azimuth<br>(°) | Vertical<br>Depth<br>(usft) | +N/-S<br>(usft) | +E/-W<br>(usft) | Vertical<br>Section<br>(usft) | Dogleg<br>Rate<br>(°/100usft) | Build<br>Rate<br>(°/100usft) | Turn<br>Rate<br>(°/100usft) |
|-----------------------------|--------------------|----------------|-----------------------------|-----------------|-----------------|-------------------------------|-------------------------------|------------------------------|-----------------------------|
| 16,700.0                    | 90.37              | 357.47         | 8,454.0                     | 8,230.7         | -745.7          | 8,264.0                       | 0.00                          | 0.00                         | 0.00                        |
| 16,800.0                    | 90.37              | 357.47         | 8,453.4                     | 8,330.6         | -750.1          | 8,364.0                       | 0.00                          | 0.00                         | 0.00                        |
| 16,900.0                    | 90.37              | 357.47         | 8,452.7                     | 8,430.5         | -754.5          | 8,463.9                       | 0.00                          | 0.00                         | 0.00                        |
| 17,000.0                    | 90.37              | 357.47         | 8,452.1                     | 8,530.4         | -759.0          | 8,563.8                       | 0.00                          | 0.00                         | 0.00                        |
| 17,100.0                    | 90.37              | 357.47         | 8,451.4                     | 8,630.3         | -763.4          | 8,663.7                       | 0.00                          | 0.00                         | 0.00                        |
| 17,200.0                    | 90.37              | 357.47         | 8,450.8                     | 8,730.2         | -767.8          | 8,763.7                       | 0.00                          | 0.00                         | 0.00                        |
| 17,300.0                    | 90.37              | 357.47         | 8,450.1                     | 8,830.1         | -772.2          | 8,863.6                       | 0.00                          | 0.00                         | 0.00                        |
| 17,400.0                    | 90.37              | 357.47         | 8,449.5                     | 8,930.0         | -776.6          | 8,963.5                       | 0.00                          | 0.00                         | 0.00                        |
| 17,500.0                    | 90.37              | 357.47         | 8,448.8                     | 9,029.9         | -781.0          | 9,063.5                       | 0.00                          | 0.00                         | 0.00                        |
| 17,600.0                    | 90.37              | 357.47         | 8,448.2                     | 9,129.8         | -785.4          | 9,163.4                       | 0.00                          | 0.00                         | 0.00                        |
| 17,700.0                    | 90.37              | 357.47         | 8,447.5                     | 9,229.7         | -789.8          | 9,263.3                       | 0.00                          | 0.00                         | 0.00                        |
| 17,800.0                    | 90.37              | 357.47         | 8,446.9                     | 9,329.6         | -794.2          | 9,363.3                       | 0.00                          | 0.00                         | 0.00                        |
| 17,900.0                    | 90.37              | 357.47         | 8,446.2                     | 9,429.5         | -798.7          | 9,463.2                       | 0.00                          | 0.00                         | 0.00                        |
| 18,000.0                    | 90.37              | 357.47         | 8,445.6                     | 9,529.4         | -803.1          | 9,563.1                       | 0.00                          | 0.00                         | 0.00                        |
| 18,100.0                    | 90.37              | 357.47         | 8,444.9                     | 9,629.3         | -807.5          | 9,663.1                       | 0.00                          | 0.00                         | 0.00                        |
| 18,200.0                    | 90.37              | 357.47         | 8,444.3                     | 9,729.2         | -811.9          | 9,763.0                       | 0.00                          | 0.00                         | 0.00                        |
| 18,300.0                    | 90.37              | 357.47         | 8,443.6                     | 9,829.1         | -816.3          | 9,862.9                       | 0.00                          | 0.00                         | 0.00                        |
| 18,400.0                    | 90.37              | 357.47         | 8,443.0                     | 9,929.0         | -820.7          | 9,962.8                       | 0.00                          | 0.00                         | 0.00                        |
| 18,500.0                    | 90.37              | 357.47         | 8,442.3                     | 10,028.9        | -825.1          | 10,062.8                      | 0.00                          | 0.00                         | 0.00                        |
| 18,600.0                    | 90.37              | 357.47         | 8,441.7                     | 10,128.8        | -829.5          | 10,162.7                      | 0.00                          | 0.00                         | 0.00                        |
| 18,700.0                    | 90.37              | 357.47         | 8,441.0                     | 10,228.7        | -833.9          | 10,262.6                      | 0.00                          | 0.00                         | 0.00                        |
| 18,800.0                    | 90.37              | 357.47         | 8,440.4                     | 10,328.6        | -838.4          | 10,362.6                      | 0.00                          | 0.00                         | 0.00                        |
| 18,857.6                    | 90.37              | 357.47         | 8,440.0                     | 10,386.1        | -840.9          | 10,420.1                      | 0.00                          | 0.00                         | 0.00                        |

