Form 3160-3 FORM APPROVED OMB No. 1004-0137 (June 2015) Expires: January 31, 2018 **UNITED STATES** DEPARTMENT OF THE INTERIOR 5. Lease Serial No. BUREAU OF LAND MANAGEMENT APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. DRILL REENTER 1a. Type of work: 1b. Type of Well: Oil Well Gas Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing Single Zone Multiple Zone 2. Name of Operator 9. API Well No. 30-015-49012 3a. Address 3b. Phone No. (include area code) 10. Field and Pool, or Exploratory 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. or Blk. and Survey or Area At surface At proposed prod. zone 14. Distance in miles and direction from nearest town or post office* 12. County or Parish 13. State 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see 2. A Drilling Plan. Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. SUPO must be filed with the appropriate Forest Service Office). 6. Such other site specific information and/or plans as may be requested by the 25. Signature Name (Printed/Typed) Date Title Approved by (Signature) Name (Printed/Typed) Date Title Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction

APPROVED WITH CONDITIONS Released to Imaging: 10/28/2021 1:42:40 PM Approval Date: 11/05/2020

(Continued on page 2)

*(Instructions on page 2)

State of New Mexico DISTRICT I Energy, Minerals & Natural Resources Department 1625 N. FRENCH DR., HOBBS, NM 88240 Phone: (575) 393-6161 Pag: (575) 383-0720 OIL CONSERVATION DIVISION

> 1220 SOUTH ST. FRANCIS DR. Santa Fe, New Mexico 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

Released to Imaging: 10/28/2021 1:42:40 PM

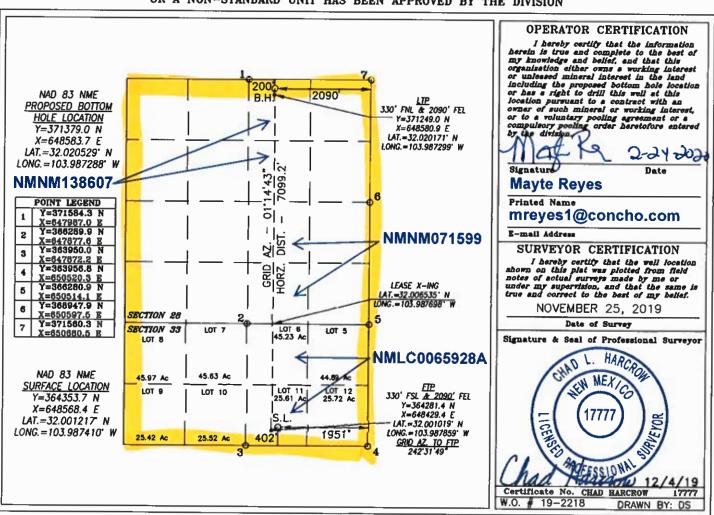
□ AMENDED REPORT

DISTRICT II 811 S. FIRST ST., ARTESIA, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

DISTRICT III 1000 RIO BRAZOS RD., AZTEC, NM 87410 Phone: (505) 334-6176 Fax: (505) 534-6170

DISTRICT IV 1220 S. ST. FRANCIS DR., SANTA FR. NM 87605 Phone: (505) 476-3480 Fax: (505) 476-3462

WELL LOCATION AND ACREAGE DEDICATION PLAT API Number Pool Code Pool Name 30-015- 49012 98220 Purple Sage; Wolfcamp, Gas Property Code Property Name Well Number 322243 LITTLEFIELD 33 FEDERAL COM 703H OGRID No. Operator Name Elevation 229137 COG OPERATING, LLC 2874.6


Surface Location

UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
11	33	26-S	29-E		402	SOUTH	1951	EAST	EDDY

Bottom Hole Location If Different From Surface

UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
В	28	2 6 -S	29-E		200	NORTH	2090	EAST	EDDY
Dedicated Acre	s Joint o	r Infill C	onsolidation	Code Or	der No.				
927.09									

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator: COG Operating LLC OGRID: 229137 Date: 08 / 19 / 21

II. Type: ☒ Original [☐ Amendmen	t due to □ 19.15.27.9	.D(6)(a) NMA	C □ 19.15.27.9.D((6)(b) NI	MAC 🗆 Other	·.
If Other, please describe	e:						
III. Well(s): Provide the be recompleted from a s					wells pro	oposed to be d	rilled or proposed to
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D		cipated MCF/D	Anticipated Produced Water BBL/D
Littlefield 33 Fed Com 703H	30-015-	11-33-26S-29E	402' FSL & 1951' FEL	± 1171	± 5	5173	± 4499
IV. Central Delivery P V. Anticipated Schedu proposed to be recompl	l le: Provide th	ngle well pad or conn		ral delivery point.		et of wells prop	27.9(D)(1) NMAC] posed to be drilled or
Well Name	API	Spud Date	TD Reached Date	Completion Commencement		Initial Flow Back Date	First Production Date
Littlefield Fed Com 703H	30-015-	9/1/23	± 25 days from spud	1/01/24		1/11/24	1/16/24
VI. Separation Equiporation VII. Operational Practices Subsection A through Figure VIII. Best Manageme during active and plann	etices: Atta of 19.15.27.8	ch a complete descrip NMAC.	otion of the ac	tions Operator wil	l take to	comply with	the requirements of

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

		EFFECTIV	E APRIL 1, 2022	
Beginning April 1, 2 reporting area must of			with its statewide natural ga	as capture requirement for the applicable
☐ Operator certifies capture requirement			tion because Operator is in o	compliance with its statewide natural gas
IX. Anticipated Nat	ural Gas Producti	on:		
We	ell	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF
X. Natural Gas Gat	hering System (NC	GGS):		
Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in
production operation the segment or portion the segment or portion in the segment or se	s to the existing or point of the natural gas gas. The natural gas gas from the well prior to the complex of the complex system (s) described a plan to manage product of the complex of	planned interconnect of the gathering system(s) to we thering system will be the date of first product does not anticipate the dabove will continue to eduction in response to the there is confidentiality pursuant.	he natural gas gathering systewhich the well(s) will be community will not have capacity to getion. at its existing well(s) connect meet anticipated increases in the increased line pressure. uant to Section 71-2-8 NMS 27.9 NMAC, and attaches a few which we have a section of the context of	aticipated pipeline route(s) connecting the em(s), and the maximum daily capacity of nected. Eather 100% of the anticipated natural gas seed to the same segment, or portion, of the a line pressure caused by the new well(s). EA 1978 for the information provided in full description of the specific information

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

🗵 Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or ☐ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. If Operator checks this box, Operator will select one of the following: Well Shut-In.

Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or Venting and Flaring Plan.

Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including: power generation on lease; (a) power generation for grid; **(b)** compression on lease; (c) (d) liquids removal on lease: reinjection for underground storage; (e) reinjection for temporary storage; **(f)** reinjection for enhanced oil recovery; (g) fuel cell production; and (h)

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

other alternative beneficial uses approved by the division.

- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

(i)

VI. Separation Equipment

How Operator will size separation equipment to optimize gas capture:

All ConocoPhillips production facility equipment will be sized per industry standards (API 12J) with adequate retention time to effectively separate all phases of production. Each project will take into consideration the number of wells and type curves for each formation pool to ensure adequate facility capacity. Design considerations will also include review of all piping, tanks, VRU's and associated equipment to ensure optimized gas capture minimized risk of release.

VII. Operational Practices

Actions Operator will take to comply with the requirements below:

B. Drilling Operations

- During drilling, flare stacks will be located a minimum of 100 feet from the nearest surface hole location. All gas is captured or combusted. If an emergency or malfunction occurs, gas will be flared or vented for public health, safety, and the environment and be properly reported to the NMOCD pursuant to 19.15.27.8.G.
- Measure or estimate the volume of natural gas that is vented, flared or beneficially used during drilling, completion and production operations, regardless of the reason or authorization for such venting or flaring.

C. Completion Operations

- During completion operations, operator does not produce oil or gas but maintains adequate well control through completion operations.
- Individual well test separators will be set to properly separate gas and liquids. A
 temporary test separator will be utilized initially to process volumes. In addition,
 separators will be tied into flowback tanks which will be tied into the gas processing
 equipment for sales down a pipeline.

D. Venting and flaring during production operations

- During each phase of well life (drilling, completion and production) of a ConocoPhillips well, COP personnel will follow all necessary procedures to ensure both the operation and the equipment are within the NMAC 19.15.27.8 Subsection D guidelines.
- During well operations that require unloading of the well to atmospheric pressure, all reasonable actions will be taken to minimize vented gas
- Through the life of the well all flaring shall be measured, and venting events quantified using the data available and industry best practice.

E. Performance standards for separation, storage tank and flare equipment

 All storage tanks and separation equipment are designed minimize risk of liquid or vapor release and optimize gas capture. This includes automation for automatic gauging and pressure monitoring.

- All flare stacks are equipped with auto ignition devices and/or continuous pilots and are designed to operate at maximum combustion efficiency pursuant NMAC 19.15.27.8
 Subsection E. Flares will follow COP spacing guidelines to ensure they are a safe distance from combustibles and operations equipment.
- COP personnel will conduct routine AVO inspections on a regular basis per NMAC 19.15.27.8 Subsection E guidelines.
- F. Measurement of vented and flared natural gas.
 - Measurement equipment will be installed to quantify gas flared during drilling, completion and production of the well.
 - All measurement devices installed will meet accuracy ratings per AGA and API standards.
 - Measurement devices will be installed without manifolds that allow diversion of gas around the metering element, except for the sole purpose of inspection of servicing the measurement device.

VIII. Best Management Practices

- Operator will curtail or shut in production, within reasonable limits, during upset conditions to minimize venting and flaring.
- When feasible, Operator will use equipment to capture gas that would otherwise be vented or flared
- During completions and production operations Operator will minimize blowdowns to atmosphere
- When feasible, Operator will use electric or air actuated equipment to reduce bleed emissions

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Mayte Reyes
Printed Name: Mayte Reyes
Title: Sr. Regulatory Coodinator
E-mail Address: mayte.x.reyes@conocophillips.com
Date: 8/19/2021
Phone: 575-748-6945
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

U.S. Department of the Interior **BUREAU OF LAND MANAGEMENT**

Drilling Plan Data Report

05/19/2021

APD ID: 10400054635

Submission Date: 06/17/2020

Highlighted data reflects the most recent changes

Well Name: LITTLEFIELD 33 FEDERAL COM

Operator Name: COG OPERATING LLC

Well Number: 703H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Geologic Formations

Formation			True Vertical				Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
673955	QUATERNARY	2874	0	0	ALLUVIUM	NONE	N
673956	RUSTLER	2587	287	287	ALLUVIUM	NONE	N
673957	TOP SALT	2134	740	740	SALT	NONE	N
673958	BASE OF SALT	314	2560	2560	ANHYDRITE	NONE	N
673959	LAMAR	146	2728	2728	LIMESTONE	OTHER : Salt Water	N
673961	BELL CANYON	78	2796	2796	SANDSTONE	OTHER : Salt Water	N
673971	CHERRY CANYON	-771	3645	3645	SILTSTONE	NATURAL GAS, OIL	N
673972	BRUSHY CANYON	-2074	4948	4948	SANDSTONE	NATURAL GAS, OIL	N
673962	BONE SPRING LIME	-3631	6505	6505	LIMESTONE	NATURAL GAS, OIL	N
673963	BONE SPRING 1ST	-4568	7442	7442	SANDSTONE	NATURAL GAS, OIL	N
673960	BONE SPRING 2ND	-5326	8200	8200	SANDSTONE	NATURAL GAS, OIL	N
673964	BONE SPRING 3RD	-6437	9311	9311	SANDSTONE	NATURAL GAS, OIL	N
673965	WOLFCAMP	-6780	9654	9654	SHALE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

Pressure Rating (PSI): 3M Rating Depth: 9465

Equipment: Annular, Blind Ram and Pipe Ram. Accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold.

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to the choke manifold. See attached for specs and hydrostatic test chart.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

Choke Diagram Attachment:

COG_Littlefield_703H_3M_Choke_20200227084540.pdf

BOP Diagram Attachment:

COG_Littlefield_703H_3M_BOP_20200227084549.pdf

COG_Littlefield_703H_Flex_Hose_20200227084559.pdf

Pressure Rating (PSI): 5M Rating Depth: 10082

Equipment: Annular, Blind Ram, Pipe Ram. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to the choke manifold. See attached for specs and hydrostatic test chart.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

Choke Diagram Attachment:

COG_Littlefield_703H_5M_Choke_20200227084633.pdf

BOP Diagram Attachment:

COG Littlefield 703H 5M BOP 20200227084643.pdf

COG_Littlefield_703H_Flex_Hose_20200227084704.pdf

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	14.5	10.75	NEW	API	N	0	700	0	700	2874	2174	700	N-80		OTHER - BTC	7.71	1.99	DRY	32.6 5	DRY	34.4 4
2	INTERMED IATE	8.75	7.625	NEW	API	Υ	0	9465	0	7100	-6999	-4226	9465	HCP -110		OTHER - TL-FJ	1.59	1.37	DRY	3.34	DRY	2.34
3	PRODUCTI ON	6.75	5.0	NEW	API	Υ	0	17171	0	10082	-6999	-7208	17171	P- 110	-	OTHER - BTC	2.22	2.28	DRY	4.02	DRY	3.99

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

COG_Littlefield_703H_Casing_Program_20200227084901.pdf

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

Casing Attachments

Casing ID: 2 String Typ

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

COG_Littlefield_703H_Casing_Program_20200227085033.pdf

Casing Design Assumptions and Worksheet(s):

COG_Littlefield_703H_Casing_Program_20200227085038.pdf

Casing ID: 3 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

COG_Littlefield_703H_Casing_Program_20200227085127.pdf

Casing Design Assumptions and Worksheet(s):

COG_Littlefield_703H_Casing_Program_20200227085207.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Тор МБ	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	700	334	1.75	13.5	584	50	Class C	4% Gel + 1% CaCl2
SURFACE	Tail		0	700	250	1.34	14.8	335	50	Class C	2% CaCl2
INTERMEDIATE	Lead		0	9465	690	3.3	10.3	2277	50	Haliburton Tunded Light	As needed
INTERMEDIATE	Tail		0	9465	250	1.35	14.8	337	50	Tail: Class H	As needed
PRODUCTION	Lead		6600	1717 1	430	2	12.7	860	35	50:50:10 H Blend	As needed

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Tail		6600	1717 1	1001	1.24	14.4	1241	35	50:50:2 Class H Blend	As needed

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	НА	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
700	9946 5	OTHER : Brine Diesel Emulsion	8.4	9							Brine Diesel Emulsion
0	700	OTHER : FW Gel	8.6	8.8							FW Gel
9465	1717 1	OIL-BASED MUD	9.6	12.5							ОВМ

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

None planned

List of open and cased hole logs run in the well:

COMPENSATED NEUTRON LOG, GAMMA RAY LOG,

Coring operation description for the well:

None planned

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 6555 Anticipated Surface Pressure: 4336

Anticipated Bottom Hole Temperature(F): 160

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

COG_Littlefield_703H_H2S_SUP_20200227085637.pdf COG_Littlefield_703H_H2S_Schematic_20200227085643.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

COG_LITTLEFIELD_703H_Directional_Plan_20200227085659.pdf COG_LITTLEFIELD_703H_AC_RPT_20200227085708.pdf

Other proposed operations facets description:

Drilling Plan Attached.

GCP Attached.

Cement plan attached.

Other proposed operations facets attachment:

COG_Littlefield_703H_Drilling_Plan_20200227085725.pdf

COG_Littlefield_703H_GCP_20200227085731.pdf

COG_Littlefield_703H_Cement_Program_20200227085737.pdf

Other Variance attachment:

NORTHERN DELAWARE BASIN

EDDY COUNTY, NM ATLAS LITTLEFIELD 33 FEDERAL COM 703H

OWB

Plan: PWP1

Standard Survey Report

17 February, 2020

Survey Report

Company: NORTHERN DELAWARE BASIN

Project: EDDY COUNTY, NM

Site: ATLAS

Well: LITTLEFIELD 33 FEDERAL COM 703H

Wellbore: OWB

Design: PWP1

Local Co-ordinate Reference:

TVD Reference:

MD Reference: North Reference:

System Datum:

Survey Calculation Method:

Database:

Well LITTLEFIELD 33 FEDERAL COM 703H

KB=25' @ 2899.6usft (Pioneer 84) KB=25' @ 2899.6usft (Pioneer 84)

Grid

Minimum Curvature

.

Mean Sea Level

edm

Project EDDY COUNTY, NM

Map System: US State Plane 1927 (Exact solution)

Geo Datum: NAD 1927 (NADCON CONUS)

Map Zone: New Mexico East 3001

LITTLEFIELD 33 FEDERAL COM 703H

Well Position +N/-S 0.0 usft **Northing**: 364,296.40 usft **Latitude**: 32° 0′ 3.929 N

+E/-W 0.0 usft **Easting**: 607,382.50 usft **Longitude**: 103° 59' 12.945 W

Position Uncertainty 3.0 usft Wellhead Elevation: usfl Ground Level: 2,874.6 usfl

Wellbore OWB

 Magnetics
 Model Name
 Sample Date
 Declination (°)
 Dip Angle (°)
 Field Strength (nT)

 IGRF2015
 2/17/2020
 6.84
 59.76
 47,492.44860755

Design PWP1

Audit Notes:

Well

Version: Phase: PLAN Tie On Depth: 0.0

Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (o°)

0.0 0.0 0.0 0.13

Survey Tool Program Date 2/17/2020

From To

(usft) (usft) Survey (Wellbore) Tool Name Description

0.0 17,171.5 PWP1 (OWB) MWD+IFR1+FDIR OWSG MWD + IFR1 + FDIR Correction

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	0.008	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00

Survey Report

Company: NORTHERN DELAWARE BASIN

Project: EDDY COUNTY, NM

Site: ATLAS

Well: LITTLEFIELD 33 FEDERAL COM 703H

Wellbore: OWB

Design: PWP1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

North Reference:

Survey Calculation Method:

Database:

Well LITTLEFIELD 33 FEDERAL COM 703H

KB=25' @ 2899.6usft (Pioneer 84) KB=25' @ 2899.6usft (Pioneer 84)

Grid

Minimum Curvature

esign: PWF	- 1			Database) .		eam		
nned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,200.0	0.00	0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00
2,300.0	0.00	0.00	2,300.0	0.0	0.0	0.0	0.00	0.00	0.00
2,400.0	0.00	0.00	2,400.0	0.0	0.0	0.0	0.00	0.00	0.00
2,500.0	0.00	0.00	2,500.0	0.0	0.0	0.0	0.00	0.00	0.00
2,600.0	0.00	0.00	2,600.0	0.0	0.0	0.0	0.00	0.00	0.00
2,700.0	0.00	0.00	2,700.0	0.0	0.0	0.0	0.00	0.00	0.00
			•					0.00	
2,800.0 2,900.0	0.00 0.00	0.00 0.00	2,800.0 2,900.0	0.0 0.0	0.0 0.0	0.0 0.0	0.00 0.00	0.00	0.00 0.00
					0.0			0.00	
3,000.0	0.00	0.00	3,000.0	0.0	0.0	0.0	0.00	0.00	0.00
3,100.0	0.00	0.00	3,100.0	0.0	0.0	0.0	0.00	0.00	0.00
3,200.0	0.00	0.00	3,200.0	0.0	0.0	0.0	0.00	0.00	0.00
3,300.0	0.00	0.00	3,300.0	0.0	0.0	0.0	0.00	0.00	0.00
3,400.0	0.00	0.00	3,400.0	0.0	0.0	0.0	0.00	0.00	0.00
3,500.0	0.00	0.00	3,500.0	0.0	0.0	0.0	0.00	0.00	0.00
3,600.0	0.00	0.00	3,600.0	0.0	0.0	0.0	0.00	0.00	0.00
3,700.0	0.00	0.00	3,700.0	0.0	0.0	0.0	0.00	0.00	0.00
3,800.0	0.00	0.00	3,800.0	0.0	0.0	0.0	0.00	0.00	0.00
3,900.0	0.00	0.00	3,900.0	0.0	0.0	0.0	0.00	0.00	0.00
4,000.0	0.00	0.00	4,000.0	0.0	0.0	0.0	0.00	0.00	0.00
4,100.0	0.00	0.00	4,100.0	0.0	0.0	0.0	0.00	0.00	0.00
4,200.0	0.00	0.00	4,200.0	0.0	0.0	0.0	0.00	0.00	0.00
4,300.0	0.00	0.00	4,300.0	0.0	0.0	0.0	0.00	0.00	0.00
4,400.0	0.00	0.00	4,400.0	0.0	0.0	0.0	0.00	0.00	0.00
4,500.0	0.00	0.00	4,500.0	0.0	0.0	0.0	0.00	0.00	0.00
4,600.0	0.00	0.00	4,600.0	0.0	0.0	0.0	0.00	0.00	0.00
4,700.0	0.00	0.00	4,700.0	0.0	0.0	0.0	0.00	0.00	0.00
4,800.0	0.00	0.00	4,800.0	0.0	0.0	0.0	0.00	0.00	0.00
4,900.0	0.00	0.00	4,900.0	0.0	0.0	0.0	0.00	0.00	0.00
5,000.0	0.00	0.00	5,000.0	0.0	0.0	0.0	0.00	0.00	0.00
5,100.0	0.00	0.00	5,100.0	0.0	0.0	0.0	0.00	0.00	0.00
5,200.0	0.00	0.00	5,200.0	0.0			0.00	0.00	0.00
					0.0	0.0			
5,300.0 5,400.0	0.00 0.00	0.00 0.00	5,300.0 5,400.0	0.0 0.0	0.0 0.0	0.0 0.0	0.00 0.00	0.00 0.00	0.00 0.00
5,500.0 Start Build 2	0.00	0.00	5,500.0	0.0	0.0	0.0	0.00	0.00	0.00
5,600.0	2.00	202.20	5,600.0	-1.6	-0.7	-1.6	2.00	2.00	0.00
5,700.0	4.00	202.20	5,699.8	-6.5	-2.6	-6.5	2.00	2.00	0.00

Survey Report

Company: NORTHERN DELAWARE BASIN

Project: EDDY COUNTY, NM

Site: ATLAS

Well: LITTLEFIELD 33 FEDERAL COM 703H

Wellbore: OWB

Design: PWP1

Local Co-ordinate Reference:

TVD Reference:

North Reference: Survey Calculation Method:

Survey Calculation is

Database:

Well LITTLEFIELD 33 FEDERAL COM 703H

KB=25' @ 2899.6usft (Pioneer 84) KB=25' @ 2899.6usft (Pioneer 84)

