Form 3160-3 FORM APPROVED OMB No. 1004-0137 (June 2015) Expires: January 31, 2018 **UNITED STATES** DEPARTMENT OF THE INTERIOR 5. Lease Serial No. NMNM86147 BUREAU OF LAND MANAGEMENT APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. **✓** DRILL REENTER 1a. Type of work: 1b. Type of Well: Oil Well ✓ Gas Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing ✓ Single Zone Multiple Zone NINA CORTELL FED COM 203H 2. Name of Operator 9. API Well No. MATADOR PRODUCTION COMPANY 3a. Address 3b. Phone No. (include area code) 10. Field and Pool, or Exploratory 5400 LBJ Freeway, Suite 1500, Dallas, TX 75240 (972) 371-5200 Wildcat 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. or Blk. and Survey or Area SEC 10/T22S/R32E/NMP At surface SWSE / 244 FSL / 1370 FEL / LAT 32.3996658 / LONG -103.6584489 At proposed prod. zone LOT 2 / 60 FNL / 2310 FEL / LAT 32.4278217 / LONG -103.6615481 14. Distance in miles and direction from nearest town or post office* 12. County or Parish 13. State LEA NM 29 miles 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well 244 feet location to nearest 320.0 property or lease line, ft. (Also to nearest drig. unit line, if any) 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, 30 feet 12133 feet / 22463 feet FED: NMB001079 applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 3789 feet 12/11/2021 60 days 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see 2. A Drilling Plan. Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. SUPO must be filed with the appropriate Forest Service Office). 6. Such other site specific information and/or plans as may be requested by the 25. Signature Name (Printed/Typed) Date (Electronic Submission) NICKY FITZGERALD / Ph: (972) 371-5200 12/10/2020 Title Regulatory Approved by (Signature) Date Name (Printed/Typed) (Electronic Submission) 12/02/2021 Cody Layton / Ph: (575) 234-5959 Title Office Assistant Field Manager Lands & Minerals Carlsbad Field Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction (Continued on page 2) *(Instructions on page 2) #### **INSTRUCTIONS** GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices. ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well. ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions. ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices. ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone. ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started. ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices. #### NOTICES The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application. AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160 PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts. ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities. EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease. The Paperwork Reduction Act of 1995 requires us to inform you that: The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number. **BURDEN HOURS STATEMENT:** Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240. ## **Additional Operator Remarks** #### **Location of Well** 0. SHL: SWSE / 244 FSL / 1370 FEL / TWSP: 22S / RANGE: 32E / SECTION: 10 / LAT: 32.3996658 / LONG: -103.6584489 (TVD: 0 feet, MD: 0 feet) PPP: SWSE / 1 FNL / 2318 FEL / TWSP: 22S / RANGE: 32E / SECTION: 3 / LAT: 32.4134934 / LONG: -103.6615212 (TVD: 12170 feet, MD: 17221 feet) PPP: SWSE / 100 FSL / 2310 FEL / TWSP: 22S / RANGE: 32E / SECTION: 10 / LAT: 32.3992601 / LONG: -103.6614945 (TVD: 12057 feet, MD: 12178 feet) BHL: LOT 2 / 60 FNL / 2310 FEL / TWSP: 22S / RANGE: 32E / SECTION: 3 / LAT: 32.4278217 / LONG: -103.6615481 (TVD: 12133 feet, MD: 22463 feet) #### **BLM Point of Contact** Name: SOPHIA CWIKLINSKI Title: LIE Phone: (575) 234-5972 Email: scwiklinkski@blm.gov ## **Review and Appeal Rights** A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information. # PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL **OPERATOR'S NAME: | MATADOR PRODUCTION COMPANY** LEASE NO.: | NMNM086147 WELL NAME & NO.: | Nina Cortell Fed Com 203H **SURFACE HOLE FOOTAGE:** 244'/S & 1370'/E **BOTTOM HOLE FOOTAGE** 60'/N & 2310'/E **LOCATION:** | Section 10, T.22 S., R.32 E., NMPM **COUNTY:** Lea County, New Mexico COA | H2S | Yes | O No | | |----------------------|------------------|-----------------------------|--------------| | Potash | None | Secretary | © R-111-P | | Cave/Karst Potential | • Low | Medium | O High | | Cave/Karst Potential | Critical | | | | Variance | O None | Flex Hose | Other | | Wellhead | Conventional | • Multibowl | O Both | | Other | □4 String Area | □Capitan Reef | □WIPP | | Other | Fluid Filled | ☐ Cement Squeeze | ☐ Pilot Hole | | Special Requirements | ☐ Water Disposal | ☑ COM | □ Unit | #### A. HYDROGEN SULFIDE A Hydrogen Sulfide (H2S) Drilling Plan shall be
activated 500 feet prior to drilling into the formation. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM. ### **B. CASING** #### **Primary Casing Design/Alternate Casing Design:** - 1. The 13-3/8 inch surface casing shall be set at approximately 1020 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface. - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after - completing the cement job. - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement) - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater. - d. If cement falls back, remedial cementing will be done prior to drilling out that string. - 2. The 7-5/8 inch intermediate casing shall be set at approximately 11595 feet. The minimum required fill of cement behind the 7-5/8 inch intermediate casing is: ## **Option 1 (Single Stage):** Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash. Intermediate casing must be kept 1/3 fluid filled to meet BLM minimum collapse requirement. 3. The minimum required fill of cement behind the 5-1/2 inch production casing is: #### **Option 1 (Single Stage):** • Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification. #### C. PRESSURE CONTROL 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).' #### 2. **BOP REQUIREMENTS** #### **Option 1:** a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi. b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the intermediate casing shoe shall be **10,000 (10M)** psi. ## **Option 2:** Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi. - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry. - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal. - c. Manufacturer representative shall install the test plug for the initial BOP test. - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed. - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed. ## D. SPECIAL REQUIREMENT (S) ## **Communitization Agreement** - The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request. - If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1 - In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign. ## GENERAL REQUIREMENTS Page 3 of 8 The BLM is to be notified in advance for a representative to witness: - a. Spudding well (minimum of 24 hours) - b. Setting and/or Cementing of all casing strings (minimum of 4 hours) - c. BOPE tests (minimum of 4 hours) - Eddy County Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822 - ☐ Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612 - 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s). - b. When the operator proposes to set surface casing with Spudder Rig - Notify the BLM when moving in and removing the Spudder Rig. - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location. - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well. - 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area. - 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report. #### A. CASING - 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed. - 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug. - 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug. - 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string. - 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer. - 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole. - 7. If hardband drill pipe is rotated inside easing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations. - 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed. #### B. PRESSURE CONTROL -
1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17. - 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. - 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure. - 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met: - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry. - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal. - c. Manufacturer representative shall install the test plug for the initial BOP - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed. - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed. - 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests. - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not - hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified). - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs). - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item). - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock. - e. The results of the test shall be reported to the appropriate BLM office. - f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office. - g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure. - h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2. ## C. <u>DRILLING MUD</u> Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented. ## D. <u>WASTE MATERIAL AND FLUIDS</u> All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations. ## RI09142021 U.S. Department of the Interior BUREAU OF LAND MANAGEMENT # Operator Certification Data Report ## **Operator Certification** I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements. NAME: NICKY FITZGERALD Signed on: 12/10/2020 Title: Regulatory Street Address: 5400 LBJ FREEWAY STE 1500 City: DALLAS State: TX Zip: 75240 Phone: (972)371-5448 Email address: nicky.fitzgerald@matadorresources.com ## **Field Representative** | Representative Name: | | | |----------------------|--------|------| | Street Address: | | | | City: | State: | Zip: | | Phone: | | | | Email address: | | | ## Page 14 of 134 Highlighted data reflects the most recent changes U.S. Department of the Interior BUREAU OF LAND MANAGEMENT ## Application Data Report **APD ID:** 10400066214 **Submission Date:** 12/10/2020 **Operator Name: MATADOR PRODUCTION COMPANY** Well Number: 203H Number: 203H Show Final Text Well Type: CONVENTIONAL GAS WELL Well Work Type: Drill **Section 1 - General** Well Name: NINA CORTELL FED COM BLM Office: Carlsbad User: NICKY FITZGERALD Title: Regulatory Federal/Indian APD: FED Is the first lease penetrated for production Federal or Indian? FED Lease number: NMNM086147 Lease Acres: Surface access agreement in place? Allotted? Reservation: Agreement in place? NO Federal or Indian agreement: Agreement number: Agreement name: Keep application confidential? Y Permitting Agent? NO APD Operator: MATADOR PRODUCTION COMPANY Operator letter of designation: ## **Operator Info** Operator Organization Name: MATADOR PRODUCTION COMPANY Operator Address: 5400 LBJ Freeway, Suite 1500 Zip: 75240 **Operator PO Box:** Operator City: Dallas State: TX Operator Phone: (972)371-5200 Operator Internet Address: ## **Section 2 - Well Information** Well in Master Development Plan? NO Master Development Plan name: Well in Master SUPO? NO Master SUPO name: Well in Master Drilling Plan? NO Master Drilling Plan name: Well Name: NINA CORTELL FED COM Well Number: 203H Well API Number: Field/Pool or Exploratory? Exploratory Field Name: Pool Name: Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL Well Name: NINA CORTELL FED COM Well Number: 203H Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL Is the proposed well in a Helium production area? N Use Existing Well Pad? N New surface disturbance? Type of Well Pad: MULTIPLE WELL Multiple Well Pad Name: Nina Number: Slot 3 Well Class: HORIZONTAL Cortell Federal Number of Legs: 1 Well Work Type: Drill Well Type: CONVENTIONAL GAS WELL **Describe Well Type:** Well sub-Type: EVALUATION Describe sub-type: Distance to town: 29 Miles Distance to nearest well: 30 FT Distance to lease line: 244 FT Reservoir well spacing assigned acres Measurement: 320 Acres Well plat: LO_NINA_CORTELL_FED_COM_203H_S__signed_20201210120104.pdf Well work start Date: 12/11/2021 Duration: 60 DAYS ## **Section 3 - Well Location Table** Survey Type: RECTANGULAR **Describe Survey Type:** Datum: NAD27 Vertical Datum: NGVD29 Survey number: Reference Datum: GROUND LEVEL | Wellbore | NS-Foot | NS Indicator | EW-Foot | EW Indicator | Twsp | Range | Section | Aliquot/Lot/Tract | Latitude | Longitude | County | State | Meridian | Lease Type | Lease Number | Elevation | MD | TVD | Will this well produce from this lease? | |----------|---------|--------------|---------|--------------|------|-------|---------|-------------------|----------
-----------|--------|-------|----------|------------|--------------|-----------|-----|-----|---| | SHL | 244 | FSL | 137 | FEL | 22S | 32E | 10 | Aliquot | 32.39966 | - | LEA | NEW | NEW | F | NMNM | 378 | 0 | 0 | Υ | | Leg | | | 0 | | | | | SWSE | 58 | 103.6584 | | MEXI | MEXI | | 86147 | 9 | | | | | #1 | | | | | | | | | | 489 | | CO | CO | | | | | | | | KOP | 100 | FSL | 231 | FEL | 228 | 32E | 10 | Aliquot | 32.39926 | - | LEA | NEW | NEW | F | NMNM | - | 116 | 116 | Υ | | Leg | | | 0 | | | | | SWSE | 01 | 103.6614 | | MEXI | MEXI | | 86147 | 784 | 95 | 29 | | | #1 | | | | | | | | | | 945 | | CO | CO | | | 0 | | | | | PPP | 100 | FSL | 231 | FEL | 22S | 32E | 10 | Aliquot | 32.39926 | - | LEA | NEW | NEW | F | NMNM | - | 121 | 120 | Υ | | Leg | | | 0 | | | | | SWSE | 01 | 103.6614 | | MEXI | MEXI | | 86147 | 826 | 78 | 57 | | | #1-1 | | | | | | | | | | 945 | | CO | CO | | | 8 | | | | Well Name: NINA CORTELL FED COM Well Number: 203H | Wellbore | NS-Foot | NS Indicator | EW-Foot | EW Indicator | Twsp | Range | Section | Aliquot/Lot/Tract | Latitude | Longitude | County | State | Meridian | Lease Type | Lease Number | Elevation | MD | TVD | Will this well produce from this lease? | |----------|---------|--------------|---------|--------------|------|-------|---------|-------------------|----------|-----------|--------|-------|----------|------------|--------------|-----------|-----|-----|---| | PPP | 1 | FNL | 231 | FEL | 22S | 32E | 3 | Aliquot | 32.41349 | - | LEA | NEW | NEW | F | NMNM | _ | 172 | 121 | Υ | | Leg | | | 8 | | | | | SWSE | 34 | 103.6615 | | MEXI | MEXI | | 135247 | 838 | 21 | 70 | | | #1-2 | | | | | | | | | | 212 | | CO | co | | | 1 | | | | | EXIT | 100 | FNL | 231 | FEL | 228 | 32E | 3 | Lot | 32.42771 | _ | LEA | NEW | NEW | F | NMNM | -// | 223 | 121 | Υ | | Leg | | | 0 | | | | | 2 | 17 | 103.6615 | | MEXI | | | 135247 | | 92 | 34 | | | #1 | | | | | | | | | | 479 | | CO | CO | | | 5 | | | | | BHL | 60 | FNL | 231 | FEL | 228 | 32E | 3 | Lot | 32.42782 | _ | LEA | NEW | NEW | F | NMNM | - | 224 | 121 | Υ | | Leg | | | 0 | | | | | 2 | 17 | 103.6615 | | MEXI | MEXI | | 135247 | 834 | 63 | 33 | | | #1 | | | | | | | | | | 481 | | CO | CO | | | 4 | | | | District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462 State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505 FORM C-102 Revised August 1, 2011 Submit one copy to appropriate District Office | Ш | AMENDED | REPORT | |---|---------|--------| |---|---------|--------| ## WELL LOCATION AND ACREAGE DEDICATION PLAT | - | ¹ API Number | ² Pool Code | ³ Pool Name | | |---|----------------------------|------------------------|-----------------------------|--------------------------| | | | 98258 | WC-025 S223203A; LWR WOLFCA | AMP (GAS) | | Ī | ⁴ Property Code | | Property Name | ⁶ Well Number | | | | NINA CO | ORTELL FED COM | 203H | | Ì | ⁷ OGRID №. | : | Operator Name | ⁹ Elevation | | | 228937 | MATADOR PR | ODUCTION COMPANY | 3789' | | | | 10 _S , | urface Legation | | ¹⁰Surface Location | O O | 10 | 22-S | 32-E | Lot Idn | 244' | SOUTH | 1370' | EAST EAST | LEA | |-------------------------------|--------------------------|-------------|----------------|----------------------|------------------|-------------------|---------------|----------------|-------------| | | | | 11 | Bottom Ho | le Location If I | Different From Su | rface | | | | UL or lot no. | Section | Township | Range | Lot Idn | Feet from the | North/South line | Feet from the | East/West line | County | | 2 | 3 | 22-S | 32-E | _ | 60' | NORTH | 2310' | EAST | LEA | | ¹² Dedicated Acres | ¹³ Joint or l | Infill 14Co | nsolidation Co | de ¹⁵ Ord | er No. | | | | | | 320 | No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division. € PROPOSED ROAD - ±6591' ______ SECTION LINE ______ PROPOSED ROAD SECTION 10, TOWNSHIP 22-S, RANGE 32-E, N.M.P.M. LEA COUNTY, NEW MEXICO DETAIL VIEW SCALE: 1" = 100' 3791.3' 3792.0 CENTER OF PAD X=749818 Y=509859 LAT.: N 32.3998600 LONG.: W 103.6578496 NINA CORTELL NINA CORTELL FED COM 134H FED COM 128H NINA CORTELL NINA CORTELL FED COM 204H 1185 FED COM 114H SECTION LINE 265 265' NINA CORTELL FED COM 224H - 230' *80*′<u>——</u> 3788.7 NINA CORTELL FED COM 223H NINA CORTELL FED COM 203H NINA CORTELL NINA CORTELL FED COM 133H FED COM 113H NINA CORTELL FED COM 127H 3783.7' 3788.6' SECTION LINE NINA CORTELL FED COM 203H LEASE NAME & WELL NO .: . 203H LATITUDE N 32.3996658 203H LONGITUDE W 103.6584489 CENTER OF PAD IS 314' FSL & 1185' FEL ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO COORDINATE SYSTEM OF 1983, EAST ZONE, U.S. SURVEY FEET. ELEVATIONS USED ARE NAVD88, OBTAINED THROUGH AN OPUS SOLUTION. THIS PROPOSED PAD SITE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY MATADOR PRODUCTION COMPANY. ONLY THE DATA SHOWN ABOVE IS BEING CERTIFIED TO, ALL OTHER INFORMATION WAS INTENTIONALLY OMITTED. THIS PLAT IS ONLY INTENDED TO BE USED FOR A PERMIT AND IS NOT A BOUNDARY SURVEY. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY. SCALE: 1" 100' 100 1400 EVERMAN PARKWAY, Ste. 146 • FT. WORTH, TEXAS 76140 TELEPHONE: (817) 744-7512 • FAX (817) 744-7554 2903 NORTH BIG SPRING • MIDLAND, TEXAS 79705 TELEPHONE: (432) 682-1653 OR (800) 767-1653 • FAX (432) 682-1743 WWW.TOPOGRAPHIC.COM ## U.S. Department of the Interior BUREAU OF LAND MANAGEMENT # Drilling Plan Data Report APD ID: 10400066214 Operator Name: MATADOR PRODUCTION COMPANY Submission Date: 12/10/2020 Highlighted data reflects the most recent changes Well Name: NINA CORTELL FED COM Well Number: 203H **Show Final Text** Well Type: CONVENTIONAL GAS WELL Well Work Type: Drill ## **Section 1 - Geologic Formations** | Formation | | | True Vertical | Measured | | | Producing | |-----------|------------------|-----------|---------------|----------|----------------------------|-------------------|-----------| | ID | Formation Name | Elevation | Depth | Depth | Lithologies | Mineral Resources | Formation | | 1221670 | QUATERNARY | 0 | 0 | 0 | CONGLOMERATE,
SANDSTONE | NONE | N | | 1221671 | RUSTLER | -839 | 839 | 839 | ANHYDRITE | NONE | N | | 1221672 | SALADO | -1191 | 1191 | 1191 | SALT | NONE | N | | 1221673 | LAMAR | -4897 | 4897 | 4897 | DOLOMITE | NONE | N | | 1221674 | BELL CANYON | -4939 | 4939 | 4939 | SANDSTONE | NATURAL GAS, OIL | N | | 1221675 | CHERRY CANYON | -5842 | 5842 | 5842 | SANDSTONE | NATURAL GAS, OIL | N | | 1221676 | BRUSHY CANYON | -6985 | 6985 | 6985 | SANDSTONE | NATURAL GAS, OIL | N | | 1221677 | BONE SPRING LIME | -8826 | 8826 | 8826 | LIMESTONE | NATURAL GAS, OIL | N | | 1221678 | BONE SPRING 1ST | -9664 | 9664 | 9664 | OTHER : Carbonate | NATURAL GAS, OIL | N | | 1221679 | BONE SPRING 1ST | -9897 | 9897 | 9897 | SANDSTONE | NATURAL GAS, OIL | N | | 1221680 | BONE SPRING 2ND | -10178 | 10178 | 10178 | OTHER : Carbonate | NATURAL GAS, OIL | N | | 1221681 | BONE SPRING 2ND | -10557 | 10557 | 10557 | SANDSTONE | NATURAL GAS, OIL | N | | 1221682 | BONE SPRING 3RD | -10979 | 10979 | 10979 | OTHER : Carbonate | NATURAL GAS, OIL | N | | 1221683 | BONE SPRING 3RD | -11615 | 11615 | 11615 | SANDSTONE | NATURAL GAS, OIL | N | | 1221684 | WOLFCAMP | -12005 | 12005 | 12106 | OTHER : Carbonate | NATURAL GAS, OIL | Y | ## **Section 2 - Blowout Prevention** Well Name: NINA CORTELL FED COM Well Number: 203H Pressure Rating (PSI): 10M Rating Depth: 18000 **Equipment:** A 18,000' 10,000-psi BOP stack consisting of 3 rams with 2 pipe rams, 1 blind ram, and one annular preventer will be utilized below surface casing to TD. See attachments for BOP and choke manifold diagrams. An accumulator complying with Onshore Order #2 requirements for the pressure rating of the BOP stack will be present. A rotating head will also be installed as needed. ## Requesting Variance? YES Variance request: Matador requests a variance to have the option of running a multi-bowl wellhead assembly for setting the Intermediate 1, and Production Strings. The BOPs will not be tested again unless any flanges are separated. Matador requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. The hose is not required by the manufacturer to be anchored. If the specific hose is not available, then one of equal or higher rating will be used. Matador requests a variance to have the option of batch drilling this well with other wells on the same pad. In the event that this well is batch drilled, the wellbore will be secured with a blind flange of like pressure. When the rig returns to this well and BOPs are installed, the operator will perform a full BOP test. Matador requests a variance to drill this well using a 5M annular preventer with a 10M BOP ram stack. The "Well Control Plan For 10M MASP Section of Wellbore" is attached. Matador request a variance to wave the centralizer requirement for the 7-5/8" casing and the 5-1/2" SF/Flush casing in the 6-3/4" hole. If a DV tool is used, depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet
above the current shoe. Lab reports with the 500 psi compressive strength time for the cement will be onsite for review. Matador request option to perform a bradenhead cement squeeze on Intermediate 1 string. Matador request a variance to utilize a surface setting rig. If this is used, Matador request the option to drill either 17.5" or 20" surface hole. **Testing Procedure:** BOP will be inspected and operated as required in Onshore Order #2. Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. A third party company will test the BOPs. After setting surface casing, a minimum 10M BOPE system will be installed. Test pressures will be 250 psi low and 10,000 psi high with the annular preventer being tested to 250 psi low and 5000 psi high before drilling below surface shoe. In the event that the rig drills multiple wells on the pad and any seal subject to test pressures are broken, a full BOP test will be performed when the rig returns and the 10M BOPE system is re-installed. ## **Choke Diagram Attachment:** Nina_Cortell_Fed_Com_203H_10M_Choke_Manifold_Arrangement_20201207115410.pdf #### **BOP Diagram Attachment:** Nina_Cortell_Fed_Com_203H_10M_Well_Control_Plan_20201207115447.pdf Nina_Cortell_Fed_Com_203H_10M_BOP_20201207115448.pdf Nina_Cortell_Fed_Com_203H_Co_Flex_Certs_20201207115449.pdf ## Section 3 - Casing | 1 SURFACE 17.5 13.375 NEW API N 0 1216 0 1216 3789 2573 1216 J-55 54.5 BUTT 1.12 1.12 BUOY 1.8 BUOY 1.8 | - 1 | Casing ID | String Type | Hole Size | Csg Size | Condition | Standard | Tapered String | Top Set MD | Bottom Set MD | Top Set TVD | Bottom Set TVD | Top Set MSL | Bottom Set MSL | Calculated casing length MD | Grade | Weight | Joint Type | Collapse SF | Burst SF | Joint SF Type | Joint SF | Body SF Type | Body SF | |---|-----|-----------|-------------|-----------|----------|-----------|----------|----------------|------------|---------------|-------------|----------------|-------------|----------------|-----------------------------|-------|--------|------------|-------------|-----------|---------------|----------|--------------|---------| | | | 1 | SURFACE | 17.5 | 13.375 | NEW | API | N | 0 | 1216 | 0 | 1216 | 3789 | 2573 | 1216 | J-55 | 54.5 | BUTT | 1.12
5 | 1.12
5 | BUOY | 1.8 | BUOY | 1.8 | Well Name: NINA CORTELL FED COM Well Number: 203H | Casing ID | String Type | Hole Size | Csg Size | Condition | Standard | Tapered String | Top Set MD | Bottom Set MD | Top Set ⊤VD | Bottom Set TVD | Top Set MSL | Bottom Set MSL | Calculated casing length MD | Grade | Weight | Joint Type | Collapse SF | Burst SF | Joint SF Type | Joint SF | Body SF Type | Body SF | |-----------|------------------|-----------|----------|-----------|----------|----------------|------------|---------------|-------------|----------------|-------------|----------------|-----------------------------|-----------|--------|------------------------------|-------------|-----------|---------------|----------|--------------|---------| | 1 | INTERMED
IATE | 9.87
5 | 7.625 | NEW | API | N | 0 | 11595 | 0 | 11595 | 3789 | -7806 | 11595 | P-
110 | 29.7 | BUTT | 1.12
5 | 1.12
5 | BUOY | 1.8 | BUOY | 1.8 | | 1 | PRODUCTI
ON | 6.75 | 5.5 | NEW | API | N | 0 | 22463 | 0 | 12133 | 3789 | -8344 | 22463 | P-
110 | | OTHER -
Hunting
TLW-SC | 1.12
5 | 1.12
5 | BUOY | 1.8 | BUOY | 1.8 | ## **Casing Attachments** | Casing ID: 1 | String Type:SURFACE | |----------------------|--| | Inspection Document: | | | | | | Spec Document: | | | | | | Tapered String Spec: | | | | | | Casing Design Assump | otions and Worksheet(s): | | Nina_Cortell_Fed_ | Com_203H_BLM_Casing_Design_Assumptions_3_string_20201207120056.pdf | Casing ID: 2 String Type: INTERMEDIATE **Inspection Document:** **Spec Document:** **Tapered String Spec:** Casing Design Assumptions and Worksheet(s): Well Name: NINA CORTELL FED COM Well Number: 203H ## **Casing Attachments** Casing ID: 3 String Type: PRODUCTION **Inspection Document:** **Spec Document:** **Tapered String Spec:** Casing Design Assumptions and Worksheet(s): $Nina_Cortell_Fed_Com_203H_Casing_Specs_5.5 in_20 lb_Hunting_TLW_SC_20201207115726.pdf$ ## **Section 4 - Cement** | String Type | Lead/Tail | Stage Tool
Depth | Top MD | Bottom MD | Quantity(sx) | Yield | Density | Cu Ft | Excess% | Cement type | Additives | |--------------|-----------|---------------------|-----------|-----------|--------------|-------|---------|-------|---------|-------------|---| | SURFACE | Lead | | 0 | 916 | 600 | 1.72 | 12.5 | 1027 | 50 | С | 5% NaCl + LCM | | SURFACE | Tail | 1 | 916 | 1216 | 250 | 1.38 | 14.8 | 347 | 50 | С | 5% NaCl + LCM | | INTERMEDIATE | Lead | | 0 | 1059
5 | 990 | 3.66 | 10.3 | 3624 | 35 | A/C | Bentonite + 1% CaCL2
+ 8% NaCl + LCM | | INTERMEDIATE | Tail | | 1059
5 | 1159
5 | 230 | 1.38 | 13.2 | 311 | 35 | A/C | 5% NaCl + LCM | | PRODUCTION | Lead | | 1139
5 | 1169
5 | 20 | 1.71 | 12.5 | 28 | 10 | A/C | Fluid Loss + Dispersant
+ Retarder + LCM | | PRODUCTION | Tail | | 1169
5 | 2246
3 | 690 | 1.44 | 13.2 | 999 | 10 | A/C | Fluid Loss + Dispersant
+ Retarder + LCM | Well Name: NINA CORTELL FED COM Well Number: 203H ## **Section 5 - Circulating Medium** Mud System Type: Closed Will an air or gas system be Used? NO Description of the equipment for the circulating system in accordance with Onshore Order #2: Diagram of the equipment for the circulating system in accordance with Onshore Order #2: Describe what will be on location to control well or mitigate other conditions: All necessary mud products (barite, bentonite, LCM) for weight addition and fluid loss control will be on location at all times. Mud program is subject to change due to hole conditions. **Describe the mud monitoring system utilized:** An electronic Pason mud monitoring system complying with Onshore Order 2 will be used. ## **Circulating Medium Table** | O Top Depth | Bottom Depth | Mud Type | Win Weight (lbs/gal) | α Max Weight (lbs/gal) | Density (lbs/cu ft) | Gel Strength (lbs/100 sqft) | Н | Viscosity (CP) | Salinity (ppm) | Filtration (cc) | Additional Characteristics | |-------------|--------------|----------------------------------|----------------------|------------------------|---------------------|-----------------------------|---|----------------|----------------|-----------------|----------------------------| | 1216 | 1159
5 | OTHER : Diesel
Brine Emulsion | 8.7 | 9.4 | | | | | | | | | 1159
5 | 1213
3 | OIL-BASED
MUD | 11.5 | 12.5 | | | | | | | | ## **Section 6 - Test, Logging, Coring** List of production tests including testing procedures, equipment and safety measures: No electric logs are planned at this time. GR will be collected through the MWD tools from Intermediate casing to TD. CBL with CCL will be run as far as gravity will let it fall to top of curve. List of open and cased hole logs run in the well: GAMMA RAY LOG, CEMENT BOND LOG, Coring operation description for the well: No core or drill stem test is planned. Well Name: NINA CORTELL FED COM Well Number: 203H ## **Section 7 - Pressure** Anticipated Bottom Hole Pressure: 7886 Anticipated Surface Pressure: 5208 Anticipated Bottom Hole Temperature(F): 180 Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO Describe: **Contingency Plans geoharzards description:** **Contingency Plans geohazards attachment:** Hydrogen Sulfide drilling operations plan required? NO Hydrogen sulfide drilling operations plan: ## **Section 8 - Other Information** ## Proposed horizontal/directional/multi-lateral plan submission: Nina_Cortell_Fed_Com_203H_Directional_Well_Plan_v1_20201207121411.pdf Nina_Cortell_Fed_Com_203H_Directional_AC_v1_20201207121411.pdf Other proposed operations facets description: ## Other proposed operations facets attachment: Nina_Cortell_Fed_Com_203H_3_String_Wellhead_Diagram_20201207121529.pdf Nina Cortell Fed Com 203H Drill Plan 20201207121529.pdf Nina_Cortell_Fed_Com_203H_Closed_Loop_System_20201207121529.pdf H2S_Plan_20201207121529.pdf Gas_Capture_Plan___Nina_Cortell_202H_203H_204H_20201208081123.pdf Other Variance attachment: Received by OCD: 12/2/2021 9:13:48 PM #### Well Control Plan For 10M MASP Section of Wellbore ## **Component and Preventer Compatibility Table:** The table below covers the drilling and casing of the 10M MASP portion of the well and outlines the tubulars and the compatible preventers in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer. | Component | OD | Preventer | RWP | |-----------------------------|------------|----------------------|-----| | Drill pipe | 4" | | | | HWDP | 4" |] | | | Jars/Agitator | 4.75-5" | Lower 3.5-5.5" VBR | 10M | | Drill collars and MWD tools | 4.75-5.25" | " Upper 3.5-5.5" VBR | | | Mud Motor | 4.75-5.25" |] | | | Production casing | 4.5-5.5" |] | | | ALL | 0-13.625" | Annular | 5M | | Open-hole - | | Blind Rams | 10M | VBR = Variable Bore Ram with compatible range listed in chart HWDP = Heavy Weight Drill Pipe MWD = Measurement While Drilling #### **Well Control Procedures** Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the Bottom Hole Assembly (BHA) through the Blowout Preventers (BOP). The maximum pressure at which well control is transferred from the annular to another compatible ram is 3,000 psi. #### General Procedure While Drilling - 1. Sound alarm (alert crew) - 2.