| Design Targets                                                   |                  |                 |                        |                         |                         |                              |                   |                 |                 |
|------------------------------------------------------------------|------------------|-----------------|------------------------|-------------------------|-------------------------|------------------------------|-------------------|-----------------|-----------------|
| Target Name - hit/miss target - Shape                            | Dip Angle<br>(°) | Dip Dir.<br>(°) | TVD<br>(usft)          | +N/-S<br>(usft)         | +E/-W<br>(usft)         | Northing<br>(usft)           | Easting<br>(usft) | Latitude        | Longitude       |
| PBHL (HAMBONE FE<br>- plan hits target of<br>- Rectangle (sides  | center           |                 | 8,440.0                | 10,386.1                | -840.9                  | 392,506.50                   | 602,386.50        | 32° 4' 43.265 N | 104° 0' 9.961 W |
| LTP (HAMBONE FED<br>- plan misses targ<br>- Point                |                  |                 | 8,440.0<br>8800.0usft  | 10,336.1<br>MD (8440.4  | -840.2<br>TVD, 10328.   | 392,456.50<br>6 N, -838.4 E) | 602,387.20        | 32° 4' 42.770 N | 104° 0' 9.954 W |
| POI 2 (HAMBONE FE<br>- plan hits target of<br>- Rectangle (sides | center           |                 | 8,456.8<br>0)          | 7,802.7                 | -729.5                  | 389,923.14                   | 602,497.90        | 32° 4' 17.696 N | 104° 0' 8.758 W |
| POI 1 (HAMBONE FE<br>- plan hits target of<br>- Rectangle (sides | center           |                 | 8,474.1<br>0)          | 5,134.1                 | -727.0                  | 387,254.45                   | 602,500.40        | 32° 3' 51.285 N | 104° 0' 8.824 W |
| FTP (HAMBONE FEI<br>- plan misses targ<br>- Circle (radius 50    | jet center by    |                 | 8,505.0<br>t 8468.3usf | -123.2<br>ft MD (8380.4 | -711.0<br>4 TVD, 49.3 I | 381,997.20<br>N, -528.2 E)   | 602,516.40        | 32° 2' 59.256 N | 104° 0' 8.825 W |

Survey Report

Company: DELAWARE BASIN WEST
Project: ATLAS PROSPECT (NM-E)

Site: HAMBONE FEDERAL PROJECT (ATLAS 2629)

Well: HAMBONE FEDERAL COM #502H

Wellbore: OWB
Design: PWP1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

**Survey Calculation Method:** 

Database:

Well HAMBONE FEDERAL COM #502H

\*KB=30' @ 2946.8usft (TBD)

\*KB=30' @ 2946.8usft (TBD)

Grid

Minimum Curvature

| Plan Annotations            |                             |                               |                             |                                 |  |
|-----------------------------|-----------------------------|-------------------------------|-----------------------------|---------------------------------|--|
| Measured<br>Depth<br>(usft) | Vertical<br>Depth<br>(usft) | Local Coor<br>+N/-S<br>(usft) | rdinates<br>+E/-W<br>(usft) | Comment                         |  |
| 2500                        | 2500                        | 0                             | 0                           | Start DLS 2.00 TFO 251.06       |  |
| 2749                        | 2749                        | -4                            | -10                         | Start 5201.3 hold at 2748.8 MD  |  |
| 7950                        | 7930                        | -150                          | -437                        | Start DLS 10.00 TFO 94.62       |  |
| 8858                        | 8505                        | 396                           | -628                        | Start DLS 2.00 TFO 89.94        |  |
| 9564                        | 8500                        | 1096                          | -716                        | Start 4038.6 hold at 9564.3 MD  |  |
| 13,603                      | 8474                        | 5134                          | -727                        | Start DLS 2.00 TFO 90.96        |  |
| 13,608                      | 8474                        | 5139                          | -727                        | Start 2663.9 hold at 13607.8 MD |  |
| 16,272                      | 8457                        | 7803                          | -730                        | Start DLS 2.00 TFO -89.97       |  |
| 16,395                      | 8456                        | 7926                          | -732                        | Start 2462.1 hold at 16395.4 MD |  |
| 18,858                      | 8440                        | 10,386                        | -841                        | TD at 18857.6                   |  |

| Checked By: | Approved By: | Date: |  |
|-------------|--------------|-------|--|
| 1           |              |       |  |