Grid

Minimum Curvature

,					Dutubus					
ed S	Survey									
[easured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
	5,750.0	5.00	202.20	5,749.7	-10.1	-4.1	-10.1	2.00	2.00	0.00
S	tart 3767.	.6 hold at 5750	.0 MD							
	5,800.0	5.00	202.20	5,799.5	-14.1	-5.8	-14.1	0.00	0.00	0.00
	5,900.0	5.00	202.20	5,899.1	-22.2	-9.1	-22.2	0.00	0.00	0.00
	6,000.0	5.00	202.20	5,998.7	-30.3	-12.4	-30.3	0.00	0.00	0.00
	6,100.0	5.00	202.20	6,098.4	-38.3	-15.6	-38.4	0.00	0.00	0.00
	6,200.0	5.00	202.20	6,198.0	-46.4	-18.9	-46.4	0.00	0.00	0.00
	6,300.0	5.00	202.20	6,297.6	-54.5	-22.2	-54.5	0.00	0.00	0.00
	6,400.0	5.00	202.20	6,397.2	-62.5	-25.5	-62.6	0.00	0.00	0.00
	6,500.0	5.00	202.20	6,496.8	-70.6	-28.8	-70.7	0.00	0.00	0.00
	6,600.0	5.00	202.20	6,596.4	-78.7	-32.1	-70.7 -78.8	0.00	0.00	0.00
	6,700.0	5.00	202.20	6,696.1	-86.8	-35.4	-86.8	0.00	0.00	0.00
				6.795.7						
	6,800.0	5.00	202.20	0,795.7	-94.8	-38.7	-94.9	0.00	0.00	0.00
	6,900.0	5.00	202.20	6,895.3	-102.9	-42.0	-103.0	0.00	0.00	0.00
	7,000.0	5.00	202.20	6,994.9	-111.0	-45.3	-111.1	0.00	0.00	0.00
	7,100.0	5.00	202.20	7,094.5	-119.0	-48.6	-119.1	0.00	0.00	0.00
	7,200.0	5.00	202.20	7,194.2	-127.1	-51.9	-127.2	0.00	0.00	0.00
	7,300.0	5.00	202.20	7,293.8	-135.2	-55.2	-135.3	0.00	0.00	0.00
	7,400.0	5.00	202.20	7,393.4	-143.2	-58.5	-143.4	0.00	0.00	0.00
	7,500.0	5.00	202.20	7,493.0	-151.3	-61.7	-151.4	0.00	0.00	0.00
	7,600.0	5.00	202.20	7,592.6	-159.4	-65.0	-159.5	0.00	0.00	0.00
	7,700.0	5.00	202.20	7,692.3	-167.4	-68.3	-167.6	0.00	0.00	0.00
	7,800.0	5.00	202.20	7,791.9	-175.5	-71.6	-175.7	0.00	0.00	0.00
	7,000,0	F 00	000.00	7.004.5	400.0	74.0	400.0	0.00	0.00	0.00
	7,900.0	5.00	202.20	7,891.5	-183.6	-74.9	-183.8	0.00	0.00	0.00
	8,000.0	5.00	202.20	7,991.1	-191.7	-78.2	-191.8	0.00	0.00	0.00
	8,100.0	5.00	202.20	8,090.7	-199.7	-81.5	-199.9	0.00	0.00	0.00
	8,200.0	5.00	202.20	8,190.4	-207.8	-84.8	-208.0	0.00	0.00	0.00
	8,300.0	5.00	202.20	8,290.0	-215.9	-88.1	-216.1	0.00	0.00	0.00
	8,400.0	5.00	202.20	8,389.6	-223.9	-91.4	-224.1	0.00	0.00	0.00
	8,500.0	5.00	202.20	8,489.2	-232.0	-94.7	-232.2	0.00	0.00	0.00
	8,600.0	5.00	202.20	8,588.8	-240.1	-98.0	-240.3	0.00	0.00	0.00
	8,700.0	5.00	202.20	8,688.5	-248.1	-101.3	-248.4	0.00	0.00	0.00
	8,800.0	5.00	202.20	8,788.1	-256.2	-104.6	-256.4	0.00	0.00	0.00
	8,900.0	5.00	202.20	8,887.7	-264.3	-107.9	-264.5	0.00	0.00	0.00
	9,000.0	5.00	202.20	8,987.3	-272.4	-111.1	-272.6	0.00	0.00	0.00
	9,100.0	5.00	202.20	9,086.9	-280.4	-114.4	-280.7	0.00	0.00	0.00
	9,200.0	5.00	202.20	9,186.6	-288.5	-117.7	-288.7	0.00	0.00	0.00
	9,300.0	5.00	202.20	9,286.2	-296.6	-121.0	-296.8	0.00	0.00	0.00
	9,400.0	5.00	202.20	9,385.8	-304.6	-124.3	-304.9	0.00	0.00	0.00
	9,500.0	5.00	202.20	9,485.4	-312.7	-127.6	-313.0	0.00	0.00	0.00
	9,517.6	5.00	202.20	9,502.9	-314.1	-128.2	-314.4	0.00	0.00	0.00
S	9,600.0	12.00 TFO 158		0.595.2	212 7	120.0	212.0	12.00	0.62	170.04
	•	5.52	342.39	9,585.2	-313.7	-130.8	-313.9	12.00	0.63	
	9,700.0	17.31	355.51	9,683.1	-294.2	-133.4	-294.5	12.00	11.79	13.11

Survey Report

Company: NORTHERN DELAWARE BASIN

Project: EDDY COUNTY, NM

Site: ATLAS

Well: LITTLEFIELD 33 FEDERAL COM 703H

Wellbore: OWB

Design: PWP1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: Survey Calculation Method:

Database:

Well LITTLEFIELD 33 FEDERAL COM 703H

KB=25' @ 2899.6usft (Pioneer 84) KB=25' @ 2899.6usft (Pioneer 84)

Grid

Minimum Curvature

coigii.									
lanned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,800.0	29.27	358.07	9,774.7	-254.8	-135.4	-255.0	12.00	11.96	2.56
9,900.0	41.26	359.22	9,856.2	-197.1	-136.7	-197.4	12.00	11.98	1.15
10,000.0	53.25	359.92	9,924.0	-123.8	-137.2	-124.1	12.00	11.99	0.70
10,100.0	65.24	0.44	9,975.1	-38.1	-136.9	-38.4	12.00	11.99	0.51
10,200.0	77.23	0.86	10,007.2	56.4	-135.8	56.1	12.00	11.99	0.42
10,300.0	89.22	1.24	10,018.9	155.5	-134.0	155.2	12.00	11.99	0.38
10,302.1	89.47	1.25	10,019.0	157.6	-133.9	157.3	12.00	11.99	0.38
Start 686	9.4 hold at 1030	2.1 MD							
10,400.0	89.47	1.25	10,019.9	255.5	-131.8	255.2	0.00	0.00	0.00
10,500.0	89.47	1.25	10,020.8	355.5	-129.6	355.2	0.00	0.00	0.00
10,600.0	89.47	1.25	10,021.7	455.5	-127.5	455.2	0.00	0.00	0.00
10,700.0	89.47	1.25	10,022.6	555.4	-125.3	555.2	0.00	0.00	0.00
10,800.0		1.25	10,023.5	655.4	-123.1	655.1	0.00	0.00	0.00
10,900.0		1.25	10,024.4	755.4	-120.9	755.1	0.00	0.00	0.00
11,000.0		1.25	10,025.4	855.3	-118.8	855.1	0.00	0.00	0.00
11,100.0		1.25	10,026.3	955.3	-116.6	955.1	0.00	0.00	0.00
11,200.0	89.47	1.25	10,027.2	1,055.3	-114.4	1,055.0	0.00	0.00	0.00
11,300.0		1.25	10,028.1	1,155.3	-112.2	1,155.0	0.00	0.00	0.00
11,400.0		1.25	10,029.0	1,255.2	-110.1	1,255.0	0.00	0.00	0.00
11,500.0		1.25	10,030.0	1,355.2	-107.9	1,355.0	0.00	0.00	0.00
11,600.0		1.25	10,030.9	1,455.2	-105.7	1,454.9	0.00	0.00	0.00
11,700.0	89.47	1.25	10,031.8	1,555.2	-103.5	1,554.9	0.00	0.00	0.00
11,800.0		1.25	10,032.7	1,655.1	-101.4	1,654.9	0.00	0.00	0.00
11,900.0		1.25	10,032.7	1,755.1	-99.2	1,754.9	0.00	0.00	0.00
12,000.0		1.25	10,033.5	1,855.1	-97.0	1,854.9	0.00	0.00	0.00
12,100.0		1.25	10,035.5	1,955.0	-94.8	1,954.8	0.00	0.00	0.00
12,200.0	89.47	1.25	10,036.4	2,055.0	-92.7	2,054.8	0.00	0.00	0.00
12,300.0		1.25	10,030.4	2,055.0	-90.5	2,154.8	0.00	0.00	0.00
12,400.0		1.25	10,037.3	2,155.0	-88.3	2,154.8	0.00	0.00	0.00
12,500.0		1.25	10,038.2	2,255.0	-86.2	2,354.7	0.00	0.00	0.00
12,600.0		1.25	10,040.0	2,454.9	-84.0	2,454.7	0.00	0.00	0.00
12,700.0	89.47	1.25	10,041.0	2,554.9	-81.8	2,554.7	0.00	0.00	0.00
12,800.0		1.25	10,041.9	2,654.8	-79.6	2,654.7	0.00	0.00	0.00
12,900.0		1.25	10,041.8	2,754.8	-77.5	2,754.6	0.00	0.00	0.00
13,000.0		1.25	10,043.7	2,854.8	-75.3	2,854.6	0.00	0.00	0.00
13,100.0		1.25	10,044.6	2,954.8	-73.1	2,954.6	0.00	0.00	0.00
13,200.0		1.25	10,045.6	3,054.7	-70.9	3,054.6	0.00	0.00	0.00
13,300.0		1.25	10,046.5	3,154.7	-68.8	3,154.5	0.00	0.00	0.00
13,400.0		1.25	10,047.4	3,254.7	-66.6	3,254.5	0.00	0.00	0.00
13,500.0		1.25	10,048.3	3,354.7	-64.4	3,354.5	0.00	0.00	0.00
13,600.0	89.47	1.25	10,049.2	3,454.6	-62.2	3,454.5	0.00	0.00	0.00
13,700.0	89.47	1.25	10,050.1	3,554.6	-60.1	3,554.5	0.00	0.00	0.00
13,800.0	89.47	1.25	10,051.1	3,654.6	-57.9	3,654.4	0.00	0.00	0.00

Survey Report

Company: NORTHERN DELAWARE BASIN

Project: EDDY COUNTY, NM

Site: ATLAS

Well: LITTLEFIELD 33 FEDERAL COM 703H

Wellbore: OWB

Design: PWP1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

North Reference:

Survey Calculation Method:

Database:

Well LITTLEFIELD 33 FEDERAL COM 703H

KB=25' @ 2899.6usft (Pioneer 84) KB=25' @ 2899.6usft (Pioneer 84)

Grid

Minimum Curvature

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
13,900.0	89.47	1.25	10,052.0	3,754.5	-55.7	3,754.4	0.00	0.00	0.00
14,000.0	89.47	1.25	10,052.9	3,854.5	-53.5	3,854.4	0.00	0.00	0.00
14,100.0	89.47	1.25	10,053.8	3,954.5	-51.4	3,954.4	0.00	0.00	0.00
14,200.0	89.47	1.25	10,054.7	4,054.5	-49.2	4,054.3	0.00	0.00	0.00
14,300.0	89.47	1.25	10,055.6	4,154.4	-47.0	4,154.3	0.00	0.00	0.00
14,400.0	89.47	1.25	10,056.6	4,254.4	-44.8	4,254.3	0.00	0.00	0.00
14,500.0	89.47	1.25	10,057.5	4,354.4	-42.7	4,354.3	0.00	0.00	0.00
14,600.0	89.47	1.25	10,058.4	4,454.3	-40.5	4,454.2	0.00	0.00	0.00
14,700.0	89.47	1.25	10,059.3	4,554.3	-38.3	4,554.2	0.00	0.00	0.00
14,800.0	89.47	1.25	10,060.2	4,654.3	-36.2	4,654.2	0.00	0.00	0.00
14,900.0	89.47	1.25	10,061.2	4,754.3	-34.0	4,754.2	0.00	0.00	0.00
15,000.0	89.47	1.25	10,062.1	4,854.2	-31.8	4,854.2	0.00	0.00	0.00
15,100.0	89.47	1.25	10,063.0	4,954.2	-29.6	4,954.1	0.00	0.00	0.00
15,200.0	89.47	1.25	10,063.9	5,054.2	-27.5	5,054.1	0.00	0.00	0.00
15,300.0	89.47	1.25	10,064.8	5,154.2	-25.3	5,154.1	0.00	0.00	0.00
15,400.0	89.47	1.25	10,065.7	5,254.1	-23.1	5,254.1	0.00	0.00	0.00
15,500.0	89.47	1.25	10,066.7	5,354.1	-20.9	5,354.0	0.00	0.00	0.00
15,600.0	89.47	1.25	10,067.6	5,454.1	-18.8	5,454.0	0.00	0.00	0.00
15,700.0	89.47	1.25	10,068.5	5,554.0	-16.6	5,554.0	0.00	0.00	0.00
15,800.0	89.47	1.25	10,069.4	5,654.0	-14.4	5,654.0	0.00	0.00	0.00
15,900.0	89.47	1.25	10,070.3	5,754.0	-12.2	5,753.9	0.00	0.00	0.00
16,000.0	89.47	1.25	10,071.2	5,854.0	-10.1	5,853.9	0.00	0.00	0.00
16,100.0	89.47	1.25	10,072.2	5,953.9	-7.9	5,953.9	0.00	0.00	0.00
16,200.0	89.47	1.25	10,073.1	6,053.9	-5.7	6,053.9	0.00	0.00	0.00
16,300.0	89.47	1.25	10,074.0	6,153.9	-3.5	6,153.8	0.00	0.00	0.00
16,400.0	89.47	1.25	10,074.9	6,253.8	-1.4	6,253.8	0.00	0.00	0.00
16,500.0	89.47	1.25	10,075.8	6,353.8	8.0	6,353.8	0.00	0.00	0.00
16,600.0	89.47	1.25	10,076.8	6,453.8	3.0	6,453.8	0.00	0.00	0.00
16,700.0	89.47	1.25	10,077.7	6,553.8	5.2	6,553.8	0.00	0.00	0.00
16,800.0	89.47	1.25	10,078.6	6,653.7	7.3	6,653.7	0.00	0.00	0.00
16,900.0	89.47	1.25	10,079.5	6,753.7	9.5	6,753.7	0.00	0.00	0.00
17,000.0	89.47	1.25	10,080.4	6,853.7	11.7	6,853.7	0.00	0.00	0.00
17,100.0	89.47	1.25	10,081.3	6,953.6	13.8	6,953.7	0.00	0.00	0.00
17,171.5	89.47	1.25	10,082.0	7,025.1	15.4	7,025.1	0.00	0.00	0.00

Survey Report

Company: NORTHERN DELAWARE BASIN

Project: EDDY COUNTY, NM

Site: ATLAS

Well: LITTLEFIELD 33 FEDERAL COM 703H

Wellbore: OWB
Design: PWP1

Local Co-ordinate Reference:

TVD Reference:

MD Reference:
North Reference:

Survey Calculation Method:

Database:

Well LITTLEFIELD 33 FEDERAL COM 703H

KB=25' @ 2899.6usft (Pioneer 84) KB=25' @ 2899.6usft (Pioneer 84)

Grid

Minimum Curvature

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
FTP (LITTLEFIELD 3 - plan misses targ - Circle (radius 50	get center by		10,019.0 10093.0usf	-72.3 t MD (9972.1	-139.0 1 TVD, -44.4	364,224.10 N, -136.9 E)	607,243.50	32° 0' 3.218 N	103° 59' 14.561 W
LTP (LITTLEFIELD 33 - plan misses targ - Point			10,082.0 7041.4usft	6,895.1 MD (10080.8	12.6 3 TVD, 6895	371,191.50 .1 N, 12.6 E)	607,395.10	32° 1' 12.166 N	103° 59' 12.542 W
PBHL (LITTLEFIELD - plan hits target of the control	center		.,	7,025.1	15.4	371,321.50	607,397.90	32° 1' 13.453 N	103° 59' 12.504 W

Plan Annotations				
Measured Depth (usft)	l Vertical Depth (usft)	Local Co +N/-S (usft)	ordinates +E/-W (usft)	Comment
550	0 5500	0	0	Start Build 2.00
575	0 5750	-10	-4	Start 3767.6 hold at 5750.0 MD
951	8 9503	-314	-128	Start DLS 12.00 TFO 158.99
10,30	2 10,019	158	-134	Start 6869.4 hold at 10302.1 MD
17,17	1 10,082	7025	15	TD at 17171.5

Checked By: Date:	
-------------------	--

Received by OCD: 10/25/2021 2:38:51 PM Project: EDDY COUNTY, NM LEASE LINE Site: ATLAS LITTLEFIELD 33 FEDERAL COM 702H/PWP1 LITTLEFIELD 33 FEDERAL COM 701H/PWP1 CONCHO Well: LITTLEFIELD 33 FEDERAL COM 703H Wellbore: OWB LITTLEFIELD 33 FEDERAL COM 703H/PWP1 Design: PWP1 ĞL: 2874.6 PBHL (LITTLEFIELD 33 FED COM 703H) KB=25' @ 2899.6usft (Pioneer 84) TD at 17171.5 HARD LINE: 330' FNL LTP (LITTLEFIELD 33 FED COM 703H) WELL DETAILS: LITTLEFIELD 33 FEDERAL COM 703H Latittude Longitude 364296.40 607382.50 32° 0' 3.929 N 103° 59' 12.945 W **DESIGN TARGET DETAILS** Latitude 32° 0' 3.218 N 103° 59' 14.561 W -139.0 364224.10 607243.50 FTP (LITTLEFIELD 33 FED COM 703H)10019.0 LTP (LITTLEFIELD 33 FED COM 703H)10082.0 6895.1 PBHL (LITTLEFIELD 33 FED COM 703H)0082.0 7025.1 12.6 371191.50 607395.10 32° 1' 12.166 N 103° 59' 12.542 W 32° 1' 13.453 N 103° 59' 12.504 W 15.4 371321.50 607397.90 Start DLS 12.00 TFO 158.99 ₹ 9730-LITTLEFIELD 33 FEDERAL COM 703H <u>ම</u> 9748-**Annotation** Start Build 2.00 Start 3767.6 hold at 5750.0 MD Start DLS 12.00 TFO 158.99 및 9783-10302.1 89.47 1.25 10019.0 157.6 -133.9 12.00 158.99 157.3 Start 6869.4 hold at 10302.1 MD 17171.5 89.47 1.25 10082.0 7025.1 15.4 0.00 0.00 7025.1 TD at 17171.5 9800-**Azimuths to Grid Nort** True North: -0.18 Magnetic North: 6.66 Magnetic Field Strength: 47492.4n **Dip Angle: 59.76** Date: 2/17/202 Model: IGRF201 Start Build 2.00 **5700** 5749.7 Start 6869.4 hold at 10302.1 MD ---- Start 3767.6 hold at 5750.0 MD Start 6869.4 hold at 10302.1 MD Start Build 2.00 Start 3767.6 hold at 5750.0 MD O FTP (LITTLEFIELD 33 FED COM 703H) FTP (LITTLEFIELD 33 FED COM 703H) -350 -333 -315 -298 -280 -263 -245 -228 -210 -193 -175 -158 -140 -123 -105 -88 -70 -53 -35 -18 0 18 35 53 70 88 105 123 140 158 175 193 210 228 245 263 280 298 Start DLS 12.00 TFO 158.99 Vertical Section at 0.13° (35 usft/in) **LEASE LINE** 1050 LITTLEFIELD 33 FEDERAL COM 701H/PV LITTLE FIELD 33 FEDERAL COM 702H/PWP1 LITTLEFIELD 33 FEDERAL COM 703H/PWP1 LEASE LINE -900 -750 -600 -450 -300 -150 0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800 1950 2100 2250 2400 West(-)/East(+) (300 usft/in) 825 ITTLEFIELD 33 FEDERAL COM 703H/PWP1 LITTLEFIELD 33 FEDERAL COM 702H/PWP1 LITTLEFIELD 33 FEDERAL COM 701H/PWP1 PBHL (LITTLEFIELD 33 FED COM 703H) TD at 17171.5 LTP (LITTLEFIELD 33 FED COM 703H) **525**-HARD LINE: 330' FNL Start 6869.4 hold at 10302.1 MD g6675-225 Start Build 2.00 Start 3767.6 hold at 5750.0 MD FTP (LITTLE FIELD 33 FED COM 703 HARD LINE: 330' FSL 6225 9300--450 -300 -150 0 150 300 450 Vertical Section at 0.13° (300 usft/in) Start DLS 12.00 TFO 158.99 -375 LEASE LINE Start DLS 12.00 TFO 158.99 -375 -300 -225 -150 -75 0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050 1125 1200 1275 1350 1425 -300 -225 -150 -75 0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050 1125 1200 1275 1350 1425 1500 1575 1650 § 9675 West(-)/East(+) (150 usft/in) ලු 9750-9825 Start 6869.4 hold at 10302.1 MD TRGT WNDW: <u>B</u> 9900-10 A/B LTP (LITTLEFIELD 33 FED COM 703H) PBHL (LITTLEFIELD 33 FED COM 703H) 9975 TD at 17171.5 10125 FTP (LITTLEFIELD 33 FED COM 703H) LITTLEFIELD 33 FEDERAL COM 703H/PWP1

NORTHERN DELAWARE BASIN

EDDY COUNTY, NM ATLAS LITTLEFIELD 33 FEDERAL COM 703H

OWB PWP1

Anticollision Report

17 February, 2020

Anticollision Report

Database:

Company: NORTHERN DELAWARE BASIN

Project: EDDY COUNTY, NM

Reference Site: **ATLAS** Site Error: 0.0 usft

Reference Well: LITTLEFIELD 33 FEDERAL COM 703H

Well Error: 3.0 usft Reference Wellbore OWB Reference Design: PWP1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Output errors are at

Well LITTLEFIELD 33 FEDERAL COM 703H KB=25' @ 2899.6usft (Pioneer 84)

KB=25' @ 2899.6usft (Pioneer 84)

Survey Calculation Method: Minimum Curvature

ISCWSA

2.00 sigma edm

Offset TVD Reference: Offset Datum

Reference PWP1

NO GLOBAL FILTER: Using user defined selection & filtering criteria Filter type:

Interpolation Method: Stations **Error Model:**

Depth Range: Unlimited Scan Method: Closest Approach 3D Results Limited by: Maximum ellipse separation of 1,000.0 usft Pedal Curve **Error Surface:**

Warning Levels Evaluated at: 2.00 Sigma **Casing Method:** Not applied

Date 2/17/2020 **Survey Tool Program**

> From То

(usft) Survey (Wellbore) **Tool Name** Description (usft)

17,171.5 PWP1 (OWB) 0.0 MWD+IFR1+FDIR OWSG MWD + IFR1 + FDIR Correction

Summary							
Site Name Offset Well - \	Wellbore - Design	Reference Measured Depth (usft)	Offset Measured Depth (usft)	Dista Between Centres (usft)	ence Between Ellipses (usft)	Separation Factor	Warning
ATLAS							
LITTLEFIELD	33 FEDERAL COM 701H - OWB - PWP1 33 FEDERAL COM 701H - OWB - PWP1 33 FEDERAL COM 702H - OWB - PWP1	2,500.0 2,600.0 5,500.0	2,499.2 2,597.4 5,499.7	60.8 62.2 30.4	42.3 43.1 5.5	3.252	CC, ES SF Shut in Produces, CC, ES

Offset D	esign	ATLAS	- LITTL	EFIELD 33	FEDEF	RAL COM 7	701H - OWB	- PWP1					Offset Site Error:	0.0 usft
_	_	/WD+IFR1+FI											Offset Well Error:	3.0 usft
Refer		Offs		Semi Major					Dista					
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	Offset Wellbo +N/-S (usft)	re Centre +E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
	, ,	, ,	, ,	, ,	, ,		` '			(,	(,			
0.0	0.0	0.0	0.0 99.2	3.0 3.0	3.0 3.0	72.58 72.58	18.2	58.0	60.8	E4.0	6.01	10 101		
100.0 200.0	100.0 200.0	99.2 199.2	199.2	3.0	3.0	72.58 72.58	18.2 18.2	58.0 58.0	60.8 60.8	54.8 54.7	6.08	10.121 9.998		
300.0	300.0	299.2	299.2	3.0	3.0	72.58 72.58	18.2	58.0	60.8	54.7 54.6	6.24	9.996		
400.0	400.0	399.2	399.2	3.1	3.1	72.58	18.2	58.0	60.8	54.3	6.47	9.398		
500.0	500.0	499.2	499.2	3.4	3.4	72.58	18.2	58.0	60.8	54.0	6.77	8.980		
300.0	300.0	433.Z	433.Z	5.4	5.4	72.50	10.2	30.0	00.0	34.0	0.11	0.300		
600.0	600.0	599.2	599.2	3.6	3.6	72.58	18.2	58.0	60.8	53.7	7.13	8.526		
700.0	700.0	699.2	699.2	3.8	3.8	72.58	18.2	58.0	60.8	53.2	7.54	8.061		
800.0	800.0	799.2	799.2	4.0	4.0	72.58	18.2	58.0	60.8	52.8	8.00	7.603		
900.0	900.0	899.2	899.2	4.2	4.2	72.58	18.2	58.0	60.8	52.3	8.49	7.163		
1,000.0	1,000.0	999.2	999.2	4.5	4.5	72.58	18.2	58.0	60.8	51.8	9.01	6.749		
1,100.0	1,100.0	1,099.2	1,099.2	4.8	4.8	72.58	18.2	58.0	60.8	51.2	9.55	6.362		
1,200.0	1,200.0	1,199.2	1,199.2	5.1	5.1	72.58	18.2	58.0	60.8	50.7	10.12	6.005		
1,300.0	1,300.0	1,299.2	1,299.2	5.4	5.4	72.58	18.2	58.0	60.8	50.1	10.71	5.677		
1,400.0	1,400.0	1,399.2	1,399.2	5.7	5.7	72.58	18.2	58.0	60.8	49.5	11.31	5.375		
1,500.0	1,500.0	1,499.2	1,499.2	6.0	6.0	72.58	18.2	58.0	60.8	48.9	11.92	5.098		
1,600.0	1,600.0	1,599.2	1,599.2	6.3	6.3	72.58	18.2	58.0	60.8	48.2	12.55	4.845		
1,700.0	1,700.0	1,699.2	1,699.2	6.6	6.6	72.58	18.2	58.0	60.8	47.6	13.18	4.612		
1,800.0	1,800.0	1,799.2	1,799.2	6.9	6.9	72.58	18.2	58.0	60.8	47.0	13.82	4.397		
1,900.0	1,900.0	1,899.2	1,899.2	7.2	7.2	72.58	18.2	58.0	60.8	46.3	14.47	4.200		
2,000.0	2,000.0	1,999.2	1,999.2	7.6	7.6	72.58	18.2	58.0	60.8	45.7	15.13	4.018		
2,100.0	2,100.0	2,099.2	2,099.2	7.9	7.9	72.58	18.2	58.0	60.8	45.0	15.79	3.850		
2,200.0	2,200.0	2,199.2	2,199.2	8.2	8.2	72.58	18.2	58.0	60.8	44.3	16.45	3.694		
2,300.0	2,300.0	2,299.2	2,299.2	8.6	8.6	72.58	18.2	58.0	60.8	43.7	17.12	3.550		