Space out drill string - 3. Shut down pumps and stop rotary - 4. Shut-in well with the annular preventer (The Hydraulic Control Remote (HCR) valve and choke will already be in the closed position) - 5. Confirm shut-in - 6. Notify tool pusher and company representative - 7. Read and record the following: - SIDPP and SICP - Pit gain - Time of shut in - 8. Regroup and identify forward plan - 9. If pressure has increased or is anticipated to increase above 3,000 psi, confirm spacing and close the upper pipe rams ## General Procedure While Tripping - 1. Sound alarm (alert crew) - 2. Stab full opening safety valve and close - 3. Space out drill string #### Well Control Plan For 10M MASP Section of Wellbore - 4. Shut-in well with annular preventer (The HCR valve and choke will already be in the closed position) - 5. Confirm shut-in - 6. Notify tool pusher and company representative - 7. Read and record the following: - SIDPP and SICP - Pit gain - Time of shut in - 8. Regroup and identify forward plan - 9. If pressure has increased or is anticipated to increase above 3,000 psi, confirm spacing and close the upper pipe rams ## General Procedure While Running Casing - 1. Sound alarm (alert crew) - 2. Stab crossover and full opening safety valve and close - 3. Space out string - 4. Shut-in well with annular preventer (The HCR valve and choke will already be in the closed position) - 5. Confirm shut-in - 6. Notify tool pusher and company representative - 7. Read and record the following: - SIDPP and SICP - Pit gain - Time of shut in - 8. Regroup and identify forward plan - If pressure has increased or is anticipated to increase above 3,000 psi, confirm spacing and close the upper pipe rams ## General Procedure with No Pipe In Hole - 1. At any point when the BOP stack is clear of pipe or BHA, the well will be shut in with blind rams, the HCR valve will be open, and choke will be closed. If pressure increase is observed: - 2. Sound alarm (alert crew) - 3. Confirm shut-in - 4. Notify tool pusher and company representative - 5. Read and record the following: - SICP - Time of shut in - 6. Regroup and identify forward plan #### General Procedure While Pulling BHA through Stack - 1. Prior to pulling last joint/stand of drill pipe through the stack, perform flow check. If flowing: - a. Sound alarm (alert crew) - b. Stab full opening safety valve and close - c. Space out drill string - d. Shut-in well with annular preventer (The HCR valve and choke will already be in the closed position) - e. Confirm shut-in - f. Notify tool pusher and company representative - g. Read and record the following: - SIDPP and SICP #### Well Control Plan For 10M MASP Section of Wellbore - Pit gain - Time of shut in - h. Regroup and identify forward plan - 2. With BHA in the stack and compatible ram preventer and pipe combo immediately available: - a. Sound alarm (alert crew) - b. Stab crossover and full opening safety valve and close - c. Space out drill string with the upset just beneath the compatible pipe ram - d. Shut-in well using compatible pipe rams (The HCR valve and choke will already be in the closed position) - e. Confirm shut-in - f. Notify tool pusher and company representative - g. Read and record the following: - SIDPP and SICP - Pit gain - Time of shut in - h. Regroup and identify forward plan - 3. With BHA in the stack and no compatible ram preventer and pipe combo immediately available: - a. Sound alarm (alert crew) - b. If possible to pick up high enough, pull BHA clear of the stack - i. Follow "No Pipe in Hole" procedure above - c. If impossible to pick up high enough to pull string clear of the stack: - Stab crossover, make up one joint/stand of drill pipe, and full opening safety valve and close - ii. Space out drill string with the upset just beneath the compatible pipe ram - iii. Shut-in well using compatible pipe rams (The HCR valve and choke will already be in the closed position) - iv. Confirm shut-in - v. Notify tool pusher and company representative - vi. Read and record the following: - SIDPP and SICP - Pit gain - Time of shut in - vii. Regroup and identify forward plan #### **Well Control Drills** Well control drills are specific to the rig equipment, personnel, and operations. Each crew will execute one drill weekly relevant to ongoing operations, but will make a reasonable attempt to vary the type of drills. The drills will be recorded in the daily drilling log. RIG: 297 PATTERSON-UTI # PS2-628 STYLE: New Shaffer Spherical BORE 13 5/8" PRESSURE 5,000 HEIGHT: 48 ½" WEIGHT: 13,800 lbs PATTERSON-UTI # PC2-128 STYLE: New Cameron Type U BORE 13 5/8" PRESSURE 10,000 RAMS: TOP 5" Pipe BTM Blinds HEIGHT: 66 5/8" WEIGHT: 24,000 lbs Length <u>40"</u> Outlets <u>4" 10M</u> DSA 4" 10M x 2" 10M PATTERSON-UTI # PC2-228 STYLE: New Cameron Type U BORE 13 5/8" PRESSURE 10,000 RAMS: 5" Pipe HEIGHT: 41 5/8" WEIGHT: 13,000 lbs Received by OCD: 12/2/2021 9:13:48 PM Customer: Patterson Pick Ticket #: 284918 ## **Hose Specifications** **Hose Type** Ck I.D. **Working Pressure** 10000 PSI Length 10' 0.D. 4.79" **Burst Pressure** Standard Safety Multiplier Applies ## **Verification** **Type of Fitting** 4-1/16 10K **Die Size** 5.37" Hose Serial # 10490 **Coupling Method** Swage Final O.D. 5.37" **Hose Assembly Serial #** 284918-2 **Test Pressure** 15000 PSI **Time Held at Test Pressure** 15 2/4 Minutes **Actual Burst Pressure** **Peak Pressure** 15732 PSI Comments: Hose assembly pressure tested with water at ambient temperature. Tested By: Tyler H Approved By: Ryan Adams Midwest Hose & Specialty, Inc. | General Infor | mation | Hose Specifi | cations | | |-----------------------------------|------------------|---|--------------|--| | Customer | PATTERSON B&E | Hose Assembly Type | Choke & Kill | | | WH Sales Representative AMY WHITE | | Certification | API 7K | | | Date Assembled | 12/8/2014 | Hose Grade | MUD | | | Location Assembled | ОКС | Hose Working Pressure | 10000 | | | Sales Order # | 236404 | Hose Lot # and Date Code | 10490-01/13 | | | Customer Purchase Order # | 260471 | Hose I.D. (Inches) | 3" | | | Assembly Serial # (Pick Ticket #) | 287918-2 | Hose O.D. (Inches) | 5.30" | | | Hose Assembly Length | 10' | Armor (yes/no) | YES | | | | Fit | tings | | | | End A | | End B | | | | Stem (Part and Revision #) | R3.0X64WB | Stem (Part and Revision #) | R3.0X64WB | | | Stem (Heat #) | 91996 | Stem (Heat #) | 91996 | | | Ferrule (Part and Revision #) | RF3.0 | Ferrule (Part and Revision #) | RF3.0 | | | Ferrule (Heat #) | 37DA5631 | Ferrule (Heat #) | 37DA5631 | | | Connection (Part #) | 4 1/16 10K | Connection (Part #) | 4 1/16 10K | | | Connection (Heat #) | | Connection (Heat #) | | | | Dies Used | 5.3 | 37 Dies Used | 5.3 | | | | Hydrostatic Te | est Requirements | | | | Test Pressure (psi) | 15,000 | Hose assembly was tested with ambient water | | | | | 15 1/2 temperate | | | | | Certificate of Conformity | | | | | |-----------------------------|--------------|------------------------------|-------------|--| | Customer: PATTERSON | B&E | Customer P.O.# 260471 | | | | Sales Order # 236404 | | Date Assembled: 12/8/2014 | | | | | Spec | cifications | | | | Hose Assembly Type: | Choke & Kill | | | | | Assembly Serial # | 287918-2 | Hose Lot # and Date Code | 10490-01/13 | | | Hose Working Pressure (psi) | 10000 | Test Pressure (psi) | 15000 | | We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards. Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129 Comments: | Approved By | Date | | | |-------------|-----------|--|--| | Fan Alama | 12/9/2014 | | | **Time in Minutes** Customer: Patterson Pick Ticket #: 284918 #### **Hose Specifications** Hose Type Ck I.D. 3" Working Pressure > 4000 2000 15000 PSI Length 20' O.D. 4.77" Burst Pressure Standard Safety Multiplier Applies ## <u>Verification</u> g <u>Coupling Method</u> Type of Fitting 4-1/16 10K Die Size 5.37" Hose Serial # Hose Assembly Serial # 284918-1 Swage Final O.D. 5.40" Pressure Test Test Pressure Time Held at Test Pressure 15 2/4 Minutes **Actual Burst Pressure** Peak Pressure 15893 PSI Comments: Hose assembly pressure tested with water at ambient temperature. Tested By: Tyler Hill KAL- Approved By: Ryan Adams Midwest Hose & Specialty, Inc. | General Infor | mation | Hose Specifi | cations | |------------------------------------|--|-------------------------------|--------------------| | Customer | PATTERSON B&E | Hose Assembly Type | Choke & Kill | | MWH Sales Representative AMY WHITE | | Certification | АРІ 7К | | Date Assembled | 12/8/2014 | Hose Grade | MUD | | Location Assembled | ОКС | Hose Working Pressure | 10000 | | Sales Order # | 236404 | Hose Lot # and Date Code | 10490-01/13 | | Customer Purchase Order # | 260471 | Hose I.D. (Inches) | 3" | | Assembly Serial # (Pick Ticket #) | 287918-1 | Hose O.D. (Inches) | 5.30" | | Hose Assembly Length | 20' | Armor (yes/no) | YES | | | Fit | tings | | | End A | | End B | | | Stem (Part and Revision #) | R3.0X64WB | Stem (Part and Revision #) | R3.0X64WB | | Stem (Heat #) | A141420 | Stem (Heat #) | A141420 | | Ferrule (Part and Revision #) | RF3.0 | Ferrule (Part and Revision #) | RF3.0 | | Ferrule (Heat #) | 37DA5631 | Ferrule (Heat #) | 37DA5631 | | Connection (Part #) | 4 1/16 10K | Connection (Part #) | 4 1/16 10K | | Connection (Heat #) | V3579 | Connection (Heat #) | V3579 | | Dies Used | 5.3 | 7 Dies Used | 5.: | | | Hydrostatic Te | est Requirements | | | Test Pressure (psi) | 15,000 Hose assembly was tested was temperature. | | with ambient water | | | | | ure. | Midwest Hose & Specialty, Inc. | Certifica | ite of Conformity | | | | | | |-----------------------------------|--------------------------------------|--|--|--|--|--| | Customer: PATTERSON B&E | Customer P.O.#
260471 | | | | | | | Sales Order # 236404 | Date Assembled: 12/8/2014 | | | | | | | Specifications | | | | | | | | Hose Assembly Type: Choke & Kill | | | | | | | | Assembly Serial # 287918-1 | Hose Lot # and Date Code 10490-01/13 | | | | | | | Hose Working Pressure (psi) 10000 | Test Pressure (psi) 15000 | | | | | | We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards. Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129 Comments: | Approved By | Date | |-------------|-----------| | Bar Alaus | 12/9/2014 | ### **Internal Hydrostatic Test Graph** December 9, 2014 Customer: Patterson Pick Ticket #: 284918 #### **Hose Specifications** Hose Type Mud I.D. **Working Pressure** 10000 PSI Length 70' O.D. 4.79" **Burst Pressure** Standard Safety Multiplier Applies ### **Verification** **Type of Fitting** 4 1/16 10K **Die Size** 5.37" Hose Serial # 10490 **Coupling Method** Swage Final O.D. 5.37" Hose Assembly Serial # 284918-3 **Test Pressure** 15000 PSI Time Held at Test Pressure 16 3/4 Minutes **Actual Burst Pressure** Peak Pressure 15410 PSI Comments: Hose assembly pressure tested with water at ambient temperature. Tested By: Tyler Hill Approved By: Ryan Agams Midwest Hose & Specialty, Inc. | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | *************************************** | atic Test Certificate | | | | | |--|---|-------------------------------|--------------------|--|--|--| | General Infor | mation | Hose Specifi | cations | | | | | Customer | PATTERSON B&E | Hose Assembly Type | Choke & Kill | | | | | MWH Sales Representative | AMY WHITE | Certification | API 7K | | | | | Date Assembled | 12/8/2014 | Hose Grade | MUD | | | | | Location Assembled | ОКС | Hose Working Pressure | 10000 | | | | | Sales Order # | 236404 | Hose Lot # and Date Code | 10490-01/13 | | | | | Customer Purchase Order# | 260471 | Hose I.D. (Inches) | 3" | | | | | Assembly Serial # (Pick Ticket #) | 287918-3 | Hose O.D. (Inches) | 5.23" | | | | | Hose Assembly Length | 70' | Armor (yes/no) | YES | | | | | | Fit | tings | | | | | | End A | | End B | | | | | | Stem (Part and Revision #) | R3.0X64WB | Stem (Part and Revision #) | R3.0X64WB | | | | | Stem (Heat #) | A141420 | Stem (Heat #) | A141420 | | | | | Ferrule (Part and Revision #) | RF3.0 | Ferrule (Part and Revision #) | RF3.0 | | | | | Ferrule (Heat #) | 37DA5631 | Ferrule (Heat #) | 37DA5631 | | | | | Connection (Part #) | 4 1/16 10K | Connection (Part #) | 4 1/16 10K | | | | | Connection (Heat #) | | Connection (Heat #) | | | | | | Dies Used | 5.3 | 37 Dies Used | 5.3 | | | | | | Hydrostatic Te | est Requirements | | | | | | Test Pressure (psi) | 15,000 | Hose assembly was tested | with ambient water | | | | | Test Pressure Hold Time (minutes) | | | ıre. | | | | | | | | | | | | | Date Tested | Teste | ed By A | pproved By | | | | | 10/0/0011 | 1 / | | / // / | | | | 12/9/2014 Midwest Hose & Specialty, Inc. | Certificate | of Conformity | | |--------------|--|---| | &E | Customer P.O.# 260471 | | | | Date Assembled: 12/8/2014 | 4 9 | | Speci | fications | | | Choke & Kill | | | | 287918-3 | Hose Lot # and Date Code | 10490-01/13 | | 10000 | Test Pressure (psi) | 15000 | | | &E
Speci
Choke & Kill
287918-3 | Date Assembled: 12/8/2014 Specifications Choke & Kill Hose Lot # and Date Code | We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards. Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129 Comments: | Approved By | Date | |-------------|-----------| | Bar Alaun | 12/9/2014 | # TEC-LOCK WEDGE 5.500" 20 LB/FT (.361"Wall) with 5.875" SPECIAL CLEARANCE OD BEN P110 CY ### **Pipe Body Data** | Nominal OD: | 5.500 | in | |-------------------------|---------|-------| | Nominal Wall: | .361 | in | | Nominal Weight: | 20.00 | lb/ft | | Plain End Weight: | 19.83 | lb/ft | | Material Grade: | P110 CY | | | Mill/Specification: | BEN | | | Yield Strength: | 125,000 | psi | | Tensile Strength: | 135,000 | psi | | Nominal ID: | 4.778 | in | | API Drift Diameter: | 4.653 | in | | Special Drift Diameter: | None | in | | RBW: | 87.5 % | | | Body Yield: | 729,000 | lbf | | Burst: | 14,360 | psi | | Collapse: | 13,010 | psi | ### **Connection Data** | Standard OD: | 5.875 | in | |------------------------------|---------|---------| | Pin Bored ID: | 4.778 | in | | Critical Section Area: | 5.656 | in² | | Tensile Efficiency: | 97 % | | | Compressive Efficiency: | 100 % | | | Longitudinal Yield Strength: | 707,000 | lbf | | Compressive Limit: | 729,000 | lbf | | Internal Pressure Rating: | 14,360 | psi | | External Pressure Rating: | 13,010 | psi | | Maximum Bend: | 101.2 | °/100ft | | | | | ### **Operational Data** | Minimum Makeup Torque: | 15,000 | ft*lbf | |------------------------|--------|--------| | Optimum Makeup Torque: | 18,700 | ft*lbf | | Maximum Makeup Torque: | 41,200 | ft*lbf | | Minimum Yield: | 45,800 | ft*lbf | | Makeup Loss: | 5.97 | in | | | | | Notes Operational Torque is equivalent to the Maximum Make-Up Torque Generated on Sep 03, 2019 ### **Casing Design Criteria and Load Case Assumptions** ### **Surface Casing** Collapse: DFc=1.125 - Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered. - Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft). Burst: DF_b=1.125 • Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure. Tensile: DF_t=1.8 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg). ### Intermediate #1 Casing Collapse: DFc=1.125 - Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that. - Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft). Burst: DF_b=1.125 - Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure. - Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that. External force will be equal to the mud gradient in which the casing will be run, which is a more conservative backup force than pore pressure. - Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run which is a more conservative backup force than pore pressure. Tensile: DF_t=1.8 • Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy. #### **Production Casing** Collapse: DFc=1.125 • Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run. The effects of axial load on collapse will be considered. Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft). ### Burst: DF_b=1.125 - Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run, which is a more conservative backup force than pore pressure. - Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.50 psi/ft with an external force equal to the mud gradient in which the casing will be run, which is a more conservative backup force than pore pressure. #### Tensile: DF_t=1.8 • Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy. Ellipsoid: Clarke 1866 System Datum: Mean Sea Level Geodetic System: US State Plane 1927 (Exact solution) Zone: New Mexico East 3001 To convert a Magnetic Direction to a Grid Direction, Add 6.28° To convert a Magnetic Direction to a True Direction, Add 6.64° East To convert a True Direction to a Grid Direction, Subtract 0.36° Vertical Section at 359.55° (450 usft/in) Datum: NAD 1927 (NADCON CONUS) 22462.7 Depth To Survey/Plan Depth From Azimuths to Grid North True North: -0.36° Strength: 47681.1snT Dip Angle: 60.16° Model: IGRF2015 Date: 11/7/2020 11520- 11610- 11700- (ui/lish 11790 ਰ 11880 ੁਲ ਦੂ 11970- <u>2</u>12060- 12150- 12240- 06) Tool BLM Plan #1 (Wellbore #1) MWD 0.00 90.40 0.00 359.55 +E/-W 2452.7 28.1 10264.7 +N/-S 0.0 12133.0 Start 9863.8 hold at 12598.9 MD 28.1 GL @ 3789.0 Northing 509726.54