Received by OCD: 9/17/2021 8:07:53 AM Page 47 of 7. Project: ATLAS PROSPECT (NM-E)
Site: HAMBONE FEDERAL PROJECT (ATLAS 2629)
Well: HAMBONE FEDERAL COM #502H Wellbore: OWB CONCHO **Azimuths to Grid North** Design: PWP1 GL: 2916.8 True North: -0.18° \*KB=30' @ 2946.8usft (TBD) Magnetic North: 6.62° Magnetic Field Strength: 47406.0nT Dip Angle: 59.69° WELL DETAILS: HAMBONE FEDERAL COM #502H Longitude 104° 0' 0.560 W Latittude **Easting** 32° 3' 0.454 N 382120.40 603227.40 0.0 Date: 11/30/2020 Model: IGRF2020 DESIGN TARGET DETAILS Start DLS 10.00 TFO 94.62 7928 7930.2 Name LTP (HAMBONE FEDERAL COM #502H) +E/-W Northing Easting -840.2 392456.50 602387.20 Latitude 32° 4' 42.770 N Longitude 104° 0' 9.954 W TVD 8440.0 10336.1 -840.9 392506.50 602386.50 -729.5 389923.15 602497.90 -727.0 387254.46 602500.40 8440.0 10386.1 8456.8 7802.7 PBHL (HAMBONE FEDERAL COM #502H) 32° 4' 43.265 N 104° 0' 9.961 W **7945** POI 2 (HAMBONE FEDERAL COM #502H)
POI 1 (HAMBONE FEDERAL COM #502H) 104° 0' 8.758 W 32° 4' 17.696 N 5134.1 32° 3' 51.285 N 8474.1 104° 0' 8.824 W 7963 FTP (HAMBONE FEDERAL COM #502H) HAMBONE FEDERAL COM #702H/ST(HAMBONE FEDERAL COM #702H/AWP -123.2 -711.0 381997.20 602516.40 32° 2' 59.256 N 104° 0' 8.825 W PBHL (HAMBONE FEDERAL COM #502H) **7980**-HAMBONE FEDERAL COM #501H/PWP1 HAMBONE FEDERAL COM #502H/PWP1 10.00 10600 7998-LEASE LINE 10400 HAMBONE FEDERAL COM #703H/AWP 8015 100' HARD LINE 10200 8033-10000 8050-HAMBONE FEDERAL COM #701H/ LTP (HAMBONE FEDERAL COM # 9800 8068-8085 8103-8120-8138-8155 8173-**HAMBONE FEDERAL COM #502H Annotation** 8383 90.37 357.47 8456.0 7926.4 2.00 -89.97 7959.7 Start 2462.1 hold at 16395.4 MD 90.37 357.47 8440.0 10386.1 0.00 0.00 10420.1 8453 **€** 5200-Start DLS 2.00 TFO 89.94 Start DLS 2.00 TFO 251.06 8488 Start 5201.3 hold at 2748.8 MD 8523 FTP (HAMBONE FEDERAL COM #502H) -140 -123 -105 -88 -70 -53 -35 -18 0 18 35 53 70 88 105 123 140 158 175 193 210 228 245 263 280 298 315 333 350 368 385 403 420 438 455 473 490 508 525 543 560 578 595 613 630 648 Vertical Section at 355.37° (35 usft/in) HAMBONE FEDERAL COM #502H/PWP1 **LEASE LINE** ONE FEDERAL COM #502 WNDW **4200** 10450 700 HAMBONE FEDERAL COM #701H/AWP PBHL (HAMBONE FEDERAL COM #502H) 650-HAMBONE FEDERAL C HAMBONE FEDERAL COM #702H/AWP TD at 18857.6 100' HARD 3000 600-10350-550-10300-LTP (HAMBONE FEDERAL COM #502H) 5000-500-5200 10200-HAMBONE FEDERAL COM #702H/S 2200-HAMBONE FEDERAL COM #702H/AWP 2000-**±**00000-1200-HAMBONE FEDERAL COM #703H/AWF 100 HAMBONE FEDERAL COM #501H/PWF 7200 -150 100 HARD LINE Start DLS 10.00 TFO 94.62 -200 FTP (HAMBONE FEDERAL COM #502H) LEASE LINE FTP (HAMBONE FEDERAL COM #502H) -1000 -750 -500 -250 0 250 500 750 1000 Vertical Section at 355.37° (500 usft/in) -800 -750 -700 -650 -600 -550 -500 -450 -400 -350 -300 -250 -200 -150 -100 -50 50 100 150 200 250 300 350 400 450 500 -1050-1000 -950 -900 -850 -800 -750 -700 -650 -600 -550 -500 -450 -400 -350 -300 -250 -200 -150 -100 -50 0 -2000-1800-1600-1400-1200-1000 -800 -600 -400 -200 0 200 400 600 800 1000 1200 1400 16 West(-)/East(+) (100 usft/in) West(-)/East(+) (100 usft/in) 7875-Start DLS 10.00 TFO 94.62 TRGT WNDW: 10' ABOVE/BELOW ©8250-8325-LTP (HAMBONE FEDERAL COM #502H)BHL (HAMBONE FEDERAL COM #502H) Start DLS 2.00 TFO -89.97 Start 2462.1 hold at 16395.4 MD Start DLS 2.00 TFO 90.96 Start 2663.9 hold at 13607.8 MD TD at 18857.6 Start DLS 2.00 TFO 89.94 Start 4038.6 hold at 9564.3 MD 8475-HAMBONE FEDERAL COM #502H/PWP1 POI 1 (HAMBONE FEDERAL COM #502H) FTP (HAMBONE FEDERAL COM #502H) POI 2 (HAMBONE FEDERAL COM #502H) 8625-

Vertical Section at 355.37° (300 usft/in)

Released to Imaging: 9/21/2021 1:30:22 PM

# PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

**OPERATOR'S NAME:** | COG

LEASE NO.: | NMNM57261

**LOCATION:** | Section 8, T.26 S., R.29 E., NMPM

**COUNTY:** Eddy County, New Mexico

WELL NAME & NO.:

Hambone Fed Com 502H

SURFACE HOLE FOOTAGE: BOTTOM HOLE FOOTAGE

222'/S & 1650'/E 50'/N & 1650'/E

COA

| H2S                  | O Yes                          | • No             |              |
|----------------------|--------------------------------|------------------|--------------|
| Potash               | None                           | © Secretary      | © R-111-P    |
| Cave/Karst Potential | C Low                          | • Medium         | C High       |
| Cave/Karst Potential | Critical Critical              |                  |              |
| Variance             | O None                         | • Flex Hose      | Other        |
| Wellhead             | <ul><li>Conventional</li></ul> | © Multibowl      | C Both       |
| Other                | □4 String Area                 | ☐ Capitan Reef   | □WIPP        |
| Other                | ☐Fluid Filled                  | ☐ Cement Squeeze | ☐ Pilot Hole |
| Special Requirements | ☐ Water Disposal               | <b>▼</b> COM     | □ Unit       |

#### A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

#### **B. CASING**

- 1. The 13-3/8 inch surface casing shall be set at approximately 360 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
  - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
  - b. Wait on cement (WOC) time for a primary cement job will be a minimum of  $\underline{8}$

- **hours** or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:
  - Cement to surface. If cement does not circulate see B.1.a, c-d above.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

- ❖ In Medium Cave/Karst Areas if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
  - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification. Excess calculates to 23%. Additional cement maybe requried.