Anticollision Report

Company: NORTHERN DELAWARE BASIN

Project: EDDY COUNTY, NM

Reference Site: **ATLAS** Site Error: 0.0 usft

Reference Well: LITTLEFIELD 33 FEDERAL COM 703H

Well Error: 3.0 usft Reference Wellbore OWB Reference Design: PWP1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method: Output errors are at

Database:

Offset TVD Reference:

Well LITTLEFIELD 33 FEDERAL COM 703H

KB=25' @ 2899.6usft (Pioneer 84) KB=25' @ 2899.6usft (Pioneer 84)

Minimum Curvature

2.00 sigma edm Offset Datum

	esign			EFIELD 33	FEDEF	RAL COM 7	701H - OWB	PWP1					Offset Site Error:	0.0 us
urvey Pro Refer	_	IWD+IFR1+FI Offs		Semi Major	Axis				Dist	ance			Offset Well Error:	3.0 u
easured Depth (usft)		Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	Offset Wellbor +N/-S (usft)	re Centre +E/-W (usft)	Between Centres (usft)		Minimum Separation (usft)	Separation Factor	Warning	
2,400.0	2,400.0	2,399.2	2,399.2	8.9	8.9	72.58	18.2	58.0	60.8		17.80	3.416		
2,500.0	2,500.0	2,499.2	2,499.2	9.2	9.2	72.58	18.2	58.0	60.8		18.47	3.290 0		
2,600.0	2,600.0	2,597.4	2,597.4	9.6	9.6	73.40	17.8	59.6	62.2		19.13	3.252 8	SF	
2,700.0	2,700.0	2,695.4	2,695.2	9.9	9.9	75.66	16.5	64.4	66.6		19.76	3.371		
2,800.0	2,800.0	2,792.9	2,792.4	10.3	10.2	78.81	14.3	72.5	74.2		20.38	3.640		
2,900.0	2,900.0	2,889.8	2,888.6	10.6	10.5	82.27	11.3	83.6	85.0		20.97	4.054		
3,000.0 3,100.0	3,000.0 3,100.0	2,988.5 3,087.5	2,986.3 3,084.4	10.9 11.3	10.8 11.2	85.40 87.80	7.8 4.2	96.8 110.1	98.0 111.2		21.62 22.28	4.533 4.991		
3,200.0	3,200.0	3,186.6	3,182.5	11.6	11.5	89.69	0.7	123.5	124.6		22.26	5.428		
3,300.0	3,300.0	3,285.6	3,280.5	12.0	11.8	91.22	-2.9	136.8	138.1		23.62	5.844		
3,400.0	3,400.0	3,384.6	3,378.6	12.3	12.2	92.47	-6.5	150.1	151.6		24.30	6.240		
3,500.0	3,500.0	3,483.6	3,476.7	12.7	12.5	93.52	-10.0	163.4	165.2	140.3	24.98	6.615		
3,600.0	3,600.0	3,582.7	3,574.7	13.0	12.8	94.40	-13.6	176.7	178.9		25.66	6.972		
3,700.0	3,700.0	3,681.7	3,672.8	13.4	13.2	95.16	-17.2	190.0	192.6	166.3	26.34	7.311		
3,800.0	3,800.0	3,780.7	3,770.8	13.7	13.5	95.82	-20.7	203.3	206.3	179.3	27.03	7.633		
3,900.0	3,900.0	3,879.7	3,868.9	14.1	13.9	96.40	-24.3	216.6	220.1		27.72	7.940		
4,000.0	4,000.0	3,978.8	3,967.0	14.4	14.2	96.91	-27.9	229.9	233.9		28.41	8.232		
4,100.0	4,100.0	4,077.8	4,065.0	14.8	14.6	97.36	-31.4	243.3	247.7		29.10	8.510		
4,200.0	4,200.0	4,176.8	4,163.1	15.1	14.9	97.77	-35.0	256.6	261.5		29.79	8.775		
4,300.0 4,400.0	4,300.0 4,400.0	4,275.8 4,374.9	4,261.2 4,359.2	15.5 15.8	15.3 15.6	98.13 98.46	-38.6 -42.1	269.9 283.2	275.3 289.1	244.8 257.9	30.49 31.19	9.028 9.270		
4,500.0	4,500.0	4,473.9	4,457.3	16.2	16.0	98.76	-45.7	296.5	302.9	271.0	31.88	9.501		
4,600.0	4,600.0	4,572.9	4,555.3	16.5	16.3	99.04	-49.3	309.8	316.8		32.58	9.722		
4,700.0	4,700.0	4,672.0	4,653.4	16.9	16.7	99.29	-52.8	323.1	330.6		33.28	9.934		
4,800.0	4,800.0	4,771.0	4,751.5	17.2	17.0	99.52	-56.4	336.4	344.5	310.5	33.98	10.136		
4,900.0	4,900.0	4,870.0	4,849.5	17.6	17.4	99.73	-60.0	349.8	358.3	323.6	34.69	10.331		
5,000.0	5,000.0	4,969.0	4,947.6	18.0	17.7	99.93	-63.5	363.1	372.2	336.8	35.39	10.517		
5,100.0	5,100.0	5,068.1	5,045.7	18.3	18.1	100.11	-67.1	376.4	386.1	350.0	36.09	10.696		
5,200.0	5,200.0	5,167.1	5,143.7	18.7	18.4	100.28	-70.7	389.7	399.9		36.80	10.868		
5,300.0 5,400.0	5,300.0 5,400.0	5,266.1 5,365.1	5,241.8 5,339.9	19.0 19.4	18.8 19.1	100.44 100.59	-74.2 -77.8	403.0 416.3	413.8 427.7		37.50 38.21	11.034 11.193		
5,500.0	5,500.0	5,464.2	5,437.9	19.7	19.5	100.73	-81.4	429.6	441.5	402.6	38.91	11.346		
5,600.0	5,600.0	5,563.1	5,535.9	20.1	19.9	-101.28	-84.9	442.9	455.8		39.60	11.508		
5,700.0	5,699.8	5,661.9	5,633.8	20.4	20.2	-101.49	-88.5	456.2	470.7		40.28	11.686		
5,750.0	5,749.7	5,711.2	5,682.6	20.5	20.4	-101.73	-90.3	462.8	478.4	437.8	40.61	11.780		
5,800.0	5,799.5	5,760.5	5,731.3	20.7	20.6	-102.16	-92.1	469.5	486.3	445.3	40.95	11.875		
5,900.0	5,899.1	5,859.0	5,828.9	21.0	20.9	-102.98	-95.6	482.7	502.0	460.4	41.62	12.061		
6,000.0	5,998.7	5,957.5	5,926.4	21.3	21.3	-103.75	-99.1	495.9	517.9		42.30	12.244		
6,100.0	6,098.4	6,056.0	6,024.0	21.7	21.6	-104.48	-102.7	509.2	533.9		42.98	12.422		
6,200.0 6,300.0	6,198.0 6,297.6	6,154.5 6,253.0	6,121.5 6,219.0	22.0 22.3	22.0 22.4	-105.17 -105.81	-106.2 -109.8	522.4 535.7	549.9 566.0		43.66 44.34	12.596 12.765		
6,400.0	6,397.2	6,351.5	6,316.6	22.6	22.7	-106.42	-113.3	548.9	582.2	537.2	45.02	12.931		
6,500.0	6,496.8	6,450.0	6,414.1	23.0	23.1	-107.00	-116.9	562.2	598.4		45.71	13.092		
6,600.0	6,596.4	6,548.5	6,511.7	23.3	23.4	-107.55	-120.4	575.4	614.7		46.39	13.250		
6,700.0	6,696.1	6,647.0	6,609.2	23.6	23.8	-108.07	-124.0	588.6	631.0		47.08	13.404		
6,800.0	6,795.7	6,745.5	6,706.7	24.0	24.2	-108.56	-127.5	601.9	647.4		47.77	13.554		
6,900.0	6,895.3	6,844.0	6,804.3	24.3	24.5	-109.03	-131.1	615.1	663.9		48.46	13.700		
7,000.0	6,994.9	6,942.5	6,901.8	24.6	24.9	-109.47	-134.6	628.4	680.4		49.15	13.843		
7,100.0	7,094.5	7,041.0	6,999.4	25.0	25.2	-109.90	-138.2	641.6	696.9		49.84	13.982		
7,200.0 7,300.0	7,194.2 7,293.8	7,139.5 7,237.9	7,096.9 7,194.4	25.3 25.6	25.6 26.0	-110.30 -110.69	-141.7 -145.3	654.8 668.1	713.4 730.0		50.53 51.23	14.117 14.250		
7,400.0	7,393.4	7,336.4	7,292.0	26.0	26.3	-111.06	-148.8	681.3	746.6	694.7	51.92	14.379		

Anticollision Report

Company: NORTHERN DELAWARE BASIN

Project: EDDY COUNTY, NM

Reference Site: ATLAS Site Error: 0.0 usft

Reference Well: LITTLEFIELD 33 FEDERAL COM 703H

Well Error: 3.0 usft
Reference Wellbore OWB
Reference Design: PWP1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

North Reference: Survey Calculation Method:

Output errors are at Database:

Offset TVD Reference:

Well LITTLEFIELD 33 FEDERAL COM 703H

KB=25' @ 2899.6usft (Pioneer 84) KB=25' @ 2899.6usft (Pioneer 84)

Grid

Minimum Curvature

2.00 sigma edm

Offset Datum

Offset D	esign	ATLAS	- LITTL	EFIELD 33	FEDEF	RAL COM 7	701H - OWB	- PWP1					Offset Site Error:	0.0 usf
urvey Pro	gram: 0-M	WD+IFR1+FI	DIR										Offset Well Error:	3.0 usf
Refer		Offs		Semi Major					Dista	ance				
leasured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	Offset Wellbo +N/-S (usft)	re Centre +E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
7,500.0	7,493.0	7,434.9	7,389.5	26.3	26.7	-111.41	-152.4	694.6	763.3	710.6	52.62	14.505		
7,600.0	7,592.6	7,533.4	7,487.1	26.7	27.0	-111.75	-155.9	707.8	779.9	726.6	53.32	14.628		
7,700.0	7,692.3	7,631.9	7,584.6	27.0	27.4	-112.07	-159.5	721.0	796.6	742.6	54.02	14.748		
7,800.0	7,791.9	7,730.4	7,682.1	27.3	27.8	-112.39	-163.0	734.3	813.3	758.6	54.72	14.865		
7,900.0	7,891.5	7,828.9	7,779.7	27.7	28.1	-112.68	-166.6	747.5	830.1	774.7	55.42	14.979		
8,000.0	7,991.1	7,927.4	7,877.2	28.0	28.5	-112.97	-170.1	760.8	846.9	790.7	56.12	15.091		
8,100.0	8,090.7	8,025.9	7,974.7	28.4	28.8	-113.25	-173.7	774.0	863.6	806.8	56.82	15.200		
8,200.0	8,190.4	8,124.4	8,072.3	28.7	29.2	-113.51	-177.2	787.3	880.4	822.9	57.52	15.306		
8,300.0	8,290.0	8,222.9	8,169.8	29.0	29.6	-113.77	-180.8	800.5	897.3	839.0	58.22	15.410		
8,400.0	8,389.6	8,321.4	8,267.4	29.4	29.9	-114.01	-184.3	813.7	914.1	855.2	58.93	15.512		
8,500.0	8,489.2	8,419.9	8,364.9	29.7	30.3	-114.25	-187.8	827.0	930.9	871.3	59.63	15.611		
8,600.0	8,588.8	8,518.4	8,462.4	30.1	30.7	-114.48	-191.4	840.2	947.8	887.5	60.34	15.708		
8,700.0	8,688.5	8,616.9	8,560.0	30.4	31.0	-114.70	-194.9	853.5	964.7	903.6	61.04	15.803		
8,800.0	8,788.1	8,715.4	8,657.5	30.8	31.4	-114.91	-198.5	866.7	981.6	919.8	61.75	15.896		
8,900.0	8,887.7	8,813.9	8,755.1	31.1	31.8	-115.12	-202.0	879.9	998.5	936.0	62.46	15.987		

Anticollision Report

Database:

Company: NORTHERN DELAWARE BASIN

Project: EDDY COUNTY, NM

Reference Site: ATLAS Site Error: 0.0 usft

Reference Well: LITTLEFIELD 33 FEDERAL COM 703H

Well Error: 3.0 usft
Reference Wellbore OWB
Reference Design: PWP1

Local Co-ordinate Reference:

Survey Calculation Method:

TVD Reference: MD Reference: North Reference:

Output errors are at

KB=25' @ 2899.6usft (Pioneer 84) KB=25' @ 2899.6usft (Pioneer 84)