KB @ 3817.5usft (Original Well Elev) Easting Latittude 708450.77 32° 23' 58.354 N103° 39' 28.662 W TD at 22462.7 WELL DETAILS: Nina Cortell Fed Com #203H 0.0 10244.4 Longitude Slot DESIGN TARGET DETAILS | Name | TVD | +N/-S | +E/-W | Northing | Easting | Latitude | Longitude | |----------------------------------|---------|---------|----------|-----------|-----------|------------------|-------------------| | VP - Nina Cortell Fed Com #203H | 11629.0 | -175.5 | | 509523.00 | 0 | | 103° 39' 39.626 W | | BHL - Nina Cortell Fed Com #203h | 12133.0 | 10264.7 | 1431.9 | 519963.41 | 707430.11 | 32° 25' 39.716 N | 103° 39' 39.815 W | | FTP - Nina Cortell Fed Com #203h | 12205.0 | -125.5 | 1513.7 | 509573.02 | 707511.70 | 32° 23' 56.894 N | 103° 39' 39.626 W | | | | | | | | | | | MD Inc Az | i TVD | +N/-S | +E/-W DI | leg TFace | VSect | Annotation | | 0.00 0.00 0.00 0.00 0.00 2452.7 0.00 0.00 Start Build 2.00 1500.0 1500.0 8.00 257.77 1898.7 22.2 2.00 257.77 1900.0 2425.5 -5.7 Start 6501.2 hold at 1900.0 MD -190.5 Start Drop -2.00 8401.2 8.00 257.77 8336.6 -169.6 1541.2 0.00 0.00 Start 2893.7 hold at 8801.2 MD 0.00 0.00 8735.3 -175.5 1514.0 2.00 8801.2 180.00 11694.9 0.00 0.00 11629.0 -175.5 1514.0 0.00 0.00 -196.2 Start Build 10.00 12598.9 359.55 12201.9 10.00 359.55 Start 9863.8 hold at 12598.9 MD 90.40 401.4 1509.5 2452.7 1431.9 Magnetic North: 6.28° Magnetic Field West(-)/East(+) (150 usft/in) 1050 1200 1350 1500 1650 1800 1950 2100 2250 10500-TD at 22462.7 10350-#203H 22462.7 -10500 -10350 (ui/Jis 10200--10200 South(-)/North(+) (150 L 10050 Com Fed -9900 9750 9600--9600 9450--9450 1350 1500 1650 1800 1950 2100 2250 West(-)/East(+) (400 usft/in) 1200 1600 2000 2400 2800 3200 3600 4000 4400 10800--10800 TD at 22462.7 10350--10350 9900 -9900 #203H 9450 -9450 9000 -9000 8550 -8550 8100 -8100 7650 -7650 7200 -7200 6750 6750 6300 -6300 -5850 usft/in) -5400 -4950 **-4500** usft/in) -4050 3600--3600 3150--3150 2700--2700 2250-Start 9863.8 hold at 12598.9 MD-2250 Start Build 10.00 -1800 1800-Start 2893.7 hold at 8801.2 MD 1350-1350 Start Drop -2.00 -900 900-Start 6501.2 hold at 1900.0 MD 450 450 Start Build 2.00 -450 --450 -900 --900 2000 2400 2800 3200 3600 4000 4400 1600 West(-)/East(+) (400 usft/in) # **Matador Production Company** Antelope Ridge Nina Cortell Nina Cortell Fed Com #203H Wellbore #1 Plan: BLM Plan #1 # **Standard Planning Report** 16 November, 2020 EDM 5000.14 Server Database: Company: Project: Site: Well: Matador Production Company Antelope Ridge Nina Cortell Nina Cortell Fed Com #203H Wellbore: Wellbore #1 Design: BLM Plan #1 Local Co-ordinate Reference: **Survey Calculation Method:** TVD Reference: MD Reference: North Reference: Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) Minimum Curvature **Project** Antelope Ridge Map System: Geo Datum: Map Zone: US State Plane 1927 (Exact solution) NAD 1927 (NADCON CONUS) New Mexico East 3001 System Datum: Mean Sea Level Using geodetic scale factor Site Nina Cortell Site Position: From: Lat/Long **Position Uncertainty:** Northing: Easting: 0.0 usft **Slot Radius:** 509,698.48 usft 705,998.14 usft Latitude: Longitude: 32° 23' 58.229 N 103° 39' 57.270 W 0.36° 13-3/16 " **Grid Convergence:** Well Nina Cortell Fed Com #203H +N/-S **Well Position** 28.1 usft 2,452.7 usft Northing: Easting: 509,726.54 usft 708,450.76 usft Latitude: Longitude: 32° 23' 58.354 N 103° 39' 28.662 W +E/-W **Position Uncertainty** 0.0 usft Wellhead Elevation: **Ground Level:** 3,789.0 usft Wellbore Wellbore #1 Declination **Field Strength Magnetics Model Name Sample Date Dip Angle** (°) (°) (nT) 47.681.09914358 **IGRF2015** 11/7/2020 6.64 60.16 BLM Plan #1 Design **Audit Notes:** Version: Phase: **PROTOTYPE** Tie On Depth: 0.0 Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°) 0.0 28.1 2,452.7 359.55 **Plan Survey Tool Program** Date 11/16/2020 **Depth From Depth To** (usft) (usft) Survey (Wellbore) **Tool Name** Remarks 0.0 1 22,462.7 BLM Plan #1 (Wellbore #1) **MWD** OWSG MWD - Standard | Plan Sections | S | | | | | | | | | | |-----------------------------|--------------------|----------------|-----------------------------|-----------------|-----------------|-------------------------------|------------------------------|-----------------------------|------------|----------------------| | Measured
Depth
(usft) | Inclination
(°) | Azimuth
(°) | Vertical
Depth
(usft) | +N/-S
(usft) | +E/-W
(usft) | Dogleg
Rate
(°/100usft) | Build
Rate
(°/100usft) | Turn
Rate
(°/100usft) | TFO
(°) | Target | | 0.0 | 0.00 | 0.00 | 0.0 | 28.1 | 2,452.7 | 0.00 | 0.00 | 0.00 | 0.00 | | | 1,500.0 | 0.00 | 0.00 | 1,500.0 | 28.1 | 2,452.7 | 0.00 | 0.00 | 0.00 | 0.00 | | | 1,900.0 | 8.00 | 257.77 | 1,898.7 | 22.2 | 2,425.5 | 2.00 | 2.00 | 0.00 | 257.77 | | | 8,401.2 | 8.00 | 257.77 | 8,336.6 | -169.6 | 1,541.2 | 0.00 | 0.00 | 0.00 | 0.00 | | | 8,801.2 | 0.00 | 0.00 | 8,735.3 | -175.5 | 1,514.0 | 2.00 | -2.00 | 0.00 | 180.00 | | | 11,694.9 | 0.00 | 0.00 | 11,629.0 | -175.5 | 1,514.0 | 0.00 | 0.00 | 0.00 | 0.00 | VP - Nina Cortell F€ | | 12,598.9 | 90.40 | 359.55 | 12,201.9 | 401.4 | 1,509.5 | 10.00 | 10.00 | 0.00 | 359.55 | | | 22,462.7 | 90.40 | 359.55 | 12,133.0 | 10,264.7 | 1,431.9 | 0.00 | 0.00 | 0.00 | 0.00 | BHL - Nina Cortell F | Database: EDM 5000.14 Server Company: Matador Production Company Project: Antelope Ridge Site: Nina Cortell Well: Nina Cortell Fed Com #203H Wellbore: Wellbore #1 Design: BLM Plan #1 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) Grid | ned Survey | | | | | | | | | | |---|------------------------------|------------------------------|--|------------------------------|--|--------------------------|------------------------------|------------------------------|------------------------------| | Measured
Depth | Inclination | Azimuth | Vertical
Depth | +N/-S | +E/-W | Vertical
Section | Dogleg
Rate | Build
Rate | Turn
Rate | | (usft) | (°) | (°) | (usft) | (usft) | (usft) | (usft) | (°/100usft) | (°/100usft) | (°/100usft) | | 0.0 | 0.00 | 0.00 | 0.0 | 28.1 | 2,452.7 | 0.0 | 0.00 | 0.00 | 0.00 | | 100.0 | 0.00 | 0.00 | 100.0 | 28.1 | 2,452.7 | 0.0 | 0.00 | 0.00 | 0.00 | | 200.0 | 0.00 | 0.00 | 200.0 | 28.1 | 2,452.7 | 0.0 | 0.00 | 0.00 | 0.00 | | 300.0 | 0.00 | 0.00 | 300.0 | 28.1 | 2,452.7 | 0.0 | 0.00 | 0.00 | 0.00 | | 400.0 | 0.00 | 0.00 | 400.0 | 28.1 | 2,452.7 | 0.0 | 0.00 | 0.00 | 0.00 | | 500.0 | 0.00 | 0.00 | 500.0 | 28.1 | 2,452.7 | 0.0 | 0.00 | 0.00 | 0.00 | | 600.0 | 0.00 | 0.00 | 600.0 | 28.1 | 2,452.7 | 0.0 | 0.00 | 0.00 | 0.00 | | 700.0 | 0.00 | 0.00 | 700.0 | 28.1 | 2,452.7 | 0.0 | 0.00 | 0.00 | 0.00 | | 800.0 | 0.00 | 0.00 | 800.0 | 28.1 | 2,452.7 | 0.0 | 0.00 | 0.00 | 0.00 | | 839.0 | 0.00 | 0.00 | 839.0 | 28.1 | 2,452.7 | 0.0 | 0.00 | 0.00 | 0.00 | | Z (Rustler) | | | | | | | | | | | 900.0
1,000.0
1,100.0
1,191.0
Z (Salado) | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 900.0
1,000.0
1,100.0
1,191.0 | 28.1
28.1
28.1
28.1 | 2,452.7
2,452.7
2,452.7
2,452.7 | 0.0
0.0
0.0
0.0 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 1,200.0 | 0.00 | 0.00 | 1,200.0 | 28.1 | 2,452.7 | 0.0 | 0.00 | 0.00 | 0.00 | | 1,300.0 | 0.00 | 0.00 | 1,300.0 | 28.1 | 2,452.7 | 0.0 | 0.00 | 0.00 | 0.00 | | 1,400.0 | 0.00 | 0.00 | 1,400.0 | 28.1 | 2,452.7 | 0.0 | 0.00 | 0.00 | 0.00 | | 1,500.0 | 0.00 | 0.00 | 1,500.0 | 28.1 | 2,452.7 | 0.0 | 0.00 | 0.00 | 0.00 | | Start Build | | | | | | | | | | | 1,600.0 | 2.00 | 257.77 | 1,600.0 | 27.7 | 2,451.0 | -0.4 | 2.00 | 2.00 | 0.00 | | 1,700.0 | 4.00 | 257.77 | 1,699.8 | 26.6 | 2,445.9 | -1.4 | 2.00 | 2.00 | 0.00 | | 1,800.0 | 6.00 | 257.77 | 1,799.5 | 24.7 | 2,437.4 | -3.2 | 2.00 | 2.00 | 0.00 | | 1,900.0 | 8.00 | 257.77 | 1,898.7 | 22.2 | 2,425.5 | -5.7 | 2.00 | 2.00 | 0.00 | | 2,000.0 | 2 hold at 1900
8.00 | 257.77 | 1,997.7 | 19.2 | 2,411.9 | -8.5 | 0.00 | 0.00 | 0.00 | | 2,100.0 | 8.00 | 257.77 | 2,096.8 | 16.3 | 2,398.3 | -11.4 | 0.00 | 0.00 | 0.00 | | 2,200.0 | 8.00 | 257.77 | 2,195.8 | 13.3 | 2,384.7 | -14.2 | 0.00 | 0.00 | 0.00 | | 2,300.0 | 8.00 | 257.77 | 2,294.8 | 10.4 | 2,371.1 | -17.1 | 0.00 | 0.00 | 0.00 | | 2,400.0 | 8.00 | 257.77 | 2,393.8 | 7.4 | 2,357.5 | -19.9 | 0.00 | 0.00 | 0.00 | | 2,500.0 | 8.00 | 257.77 | 2,492.9 | 4.5 | 2,343.9 | -22.7 | 0.00 | 0.00 | 0.00 | | 2,600.0 | 8.00 | 257.77 | 2,591.9 | 1.5 | 2,330.3 | -25.6 | 0.00 | 0.00 | 0.00 | | 2,700.0 | 8.00 | 257.77 | 2,690.9 | -1.4 | 2,316.7 | -28.4 | 0.00 | 0.00 | 0.00 | | 2,800.0 | 8.00 | 257.77 | 2,789.9 | -4.4 | 2,303.1 | -31.3 | 0.00 | 0.00 | 0.00 | | 2,900.0 | 8.00 | 257.77 | 2,889.0 | -7.3 | 2,289.5 | -34.1 | 0.00 | 0.00 | 0.00 | | 3,000.0 | 8.00 | 257.77 | 2,988.0 | -10.3 | 2,275.9 | -37.0 | 0.00 | 0.00 | 0.00 | | 3,100.0 | 8.00 | 257.77 | 3,087.0 | -13.2 | 2,262.3 | -39.8 | 0.00 | 0.00 | 0.00 | | 3,200.0 | 8.00 | 257.77 | 3,186.1 | -16.2 | 2,248.7 | -42.6 | 0.00 | 0.00 | 0.00 | | 3,300.0 | 8.00 | 257.77 | 3,285.1 | -19.1 | 2,235.1 | -45.5 | 0.00 | 0.00 | 0.00 | | 3,300.2 | 8.00 | 257.77 | 3,285.3 | -19.1 | 2,235.0 | -45.5 | 0.00 | 0.00 | 0.00 | | Z (Castile | | | | | | | | | | | 3,400.0 | 8.00 | 257.77 | 3,384.1 | -22.1 | 2,221.5 | -48.3 | 0.00 | 0.00 | 0.00 | | 3,500.0 | 8.00 | 257.77 | 3,483.1 | -25.0 | 2,207.9 | -51.2 | 0.00 | 0.00 | 0.00 | | 3,600.0 | 8.00 | 257.77 | 3,582.2 | -28.0 | 2,194.3 | -54.0 | 0.00 | 0.00 | 0.00 | | 3,700.0 | 8.00 | 257.77 | 3,681.2 | -30.9 | 2,180.7 | -56.9 | 0.00 | 0.00 | 0.00 | | 3,800.0 | 8.00 | 257.77 | 3,780.2 | -33.9 | 2,167.1 | -59.7 | 0.00 | 0.00 | 0.00 | | 3,900.0 | 8.00 | 257.77 | 3,879.2 |
-36.8 | 2,153.5 | -62.5 | 0.00 | 0.00 | 0.00 | | 4,000.0 | 8.00 | 257.77 | 3,978.3 | -39.8 | 2,139.9 | -65.4 | 0.00 | 0.00 | 0.00 | | 4,100.0 | 8.00 | 257.77 | 4,077.3 | -42.7 | 2,126.3 | -68.2 | 0.00 | 0.00 | 0.00 | | 4,200.0 | 8.00 | 257.77 | 4,176.3 | -45.7 | 2,112.7 | -71.1 | 0.00 | 0.00 | 0.00 | | 4,300.0 | 8.00 | 257.77 | 4,275.3 | -48.6 | 2,099.1 | -73.9 | 0.00 | 0.00 | 0.00 | | 4,400.0 | 8.00 | 257.77 | 4,374.4 | -51.6 | 2,085.5 | -76.8 | 0.00 | 0.00 | 0.00 | Database: EDM 5000.14 Server Company: Matador Production Company Project: Antelope Ridge Site: Nina Cortell Well: Nina Cortell Fed Com #203H Wellbore: Wellbore #1 Design: BLM Plan #1 Local Co-ordinate Reference: **Survey Calculation Method:** TVD Reference: MD Reference: North Reference: Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) Grid | sign: | BLM Plan #1 | | | | | | | | | |---|------------------------------|--|---|---|---|--|--------------------------------------|--------------------------------------|--------------------------------------| | anned Survey | | | | | | | | | | | Measured
Depth
(usft) | Inclination
(°) | Azimuth
(°) | Vertical
Depth
(usft) | +N/-S
(usft) | +E/-W
(usft) | Vertical
Section
(usft) | Dogleg
Rate
(°/100usft) | Build
Rate
(°/100usft) | Turn
Rate
(°/100usft) | | 4,500.0 | 8.00 | 257.77 | 4,473.4 | -54.5 | 2,071.8 | -79.6 | 0.00 | 0.00 | 0.00 | | 4,600.0 | 8.00 | 257.77 | 4,572.4 | -57.5 | 2,058.2 | -82.4 | 0.00 | 0.00 | 0.00 | | 4,700.0 | 8.00 | 257.77 | 4,671.5 | -60.4 | 2,044.6 | -85.3 | 0.00 | 0.00 | 0.00 | | 4,800.0 | 8.00 | 257.77 | 4,770.5 | -63.4 | 2,031.0 | -88.1 | 0.00 | 0.00 | 0.00 | | 4,900.0 | 8.00 | 257.77 | 4,869.5 | -66.3 | 2,017.4 | -91.0 | 0.00 | 0.00 | 0.00 | | 4,928.4 | 8.00 | 257.77 | 4,897.6 | -67.2 | 2,013.6 | -91.8 | 0.00 | 0.00 | 0.00 | | Z (G30:CS
4,970.8
Z (G26: Be | 8.00 | 257.77 | 4,939.6 | -68.4 | 2,007.8 | -93.0 | 0.00 | 0.00 | 0.00 | | 5,000.0 | 8.00 | 257.77 | 4,968.5 | -69.3 | 2,003.8 | -93.8 | 0.00 | 0.00 | 0.00 | | 5,100.0 | 8.00 | 257.77 | 5,067.6 | -72.2 | 1,990.2 | -96.6 | 0.00 | 0.00 | 0.00 | | 5,200.0 | 8.00 | 257.77 | 5,166.6 | -75.2 | 1,976.6 | -99.5 | 0.00 | 0.00 | 0.00 | | 5,300.0 | 8.00 | 257.77 | 5,265.6 | -78.1 | 1,963.0 | -102.3 | 0.00 | 0.00 | 0.00 | | 5,400.0 | 8.00 | 257.77 | 5,364.6 | -81.1 | 1,949.4 | -105.2 | 0.00 | 0.00 | 0.00 | | 5,500.0
5,600.0
5,700.0
5,800.0
5,882.9 | 8.00
8.00
8.00
8.00 | 257.77
257.77
257.77
257.77
257.77 | 5,463.7
5,562.7
5,661.7
5,760.7
5,842.8 | -84.0
-87.0
-89.9
-92.9
-95.3 | 1,935.8
1,922.2
1,908.6
1,895.0
1,883.8 | -108.0
-110.9
-113.7
-116.5
-118.9 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | nerry Cyn.) | | | | | | | | | | 5,900.0 | 8.00 | 257.77 | 5,859.8 | -95.8 | 1,881.4 | -119.4 | 0.00 | 0.00 | 0.00 | | 6,000.0 | 8.00 | 257.77 | 5,958.8 | -98.8 | 1,867.8 | -122.2 | 0.00 | 0.00 | 0.00 | | 6,100.0 | 8.00 | 257.77 | 6,057.8 | -101.7 | 1,854.2 | -125.1 | 0.00 | 0.00 | 0.00 | | 6,200.0 | 8.00 | 257.77 | 6,156.9 | -104.7 | 1,840.6 | -127.9 | 0.00 | 0.00 | 0.00 | | 6,300.0 | 8.00 | 257.77 | 6,255.9 | -107.6 | 1,827.0 | -130.8 | 0.00 | 0.00 | 0.00 | | 6,400.0 | 8.00 | 257.77 | 6,354.9 | -110.6 | 1,813.4 | -133.6 | 0.00 | 0.00 | 0.00 | | 6,500.0 | 8.00 | 257.77 | 6,453.9 | -113.5 | 1,799.8 | -136.4 | 0.00 | 0.00 | 0.00 | | 6,600.0 | 8.00 | 257.77 | 6,553.0 | -116.5 | 1,786.2 | -139.3 | 0.00 | 0.00 | 0.00 | | 6,700.0 | 8.00 | 257.77 | 6,652.0 | -119.4 | 1,772.6 | -142.1 | 0.00 | 0.00 | 0.00 | | 6,800.0 | 8.00 | 257.77 | 6,751.0 | -122.4 | 1,759.0 | -145.0 | 0.00 | 0.00 | 0.00 | | 6,900.0 | 8.00 | 257.77 | 6,850.0 | -125.3 | 1,745.4 | -147.8 | 0.00 | 0.00 | 0.00 | | 7,000.0 | 8.00 | 257.77 | 6,949.1 | -128.3 | 1,731.8 | -150.7 | 0.00 | 0.00 | 0.00 | | 7,037.4 | 8.00 | 257.77 | 6,986.1 | -129.4 | 1,726.7 | -151.7 | 0.00 | 0.00 | 0.00 | | Z (G7: Bru
7,100.0 | shy Cyn.) Ante
8.00 | elope Ridge
257.77 | 7,048.1 | -131.2 | 1.718.2 | -153.5 | 0.00 | 0.00 | 0.00 | | 7,200.0 | 8.00 | 257.77 | 7,147.1 | -134.2 | 1,704.6 | -156.3 | 0.00 | 0.00 | 0.00 | | 7,300.0 | 8.00 | 257.77 | 7,246.1 | -137.1 | 1,691.0 | -159.2 | 0.00 | 0.00 | 0.00 | | 7,400.0 | 8.00 | 257.77 | 7,345.2 | -140.1 | 1,677.4 | -162.0 | 0.00 | 0.00 | 0.00 | | 7,500.0 | 8.00 | 257.77 | 7,444.2 | -143.0 | 1,663.8 | -164.9 | 0.00 | 0.00 | 0.00 | | 7,600.0 | 8.00 | 257.77 | 7,543.2 | -146.0 | 1,650.2 | -167.7 | 0.00 | 0.00 | 0.00 | | 7,700.0 | 8.00 | 257.77 | 7,642.3 | -148.9 | 1,636.6 | -170.6 | 0.00 | 0.00 | 0.00 | | 7,800.0 | 8.00 | 257.77 | 7,741.3 | -151.9 | 1,623.0 | -173.4 | 0.00 | 0.00 | 0.00 | | 7,900.0 | 8.00 | 257.77 | 7,840.3 | -154.8 | 1,609.4 | -176.2 | 0.00 | 0.00 | 0.00 | | 8,000.0 | 8.00 | 257.77 | 7,939.3 | -157.8 | 1,595.8 | -179.1 | 0.00 | 0.00 | 0.00 | | 8,100.0 | 8.00 | 257.77 | 8,038.4 | -160.7 | 1,582.2 | -181.9 | 0.00 | 0.00 | 0.00 | | 8,200.0 | 8.00 | 257.77 | 8,137.4 | -163.7 | 1,568.6 | -184.8 | 0.00 | 0.00 | 0.00 | | 8,300.0 | 8.00 | 257.77 | 8,236.4 | -166.6 | 1,555.0 | -187.6 | 0.00 | 0.00 | 0.00 | | 8,400.0 | 8.00 | 257.77 | 8,335.4 | -169.5 | 1,541.4 | -190.4 | 0.00 | 0.00 | 0.00 | | 8,401.2 | 8.00 | 257.77 | 8,336.6 | -169.6 | 1,541.2 | -190.5 | 0.00 | 0.00 | 0.00 | | Start Drop | | | | | | | 3.00 | | | | 8,500.0 | 6.02 | 257.77 | 8,434.7 | -172.1 | 1,529.5 | -192.9 | 2.00 | -2.00 | 0.00 | | 8,600.0 | 4.02 | 257.77 | 8,534.3 | -174.0 | 1,520.9 | -194.7 | 2.00 | -2.00 | 0.00 | | 8,700.0 | 2.02 | 257.77 | 8,634.2 | -175.1 | 1,515.7 | -195.8 | 2.00 | -2.00 | 0.00 | Database: EDM 5000.14 Server Company: Matador Production Company Project: Antelope Ridge Site: Nina Cortell Well: Nina Cortell Fed Com #203H Wellbore: Wellbore #1 Design: BLM Plan #1 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) Grid | ned Survey | | | | | | | | | | |---|---|--|--|--|---|--|---|---|--------------------------------------| | inca ourvey | | | | | | | | | | | Measured
Depth
(usft) | Inclination
(°) | Azimuth
(°) | Vertical
Depth
(usft) | +N/-S
(usft) | +E/-W
(usft) | Vertical
Section
(usft) | Dogleg
Rate
(°/100usft) | Build
Rate
(°/100usft) | Turn
Rate
(°/100usft) | | 8,800.0
8,801.2 | 0.02
0.00 | 257.77
0.00 | 8,734.1
8,735.3 | -175.5
-175.5 | 1,514.0