#### C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **2000 (2M)** psi.
- 3. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the intermediate casing shoe shall be **3000** (**3M**) psi.
- 4. SPECIAL REQUIREMENT (S)

#### **Communitization Agreement**

• The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.

- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

## **GENERAL REQUIREMENTS**

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
  - Eddy County
     Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
  - ✓ Lea CountyCall the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575)393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
  - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
  - b. When the operator proposes to set surface casing with Spudder Rig
    - Notify the BLM when moving in and removing the Spudder Rig.
    - Notify the BLM when moving in the 2<sup>nd</sup> Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
    - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on

- which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

#### A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.

- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

#### B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
  - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
  - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
  - c. Manufacturer representative shall install the test plug for the initial BOP test
  - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
  - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
  - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
  - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, no tests shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
  - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
  - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
  - e. The results of the test shall be reported to the appropriate BLM office.
  - f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
  - g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to

the test at full stack pressure.

h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

#### C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

#### D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

ZS 072621

# COG OPERATING LLC HYDROGEN SULFIDE DRILLING OPERATIONS PLAN

#### 1. <u>HYDROGEN SULFIDE TRAINING</u>

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- a. The hazards and characteristics of hydrogen sulfide (H<sub>2</sub>S).
- b. The proper use and maintenance of personal protective equipment and life support systems.
- c. The proper use of H<sub>2</sub>S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- d. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- a. The effects of H2S on metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- b. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- c. The contents and requirements of the H<sub>2</sub>S Drilling Operations Plan and the Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H2S zone (within 3 days or 500 feet) and weekly H2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H2S Drilling Operations Plan and the Public Protection Plan. This plan shall be available at the well site. All personnel will be required to carry documentation that they have received the proper training.

## 2. <u>H<sub>2</sub>S SAFETY EQUIPMENT AND SYSTEMS</u>

Note: All H<sub>2</sub>S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H2S. If H2S greater than 100 ppm is encountered in the gas stream we will shut in and install H2S equipment.

a. Well Control Equipment:

Flare line.

Choke manifold with remotely operated choke.

Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit.

Auxiliary equipment to include: annular preventer, mud-gas separator, rotating head.

- b. Protective equipment for essential personnel:
  Mark II Surviveair 30-minute units located in the dog house and at briefing areas.
- c. H2S detection and monitoring equipment:
  2 portable H2S monitor positioned on location for best coverage and response. These units have warning lights and audible sirens when H2S levels of 20 ppm are reached.
- d. Visual warning systems: Caution/Danger signs shall be posted on roads providing direct access to location. Signs will be painted a high visibility yellow with black lettering of sufficient size to be readable at a reasonable distance from the immediate location. Bilingual signs will be used, when appropriate. See example attached.
- e. Mud Program:
   The mud program has been designed to minimize the volume of H2S circulated to the surface.
- f. Metallurgy:
  All drill strings, casings, tubing, wellhead, blowout preventers, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.
- g. Communication:Company vehicles equipped with cellular telephone.

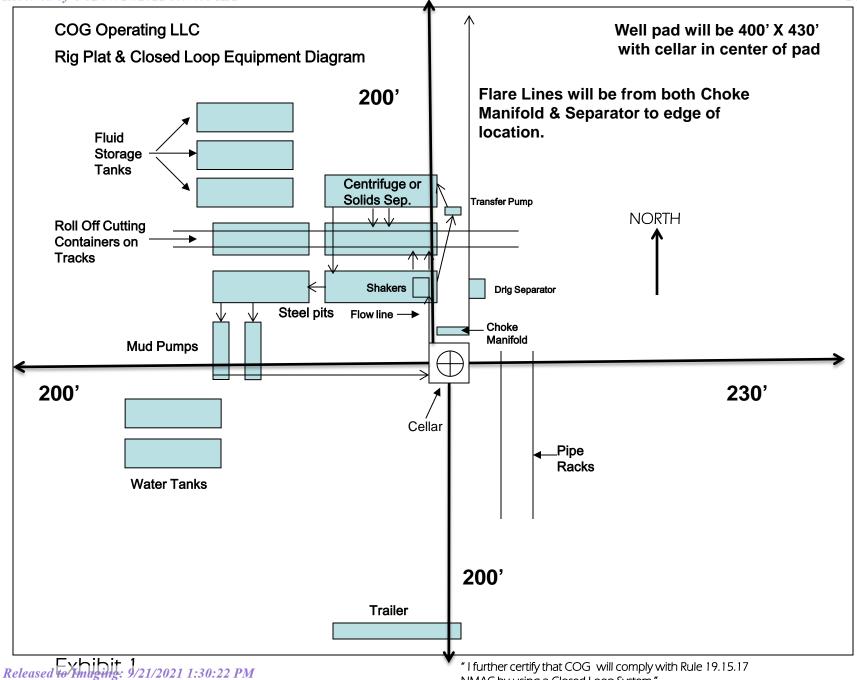
COG OPERATING LLC has conducted a review to determine if an H2S contingency plan is required for the above referenced well. We were able to conclude that any potential hazardous volume would be minimal. H2S concentrations of wells in this area from surface to TD are low enough; therefore, we do not believe that an H2S contingency plan is necessary.