Well LITTLEFIELD 33 FEDERAL COM 703H

Grid

Minimum Curvature

2.00 sigma edm

Offset TVD Reference: Offset Datum

· · · · · · · · · · · · · · · · · · ·	Offset D	esign	ATLAS	- LITTL	EFIELD 33	FEDER	RAL COM	702H - OWB	- PWP1					Offset Site Error:	0.0 usft
No. Part	Survey Pro	ogram: 0-S	•											Offset Well Error:	3.0 usft
Page					•										
1000	Depth	Depth	Depth	Depth			Toolface	+N/-S	+E/-W	Centres	Ellipses	Separation		Warning	
1000	0.0	0.0	0.0	0.0	3.0	3.0	72.58	9.1	29.0	30.4					
Section Sect												6.00	5.063		
March Marc	200.0	200.0	199.7	199.7	3.0	3.0	72.58	9.1	29.0	30.4	24.4	6.04	5.030		
500 500 500 497 497 34 31 72.58 91 290 30.4 240 6.40 4.746	300.0	300.0	299.7	299.7	3.1	3.0	72.58	9.1	29.0	30.4	24.3	6.12	4.963		
Control Cont	400.0	400.0	399.7	399.7	3.2	3.0	72.58	9.1	29.0	30.4	24.1	6.25	4.866		
700 00 700 690 7 990 7 990 7 990 7 990 7 990 7 990 7 990 7 990 7 990 7 990 7 990 7 990 7 990 7 990 7 990 7 990 7 990 7 42 2 3 2 72.58 9.1 290 30 4 23.3 7.59 4.100 1,000 1 1,000 0 990 7 990 7 4.8 3.2 72.58 9.1 200 30.4 22.3 7.59 4.004 1,000 1 1,000 7 1,000 7 4.8 3.3 72.58 9.1 200 30.4 22.5 7.88 3.855 1,000 1 1,000 7 1,000 7 4.8 3.3 72.58 9.1 200 30.4 22.5 7.8 3.855 1,500 1 1,000 1 1,000 7 1,000 7 5.7 3.5 72.58 9.1 200 30.4 22.5 7.8 3.8 3.4 1.8 3.4 2.2 4.9 3.317 1.8 1.8 3.8 72.5 72.58 <	500.0	500.0	499.7	499.7	3.4	3.1	72.58	9.1	29.0	30.4	24.0	6.40	4.746		
800 0 800 0 799 7 990 7 990 4 0 32 7258 9.1 200 304 223 7.35 4510 990 990 990 899 7 990 7 40 3 2 7258 9.1 200 304 223 7.31 4.156 91 91 91 91 91 91 91 91 91 91 91 91 91															
900.0 900.0 989.7 899.7 42 3.2 72.88 9.1 29.0 30.4 23.1 7.31 4.156 1,100.0 1,000.0 1,009.7 1,009.7 4.8 3.3 72.58 9.1 29.0 30.4 22.5 7.88 3.865 1,200.0 1,200.0 1,199.7 1,199.7 5.1 3.4 72.58 9.1 29.0 30.4 22.5 7.88 3.865 1,200.0 1,200.0 1,209.7 1,199.7 5.1 3.4 72.58 9.1 29.0 30.4 22.2 8.19 3.712 1,400.0 1,400.0 1,409.7 1,409.7 6.9 3.5 72.58 9.1 29.0 30.4 21.8 8.83 3.442 1,400.0 1,400.0 1,409.7 1,409.7 6.9 3.5 72.58 9.1 29.0 30.4 21.8 8.83 3.442 1,400.0 1,400.0 1,409.7 1,409.7 6.8 3.7 72.58 9.1 29.0 30.4 21.8 8.83 3.442 1,400.0 1,400.0 1,409.7 1,409.7 6.8 3.7 72.58 9.1 29.0 30.4 20.9 9.50 3.199 1,400.0 1,400.0 1,409.7 1,409.7 6.8 3.7 72.58 9.1 29.0 30.4 20.9 9.50 3.199 1,400.0 1,400.0 1,409.7 1,409.7 6.8 3.7 72.58 9.1 29.0 30.4 20.9 9.50 3.199 1,400.0 1,400.0 1,409.7 1,409.7 6.8 3.7 72.58 9.1 29.0 30.4 20.9 9.50 3.199 1,400.0 1,400.0 1,409.7 1,409.7 6.8 3.7 72.58 9.1 29.0 30.4 20.9 9.50 3.199 1,400.0 1,400.0 1,409.7 1,409.7 6.8 3.7 72.58 9.1 29.0 30.4 20.9 9.50 3.199 1,400.0 1,400.0 1,409.7 1,409.7 7.8 3.9 72.58 9.1 29.0 30.4 19.5 10.20 2.980 1,400.0 1,400.0 1,409.7 1,409.7 7.8 3.9 72.58 9.1 29.0 30.4 19.5 10.20 2.783 1,400.0 2,400.0 2,400.0 2,400.0 2,400.0 2.4															
1,000 1,00															
1,100.0 1,100.0 1,090,7 1,090,7 4,8 3,3 72,58 9,1 20,0 30,4 22,5 7,88 3,855 1,200.0 1,200.0 1,290,7 1,290,7 5,1 3,4 72,58 9,1 20,0 30,4 21,8 8,5 3,74 1,400.0 1,200.0 1,290,7 1,490,7 6,1 3,4 72,58 9,1 20,0 30,4 21,8 8,5 3,474 1,400.0 1,400.0 1,490,7 1,490,7 6,0 3,5 72,58 9,1 20,0 30,4 21,8 8,5 3,442 1,400.0 1,600.0 1,490,7 1,490,7 6,0 3,5 72,58 9,1 20,0 30,4 21,8 8,5 3,442 1,700.0 1,600.0 1,490,7 1,490,7 6,0 3,5 72,58 9,1 20,0 30,4 21,8 8,5 3,442 1,700.0 1,600.0 1,490,7 1,490,7 6,6 3,7 72,58 9,1 20,0 30,4 20,9 9,5 3,199 1,700.0 1,700.0 1,690,7 1,890,7 7,8 9,8 1,2 8,9 1															
12000 12000 11997 11997 11997 51 34 72.58 91 20 30.4 222 81.9 37.12	1,000.0	1,000.0	999.7	999.7	4.5	3.2	72.58	9.1	29.0	30.4	22.8	7.59	4.004		
13000 13000 12997 12997 12997 54 34 72.58 9.1 20.0 30.4 21.9 6.50 3.574 14000 14000 139997 13997 57 3.5 72.58 9.1 20.0 30.4 21.2 9.16 3.317 14000 15000 1.6997 1.6997 1.6997 6.3 3.6 72.58 9.1 20.0 30.4 21.2 9.16 3.317 14000 15000 1.6997 1.6997 6.6 3.7 72.58 9.1 20.0 30.4 20.5 9.5 3.199 14000 15000 1.6997 1.6997 6.6 3.7 72.58 9.1 20.0 30.4 20.5 9.5 3.198 14000 1.6900 1.6997 1.7997 6.9 3.8 72.58 9.1 20.0 30.4 20.2 10.20 2.880 14000 1.6900 1.6997 1.8997 7.7 3.9 72.58 9.1 20.0 30.4 20.2 10.20 2.880 14000 2.0000 2.9997 2.9997 7.9 4.0 72.58 9.1 20.0 30.4 19.5 10.52 2.783 2.1000 2.0000 2.1997 2.4997 8.2 4.1 72.58 9.1 20.0 30.4 19.5 10.52 2.783 2.2000 2.0000 2.1997 2.3997 8.9 4.2 72.58 9.1 20.0 30.4 19.1 11.29 2.693 2.2000 2.0000 2.9997 2.44 72.58 9.1 28.0 30.4 18.4 12.0 2.577 2.2000 2.0000 2.9997 2.44 72.58 9.1 28.0 30.4 18.4 12.0 2.577 2.2000 2.0000 2.9997 2.44 72.58 9.1 28.0 30.4 18.4 12.0 2.578 2.2000 2.0000 2.9997 2.44 72.58 9.1 28.0 30.4 18.4 12.0 2.578 2.2000 2.0000 2.5997 2.4997 9.2 4.4 72.58 9.1 28.0 30.4 18.4 12.0 2.578 2.2000 2.0000 2.5997 2.9997 10.9 4.8 72.58 9.1 28.0 30.4 18.4 12.0 2.578 2.2000 2.0000 2.5997 2.9997 10.9 4.8 72.58 9.1 29.0 30.4 18.8 13.55 2.43 2.2000 2.0000 2.5997 2.9997 10.9 4.8 72.58 9.1 29.0 30.4 18.8 13.55 2.43 2.2000 2.0000 2.9997 2.9997 10.9 4.8 72.58 9.1 29.0 30.4 18.8 13.55 2.43 2.2000 2.0000 2.9997 3.9997 11.3 5.0 72.58 9.1 29.0 30.4 18.1 12.0 12.0 3.2000 3.0000 3.0997 3.9997 11.3 5.0 72.58 9.1 29.0 30.4 18.1 12.0 12.0					4.8										
14000 1,4000 1,399,7 1,399,7 5,7 3,55 72,58 9,1 20,0 30,4 21,6 8,83 3,442 1,5000 1,5000 1,509,7 1,599,7 6,3 3,6 72,58 9,1 20,0 30,4 21,2 9,16 3,317 1,6000 1,600,0 1,599,7 1,599,7 1,599,7 6,6 3,7 72,58 9,1 20,0 30,4 20,9 9,50 3,199 1,7000 1,7000 1,699,7 1,699,7 6,6 3,8 72,58 9,1 20,0 30,4 20,2 9,85 3,086 1,8000 1,8000 1,899,7 1,899,7 7,2 3,9 72,58 9,1 20,0 30,4 20,2 10,20 2,990 1,9000 1,900,1 1,899,7 1,899,7 7,3 3,9 72,58 9,1 20,0 30,4 19,8 10,56 2,879 2,0000 2,0000 2,999,7 2,999,7 7,9 4,0 72,58 9,1 20,0 30,4 19,1 11,29 2,693 2,0000 2,0000 2,999,7 2,999,7 8,6 42 72,58 9,1 20,0 30,4 18,1 11,29 2,693 2,0000 2,0000 2,999,7 2,399,7 8,6 42 72,58 9,1 20,0 30,4 18,1 11,29 2,693 2,0000 2,0000 2,999,7 2,399,7 8,9 4,3 72,58 9,1 20,0 30,4 18,1 11,29 2,573 2,0000 2,0000 2,999,7 2,399,7 8,9 4,3 72,58 9,1 20,0 30,4 18,1 12,40 2,450 2,0000 2,0000 2,0000 2,000,7 2,009,7 9,6 4,5 72,58 9,1 20,0 30,4 18,4 12,03 2,378 2,0000 2,0000 2,0000 2,000,7 2,000,7 3,000 3,															
1,500															
1,600.0 1,600.0 1,590.7 1,599.7 6.3 3.6 72.58 9.1 29.0 30.4 20.9 9.50 3,199 1,700.0 1,700.0 1,699.7 1,699.7 6.6 3.7 72.58 9.1 29.0 30.4 20.5 9.85 3,086 1,800.0 1,800.0 1,799.7 7.6 3.9 72.58 9.1 29.0 30.4 20.2 10.20 1,900.0 1,900.0 1,899.7 1,899.7 7.2 3.9 72.58 9.1 29.0 30.4 19.8 10.56 2.879 2,000.0 2,000.0 2,099.7 2,099.7 7.9 4.0 72.58 9.1 29.0 30.4 19.5 10.59 2.783 2,100.0 2,100.0 2,109.7 2,199.7 8.2 4.1 72.58 9.1 29.0 30.4 19.1 11.29 2.683 2,200.0 2,000.0 2,199.7 2,199.7 8.2 4.1 72.58 9.1 29.0 30.4 18.4 11.65 2.608 2,200.0 2,000.0 2,199.7 2,199.7 8.2 4.1 72.58 9.1 29.0 30.4 18.4 11.65 2.608 2,200.0 2,000.0 2,199.7 2,199.7 8.2 4.1 72.58 9.1 29.0 30.4 18.4 12.03 2.527 2,400.0 2,000.0 2,009.7 2,399.7 8.9 4.3 72.58 9.1 29.0 30.4 18.4 12.03 2.527 2,400.0 2,00															
1700.0 1,700.0 1,599.7 1,699.7 6.6 3.7 72.58 9.1 29.0 30.4 20.2 10.20 2.890 1,900.1 1,900.1 1,900.7 1,799.7 6.9 3.8 72.58 9.1 29.0 30.4 19.6 10.56 2.879 2,000.0 2,000.0 1,899.7 1,999.7 7.6 3.9 72.58 9.1 29.0 30.4 19.6 10.56 2.879 2,000.0 2,000.0 2,009.7 2,009.7 7.9 4.0 72.58 9.1 29.0 30.4 19.6 10.56 2.878 2,000.0 2,000.0 2,000.7 2,199.7 2,199.7 8.2 4.1 72.58 9.1 29.0 30.4 19.1 11.29 2.693 2,000.0 2,000.0 2,199.7 2,199.7 8.6 4.2 72.58 9.1 29.0 30.4 18.0 12.40 2.450 2,000.0 2,000.0 2,299.7 2,299.7 8.9 4.3 72.58 9.1 29.0 30.4 18.0 12.40 2.450 2,000.0 2,000.0 2,299.7 2,299.7 8.9 4.3 72.58 9.1 29.0 30.4 18.0 12.40 2.450 2,000.0 2,000.0 2,299.7 2,299.7 8.9 4.3 72.58 9.1 29.0 30.4 18.0 12.40 2.450 2,000.0 2,000.0 2,299.7 2,299.7 8.9 4.3 72.58 9.1 29.0 30.4 18.0 12.40 2.450 2,000.0 2,000	1,500.0	1,500.0	1,499.7	1,499.7	6.0	3.5	72.58	9.1	29.0	30.4	21.2	9.16	3.317		
1,800.0 1,800.0 1,799.7 1,799.7 6.9 3.8 72.58 9.1 29.0 30.4 20.2 10.20 2,980	1,600.0	1,600.0	1,599.7	1,599.7	6.3	3.6	72.58	9.1	29.0	30.4	20.9	9.50	3.199		
1900.0 1900.0 1,899.7 1,899.7 1,899.7 7,2 3.9 72.58 9.1 29.0 30.4 19.8 10.56 2,879	1,700.0	1,700.0	1,699.7	1,699.7	6.6	3.7	72.58		29.0	30.4	20.5	9.85			
2,000.0 2,000.0 1,999.7 1,999.7 7,6 3.9 72.58 9.1 29.0 30.4 19.5 10.92 2,783 2,000.0 2,100.0 2,000.7 2,99.7 7,9 4.0 72.58 9.1 29.0 30.4 19.1 11.29 2,093 2,200.0 2,200.0 2,199.7 2,199.7 8,2 4.1 72.58 9.1 29.0 30.4 18.7 11.65 2,608 2,200.0 2,200.0 2,299.7 2,299.7 8,6 4.2 72.58 9.1 29.0 30.4 18.0 12.40 2,450 2,200.0 2,400.0 2,399.7 2,399.7 8,9 4.3 72.58 9.1 29.0 30.4 18.0 12.40 2,450 2,200.0 2,400.0 2,409.7 2,499.7 9,2 4.4 72.58 9.1 29.0 30.4 17.6 12.78 2,376 2,200.0 2,0															
2,100.0 2,100.0 2,099.7 2,099.7 7.9 4.0 72.58 9.1 29.0 30.4 19.1 11.29 2,693 2,200.0 2,200.0 2,199.7 2,199.7 8.2 4.1 72.58 9.1 29.0 30.4 18.7 11.65 2,608 2,300.0 2,300.7 2,299.7 2,399.7 8.6 4.2 72.58 9.1 29.0 30.4 18.0 12.40 2,450 2,500.0 2,500.0 2,499.7 2,499.7 9.2 4.4 72.58 9.1 29.0 30.4 18.0 12.40 2,450 2,500.0 2,500.0 2,499.7 2,499.7 9.2 4.4 72.58 9.1 29.0 30.4 17.6 12.78 2,378 2,500.0 2,500.0 2,599.7 2,599.7 9.6 4.5 72.58 9.1 29.0 30.4 17.2 13.16 2,309 2,700.0 2,700.0 2,599.7 2,599.7 9.9 4.6 72.58 9.1 29.0 30.4 16.8 13.55 2,243 2,500.0 2,500.0 2,799.7 2,799.7 10.3 4.7 72.58 9.1 29.0 30.4 16.5 13.93 2,181 2,500.0 2,500.0 2,599.7 2,599.7 10.6 4.8 72.58 9.1 29.0 30.4 16.5 13.93 2,181 2,500.0 3,000 3,000 2,999.7 2,999.7 10.9 4.9 72.58 9.1 29.0 30.4 16.5 13.93 2,181 2,500.0 3,000 3,000 3,000 3,000.0 3,000.0 3,000.0 1,0								9.1							
2,200.0 2,200.0 2,199.7 2,199.7 8,6 4,1 72,58 9,1 29.0 30.4 18,7 11,65 2,608 2,300.0 2,299.7 2,399.7 2,399.7 2,399.7 8,8 4,3 72,58 9,1 29.0 30.4 18.0 12,40 2,450 2,600.0 2,600.0 2,499.7 2,499.7 9,9 4.4 72,58 9,1 29.0 30.4 11.80 12,40 2,450 2,600.0 2,600.0 2,699.7 2,599.7 9,9 4.6 72,58 9,1 29.0 30.4 11.8 13,16 2,309 2,600.0 2,600.0 2,699.7 2,699.7 9,9 4.6 72,58 9,1 29.0 30.4 16.8 13,55 2,243 2,600.0 2,899.7 2,699.7 10.3 4.7 72,58 9,1 29.0 30.4 16.5 13,33 2.181 2,900.0 2,899.7 2,699.7 1,699.7 1,11 <	2,000.0	2,000.0	1,999.7	1,999.7	7.6	3.9	72.58	9.1	29.0	30.4	19.5	10.92	2.783		
2,300.0 2,300.0 2,299.7 2,299.7 8,9 4.3 72,58 9.1 29.0 30.4 18.4 12.03 2,557 2,400.0 2,399.7 2,399.7 9.9 4.3 72,58 9.1 29.0 30.4 18.0 124.0 2,489.7 2,499.7 9.8 4.3 72,58 9.1 29.0 30.4 18.0 124.0 2,270.0 2,200.0 2,499.7 2,599.7 9.8 4.5 72,58 9.1 29.0 30.4 16.8 13.95 2,243 2,000.0 2,690.7 2,699.7 10.9 4.6 72,58 9.1 29.0 30.4 16.5 13.95 2.483 2,800.0 2,899.7 2,899.7 10.9 4.7 72.58 9.1 29.0 30.4 16.5 13.35 2.443 2,800.0 2,899.7 2,899.7 10.9 4.9 72.58 9.1 29.0 30.4 16.5 11.43 2.122 2.222 3,000.0	2,100.0	2,100.0	2,099.7	2,099.7	7.9	4.0	72.58	9.1	29.0	30.4	19.1	11.29	2.693		
2,400.0 2,309.7 2,399.7 8.9 4.3 72,58 9.1 29.0 30.4 18.0 12,40 2,450 2,500.0 2,500.0 2,699.7 2,499.7 9.9 4.4 72,58 9.1 29.0 30.4 17.6 12,78 2.378 2,600.0 2,600.0 2,599.7 2,599.7 9.9 4.6 72,58 9.1 29.0 30.4 17.2 13.16 2,309 2,600.0 2,600.0 2,699.7 2,699.7 10.3 4.7 72,58 9.1 29.0 30.4 16.5 13.93 2.181 2,900.0 2,899.7 2,899.7 10.9 4.9 72,58 9.1 29.0 30.4 16.5 13.93 2.181 2,900.0 2,899.7 2,999.7 10.9 4.9 72,58 9.1 29.0 30.4 15.7 14.71 2.066 3,100.0 3,100.0 3,099.7 3,10.5 5.0 72,58 9.1 29.0 30.4 <td>2,200.0</td> <td>2,200.0</td> <td>2,199.7</td> <td>2,199.7</td> <td>8.2</td> <td>4.1</td> <td>72.58</td> <td>9.1</td> <td>29.0</td> <td>30.4</td> <td>18.7</td> <td>11.65</td> <td>2.608</td> <td></td> <td></td>	2,200.0	2,200.0	2,199.7	2,199.7	8.2	4.1	72.58	9.1	29.0	30.4	18.7	11.65	2.608		
2,500.0 2,500.0 2,499.7 2,499.7 9.2 4.4 72.58 9.1 29.0 30.4 17.6 12.78 2.378 2,600.0 2,600.0 2,599.7 2,599.7 9.6 4.5 72.58 9.1 29.0 30.4 17.2 13.16 2.309 2,700.0 2,700.0 2,699.7 2,799.7 10.3 4.7 72.58 9.1 29.0 30.4 16.5 13.55 2.243 2,800.0 2,900.0 2,999.7 2,799.7 10.3 4.7 72.58 9.1 29.0 30.4 16.5 13.59 2.181 2,900.0 2,900.0 2,899.7 2,999.7 10.9 4.9 72.58 9.1 29.0 30.4 16.1 14.32 2,122 3,000.0 3,000.0 3,000.7 3,099.7 3,199.7 11.3 5.0 72.58 9.1 29.0 30.4 15.7 14.71 2,066 3,100.0 3,100.0 3,100.0 3,199.7 3,199.7 11.6 5.1 72.58 9.1 29.0 30.4 15.3 15.11 2,012 3,200.0 3,200.0 3,199.7 3,299.7 12.0 5.2 72.58 9.1 29.0 30.4 14.9 15.50 1.961 Advise and Monitor 3,400.0 3,400.0 3,399.7 3,399.7 12.3 5.3 72.58 9.1 29.0 30.4 14.5 15.90 1.912 Advise and Monitor 3,400.0 3,400.0 3,399.7 3,499.7 12.7 5.4 72.58 9.1 29.0 30.4 14.1 16.29 1.865 Advise and Monitor 3,400.0 3,500.0 3,500.0 3,699.7 3,699.7 13.0 5.5 72.58 9.1 29.0 30.4 14.1 16.29 1.865 Advise and Monitor 3,600.0 3,600.0 3,699.7 3,699.7 13.0 5.5 72.58 9.1 29.0 30.4 13.3 17.09 1.778 Advise and Monitor 3,700.0 3,700.0 3,700.0 3,700.7 3,700.7 3,700.7 3,709.7 13.7 5.8 72.58 9.1 29.0 30.4 12.9 17.49 1.737 Advise and Monitor 3,800.0 3,800.0 3,700.7 3,709.7 13.7 5.8 72.58 9.1 29.0 30.4 12.9 17.49 1.737 Advise and Monitor 3,800.0 3,800.0 3,700.7 3,709.7 13.7 5.8 72.58 9.1 29.0 30.4 12.1 18.30 1.661 Advise and Monitor 3,800.0 3,800.0 3,700.7 3,709.7 13.7 5.8 72.58 9.1 29.0 30.4 12.1 18.30 1.661 Advise and Monitor 4,000.0 4,000.0 3,997.7 3,799.7 13.7 5.8 72.58 9.1 29.0 30.4 12.1 18.30 1.661 Advise and Monitor 4,000.0 4,000.0 4,009.7 4,099.7 14.4 6.0 72.58 9.1 29.0 30.4 11.7 18.71 1.525 Advise and Monitor 4,000.0 4,000.0 4,009.7 4,099.7 15.5 6.3 72.58 9.1 29.0 30.4 11.7 18.71 1.525 Advise and Monitor 4,000.0 4,000.0 4,997.7 4,997.7 15.5 6.3 72.58 9.1 29.0 30.4 10.9 19.52 15.55 Advise and Monitor 4,000.0 4,000.0 4,997.7 4,997.7 15.5 6.3 72.58 9.1 29.0 30.4 10.9 19.52 15.55 Advise and Monitor 4,000.0 4,000.0 4,997.7 4,997.7 15.5 6.5 72.58 9.1 29.0 30.4 8.8 21.57 1.465 Shut in Prod	2,300.0	2,300.0	2,299.7	2,299.7	8.6	4.2	72.58	9.1	29.0	30.4	18.4	12.03	2.527		
2,600 0 2,600 0 2,599,7 2,599,7 9,6 4.5 72,58 9.1 29.0 30.4 17.2 13.16 2.309 2,700 0 2,609,7 2,699,7 9,9 4.6 72,58 9.1 29.0 30.4 16.8 13.55 2,243 2,800 0 2,800,0 2,799,7 10.3 4,7 72,58 9.1 29.0 30.4 16.5 13.93 2,181 2,900 0 2,809,7 2,899,7 10.6 4.8 72,58 9.1 29.0 30.4 16.5 13.93 2,181 2,900 0 2,809,7 2,899,7 10.9 4.9 72,58 9.1 29.0 30.4 16.1 14.32 2,122 3,000 0 3,000 0 3,000,0 2,999,7 2,999,7 10.9 4.9 72,58 9.1 29.0 30.4 15.7 14.71 2,066 3,100 0 3,000,0 3,000,7 3,099,7 11.3 5.0 72,58 9.1 29.0 30.4 15.3 15.11 2,012 3,200 0 3,200 0 3,199,7 3,199,7 11.6 5.1 72,58 9.1 29.0 30.4 14.9 15.50 1,961 Advise and Monitor 3,400 0 3,400 0 3,899,7 3,899,7 12.0 5.2 72,58 9.1 29.0 30.4 14.1 16.29 1,865 Advise and Monitor 3,500 0 3,500 3,400 0 3,809,7 3,899,7 12.3 5.3 72,58 9.1 29.0 30.4 14.1 16.29 1,865 Advise and Monitor 3,500 0 3,600 0 3,600 0 3,599,7 3,599,7 13.0 5.5 72,58 9.1 29.0 30.4 14.1 16.29 1,865 Advise and Monitor 3,500 0 3,600 0 3,600 0 3,600,7 3,699,7 13.0 5.5 72,58 9.1 29.0 30.4 14.1 16.29 1,865 Advise and Monitor 3,500 0 3,600 0 3,600 0 3,600,7 3,699,7 13.0 5.5 72,58 9.1 29.0 30.4 12.1 18.30 1,669 1,812 Advise and Monitor 3,500 0 3,600 0 3,600 0 3,600,7 3,699,7 13.0 5.5 72,58 9.1 29.0 30.4 12.5 17.90 1,778 Advise and Monitor 3,500 0 3,6				2,399.7				9.1	29.0	30.4	18.0	12.40			
2,700.0 2,700.0 2,699.7 2,699.7 1,999. 4,6 72,58 9,1 29.0 30.4 16.8 13,55 2,243 2,800.0 2,800.0 2,799.7 10.3 4,7 72,58 9,1 29.0 30.4 16.5 13,93 2,181 2,900.0 2,899.7 2,899.7 10.9 4,9 72,58 9,1 29.0 30.4 16.5 14,71 2,066 3,100.0 3,000.7 3,099.7 11.3 5.0 72,58 9,1 29.0 30.4 15.7 14.71 2,066 3,100.0 3,099.7 3,099.7 11.3 5.0 72,58 9,1 29.0 30.4 15.5 15.1 2,066 3,200.0 3,299.7 3,299.7 11.6 5.1 72,58 9,1 29.0 30.4 14.9 15.50 1,961 Advise and Monitor 3,400.0 3,499.7 3,299.7 12.0 5.2 72,58 9,1 29.0 30.4 13.7	2,500.0	2,500.0	2,499.7	2,499.7	9.2	4.4	72.58	9.1	29.0	30.4	17.6	12.78	2.378		
2,800.0 2,800.0 2,799.7 2,799.7 10.3 4.7 72,58 9.1 29.0 30.4 16.5 13.93 2,181 2,900.0 2,899.7 2,899.7 10.6 4.8 72,58 9.1 29.0 30.4 16.5 13.93 2,181 2,900.0 3,000.0 2,899.7 2,999.7 10.9 4.9 72,58 9.1 29.0 30.4 15.7 14,71 2,066 3,100.0 3,000.0 3,099.7 3,099.7 11.3 5.0 72,58 9.1 29.0 30.4 15.3 15.11 2,012 3,200.0 3,200.0 3,199.7 3,199.7 11.6 5.1 72,58 9.1 29.0 30.4 14.9 15.50 1,981 Advise and Monitor 3,400.0 3,400.0 3,399.7 3,299.7 12.0 5.2 72,58 9.1 29.0 30.4 14.9 15.50 1,981 Advise and Monitor 3,400.0 3,400.0 3,399.7 3,299.7 12.3 5.3 72,58 9.1 29.0 30.4 14.1 16.29 1,885 Advise and Monitor 3,400.0 3,400.0 3,999.7 3,499.7 12.7 5.4 72,58 9.1 29.0 30.4 14.1 16.29 1,885 Advise and Monitor 3,500.0 3,500.0 3,500.0 3,599.7 3,599.7 13.0 5.5 72,58 9.1 29.0 30.4 14.1 16.29 1,885 Advise and Monitor 3,700.0 3,700.0 3,700.0 3,700.0 3,700.0 3,700.7 3,599.7 13.0 5.5 72,58 9.1 29.0 30.4 13.3 17.09 1,778 Advise and Monitor 3,700.0 3,700.0 3,700.0 3,799.7 3,899.7 13.7 5.8 72,58 9.1 29.0 30.4 12.9 17.99 1,737 Advise and Monitor 3,800.0 3,800.0 3,799.7 3,899.7 13.7 5.8 72,58 9.1 29.0 30.4 12.9 17.99 1,737 Advise and Monitor 3,800.0 3,800.0 3,899.7 3,899.7 14.1 5.9 72,58 9.1 29.0 30.4 12.9 17.99 1,688 Advise and Monitor 3,900.0 3,800.0 3,999.7 3,899.7 14.1 5.9 72,58 9.1 29.0 30.4 12.1 18.30 1,681 Advise and Monitor 4,000.0 4,000.0 3,999.7 3,999.7 14.1 6.9 72,58 9.1 29.0 30.4 12.1 18.30 1,681 Advise and Monitor 4,000.0 4,000.0 3,999.7 3,999.7 14.1 6.9 72,58 9.1 29.0 30.4 12.1 18.30 1,681 Advise and Monitor 4,000.0 4,000.0 4,000.0 4,009.7 4,009.7 15.5 6.3 72,58 9.1 29.0 30.4 10.5 19.9 19.52 1,557 Advise and Monitor 4,000.0 4,000.0 4,000.0 4,999.7 4,299.7 15.5 6.3 72,58 9.1 29.0 30.4 10.5 19.9 19.52 1,557 Advise and Monitor 4,000.0 4,000.0 4,000.0 4,999.7 4,499.7 16.2 6.6 72,58 9.1 29.0 30.4 10.5 19.9 19.52 1,557 Advise and Monitor 4,000.0 4,000.0 4,900.0 4,999.7 4,499.7 16.2 6.6 72,58 9.1 29.0 30.4 10.5 19.9 3 1,525 Advise and Monitor 4,000.0 4,000.0 4,900.0 4,999.7 4,499.7 16.2 6.6 72,58 9.1 29.0 30.4 8.8 2,157 1,409 Shut in Produces	2,600.0	2,600.0	2,599.7	2,599.7	9.6	4.5	72.58	9.1	29.0	30.4	17.2	13.16	2.309		
2,900.0 2,900.0 2,909.7 2,899.7 10.6 4.8 72.58 9.1 29.0 30.4 16.1 14.32 2.122 3,000.0 3,000.0 2,999.7 2,999.7 10.9 4.9 72.58 9.1 29.0 30.4 15.7 14.71 2.066 3,100.0 3,100.0 3,009.7 3,099.7 11.3 5.0 72.58 9.1 29.0 30.4 15.3 15.11 2.012 3,200.0 3,200.0 3,199.7 3,199.7 11.6 5.1 72.58 9.1 29.0 30.4 14.9 15.50 1.961 Advise and Monitor 3,400.0 3,300.0 3,300.7 3,309.7 3,399.7 12.0 5.2 72.58 9.1 29.0 30.4 14.5 15.90 1.912 Advise and Monitor 3,500.0 3,400.0 3	2,700.0	2,700.0	2,699.7	2,699.7	9.9	4.6	72.58	9.1	29.0	30.4	16.8	13.55	2.243		
3,000.0 3,000.0 2,999.7 2,999.7 10.9 4.9 72.58 9.1 29.0 30.4 15.7 14.71 2.066 3,100.0 3,100.0 3,099.7 3,099.7 11.3 5.0 72.58 9.1 29.0 30.4 15.3 15.11 2.012 3,200.0 3,200.0 3,199.7 3,199.7 11.6 5.1 72.58 9.1 29.0 30.4 14.5 15.0 1.961 Advise and Monitor 3,300.0 3,300.0 3,399.7 3,299.7 12.0 5.2 72.58 9.1 29.0 30.4 14.5 15.00 1.912 Advise and Monitor 3,400.0 3,400.0 3,399.7 3,299.7 12.3 5.3 72.58 9.1 29.0 30.4 14.1 16.29 1.865 Advise and Monitor 3,500.0 3,600.	2,800.0	2,800.0	2,799.7	2,799.7	10.3	4.7	72.58	9.1	29.0	30.4	16.5	13.93	2.181		