1,514.0 | -196.2
-196.2 | 2.00
2.00 | -2.00
-2.00 | 0.00
0.00 | | | 3.7 hold at 8801 | | 0 007 4 | 175 E | 1 514 0 | 106.0 | 0.00 | 0.00 | 0.00 | | 8,893.2
Z (G4: BS | 0.00 | 0.00 | 8,827.4 | -175.5 | 1,514.0 | -196.2 | 0.00 | 0.00 | 0.00 | | 8,900.0 | 0.00 | 0.00 | 8,834.1 | -175.5 | 1,514.0 | -196.2 | 0.00 | 0.00 | 0.00 | | 9,000.0
9,100.0
9,200.0
9,300.0
9,400.0 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 8,934.1
9,034.1
9,134.1
9,234.1
9,334.1 | -175.5
-175.5
-175.5
-175.5
-175.5 | 1,514.0
1,514.0
1,514.0
1,514.0
1,514.0 | -196.2
-196.2
-196.2
-196.2
-196.2 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 9,500.0
9,600.0
9,700.0
9,731.2
Z (L5.3: F | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 9,434.1
9,534.1
9,634.1
9,665.4 | -175.5
-175.5
-175.5
-175.5 | 1,514.0
1,514.0
1,514.0
1,514.0 | -196.2
-196.2
-196.2
-196.2 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 9,800.0 | 0.00 | 0.00 | 9,734.1 | -175.5 | 1,514.0 | -196.2 | 0.00 | 0.00 | 0.00 | | 9,900.0
9,964.2 | 0.00
0.00 | 0.00
0.00 | 9,834.1
9,898.4 | -175.5
-175.5 | 1,514.0
1,514.0 | -196.2
-196.2 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | Z (Ĺ5.1: F | | | , | | , | | | | | | 10,000.0
10,100.0
10,200.0 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 9,934.1
10,034.1
10,134.1 | -175.5
-175.5
-175.5 | 1,514.0
1,514.0
1,514.0 | -196.2
-196.2
-196.2 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | | 10,245.2 | 0.00 | 0.00 | 10,179.4 | -175.5 | 1,514.0 | -196.2 | 0.00 | 0.00 | 0.00 | | Z (L4.3: S 10,300.0 | BSC) 0.00 | 0.00 | 10,234.1 | -175.5 | 1,514.0 | -196.2 | 0.00 | 0.00 | 0.00 | | 10,400.0
10,500.0
10,600.0 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 10,334.1
10,434.1
10,534.1 | -175.5
-175.5
-175.5 | 1,514.0
1,514.0
1,514.0 | -196.2
-196.2
-196.2 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | | 10,624.2 | 0.00 | 0.00 | 10,558.4 | -175.5 | 1,514.0 | -196.2 | 0.00 | 0.00 | 0.00 | | Z (L4.1: S | • | | | | | | | | | | 10,700.0
10,800.0
10,900.0
11,000.0 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 10,634.1
10,734.1
10,834.1
10,934.1 | -175.5
-175.5
-175.5
-175.5 | 1,514.0
1,514.0
1,514.0
1,514.0 | -196.2
-196.2
-196.2
-196.2 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
| 0.00
0.00
0.00
0.00 | | 11,046.2 | 0.00 | 0.00 | 10,980.4 | -175.5 | 1,514.0 | -196.2 | 0.00 | 0.00 | 0.00 | | Z (L3.3: T 11,100.0 11,200.0 11,300.0 11,400.0 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 11,034.1
11,134.1
11,234.1
11,334.1 | -175.5
-175.5
-175.5
-175.5 | 1,514.0
1,514.0
1,514.0
1,514.0 | -196.2
-196.2
-196.2
-196.2 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 11,500.0
11,600.0
11,682.2 | | 0.00
0.00
0.00 | 11,434.1
11,534.1
11,616.4 | -175.5
-175.5
-175.5 | 1,514.0
1,514.0
1,514.0 | -196.2
-196.2
-196.2 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | | Z (L3.1: T
11,694.9 | 0.00 | 0.00 | 11,629.0 | -175.5 | 1,514.0 | -196.2 | 0.00 | 0.00 | 0.00 | | 11,700.0 | d 10.00 - VP - N
0.51 | lina Cortell Fe
359.55 | ed Com #203H
11,634.1 | -175.5 | 1,514.0 | -196.2 | 10.00 | 10.00 | 0.00 | | 11,800.0
11,900.0
12,000.0
12,100.0
12,105.5 | 10.51
20.51
30.51
40.51
41.07 | 359.55
359.55
359.55
359.55
359.55 | 11,733.5
11,829.8
11,919.9
12,001.2
12,005.4 | -165.9
-139.2
-96.1
-38.1
-34.5 | 1,513.9
1,513.7
1,513.4
1,512.9
1,512.9 | -186.6
-159.8
-116.8
-58.8
-55.2 | 10.00
10.00
10.00
10.00
10.00 | 10.00
10.00
10.00
10.00
10.00 | 0.00
0.00
0.00
0.00
0.00 | Database: EDM 5000.14 Server Company: Matador Production Company Project: Antelone Ridge Project: Antelope Ridge Site: Nina Cortell Well: Nina Cortell Fed Com #203H Wellbore: Wellbore #1 Design: BLM Plan #1 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) Grid | anned Survey | | | | | | | | | | |--|-------------------------------|----------------------------|----------------------------------|-------------------------|-------------------------------|-------------------------------|-------------------------------|------------------------------|-----------------------------| | Measured
Depth
(usft) | Inclination
(°) | Azimuth
(°) | Vertical
Depth
(usft) | +N/-S
(usft) | +E/-W
(usft) | Vertical
Section
(usft) | Dogleg
Rate
(°/100usft) | Build
Rate
(°/100usft) | Turn
Rate
(°/100usft) | | Z (L2: WFMPA) | | | | | | | | | | | 12,178.2
Z (X Sand | 48.34
(T)) - FTP - Nir | 359.55 | 12,057.0 | 16.6 | 1,512.5 | -4.1 | 10.00 | 10.00 | 0.00 | | 12,200.0 | 50.51 | 359.55 | 12,071.2 | 33.1 | 1,512.4 | 12.4 | 10.00 | 10.00 | 0.00 | | 12,247.2 | 55.23 | 359.55 | 12,099.7 | 70.7 | 1,512.1 | 50.0 | 10.00 | 10.00 | 0.00 | | Z (X Sand
12,281.6
Z (Y Sand | 58.68 | 359.55 | 12,118.4 | 99.6 | 1,511.8 | 78.9 | 10.00 | 10.00 | 0.00 | | 12,300.0 | 60.51 | 359.55 | 12,127.7 | 115.4 | 1,511.7 | 94.8 | 10.00 | 10.00 | 0.00 | | 12,384.6 | 68.97 | 359.55 | 12,163.8 | 191.9 | 1,511.1 | 171.2 | 10.00 | 10.00 | 0.00 | | Z (Y Sand
12,400.0
12,500.0
12,598.9 | 70.51
80.51
90.40 | 359.55
359.55
359.55 | 12,169.1
12,194.1
12,201.9 | 206.3
303.0
401.4 | 1,511.0
1,510.2
1,509.5 | 185.7
282.4
380.8 | 10.00
10.00
10.00 | 10.00
10.00
10.00 | 0.00
0.00
0.00 | | Start 9863
12,600.0 | 90.40 8.8 hold at 1259 | 8.9 MD
359.55 | 12,201.9 | 402.6 | 1,509.5 | 381.9 | 0.00 | 0.00 | 0.00 | | 12,700.0 | 90.40 | 359.55 | 12,201.2 | 502.6 | 1,508.7 | 481.9 | 0.00 | 0.00 | 0.00 | | 12,800.0 | 90.40 | 359.55 | 12,200.5 | 602.6 | 1,507.9 | 581.9 | 0.00 | 0.00 | 0.00 | | 12,900.0 | 90.40 | 359.55 | 12,199.8 | 702.6 | 1,507.1 | 681.9 | 0.00 | 0.00 | 0.00 | | 13,000.0 | 90.40 | 359.55 | 12,199.1 | 802.6 | 1,506.3 | 781.9 | 0.00 | 0.00 | 0.00 | | 13,100.0 | 90.40 | 359.55 | 12,198.4 | 902.6 | 1,505.5 | 881.9 | 0.00 | 0.00 | 0.00 | | 13,200.0 | 90.40 | 359.55 | 12,197.7 | 1,002.5 | 1,504.7 | 981.9 | 0.00 | 0.00 | 0.00 | | 13,300.0 | 90.40 | 359.55 | 12,197.0 | 1,102.5 | 1,504.0 | 1,081.9 | 0.00 | 0.00 | 0.00 | | 13,400.0 | 90.40 | 359.55 | 12,196.4 | 1,202.5 | 1,503.2 | 1,181.9 | 0.00 | 0.00 | 0.00 | | 13,500.0 | 90.40 | 359.55 | 12,195.7 | 1,302.5 | 1,502.4 | 1,281.9 | 0.00 | 0.00 | 0.00 | | 13,600.0 | 90.40 | 359.55 | 12,195.0 | 1,402.5 | 1,501.6 | 1,381.9 | 0.00 | 0.00 | 0.00 | | 13,700.0 | 90.40 | 359.55 | 12,194.3 | 1,502.5 | 1,500.8 | 1,481.9 | 0.00 | 0.00 | 0.00 | | 13,800.0 | 90.40 | 359.55 | 12,193.6 | 1,602.5 | 1,500.0 | 1,581.9 | 0.00 | 0.00 | 0.00 | | 13,900.0 | 90.40 | 359.55 | 12,192.9 | 1,702.5 | 1,499.2 | 1,681.9 | 0.00 | 0.00 | 0.00 | | 14,000.0 | 90.40 | 359.55 | 12,192.2 | 1,802.5 | 1,498.5 | 1,781.9 | 0.00 | 0.00 | 0.00 | | 14,100.0 | 90.40 | 359.55 | 12,191.5 | 1,902.5 | 1,497.7 | 1,881.9 | 0.00 | 0.00 | 0.00 | | 14,200.0 | 90.40 | 359.55 | 12,190.8 | 2,002.5 | 1,496.9 | 1,981.9 | 0.00 | 0.00 | 0.00 | | 14,300.0 | 90.40 | 359.55 | 12,190.1 | 2,102.5 | 1,496.1 | 2,081.9 | 0.00 | 0.00 | 0.00 | | 14,400.0 | 90.40 | 359.55 | 12,189.4 | 2,202.5 | 1,495.3 | 2,181.9 | 0.00 | 0.00 | 0.00 | | 14,500.0 | 90.40 | 359.55 | 12,188.7 | 2,302.5 | 1,494.5 | 2,281.9 | 0.00 | 0.00 | 0.00 | | 14,600.0 | 90.40 | 359.55 | 12,188.0 | 2,402.5 | 1,493.8 | 2,381.9 | 0.00 | 0.00 | 0.00 | | 14,700.0 | 90.40 | 359.55 | 12,187.3 | 2,502.5 | 1,493.0 | 2,481.9 | 0.00 | 0.00 | 0.00 | | 14,800.0 | 90.40 | 359.55 | 12,186.6 | 2,602.5 | 1,492.2 | 2,581.9 | 0.00 | 0.00 | 0.00 | | 14,900.0 | 90.40 | 359.55 | 12,185.9 | 2,702.5 | 1,491.4 | 2,681.9 | 0.00 | 0.00 | 0.00 | | 15,000.0 | 90.40 | 359.55 | 12,185.2 | 2,802.4 | 1,490.6 | 2,781.9 | 0.00 | 0.00 | 0.00 | | 15,100.0 | 90.40 | 359.55 | 12,184.5 | 2,902.4 | 1,489.8 | 2,881.9 | 0.00 | 0.00 | 0.00 | | 15,200.0 | 90.40 | 359.55 | 12,183.8 | 3,002.4 | 1,489.0 | 2,981.9 | 0.00 | 0.00 | 0.00 | | 15,300.0 | 90.40 | 359.55 | 12,183.1 | 3,102.4 | 1,488.3 | 3,081.9 | 0.00 | 0.00 | 0.00 | | 15,400.0 | 90.40 | 359.55 | 12,182.4 | 3,202.4 | 1,487.5 | 3,181.8 | 0.00 | 0.00 | 0.00 | | 15,500.0 | 90.40 | 359.55 | 12,181.7 | 3,302.4 | 1,486.7 | 3,281.8 | 0.00 | 0.00 | 0.00 | | 15,600.0 | 90.40 | 359.55 | 12,181.0 | 3,402.4 | 1,485.9 | 3,381.8 | 0.00 | 0.00 | 0.00 | | 15,700.0 | 90.40 | 359.55 | 12,180.3 | 3,502.4 | 1,485.1 | 3,481.8 | 0.00 | 0.00 | 0.00 | | 15,800.0 | 90.40 | 359.55 | 12,179.6 | 3,602.4 | 1,484.3 | 3,581.8 | 0.00 | 0.00 | 0.00 | | 15,900.0 | 90.40 | 359.55 | 12,178.9 | 3,702.4 | 1,483.5 | 3,681.8 | 0.00 | 0.00 | 0.00 | | 16,000.0 | 90.40 | 359.55 | 12,178.2 | 3,802.4 | 1,482.8 | 3,781.8 | 0.00 | 0.00 | 0.00 | | 16,100.0 | 90.40 | 359.55 | 12,177.5 | 3,902.4 | 1,482.0 | 3,881.8 | 0.00 | 0.00 | 0.00 | | 16,200.0 | 90.40 | 359.55 | 12,176.8 | 4,002.4 | 1,481.2 | 3,981.8 | 0.00 | 0.00 | 0.00 | | 16,300.0 | 90.40 | 359.55 | 12,176.1 | 4,102.4 | 1,480.4 | 4,081.8 | 0.00 | 0.00 | 0.00 | Database: EDM 5000.14 Server Company: Matador Production Company Company: Matador Production Com Project: Antelope Ridge Site: Nina Cortell Well: Nina Cortell Fed Com #203H Wellbore: Wellbore #1 Design: BLM Plan #1 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) Grid | Design: | BLM Plan #1 | | | | | | | | | |-----------------------------|--------------------|----------------|-----------------------------|-----------------|-----------------|-------------------------------|-------------------------------|------------------------------|-----------------------------| | Planned Survey | | | | | | | | | | | Measured
Depth
(usft) | Inclination
(°) | Azimuth
(°) | Vertical
Depth
(usft) | +N/-S
(usft) | +E/-W
(usft) | Vertical
Section
(usft) | Dogleg
Rate
(°/100usft) | Build
Rate
(°/100usft) | Turn
Rate
(°/100usft) | | 16,400.0 | 90.40 | 359.55 | 12,175.4 | 4,202.4 | 1,479.6 | 4,181.8 | 0.00 | 0.00 | 0.00 | | 16,500.0 | 90.40 | 359.55 | 12,174.7 | 4,302.4 | 1,478.8 | 4,281.8 | 0.00 | 0.00 | 0.00 | | 16,600.0 | 90.40 | 359.55 | 12,174.0 | 4,402.4 | 1,478.0 | 4,381.8 | 0.00 | 0.00 | 0.00 | | 16,700.0 | 90.40 | 359.55 | 12,173.3 | 4,502.4 | 1,477.3 | 4,481.8 | 0.00 | 0.00 | 0.00 | | 16,800.0 | 90.40 | 359.55 | 12,172.6 | 4,602.4 | 1,476.5 | 4,581.8 | 0.00 | 0.00 | 0.00 | | 16,900.0 | 90.40 | 359.55 | 12,171.9 | 4,702.3 | 1,475.7 | 4,681.8 | 0.00 | 0.00 | 0.00 | | 17,000.0 | 90.40 | 359.55 | 12,171.2 | 4,802.3 | 1,474.9 | 4,781.8 | 0.00 | 0.00 | 0.00 | | 17,100.0 | 90.40 | 359.55 | 12,170.5 | 4,902.3 | 1,474.1 | 4,881.8 | 0.00 | 0.00 | 0.00 | | 17,200.0 | 90.40 | 359.55 | 12,169.8 | 5,002.3 | 1,473.3 | 4,981.8 | 0.00 | 0.00 | 0.00 | | 17,300.0 | 90.40 | 359.55 | 12,169.1 | 5,102.3 | 1,472.5 | 5,081.8 | 0.00 | 0.00 | 0.00 | | 17,400.0 | 90.40 | 359.55 | 12,168.4 | 5,202.3 | 1,471.8 | 5,181.8 | 0.00 | 0.00 | 0.00 | | 17,500.0 | 90.40 | 359.55 | 12,167.7 | 5,302.3 | 1,471.0 | 5,281.8 | 0.00 | 0.00 | 0.00 | | 17,600.0 | 90.40 | 359.55 | 12,167.0 | 5,402.3 | 1,470.2 | 5,381.8 | 0.00 | 0.00 | 0.00 | | 17,700.0 | 90.40 | 359.55 | 12,166.3 | 5,502.3 | 1,469.4 | 5,481.8 | 0.00 | 0.00 | 0.00 | | 17,800.0 | 90.40 | 359.55 | 12,165.6 | 5,602.3 | 1,468.6 | 5,581.8 | 0.00 | 0.00 | 0.00 | | 17,900.0 | 90.40 | 359.55 | 12,164.9 | 5,702.3 | 1,467.8 | 5,681.8 | 0.00 | 0.00 | 0.00 | | 18,000.0 | 90.40 | 359.55 | 12,164.2 | 5,802.3 | 1,467.0 | 5,781.8 | 0.00 | 0.00 | 0.00 | | 18,100.0 | 90.40 | 359.55 | 12,163.5 | 5,902.3 | 1,466.3 | 5,881.8 | 0.00 | 0.00 | 0.00 | | 18,200.0 | 90.40 | 359.55 | 12,162.8 | 6,002.3 | 1,465.5 | 5,981.8 | 0.00 | 0.00 | 0.00 | | 18,300.0 | 90.40 | 359.55 | 12,162.1 | 6,102.3 | 1,464.7 | 6,081.8 | 0.00 | 0.00 | 0.00 | | 18,400.0 | 90.40 | 359.55 | 12,161.4 | 6,202.3 | 1,463.9 | 6,181.8 | 0.00 | 0.00 | 0.00 | | 18,500.0 | 90.40 | 359.55 | 12,160.7 |
6,302.3 | 1,463.1 | 6,281.8 | 0.00 | 0.00 | 0.00 | | 18,600.0 | 90.40 | 359.55 | 12,160.0 | 6,402.3 | 1,462.3 | 6,381.8 | 0.00 | 0.00 | 0.00 | | 18,700.0 | 90.40 | 359.55 | 12,159.4 | 6,502.2 | 1,461.6 | 6,481.8 | 0.00 | 0.00 | 0.00 | | 18,800.0 | 90.40 | 359.55 | 12,158.7 | 6,602.2 | 1,460.8 | 6,581.8 | 0.00 | 0.00 | 0.00 | | 18,900.0 | 90.40 | 359.55 | 12,158.0 | 6,702.2 | 1,460.0 | 6,681.8 | 0.00 | 0.00 | 0.00 | | 19,000.0 | 90.40 | 359.55 | 12,157.3 | 6,802.2 | 1,459.2 | 6,781.8 | 0.00 | 0.00 | 0.00 | | 19,100.0 | 90.40 | 359.55 | 12,156.6 | 6,902.2 | 1,458.4 | 6,881.8 | 0.00 | 0.00 | 0.00 | | 19,200.0 | 90.40 | 359.55 | 12,155.9 | 7,002.2 | 1,457.6 | 6,981.8 | 0.00 | 0.00 | 0.00 | | 19,300.0 | 90.40 | 359.55 | 12,155.2 | 7,102.2 | 1,456.8 | 7,081.8 | 0.00 | 0.00 | 0.00 | | 19,400.0 | 90.40 | 359.55 | 12,154.5 | 7,202.2 | 1,456.1 | 7,181.8 | 0.00 | 0.00 | 0.00 | | 19,500.0 | 90.40 | 359.55 | 12,153.8 | 7,302.2 | 1,455.3 | 7,281.7 | 0.00 | 0.00 | 0.00 | | 19,600.0 | 90.40 | 359.55 | 12,153.1 | 7,402.2 | 1,454.5 | 7,381.7 | 0.00 | 0.00 | 0.00 | | 19,700.0 | 90.40 | 359.55 | 12,152.4 | 7,502.2 | 1,453.7 | 7,481.7 | 0.00 | 0.00 | 0.00 | | 19,800.0 | 90.40 | 359.55 | 12,151.7 | 7,602.2 | 1,452.9 | 7,581.7 | 0.00 | 0.00 | 0.00 | | 19,900.0 | 90.40 | 359.55 | 12,151.0 | 7,702.2 | 1,452.1 | 7,681.7 | 0.00 | 0.00 | 0.00 | | 20,000.0 | 90.40 | 359.55 | 12,150.3 | 7,802.2 | 1,451.3 | 7,781.7 | 0.00 | 0.00 | 0.00 | | 20,100.0 | 90.40 | 359.55 | 12,149.6 | 7,902.2 | 1,450.6 | 7,881.7 | 0.00 | 0.00 | 0.00 | | 20,200.0 | 90.40 | 359.55 | 12,148.9 | 8,002.2 | 1,449.8 | 7,981.7 | 0.00 | 0.00 | 0.00 | | 20,300.0 | 90.40 | 359.55 | 12,148.2 | 8,102.2 | 1,449.0 | 8,081.7 | 0.00 | 0.00 | 0.00 | | 20,400.0 | 90.40 | 359.55 | 12,147.5 | 8,202.2 | 1,448.2 | 8,181.7 | 0.00 | 0.00 | 0.00 | | 20,500.0 | 90.40 | 359.55 | 12,146.8 | 8,302.1 | 1,447.4 | 8,281.7 | 0.00 | 0.00 | 0.00 | | 20,600.0 | 90.40 | 359.55 | 12,146.1 | 8,402.1 | 1,446.6 | 8,381.7 | 0.00 | 0.00 | 0.00 | | 20,700.0 | 90.40 | 359.55 | 12,145.4 | 8,502.1 | 1,445.8 | 8,481.7 | 0.00 | 0.00 | 0.00 | | 20,800.0 | 90.40 | 359.55 | 12,144.7 | 8,602.1 | 1,445.1 | 8,581.7 | 0.00 | 0.00 | 0.00 | | 20,900.0 | 90.40 | 359.55 | 12,144.0 | 8,702.1 | 1,444.3 | 8,681.7 | 0.00 | 0.00 | 0.00 | | 21,000.0 | 90.40 | 359.55 | 12,143.3 | 8,802.1 | 1,443.5 | 8,781.7 | 0.00 | 0.00 | 0.00 | | 21,100.0 | 90.40 | 359.55 | 12,142.6 | 8,902.1 | 1,442.7 | 8,881.7 | 0.00 | 0.00 | 0.00 | | 21,200.0 | 90.40 | 359.55 | 12,141.9 | 9,002.1 | 1,441.9 | 8,981.7 | 0.00 | 0.00 | 0.00 | | 21,300.0 | 90.40 | 359.55 | 12,141.2 | 9,102.1 | 1,441.1 | 9,081.7 | 0.00 | 0.00 | 0.00 | | 21,400.0 | 90.40 | 359.55 | 12,140.5 | 9,202.1 | 1,440.3 | 9,181.7 | 0.00 | 0.00 | 0.00 | | 21,500.0 | 90.40 | 359.55 | 12,139.8 | 9,302.1 | 1,439.6 | 9,281.7 | 0.00 | 0.00 | 0.00 | | 21,600.0 | 90.40 | 359.55 | 12,139.1 | 9,402.1 | 1,438.8 | 9,381.7 | 0.00 | 0.00 | 0.00 | | 21,700.0 | 90.40 | 359.55 | 12,138.4 | 9,502.1 | 1,438.0 | 9,481.7 | 0.00 | 0.00 | 0.00 | Database: EDM 5000.14 Server Company: Matador Production Company Project: Antelope Ridge Site: Nina Cortell Well: Nina Cortell Fed Com #203H Wellbore: Wellbore #1 Design: BLM Plan #1 Local Co-ordinate Reference: **Survey Calculation Method:** TVD Reference: MD Reference: North Reference: Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) Grid | ned Survey | | | | | | | | | | |-----------------------------|--------------------|----------------|-----------------------------|-----------------|-----------------|-------------------------------|-------------------------------|------------------------------|-----------------------------| | Measured
Depth
(usft) | Inclination
(°) | Azimuth
(°) | Vertical
Depth
(usft) | +N/-S
(usft) | +E/-W
(usft) | Vertical
Section
(usft) | Dogleg
Rate
(°/100usft) | Build
Rate
(°/100usft) | Turn
Rate
(°/100usft) | | 21,800.0 | 90.40 | 359.55 | 12,137.7 | 9,602.1 | 1,437.2 | 9,581.7 | 0.00 | 0.00 | 0.00 | | 21,900.0 | 90.40 | 359.55 | 12,137.0 | 9,702.1 | 1,436.4 | 9,681.7 | 0.00 | 0.00 | 0.00 | | 22,000.0 | 90.40 | 359.55 | 12,136.3 | 9,802.1 | 1,435.6 | 9,781.7 | 0.00 | 0.00 | 0.00 | | 22,100.0 | 90.40 | 359.55 | 12,135.6 | 9,902.1 | 1,434.8 | 9,881.7 | 0.00 | 0.00 | 0.00 | | 22,200.0 | 90.40 | 359.55 | 12,134.9 | 10,002.1 | 1,434.1 | 9,981.7 | 0.00 | 0.00 | 0.00 | | 22,300.0 | 90.40 | 359.55 | 12,134.2 | 10,102.0 | 1,433.3 | 10,081.7 | 0.00 | 0.00 | 0.00 | | 22,400.0 | 90.40 | 359.55 | 12,133.5 | 10,202.0 | 1,432.5 | 10,181.7 | 0.00 | 0.00 | 0.00 | | 22,462.7 | 90.40 | 359.55 | 12,133.0 | 10,264.7 | 1,431.9 | 10,244.4 | 0.00 | 0.00 | 0.00 | | TD at 2246 | 2.7 - BHL - Nir | na Cortell Fed | Com #203H | | | | | | | | Design Targets | | | | | | | | | | |--|------------------|---------------------|-------------------------|------------------------|------------------------|-------------------------------|-------------------|------------------|-------------------| | Target Name - hit/miss target - Shape | Dip Angle
(°) | Dip Dir.