# WARNING

# YOU ARE ENTERING AN H<sub>2</sub>S AREA AUTHORIZED PERSONNEL ONLY

- 1. BEARDS OR CONTACT LENSES NOT ALLOWED
- 2. HARD HATS REQUIRED
- 3. SMOKING IN DESIGNATED AREAS ONLY
- 4. BE WIND CONSCIOUS AT ALL TIMES
- 5. CK WITH COG OPERATING LLC FOREMAN AT MAIN OFFICE

COG OPERATING LLC


1-575-748-6940

# **EMERGENCY CALL LIST**

|                          | <u>OFFICE</u> | MOBILE       |
|--------------------------|---------------|--------------|
| COG OPERATING LLC OFFICE | 575-748-6940  |              |
| SETH WILD                | 432-683-7443  | 432-528-3633 |
| WALTER ROYE              | 575-748-6940  | 432-934-1886 |

# **EMERGENCY RESPONSE NUMBERS**

|                                                  | <u>OFFICE</u>       |
|--------------------------------------------------|---------------------|
| STATE POLICE                                     | 575-748-9718        |
| EDDY COUNTY SHERIFF                              | 575-746-2701        |
| EMERGENCY MEDICAL SERVICES (AMBULANCE)           | 911 or 575-746-2701 |
| EDDY COUNTY EMERGENCY MANAGEMENT (HARRY BURGESS) | 575-887-9511        |
| STATE EMERGENCY RESPONSE CENTER (SERC)           | 575-476-9620        |
| CARLSBAD POLICE DEPARTMENT                       | 575-885-2111        |
| CARLSBAD FIRE DEPARTMENT                         | 575-885-3125        |
| NEW MEXICO OIL CONSERVATION DIVISION             | 575-748-1283        |
| INDIAN FIRE & SAFETY                             | 800-530-8693        |
| HALLIBURTON SERVICES                             | 800-844-8451        |



"I further certify that COG will comply with Rule 19.15.17 NMAC by using a Closed Loop System."

### 1. Geologic Formations

| TVD of target | 8,505' EOL | Pilot hole depth              | NA  |
|---------------|------------|-------------------------------|-----|
| MD at TD:     | 18,857'    | Deepest expected fresh water: | 50' |

| Formation            | Depth (TVD)<br>from KB | Water/Mineral Bearing/<br>Target Zone? | Hazards* |
|----------------------|------------------------|----------------------------------------|----------|
| Quaternary Fill      | Surface                | Water                                  |          |
| Rustler              | 77                     | Water                                  |          |
| Top of Salt          | 400                    | Salt                                   |          |
| Base of Salt         | 2648                   | Salt                                   |          |
| Lamar                | 2838                   | Salt Water                             |          |
| Bell Canyon          | 2885                   | Salt Water                             |          |
| Cherry Canyon        | 3692                   | Oil/Gas                                |          |
| Brushy Canyon        | 4929                   | Oil/Gas                                |          |
| Bone Spring Lime     | 6550                   | Oil/Gas                                |          |
| 1st Bone Spring Sand | 7462                   | Oil/Gas                                |          |
| 2nd Bone Spring Sand | 8326                   | Oil/Gas                                |          |
| 3rd Bone Spring Sand | 9351                   | Not Penetrated                         |          |
| Wolfcamp             | 9712                   | Not Penetrated                         |          |
|                      |                        |                                        |          |

#### 2. Casing Program

| Hole Size | Casing | g Interval | Cca Si  | Cea Sizo |          | Csg. Size We |          | Grado    | Conn.    | SF                 | SF Burst | SF |
|-----------|--------|------------|---------|----------|----------|--------------|----------|----------|----------|--------------------|----------|----|
| Hole Size | From   | То         | Csy. Si | 26       | (lbs)    | Graue        | Collii.  | Collapse | or burst | Tension            |          |    |
| 17.5"     | 0      | 360        | 13.375  | 5"       | 54.5     | J55          | STC      | 6.86     | 2.25     | 26.20              |          |    |
| 12.25"    | 0      | 2860       | 9.625   | "        | 40       | J55          | LTC      | 1.71     | 1.21     | 4.55               |          |    |
| 8.75"     | 0      | 18,857     | 5.5"    |          | 17       | P110         | LTC      | 1.82     | 3.26     | 3.08               |          |    |
|           |        | BLI        |         |          | M Minimu | m Safety     | / Factor | 1.125    | 1        | 1.6 Dry<br>1.8 Wet |          |    |