3,100.0 3,000.1 3,099.7 3,099.7 11.3 5.0 72.58 9.1 29.0 30.4 15.3 15.11 2.012 3,200.0 3,200.0 3,199.7 3,199.7 11.6 5.1 72.58 9.1 29.0 30.4 14.9 15.50 1.961 Advise and Monitor 3,300.0 3,300.0 3,299.7 3,299.7 12.0 5.2 72.58 9.1 29.0 30.4 14.5 15.90 1.912 Advise and Monitor 3,500.0 3,400.0 3,500.0 3,400.	2,900.0	2,900.0	2,899.7	2,899.7	10.6	4.8	72.58	9.1	29.0	30.4	16.1	14.32	2.122		
3,200.0 3,200.0 3,199.7 3,199.7 11.6 5.1 72.58 9.1 29.0 30.4 14.9 15.50 1.961 Advise and Monitor 3,300.0 3,300.0 3,299.7 3,299.7 12.0 5.2 72.58 9.1 29.0 30.4 14.5 15.90 1.912 Advise and Monitor 3,400.0 3,400.0 3,400.0 3,409.7 3,499.7 12.7 5.4 72.58 9.1 29.0 30.4 14.1 16.29 1.865 Advise and Monitor 3,500.0 3,500.0 3,499.7 3,499.7 12.7 5.4 72.58 9.1 29.0 30.4 13.7 16.69 1.821 Advise and Monitor 3,700.0 3,700.0 3,600.0 3,599.7 3,599.7 13.0 5.5 72.58 9.1 29.0 30.4 13.3 17.09 1.778 Advise and Monitor 3,700.0 3,700.0 3,600.0 3,609.7 3,699.7 13.4 5.7 72.58 9.1 29.0 30.4 12.9 17.49 1.737 Advise and Monitor 3,800.0 3,800.0 3,799.7 3,799.7 13.7 5.8 72.58 9.1 29.0 30.4 12.5 17.90 1.698 Advise and Monitor 3,900.0 3,800.0 3,799.7 3,799.7 14.1 5.9 72.58 9.1 29.0 30.4 12.5 17.90 1.698 Advise and Monitor 3,900.0 3,900.0 3,999.7 3,899.7 14.1 5.9 72.58 9.1 29.0 30.4 12.5 17.90 1.698 Advise and Monitor 4,000.0 4,000.0 3,999.7 3,999.7 14.4 6.0 72.58 9.1 29.0 30.4 11.7 18.71 1.625 Advise and Monitor 4,200.0 4,100.0 4,009.7 4,099.7 14.8 6.1 72.58 9.1 29.0 30.4 11.7 18.71 1.625 Advise and Monitor 4,200.0 4,200.0 4,199.7 4,199.7 15.1 6.2 72.58 9.1 29.0 30.4 10.9 19.52 1.557 Advise and Monitor 4,400.0 4,309.7 4,999.7 15.5 6.3 72.58 9.1 29.0 30.4 10.9 19.52 1.557 Advise and Monitor 4,400.0 4,400.0 4,399.7 4,999.7 15.5 6.3 72.58 9.1 29.0 30.4 10.5 19.93 1.525 Advise and Monitor 4,400.0 4,400.0 4,399.7 4,999.7 15.5 6.3 72.58 9.1 29.0 30.4 10.5 19.93 1.525 Advise and Monitor 4,500.0 4,400.0 4,409.7 4,499.7 16.2 6.6 72.58 9.1 29.0 30.4 10.5 19.93 1.525 Advise and Monitor 4,500.0 4,600.0 4,699.7 4,999.7 16.5 6.7 72.58 9.1 29.0 30.4 9.2 21.16 1.436 Shut in Produces 4,500.0 4,600.0 4,600.0 4,699.7 4,999.7 16.5 6.7 72.58 9.1 29.0 30.4 8.8 21.57 1.409 Shut in Produces 4,800.0 4,800.0 4,809.7 4,999.7 16.9 6.8 72.58 9.1 29.0 30.4 8.8 21.57 1.409 Shut in Produces 4,800.0 4,800.0 4,809.7 4,999.7 17.6 7.0 72.58 9.1 29.0 30.4 8.8 21.57 1.409 Shut in Produces 4,800.0 4,800.0 4,800.0 4,809.7 4,899.7 17.6 7.0 72.58 9.1 29.0 30.4 8.8 21.57 1.409 Shut in P	3,000.0	3,000.0	2,999.7	2,999.7	10.9	4.9	72.58	9.1	29.0	30.4	15.7	14.71	2.066		
3,300.0 3,300.0 3,299.7 3,299.7 12.0 5.2 72.58 9.1 29.0 30.4 14.5 15.90 1.912 Advise and Monitor 3,400.0 3,400.0 3,399.7 3,399.7 12.3 5.3 72.58 9.1 29.0 30.4 14.1 16.29 1.865 Advise and Monitor 3,500.0 3,500.0 3,409.7 3,499.7 12.7 5.4 72.58 9.1 29.0 30.4 13.7 16.69 1.821 Advise and Monitor 3,600.0 3,600.0 3,599.7 3,599.7 13.0 5.5 72.58 9.1 29.0 30.4 13.3 17.09 1.778 Advise and Monitor 3,700.0 3,700.0 3,609.7 3,599.7 13.4 5.7 72.58 9.1 29.0 30.4 12.9 17.49 1.737 Advise and Monitor 3,800.0 3,800.0 3,799.7 3,799.7 13.7 5.8 72.58 9.1 29.0 30.4 12.5 17.90 1.698 Advise and Monitor 3,900.0 3,900.0 3,809.7 3,999.7 14.1 5.9 72.58 9.1 29.0 30.4 12.5 17.90 1.698 Advise and Monitor 4,000.0 4,000.0 3,999.7 3,999.7 14.1 5.9 72.58 9.1 29.0 30.4 12.1 18.30 1.661 Advise and Monitor 4,000.0 4,000.0 4,009.7 4,099.7 14.8 6.1 72.58 9.1 29.0 30.4 11.3 19.11 1.590 Advise and Monitor 4,200.0 4,200.0 4,199.7 4,199.7 15.5 6.3 72.58 9.1 29.0 30.4 11.3 19.11 1.590 Advise and Monitor 4,300.0 4,200.0 4,299.7 4,299.7 15.5 6.3 72.58 9.1 29.0 30.4 10.5 19.93 1.525 Advise and Monitor 4,400.0 4,400.0 4,309.7 4,299.7 15.5 6.3 72.58 9.1 29.0 30.4 10.5 19.93 1.525 Advise and Monitor 4,400.0 4,400.0 4,309.7 4,999.7 15.5 6.3 72.58 9.1 29.0 30.4 10.5 19.93 1.525 Advise and Monitor 4,400.0 4,400.0 4,309.7 4,299.7 15.5 6.3 72.58 9.1 29.0 30.4 10.5 19.93 1.525 Advise and Monitor 4,400.0 4,400.0 4,309.7 4,299.7 15.5 6.5 72.58 9.1 29.0 30.4 10.5 19.93 1.525 Advise and Monitor 4,400.0 4,500.0 4,499.7 4,499.7 16.2 6.6 72.58 9.1 29.0 30.4 10.1 20.34 1.494 Shut in Produces 4,500.0 4,600.0 4,599.7 4,599.7 16.5 6.6 72.58 9.1 29.0 30.4 9.2 21.16 1.436 Shut in Produces 4,800.0 4,800.0 4,700.0 4,609.7 4,699.7 16.9 6.8 72.58 9.1 29.0 30.4 8.8 21.57 1.409 Shut in Produces 4,800.0 4,800.0 4,809.7 4,899.7 16.9 6.8 72.58 9.1 29.0 30.4 8.8 21.57 1.409 Shut in Produces 4,800.0 4,800.0 4,809.7 4,899.7 17.2 6.9 72.58 9.1 29.0 30.4 8.0 22.40 1.357 Shut in Produces 4,800.0 4,800.0 4,809.7 4,899.7 17.2 6.9 72.58 9.1 29.0 30.4 8.0 22.40 1.357 Shut in Produces 4,900.0 4,900.0 4,	3,100.0	3,100.0	3,099.7	3,099.7	11.3	5.0	72.58	9.1	29.0	30.4	15.3	15.11	2.012		
3,400.0 3,400.0 3,399.7 3,399.7 12.3 5.3 72.58 9.1 29.0 30.4 14.1 16.29 1.865 Advise and Monitor 3,500.0 3,500.0 3,409.7 3,499.7 12.7 5.4 72.58 9.1 29.0 30.4 13.7 16.69 1.821 Advise and Monitor 3,700.0 3,700.0 3,500.0 3,509.7 3,509.7 13.0 5.5 72.58 9.1 29.0 30.4 13.3 17.09 1.778 Advise and Monitor 3,700.0 3,700.0 3,500.0 3,700.0 3,500.0 3,709.7 3,709.7 13.7 5.8 72.58 9.1 29.0 30.4 12.9 17.49 1.737 Advise and Monitor 3,800.0 3,800.0 3,709.7 3,709.7 13.7 5.8 72.58 9.1 29.0 30.4 12.5 17.90 1.698 Advise and Monitor 3,800.0 3,800.0 3,900.0 3,900.0 3,809.7 3,809.7 14.1 5.9 72.58 9.1 29.0 30.4 12.1 18.30 1.661 Advise and Monitor 4,000.0 4,000.0 4,000.0 3,909.7 3,709.7 14.4 6.0 72.58 9.1 29.0 30.4 11.7 18.71 1.625 Advise and Monitor 4,000.0 4,000.0 4,000.0 4,009.7 4,009.7 14.8 6.1 72.58 9.1 29.0 30.4 11.3 19.11 1.590 Advise and Monitor 4,200.0 4,200.	3,200.0	3,200.0	3,199.7	3,199.7	11.6	5.1	72.58	9.1	29.0	30.4	14.9	15.50	1.961	Advise and Monitor	
3,500.0 3,500.0 3,499.7 3,499.7 12.7 5.4 72.58 9.1 29.0 30.4 13.7 16.69 1.821 Advise and Monitor 3,600.0 3,600.0 3,599.7 3,599.7 13.0 5.5 72.58 9.1 29.0 30.4 13.3 17.09 1.778 Advise and Monitor 3,700.0 3,700.0 3,699.7 3,699.7 13.4 5.7 72.58 9.1 29.0 30.4 12.9 17.49 1.737 Advise and Monitor 3,800.0 3,800.0 3,799.7 3,799.7 13.7 5.8 72.58 9.1 29.0 30.4 12.5 17.90 1.698 Advise and Monitor 3,900.0 3,900.0 3,899.7 3,899.7 14.1 5.9 72.58 9.1 29.0 30.4 12.1 18.30 1.661 Advise and Monitor 4,000.0 4,000.0 3,999.7 3,999.7 14.4 6.0 72.58 9.1 29.0 30.4 11.7 18.71 1.625 Advise and Monitor 4,200.0 4,100.0 4,009.7 4,199.7 15.1 6.2 72.58 9.1 29.0 30.4 11.3 19.11 1.590 Advise and Monitor 4,300.0 4,300.0 4,200.0 4,200.0 4,299.7 15.5 6.3 72.58 9.1 29.0 30.4 10.9 19.52 1.557 Advise and Monitor 4,400.0 4,400.0 4,499.7 4,299.7 15.5 6.3 72.58 9.1 29.0 30.4 10.9 19.52 1.557 Advise and Monitor 4,400.0 4,400.0 4,499.7 4,499.7 15.5 6.3 72.58 9.1 29.0 30.4 10.5 19.93 1.525 Advise and Monitor 4,500.0 4,500.0 4,499.7 4,499.7 16.2 6.6 72.58 9.1 29.0 30.4 10.5 19.93 1.525 Advise and Monitor 4,500.0 4,500.0 4,500.0 4,599.7 4,599.7 16.2 6.6 72.58 9.1 29.0 30.4 10.5 19.93 1.525 Advise and Monitor 4,600.0 4,600.0 4,599.7 4,699.7 16.2 6.6 72.58 9.1 29.0 30.4 10.5 19.93 1.525 Advise and Monitor 4,600.0 4,600.0 4,699.7 4,699.7 16.9 6.8 72.58 9.1 29.0 30.4 9.2 21.16 1.436 Shut in Produces 4,600.0 4,600.0 4,699.7 4,699.7 16.9 6.8 72.58 9.1 29.0 30.4 8.8 21.57 1.409 Shut in Produces 4,600.0 4,600.0 4,699.7 4,699.7 16.9 6.8 72.58 9.1 29.0 30.4 8.4 21.98 1.383 Shut in Produces 4,900.0 4,900.0 4,899.7 4,899.7 17.2 6.9 72.58 9.1 29.0 30.4 8.0 22.40 1.357 Shut in Produces 4,900.0 4,900.0 4,900.0 4,999.7 4,999.7 17.2 6.9 72.58 9.1 29.0 30.4 8.0 22.40 1.357 Shut in Produces 5,000.0 5,000.0 4,999.7 4,999.7 17.2 6.9 72.58 9.1 29.0 30.4 8.0 22.40 1.357 Shut in Produces 5,000.0 5,000.0 4,999.7 4,999.7 17.6 7.0 72.58 9.1 29.0 30.4 8.0 22.40 1.357 Shut in Produces 5,000.0 5,000.0 4,999.7 4,999.7 17.2 6.9 72.58 9.1 29.0 30.4 7.6 22.81 1.332 Shut in Produces 5,000.0 5	3,300.0	3,300.0	3,299.7	3,299.7	12.0	5.2	72.58	9.1	29.0	30.4	14.5	15.90	1.912	Advise and Monitor	
3,600.0 3,600.0 3,599.7 3,599.7 13.0 5.5 72.58 9.1 29.0 30.4 13.3 17.09 1.778 Advise and Monitor 3,700.0 3,700.0 3,699.7 3,699.7 13.4 5.7 72.58 9.1 29.0 30.4 12.9 17.49 1.737 Advise and Monitor 3,800.0 3,800.0 3,799.7 3,799.7 13.7 5.8 72.58 9.1 29.0 30.4 12.5 17.90 1.698 Advise and Monitor 3,900.0 3,900.0 3,899.7 3,899.7 14.1 5.9 72.58 9.1 29.0 30.4 12.1 18.30 1.661 Advise and Monitor 4,000.0 4,000.0 3,999.7 3,999.7 14.4 6.0 72.58 9.1 29.0 30.4 11.7 18.71 1.625 Advise and Monitor 4,100.0 4,000.0 4,099.7 4,099.7 14.8 6.1 72.58 9.1 29.0 30.4 11.3 19.11 1.590 Advise and Monitor 4,200.0 4,200.0 4,199.7 4,199.7 15.1 6.2 72.58 9.1 29.0 30.4 10.9 19.52 1.557 Advise and Monitor 4,300.0 4,300.0 4,299.7 4,299.7 15.5 6.3 72.58 9.1 29.0 30.4 10.9 19.52 1.557 Advise and Monitor 4,400.0 4,400.0 4,399.7 4,399.7 15.8 6.5 72.58 9.1 29.0 30.4 10.5 19.93 1.525 Advise and Monitor 4,500.0 4,500.0 4,499.7 4,499.7 16.2 6.6 72.58 9.1 29.0 30.4 10.1 20.34 1.49 Shut in Produces 4,500.0 4,500.0 4,500.0 4,599.7 4,599.7 16.9 6.8 72.58 9.1 29.0 30.4 9.6 20.75 1.465 Shut in Produces 4,700.0 4,700.0 4,699.7 4,699.7 16.9 6.8 72.58 9.1 29.0 30.4 8.8 21.57 1.409 Shut in Produces 4,800.0 4,800.0 4,799.7 4,799.7 17.2 6.9 72.58 9.1 29.0 30.4 8.4 21.98 1.383 Shut in Produces 4,900.0 4,900.0 4,899.7 4,999.7 17.2 6.9 72.58 9.1 29.0 30.4 8.0 22.40 1.357 Shut in Produces 4,900.0 4,900.0 4,899.7 4,999.7 17.6 7.0 72.58 9.1 29.0 30.4 8.0 22.40 1.357 Shut in Produces 5,000.0 5,000.0 4,999.7 4,999.7 17.6 7.0 72.58 9.1 29.0 30.4 8.0 22.40 1.357 Shut in Produces 5,000.0 5,000.0 4,999.7 4,999.7 17.6 7.0 72.58 9.1 29.0 30.4 7.6 22.81 1.332 Shut in Produces 5,000.0 5,000.0 4,999.7 4,999.7 18.0 7.2 72.58 9.1 29.0 30.4 7.6 22.81 1.332 Shut in Produces 5,000.0 5,000.0 4,999.7 4,999.7 18.0 7.2 72.58 9.1 29.0 30.4 7.6 22.81 1.332 Shut in Produces 5,000.0 5,000.0 4,999.7 4,999.7 18.0 7.2 72.58 9.1 29.0 30.4 7.6 22.81 1.332 Shut in Produces 5,000.0 5,000.0 4,999.7 4,999.7 18.0 7.2 72.58 9.1 29.0 30.4 7.6 22.81 1.332 Shut in Produces 5,000.0 5,000.0 5,000.0 4,999.7 4,999	3,400.0	3,400.0	3,399.7	3,399.7	12.3	5.3	72.58	9.1	29.0	30.4	14.1	16.29	1.865	Advise and Monitor	
3,700.0 3,700.0 3,699.7 3,699.7 13.4 5.7 72.58 9.1 29.0 30.4 12.9 17.49 1.737 Advise and Monitor 3,800.0 3,800.0 3,799.7 3,799.7 13.7 5.8 72.58 9.1 29.0 30.4 12.5 17.90 1.698 Advise and Monitor 3,800.0 3,800.0 3,800.0 3,809.7 3,809.7 14.1 5.9 72.58 9.1 29.0 30.4 12.1 18.30 1.661 Advise and Monitor 4,000.0 4,000.0 3,999.7 3,999.7 14.4 6.0 72.58 9.1 29.0 30.4 11.7 18.71 1.625 Advise and Monitor 4,100.0 4,000.0 4,000.0 4,000.0 4,000.0 4,000.0 4,100.0 4,	3,500.0	3,500.0	3,499.7	3,499.7	12.7	5.4	72.58	9.1	29.0	30.4	13.7	16.69	1.821	Advise and Monitor	
3,800.0 3,800.0 3,799.7 3,799.7 13.7 5.8 72.58 9.1 29.0 30.4 12.5 17.90 1.698 Advise and Monitor 3,900.0 3,900.0 3,899.7 3,899.7 14.1 5.9 72.58 9.1 29.0 30.4 12.1 18.30 1.661 Advise and Monitor 4,000.0 4,000.0 3,999.7 3,999.7 14.4 6.0 72.58 9.1 29.0 30.4 11.7 18.71 1.625 Advise and Monitor 4,100.0 4,000.0 4,000.0 4,000.0 1,000.0 1,000.0 1.625 Advise and Monitor 1.625 A	3,600.0	3,600.0	3,599.7	3,599.7	13.0	5.5	72.58	9.1	29.0	30.4	13.3	17.09	1.778	Advise and Monitor	
3,900.0 3,900.0 3,899.7 3,899.7 14.1 5.9 72.58 9.1 29.0 30.4 12.1 18.30 1.661 Advise and Monitor 4,000.0 4,000.0 3,999.7 3,999.7 14.4 6.0 72.58 9.1 29.0 30.4 11.7 18.71 1.625 Advise and Monitor 4,100.0 4,000.0 4,009.7 4,009.7 14.8 6.1 72.58 9.1 29.0 30.4 11.3 19.11 1.590 Advise and Monitor 4,200.0 4,200.0 4,199.7 4,199.7 15.1 6.2 72.58 9.1 29.0 30.4 10.9 19.52 1.557 Advise and Monitor 4,300.0 4,300.0 4,299.7 4,299.7 15.5 6.3 72.58 9.1 29.0 30.4 10.5 19.93 1.525 Advise and Monitor 4,400.0 4,400.0 4,309.7 4,399.7 15.8 6.5 72.58 9.1 29.0 30.4 10.1 20.34 1.494 Shut in Produces 4,500.0 4,500.0 4,499.7 4,499.7 16.2 6.6 72.58 9.1 29.0 30.4 9.6 20.75 1.465 Shut in Produces 4,700.0 4,700.0 4,690.7 4,699.7 16.9 6.8 72.58 9.1 29.0 30.4 8.8 21.57 1.409 Shut in Produces 4,800.0 4,800.0 4,799.7 4,799.7 17.2 6.9 72.58 9.1 29.0 30.4 8.8 21.57 1.409 Shut in Produces 4,900.0 4,900.0 4,899.7 4,899.7 17.6 7.0 72.58 9.1 29.0 30.4 8.4 21.98 1.383 Shut in Produces 4,900.0 4,900.0 4,899.7 4,899.7 17.6 7.0 72.58 9.1 29.0 30.4 8.0 22.40 1.357 Shut in Produces 5,000.0 5,000.0 4,999.7 4,999.7 18.0 7.2 72.58 9.1 29.0 30.4 7.6 22.81 1.332 Shut in Produces	3,700.0	3,700.0	3,699.7	3,699.7	13.4	5.7	72.58	9.1	29.0	30.4	12.9	17.49	1.737	Advise and Monitor	
4,000.0 4,000.0 3,999.7 3,999.7 14.4 6.0 72.58 9.1 29.0 30.4 11.7 18.71 1.625 Advise and Monitor 4,100.0 4,100.0 4,099.7 4,099.7 14.8 6.1 72.58 9.1 29.0 30.4 11.3 19.11 1.590 Advise and Monitor 4,200.0 4,200.0 4,199.7 15.1 6.2 72.58 9.1 29.0 30.4 10.9 19.52 1.557 Advise and Monitor 4,300.0 4,300.0 4,299.7 15.5 6.3 72.58 9.1 29.0 30.4 10.5 19.93 1.525 Advise and Monitor 4,400.0 4,300.0 4,299.7 15.5 6.3 72.58 9.1 29.0 30.4 10.5 19.93 1.525 Advise and Monitor 4,400.0 4,300.0 4,299.7 15.5 6.3 72.58 9.1 29.0 30.4 10.5 19.93 1.525 Advise and Monitor 4,500.0 4,400.0 4,399.7 16.5 6.5 72.58 9.1 29.0 30.4 10.5 19.93 1.525 Advise						5.8			29.0	30.4			1.698	Advise and Monitor	
4,100.0 4,099.7 4,099.7 14.8 6.1 72.58 9.1 29.0 30.4 11.3 19.11 1.590 Advise and Monitor 4,200.0 4,200.0 4,199.7 15.1 6.2 72.58 9.1 29.0 30.4 10.9 19.52 1.557 Advise and Monitor 4,300.0 4,399.7 4,299.7 15.5 6.3 72.58 9.1 29.0 30.4 10.5 19.93 1.525 Advise and Monitor 4,400.0 4,490.0 4,399.7 15.8 6.5 72.58 9.1 29.0 30.4 10.5 19.93 1.525 Advise and Monitor 4,500.0 4,400.0 4,399.7 4,399.7 15.8 6.5 72.58 9.1 29.0 30.4 10.1 20.34 1.494 Shut in Produces 4,500.0 4,500.0 4,499.7 4,499.7 16.2 6.6 72.58 9.1 29.0 30.4 9.2 21.16 1.436 Shut in Produces 4,700.0 4,690.7 4,699.7 16.9 6.8 72.58 9.1 29.0 30.4 8.8 21.57 1.409 Shut in Prod	3,900.0	3,900.0	3,899.7	3,899.7	14.1	5.9	72.58	9.1	29.0	30.4	12.1	18.30	1.661	Advise and Monitor	
4,200.0 4,199.7 4,199.7 15.1 6.2 72.58 9.1 29.0 30.4 10.9 19.52 1.557 Advise and Monitor 4,300.0 4,300.0 4,299.7 4,299.7 15.5 6.3 72.58 9.1 29.0 30.4 10.5 19.93 1.525 Advise and Monitor 4,400.0 4,400.0 4,399.7 4,399.7 15.8 6.5 72.58 9.1 29.0 30.4 10.1 20.34 1.494 Shut in Produces 4,500.0 4,500.0 4,499.7 4,499.7 16.2 6.6 72.58 9.1 29.0 30.4 9.6 20.75 1.465 Shut in Produces 4,600.0 4,600.0 4,599.7 4,599.7 16.5 6.7 72.58 9.1 29.0 30.4 9.2 21.16 1.436 Shut in Produces 4,700.0 4,690.0 4,699.7 4,699.7 16.9 6.8 72.58 9.1 29.0 30.4 8.8 21.57 1.409 Shut in Produces 4,800.0 4,800.0 4,799.7 4,799.7 17.2 6.9 72.58 9.1 29.0	4,000.0	4,000.0	3,999.7	3,999.7	14.4	6.0	72.58	9.1	29.0	30.4	11.7	18.71	1.625	Advise and Monitor	
4,200.0 4,199.7 4,199.7 15.1 6.2 72.58 9.1 29.0 30.4 10.9 19.52 1.557 Advise and Monitor 4,300.0 4,300.0 4,299.7 4,299.7 15.5 6.3 72.58 9.1 29.0 30.4 10.5 19.93 1.525 Advise and Monitor 4,400.0 4,400.0 4,399.7 4,399.7 15.8 6.5 72.58 9.1 29.0 30.4 10.1 20.34 1.494 Shut in Produces 4,500.0 4,500.0 4,499.7 4,499.7 16.2 6.6 72.58 9.1 29.0 30.4 9.6 20.75 1.465 Shut in Produces 4,600.0 4,600.0 4,599.7 4,599.7 16.5 6.7 72.58 9.1 29.0 30.4 9.2 21.16 1.436 Shut in Produces 4,700.0 4,690.0 4,699.7 4,699.7 16.9 6.8 72.58 9.1 29.0 30.4 8.8 21.57 1.409 Shut in Produces 4,800.0 4,800.0 4,799.7 4,799.7 17.2 6.9 72.58 9.1 29.0	4,100.0	4,100.0	4,099.7	4,099.7	14.8	6.1	72.58	9.1	29.0	30.4	11.3	19.11	1.590	Advise and Monitor	
4,300.0 4,299.7 4,299.7 15.5 6.3 72.58 9.1 29.0 30.4 10.5 19.93 1.525 Advise and Monitor 4,400.0 4,400.0 4,399.7 4,399.7 15.8 6.5 72.58 9.1 29.0 30.4 10.1 20.34 1.494 Shut in Produces 4,500.0 4,590.0 4,499.7 4,499.7 16.2 6.6 72.58 9.1 29.0 30.4 9.6 20.75 1.465 Shut in Produces 4,600.0 4,690.0 4,599.7 4,599.7 16.5 6.7 72.58 9.1 29.0 30.4 9.2 21.16 1.436 Shut in Produces 4,700.0 4,700.0 4,699.7 4,699.7 16.9 6.8 72.58 9.1 29.0 30.4 8.8 21.57 1.409 Shut in Produces 4,800.0 4,800.0 4,799.7 4,799.7 17.2 6.9 72.58 9.1 29.0 30.4 8.4 21.98 1.383 Shut in Produces 4,900.0 4,990.0 4,899.7 4,899.7 17.6 7.0 72.58 9.1 29.0															
4,400.0 4,399.7 4,399.7 15.8 6.5 72.58 9.1 29.0 30.4 10.1 20.34 1.494 Shut in Produces 4,500.0 4,500.0 4,499.7 4,499.7 16.2 6.6 72.58 9.1 29.0 30.4 9.6 20.75 1.465 Shut in Produces 4,600.0 4,600.0 4,599.7 4,599.7 16.5 6.7 72.58 9.1 29.0 30.4 9.2 21.16 1.436 Shut in Produces 4,700.0 4,699.7 4,699.7 16.9 6.8 72.58 9.1 29.0 30.4 8.8 21.57 1.409 Shut in Produces 4,800.0 4,800.0 4,799.7 4,799.7 17.2 6.9 72.58 9.1 29.0 30.4 8.4 21.98 1.383 Shut in Produces 4,900.0 4,899.7 4,899.7 17.6 7.0 72.58 9.1 29.0 30.4 8.0 22.40 1.357 Shut in Produces 5,000.0 5,000.0 4,999.7 4,999.7 18.0 7.2 72.58 9.1 29.0 30.4 7.6 22.81															
4,500.0 4,590.0 4,499.7 4,499.7 16.2 6.6 72.58 9.1 29.0 30.4 9.6 20.75 1.465 Shut in Produces 4,600.0 4,600.0 4,599.7 4,599.7 16.5 6.7 72.58 9.1 29.0 30.4 9.2 21.16 1.436 Shut in Produces 4,700.0 4,699.7 4,699.7 16.9 6.8 72.58 9.1 29.0 30.4 8.8 21.57 1.409 Shut in Produces 4,800.0 4,800.0 4,799.7 4,799.7 17.2 6.9 72.58 9.1 29.0 30.4 8.4 21.98 1.383 Shut in Produces 4,900.0 4,899.7 4,899.7 17.6 7.0 72.58 9.1 29.0 30.4 8.0 22.40 1.357 Shut in Produces 5,000.0 5,000.0 4,999.7 4,999.7 18.0 7.2 72.58 9.1 29.0 30.4 7.6 22.81 1.332 Shut in Produces															
4,700.0 4,699.7 4,699.7 16.9 6.8 72.58 9.1 29.0 30.4 8.8 21.57 1.409 Shut in Produces 4,800.0 4,800.0 4,799.7 4,799.7 17.2 6.9 72.58 9.1 29.0 30.4 8.4 21.98 1.383 Shut in Produces 4,900.0 4,900.0 4,899.7 4,899.7 17.6 7.0 72.58 9.1 29.0 30.4 8.0 22.40 1.357 Shut in Produces 5,000.0 5,000.0 4,999.7 4,999.7 18.0 7.2 72.58 9.1 29.0 30.4 7.6 22.81 1.332 Shut in Produces															
4,700.0 4,699.7 4,699.7 16.9 6.8 72.58 9.1 29.0 30.4 8.8 21.57 1.409 Shut in Produces 4,800.0 4,800.0 4,799.7 4,799.7 17.2 6.9 72.58 9.1 29.0 30.4 8.4 21.98 1.383 Shut in Produces 4,900.0 4,900.0 4,899.7 4,899.7 17.6 7.0 72.58 9.1 29.0 30.4 8.0 22.40 1.357 Shut in Produces 5,000.0 5,000.0 4,999.7 4,999.7 18.0 7.2 72.58 9.1 29.0 30.4 7.6 22.81 1.332 Shut in Produces	4,600.0	4,600.0	4,599.7	4,599.7	16.5	6.7	72.58	9.1	29.0	30.4	9.2	21.16	1.436	Shut in Produces	
4,800.0 4,799.7 4,799.7 17.2 6.9 72.58 9.1 29.0 30.4 8.4 21.98 1.383 Shut in Produces 4,900.0 4,900.0 4,899.7 4,899.7 17.6 7.0 72.58 9.1 29.0 30.4 8.0 22.40 1.357 Shut in Produces 5,000.0 5,000.0 4,999.7 4,999.7 18.0 7.2 72.58 9.1 29.0 30.4 7.6 22.81 1.332 Shut in Produces															
4,900.0 4,899.7 4,899.7 17.6 7.0 72.58 9.1 29.0 30.4 8.0 22.40 1.357 Shut in Produces 5,000.0 5,000.0 4,999.7 4,999.7 18.0 7.2 72.58 9.1 29.0 30.4 7.6 22.81 1.332 Shut in Produces															
5,000.0 5,000.0 4,999.7 4,999.7 18.0 7.2 72.58 9.1 29.0 30.4 7.6 22.81 1.332 Shut in Produces															
5,100.0 5,100.0 5,099.7 5,099.7 18.3 7.3 72.58 9.1 29.0 30.4 7.2 23.23 1.309 Shut in Produces															
	5,100.0	5,100.0	5,099.7	5,099.7	18.3	7.3	72.58	9.1	29.0	30.4	7.2	23.23	1.309	Shut in Produces	