(°) | TVD
(usft) | +N/-S
(usft) | +E/-W
(usft) | Northing
(usft) | Easting
(usft) | Latitude | Longitude | | VP - Nina Cortell Fed
- plan hits target o
- Point | | 0.00 | 11,629.0 | -175.5 | 1,514.0 | 509,523.00 | 707,512.00 | 32° 23' 56.399 N | 103° 39' 39.626 W | | BHL - Nina Cortell Fe
- plan hits target o
- Point | | 0.00 | 12,133.0 | 10,264.7 | 1,431.9 | 519,963.41 | 707,430.10 | 32° 25' 39.716 N | 103° 39' 39.815 W | | FTP - Nina Cortell Fe
- plan misses targ
- Point | | 0.00
205.1usft a | 12,205.0
it 12178.2u | -125.5
sft MD (1205 | 1,513.7
7.0 TVD, 16 | 509,573.02
.6 N, 1512.5 E) | 707,511.69 | 32° 23' 56.894 N | 103° 39' 39.626 W | | Formations | | | | | | | | |------------|-----------------------------|-----------------------------|------------------------------------|-----------|------------|-------------------------|--| | | Measured
Depth
(usft) | Vertical
Depth
(usft) | Name | Lithology | Dip
(°) | Dip
Direction
(°) | | | | 839.0 | 839.0 | Z (Rustler) | | -0.40 | 359.55 | | | | 1,191.0 | 1,191.0 | Z (Salado) | | -0.40 | 359.55 | | | | 3,300.2 | 3,285.3 | Z (Castile (T)) | | -0.40 | 359.55 | | | | 4,928.4 | 4,897.6 | Z (G30:CS14-CSB) | | -0.40 | 359.55 | | | | 4,970.8 | 4,939.6 | Z (G26: Bell Cyn.) | | -0.40 | 359.55 | | | | 5,882.9 | 5,842.8 | Z (G13: Cherry Cyn.) | | -0.40 | 359.55 | | | | 7,037.4 | 6,986.1 | Z (G7: Brushy Cyn.) Antelope Ridge | | -0.40 | 359.55 | | | | 8,893.2 | 8,827.4 | Z (G4: BSGL (CS9)) | | -0.40 | 359.55 | | | | 9,731.2 | 9,665.4 | Z (L5.3: FBSC) | | -0.40 | 359.55 | | | | 9,964.2 | 9,898.4 | Z (L5.1: FBSG) | | -0.40 | 359.55 | | | | 10,245.2 | 10,179.4 | Z (L4.3: SBSC) | | -0.40 | 359.55 | | | | 10,624.2 | 10,558.4 | Z (L4.1: SBSG) | | -0.40 | 359.55 | | | | 11,046.2 | 10,980.4 | Z (L3.3: TBSC) | | -0.40 | 359.55 | | | | 11,682.2 | 11,616.4 | Z (L3.1: TBSG) | | -0.40 | 359.55 | | | | 12,105.5 | 12,005.4 | Z (L2: WFMP A) | | -0.40 | 359.55 | | | | 12,178.2 | 12,057.0 | Z (X Sand (T)) | | -0.40 | 359.55 | | | | 12,247.2 | 12,099.7 | Z (X Sand (B)) | | -0.40 | 359.55 | | | | 12,281.6 | 12,118.4 | Z (Y Sand (T)) | | -0.40 | 359.55 | | | | 12,384.6 | 12,163.8 | Z (Y Sand (B)) | | -0.40 | 359.55 | | Database: EDM 5000.14 Server Company: Matador Production Company Project: Antelope Ridge Site: Nina Cortell Well: Nina Cortell Fed Com #203H Wellbore: Wellbore #1 Design: BLM Plan #1 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) Grid | Plan Annotations | | | | | |-----------------------------|-----------------------------|-------------------------------|-----------------------------|---------------------------------| | Measured
Depth
(usft) | Vertical
Depth
(usft) | Local Coor
+N/-S
(usft) | rdinates
+E/-W
(usft) | Comment | | 1.500.0 | 1.500.0 | 28.1 | 2,452.7 | Start Build 2.00 | | 1,900.0 | 1,898.7 | 22.2 | 2,432.7 | Start 6501.2 hold at 1900.0 MD | | 8.401.2 | 8,336.6 | -169.6 | 1,541.2 | Start Drop -2.00 | | 8.801.2 | 8.735.3 | -175.5 | 1,514.0 | Start 2893.7 hold at 8801.2 MD | | 11.694.9 | 11.629.0 | -175.5 | 1,514.0 | Start Build 10.00 | | 12.598.9 | 12.201.9 | 401.4 | 1.509.5 | Start 9863.8 hold at 12598.9 MD | | 22,462.7 | 12,133.0 | 10,264.7 | 1,431.9 | TD at 22462.7 | # **Matador Production Company** Antelope Ridge Nina Cortell Nina Cortell Fed Com #203H Wellbore #1 BLM Plan #1 # **Anticollision Report** 16 November, 2020 Database: Company: Matador Production Company Project: Antelope Ridge Nina Cortell Reference Site: Site Error: 0.0 usft Reference Well: Nina Cortell Fed Com #203H Well Error: 0.0 usft Reference Wellbore #1 Reference Design: BLM Plan #1 **Local Co-ordinate Reference:** TVD Reference: **MD Reference:** North Reference: Offset TVD Reference: KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) **Survey Calculation Method:** Minimum Curvature Output errors are at **ISCWSA** 2.00 sigma Site Nina Cortell EDM 5000.14 Server Offset Datum Reference BLM Plan #1 Filter type: NO GLOBAL FILTER: Using user defined selection & filtering criteria Interpolation Method: Stations Error Model: Depth Range: Unlimited Scan Method: Closest Approach 3D Maximum center-center distance of 10,000.0 us Results Limited by: Pedal Curve **Error Surface:** Warning Levels Evaluated at: 2.00 Sigma **Casing Method:** Not applied **Survey Tool Program** Date 11/16/2020 > From То (usft) (usft) Survey (Wellbore) **Tool Name** Description 0.0 22,462.7 BLM Plan #1 (Wellbore #1) **MWD** OWSG MWD - Standard | Summary | | | | | | |
--|---|---|--|--|---|--| | Site Name
Offset Well - Wellbore - Design | Reference
Measured
Depth
(usft) | Offset
Measured
Depth
(usft) | Dista
Between
Centres
(usft) | nce
Between
Ellipses
(usft) | Separation
Factor | Warning | | Nina Cortell | | | | | | | | Nina Cortell Fed Com #121H - Wellbore #1 - Actual Surv
Nina Cortell Fed Com #121H - Wellbore #1 - Actual Surv
Nina Cortell Fed Com #201H - Wellbore #1 - Actual Surv
Nina Cortell Fed Com #201H - Wellbore #1 - Actual Surv
Nina Cortell Fed Com #201H - Wellbore #1 - Actual Surv
Nina Cortell Fed Com #202H - Wellbore #1 - BLM Plan #
Nina Cortell Fed Com #204H - Wellbore #1 - BLM Plan #
Nina Cortell Fed Com #204H - Wellbore #1 - BLM Plan #
Nina Cortell Fed Com #204H - Wellbore #1 - BLM Plan # | 17,915.3
21,300.0
21,015.2
21,200.0
22,462.7
22,462.7
1,565.1
1,600.0
1,700.0 | 10,391.0
21,300.0
15,605.0
15,722.8
16,880.5
22,413.4
1,565.2
1,600.2
1,700.1 | 3,124.6
3,164.8
2,562.0
2,564.5
2,616.3
1,322.1
29.9
30.0
31.2 | 3,011.5
2,889.1
2,335.7
2,333.5
2,348.5
971.0
19.2
19.0
19.5 | 11.325 (
11.101 E
9.769 S
3.766 (
2.785 (| ES, SF
CC
ES
SF
CC, ES, SF
CC | | Offset D | esign | Nina C | ortell - N | lina Cortel | Fed Co | m #121H - | Wellbore #1 | - Actual S | urvey | | | | Offset Site Error: | 0.0 usft | |-------------------|-------------------|-------------------|-------------------|-------------|--------|----------------------|------------------------|--------------------|--------------------|---------------------|-----------------------|----------------------|--------------------|----------| | Survey Pro | gram: 206 | S-MWD | | | | | | | | | | | Offset Well Error: | 0.0 usft | | Refer | ence | Offs | et | Semi Majo | r Axis | | | | Dist | ance | | | | | | Measured
Depth | Vertical
Depth | Measured
Depth | Vertical
Depth | Reference | Offset | Highside
Toolface | Offset Wellbo
+N/-S | re Centre
+E/-W | Between
Centres | Between
Ellipses | Minimum
Separation | Separation
Factor | Warning | | | (usft) | (usft) | (usft) | (usft) | (usft) | (usft) | (°) | (usft) | (usft) | (usft) | (usft) | (usft) | 1 deter | | | | 0.0 | 0.0 | 15.4 | 15.4 | 0.0 | 0.0 | -33.39 | 5,177.7 | -941.3 | 6,167.5 | | | | | | | 100.0 | 100.0 | 105.9 | 105.9 | 0.1 | 0.2 | -33.38 | 5,178.0 | -941.0 | 6,167.6 | 6,167.3 | 0.29 | N/A | | | | 200.0 | 200.0 | 196.5 | 196.5 | 0.5 | 0.3 | -33.37 | 5,178.8 | -940.3 | 6,167.9 | 6,167.1 | 0.79 | 7,799.019 | | | | 300.0 | 300.0 | 285.1 | 285.1 | 0.8 | 0.6 | -33.36 | 5,179.8 | -939.3 | 6,168.3 | 6,166.8 | 1.45 | 4,257.084 | | | | 400.0 | 400.0 | 373.5 | 373.5 | 1.2 | 0.9 | -33.35 | 5,181.0 | -938.5 | 6,168.9 | 6,166.8 | 2.12 | 2,904.352 | | | | 500.0 | 500.0 | 471.5 | 471.5 | 1.6 | 1.3 | -33.33 | 5,182.5 | -937.6 | 6,169.6 | 6,166.8 | 2.83 | 2,176.675 | | | | 600.0 | 600.0 | 570.3 | 570.3 | 1.9 | 1.6 | -33.32 | 5,184.0 | -936.7 | 6,170.4 | 6,166.8 | 3.55 | 1,739.470 | | | | 700.0 | 700.0 | 656.6 | 656.5 | 2.3 | 1.9 | -33.31 | 5,185.4 | -935.9 | 6,171.3 | 6,167.0 | 4.22 | 1,463.991 | | | | 800.0 | 800.0 | 743.4 | 743.3 | 2.6 | 2.2 | -33.29 | 5,186.9 | -935.2 | 6,172.3 | 6,167.5 | 4.89 | 1,263.446 | | | | 900.0 | 900.0 | 837.8 | 837.7 | 3.0 | 2.6 | -33.28 | 5,188.8 | -934.5 | 6,173.6 | 6,168.0 | 5.58 | 1,105.868 | | | | 1,000.0 | 1,000.0 | 933.5 | 933.4 | 3.4 | 2.9 | -33.26 | 5,190.8 | -933.9 | 6,174.9 | 6,168.6 | 6.28 | 982.573 | | | | 1,100.0 | 1,100.0 | 1,031.6 | 1,031.5 | 3.7 | 3.3 | -33.25 | 5,192.9 | -933.2 | 6,176.3 | 6,169.3 | 6.99 | 883.048 | | | | 1,200.0 | 1,200 0 | 1,200 0 | 1,532 1 | 4 1 | 3 8 | -33 29 | 5,182 1 | -931 6 | 6,173 9 | 6,166 0 | 7 91 | 780 248 | | | | 1,300.0 | 1,300.0 | 1,751.6 | 1,750.7 | 4.4 | 5.7 | -33.30 | 5,169.8 | -925.2 | 6,167.3 | 6,157.2 | 10.14 | 608.065 | | | | 1,400.0 | 1,400.0 | 1,892.1 | 1,890.8 | 4.8 | 6.2 | -33.30 | 5,161.3 | -919.4 | 6,160.0 | 6,149.0 | 10.99 | 560.670 | | | | 1,500.0 | 1,500.0 | 2,037.0 | 2,035.3 | 5.1 | 6.8 | -33.28 | 5,152.5 | -911.4 | 6,152.0 | 6,140.1 | 11.85 | 519.162 | | | | 1,600.0 | 1,600.0 | 2,183.3 | 2,181.0 | 5.5 | 7.3 | 69.18 | 5,143.6 | -901.6 | 6,142.5 | 6,129.8 | 12.71 | 483.353 | | | | 1,700.0 | 1,699.8 | 2,270.1 | 2,267.4 | 5.8 | 7.6 | 69.45 | 5,138.2 | -895.5 | 6,131.7 | 6,118.3 | 13.36 | 459.025 | | | Company: Matador Production Company Project: Antelope Ridge Reference Site: Nina Cortell Site Error: 0.0 usft Reference Well: Nina Cortell Fed Com #203H Well Error: 0.0 usft Reference Wellbore #1 Reference Design: BLM Plan #1 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Output errors are at Database: Offset TVD Reference: Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) Minimum Curvature 2.00 sigma EDM 5000.14 Server | | esign | | ortell - N | iina Corteii | Fed Co | m #121H - | Wellbore #1 | - Actual S | urvey | | | | Offset Site Error: | 0.0 ust | |--------------------|---------------------|----------------------|--------------------|--------------|------------|----------------------|--------------------|------------------|--------------------|---------------------|-----------------------|----------------------|--------------------|---------| | urvey Pro
Refer | ogram: 206
rence | 6-MWD
Offs | et | Semi Major | Axis | | | | Dist | ance | | | Offset Well Error: | 0.0 us | | easured
Depth | Vertical
Depth | Measured
Depth | Vertical
Depth | Reference | Offset | Highside
Toolface | Offset Wellbo | +E/-W | Between
Centres | Between
Ellipses | Minimum
Separation | Separation
Factor | Warning | | | (usft) | (usft) | (usft) | (usft) | (usft) | (usft) | (°) | (usft) | (usft) | (usft) | (usft) | (usft) | | | | | 1,800.0 | | 2,364.8 | 2,361.7 | 6.2 | 8.0 | 69.77 | 5,132.4 | -889.0 | 6,119.7 | 6,105.6 | 14.04 | 435.910 | | | | 1,900.0 | 1,898.7 | 2,458.1 | 2,454.6 | 6.5 | 8.3 | 70.14 | 5,126.7 | -882.6 | 6,106.6 | 6,091.8 | 14.72 | 414.766 | | | | 2,000 0 | 1,997 7 | 2,549 4 | 2,545 5 | 69 | 8 7
9.0 | 70 27 | 5,121 1 | -876 5
-870.9 | 6,093 0
6,079.6 | 6,077 6
6,063.6 | 15 41 | 395 461 | | | | 2,100.0
2,200.0 | 2,096.8
2,195.8 | 2,631.6
2,713.7 | 2,627.3
2,709.2 | 7.3
7.6 | 9.0 | 70.39
70.52 | 5,116.3
5,111.9 | -865.2 | 6,066.6 | 6,049.8 | 16.07
16.73 | 378.377
362.537 | | | | 2,200.0 | 2,193.8 | 2,713.7 | 2,709.2 | 8.0 | 9.6 | 70.52 | 5,111.9 | -858.4 | 6,053.7 | 6,036.2 | 17.46 | 346.753 | | | | 2,000.0 | 2,204.0 | 2,011.2 | 2,000.0 | 0.0 | 0.0 | 70.07 | 0,100.0 | -000.4 | 0,000.7 | 0,000.2 | 17.40 | 040.700 | | | | 2,400.0 | 2,393.8 | 2,911.1 | 2,905.8 | 8.4 | 10.0 | 70.83 | 5,101.5 | -851.5 | 6,040.8 | 6,022.6 | 18.20 | 331.996 | | | | 2,500.0 | 2,492.9 | 2,998.4 | 2,992.8 | 8.8 | 10.3 | 70.96 | 5,096.9 | -845.5 | 6,028.1 | 6,009.2 | 18.89 | 319.045 | | | | 2,600.0 | 2,591.9 | 3,085.6 | 3,079.6 | 9.2 | 10.7 | 71.10 | 5,092.4 | -839.6 | 6,015.6 | 5,996.0 | 19.60 | 306.987 | | | | 2,700.0 | 2,690.9 | 3,142.6 | 3,136.4 | 9.6 | 10.9 | 71.18 | 5,089.6 | -835.9 | 6,003.5 | 5,983.3 | 20.20 | 297.266 | | | | 2,800.0 | 2,789.9 | 3,192.2 | 3,186.0 | 10.0 | 11.1 | 71.26 | 5,087.3 | -833.4 | 5,992.2 | 5,971.4 | 20.77 | 288.468 | | | | 2,900.0 | 2,889.0 | 3,242.1 | 3,235.7 | 10.4 | 11.2 | 71.32 | 5,085.0 | -831.4 | 5,981.7 | 5,960.3 | 21.35 | 280.153 | | | | 3,000.0 | 2,988.0 | 3,292.0 | 3,285.6 | 10.4 | 11.4 | 71.32 | 5,082.9 | -830.0 | 5,972.1 | 5,950.1 | 21.93 | 272.296 | | | | 3,100.0 | 3,087.0 | 3,340.2 | 3,333.8 | 11.2 | 11.6 | 71.39 | 5,081.2 | -828.9 | 5,963.3 | 5,940.8 | 22.51 | 264.954 | | | | 3,200.0 | 3,186.1 | 3,388.3 | 3,381.8 | 11.6 | 11.8 | 71.51 | 5,079.9 | -827.8 | 5,955.4 | 5,932.3 | 23.08 | 258.014 | | | | 3,300.0 | 3,285.1 | 3,436.3 | 3,429.8 | 12.0 | 11.9 | 71.58 | 5,079.1 | -826.7 | 5,948.3 | 5,924.7 | 23.66 | 251.444 | | | | | | | | - | | | , | | , | | | | | | | 3,400.0 | 3,384.1 | 3,482.0 | 3,475.5 | 12.4 | 12.1 | 71.65 | 5,078.8 | -825.7 | 5,942.2 | 5,918.0 | 24.22 | 245.307 | | | | 3,500.0 | 3,483.1 | 3,556.4 | 3,549.9 | 12.8 | 12.4 | 71.76 | 5,079.0 | -823.7 | 5,936.7 | 5,911.8 | 24.89 | 238.494 | | | | 3,600.0 | 3,582.2 | 3,627.2 | 3,620.6 | 13.2 | 12.6 | 71.87 | 5,079.9 | -821.4 | 5,931.7 | 5,906.2 | 25.55 | 232.168 | | | | 3,700.0 | 3,681.2 | 3,701.6 | 3,694.9 | 13.6 | 12.9 | 72.00 | 5,081.5 | -818.5 | 5,927.2 | 5,901.0 | 26.22 | 226.066 | | | | 3,800.0 | 3,780.2 | 3,782.6 | 3,775.9 | 14.0 | 13.2 | 72.13 | 5,083.1 | -816.0 | 5,923.1 | 5,896.2 | 26.91 | 220.096 | | | | 3,900.0 | 3.879.2 | 3,865.7 | 3,858.9 | 14.4 | 13.5 | 72.26 | 5,084.6 | -814.4 | 5,919.3 | 5.891.7 | 27.61 | 214.377 | | | | 4,000.0 | 3,978.3 | 3,974.5 | 3,967.7 | 14.8 | 13.8 | 72.41 | 5,086.0 | -813.1 | 5,915.6 | 5,887.2 | 28.40 | 208.277 | | | | 4,100.0 | 4,077.3 | 4,078.3 | 4,071.6 | 15.3 | 14.2 | 72.56 | 5,086.9 | -812.4 | 5,911.8 | 5,882.6
| 29.17 | 202.639 | | | | 4,200.0 | 4,176.3 | 4,171.2 | 4,164.4 | 15.7 | 14.5 | 72.68 | 5,087.4 | -812.3 | 5,908.0 | 5,878.1 | 29.90 | 197.581 | | | | 4,300.0 | 4,275.3 | 4,260.1 | 4,253.3 | 16.1 | 14.8 | 72.79 | 5,087.6 | -812.9 | 5,904.4 | 5,873.8 | 30.62 | 192.854 | | | | 4,400.0 | 4,374.4 | 4,338.7 | 4,331.9 | 16.5 | 15.1 | 72.89 | 5,088.2 | -813.2 | 5,901.1 | 5,869.8 | 31.29 | 188.567 | | | | 4,500.0 | 4,473.4 | 4,417.1 | 4,410.3 | 16.9 | 15.3 | 73.00 | 5,089.3 | -813.1 | 5,898.2 | 5,866.2 | 31.97 | 184.476 | | | | 4,600.0 | 4,572.4 | 4,650.8 | 4,643.9 | 17.3 | 16.1 | 73.28 | 5,088.3 | -815.5 | 5,894.1 | 5,860.9 | 33.19 | 177.603 | | | | 4,700.0 | 4,671.5 | 4,751.9 | 4,745.0 | 17.7 | 16.5 | 73.38 | 5,085.9 | -817.8 | 5,889.1 | 5,855.2 | 33.94 | 173.504 | | | | 4,800.0 | 4,770.5 | 4,849.8 | 4,842.9 | 18.2 | 16.8 | 73.48 | 5,083.5 | -820.2 | 5,884.1 | 5,849.4 | 34.69 | 169.628 | | | | 4,900.0 | 4,869.5 | 4,944.3 | 4,937.3 | 18.6 | 17.1 | 73.57 | 5,081.3 | -822.4 | 5,879.2 | 5,843.8 | 35.42 | 165.968 | | | | 5,000.0 | 4,968.5 | 5,063.8 | 5,056.8 | 19.0 | 17.1 | 73.69 | 5,078.5 | -825.0 | 5,874.3 | 5,838.0 | 36.25 | 162.068 | | | | 5,100.0 | 5,067.6 | 5,163.8 | 5,056.8 | 19.4 | 17.3 | 73.79 | 5,076.0 | -827.1 | 5,869.1 | 5,832.1 | 37.00 | 158.609 | | | | 5,200.0 | 5,166.6 | 5,257.0 | 5,130.7 | 19.8 | 18.2 | 73.88 | 5,073.6 | -829.1 | 5,864.0 | 5,826.3 | 37.74 | 155.381 | | | | 5,300.0 | 5,265.6 | 5,340.6 | 5,333.4 | 20.2 | 18.5 | 73.97 | 5,071.8 | -830.6 | 5,859.1 | 5,820.6 | 38.45 | 152.396 | | | | | -,200.0 | | | | | | 3,00 | | -,000.1 | -,020.0 | 55.10 | | | | | 5,400.0 | 5,364.6 | 5,421.2 | 5,414.0 | 20.7 | 18.7 | 74.07 | 5,070.8 | -831.2 | 5,854.5 | 5,815.4 | 39.14 | 149.560 | | | | 5,500.0 | 5,463.7 | 5,507.1 | 5,499.9 | 21.1 | 19.0 | 74.18 | 5,070.6 | -831.0 | 5,850.2 | 5,810.4 | 39.86 | 146.757 | | | | 5,600.0 | 5,562.7 | 5,599.8 | 5,592.6 | 21.5 | 19.4 | 74.31 | 5,070.4 | -830.6 | 5,846.1 | 5,805.5 | 40.61 | 143.964 | | | | 5,700.0 | 5,661.7 | 5,694.3 | 5,687.1 | 21.9 | 19.7 | 74.43 | 5,070.3 | -830.5 | 5,842.2 | | 41.36 | 141.256 | | | | 5,800.0 | 5,760.7 | 5,791.4 | 5,784.2 | 22.3 | 20.0 | 74.56 | 5,070.2 | -830.5 | 5,838.3 | 5,796.2 | 42.12 | 138.623 | | | | 5,900.0 | 5,859.8 | 5,892.0 | 5,884.7 | 22.8 | 20.4 | 74.69 | 5,070.1 | -830.5 | 5,834.5 | 5,791.6 | 42.89 | 136.047 | | | | 6,000.0 | 5,958.8 | 5,996.5 | 5,989.3 | 23.2 | 20.7 | 74.83 | 5,069.8 | -830.6 | 5,830.6 | 5,786.9 | 43.67 | 133.521 | | | | 6,100.0 | 6,057.8 | 6,085.6 | 6,078.4 | 23.6 | 21.0 | 74.94 | 5,069.5 | -830.7 | 5,826.7 | 5,782.3 | 44.40 | 131.247 | | | | 6,200.0 | 6,156.9 | 6,167.1 | 6,159.9 | 24.0 | 21.3 | 75.05 | 5,069.5 | -831.0 | 5,823.2 | | 45.10 | 129.130 | | | | 6,300.0 | 6,255.9 | 6,254.9 | 6,247.6 | 24.4 | 21.6 | 75.16 | 5,069.7 | -831.3 | 5,820.0 | 5,774.1 | 45.82 | 127.029 | | | | 0.400 = | 0.054.5 | 0.050.5 | 0.010.5 | 24.5 | 00.5 | 75.00 | 5 000 F | 201 - | F 0.10 - | F 770 - | 40.55 | 404.000 | | | | 6,400.0 | 6,354.9 | 6,353.5 | 6,346.3 | 24.9 | 22.0 | 75.29 | 5,069.9 | -831.8 | 5,816.8 | 5,770.2 | 46.57 | 124.900 | | | | 6,500.0 | 6,453.9 | 6,450.8 | 6,443.5 | 25.3 | 22.3 | 75.42 | 5,070.2 | -832.2 | 5,813.7 | 5,766.4 | 47.32 | 122.850 | | | | 6,600.0 | 6,553.0 | 6,546.3 | 6,539.1 | 25.7 | 22.6 | 75.54 | 5,070.5 | -832.7 | 5,810.7 | 5,762.6 | 48.07 | 120.879 | | | | 6,700.0 | 6,652.0 | 6,645.1 | 6,637.9 | 26.1 | 22.9 | 75.67 | 5,070.8 | -833.3 | 5,807.8 | | 48.83 | 118.941 | | | | 6,800.0 | 6,751.0 | 6,747.3 | 6,740.1 | 26.5 | 23.3 | 75.80 | 5,071.1 | -833.9 | 5,804.8 | 5,755.2 | 49.60 | 117.032 | | | | 6,900.0 | 6,850.0 | 6,851.2 | 6,844.0 | 27.0 | 23.7 | 75.94 | 5,071.4 | -834.3 | 5,801.8 | 5,751.5 | 50.38 | 115.167 | | | Company: Matador Production Company Project: Antelope Ridge Reference Site: Nina Cortell Site Error: 0.0 usft Reference Well: Nina Cortell Fed Com #203H Well Error: 0.0 usft Reference Wellbore #1 Reference Design: BLM Plan #1 **Local Co-ordinate Reference:** TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Output errors are at Database: Offset TVD Reference: Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) Minimum Curvature 2.00 sigma EDM 5000.14 Server | Offset De | esign | Nina C | ortell - N | lina Cortell | Fed Co | m #121H - | Wellbore #1 | - Actual S | urvey | | | | Offset Site Error: | 0.0 usft | |--------------------|------------------|------------------|-----------------|-------------------------|--------|-----------------|-----------------|-----------------|-------------------|--------------------|----------------------|------------|--------------------|----------| | Survey Prog | | S-MWD | | | | | | | • | | | | Offset Well Error: | 0.0 usf | | Refere