Intermediate casing will be kept at least 1/3 full while running casing.to mitigate collapse. Intermediate burst based on 0.7 frac gradient at the shoe with Gas Gradient 0.1 psi/ft to surface. All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

|                                                                                                                                                  | Y or N |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Is casing new? If used, attach certification as required in Onshore Order #1                                                                     | Υ      |
| Does casing meet API specifications? If no, attach casing specification sheet.                                                                   | Υ      |
| Is premium or uncommon casing planned? If yes attach casing specification sheet.                                                                 | N      |
| Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria). | Υ      |
| Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?                | Y      |
|                                                                                                                                                  |        |
| Is well located within Capitan Reef?                                                                                                             | N      |
| If yes, does production casing cement tie back a minimum of 50' above the Reef?                                                                  |        |
| Is well within the designated 4 string boundary?                                                                                                 |        |
|                                                                                                                                                  |        |
| Is well located in SOPA but not in R-111-P?                                                                                                      | N      |
| If yes, are the first 2 strings cemented to surface and 3 <sup>rd</sup> string cement tied back                                                  |        |
| 500' into previous casing?                                                                                                                       |        |
| Is well located in R-111-P and SOPA?                                                                                                             | N      |
|                                                                                                                                                  | - 14   |
| If yes, are the first three strings cemented to surface?                                                                                         |        |
| Is 2 <sup>nd</sup> string set 100' to 600' below the base of salt?                                                                               |        |
| Is well located in high Cave/Karst?                                                                                                              | N      |
| If yes, are there two strings cemented to surface?                                                                                               |        |
| (For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?                                                           |        |
|                                                                                                                                                  |        |
| Is well located in critical Cave/Karst?                                                                                                          | N      |
| If yes, are there three strings cemented to surface?                                                                                             |        |

## 3. Cementing Program

| Casing   | # Sks | Wt. lb/ | Yld ft3/ | H₂0 gal/sk | 500# Comp.<br>Strength<br>(hours) | Slurry Description                |
|----------|-------|---------|----------|------------|-----------------------------------|-----------------------------------|
| Surf.    | 30    | 13.5    | 1.75     | 9          | 12                                | Lead: Class C + 4% Gel + 1% CaCl2 |
| Sull.    | 250   | 14.8    | 1.34     | 6.34       | 8                                 | Tail: Class C + 2% CaCl2          |
| Inter.   | 490   | 12.7    | 2.0      | 9.6        | 16                                | Lead: 35:65:6 C Blend             |
| mer.     | 250   | 14.8    | 1.34     | 6.34       | 8                                 | Tail: Class C + 2% CaCl           |
| 5.5 Prod | 710   | 11.9    | 2.5      | 19         | 72                                | Lead: 50:50:10 H Blend            |
| 5.5 F10u | 2650  | 14.4    | 1.24     | 5.7        | 19                                | Tail: 50:50:2 Class H Blend       |

Volumes Subject to Observed Hole Conditions and/or Fluid Caliper Results Lab reports with the 500 psi compressive strength time for the cement will be onsite for review.

| Casing String                | TOC    | % Excess                                            |
|------------------------------|--------|-----------------------------------------------------|
| Surface                      | 0'     | 50%                                                 |
| 1 <sup>st</sup> Intermediate | 0'     | 50%                                                 |
| Production                   | 2,360' | 20% OH in Lateral (KOP to EOL) – 25% OH in Vertical |

#### **4. Pressure Control Equipment**

A variance is requested for the use of a diverter on the surface casing. See attached for schematic.

| BOP installed and tested before drilling which hole? | Size?   | Min.<br>Required<br>WP | Ту         | pe    | x | Tested to:                 |
|------------------------------------------------------|---------|------------------------|------------|-------|---|----------------------------|
|                                                      |         |                        | Ann        | ular  | Χ | 2000 psi                   |
|                                                      |         |                        | Blind      | Ram   |   |                            |
| 12-1/4"                                              | 13-5/8" | 2M                     | Pipe       | Ram   |   | 2M                         |
|                                                      |         |                        | Double     | e Ram |   | ZIVI                       |
|                                                      |         |                        | Other*     |       |   |                            |
|                                                      |         |                        | Ann        | ular  | х | 50%<br>testing<br>pressure |
| 8-3/4"                                               | 13-5/8" | 3M                     | Blind      | Ram   | Х |                            |
|                                                      |         |                        | Pipe       | Ram   | Х | 3М                         |
|                                                      |         |                        | Double Ram |       |   | JIVI                       |
|                                                      |         |                        | Other*     |       |   |                            |

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

|   | Formation integrity test will be performed per Onshore Order #2.                                                                                                                                                                                                   |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Х | On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.                          |
| Υ | A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.                                                                                                                    |
|   | N Are anchors required by manufacturer?                                                                                                                                                                                                                            |
| N | A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. |

## 5. Mud Program

|                 | Depth           | Typo            | Weight    | Viscosity | Water Loss |  |
|-----------------|-----------------|-----------------|-----------|-----------|------------|--|
| From            | То              | Туре            | (ppg)     | Viscosity | Water Loss |  |
| 0               | Surf. Shoe      | FW Gel          | 8.6 - 8.8 | 28-34     | N/C        |  |
| Surf csg        | 9-5/8" Int shoe | Saturated Brine | 10 - 10.1 | 28-34     | N/C        |  |
| 9-5/8" Int shoe | Lateral TD      | Cut Brine       | 8.6 - 9.3 | 28-34     | N/C        |  |

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

| What will be used to monitor the loss or gain of fluid? PVT/Pason/Visual Mon | itoring |
|------------------------------------------------------------------------------|---------|
|------------------------------------------------------------------------------|---------|