Anticollision Report

Company: NORTHERN DELAWARE BASIN

Project: EDDY COUNTY, NM

Reference Site: **ATLAS** Site Error: 0.0 usft

Reference Well:

Well Error: 3.0 usft Reference Wellbore OWB Reference Design: PWP1

LITTLEFIELD 33 FEDERAL COM 703H

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Local Co-ordinate Reference:

Output errors are at Database:

Offset TVD Reference:

Well LITTLEFIELD 33 FEDERAL COM 703H

KB=25' @ 2899.6usft (Pioneer 84) KB=25' @ 2899.6usft (Pioneer 84)

Minimum Curvature

2.00 sigma edm

Offset Datum

Offset D	esign	ATLAS	- LITTL	EFIELD 33	3 FEDEF	RAL COM	702H - OWB -	PWP1					Offset Site Error:	0.0 usft
Survey Pro	ogram: 0-8	Standard Keep	er 104, 956	3-MWD+IFR1	+FDIR							c	Offset Well Error:	3.0 usft
Refer		Offs		Semi Major		111-b 11	0#	. 0		ance		0		
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	Offset Wellbor +N/-S (usft)	e Centre +E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)		Warning	
5,200.0	5,200.0	5,199.7	5,199.7	18.7	7.4	72.58	9.1	29.0	30.4			1 286 Sh	ut in Produces	
5,300.0	5,300.0	5,299.7	5,299.7	19.0	7.5	72.58	9.1	29.0	30.4				ut in Produces	
5,400.0	5,400.0	5,399.7	5,399.7	19.4	7.6	72.58	9.1	29.0	30.4				ut in Produces	
5,500.0	5,500.0	5,499.7	5,499.7	19.7	7.8	72.58	9.1	29.0	30.4				ut in Produces, CC, E	S, SF
5,600.0	5,600.0	5,599.1	5,599.1	20.1	7.8	-129.40	8.0	30.3	32.4	7.1	25.29		ut in Produces	·
5,700.0	5,699.8	5,698.2	5,698.1	20.4	7.8	-128.84	4.7	34.3	38.6	12.9	25.66	1.503 Ad	vise and Monitor	
5,750.0	5,749.7	5,747.6	5,747.3	20.5	7.8	-128.51	2.2	37.2	43.2	17.3	25.84	1.670 Ad	vise and Monitor	
5,800.0	5,799.5	5,797.4	5,796.9	20.7	7.8	-128.24	-0.6	40.5	48.3	22.3	26.02	1.855 Ad	vise and Monitor	
5,900.0	5,899.1	5,896.8	5,895.9	21.0	7.8	-127.85	-6.1	47.2	58.5	32.1	26.40	2.217		
6,000.0	5,998.7	5,996.3	5,995.0	21.3	7.8	-127.57	-11.7	53.8	68.8	42.0	26.79	2.568		
6,100.0	6,098.4	6,095.8	6,094.1	21.7	7.8	-127.37	-17.3	60.4	79.0	51.9	27.18	2.908		
6,200.0	6,198.0	6,195.2	6,193.2	22.0	7.8	-127.21	-22.9	67.1	89.3			3.239		
6,300.0	6,297.6	6,294.7	6,292.3	22.3	7.7	-127.09	-28.4	73.7	99.5			3.560		
6,400.0	6,397.2	6,394.2	6,391.4	22.6	7.7	-126.98	-34.0	80.4	109.8			3.871		
6,500.0	6,496.8	6,493.7	6,490.5	23.0	7.7	-126.90	-39.6	87.0	120.1			4.174		
6,600.0	6,596.4	6,593.1	6,589.6	23.3	7.7	-126.83	-45.1	93.6	130.3	101.1	29.17	4.468		
6,700.0	6,696.1	6,692.6	6,688.7	23.6	7.8	-126.77	-50.7	100.3	140.6	111.0	29.57	4.753		
6,800.0	6,795.7	6,792.1	6,787.8	24.0	7.8	-126.72	-56.3	106.9	150.8			5.030		
6,900.0	6,895.3	6,891.5	6,886.9	24.3	7.8	-126.67	-61.9	113.6	161.1			5.300		
7,000.0	6,994.9	6,991.0	6,986.0	24.6	7.8	-126.63	-67.4	120.2	171.3			5.562		
7,100.0	7,094.5	7,090.5	7,085.1	25.0	7.8	-126.59	-73.0	126.8	181.6	150.4	31.22	5.817		
7,200.0	7,194.2	7,190.0	7,184.2	25.3	7.8	-126.56	-78.6	133.5	191.9	160.2	31.63	6.065		
7,300.0	7,293.8	7,289.4	7,283.3	25.6	7.8	-126.53	-84.2	140.1	202.1	170.1	32.05	6.306		
7,400.0	7,393.4	7,388.9	7,382.4	26.0	7.9	-126.51	-89.7	146.8	212.4			6.541		
7,500.0	7,493.0	7,488.4	7,481.5	26.3	7.9	-126.48	-95.3	153.4	222.6			6.769		
7,600.0	7,592.6	7,587.9	7,580.5	26.7	7.9	-126.46	-100.9	160.1	232.9	199.6	33.31	6.991		
7,700.0	7,692.3	7,687.3	7,679.6	27.0	7.9	-126.44	-106.4	166.7	243.1	209.4	33.73	7.208		
7,800.0	7,791.9	7,786.8	7,778.7	27.3	8.0	-126.42	-112.0	173.3	253.4	219.2	34.16	7.419		
7,900.0	7,891.5	7,886.3	7,877.8	27.7	8.0	-126.41	-117.6	180.0	263.6		34.58	7.624		
8,000.0	7,991.1	7,985.7	7,976.9	28.0	8.0	-126.39	-123.2	186.6	273.9			7.824		
8,100.0	8,090.7	8,085.2	8,076.0	28.4	8.1	-126.38	-128.7	193.3	284.2	248.7	35.44	8.019		
8,200.0	8,190.4	8,184.7	8,175.1	28.7	8.1	-126.36	-134.3	199.9	294.4	258.5	35.87	8.209		
8,300.0	8,290.0	8,284.2	8,274.2	29.0	8.2	-126.35	-139.9	206.5	304.7	268.4	36.30	8.394		
8,400.0	8,389.6	8,383.6	8,373.3	29.4	8.2	-126.34	-145.5	213.2	314.9			8.575		
8,500.0	8,489.2	8,483.1	8,472.4	29.7	8.3	-126.33	-151.0	219.8	325.2			8.751		
8,600.0	8,588.8	8,582.6	8,571.5	30.1	8.3	-126.32	-156.6	226.5	335.4	297.8	37.60	8.922		
8,700.0	8,688.5	8,682.1	8,670.6	30.4	8.4	-126.31	-162.2	233.1	345.7	307.7	38.03	9.090		
8,800.0	8,788.1	8,781.5	8,769.7	30.8	8.4	-126.30	-167.7	239.8	356.0	317.5	38.47	9.253		
8,900.0	8,887.7	8,881.0	8,868.8	31.1	8.5	-126.29	-173.3	246.4	366.2	327.3	38.90	9.413		
9,000.0	8,987.3	8,980.5	8,967.9	31.5	8.6	-126.28	-178.9	253.0	376.5		39.34	9.569		
9,100.0	9,086.9	9,079.9	9,067.0	31.8	8.6	-126.28	-184.5	259.7	386.7	346.9	39.78	9.721		
9,200.0	9,186.6	9,179.4	9,166.1	32.1	8.7	-126.27	-190.0	266.3	397.0	356.8	40.22	9.870		
9,300.0	9,286.2	9,278.9	9,265.1	32.5	8.8	-126.26	-195.6	273.0	407.2	366.6	40.66	10.015		
9,400.0	9,385.8	9,378.4	9,364.2	32.8	8.8	-126.26	-201.2	279.6	417.5	376.4	41.11	10.156		
9,500.0	9,485.4	9,477.8	9,463.3	33.2	8.9	-126.25	-206.8	286.2	427.8		41.55	10.295		
9,517.6	9,502.9	9,495.3	9,480.7	33.3	8.9	-126.25	-207.7	287.4	429.6	387.9	41.63	10.319		
9,525.0	9,510.3	9,502.7	9,488.1	33.3	8.9	-130.72	-208.1	287.9	430.3	388.6	41.66	10.329		
9,550.0	9,535.3	9,527.6	9,512.9	33.4	8.9	-172.04	-209.5	289.6	432.6	390.8	41.76	10.360		
9,575.0	9,560.3	9,552.4	9,537.6	33.5	8.9	113.48	-210.9	291.2	434.5			10.384		
9,600.0	9,585.2	9,571.9	9,557.1	33.5	8.9	93.72	-211.9	292.6	436.2			10.410		
9,625.0	9,610.0	9,587.5	9,572.6	33.6	8.9	87.22	-212.3	293.8	438.1	396.2	41.95	10.445		
9,650.0	9,634.6	9,600.0	9,585.0	33.7	8.9	84.08	-212.3	295.0	440.2	398.2	41.97	10.488		
			Min cont		r diatan		continuint CI		naration f			ana annarat		

Anticollision Report

Database:

Company: NORTHERN DELAWARE BASIN

Project: EDDY COUNTY, NM

Reference Site: **ATLAS** Site Error: 0.0 usft

Reference Well:

Well Error: 3.0 usft Reference Wellbore OWB Reference Design: PWP1

LITTLEFIELD 33 FEDERAL COM 703H

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference:

Output errors are at

KB=25' @ 2899.6usft (Pioneer 84) KB=25' @ 2899.6usft (Pioneer 84)

Survey Calculation Method: Minimum Curvature

> 2.00 sigma edm

Well LITTLEFIELD 33 FEDERAL COM 703H

Offset TVD Reference: Offset Datum

Offset Do	esign	ATLAS	- LITTL	EFIELD 33	FEDER	RAL COM 7	702H - OWB -	PWP1					Offset Site Error:	0.0 usft
Survey Pro	gram: 0-S	tandard Keep	er 104, 956	3-MWD+IFR1	+FDIR								Offset Well Error:	3.0 usft
Refere		Offs		Semi Major						ance				
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	Offset Wellbor +N/-S (usft)	e Centre +E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
9,675.0	9,659.0	9,618.6	9,603.5	33.8	8.9	82.45	-211.7	297.0	442.4	, ,	42.02	10.531		
9,700.0	9,683.1		9,618.9	33.9	8.9	81.41	-210.7	299.0	444.9		42.05	10.582		
9,725.0	9,706.7	9,650.0	9,634.5	34.0	9.0	80.77	-209.3	301.2	447.7		42.08	10.638		
9,750.0	9,729.9	9,665.0	9,649.2	34.0	9.0	80.33	-207.5	303.4	450.6	408.5	42.11	10.702		
9,775.0	9,752.6	9,680.3	9,664.2	34.1	9.0	80.07	-205.1	306.0	453.8		42.13	10.771		
9,800.0	9,774.7	9,695.7	9,679.0	34.2	9.0	79.92	-202.4	308.7	457.2	415.1	42.16	10.846		
9,825.0	9,796.2	9,710.9	9,693.7	34.2	9.0	79.85	-199.3	311.6	460.9	418.7	42.18	10.927		
9,850.0	9,817.0	9,725.0	9,707.1	34.3	9.0	79.78	-196.0	314.5	464.8	422.6	42.19	11.017		
9,875.0	9,837.0	9,741.4	9,722.5	34.4	9.0	79.87	-191.7	318.0	469.0	426.8	42.22	11.110		
9,900.0	9,856.2	9,756.6	9,736.6	34.4	9.0	79.92	-187.3	321.5	473.5		42.23	11.212		
9,925.0	9,874.6	9,775.0	9,753.5	34.5	9.0	80.18	-181.4	325.9	478.3	436.0	42.26	11.317		
9,950.0	9,892.0	9,786.8	9,764.1	34.6	9.0	80.10	-177.4	328.9	483.3	441.0	42.27	11.435		
9,975.0	9,908.5	9,800.0	9,775.9	34.6	9.1	80.09	-172.5	332.4	488.6	446.4	42.27	11.559		
10,000.0	9,924.0	9,816.9	9,790.8	34.7	9.1	80.30	-165.9	337.0	494.2	451.9	42.29	11.685		
10,025.0	9,938.4	9,831.9	9,803.7	34.7	9.1	80.41	-159.5	341.3	500.1	457.8	42.31	11.821		
10,050.0	9,951.8	9,850.0	9,818.9	34.8	9.1	80.69	-151.5	346.6	506.3	464.0	42.34	11.960		
10,075.0	9,964.0	9,862.0	9,828.8	34.8	9.1	80.59	-145.8	350.3	512.8	470.5	42.34	12.111		
10,100.0	9,975.1	9,875.0	9,839.4	34.9	9.1	80.54	-139.4	354.4	519.6	477.2	42.35	12.269		
10,125.0	9,984.9	9,892.0	9,852.9	34.9	9.2	80.73	-130.6	360.0	526.6	484.3	42.37	12.428		
10,150.0	9,993.6	9,907.1	9,864.6	34.9	9.2	80.78	-122.5	365.0	534.0	491.6	42.39	12.596		
10,175.0	10,001.0	9,922.2	9,875.9	35.0	9.2	80.82	-114.0	370.2	541.6	499.2	42.41	12.769		
10,200.0	10,007.2	9,937.3	9,887.0	35.0	9.2	80.84	-105.2	375.5	549.5	507.1	42.44	12.948		
10,225.0	10,012.0	9,952.6	9,897.8	35.0	9.2	80.84	-96.0	381.0	557.7	515.2	42.47	13.132		
10,250.0	10,015.6	9,967.9	9,908.3	35.0	9.3	80.83	-86.4	386.7	566.1	523.6	42.50	13.321		
10,275.0	10,017.9	9,983.3	9,918.5	35.1	9.3	80.80	-76.4	392.5	574.8	532.3	42.54	13.513		
10,302.1	10,019.0	10,000.0	9,929.2	35.1	9.3	80.75	-65.3	398.9	584.5	541.9	42.58	13.726		
10,400.0	10,019.9	10,068.3	9,967.8	35.2	9.4	85.00	-16.2	426.4	623.0	580.1	42.85	14.538		
10,500.0	10,020.8	10,153.2	10,004.2	35.2	9.5	88.70	51.3	462.6	666.0	622.7	43.27	15.390		
10,600.0	10,021.7	10,252.2	10,028.8	35.4	9.6	90.91	136.4	506.3	709.5	665.8	43.80	16.201		
10,700.0	10,022.6	10,389.9	10,034.7	35.5	9.7	91.23	260.6	565.2	750.9		44.56	16.852		
10,800.0	10,023.5	10,594.8	10,036.5	35.7	10.3	91.13	454.2	631.9	781.5	735.6	45.86	17.042		
10,900.0	10,024.4	10,814.9	10,038.4	35.8	11.4	91.08	670.3	672.0	797.6	750.3	47.29	16.868		
11,000.0	10,025.4	10,982.7	10,039.9	36.0	12.4	91.06	837.8	680.8	799.9	751.5	48.40	16.528		
11,100.0	10,026.3	11,082.7	10,040.8	36.3	13.0	91.06	937.8	683.0	799.9	750.7	49.21	16.255		
11,200.0	10,027.2	11,182.7	10,041.7	36.5	13.6	91.06	1,037.7	685.2	799.9	749.9	50.07	15.976		
11,300.0	10,028.1	11,282.7	10,042.5	36.7	14.3	91.05	1,137.7	687.4	799.9	749.0	50.97	15.694		
11,400.0	10,029.0	11,382.7	10,043.4	37.0	14.9	91.05	1,237.7	689.5	799.9	748.0	51.91	15.409		
11,500.0	10,030.0	11,482.7	10,044.3	37.3	15.6	91.05	1,337.6	691.7	799.9	747.1	52.89	15.124		
11,600.0	10,030.9	11,582.7	10,045.2	37.6	16.3	91.05	1,437.6	693.9	800.0	746.0	53.90	14.841		
11,700.0	10,031.8	11,682.7	10,046.0	37.9	17.0	91.04	1,537.6	696.1	800.0	745.0	54.94	14.559		
11,800.0	10,032.7	11,782.7	10,046.9	38.3	17.8	91.04	1,637.6	698.3	800.0	743.9	56.02	14.281		
11,900.0	10,033.6	11,882.7	10,047.8	38.6	18.5	91.04	1,737.5	700.4	800.0	742.9	57.11	14.006		
12,000.0	10,034.5	11,982.7	10,048.7	39.0	19.3	91.03	1,837.5	702.6	800.0	741.7	58.24	13.736		
12,100.0	10,035.5	12,082.7	10,049.5	39.4	20.0	91.03	1,937.5	704.8	800.0		59.39	13.471		
12,200.0	10,036.4	12,182.7	10,050.4	39.8	20.8	91.03	2,037.5	707.0	800.0		60.56	13.211		
12,300.0	10,037.3	12,282.7	10,051.3	40.2	21.6	91.02	2,137.4	709.2	800.0	738.2	61.75	12.956		
12,400.0	10,038.2	12,382.7	10,052.2	40.6	22.4	91.02	2,237.4	711.3	800.0	737.0	62.96	12.707		
12,500.0	10,039.1	12,482.7	10,053.0	41.1	23.1	91.02	2,337.4	713.5	800.0		64.19	12.464		
12,600.0	10,040.0	12,582.7	10,053.9	41.5	23.9	91.01	2,437.3	715.7	800.0	734.6	65.43	12.226		
12,700.0	10,041.0	12,682.7	10,054.8	42.0	24.7	91.01	2,537.3	717.9	800.0		66.70	11.994		
12,800.0	10,041.9	12,782.7	10,055.7	42.5	25.5	91.01	2,637.3	720.1	800.0	732.0	67.98	11.769		
12,900.0	10,042.8	12,882.7	10,056.5	43.0	26.3	91.01	2,737.3	722.2	800.0	730.7	69.28	11.548		

Anticollision Report

Company: NORTHERN DELAWARE BASIN

Project: EDDY COUNTY, NM

Reference Site: **ATLAS** Site Error: 0.0 usft

Reference Well: LITTLEFIELD 33 FEDERAL COM 703H

Well Error: 3.0 usft Reference Wellbore OWB Reference Design: PWP1

Local Co-ordinate Reference:

Survey Calculation Method:

TVD Reference: MD Reference: North Reference:

Output errors are at

KB=25' @ 2899.6usft (Pioneer 84) KB=25' @ 2899.6usft (Pioneer 84)