Measured | ence
Vertical | Offs
Measured | et
Vertical | Semi Major
Reference | | Highside | Offset Wellbo | re Centre | Between | ance
Between | Minimum | Separation | Warning | | | Depth
(usft) | Depth
(usft) | Depth
(usft) | Depth
(usft) | (usft) | (usft) | Toolface
(°) | +N/-S
(usft) | +E/-W
(usft) | Centres
(usft) | Ellipses
(usft) | Separation
(usft) | • | Warning | | | 7,000.0 | 6,949.1 | 6,956.0 | 6,948.8 | 27.4 | 24.0 | 76.07 | 5,071.5 | -834.8 | 5,798.8 | 5,747.6 | 51.16 | 113.348 | | | | 7,100.0 | 7,048.1 | 7,108.4 | 7,101.2 | 27.8 | 24.5 | 76.26 | 5,070.9 | -835.8 | 5,795.3 | 5,743.2 | 52.11 | 111.221 | | | | 7,200 0 | 7,147 1 | 7,270 7 | 7,263 5 | 28 2 | 25 1 | 76 46 | 5,068 2 | -836 8 | 5,790 8 | 5,737 8 | 53 09 | 109 084 | | | | 7,300.0 | 7,246.1 | 7,411.1 | 7,403.8 | 28.6 | 25.6 | 76.64 | 5,064.9 | -836.8 | 5,785.4 | 5,731.4 | 53.99 | 107.155 | | | | 7,400.0 | 7,345.2 | 7,530.2 | 7,522.9 | 29.1 | 26.0 | 76.78 | 5,061.6 | -836.5 | 5,779.5 | 5,724.7 | 54.83 | 105.417 | | | | 7,500.0 | 7,444.2 | 7,591.2 | 7,583.9 | 29.5 | 26.2 | 76.86 | 5,060.0 | -836.2 | 5,773.8 | 5,718.3 | 55.47 | 104.088 | | | | 7,600.0 | 7,543.2 | 7,647.0 | 7,639.7 | 29.9 | 26.4 | 76.93 | 5,059.0 | -836.0 | 5,768.9 | 5,712.8 | 56.10 | 102.839 | | | | 7,700.0 | 7,642.3 | 7,729.0 | 7,721.6 | 30.3 | 26.7 | 77.04 | 5,058.4 | -835.8 | 5,764.8 | 5,708.0 | 56.81 | 101.478 | | | | 7,800.0 | 7,741.3 | 7,802.5 | 7,795.1 | 30.7 | 27.0 | 77.15 | 5,058.2 | -835.5 | 5,761.1 | 5,703.6 | 57.49 | 100.207 | | | | 7,900.0 | 7,840.3 | 7,940.8 | 7,933.4 | 31.2 | 27.5 | 77.33 | 5,057.1 | -834.7 | 5,757.0 | 5,698.6 | 58.40 | 98.585 | | | | 8,000.0 | 7,939.3 | 8,037.9 | 8,030.5 | 31.6 | 27.8 | 77.47 | 5,056.1 | -834.0 | 5,752.7 | 5,693.5 | 59.16 | 97.236 | | | | 8,100.0 | 8,038.4 | 8,106.0 | 8,098.6 | 32.0 | 28.1 | 77.56 | 5,055.4 | -833.4 | 5,748.4 | 5,688.6 | 59.83 | 96.082 | | | | 8,200.0 | 8,137.4 | 8,187.3 | 8,179.9 | 32.4 | 28.3 | 77.68 | 5,054.9 | -832.7 | 5,744.6 | 5,684.0 | 60.54 | 94.895 | | | | 8,300.0 | 8,236.4 | 8,248.0 | 8,240.6 | 32.8 | 28.5 | 77.76 | 5,055.0 | -832.3 | 5,741.5 | 5,680.3 | 61.17 | 93.858 | | | | 8,401.2 | 8,336.6 | 8,325.0 | 8,317.6 | 33.3 | 28.8 | 77.87 | 5,055.6 | -832.0 | 5,739.0 | 5,677.1 | 61.87 | 92.763 | | | | 8,500.0 | 8,434.7 | 8,928.0 | 8,918.8 | 33.7 | 31.0 | 78.71 | 5,047.9 | -801.9 | 5,736.0 | 5,671.8 | 64.19 | 89.354 | | | | 8,600.0 | 8,534.3 | 8,928.0 | 8,918.8 | 34.1 | 31.0 | 78.54 | 5,047.9 | -801.9 | 5,727.0 | 5,662.3 | 64.65 | 88.579 | | | | 8,700.0 | 8,634.2 | 8,973.0 | 8,963.0 | 34.4 | 31.1 | 78.50 | 5,048.9 | -793.5 | 5,720.1 | | 65.21 | 87.720 | | | | 8,801.2 | 8,735.3 | 8,973.0 | 8,963.0 | 34.7 | 31.1 | -23.83 | 5,048.9 | -793.5 | 5,715.2 | | | 87.137 | | | | 8,900.0 | 8,834.1 | 8,973.0 | 8,963.0 | 35.0 | 31.1 | -23.83 | 5,048.9 | -793.5 | 5,712.4 | | 65.92 | 86.652 | | | | 9,000.0 | 8,934.1 | 9,000.4 | 8,990.1 | 35.4 | 31.2 | -23.79 | 5,050.1 | -789.6 | 5,711.0 | | 66.34 | 86.085 | | | | 9,060.4 | 8,994.5 | 9,022.0 | 9,011.5 | 35.5 | 31.3 | -23.76 | 5,051.4 | -786.9 | 5,710.9 | 5,644.3 | 66.61 | 85.739 | | | | 9,100.0 | 9,034.1 | 9,022.0 | 9,011.5 | 35.7 | 31.3 | -23.76 | 5,051.4 | -786.9 | 5,711.0 | | 66.73 | 85.585 | | | | 9,200.0 | 9,134.1 | 9,022.0 | 9,011.5 | 36.0 | 31.3 | -23.76 | 5,051.4 | -786.9 | 5,712.6 | | | 85.232 | | | | 9,300.0 | 9,234.1 | 9,078.7 | 9,067.8 | 36.3 | 31.5 | -23.69 | 5,055.2 | -780.9 | 5,714.9 | | 67.52 | 84.635 | | | | 9,400.0 | 9,334.1 | 9,117.0 | 9,105.8 | 36.6 | 31.6 | -23.65 | 5,058.2 | -777.9 | 5,718.8 | | | 84.164 | | | | 9,500.0 | 9,434.1 | 9,500.0 | 9,241.7 | 36.9 | 32.9 | -23.59 | 5,066.2 | -774.6 | 5,723.4 | 5,653.8 | 69.60 | 82.235 | | | | 9,600.0 | 9,534.1 | 9,401.0 | 9,389.4 | 37.2 | 32.6 | -23.58 | 5,070.0 | -775.3 | 5,725.6 | | 69.59 | 82.280 | | | | 9,700.0 | 9,634.1 | 9,401.0 | 9,389.4 | 37.5 | 32.6 | -23.58 | 5,070.0 | -775.3 | 5,729.3 | | 69.86 | 82.008 | | | | 9,800.0 | 9,734.1 | 9,401.0 | 9,389.4 | 37.9 | 32.6 | -23.58 | 5,070.0 | -775.3 | 5,734.7 | | 70.12 | 81.785 | | | | 9,900.0 | 9,834.1 | 9,452.5 | 9,440.9 | 38.2 | 32.8 | -23.57 | 5,072.4 | -775.2 | 5,740.1 | | | 81.331 | | | | 10,000.0 | 9,934.1 | 9,495.0 | 9,483.1 | 38.5 | 32.9 | -23.55 | 5,077.0 | -774.8 | 5,748.6 | 5,677.6 | 70.99 | 80.975 | | | | 10,100.0 | 10,034.1 | 9,495.0 | 9,483.1 | 38.8 | 32.9 | -23.55 | 5,077.0 | -774.8 | 5,757.6 | | 71.21 | 80.852 | | | | 10,200.0 | 10,134.1 | 9,495.0 | 9,483.1 | 39.1 | 32.9 | -23.55 | 5,077.0 | -774.8 | 5,768.3 | | | 80.776 | | | | 10,300.0 | 10,234.1 | 9,495.0 | 9,483.1 | 39.4 | 32.9 | -23.55 | 5,077.0 | -774.8 | 5,780.8 | | | 80.744 | | | | 10,400.0 | 10,334.1 | 9,495.0 | 9,483.1 | 39.8 | 32.9 | -23.55 | 5,077.0 | -774.8 | 5,794.9 | | 71.76 | 80.757 | | | | 10,500.0 | 10,434.1 | 9,495.0 | 9,483.1 | 40.1 | 32.9 | -23.55 | 5,077.0 | -774.8 | 5,810.7 | 5,738.8 | 71.90 | 80.813 | | | | 10,600.0 | 10,434.1 | 9,542.0 | 9,529.2 | 40.1 | 33.1 | -23.50 | 5,086.2 | -773.8 | 5,827.8 | | | 80.623 | | | | 10,700.0 | 10,634.1 | 9,542.0 | 9,529.2 | 40.7 | 33.1 | -23.50 | 5,086.2 | -773.8 | 5,846.2 | | | 80.744 | | | | 10,700.0 | , | 9,542.0 | 9,529.2 | 41.0 | 33.1 | -23.50 | 5,086.2 | -773.8 | 5,866.2 | | | 80.906 | | | | 10,900.0 | | 9,542.0 | 9,529.2 | 41.4
 33.1 | -23.50 | 5,086.2 | -773.8 | 5,887.8 | | | 81.108 | | | | 11,000.0 | 10,934.1 | 9,567.7 | 9,554.0 | 41.7 | 33.1 | -23.47 | 5,092.8 | -773.2 | 5,910.8 | 5,838.0 | 72.82 | 81.176 | | | | 11,100.0 | 11,034.1 | 9,589.0 | 9,574.5 | 42.0 | 33.2 | -23.44 | 5,098.6 | -772.7 | 5,935.1 | 5,862.1 | 73.00 | 81.299 | | | | 11,200.0 | 11,134.1 | 9,589.0 | 9,574.5 | 42.3 | 33.2 | -23.44 | 5,098.6 | -772.7 | 5,960.8 | 5,887.7 | 73.05 | 81.598 | | | | 11,300.0 | 11,234.1 | 9,589.0 | 9,574.5 | 42.7 | 33.2 | -23.44 | 5,098.6 | -772.7 | 5,988.0 | 5,914.9 | 73.08 | 81.935 | | | | 11,400.0 | 11,334.1 | 9,589.0 | 9,574.5 | 43.0 | 33.2 | -23.44 | 5,098.6 | -772.7 | 6,016.8 | 5,943.7 | 73.10 | 82.309 | | | | 11,500.0 | 11,434.1 | 9,636.0 | 9,618.9 | 43.3 | 33.3 | -23.38 | 5,114.0 | -772.6 | 6,046.8 | 5,973.4 | 73.41 | 82.366 | | | | 11,600.0 | 11,534.1 | 9,636.0 | 9,618.9 | 43.6 | 33.3 | -23.38 | 5,114.0 | -772.6 | 6,077.9 | | | 82.790 | | | | 11,694.9 | 11,629.0 | 9,636.0 | 9,618.9 | 44.0 | 33.3 | -23.38 | 5,114.0 | -772.6 | 6,108.7 | | | 83.225 | | | | 11,700.0 | 11,634.1 | 9,636.0 | 9,618.9 | 44.0 | 33.3 | -22.86 | 5,114.0 | -772.6 | 6,110.4 | | | 83.249 | | | | | 11,684.0 | 9,636.0 | 9,618.9 | 44.1 | 33.3 | -22.28 | 5,114.0 | -772.6 | 6,124.9 | | | 83.467 | | | | 11,800.0 | 11,733.5 | 9,636.0 | 9,618.9 | 44.3 | 33.3 | -21.85 | 5,114.0 | -772.6 | 6,135.9 | 6,062.5 | 73.35 | 83.652 | | | Company: Matador Production Company Project: Antelope Ridge Reference Site: Nina Cortell Site Error: 0.0 usft Reference Well: Nina Cortell Fed Com #203H Well Error: 0.0 usft Reference Wellbore #1 Reference Design: BLM Plan #1 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Output errors are at Database: Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) **Survey Calculation Method:** Minimum Curvature 2.00 sigma EDM 5000.14 Server Offset TVD Reference: Offset Datum | | | NAVA/D | | | | | | | | | | | | | |-----------------------------|-----------|-----------------------------|-----------------------------|---------------------|------------------|----------------------|---------------|--------|------------------------------|-------------------------------|---------------------------------|----------------------|--------------------|--------| | urvey Pro
Refer | gram: 206 | 6-MWD
Offs | nt. | Semi Majo | r Avie | | | | Diet | ance | | | Offset Well Error: | 0.0 us | | leasured
Depth
(usft) | | Measured
Depth
(usft) | Vertical
Depth
(usft) | Reference
(usft) | Offset
(usft) | Highside
Toolface | Offset Wellbo | +E/-W | Between
Centres
(usft) | Between
Ellipses
(usft) | Minimum
Separation
(usft) | Separation
Factor | Warning | | | | | | | | | (°) | (usft) | (usft) | | | | | | | | 11,850.0 | 11,782.2 | 9,636.0 | 9,618.9 | 44.4 | 33.3 | -21.58 | 5,114.0 | -772.6 | 6,143.3 | 6,070.0 | 73.31 | 83.802 | | | | 11,900.0 | 11,829.8 | 9,636.0 | 9,618.9 | 44.6 | 33.3 | -21.44 | 5,114.0 | -772.6 | 6,147.0 | 6,073.8 | 73.25 | 83.916 | | | | 11,950 0 | 11,875 8 | 9,636 0 | 9,618 9 | 44 7 | 33 3 | -21 43 | 5,114 0 | -772 6 | 6,147.2 | 6,074 0 | 73 18 | 83 996 | | | | 12,000.0 | | 9,656.3 | 9,637.6 | 44.8 | 33.4 | -21.57 | 5,121.8 | -772.9 | 6,143.4 | 6,070.1 | 73.25 | 83.870 | | | | 12,050.0 | | 9,675.3 | 9,654.9 | 44.9 | 33.5 | -21.87 | 5,129.5 | -773.3 | 6,136.1 | | 73.29 | 83.721 | | | | | 12,001.2 | 9,675.3 | 9,654.9 | 45.0 | 33.5 | -22.29 | 5,129.5 | -773.3 | 6,125.1 | 6,051.9 | 73.19 | 83.688 | | | | | 12,037.8 | 9,675.3 | 9,654.9 | 45.1 | 33.5 | -22.88 | 5,129.5 | -773.3 | 6,110.5 | 6,037.4 | 73.07 | 83.620 | | | | 12,200.0 | 12,071.2 | 9,683.0 | 9,662.0 | 45.1 | 33.5 | -23.66 | 5,132.7 | -773.5 | 6,092.4 | 6,019.4 | 73.01 | 83.452 | | | | 12,250.0 | 12,101.3 | 9,683.0 | 9,662.0 | 45.2 | 33.5 | -24.62 | 5,132.7 | -773.5 | 6,071.1 | 5,998.2 | 72.87 | 83.312 | | | | 12,300.0 | 12,127.7 | 9,683.0 | 9,662.0 | 45.2 | 33.5 | -25.83 | 5,132.7 | -773.5 | 6,046.5 | 5,973.7 | 72.73 | 83.136 | | | | 12,350.0 | 12,150.4 | 9,683.0 | 9,662.0 | 45.3 | 33.5 | -27.31 | 5,132.7 | -773.5 | 6,018.8 | 5,946.2 | 72.58 | 82.924 | | | | 12,400.0 | 12,169.1 | 9,683.0 | 9,662.0 | 45.3 | 33.5 | -29.14 | 5,132.7 | -773.5 | 5,988.3 | 5,915.9 | 72.43 | 82.676 | | | | 12,450.0 | 12,183.7 | 9,704.4 | 9,681.2 | 45.4 | 33.5 | -31.49 | 5,142.0 | -774.2 | 5,954.8 | 5,882.4 | 72.44 | 82.200 | | | | 12,500.0 | 12,194.1 | 9,708.0 | 9,684.5 | 45.4 | 33.5 | -34.30 | 5,143.6 | -774.3 | 5,919.0 | 5,846.7 | 72.32 | 81.844 | | | | 12,550.0 | 12,200.2 | 9,730.0 | 9,703.9 | 45.5 | 33.6 | -37.94 | 5,153.8 | -775.1 | 5,881.2 | 5,808.9 | 72.34 | 81.296 | | | | 12,598.9 | 12,201.9 | 9,730.0 | 9,703.9 | 45.5 | 33.6 | -42.16 | 5,153.8 | -775.1 | 5,842.0 | 5,769.8 | 72.21 | 80.907 | | | | 12,600.0 | 12,201.9 | 9,730.0 | 9,703.9 | 45.5 | 33.6 | -42.16 | 5,153.8 | -775.1 | 5,841.1 | 5,768.9 | 72.21 | 80.895 | | | | 12,700.0 | 12,201.2 | 9.730.0 | 9,703.9 | 45.7 | 33.6 | -42.16 | 5,153.8 | -775.1 | 5,759.4 | 5.687.5 | 71.93 | 80.068 | | | | 12,800.0 | 12,200.5 | 9,730.0 | 9,703.9 | 46.0 | 33.6 | -42.16 | 5,153.8 | -775.1 | 5,678.4 | 5,606.7 | 71.67 | 79.232 | | | | 12,900.0 | 12,199.8 | 9,730.0 | 9,703.9 | 46.3 | 33.6 | -42.16 | 5,153.8 | -775.1 | 5,597.9 | 5,526.5 | 71.41 | 78.388 | | | | 13,000.0 | 12,199.1 | 9,730.0 | 9,703.9 | 46.7 | 33.6 | -42.16 | 5,153.8 | -775.1 | 5,518.1 | 5,446.9 | 71.17 | 77.533 | | | | 13,100.0 | 12,198.4 | 9,730.0 | 9,703.9 | 47.2 | 33.6 | -42.16 | 5,153.8 | -775.1 | 5,438.9 | 5,368.0 | 70.94 | 76.668 | | | | 13,200.0 | 12,197.7 | 9,730.0 | 9,703.9 | 47.7 | 33.6 | -42.16 | 5,153.8 | -775.1 | 5,360.5 | 5,289.7 | 70.73 | 75.790 | | | | 13,300.0 | 12,197.0 | 9,730.0 | 9,703.9 | 48.3 | 33.6 | -42.16 | 5,153.8 | -775.1 | 5,282.7 | 5,212.2 | 70.53 | 74.899 | | | | 13,400.0 | 12,196.4 | 9,753.1 | 9,724.0 | 49.0 | 33.7 | -42.40 | 5,165.2 | -776.1 | 5,205.2 | 5,134.7 | 70.55 | 73.782 | | | | 13,500.0 | 12,195.7 | 9,777.0 | 9,744.2 | 49.7 | 33.7 | -42.65 | 5,177.9 | -777.2 | 5,129.2 | 5,058.6 | 70.60 | 72.655 | | | | 13,600.0 | 12,195.0 | 9,777.0 | 9,744.2 | 50.4 | 33.7 | -42.65 | 5,177.9 | -777.2 | 5,053.3 | 4,982.9 | 70.47 | 71.710 | | | | 13,700.0 | 12,194.3 | 9,777.0 | 9,744.2 | 51.2 | 33.7 | -42.65 | 5,177.9 | -777.2 | 4,978.4 | 4,908.0 | 70.37 | 70.748 | | | | 13,800.0 | 12,193.6 | 9,777.0 | 9,744.2 | 52.0 | 33.7 | -42.65 | 5,177.9 | -777.2 | 4,904.3 | 4,834.0 | 70.30 | 69.767 | | | | 13,900.0 | 12,192.9 | 9,777.0 | 9,744.2 | 52.9 | 33.7 | -42.65 | 5,177.9 | -777.2 | 4,831.2 | 4,760.9 | 70.26 | 68.766 | | | | 14,000.0 | | 9,777.0 | 9,744.2 | 53.8 | 33.7 | -42.65 | 5,177.9 | -777.2 | 4,759.0 | 4,688.8 | 70.25 | 67.744 | | | | 14,100.0 | 12,191.5 | 9,803.5 | 9,766.1 | 54.8 | 33.8 | -42.93 | 5,192.8 | -778.5 | 4,687.5 | 4,617.0 | 70.51 | 66.480 | | | | 14,200.0 | 12,190.8 | 9,824.0 | 9,782.7 | 55.7 | 33.9 | -43.14 | 5,204.7 | -779.5 | 4,617.1 | 4,546.3 | 70.76 | 65.251 | | | | 14,300.0 | 12,190.1 | 9,824.0 | 9,782.7 | 56.7 | 33.9 | -43.14 | 5,204.7 | -779.5 | 4,547.5 | 4,476.6 | 70.87 | 64.163 | | | | 14,400.0 | 12,189.4 | 9,824.0 | 9,782.7 | 57.8 | 33.9 | -43.14 | 5,204.7 | -779.5 | 4,479.1 | 4,408.1 | 71.04 | 63.054 | | | | 14,500.0 | 12,188.7 | 9,851.7 | 9,804.7 | 58.8 | 33.9 | -43.42 | 5,221.4 | -780.7 | 4,411.5 | 4,340.0 | 71.48 | 61.714 | | | | 14,600.0 | 12,188.0 | 9,871.0 | 9,819.8 | 59.9 | 34.0 | -43.61 | 5,233.5 | -781.5 | 4,345.1 | 4,273.2 | 71.91 | 60.428 | | | | 14,700.0 | 12,187.3 | 9,871.0 | 9,819.8 | 61.0 | 34.0 | -43.61 | 5,233.5 | -781.5 | 4,279.9 | 4,207.6 | 72.22 | 59.260 | | | | | 12,186.6 | 9,871.0 | 9,819.8 | 62.2 | 34.0 | -43.61 | 5,233.5 | -781.5 | 4,215.9 | 4,143.3 | 72.59 | 58.077 | | | | | 12,185.9 | 9,891.1 | 9,835.2 | 63.3 | 34.1 | -43.80 | 5,246.5 | -782.3 | 4,153.0 | | 73.19 | 56.741 | | | | 15,000.0 | 12,185.2 | 9,918.0 | 9,854.8 | 64.5 | 34.1 | -44.06 | 5,264.8 | -783.4 | 4,092.0 | 4,018.1 | 73.89 | 55.378 | | | | 15,100.0 | 12,184.5 | 9,918.0 | 9,854.8 | 65.7 | 34.1 | -44.06 | 5,264.8 | -783.4 | 4,031.7 | 3,957.3 | 74.44 | 54.159 | | | | 15,200.0 | 12,183.8 | 9,918.0 | 9,854.8 | 67.0 | 34.1 | -44.06 | 5,264.8 | -783.4 | 3,973.1 | 3,898.1 | 75.06 | 52.935 | | | | 15,300.0 | 12,183.1 | 9,918.0 | 9,854.8 | 68.2 | 34.1 | -44.06 | 5,264.8 | -783.4 | 3,916.2 | | 75.73 | 51.709 | | | | 15,400.0 | | 9,942.2 | 9,871.9 | 69.5 | 34.2 | -44.28 | 5,281.9 | -784.6 | 3,860.5 | | 76.66 | 50.358 | | | | 15,500.0 | | 9,966.0 | 9,888.2 | 70.7 | 34.3 | -44.50 | 5,299.2 | -786.0 | 3,806.7 | 3,729.0 | 77.65 | 49.023 | | | | 15,600.0 | 12,181.0 | 9,966.0 | 9,888.2 | 72.0 | 34.3 | -44.50 | 5,299.2 | -786.0 | 3,754.3 | 3,675.8 | 78.52 | 47.810 | | | | 15,700.0 | | 9,966.0 | 9,888.2 | 73.3 | 34.3 | -44.50 | 5,299.2 | -786.0 | 3,703.9 | 3,624.4 | 79.46 | 46.611 | | | | 15,800.0 | | 9,993.6 | 9,906.2 | 74.7 | 34.4 | -44.75 | 5,320.0 | -787.7 | 3,654.9 | | 80.67 | 45.309 | | | | 15,900.0 | | 10,013.0 | 9,918.4 | 76.0 | 34.5 | -44.92 | 5,335.1 | -789.0 | 3,607.9 | 3,526.0 | 81.87 | 44.070 | | | | 16,000.0 | | 10,013.0 | 9,918.4 | 77.3 | 34.5 | -44.92 | 5,335.1 | -789.0 | 3,562.8 | 3,479.8 | 82.99 | 42.928 | | | | | | 10,032.3 | 9,929.9 | 78.7 | 34.5 | -45.08 | 5,350.5 | -790.2 | 3,519.7 | 3,435.4 | 84.31 | 41.748 | | | Company: Matador Production Company Project: Antelope Ridge Reference Site: Nina Cortell Site Error: 0.0 usft Reference Well: Nina Cortell Fed Com #203H Well Error: 0.0 usft Reference Wellbore #1 Reference Design: BLM Plan #1 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Output errors are at Database: Offset TVD Reference: Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) Minimum Curvature 2.00 sigma EDM 5000.14 Server | Survey Pro | gram: 206 | -MWD | | | | | | | | | | | Offset Well Error: | 0.0 us | |----------------------------|-----------------------------|-----------------------------|-----------------------------
---------------------|------------------|----------------------|---------------|------------------|------------------------------|-------------------------------|---------------------------------|----------------------|--------------------|--------| | Refer | _ | Offs | et | Semi Major | Axis | | | | Dist | ance | | | Oliset Well Ellor. | 0.0 us | | easured
Depth
(usft) | Vertical
Depth
(usft) | Measured
Depth
(usft) | Vertical
Depth
(usft) | Reference
(usft) | Offset
(usft) | Highside
Toolface | Offset Wellbo | +E/-W | Between
Centres
(usft) | Between
Ellipses
(usft) | Minimum
Separation
(usft) | Separation
Factor | Warning | | | | | | | | | (°) | (usft) | (usft) | | | | | | | | 16,200.0 | | 10,060.0 | 9,945.4 | 80.1 | 34.6 | -45.30 | 5,373.4 | -791.9 | 3,478.8 | 3,393.1 | 85.72 | 40.582 | | | | 16,300.0 | | 10,060.0 | 9,945.4 | 81.4 | 34.6 | -45.30 | 5,373.4 | -791.9 | 3,439.6 | 3,352.6 | 87.02 | 39.527 | | | | 16,400 0 | | 10,079 3 | 9,955.5 | 82 8 | 34.7
34.8 | -45 44
45 64 | 5,389 8 | -793 N
-794.6 | 3,402 8 | 3,314 3 | 88 48
90.03 | 38 458 | | | | 16,500.0 | | 10,107.0 | 9,969.3 | 84.2 | | -45.64
45.76 | 5,413.8 | | 3,367.9 | 3,277.9 | | 37.411 | | | | 16,600.0
16,700.0 | | 10,125.0 | 9,977.8 | 85.6 | 34.8 | -45.76 | 5,429.6 | -795.6
-796.4 | 3,335.1 | 3,243.5 | 91.56
93.11 | 36.425