## 6. Logging and Testing Procedures

| Logging, Coring and Testing. |                                                                                                                                                             |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Υ                            | Will run GR/CNL from TD to surface (horizontal well – vertical portion of hole). Stated logs run will be in the Completion Report and submitted to the BLM. |
| Υ                            | No Logs are planned based on well control or offset log information.                                                                                        |
| N                            | Drill stem test? If yes, explain.                                                                                                                           |
| N                            | Coring? If yes, explain.                                                                                                                                    |

| Add | ditional logs planned | Interval                                                |
|-----|-----------------------|---------------------------------------------------------|
| N   | Resistivity           | Pilot Hole TD to ICP                                    |
| N   | Density               | Pilot Hole TD to ICP                                    |
| Υ   | CBL                   | Production casing (If cement not circulated to surface) |
| Υ   | Mud log               | Intermediate shoe to TD                                 |
| N   | PEX                   |                                                         |

#### 7. Drilling Conditions

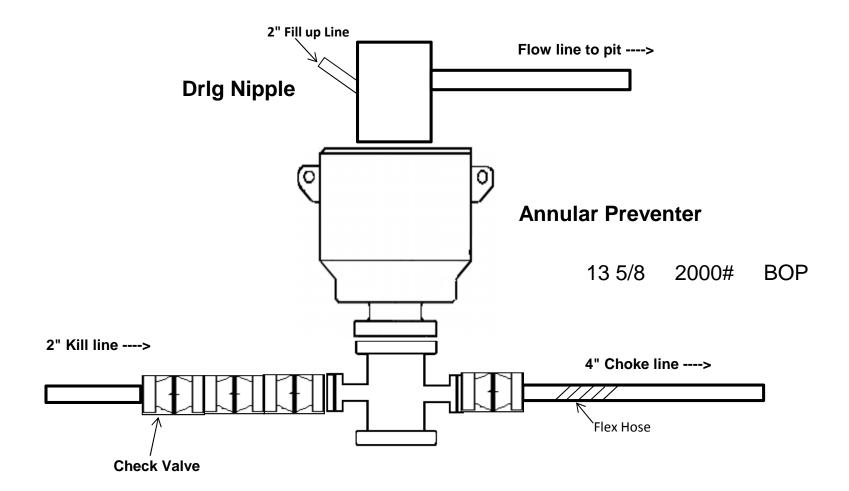
| Condition                  | Specify what type and where? |
|----------------------------|------------------------------|
| BH Pressure at deepest TVD | 4115 psi at 8505' TVD        |
| Abnormal Temperature       | NO 145 Deg. F.               |

No abnormal pressure or temperature conditions are anticipated. Sufficient mud materials to maintain mud properties and weight increase requirements will be kept on location at all times.

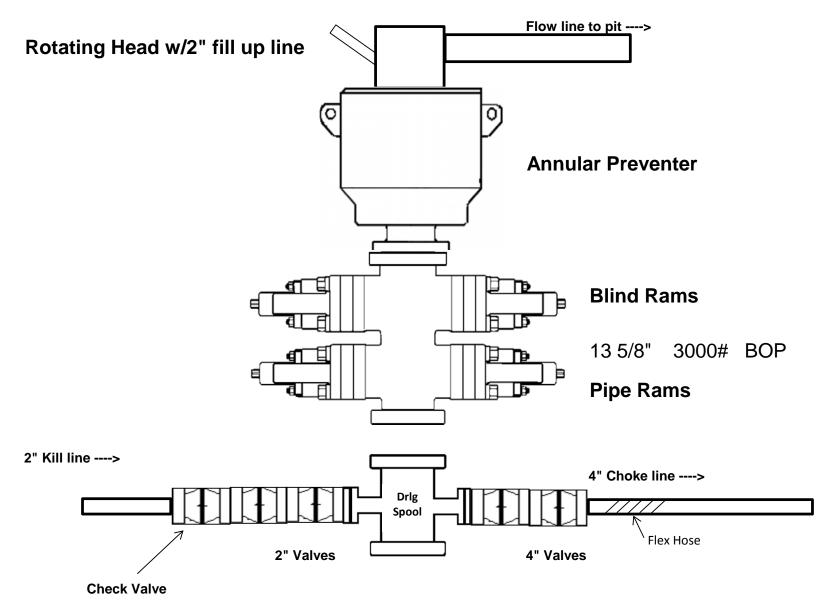
Sufficient supplies of Paper/LCM for periodic sweeps to control seepage and losses will be maintained on location.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

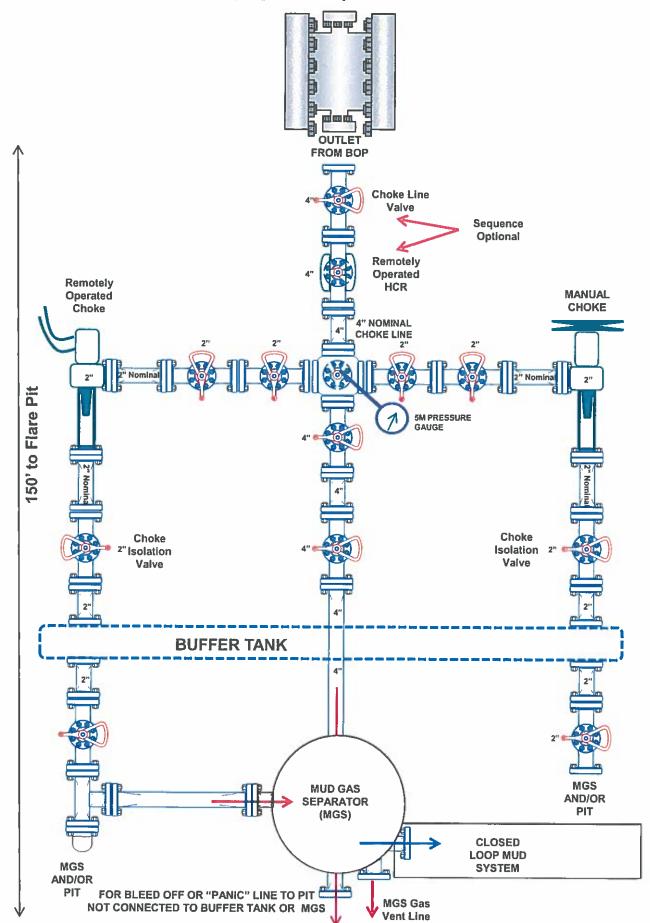
| N | H2S is present    |
|---|-------------------|
| Y | H2S Plan attached |