Well LITTLEFIELD 33 FEDERAL COM 703H

Minimum Curvature

2.00 sigma edm

Database: Offset TVD Reference: Offset Datum

Offset D	esian	ATLAS	- LITTL	EFIELD 33	FEDER	RAL COM	702H - OWB -	PWP1					Offset Site Error:	0.0 usft
Survey Program: 0-Standard Keeper 104, 9563-MWD+IFR1+FDIR								Offset Well Error:	3.0 usft					
Reference Offset			Semi Major					Dist	ance					
	Vertical	Measured	Vertical	Reference	Offset	Highside Toolface	Offset Wellbor		Between Centres	Between	Minimum		Warning	
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	(°)	+N/-S (usft)	+E/-W (usft)	(usft)	Ellipses (usft)	Separation (usft)	Factor		
13,000.0	10,043.7	12,982.7	10,057.4	43.5	27.1	91.00	2,837.2	724.4	800.0	729.4	70.59	11.334		
13,100.0	10,044.6	13,082.7	10,058.3	44.0	27.9	91.00	2,937.2	726.6	800.0	728.1	71.91	11.125		
13,200.0	10,045.6	13,182.7	10,059.2	44.5	28.8	91.00	3,037.2	728.8	800.0	726.8	73.25	10.922		
13,300.0	10,046.5	13,282.7	10,060.0	45.1	29.6	90.99	3,137.1	731.0	800.0	725.4	74.60	10.724		
13,400.0	10,047.4	13,382.7	10,060.9	45.6	30.4	90.99	3,237.1	733.1	800.0	724.1	75.96	10.532		
13,500.0	10,048.3	13,482.7	10,061.8	46.2	31.2	90.99	3,337.1	735.3	800.1	722.7	77.34	10.345		
13,600.0	10,049.2	13,582.7	10,062.7	46.7	32.0	90.98	3,437.1	737.5	800.1	721.3	78.72	10.163		
13,700.0	10,050.1	13,682.7	10,063.5	47.3	32.8	90.98	3,537.0	739.7	800.1	719.9	80.12	9.986		
13,800.0	10,051.1	13,782.7	10,064.4	47.9	33.7	90.98	3,637.0	741.9	800.1	718.5	81.53	9.814		
13,900.0	10,052.0	13,882.7	10,065.3	48.5	34.5	90.97	3,737.0	744.0	800.1	717.1	82.94	9.646		
14,000.0	10,052.9	13,982.7	10,066.2	49.1	35.3	90.97	3,837.0	746.2	800.1	715.7	84.37	9.483		
444000	40.050.0	44.000.7	40.007.0	40.7	00.0	00.07	2.000.0	740.4	000.4	7440	05.00	0.005		
14,100.0 14,200.0	10,053.8 10,054.7	14,082.7 14,182.7	10,067.0 10,067.9	49.7 50.3	36.2 37.0	90.97 90.97	3,936.9	748.4 750.6	800.1 800.1	714.3 712.8	85.80 87.25	9.325 9.170		
14,200.0	10,054.7	14,182.7	10,067.9	50.3	37.8	90.97	4,036.9 4,136.9	750.6 752.8	800.1	712.0 711.4	88.70	9.170		
14,400.0	10,055.6	14,282.7	10,066.8	50.9	38.6	90.96	4,136.9	752.6 755.0	800.1	711.4	90.16	9.020 8.874		
14,400.0	10,050.6	14,362.7	10,009.7	52.2	39.5	90.96	4,336.8	757.1	800.1	709.9	91.63	8.732		
14,300.0	10,037.3	14,402.7	10,070.5	J2.2	39.3	90.90	4,550.6	757.1	000.1	700.5	91.03	0.732		
14,600.0	10,058.4	14,582.7	10,071.4	52.8	40.3	90.95	4,436.8	759.3	800.1	707.0	93.10	8.594		
14,700.0	10,059.3	14,682.7	10,072.3	53.5	41.2	90.95	4,536.8	761.5	800.1	705.5	94.58	8.459		
14,800.0	10,060.2	14,782.7	10,073.2	54.1	42.0	90.95	4,636.7	763.7	800.1	704.1	96.07	8.328		
14,900.0	10,061.2	14,882.7	10,074.0	54.8	42.8	90.94	4,736.7	765.9	800.1	702.6	97.57	8.201		
15,000.0	10,062.1	14,982.7	10,074.9	55.4	43.7	90.94	4,836.7	768.0	800.1	701.1	99.07	8.077		
15,100.0	10,063.0	15,082.7	10,075.8	56.1	44.5	90.94	4,936.6	770.2	800.1	699.6	100.57	7.956		
15,200.0	10,063.9	15,182.7	10,076.7	56.8	45.3	90.93	5,036.6	772.4	800.1	698.1	102.09	7.838		
15,300.0	10,064.8	15,282.7	10,077.5	57.5	46.2	90.93	5,136.6	774.6	800.2	696.5	103.61	7.723		
15,400.0	10,065.7	15,382.7	10,078.4	58.1	47.0	90.93	5,236.6	776.8	800.2	695.0	105.13	7.611		
15,500.0	10,066.7	15,482.7	10,079.3	58.8	47.9	90.93	5,336.5	778.9	800.2	693.5	106.66	7.502		
15,600.0	10,067.6	15,582.7	10,080.2	59.5	48.7	90.92	5,436.5	781.1	800.2	692.0	108.19	7.396		
15,700.0	10,068.5	15,682.7	10,081.0	60.2	49.5	90.92	5,536.5	783.3	800.2	690.4	109.73	7.292		
15,800.0	10,069.4	15,782.7	10,081.9	60.9	50.4	90.92	5,636.5	785.5	800.2	688.9	111.28	7.191		
15,900.0	10,070.3	15,882.7	10,082.8	61.6	51.2	90.91	5,736.4	787.7	800.2	687.4	112.82	7.092		
16,000.0	10,071.2	15,982.7	10,083.7	62.3	52.1	90.91	5,836.4	789.8	800.2	685.8	114.38	6.996		
16,100.0	10,072.2	16,082.7	10,084.5	63.0	52.9	90.91	5,936.4	792.0	800.2	684.3	115.93	6.902		
16,100.0	10,072.2	16,182.7	10,084.5	63.8	53.8	90.91	6,036.3	792.0	800.2	682.7	117.49	6.811		
16,300.0	10,073.1	16,182.7	10,085.4	64.5	54.6	90.90	6,136.3	794.2	800.2	681.2		6.721		
16,400.0	10,074.9	16,382.7	10,087.2	65.2	55.5	90.90	6,236.3	798.6	800.2	679.6	120.62	6.634		
16,500.0	10,075.8	16,482.7	10,088.0	65.9	56.3	90.89	6,336.3	800.7	800.2	678.0	122.20	6.549		
16,600.0	10,076.8	16,582.7	10,088.9	66.7	57.2	90.89	6,436.2	802.9	800.2	676.5	123.77	6.465		
16,700.0	10,077.7	16,682.7	10,089.8	67.4	58.0	90.89	6,536.2	805.1	800.2		125.35	6.384		
16,800.0 16,900.0	10,078.6 10,079.5	16,782.7 16,882.7	10,090.7	68.1	58.8 59.7	90.89	6,636.2	807.3	800.2 800.2	673.3	126.93	6.304		
16,900.0	10,079.5	16,882.7 16,982.7	10,091.5 10,092.4	68.9 69.6	59.7 60.5	90.88 90.88	6,736.2 6,836.1	809.5 811.6	800.2 800.2	671.7 670.1	128.52 130.10	6.227 6.151		
17,000.0	10,000.4	10,902.7	10,092.4	09.60	00.5	30.00	0,030.1	011.0	000.2	070.1	130.10	0.101		
17,100.0	10,081.3	17,082.7	10,093.3	70.3	61.4	90.88	6,936.1	813.8	800.3	668.6	131.69	6.077		
17,171.5	10,082.0	17,154.1	10,093.9	70.9	62.0	90.87	7,007.5	815.4	800.3	667.4	132.83	6.025		
17,172.3	10,082.0	17,154.9	10,093.9	70.9	62.0	90.87	7,008.3	815.4	800.3	667.4	132.84	6.024		

Anticollision Report

Company: NORTHERN DELAWARE BASIN

Project: EDDY COUNTY, NM

Reference Site: **ATLAS** Site Error: 0.0 usft

Reference Well: LITTLEFIELD 33 FEDERAL COM 703H

Well Error: 3.0 usft Reference Wellbore OWB Reference Design: PWP1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

KB=25' @ 2899.6usft (Pioneer 84) KB=25' @ 2899.6usft (Pioneer 84)

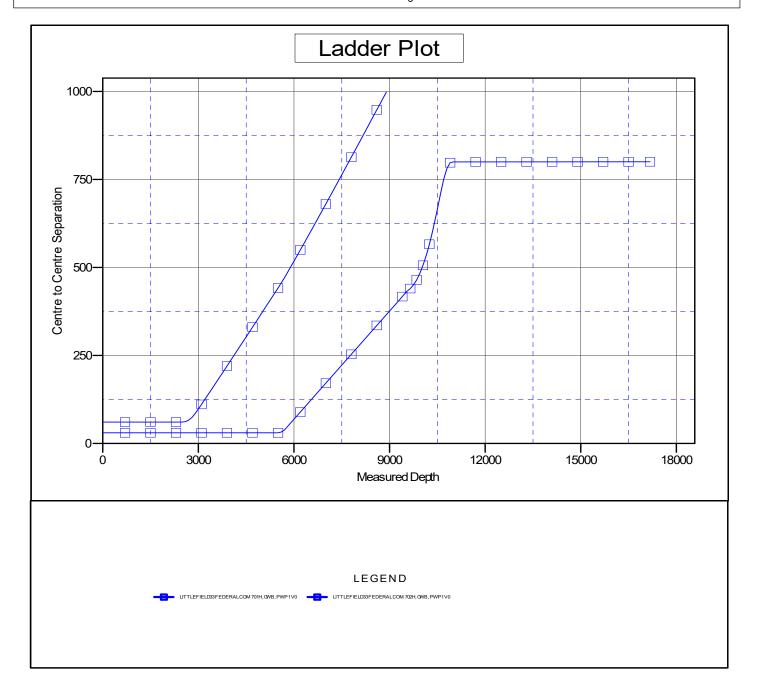
Well LITTLEFIELD 33 FEDERAL COM 703H

Survey Calculation Method: Minimum Curvature Output errors are at 2.00 sigma

edm

Database: Offset TVD Reference: Offset Datum

Reference Depths are relative to KB=25' @ 2899.6usft (Pioneer 84)


Offset Depths are relative to Offset Datum

Central Meridian is 104° 20' 0.000 W

Coordinates are relative to: LITTLEFIELD 33 FEDERAL COM 703H

Coordinate System is US State Plane 1927 (Exact solution), New Mexico East 30

Grid Convergence at Surface is: 0.18°

Anticollision Report

NORTHERN DELAWARE BASIN Company:

Project: EDDY COUNTY, NM

Reference Site: **ATLAS** Site Error: 0.0 usft

Reference Well: LITTLEFIELD 33 FEDERAL COM 703H

Well Error: 3.0 usft Reference Wellbore OWB Reference Design: PWP1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

KB=25' @ 2899.6usft (Pioneer 84) KB=25' @ 2899.6usft (Pioneer 84)

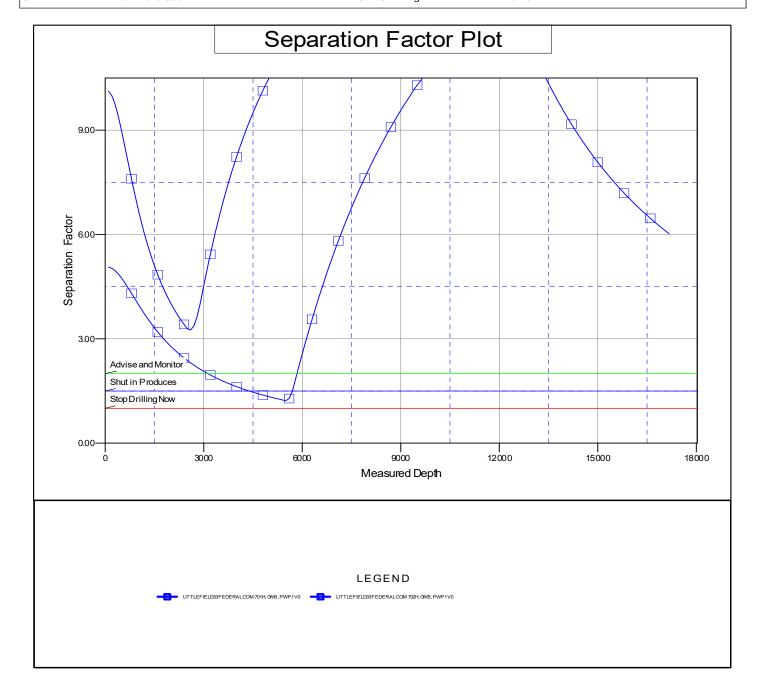
Well LITTLEFIELD 33 FEDERAL COM 703H

Survey Calculation Method: Minimum Curvature Output errors are at

2.00 sigma edm

Database: Offset TVD Reference: Offset Datum

Reference Depths are relative to KB=25' @ 2899.6usft (Pioneer 84)


Offset Depths are relative to Offset Datum

Central Meridian is 104° 20' 0.000 W

Coordinates are relative to: LITTLEFIELD 33 FEDERAL COM 703H

Coordinate System is US State Plane 1927 (Exact solution), New Mexico East 30

Grid Convergence at Surface is: 0.18°

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: COG Operating, LLC

LEASE NO.: | NMLC-065928A

WELL NAME & NO.: Littlefield 33 Federal Com 703H

SURFACE HOLE FOOTAGE: 0402' FSL & 1951' FEL

BOTTOM HOLE FOOTAGE | 0200' FNL & 2090' FEL Sec. 28, T.26 S., R.29 E

LOCATION: | Section 33, T.26 S., R.29 E., NMPM

COUNTY: | **Eddy County, New Mexico**

COA

H2S	Yes	O No	
Potash	None	Secretary	© R-111-P
Cave/Karst Potential	C Low	• Medium	C High
Cave/Karst Potential	Critical		
Variance	O None	• Flex Hose	Other
Wellhead	Conventional	Multibowl	© Both
Other	☐4 String Area	☐ Capitan Reef	□WIPP
Other	☐ Fluid Filled	☐ Cement Squeeze	☐ Pilot Hole
Special Requirements	☐ Water Disposal	▼ COM	□ Unit

Medium Cave/Karst

Possible water flows in the Salado and Castile.

Possible lost circulation in the Rustler and Saldao.

Abnormal pressures may be encountered within the 3rd Bone Spring Sandstone and Wolfcamp Formations.

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Delaware** formation. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- 1. The **10-3/4** inch surface casing shall be set at approximately **400** feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the **7-5/8** inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst.
 - ❖ In Medium Cave/Karst Areas if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 3. The minimum required fill of cement behind the 5 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **3000** (**3M**) psi.
- 2. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the intermediate casing shoe shall be **5000** (**5M**) psi.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - ☑ Eddy CountyCall the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 4. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 5. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 6. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).

- c. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- d. The results of the test shall be reported to the appropriate BLM office.
- e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- g. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JAM 10302020

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD Print Report 05/19/2021

APD ID: 10400054635

Operator Name: COG OPERATING LLC

Well Name: LITTLEFIELD 33 FEDERAL COM

Well Type: OIL WELL

Submission Date: 06/17/2020

Federal/Indian APD: FED

Well Number: 703H

Well Work Type: Drill

Highlighted data reflects the most recent changes

Show Final Text

Application

Section 1 - General

 Submission Date: 06/17/2020

BLM Office: CARLSBAD

User: MAYTE REYES

Lease Acres:

Title: Regulatory Analyst

Federal/Indian APD: FED

Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMLC065928A

Surface access agreement in place?

Allotted? Reservation:

Agreement in place? NO

Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? Y

Permitting Agent? NO

APD Operator: COG OPERATING LLC

Operator letter of designation:

Operator Info

Operator Organization Name: COG OPERATING LLC

Operator Address: 600 West Illinois Ave

Zip: 79701

Operator PO Box:

Operator City: Midland

State: TX

Operator Phone: (432)683-7443

Operator Internet Address: RODOM@CONCHO.COM

Section 2 - Well Information

Well in Master Development Plan? NO

Master Development Plan name:

Well in Master SUPO? NO

Master SUPO name:

Approval Date: 11/05/2020 Page 1 of 22

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

Well in Master Drilling Plan? NO Master Drilling Plan name:

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H Well API Number:

Field/Pool or Exploratory? Field and Pool Field Name: PURPLE SAGE Pool Name: WOLFCAMP, Gas

Is the proposed well in an area containing other mineral resources? USEABLE WATER,OIL

Is the proposed well in a Helium production area? N Use Existing Well Pad? N New surface disturbance?

Type of Well Pad: MULTIPLE WELL Multiple Well Pad Name: Number: 701H, 702H and 703H

Well Class: HORIZONTAL

LITTLEFIELD 33 FEDERAL COM

Number of Legs: 1

Well Work Type: Drill
Well Type: OIL WELL
Describe Well Type:

Well sub-Type: EXPLORATORY (WILDCAT)

Describe sub-type:

Distance to town: 15 Miles Distance to nearest well: 641 FT Distance to lease line: 210 FT

Reservoir well spacing assigned acres Measurement: 927.09 Acres

Well plat: COG_Littlefield_703H_C102_20200617110639.pdf

Well work start Date: 07/01/2020 Duration: 30 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83 Vertical Datum: NAVD88

Survey number: Reference Datum: GROUND LEVEL

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
Leg	402	FSL	195 1	FEL	26S	29E	33	Lot 11	32.00121 7	103.9874	EDD Y	NEW MEXI CO	I		NMLC0 065928		0	0	Y
#1										1			CO		Α				
KOP	402	FSL	195	FEL	26S	29E	33	Lot	32.00121	-	EDD	NEW	NEW	F	NMLC0	287	0	0	Υ
Leg			1					11	7	103.9874	Υ	MEXI			065928	4			
#1										1		CO	CO		Α				

Approval Date: 11/05/2020

Page 2 of 22

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
PPP	330	FSL		FEL	26S	29E	33	Lot	32.00101	-	EDD	1		ı	NMLC0		104	100	Υ
Leg			0					11		103.9878	Υ	MEXI	l .		065928	714	70	20	
#1-1										59		CO	СО		Α	6			
PPP	1	FSL	209	FEL	26S	29E	28	Aliquot	32.00653	-	EDD	NEW	NEW	F	NMNM	-	124	100	Υ
Leg			0					SWSE	5	103.9876	Υ	MEXI	MEXI		71599	716	70	39	
#1-2										98		CO	CO			5			
EXIT	330	FNL	209	FEL	26S	29E	28	Aliquot	32.02017	-	EDD	NEW	NEW	F	NMNM	-	170	100	Υ
Leg			0					NWNE	1	103.9872	Υ	MEXI	MEXI		138607	720	41	82	
#1										99		CO	CO			8			
BHL	200	FNL	209	FEL	26S	29E	28	Aliquot	32.02052	-	EDD	NEW	NEW	F	NMNM	-	171	100	Υ
Leg			0					NWNE	9	103.9872	Υ	MEXI	MEXI		138607	720	71	82	
#1										88		CO	CO			8			

Drilling Plan

Section 1 - Geologic Formations

Formation	Formation Name	Elevation	True Vertical		Lithologica	Mineral Resources	Producing Formation
673955	QUATERNARY	2874	Depth 0	Depth 0	Lithologies ALLUVIUM	NONE	N
673956	RUSTLER	2587	287	287	ALLUVIUM	NONE	N
673957	TOP SALT	2134	740	740	SALT	NONE	N
673958	BASE OF SALT	314	2560	2560	ANHYDRITE	NONE	N
673959	LAMAR	146	2728	2728	LIMESTONE	OTHER : Salt Water	N
673961	BELL CANYON	78	2796	2796	SANDSTONE	OTHER : Salt Water	N
673971	CHERRY CANYON	-771	3645	3645	SILTSTONE	NATURAL GAS, OIL	N
673972	BRUSHY CANYON	-2074	4948	4948	SANDSTONE	NATURAL GAS, OIL	N
673962	BONE SPRING LIME	-3631	6505	6505	LIMESTONE	NATURAL GAS, OIL	N
673963	BONE SPRING 1ST	-4568	7442	7442	SANDSTONE	NATURAL GAS, OIL	N

Approval Date: 11/05/2020

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
673960	BONE SPRING 2ND	-5326	8200	8200	SANDSTONE	NATURAL GAS, OIL	N
673964	BONE SPRING 3RD	-6437	9311	9311	SANDSTONE	NATURAL GAS, OIL	N
673965	WOLFCAMP	-6780	9654	9654	SHALE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 3M Rating Depth: 9465

Equipment: Annular, Blind Ram and Pipe Ram. Accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold.

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to the choke manifold. See attached for specs and hydrostatic test chart.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

Choke Diagram Attachment:

COG_Littlefield_703H_3M_Choke_20200227084540.pdf

BOP Diagram Attachment:

COG_Littlefield_703H_3M_BOP_20200227084549.pdf

COG_Littlefield_703H_Flex_Hose_20200227084559.pdf

Pressure Rating (PSI): 5M Rating Depth: 10082

Equipment: Annular, Blind Ram, Pipe Ram. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to the choke manifold. See attached for specs and hydrostatic test chart.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

Choke Diagram Attachment:

COG_Littlefield_703H_5M_Choke_20200227084633.pdf

BOP Diagram Attachment:

Approval Date: 11/05/2020 Page 4 of 22

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

COG_Littlefield_703H_5M_Choke_20200227084633.pdf

COG_Littlefield_703H_5M_BOP_20200227084643.pdf

COG_Littlefield_703H_Flex_Hose_20200227084704.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	חסיויסם
1	SURFACE	14.5	10.75	NEW	API	N	0	700	0	700	2874	2174	700	N-80		OTHER - BTC	7.71	1.99	DRY	32.6 5	DRY	34 4
2	INTERMED IATE	8.75	7.625	NEW	API	Υ	0	9465	0	7100	-6999	-4226	9465	HCP -110	l	OTHER - TL-FJ	1.59	1.37	DRY	3.34	DRY	2.
3	PRODUCTI ON	6.75	5.0	NEW	API	Υ	0	17171	0	10082	-6999	-7208	17171	P- 110	-	OTHER - BTC	2.22	2.28	DRY	4.02	DRY	3.

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

COG_Littlefield_703H_Casing_Program_20200227084901.pdf

Approval Date: 11/05/2020 Page 5 of 22

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

Casing Attachments

Casing ID: 2 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

COG_Littlefield_703H_Casing_Program_20200227085033.pdf

Casing Design Assumptions and Worksheet(s):

COG_Littlefield_703H_Casing_Program_20200227085038.pdf

Casing ID: 3 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

COG_Littlefield_703H_Casing_Program_20200227085127.pdf

Casing Design Assumptions and Worksheet(s):

COG_Littlefield_703H_Casing_Program_20200227085207.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	700	334	1.75	13.5	584	50	Class C	4% Gel + 1% CaCl2
SURFACE	Tail		0	700	250	1.34	14.8	335	50	Class C	2% CaCl2
INTERMEDIATE	Lead		0	9465	690	3.3	10.3	2277	50	Haliburton Tunded Light	As needed
INTERMEDIATE	Tail		0	9465	250	1.35	14.8	337	50	Tail: Class H	As needed

Approval Date: 11/05/2020

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Lead		6600	1717 1	430	2	12.7	860	35	50:50:10 H Blend	As needed
PRODUCTION	Tail		6600	1717 1	1001	1.24	14.4	1241	35	50:50:2 Class H Blend	As needed

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	РН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
700	9946 5	OTHER : Brine Diesel Emulsion	8.4	9							Brine Diesel Emulsion
0	700	OTHER : FW Gel	8.6	8.8				-			FW Gel
9465	1717 1	OIL-BASED MUD	9.6	12.5				-			ОВМ

Approval Date: 11/05/2020 Page 7 of 22

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

None planned

List of open and cased hole logs run in the well:

COMPENSATED NEUTRON LOG, GAMMA RAY LOG,

Coring operation description for the well:

None planned

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 6555 Anticipated Surface Pressure: 4336

Anticipated Bottom Hole Temperature(F): 160

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

COG_Littlefield_703H_H2S_SUP_20200227085637.pdf COG_Littlefield_703H_H2S_Schematic_20200227085643.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

COG_LITTLEFIELD_703H_Directional_Plan_20200227085659.pdf COG_LITTLEFIELD_703H_AC_RPT_20200227085708.pdf

Other proposed operations facets description:

Drilling Plan Attached. GCP Attached. Cement plan attached.

Other proposed operations facets attachment:

COG_Littlefield_703H_Drilling_Plan_20200227085725.pdf

COG_Littlefield_703H_GCP_20200227085731.pdf

COG_Littlefield_703H_Cement_Program_20200227085737.pdf

Other Variance attachment:

SUPO

Approval Date: 11/05/2020 Page 8 of 22

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

COG_Littlefield_703H_Existing_Rd_20200227085755.pdf

Existing Road Purpose: ACCESS Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

COG_Littlefield_703H_Road_Maps_Plats_20200227085817.pdf

New road type: TWO-TRACK

Length: 257.6 Feet Width (ft.): 30

Max slope (%): 33 Max grade (%): 1

Army Corp of Engineers (ACOE) permit required? N

ACOE Permit Number(s):

New road travel width: 14

New road access erosion control: Water will be diverted where necessary to avoid ponding, prevent erosion, maintain good drainage, and to be consistent with local drainage patterns.

New road access plan or profile prepared? N

New road access plan attachment:

Access road engineering design? N

Access road engineering design attachment:

Turnout? N

Access surfacing type: OTHER

Approval Date: 11/05/2020 Page 9 of 22

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

Access topsoil source: ONSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: Blading

Access other construction information: No turnouts are planned. Re-routing access road around proposed well location.

Access miscellaneous information:

Number of access turnouts: Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: None necessary.

Road Drainage Control Structures (DCS) description: None needed.

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

COG_Littlefield_703H_1_Mile_Data_20200227090001.pdf

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: The Littlefield Fed 33 N Central Tank Battery (CTB) existing in Sec. 33, T26S, R29E will be utilized. Production from each of the 3 Wolfcamp producing wells will be sent to the existing Littlefield Fed 33 N CTB. We plan to install 3 buried 4 FP 601HT production flowlines from each wellhead to the inlet manifold of the existing CTB; the route for these flowlines will follow the flowline corridor route as shown in the exhibit drawing and in the attached plats. We will also install 1 buried 4 FP 150 line for gas lift supply from the CTB to the well pad; the route for this gas lift line will start on the CTB pad where designated by gas line in the exhibit drawing and then following the flowline corridor in the attached plats. **Production Facilities map:**

COG_Littlefield_703H_CTB_Flowlines_Powerlines_20200227090024.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Approval Date: 11/05/2020 Page 10 of 22

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

Water source type: OTHER

Describe type: Fresh H2O

Water source use type: SURFACE CASING

STIMULATION

Source latitude: Source longitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Water source transport method: PIPELINE

Source land ownership: PRIVATE

Source transportation land ownership: PRIVATE

Water source volume (barrels): 337500 Source volume (acre-feet): 43.50142

Source volume (gal): 14175000

Water source type: OTHER

Describe type: Brine H2O

Water source use type: INTERMEDIATE/PRODUCTION

CASING

Source latitude: Source longitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Water source transport method: TRUCKING

Source land ownership: COMMERCIAL

Source transportation land ownership: COMMERCIAL

Water source volume (barrels): 22500 Source volume (acre-feet): 2.9000947

Source volume (gal): 945000

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

Water source and transportation map:

COG_Littlefield_703H_BrineH2O_20200227090048.pdf

COG_Littlefield_703H_FreshH2O_20200227090100.pdf

Water source comments: Fresh water will be obtained from High Roller Wells, LLC CP-417610 water well located in Section 1. 58 T1. Brine water will be obtained from the Malaga I Brine station in Section 2. T21S. R25E., and will be provided by Malaga Brine Station.

New water well? N

New Water Well Info

Well latitude: Well Longitude: Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft): Est thickness of aquifer:

Aquifer comments:

Aquifer documentation:

Well depth (ft): Well casing type:

Well casing outside diameter (in.): Well casing inside diameter (in.):

New water well casing?