35.488 | | | | 10,700.0 | 12,173.3 | 10,139.9 | 9,984.6 | 87.1 | 34.9 | -45.86 | 5,442.9 | -790.4 | 3,304.4 | 3,211.3 | 93.11 | 33.400 | | | | 16,800.0 | 12,172.6 | 10,155.0 | 9,991.1 | 88.5 | 35.0 | -45.96 | 5,456.5 | -797.3 | 3,276.2 | 3,181.5 | 94.70 | 34.595 | | | | 16,900.0 | | 10,155.0 | 9,991.1 | 89.9 | 35.0 | -45.96 | 5,456.5 | -797.3 | 3,250.5 | 3,154.3 | 96.24 | 33.773 | | | | 17,000.0 | | 10,202.0 | 10,008.5 | 91.4 | 35.1 | -46.22 | 5,500.0 | -800.1 | 3,227.0 | 3,129.0 | 98.01 | 32.925 | | | | 17,100.0 | | 10,202.0 | 10,008.5 | 92.8 | 35.1 | -46.22 | 5,500.0 | -800.1 | 3,205.8 | 3,106.2 | 99.60 | 32.187 | | | | 17,200.0 | | 10,202.0 | 10,008.5 | 94.3 | 35.1 | -46.22 | 5,500.0 | -800.1 | 3,187.6 | 3,086.4 | 101.20 | 31.498 | | | | , | , | , | , | | | | , | | , | , | | | | | | 17,300.0 | 12,169.1 | 10,249.0 | 10,021.5 | 95.7 | 35.3 | -46.43 | 5,545.0 | -803.1 | 3,171.8 | 3,068.8 | 102.96 | 30.805 | | | | 17,400.0 | 12,168.4 | 10,249.0 | 10,021.5 | 97.2 | 35.3 | -46.43 | 5,545.0 | -803.1 | 3,158.3 | 3,053.8 | 104.58 | 30.201 | | | | 17,500.0 | 12,167.7 | 10,296.0 | 10,030.9 | 98.7 | 35.5 | -46.59 | 5,591.0 | -805.8 | 3,147.3 | 3,041.0 | 106.31 | 29.606 | | | | 17,600.0 | 12,167.0 | 10,344.0 | 10,039.0 | 100.1 | 35.7 | -46.73 | 5,638.2 | -808.2 | 3,138.2 | 3,030.1 | 108.03 | 29.049 | | | | 17,700.0 | 12,166.3 | 10,344.0 | 10,039.0 | 101.6 | 35.7 | -46.73 | 5,638.2 | -808.2 | 3,131.2 | 3,021.6 | 109.63 | 28.562 | 17,800.0 | 12,165.6 | 10,391.0 | 10,044.8 | 103.1 | 35.9 | -46.85 | 5,684.7 | -811.7 | 3,126.8 | 3,015.4 | 111.33 | 28.085 | | | | 17,900.0 | 12,164.9 | 10,391.0 | 10,044.8 | 104.6 | 35.9 | -46.85 | 5,684.7 | -811.7 | 3,124.7 | 3,011.8 | 112.89 | 27.679 | | | | 17,915.3 | 12,164.8 | 10,391.0 | 10,044.8 | 104.8 | 35.9 | -46.85 | 5,684.7 | -811.7 | 3,124.6 | 3,011.5 | 113.13 | 27.621 (| CC | | | 18,000.0 | 12,164.2 | 10,438.0 | 10,048.0 | 106.1 | 36.1 | -46.94 | 5,731.4 | -815.9 | 3,125.3 | 3,010.7 | 114.55 | 27.282 | | | | 18,100.0 | 12,163.5 | 10,472.2 | 10,049.1 | 107.6 | 36.3 | -46.99 | 5,765.5 | -818.8 | 3,127.8 | 3,011.6 | 116.16 | 26.927 | | | | 10 200 0 | 10 160 0 | 10 522 0 | 10.050.0 | 100.1 | 20.0 | 47.07 | E 00E 1 | 000.7 | 2 424 0 | 2.042.0 | 117.00 | 26 505 | | | | 18,200.0 | 12,162.8 | 10,532.0 | 10,050.0 | 109.1 | 36.6 | -47.07 | 5,825.1 | -823.7 | 3,131.8 | 3,013.9 | 117.80 | 26.585 | | | | 18,300.0 | 12,162.1 | 10,603.1 | 10,050.0 | 110.6 | 37.0 | -47.14
47.24 | 5,896.0 | -829.6 | 3,136.8 | 3,017.3 | 119.50 | 26.250 | | | | 18,400.0 | 12,161.4 | 10,678.6 | 10,049.4 | 112.1 | 37.4 | -47.21 | 5,971.1 | -836.2 | 3,142.8 | 3,021.5 | 121.23 | 25.924 | | | | 18,500.0 | 12,160.7 | 18,500.0 | 10,047.8 | 113.7 | 90.8 | -47.31 | 6,086.6 | -845.9 | 3,148.8 | 2,983.0 | 165.81 | 18.990 | | | | 18,600.0 | 12,160.0 | 10,892.2 | 10,046.4 | 115.2 | 38.9 | -47.39 | 6,184.0 | -853.3 | 3,154.3 | 3,029.2 | 125.06 | 25.222 | | | | 18,700.0 | 12,159.4 | 11,040.3 | 10,042.8 | 116.7 | 40.1 | -47.44 | 6,331.8 | -862.2 | 3,159.3 | 3,032.0 | 127.22 | 24.834 | | | | 18,800.0 | | 11,320.1 | 10,035.6 | 118.3 | 42.6 | -47.39 | 6,611.4 | -865.3 | 3,160.8 | 3,030.9 | 129.87 | 24.338 | | | | 18,900.0 | | 11,395.8 | 10,033.5 | 119.8 | 43.3 | -47.34 | 6,687.0 | -863.4 | 3,159.8 | 3,028.1 | 131.72 | 23.989 | | | | 18,962.2 | | 11,440.0 | 10,033.3 | 120.7 | 43.8 | -47.30 | 6,731.2 | -862.4 | 3,159.6 | 3,026.8 | 131.72 | 23.780 | | | | 19,000.0 | | 11,440.0 | 10,031.9 | 120.7 | 44.1 | -47.30
-47.28 | 6,760.2 | -861.8 | 3,159.0 | 3,026.1 | 133.57 | 23.656 | | | | 18,000.0 | 12, 107.5 | 11,400.0 | 10,030.7 | 121.5 | 44.1 | -47.20 | 0,700.2 | -001.0 | 3, 133.7 | 3,020.1 | 100.07 | 25.050 | | | | 19,100.0 | 12,156.6 | 11,621.8 | 10,027.8 | 122.9 | 45.7 | -47.20 | 6,912.9 | -858.7 | 3,158.1 | 3,022.2 | 135.82 | 23.252 | | | | 19,200.0 | 12,155.9 | 11,766.2 | 10,026.7 | 124.4 | 47.3 | -47.15 | 7,057.2 | -856.1 | 3,156.3 | 3,018.2 | 138.11 | 22.854 | | | | 19,300.0 | | 11,845.9 | 10,027.4 | 126.0 | 48.2 | -47.15 | 7,136.9 | -855.2 | 3,153.9 | 3,013.7 | 140.16 | 22.502 | | | | 19,400.0 | 12,154.5 | 11,926.2 | 10,027.6 | 127.5 | 49.1 | -47.14 | 7,217.2 | -854.5 | 3,152.0 | 3,009.8 | 142.23 | 22.162 | | | | 19,500.0 | | 12,023.8 | 10,027.4 | 129.1 | 50.2 | -47.13 | 7,314.8 | -853.8 | 3,150.6 | 3,006.2 | 144.40 | 21.818 | | | | , | , | , | , - = | | | | ., | 555.0 | -, | -,000.2 | | | | | | 19,600.0 | 12,153.1 | 12,111.2 | 10,026.8 | 130.6 | 51.3 | -47.11 | 7,402.2 | -853.0 | 3,149.3 | 3,002.8 | 146.52 | 21.494 | | | | 19,700.0 | 12,152.4 | 12,200.5 | 10,025.4 | 132.2 | 52.4 | -47.08 | 7,491.5 | -851.9 | 3,148.4 | 2,999.8 | 148.65 | 21.179 | | | | 19,786.3 | 12,151.8 | 12,264.4 | 10,023.9 | 133.5 | 53.2 | -47.05 | 7,555.4 | -851.1 | 3,148.1 | 2,997.7 | 150.41 | 20.929 | | | | 19,800.0 | 12,151.7 | 12,273.9 | 10,023.7 | 133.7 | 53.3 | -47.05 | 7,564.9 | -851.0 | 3,148.1 | 2,997.4 | 150.69 | 20.891 | | | | 19,900.0 | 12,151.0 | 12,340.2 | 10,021.4 | 135.3 | 54.1 | -47.01 | 7,631.1 | -850.4 | 3,148.7 | 2,996.1 | 152.66 | 20.625 | 20,000.0 | | 12,407.0 | 10,018.1 | 136.9 | 55.0 | -46.96 | 7,697.9 | -850.0 | 3,150.5 | 2,995.9 | 154.63 | 20.375 | | | | 20,100.0 | , | 12,495.9 | 10,014.2 | 138.4 | 56.1 | -46.92 | 7,786.7 | -850.6 | 3,153.0 | 2,996.2 | 156.77 | 20.112 | | | | 20,200.0 | 12,148.9 | 12,679.7 | 10,015.6 | 140.0 | 58.6 | -47.00 | 7,970.4 | -856.1 | 3,153.1 | 2,993.2 | 159.89 | 19.720 | | | | 20,210.5 | 12,148.8 | 12,689.6 | 10,015.8 | 140.2 | 58.7 | -47.01 | 7,980.3 | -856.5 | 3,153.1 | 2,992.9 | 160.15 | 19.689 | | | | 20,300.0 | 12,148.2 | 12,754.2 | 10,017.4 | 141.6 | 59.6 | -47.06 | 8,044.8 | -859.2 | 3,153.4 | 2,991.3 | 162.15 | 19.447 | 20,400.0 | | 12,838.7 | 10,019.2 | 143.1 | 60.7 | -47.14 | 8,129.2 | -863.4 | 3,154.5 | 2,990.0 | 164.52 | 19.174 | | | | 20,500.0 | | 12,932.9 | 10,021.2 | 144.7 | 62.0 | -47.22 | 8,223.2 | -868.3 | 3,155.9 | 2,988.9 | 167.00 | 18.897 | | | | 20,600.0 | | 13,011.7 | 10,022.7 | 146.3 | 63.1 | -47.30 | 8,301.9 | -872.6 | 3,157.6 | 2,988.2 | 169.34 | 18.646 | | | | | 12,145.4 | 20,700.0 | 10,024.2 | 147.9 | 171.4 | -47.39 | 8,414.8 | -878.8 | 3,159.7 | 2,901.2 | 258.48 | 12.224 | | | | 00 000 0 | 12,144.7 | 13,248.9 | 10,025.7 | 149.4 | 66.4 | -47.47 | 8,538.7 | -883.6 | 3,160.6 | 2,985.8 | 174.79 | 18.083 | | | | 20,800.0 | 12, 144.7 | 10,2 10.0 | 10,020.1 | 110.1 | 00.1 | | -, | | 0,.00.0 | -, | | | | | Company: Matador Production Company Project: Antelope Ridge Reference Site: Nina Cortell Site Error: 0.0 usft Reference Well: Nina Cortell Fed Com #203H Well Error: 0.0 usft Reference Wellbore Wellbore #1 Reference Design: BLM Plan #1 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Output errors are at Database: Offset TVD Reference: Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) Grid Minimum Curvature 2.00 sigma EDM 5000.14 Server | Offset D | esign | Nina C | ortell - N | lina Cortell | Fed Co | m #121H - | Wellbore #1 | - Actual S | urvey | | | | Offset Site Error: | 0.0 usf | |-----------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------|------------------|-----------------------------|----------------------------------|------------------------------|------------------------------|-------------------------------|---------------------------------|----------------------|--------------------|---------| | | gram: 206 | S-MWD
Offs | et | Semi Major | r Axis | | | | Dista | ınce | | | Offset Well Error: | 0.0 us | | deasured
Depth
(usft) | Vertical
Depth
(usft) | Measured
Depth
(usft) | Vertical
Depth
(usft) | Reference
(usft) | Offset
(usft) | Highside
Toolface
(°) | Offset Wellbo
+N/-S
(usft) | re Centre
+E/-W
(usft) | Between
Centres
(usft) | Between
Ellipses
(usft) | Minimum
Separation
(usft) | Separation
Factor | Warning | | | 21,000.0 | 12,143.3 | 13,479.6 | 10,026.1 | 152.6 | 69.7 | -47.54 | 8,769.3 | -889.1 | 3,161.7 | 2,981.7 | 180.04 | 17.562 | | | | 21,001.4 | 12,143.3 | 13,480.6 | 10,026.1 | 152.6 | 69.7 | -47.54 | 8,770.3 | -889.1 | 3,161.7 | 2,981.7 | 180.07 | 17.559 | | | | 21,100 0 | 12,142 6 | 13,551 7 | 10,023 7 | 154 2 | 70 8 | -47 50 | 8,841 4 | -888 4 | 3,162.2 | 2,980 0 | 182 17 | 17 358 | | | | 21,200.0 | 12,141.9 | 13,634.2 | 10,020.1 | 155.8 | 72.0 | -47.44 | 8,923.9 | -887.5 | 3,163.3 | 2,979.0 | 184.35 | 17.159 | | | | 21,300.0 |
12,141.2 | 21,300.0 | 10,014.1 | 157.4 | 183.9 | -47.35 | 9,060.8 | -886.4 | 3,164.8 | 2,889.1 | 275.78 | 11.476 E | ES, SF | | | 21,400.0 | 12,140.5 | 13,934.2 | 10,012.1 | 159.0 | 76.3 | -47.30 | 9,223.6 | -884.1 | 3,163.3 | 2,973.5 | 189.80 | 16.666 | | | | 21,500.0 | 12,139.8 | 14,017.1 | 10,011.3 | 160.5 | 77.5 | -47.27 | 9,306.6 | -882.8 | 3,161.8 | 2,969.7 | 192.09 | 16.460 | | | | 21,600.0 | 12,139.1 | 14,086.6 | 10,009.9 | 162.1 | 78.6 | -47.24 | 9,376.0 | -881.8 | 3,161.1 | 2,966.8 | 194.25 | 16.273 | | | | 21,619.5 | 12,139.0 | 14,099.0 | 10,009.5 | 162.4 | 78.8 | -47.23 | 9,388.4 | -881.7 | 3,161.0 | 2,966.4 | 194.66 | 16.239 | | | | 21,700.0 | 12,138.4 | 14,156.9 | 10,007.7 | 163.7 | 79.6 | -47.20 | 9,446.3 | -881.1 | 3,161.3 | 2,964.9 | 196.40 | 16.096 | | | | 21,800.0 | 12,137.7 | 14,330.1 | 10,004.4 | 165.3 | 82.2 | -47.14 | 9,619.5 | -879.9 | 3,161.2 | 2,961.8 | 199.36 | 15.856 | | | | 21,900.0 | 12,137.0 | 14,420.6 | 10,004.6 | 166.9 | 83.6 | -47.14 | 9,710.0 | -879.4 | 3,159.6 | 2,957.8 | 201.77 | 15.659 | | | | 22,000.0 | 12,136.3 | 14,477.0 | 10,004.5 | 168.5 | 84.4 | -47.13 | 9,766.3 | -879.4 | 3,158.8 | 2,954.9 | 203.90 | 15.492 | | | | 22,022.1 | 12,136.2 | 14,497.3 | 10,004.3 | 168.9 | 84.7 | -47.13 | 9,786.6 | -879.4 | 3,158.7 | 2,954.3 | 204.43 | 15.451 | | | | 22,100.0 | 12,135.6 | 14,534.4 | 10,003.6 | 170.1 | 85.3 | -47.13 | 9,823.7 | -879.7 | 3,159.4 | 2,953.4 | 206.00 | 15.337 | | | | 22,200.0 | 12,134.9 | 14,584.7 | 10,001.8 | 171.7 | 86.0 | -47.11 | 9,874.0 | -880.3 | 3,161.6 | 2,953.6 | 207.97 | 15.202 | | | | 22,300.0 | 12,134.2 | 14,644.0 | 9,998.7 | 173.3 | 86.9 | -47.08 | 9,933.1 | -881.2 | 3,165.2 | 2,955.3 | 209.98 | 15.074 | | | | 22,400.0 | 12,133.5 | 14,713.0 | 9,994.1 | 174.9 | 88.0 | -47.03 | 10,002.1 | -882.5 | 3,170.1 | 2,958.0 | 212.04 | 14.951 | | | | 22,462.7 | 12,133.0 | 14,758.0 | 9,991.0 | 175.9 | 88.7 | -47.01 | 10,046.9 | -883.6 | 3,173.4 | 2,960.1 | 213.34 | 14.875 | | | Company: Matador Production Company Project: Antelope Ridge Reference Site: Nina Cortell Site Error: 0.0 usft Reference Well: Nina Cortell Fed Com #203H Well Error: 0.0 usft Reference Wellbore #1 Reference Design: BLM Plan #1 **Local Co-ordinate Reference:** TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Output errors are at Database: Offset TVD Reference: Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) Minimum Curvature 2.00 sigma EDM 5000.14 Server | Note Part | Offset D | esign | Nina C | ortell - N | lina Cortell | Fed Co | m #201H - | Wellbore #1 | - Actual S | urvey | | | | Offset Site Error: | 0.0 usft | |--|----------|---------|---------|------------|--------------|--------|-----------|-------------|------------|---------|----------|------------|-----------|--------------------|----------| | | | _ | 9-MWD | | | | | | | | | | | Offset Well Error: | 0.0 usft | | Perform Perf | | | | | _ | | | | | | | | | | | | 1000 1000 77 | Depth | Depth | Depth | Depth | | | Toolface | +N/-S | +E/-W | Centres | Ellipses | Separation | | Warning | | | 1000 1000 77 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -33.62 | 5,177.5 | -971.3 | 6,184.0 | | | | | | | Mathematical Color | 100.0 | 100.0 | 77.0 | 77.0 | 0.1 | 0.1 | -33.62 | 5,177.6 | -971.7 | 6,184.3 | 6,184.1 | 0.25 | N/A | | | | 4000 4000 3192 3191 12 07 -3368 51784 47877 61894 61865 185 3179491 | 200 0 | 200 0 | 142 2 | 142 2 | 0.5 | 0.2 | -33 63 | 5,177 7 | -972 6 | 6,185 3 | 6,184 6 | 0 71 | 8,708 999 | | | | Section Sect | I | | | | | | | | | | | | | | | | 600.0 600.0 528.0 527.9 1.9 1.5 -33.68 5.176.8 -960.3 0.181.4 0.188.0 3.41 1.815.472 700.0 700.0 700.6 606.5 2.3 1.8 -33.68 5.176.8 -960.3 6.182.9 6.188.8 4.12 1.260.309 722.4 723 2.8 2.2 -33.69 5.181.4 -883.3 6.184.4 5.189.8 4.12 1.260.309 722.4 723 2.8 5.2 -33.79 5.182.3 -884.4 6.180.0 6.10.5 5.52 1.229.02 720.0000 | ı | | | | | | | | | | | | | | | | 7000 7000 7000 7000 7000 7223
2.8 3.83 5,180.6 -981.6 61,929 61,88 4.12 1,502.390 8000 8000 722.4 2.2 3.30 5.18.3 -984.4 4,180.0 61,905.5 5.52 1,122.92 90.00 1,000.0 1,000.0 900.6 815.8 3.0 2.5 -33.70 5,183.2 -984.4 61,800.0 61,905.5 5.52 1,122.92 90.00 1,100.0 | | | | | | | | 5,179.0 | | 6,190.0 | | 2.68 | 2,308.785 | | | | 8000 8000 7224 7225 2 8 8 22 33.89 51914 9930 61944 61806 482 1224062 1,0000 1,0000 8166 9084 3.4 2.9 33.70 5.1832 9944 6160 61905 52 52 1122062 1,0000 1,0000 1,0 | I | | | | | | | | | | | | | | | | Mathematics | I | | | | | | | | | | | | | | | | 1,000 | I | | | | | | | | | | | | | | | | 1,100.0 1,100.0 1,100.0 1,073.0 3.7 3.5 .33.71 5,184.3 .987.0 6,186.4 6,191.2 7.23 857.881 1,200.0 1,303.0 1,409.1 1,451.9 4.4 4.7 .33.72 5,181.4 .986.3 6,196.9 6,188.5 8.4 735.001 7,509.7 1,400.0 1 | ı | | | | | | | | | | | | | | | | 1,200 | | | | | | | | | | | | | | | | | 1,000 | | | | | | | | • | | | | | | | | | 1,400 | | | | | | | | | | | | | | | | | 1,500.0 1,600.0 1,600.0 1,600.0 1,750.6 1,758.6 5.5 5.8 68.38 5,100.9 -690.9 6,180.9 6,175.6 11.30 547.519 1,000.0 1,699.8 1,848.3 1,848.9 5.5 5.8 6.8 68.43 5,155.3 -1,004.8 6,182.8 6,170.9 11.96 516.75 516.765 1,004.8 6,182.8 6,170.9 11.96 516.75 1,100.0 1,689.8 1,940.9 1,999.2 6.2 6.5 68.5 6.8 68.6 6.8 6.8 6.141.1 1,010.0 1,177.8 6,164.8 1,157.8 1,158.7 1,265.9 488.35 1,100.0 | I | | | | | | | | | | | | | | | | 1,000 | | | | | | | | | | | | | | | | | 1,700 1,1998 1,4843 1,8469 6.8 6.1 68.43 5,1553 -1,004.8 6,182.8 6,170.9 11.99 516,785 1,8000 1,896,7 2,035.6 2,033.5 6.5 6.8 68.66 6.143.3 -1,016.0 6,171.2 6,157.8 1,8000 1,896,7 2,035.6 2,033.5 6.5 6.8 68.66 5,143.3 -1,016.0 6,171.2 6,157.8 1,8000 1,896,7 2,086.0 2,065.8 6.9 6.9 68.68 5,143.3 -1,016.0 6,171.2 6,157.8 1,8000 1,997,7 2,086.0 2,085.8 2,343.9 7.3 7.2 68.71 5,137.3 -1,025.5 6,168.5 6,144.0 14.45 426.111 1,2000 2,196.8 2,177.6 2,175.0 7.6 7.3 68.73 6,137.3 -1,025.5 6,158.5 6,144.0 14.45 426.111 1,2000 2,294.8 2,275.0 2,254.3 8.0 7.6 68.76 5,133.9 -1,025.9 6,158.5 6,144.0 14.45 426.111 1,2000 2,294.8 2,275.0 2,254.3 8.0 7.6 68.76 5,133.9 -1,025.9 6,158.5 6,144.0 14.45 426.111 1,2000 2,294.8 2,275.0 2,254.3 8.0 7.6 68.76 5,133.9 -1,025.9 6,149.5 6,132.0 6,142.2 15.5 333.028 1,2000 2,295.9 2,243.7 2,345.7 8.8 8.0 68.64 5,133.2 -1,035.3 6,144.1 6,127.3 6,144.1 74.44 352.184 1,2000 2,295.9 2,243.7 2,430.7 9.2 8.3 68.01 6.132.2 -1,035.0 6,144.1 6,127.3 6,144.1 74.44 352.184 1,2000 2,299.9 2,516.7 2,513.6 9.6 8.6 8.6 8.07 5,133.5 -1,040.7 6,138.2 6,119.4 18.2 326.164 1,2000 2,289.0 2,280.0 2,293.3 10.4 10.0 69.27 5,135.5 -1,040.7 6,138.2 6,119.4 18.2 326.164 1,2000 2,288.0 2,800.0 2,923.3 10.4 10.0 69.27 5,128.5 -1,040.7 6,138.2 6,119.4 18.2 326.164 1,2000 3,087.0 3,281.3 3,303.8 3,399.0 12.0 11.8 69.58 5,108.0 -1,083.0 6,108.5 6,102.4 2,104.2 2,104.2 1,2000 3,087.0 3,281.3 3,353.9 3,414.2 1 | · | | | | | | | | | | | | | | | | 1,800 | ı | | | | | | | | | | | | | | | | 1,000 1,898.7 2,035.6 2,033.5 6.5 6.8 68 6.8 5,143.3 -1,016.0 6,171.2 6,157.8 13.55 462.164 2,000 1,997.7 2,088 2,263.8 2,065.8 6.9 6.9 6.9 6.8 6.8 5,141.1 -1,018.1 6,164.5 6,159.7 13.83 445.604 2,100 2,068.8 2,138.3 2,133.9 7.3 7.2 68.71 5,137.3 -1,022.5 6,158.5 6,144.0 14.45 426.111 2,200 2,198.8 2,177.6 2,175.0 7.6 7.3 68.73 5,135.7 -1,025.1 6,153.6 6,148.6 14.98 410.874 2,200 2,294.8 2,257.0 2,254.3 8.0 7.6 68.73 5,135.7 -1,025.1 6,153.6 6,154.0 14.85 5,135.0 14.99 6,134.2 15.65 393.052 2,400 2,393.8 2,263.3 2,260.8 8.4 7.7 68.78 5,133.8 -1,033.3 6,146.6 6,130.5 16.05 383.026 2,500 2,492.9 2,346.5 2,345.7 8.8 8.0 68.8 5.1 6.8 1.0 30.3 6,146.6 6,130.5 16.05 383.026 2,500 2,299 2,346.5 2,345.7 9.2 8.3 68.91 5,132.9 -1,040.0 6,141.8 6,124.4 17.44 352.184 2,700 2,280.9 2,516.7 2,513.8 9.6 8.6 68.7 5,133.0 -1,044.5 6,139.9 6,121.7 18.13 338.677 2,800 2,280.9 2,290.3 2,596.1 10.0 8.9 69.40 5,133.5 -1,048.6 6,135.3 6,114.1 8,124.4 17.44 332.184 2,900 2,880 0,312.7 3,123.0 10.8 10.8 69.40 5,132.5 -1,086.9 6,153.5 6,107.4 215.4 284.516 3,200 3,887.0 3,219.1 3,214.7 11.2 11.2 69.47 5,115.4 1,079.3 6,121.2 6,009.9 2,2.8 27.104 3,200 3,887.0 3,219.1 3,214.7 11.2 11.2 69.47 5,115.4 1,079.3 6,112.1 6,099.9 2,2.8 27.104 3,200 3,887.1 3,478.3 3,479.3 2,124 12.1 6.98.8 5,100.0 -1,088.0 6,108.9 6,006.1 2,376 2,277.04 3,000 3,887.1 3,478.3 3,479.2 12.4 12.1 69.81 5,101.8 1,002.8 6,102.6 6,006.1 2,376 2,377.0 2,386.9 3,384.1 3,478.3 3,479.2 12.4 12.1 69.81 5,101.8 1,002 | | , | | | | | | | | | | | | | | | 2,000 1,997.7 2,088.0 2,085.8 6.9 6.9 68.68 5,141.1 -1,018.1 6,164.5 6,150.7 13.83 445.604 2,100 2,096.8 2,176.6 2,175.0 7.6 7.3 7.2 68.71 5,137.3 -1,022.5 6,158.5 6,158.6 6,138.6 14.40 14.45 426.111 2,200 2,195.8 2,177.6 2,175.0 7.6 7.3 68.73 5,135.7 -1,025.1 6,153.6 6,138.6 1,138.6 14.98 410.874 2,300 2,294.8 2,287.0 2,284.3 8.0 7.6 68.78 5,133.9 -1,029.9 6,149.9 6,149.2 15.65 393.052 2,400 0,2393.8 2,283.3 2,280.6 8.4 7.7 68.78 5,133.8 -1,030.3 6,146.6 6,130.5 16.05 383.026 2,500 0,2492.9 2,348.5 2,345.7 8.8 8.0 68.84 5,133.2 -1,035.3 6,144.1