#### 8. Other Facets of Operation

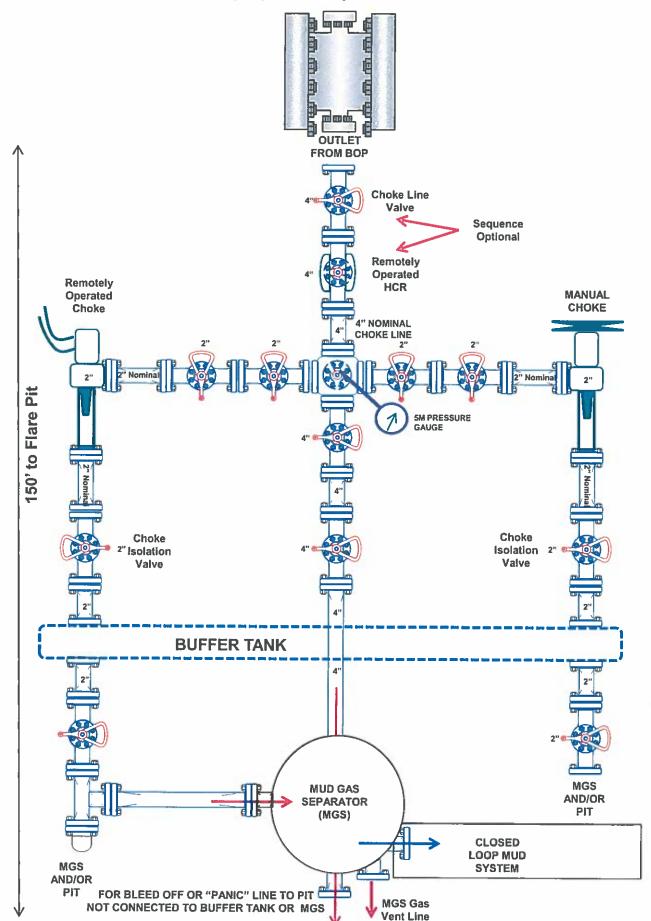
| Y | Is it a walking operation? |
|---|----------------------------|
| Y | Is casing pre-set?         |


| Х | H2S Plan.               |
|---|-------------------------|
| х | BOP & Choke Schematics. |
| Х | Directional Plan        |

Received by OCD: 9/17/2021 8:07:53 AM


# 2,000 psi BOP Schematic




# 3,000 psi BOP Schematic



# 2M Choke Manifold Equipment (WITH MGS + CLOSED LOOP)



# 3M Choke Manifold Equipment (WITH MGS + CLOSED LOOP)



District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

**State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505** 

COMMENTS

Action 49610

#### **COMMENTS**

| Operator:          | OGRID:                                                |
|--------------------|-------------------------------------------------------|
| COG OPERATING LLC  | 229137                                                |
| 600 W Illinois Ave | Action Number:                                        |
| Midland, TX 79701  | 49610                                                 |
|                    | Action Type:                                          |
|                    | [C-101] BLM - Federal/Indian Land Lease (Form 3160-3) |

#### COMMENTS

| Created By | Comment                 | Comment Date |
|------------|-------------------------|--------------|
| kpickford  | KP GEO Review 9/21/2021 | 9/21/2021    |

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

**State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505** 

CONDITIONS

Action 49610

#### **CONDITIONS**

| Operator:          | OGRID:                                                |
|--------------------|-------------------------------------------------------|
| COG OPERATING LLC  | 229137                                                |
| 600 W Illinois Ave | Action Number:                                        |
| Midland, TX 79701  | 49610                                                 |
|                    | Action Type:                                          |
|                    | [C-101] BLM - Federal/Indian Land Lease (Form 3160-3) |

#### CONDITIONS

| Created   | Condition                                                                                                                                                                                                                                                            | Condition |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Ву        |                                                                                                                                                                                                                                                                      | Date      |
| kpickford | Notify OCD 24 hours prior to casing & cement                                                                                                                                                                                                                         | 9/21/2021 |
| kpickford | Will require a File As Drilled C-102 and a Directional Survey with the C-104                                                                                                                                                                                         | 9/21/2021 |
| kpickford | Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string | 9/21/2021 |
| kpickford | Cement is required to circulate on both surface and intermediate1 strings of casing                                                                                                                                                                                  | 9/21/2021 |
| kpickford | Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system                  | 9/21/2021 |