Used casing source:

Drilling method: Drill material:

Grout material: Grout depth:

Casing length (ft.): Casing top depth (ft.):

Well Production type: Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Using any construction materials: YES

Construction Materials description: Caliche will be obtained from the actual well site if available. If not available onsite, caliche will be obtained from a Federal caliche pit located in Section 24, T26S, R29E.

Construction Materials source location attachment:

Approval Date: 11/05/2020 Page 12 of 22

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

Section 7 - Methods for Handling Waste

Waste type: GARBAGE

Waste content description: Garbage and trash produced during drilling and completion operations

Amount of waste: 125 pounds

Waste disposal frequency: Weekly

Safe containment description: Garbage and trash produced during drilling and completion operations will be collected in a

trash container and disposed of properly at a state approved disposal facility

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: Trucked to an approved disposal facility

Waste type: SEWAGE

Waste content description: Human waste and gray water

Amount of waste: 250 gallons

Waste disposal frequency: Weekly

Safe containment description: Waste will be properly contained and disposed of properly at a state approved disposal

facility

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: Trucked to an approved disposal facility

Waste type: DRILLING

Waste content description: Drilling fluids and produced oil and water during drilling and completion operations

Amount of waste: 6000 barrels

Waste disposal frequency: One Time Only

Safe containment description: All drilling waste will be stored safely and disposed of properly

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: Trucked to an approved disposal facility

Approval Date: 11/05/2020 Page 13 of 22

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.)

Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? Y

Description of cuttings location Roll off cuttings containers on tracks

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: N

Ancillary Facilities attachment:

Comments: GCP attached.

Section 9 - Well Site Layout

Well Site Layout Diagram:

COG_Littlefield_703H_Layout_20200227090133.pdf

Comments:

Approval Date: 11/05/2020 Page 14 of 22

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance Multiple Well Pad Name: LITTLEFIELD 33 FEDERAL COM

Multiple Well Pad Number: 701H, 702H and 703H

Recontouring attachment:

COG_Littlefield_703H_Reclamation_20200227090150.pdf

Drainage/Erosion control construction: Immediately following construction straw waddles will be placed as necessary at

the well site to reduce sediment impacts to fragile/sensitive soils. Drainage/Erosion control reclamation: Reclaim north 50'. East 50'

Well pad proposed disturbance

(acres): 3.67

Road proposed disturbance (acres):

0.08

Powerline proposed disturbance

(acres): 1.04

Pipeline proposed disturbance

(acres): 0.32

Other proposed disturbance (acres):

5.74

Total proposed disturbance:

10.8500000000000001

Disturbance Comments:

Well pad interim reclamation (acres):

Powerline interim reclamation (acres):

Pipeline interim reclamation (acres):

0.32

Other interim reclamation (acres): 5.74

Total interim reclamation: 7.19

Well pad long term disturbance

(acres): 2.94

Road interim reclamation (acres): 0.08 Road long term disturbance (acres):

Powerline long term disturbance

(acres): 1.04

Pipeline long term disturbance

(acres): 0.32

Other long term disturbance (acres):

5.74

Total long term disturbance:

10.120000000000001

Reconstruction method: New construction of pad.

Topsoil redistribution: Reclaim north 50'. East 50'

Soil treatment: None

Existing Vegetation at the well pad: Shinnery Oak/Mesquite grassland

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: Shinnery Oak/Mesquite grassland

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline: Shinnery Oak/Mesquite grassland

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances: N/A

Existing Vegetation Community at other disturbances attachment:

Non native seed used? N

Approval Date: 11/05/2020 Page 15 of 22

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? N

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? N

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table

Seed Summary

Total pounds/Acre:

Seed Type

Pounds/Acre

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name: Last Name:

Phone: Email:

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? N

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: N/A

Weed treatment plan attachment: Monitoring plan description: N/A

Monitoring plan attachment:

Success standards: N/A

Pit closure description: N/A

Approval Date: 11/05/2020

Page 16 of 22

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

Pit closure attachment:

COG_Littlefield_703H_Closed_Loop_20200227090204.pdf

Section 11 - Surface Ownership

Disturbance type: WELL PAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:
State Local Office:

Military Local Office:

USFWS Local Office:
Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Section 12 - Other Information

Right of Way needed? N

Use APD as ROW?

ROW Type(s):

ROW Applications

SUPO Additional Information:

Approval Date: 11/05/2020 Page 17 of 22

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

Use a previously conducted onsite? Y

Previous Onsite information: On-site was done by Gerald Herrera (COG); Jeffery Robertson (BLM); on November 20th,

Other SUPO Attachment

COG_Littlefield_703H_C102_20200227090243.pdf

COG_LITTLEFIELD_703H_SUP_20200227090250.pdf

COG_Littlefield_703H_1_Mile_Data_20200227090257.pdf

COG_Littlefield_703H_Layout_20200227090305.pdf

COG_Littlefield_703H_Reclamation_20200227090313.pdf

COG_Littlefield_703H_CTB_Flowlines_Powerlines_20200227090324.pdf

COG Littlefield 703H Road Maps Plats 20200227090332.pdf

COG_Littlefield_703H_Existing_Rd_20200227090340.pdf

PWD

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Approval Date: 11/05/2020 Page 18 of 22

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD disturbance (acres): PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Approval Date: 11/05/2020

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

Injection well number: Injection well name:

Assigned injection well API number? Injection well API number:

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? N

Approval Date: 11/05/2020 Page 20 of 22

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Other PWD discharge volume (bbl/day):

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

Bond Info

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB000215

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Approval Date: 11/05/2020

Page 21 of 22

Well Name: LITTLEFIELD 33 FEDERAL COM Well Number: 703H

Operator Certification

Payment Info

Payment

APD Fee Payment Method: PAY.GOV **pay.gov Tracking ID:** 26NQGPHI

Approval Date: 11/05/2020 Page 22 of 22

COG OPERATING LLC HYDROGEN SULFIDE DRILLING OPERATIONS PLAN

1. <u>HYDROGEN SULFIDE TRAINING</u>

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- a. The hazards and characteristics of hydrogen sulfide (H₂S).
- b. The proper use and maintenance of personal protective equipment and life support systems.
- c. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- d. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- a. The effects of H2S on metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- b. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- c. The contents and requirements of the H₂S Drilling Operations Plan and the Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H2S zone (within 3 days or 500 feet) and weekly H2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H2S Drilling Operations Plan and the Public Protection Plan. This plan shall be available at the well site. All personnel will be required to carry documentation that they have received the proper training.

2. <u>H₂S SAFETY EQUIPMENT AND SYSTEMS</u>

Note: All H₂S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H2S. If H2S greater than 100 ppm is encountered in the gas stream we will shut in and install H2S equipment.

a. Well Control Equipment:

Flare line.

Choke manifold with remotely operated choke.

Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit.

Auxiliary equipment to include: annular preventer, mud-gas separator, rotating head.

- b. Protective equipment for essential personnel:
 Mark II Surviveair 30-minute units located in the dog house and at briefing areas.
- c. H2S detection and monitoring equipment:
 2 portable H2S monitor positioned on location for best coverage and response. These units have warning lights and audible sirens when H2S levels of 20 ppm are reached.
- d. Visual warning systems: Caution/Danger signs shall be posted on roads providing direct access to location. Signs will be painted a high visibility yellow with black lettering of sufficient size to be readable at a reasonable distance from the immediate location. Bilingual signs will be used, when appropriate. See example attached.
- e. Mud Program:
 The mud program has been designed to minimize the volume of H2S circulated to the surface.
- f. Metallurgy:
 All drill strings, casings, tubing, wellhead, blowout preventers, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.
- g. Communication:Company vehicles equipped with cellular telephone.

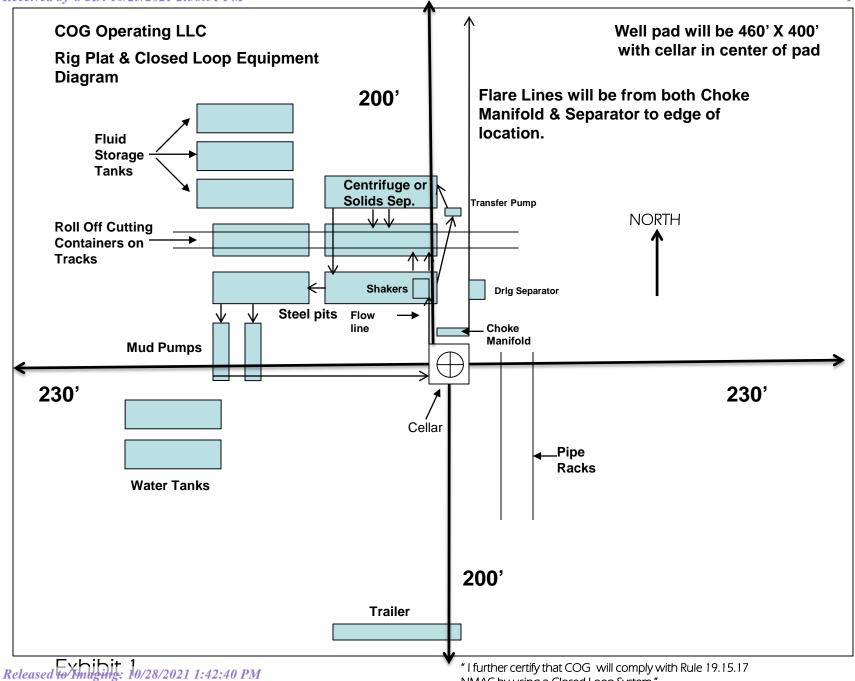
COG OPERATING LLC has conducted a review to determine if an H2S contingency plan is required for the above referenced well. We were able to conclude that any potential hazardous volume would be minimal. H2S concentrations of wells in this area from surface to TD are low enough; therefore, we do not believe that an H2S contingency plan is necessary.

WARNING

YOU ARE ENTERING AN H₂S AREA AUTHORIZED PERSONNEL ONLY

- 1. BEARDS OR CONTACT LENSES NOT ALLOWED
- 2. HARD HATS REQUIRED
- 3. SMOKING IN DESIGNATED AREAS ONLY
- 4. BE WIND CONSCIOUS AT ALL TIMES
- 5. CK WITH COG OPERATING LLC FOREMAN AT MAIN OFFICE

COG OPERATING LLC


1-575-748-6940

EMERGENCY CALL LIST

	<u>OFFICE</u>	MOBILE
COG OPERATING LLC OFFICE	575-748-6940	
SETH WILD	432-683-7443	432-528-3633
WALTER ROYE	575-748-6940	432-934-1886

EMERGENCY RESPONSE NUMBERS

	OFFICE
STATE POLICE	575-748-9718
EDDY COUNTY SHERIFF	575-746-2701
EMERGENCY MEDICAL SERVICES (AMBULANCE)	911 or 575-746-2701
EDDY COUNTY EMERGENCY MANAGEMENT (HARRY BURGESS)	575-887-9511
STATE EMERGENCY RESPONSE CENTER (SERC)	575-476-9620
CARLSBAD POLICE DEPARTMENT	575-885-2111
CARLSBAD FIRE DEPARTMENT	575-885-3125
NEW MEXICO OIL CONSERVATION DIVISION	575-748-1283
INDIAN FIRE & SAFETY	800-530-8693
HALLIBURTON SERVICES	800-844-8451

"I further certify that COG will comply with Rule 19.15.17 NMAC by using a Closed Loop System."

1. Geologic Formations

TVD of target	10,082' EOL	Pilot hole depth	NA
MD at TD:	17,171'	Deepest expected fresh water:	51'

Formation	Depth (TVD) from KB	Water/Mineral Bearing/ Target Zone?	Hazards*
Quaternary Fill	Surface	Water	
Rustler	287	Water	
Top of Salt	740	Salt	
Base of Salt	2560	Salt	
Lamar	2728	Salt Water	
Bell Canyon	2796	Salt Water	
Cherry Canyon	3645	Oil/Gas	
Brushy Canyon	4948	Oil/Gas	
Bone Spring Lime	6505	Oil/Gas	
1st Bone Spring Sand	7442	Oil/Gas	
2nd Bone Spring Sand	8200	Oil/Gas	
3rd Bone Spring Sand	9311	Oil/Gas	
Wolfcamp	9654	Target Oil/Gas	
Strawn	0	Not Penetrated	
	0	Not Penetrated	

2. Casing Program

Hole Size	Casing Interval		Csq. Size	Weight	Grade	Conn.	SF	SF Burst	SF	SF
Tiole Size	From	То	Csg. Size	(lbs)	Grade	COIIII.	Collapse	or Burst	Body	Joint
14.75"	0	700	10.75"	45.5	N80	BTC	7.71	1.99	32.65	34.44
9.875"	0	7100	7.625"	29.7	HCL80	BTC	1.87	1.32	3.44	3.48
8.750"	7100	9465	7.625"	29.7	HCP110	TL-FJ	1.59	1.37	3.34	2.34
6.75"	0	9265	5.5"	23	P110	BTC	2.22	2.28	4.02	3.99
6.75"	9265	17,171	5"	18	P110	BTC	2.22	2.28	4.02	3.99
	-			BLM M	inimum Sa	fety Factor	1.125	1	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet

Intermediate casing will be kept at least 1/3 full while running casing.to mitigate collapse. Surface burst based on 0.7 frac gradient at the shoe with Gas Gradient 0.1 psi/ft to surface and All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

The 5" casing will be run back 200' into the intermediate casing to ensure the coupling OD clearance is greater than .422" for the cement bond tie in.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Υ
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Υ
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Υ
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Υ
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary?	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program

Casing	# Sks	Wt. lb/ gal	Yld ft3/	H₂0 gal/sk	500# Comp. Strength (hours)	Slurry Description
Surf.	334	13.5	1.75	9	12	Lead: Class C + 4% Gel + 1% CaCl2
Suii.	250	14.8	1.34	6.34	8	Tail: Class C + 2% CaCl2
Inter.	690	10.3	3.3	22	24	Halliburton tunded light
Stage 1	250	14.8	1.35	6.6	8	Tail: Class H
Prod	430	12.7	2	10.7	72	Lead: 50:50:10 H Blend
FIUU	1001	14.4	1.24	5.7	19	Tail: 50:50:2 Class H Blend

If losses are encountered in the intermediate section a DV/ECP tool will be run ~50' above the Lamar Lime top, cement will be adjusted accordingly if this contingency is necessary.

Volumes Subject to Observed Hole Conditions and/or Fluid Caliper Results Lab reports with the 500 psi compressive strength time for the cement will be onsite for review.

Casing String	TOC	% Excess
Surface	0'	50%
1 st Intermediate	0'	50%
Production	6,600'	35% OH in Lateral (KOP to EOL)

4. Pressure Control Equipment

A variance is requested for the use of a diverter on the surface casing. See attached for schematic.

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Ту	pe	x	Tested to:
			Ann	ular	Х	1500
			Blind	Ram	Х	
9-7/8"	13-5/8"	3M	Pipe	Ram	Х	3000
			Double Ram		Х	3000
			Other*			
			5M Aı	nnular	х	50% testing pressure
6-3/4"	13-5/8"	5M	Blind	Ram	Χ	
			Pipe	Ram	Χ	5000
			Double Ram			3000
			Other*			

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

	Formation integrity test will be performed per Onshore Order #2.
Y	On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.
Υ	A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.
	N Are anchors required by manufacturer?
Y	A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

5. Mud Program

	Depth	Type	Weight	Viscosity	Water Loss	
From	То	Туре	(ppg)	Viscosity	Water Loss	
0	Surf. Shoe	FW Gel	8.6 - 8.8	28-34	N/C	
Surf csg	9-5/8" Int shoe	Brine Diesel Emulsion	8.4 - 9	28-34	N/C	
7-5/8" Int shoe	Lateral TD	OBM	9.6 - 12.5	35-45	<20	

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, Coring and Testing.	
Y	Will run GR/CNL from TD to surface (horizontal well – vertical portion of hole). Stated logs run will be in the Completion Report and submitted to the BLM.
Y	No Logs are planned based on well control or offset log information.
N	Drill stem test? If yes, explain.
N	Coring? If yes, explain.

Additional logs planned		Interval
Ν	Resistivity	Pilot Hole TD to ICP
N	Density	Pilot Hole TD to ICP
Υ	CBL	Production casing (If cement not circulated to surface)
Υ	Mud log	Intermediate shoe to TD
N	PEX	

7. Drilling Conditions

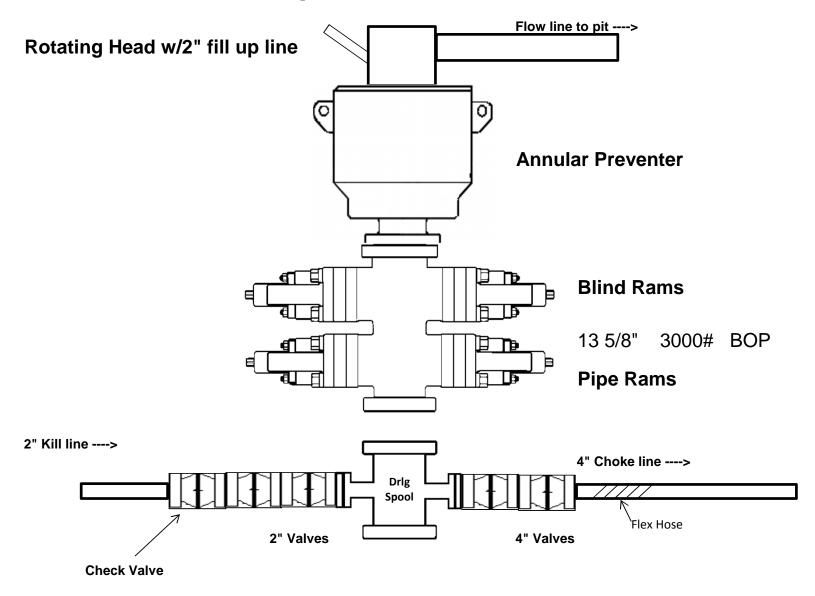
Condition	Specify what type and where?
BH Pressure at deepest TVD	6555 psi at 10082' TVD
Abnormal Temperature	NO 160 Deg. F.

No abnormal pressure or temperature conditions are anticipated. Sufficient mud materials to maintain mud properties and weight increase requirements will be kept on location at all times.

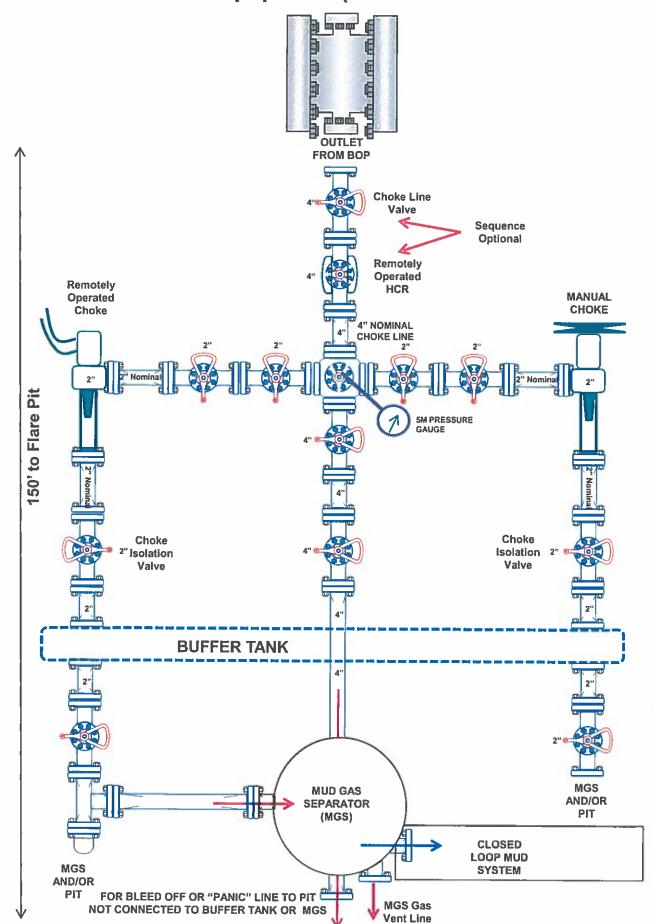
Sufficient supplies of Paper/LCM for periodic sweeps to control seepage and losses will be maintained on location.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

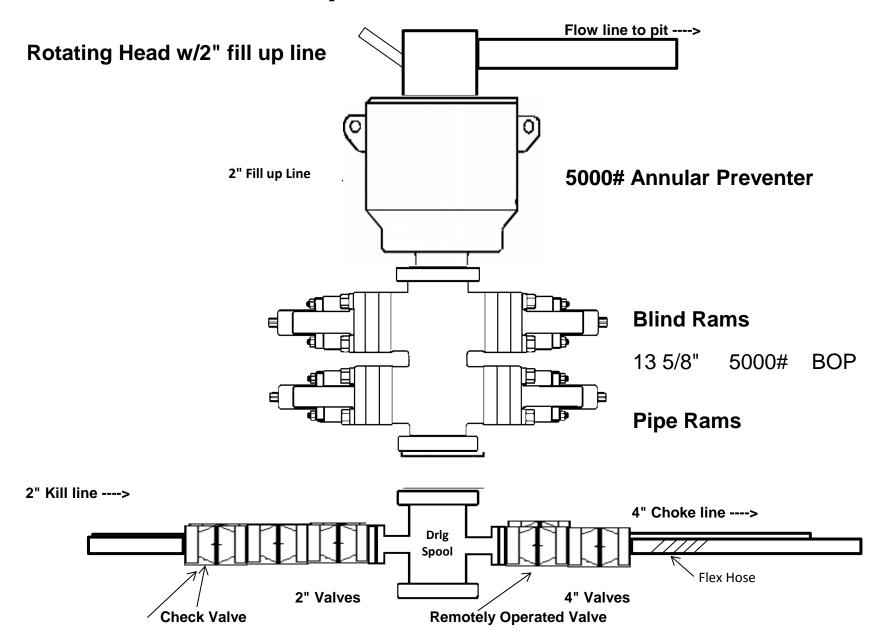
N	H2S is present
Y	H2S Plan attached

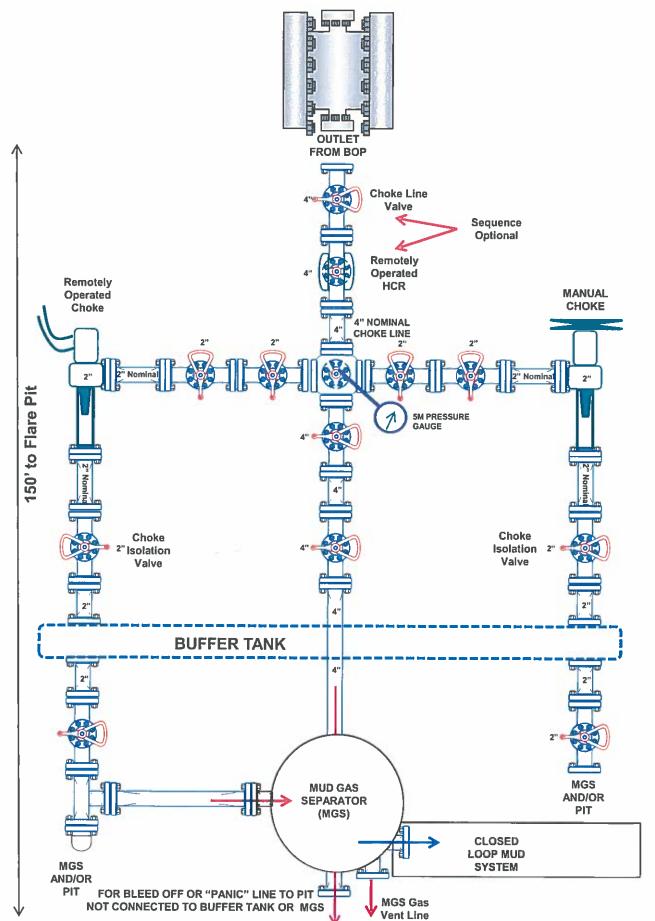

8. Other Facets of Operation

Υ	Is it a walking operation?
Y	Is casing pre-set?


Х	H2S Plan.
х	BOP & Choke Schematics.
х	Directional Plan

3,000 psi BOP Schematic


Released to Imaging: 10/28/2021 1:42:40 PM


3M Choke Manifold Equipment (WITH MGS + CLOSED LOOP)

5,000 psi BOP Schematic

5M Choke Manifold Equipment (WITH MGS + CLOSED LOOP)

Released to Imaging: 10/28/2021 1:42:40 PM

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

COMMENTS

Action 57754

COMMENTS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	57754
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

COMMENTS

Created By	Comment	Comment Date
kpickford	KP GEO Review 10/28/2021	10/28/2021

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 57754

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	57754
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
kpickford	ickford Notify OCD 24 hours prior to casing & cement	
kpickford	spickford Will require a File As Drilled C-102 and a Directional Survey with the C-104	
	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string	
kpickford	ickford Cement is required to circulate on both surface and intermediate1 strings of casing	
	pickford Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system	