6,127.3 16.74 366.88 2,600 0,2591.9 2,433.7 2,430.7 9.2 8.3 68.91 5,132.9 -1,040.0 6,141.8 6,127.3 16.74 366.88 2,600 0,2591.9 2,516.7 2,513.6 9.6 8.8 68.97 5,133.0 -1,044.5 6,139.9 6,121.7 18.13 338.677 2,000 0,2789.9 2,599.3 2,596.1 10.0 8.9 60.04 5,133.5 -1,046.7 6,138.2 6,114.1 6,127.3 18.13 338.677 2,000 0,288.0 0,290.0 2,923.3 10.4 10.0 69.27 5,128.5 -1,066.9 6,138.2 6,116.5 20.32 301.972 3,000 0,388.0 3,127.3 3,123.0 10.8 10.8 69.40 5,119.5 -1,076.1 6,162.8 6,107.2 1,152.1 6,099.9 2,22.8 274.826 3,200 0,3186.1 3,313.0 3,308.3 11.6 11.5 69.53 5,110.9 -1,083.2 6,116.5 0,090.4 2,256.2 2,248.5 2,445.6 3,200.0 3,384.1 3,479.3 3,474.2 12.4 12.1 69.61 5,101.8 1,001.8 1, | ı | | | | | | | | | | | | | | | | 2,100.0 | ı | | | | | | | | | | | | | | | | 2,000 2,195,8 2,177,6 2,175,0 7,6 7,8 7,8 7,8 6,873 5,135,7 -1,025,1 6,153,6 6,138,6 148,8 410,874 2,3000 2,294,8 2,570 2,254,3 8,0 7,6 88,78 5,133,8 -1,039,3 -1,029,9 8,143,2 15,65 383,026 2,500 2,492,9 2,346,5 2,345,7 8,8 8,0 86,8 5,133,8 -1,030,3 6,146,6 6,130,5 16,05 383,026 2,500 2,492,9 2,346,5 2,345,7 8,8 8,0 86,8 4 5,133,2 -1,035,3 6,144,1 6,127,3 16,74 366,98 38,026 2,500 2,492,9 2,346,5 2,345,7 8,8 8,0 86,91 5,132,9 -1,040,0 6,141,8 6,124,4 17,4 352,184 2,700 2,690,9 2,516,7 2,513,6 9,6 8,6 86,97 5,133,0 -1,044,5 6,139,9 6,121,7 18,14 338,677 2,500 2,789,9 2,599,3 2,596,1 10,0 8,9 86,04 5,133,5 -1,046,7 6,139,9 6,121,7 18,14 338,677 2,500 2,298,0 2,290,0 2,293,3 10,4 10,0 89,2 5,135,5 -1,066,9 6,139,9 6,121,7 18,14 338,677 3,000 2,988,0 3,127,3 3,123,0 10,8 10,8 89,40 5,119,5 -1,076,1 6,129,9 6,107,4 21,54 284,518 3,100 3,067,0 3,218,1 3,133,130 3,303,3 11,6 11,5 89,53 5,110,6 9,10 1,032,2 8,10 1,04 1,04 1,04 1,04 1,04 1,04 1,04 1 | | | | | | | | | | | | | | | | | 23000 2,2948 2,2570 2,254.3 8.0 7.6 88.78 5,133.9 -1,029.9 6,149.9 6,134.2 15.65 393.052 2,400.0 2,393.8 2,283.3 2,280.6 8.4 7.7 88.78 5,133.8 -1,030.3 6,146.8 6,130.5 16.05 383.028 2,500.0 2,492.9 2,346.5 2,345.7 8.8 8.0 86.84 5,133.8 -1,030.3 6,146.8 6,130.5 16.05 383.028 2,500.0 2,492.9 2,346.5 2,345.7 8.8 8.0 86.84 5,133.8 -1,030.3 6,146.1 6,127.3 16.74 366.988 3,146.1 6,128.9 6,127.1 6,146. | | | | | | | | | | | | | | | | | 2,400.0 2,393.8 2,263.3 2,260.6 8,4 7,7 68.76 5,133.8 -1,035.3 6,146.1 6,127.3 16.74 366.988 2,500.0 2,591.9 2,343.7 2,430.7 9.2 8.3 68.91 5,133.2 -1,040.0 6,141.8 6,124.7 17.44 352.184 2,600.0 2,599.9 2,596.1 10.0 8.9 69.04 5,133.0 -1,044.5 6,139.9 6,121.7 18.13 336.677 2,800.0 2,599.3 2,596.1 10.0 8.9 69.04 5,133.5 -1,048.7 6,139.9 6,121.7 18.13 336.677 2,800.0 2,989.0 3,000.0 2,923.3 10.4 10.0 6,927 5,125.5 -1,066.6 6,135.3 6,115.0 20.32 301.972 3,000.0 3,928.0 3,121.3 3,121.0 10.8 69.40 5,119.5 -1,076.1 6,122.1 6,099.9 22.8 274.826 3,000.0 3,081.3 3,393.3 3,300.3 | | | | | | | | | | | | | | | | | 2,500.0 2,492.9 2,348.5 2,345.7 8.8 8.0 68.84 5,133.2 -1,035.3 6,144.1 6,127.3 16.74 366.988 2,600.0 2,591.9 2,433.7 2,430.7 9.2 8.3 68.91 5,132.9 -1,040.0 6,141.8 6,127.4 17.44 352.184 2,700.0 2,690.9 2,516.7 2,513.6 9.8 8.8 8.0 68.97 5,133.0 -1,044.5 6,139.9 6,121.7 18.13 338.677 2,600.0 2,789.9 2,599.3 2,596.1 10.0 8.9 69.04 5,133.5 -1,048.7 6,138.2 6,119.4 18.62 326.164 2,900.0 2,890.0 3,107.3 3,123.0 10.8 10.8 69.40 5,119.5 -1,076.1 6,128.9 6,107.4 21.54 284.518 3,100.0 3,087.0 3,219.1 3,214.7 11.2 11.2 69.47 5,115.4 -1,079.3 6,122.1 6,099.9 22.28 274.826 3,200.0 3,186.1 3,313.0 3,308.3 11.6 11.5 69.53 5,110.9 -1,083.2 6,115.5 6,092.4 23.0 2,265.629 3,200.0 3,186.1 3,313.0 3,308.3 11.6 11.5 69.53 5,110.9 -1,083.2 6,115.5 6,092.4 23.0 2,265.629 3,200.0 3,384.1 3,403.8 3,309.0 12.0 11.8 69.58 5,106.0 -1,088.0 6,108.9 6,085.1 23.76 257.104 3,400.0 3,384.1 3,459.3 3,474.2 12.4 12.1 69.64 5,007.6 -1,008.0 6,108.9 6,085.1 23.76 257.104 3,500.0 3,483.1 3,554.9 3,549.5 12.8 12.4 69.64 5,007.6 -1,007.7 6,006.7 6,071.6 25.14 224.524 3,600.0 3,582.2 3,643.0 3,687.2 13.2 12.7 69.68 5,009.2 -1,108.7 6,009.7 6,007.6 2,005.7 6,071.6 25.14 224.524 3,600.0 3,780.2 3,876.3 3,821.5 14.0 13.4 69.81 5,008.4 -1,112.3 6,000.4 6,053.0 27.37 222.163 3,800.0 3,780.2 3,876.3 3,821.5 14.0 13.4 69.81 5,008.4 -1,112.3 6,000.4 6,053.0 27.37 222.163 3,900.0 3,870.2 3,871.6 3,821.5 14.0 13.4 69.81 5,008.4 -1,112.3 6,000.4 6,053.0 27.37 222.163 3,900.0 3,870.2 3,871.6 3,821.5 14.0 13.4 69.81 5,008.4 -1,112.8 6,005.4 6,035.8 29.60 204.895 4,200.0 4,773.4 4,107.3 4,107.0 15.3 14.4 70.07 5,081.2 -1,119.7 6,005.5 6,050.1 30.40 199.51 4,200.0 4,773.4 4,438.2 4,431.9 16.5 15.6 70.48 5,008.0 -1,118.7 6,009.8 6,071.9 31.5 189.349 4,000.0 4,773.4 4,438.2 4,431.9 16.5 15.6 70.48 5,009.0 -1,118.7 6,009.6 6,030.1 30.40 199.51 4,000.0 4,773.4 4,438.2 4,431.9 16.5 15.6 70.48 5,009.0 -1,111.9 6,005.5 6,000.1 30.40 199.51 4,000.0 4,773.4 4,438.2 4,431.9 16.5 15.6 70.48 5,009.0 -1,111.9 6,005.6 6,005.8 5,004.0 31.5 189.349 4,000.0 4,773.4 4,438.2 4,431.9 1 | | | | | | | | | | | | | | | | | 2,600 0 2,591,9 2,433,7 2,430,7 9,2 8,3 68,91 5,132,9 -1,040 0 6,141,8 6,124,4 17,44 352,184 2,700 0 2,890,9 2,596,1 2,513,6 9,8 8,8 68,97 5,133,0 -1,044,5 6,139,9 6,121,7 18,13 338,677 2,800 0 2,989,0 2,590,0 2,923,3 10,4 10,0 69,27 5,128,5 -1,069,9 6,135,3 6,115,0 20,32 301,972 3,000 0 2,980,0 3,127,3 3,123,0 10,8 10,8 69,40 5,119,5 -1,076,1 6,128,9 6,107,4 21,54 284,518 3,000 0 3,876,0 3,123,3 1,14,7 11,2 11,2 69,47 5,115,4 -1,079,3 6,122,1 6,099,9 22,8 274,826 3,200,0 3,186,1 3,313,0 3,308,3 11,6 11,5 69,53 5,110,9 -1,083,2 6,115,5 6,092,4 2,30,2 2,865,629 3,300, 3,285,1 3,479,3 3,474,2 12,4 12,1 69,61 5,101,8 -1,082,6 6,102,6 6,078,2 2,44,5 249,607 3,500,0 3,881,2 3,789,3 3,474,2 12,4 12,1 69,61 5,101,8 -1,082,6 6,102,6 6,078,2 2,44,5 249,607 3,500,0 3,881,2 3,730,3 3,731,0 13,6 13,1 69,74 5,089,2 -1,108,7 6,091,2 6,065,3 25,67 235,426 3,800,0 3,881,2 3,730,3 3,815,5 14,0 13,4 69,84 5,084,4 -1,112,5 6,075,3 6,074,2 2,14 2,22,54 4,000,0 3,878,2 3,876,2 3,876,3 3,810,4 14,4 13,8 69,88 5,084,1 -1,115,2 6,075,3 6,047,2 28,10 27,7 22,183 3,900,0 3,878,2 3,876,5 3,910,4 14,4 13,8 69,88 5,084,1 -1,115,2 6,075,3 6,047,2 28,10 24,10 4,000,0 3,878,3 4,010,1 4,003,8 14,8 14,1 69,97 5,082,4 -1,117,8 6,070,3 6,041,5 28,85 210,436 4,000,0 4,773,3 4,341,8 4,385,5 16,1 15,2 70,35 5,080,1 -1,119,7 6,085,7 6,051,1 2,86,3 22,10,485 4,000,0 4,773,3 4,101,0 15,3 14,4 70,07 5,081,2 -1,119,4 6,065,4 6,030,1 3,20 12,312,312,314,314,315,5 16,1 15,2 70,35 5,080,1 -1,119,7 6,055,2 6,024,0 31,23 193,914 4,000,0 4,773,4 4,385,6 4,294,4 16,90,1 16,2 70,75 5,081,0 -1,111,9 6,093,3 6,006,0 33,38 180,937 4,000,0 4,775,4 4,885,4 4,895,0 16,6 170,7 71,13 5,083,8 -1,109,4 6,025,1 5,988,8 34,7 71,3395 4,000,0 4,968,5 4,979,1 4,972,7 19,0 17,3 71,26 5,084,8 -1,100,2 6,020,8 5,984,6 36,19 166,364 | I | | | | | | | | | | | | | | | | 2,700.0 2,690.9 2,516.7 2,513.6 9.6 8.6 68.97 5,133.0 -1,044.5 6,139.9 6,121.7 18.13 33.677 2,800.0 2,789.9 2,599.3 2,599.3 2,596.1 10.0 8.9 69.04 5,133.5 -1,048.7 6,138.2 6,119.4 18.62 326.164 2,900.0 2,888.0 3,127.3 3,123.0 10.8 10.8 69.40 5,119.5 -1,076.1 6,128.9 6,107.4 21.54 284.518 3,100.0 3,087.0 3,219.1 3,214.7 11.2 11.2 69.47 5,115.4 -1,079.3 6,122.1 6,099.9 22.28 274.828 3,200.0 3,186.1 3,313.0 3,308.3 11.6 11.5 69.53 5,110.9 -1,083.2 6,115.5 6,092.4 23.02 265.629 3,300.0 3,286.1 3,403.8 3,399.0 12.0 11.8 69.58 5,160.0 -1,083.0 6,108.9 6,085.1 23.76 257.104 3,400.0 3,384.1 3,479.3 3,474.2 12.4 12.1 69.61 5,101.8 -1,092.6 6,102.6 6,078.2 24.45 249.607 3,500.0 3,483.1 3,554.9 3,549.5 12.8 12.4 69.64 5,097.6 -1,097.7 6,096.7 6,071.6 25.14 242.524 3,600.0 3,582.2 3,643.0 3,637.2 13.2 12.7 69.68 5,093.0 -1,108.7
6,091.2 6,065.3 25.87 235.426 3,700.0 3,881.2 3,737.0 3,731.0 13.6 13.1 69.74 5,099.2 13.6 12.3 6,081.4 26.05.3 25.87 235.426 3,900.0 3,878.2 3,816.5 3,910.4 14.4 13.8 69.88 5,084.1 -1,118.2 6,080.4 6,053.0 27.37 222.163 3,900.0 3,878.3 4,010.1 4,003.8 14.8 14.1 69.97 5,082.4 -1,117.8 6,075.3 6,047.2 28.10 216.194 4,000.0 4,077.3 4,107.3 4,107.0 15.3 14.4 70.07 5,081.2 -1,111.9 6,065.5 6,030.1 30.40 199.351 4,300.0 4,275.3 4,341.8 4,335.5 16.1 15.2 70.35 5,080.1 -1,119.9 6,065.5 6,030.1 30.40 199.351 4,000.0 4,373.4 4,335.6 4,529.4 16.9 15.9 70.62 5,080.3 -1,116.9 6,044.5 6,011.8 32.68 184.959 4,600.0 4,677.3 4,107.3 4,107.9 17.3 16.2 70.75 5,080.1 -1,119.9 6,065.5 6,030.1 30.40 199.351 4,000.0 4,677.3 4,483.2 4,431.9 16.5 15.6 70.48 5,080.0 -1,114.9 6,039.3 6,006.0 33.38 180.937 4,700.0 4,677.5 4,799.4 7,791.4 16.9 17.3 16.2 70.75 5,080.1 -1,114.9 6,034.8 6,034.8 6,003.3 40.0 177.004 4,000.0 4,687.5 4,713.6 4,707.3 17.7 16.4 70.88 5,081.9 -1,111.9 6,034.8 6,034.8 6,034.8 6,034.8 6,034.8 6,034.8 6,034.8 6,034.8 6,000.3 34.00 177.004 4,000.0 4,680.5 4,885.3 4,879.0 18.6 17.0 71.13 5,083.8 -1,109.4 6,025.1 5,989.6 35.47 169.873 4,900.0 4,869.5 4,885.3 4,879.0 18.6 17.0 71.13 5,083.8 -1,109.4 6,025.1 | · | | | | | | | | | | | | | | | | 2,800.0 2,789.9 2,599.3 2,596.1 10.0 8.9 60.04 5,133.5 -1,048.7 6,138.2 6,119.4 18.82 326,164 2,900.0 2,988.0 2,900.0 2,923.3 10.4 10.0 69.27 5,128.5 -1,066.9 6,135.3 6,115.0 20.32 301.972 3,000.0 2,988.0 3,127.3 3,123.0 10.8 69.40 5,115.4 -1,076.1 6,128.9 6,107.4 21.54 284.518 3,100.0 3,087.0 3,219.1 3,214.7 11.2 11.2 69.47 5,115.4 -1,079.3 6,122.1 6,099.9 22.28 274.826 3,200.0 3,186.1 3,313.0 3,309.0 12.0 11.8 69.58 5,106.0 -1,088.0 6,108.9 6,085.1 23.02 265.629 3,500.0 3,881.1 3,679.9 3,549.5 12.8 12.4 12.4 69.61 5,097.6 -1,097.7 6,008.7 6,071.6 25.14 242.524 3,600.0 | | | | | | | | | | | | | | | | | 2,900.0 | | | | | | | | | | | | | | | | | 3,000.0 2,988.0 3,127.3 3,123.0 10.8 10.8 69.40 5,119.5 -1,076.1 6,128.9 6,107.4 21.54 284.518 3,100.0 3,087.0 3,219.1 3,214.7 11.2 11.2 69.47 5,115.4 -1,079.3 6,122.1 6,099.9 22.28 274.826 3,200.0 3,186.1 3,313.0 3,308.3 11.6 11.5 69.53 5,110.9 -1,083.2 6,115.5 6,092.4 23.02 265.629 3,300.0 3,285.1 3,403.8 3,399.0 12.0 11.8 69.58 5,106.0 -1,088.0 6,108.9 6,085.1 23.76 257.104 3,400.0 3,384.1 3,479.3 3,474.2 12.4 12.1 69.61 5,101.8 -1,092.6 6,102.6 6,078.2 24.45 249.607 3,500.0 3,483.1 3,554.9 3,549.5 12.8 12.4 69.64 5,097.6 -1,097.7 6,096.7 6,071.6 25.14 242.524 3,600.0 3,582.2 3,643.0 3,637.2 13.2 12.7 69.68 5,093.0 -1,103.7 6,091.2 6,065.3 25.87 235.426 3,700.0 3,681.2 3,737.0 3,731.0 13.6 13.1 69.74 5,089.2 -1,108.7 6,095.7 6,059.1 26.63 228.534 3,800.0 3,780.2 3,827.6 3,821.5 14.0 13.4 69.81 5,086.4 -1,112.3 6,080.4 6,053.0 27.37 222.163 3,900.0 3,679.2 3,916.5 3,910.4 14.4 13.8 69.88 5,084.1 -1,115.2 6,075.3 6,047.2 28.10 216.194 4,000.0 4,077.3 4,107.3 4,101.0 15.3 14.4 70.07 5,081.2 -1,119.4 6,065.4 6,035.8 29.60 204.895 4,200.0 4,176.3 4,219.7 4,213.4 15.7 14.8 70.20 5,080.7 -1,119.9 6,065.5 6,030.1 30.40 199.351 4,300.0 4,275.3 4,341.8 4,335.5 16.1 15.2 70.35 5,080.0 -1,1118.7 6,049.8 6,017.9 31.95 189.349 4,500.0 4,473.4 4,438.2 4,431.9 16.5 15.6 70.48 5,080.0 -1,1118.7 6,049.8 6,017.9 31.95 189.349 4,600.0 4,572.4 4,624.1 4,617.9 17.3 16.2 70.75 5,081.0 -1,1119.9 6,044.5 6,011.8 32.68 184.999 4,600.0 4,770.5 4,713.6 4,707.3 17.7 16.4 70.88 5,081.0 -1,1119.8 6,034.4 6,003.3 34.08 180.937 4,700.0 4,671.5 4,713.6 4,707.3 17.7 16.4 70.88 5,081.0 -1,110.9 6,024.6 5,984.8 36.19 186.34 | | | | | | | | | | | | | | | | | 3,200.0 3,186.1 3,313.0 3,308.3 11.6 11.5 69.53 5,110.9 -1,083.2 6,115.5 6,092.4 23.02 265.629 3,300.0 3,285.1 3,403.8 3,399.0 12.0 11.8 69.58 5,106.0 -1,088.0 6,108.9 6,085.1 23.76 257.104 3,400.0 3,384.1 3,479.3 3,474.2 12.4 12.1 69.61 5,101.8 -1,092.6 6,102.6 6,078.2 24.45 249.607 3,500.0 3,483.1 3,554.9 3,549.5 12.8 12.4 69.64 5,097.6 -1,097.7 6,096.7 6,071.6 25.14 242.524 3,600.0 3,582.2 3,643.0 3,637.2 13.2 12.7 69.68 5,093.0 -1,103.7 6,091.2 6,065.3 25.87 235.426 3,700.0 3,681.2 3,737.0 3,731.0 13.6 13.1 69.74 5,089.2 -1,108.7 6,085.7 6,059.1 26.63 228.534 3,800.0 3,780.2 3,827.6 3,821.5 14.0 13.4 69.81 5,086.4 -1,112.3 6,080.4 6,053.0 27.37 222.163 3,900.0 3,978.3 4,010.1 4,003.8 14.8 14.1 69.97 5,084.4 -1,115.2 6,075.3 6,047.2 28.10 216.194 4,000.0 3,978.3 4,010.1 4,003.8 14.8 14.1 69.97 5,081.2 -1,119.4 6,065.4 6,035.8 29.60 204.895 4,200.0 4,178.3 4,219.7 4,213.4 15.7 14.8 70.20 5,080.7 -1,119.7 6,055.2 6,024.0 31.23 193.914 4,400.0 4,374.4 4,438.2 4,431.9 16.5 15.6 70.48 5,080.0 -1,118.7 6,049.8 6,017.9 31.95 189.349 4,500.0 4,473.4 4,535.6 4,529.4 16.9 15.9 70.62 5,080.0 -1,111.0 6,029.6 5,994.8 34.77 173.395 4,900.0 4,868.5 4,879.1 4,972.7 19.0 17.3 71.26 5,084.8 -1,110.2 6,020.8 5,984.6 36.19 166.364 | I | | | | | | | | | | | | | | | | 3,200.0 3,186.1 3,313.0 3,308.3 11.6 11.5 69.53 5,110.9 -1,083.2 6,115.5 6,092.4 23.02 265.629 3,300.0 3,285.1 3,403.8 3,399.0 12.0 11.8 69.58 5,106.0 -1,088.0 6,108.9 6,085.1 23.76 257.104 3,400.0 3,384.1 3,479.3 3,474.2 12.4 12.1 69.61 5,101.8 -1,092.6 6,102.6 6,078.2 24.45 249.607 3,500.0 3,483.1 3,554.9 3,549.5 12.8 12.4 69.64 5,097.6 -1,097.7 6,096.7 6,071.6 25.14 242.524 3,600.0 3,582.2 3,643.0 3,637.2 13.2 12.7 69.68 5,093.0 -1,103.7 6,091.2 6,065.3 25.87 235.426 3,700.0 3,681.2 3,737.0 3,731.0 13.6 13.1 69.74 5,089.2 -1,108.7 6,085.7 6,059.1 26.63 228.534 3,800.0 3,780.2 3,827.6 3,821.5 14.0 13.4 69.81 5,086.4 -1,112.3 6,080.4 6,053.0 27.37 222.163 3,900.0 3,978.3 4,010.1 4,003.8 14.8 14.1 69.97 5,084.4 -1,115.2 6,075.3 6,047.2 28.10 216.194 4,000.0 3,978.3 4,010.1 4,003.8 14.8 14.1 69.97 5,081.2 -1,119.4 6,065.4 6,035.8 29.60 204.895 4,200.0 4,178.3 4,219.7 4,213.4 15.7 14.8 70.20 5,080.7 -1,119.7 6,055.2 6,024.0 31.23 193.914 4,400.0 4,374.4 4,438.2 4,431.9 16.5 15.6 70.48 5,080.0 -1,118.7 6,049.8 6,017.9 31.95 189.349 4,500.0 4,473.4 4,535.6 4,529.4 16.9 15.9 70.62 5,080.0 -1,111.0 6,029.6 5,994.8 34.77 173.395 4,900.0 4,868.5 4,879.1 4,972.7 19.0 17.3 71.26 5,084.8 -1,110.2 6,020.8 5,984.6 36.19 166.364 | 3 100 0 | 3 087 0 | 3 219 1 | 3 214 7 | 11 2 | 11.2 | 69 47 | 5 115 4 | -1 079 3 | 6 122 1 | 6 099 9 | 22 28 | 274 826 | | | | 3,300.0 3,285.1 3,403.8 3,399.0 12.0 11.8 69.58 5,106.0 -1,088.0 6,108.9 6,085.1 23.76 257.104 3,400.0 3,384.1 3,479.3 3,474.2 12.4 12.1 69.61 5,101.8 -1,092.6 6,102.6 6,078.2 24.45 249.607 3,500.0 3,483.1 3,554.9 3,549.5 12.8 12.4 69.64 5,097.6 -1,097.7 6,096.7 6,071.6 25.14 242.524 3,600.0 3,582.2 3,643.0 3,637.2 13.2 12.7 69.68 5,093.0 -1,103.7 6,091.2 6,065.3 25.87 235.426 3,700.0 3,681.2 3,737.0 3,731.0 13.6 13.1 69.74 5,089.2 -1,108.7 6,085.7 6,059.1 26.63 228.534 3,800.0 3,780.2 3,827.6 3,821.5 14.0 13.4 69.81 5,086.4 -1,112.3 6,080.4 6,053.0 27.37 222.163 3,900.0 3,879.2 3,916.5 3,910.4 14.4 13.8 69.88 5,084.1 -1,115.2 6,075.3 6,047.2 28.10 216.194 4,000.0 3,978.3 4,010.1 4,003.8 14.8 14.1 69.97 5,082.4 -1,117.8 6,070.3 6,041.5 28.85 210.436 4,100.4 4,077.3 4,107.3 4,101.0 15.3 14.4 70.07 5,081.2 -1,119.4 6,065.4 6,035.8 29.60 204.895 4,200.0 4,176.3 4,219.7 4,213.4 11.5 2 70.35 5,080.1 -1,119.7 6,055.2 6,024.0 31.23 193.914 4,400.0 4,374.4 4,438.2 4,431.9 16.5 15.6 70.48 5,080.0 -1,118.7 6,049.8 6,017.9 31.95 189.349 4,500.0 4,473.4 4,535.6 4,529.4 16.9 15.9 70.62 5,080.3 -1,114.9 6,039.4 6,003.3 3.38 189.397 4,700.0 4,671.5 4,799.4 4,793.1 18.2 16.7 71.01 5,082.9 -1,111.0 6,029.6 5,994.8 34.77 173.395 4,900.0 4,869.5 4,865.3 4,879.0 18.6 17.0 71.13 5,083.8 -1,109.4 6,025.1 5,989.6 35.47 189.873 5,000.0 4,968.5 4,979.1 4,972.7 19.0 17.3 71.26 5,084.8 -1,109.2 6,020.8 5,984.6 36.19 166.364 | | | | | | | | | | | | | | | | | 3,400.0 3,384.1 3,479.3 3,474.2 12.4 12.1 69.61 5,101.8 -1,092.6 6,102.6 6,078.2 24.45 249.607 3,500.0 3,483.1 3,554.9 3,549.5 12.8 12.4 69.64 5,097.6 -1,097.7 6,096.7 6,071.6 25.14 242.524 3,600.0 3,582.2 3,643.0 3,637.2 13.2 12.7 69.68 5,093.0 -1,103.7 6,091.2 6,065.3 25.87 235.426 3,700.0 3,681.2 3,737.0 3,731.0 13.6 13.1 69.74 5,089.2 -1,108.7 6,085.7 6,059.1 26.63 228.534 3,800.0 3,780.2 3,827.6 3,821.5 14.0 13.4 69.81 5,086.4 -1,112.3 6,080.4 6,053.0 27.37 222.163 3,900.0 3,879.2 3,916.5 3,910.4 14.4 13.8 69.88 5,084.1 -1,115.2 6,075.3 6,047.2 28.10 216.194 4,000.0 3,978.3 4,010.1 4,003.8 14.8 14.1 69.97 5,082.4 -1,117.8 6,070.3 6,041.5 28.85 210.436 4,200.0 4,176.3 4,219.7 4,213.4 15.7 14.8 70.20 5,080.7 -1,119.9 6,060.5 6,030.1 30.40 199.351 4,300.0 4,275.3 4,341.8 4,335.5 16.1 15.2 70.35 5,080.1 -1,119.7 6,055.2 6,024.0 31.23 193.914 4,400.0 4,374.4 4,438.2 4,431.9 16.5 15.6 70.48 5,080.0 -1,118.7 6,049.8 6,017.9 31.95 189.349 4,500.0 4,473.4 4,535.6 4,529.4 16.9 15.9 70.62 5,080.3 -1,116.9 6,044.5 6,011.8 32.68 184.959 4,000.0 4,671.5 4,713.6 4,707.3 17.7 16.4 70.88 5,081.9 -1,112.8 6,034.4 6,000.3 34.08 177.064 4,800.0 4,770.5 4,799.4 4,793.1 18.2 16.7 71.01 5,082.9 -1,111.0 6,029.6 5,994.8 34.77 173.395 4,900.0 4,869.5 4,885.3 4,879.0 18.6 17.0 71.13 5,083.8 -1,109.4 6,025.1 5,986.6 35.47 169.873 5,000.0 4,968.5 4,979.1 4,972.7 19.0 17.3 71.26 5,084.8 -1,108.2 6,020.8 5,984.6 36.19 166.364 | | | | | | | | | | | | | | | | | 3,500.0 3,483.1 3,554.9 3,549.5 12.8 12.4 69.64 5,097.6 -1,097.7 6,096.7 6,071.6 25.14 242.524 3,600.0 3,582.2 3,643.0 3,637.2 13.2 12.7 69.68 5,093.0 -1,103.7 6,091.2 6,065.3 25.87 235.426 3,700.0 3,681.2 3,737.0 3,731.0 13.6 13.1 69.74 5,089.2 -1,108.7 6,085.7 6,059.1 26.63 228.534 3,800.0 3,780.2 3,827.6 3,821.5 14.0 13.4 69.81 5,086.4 -1,112.3 6,080.4 6,053.0 27.37 222.163 3,900.0 3,879.2 3,916.5 3,910.4 14.4 13.8 69.88 5,084.1 -1,115.2 6,075.3 6,047.2 28.10 216.194 4,000.0 3,978.3 4,010.1 4,003.8 14.8 14.1 69.97 5,082.4 -1,117.8 6,070.3 6,041.5 28.85 210.436 4,100.0 4,077.3 4,107.3 4,101.0 15.3 14.4 70.07 5,081.2 -1,119.4 6,065.4 6,035.8 29.60 204.895 4,200.0 4,176.3 4,219.7 4,213.4 15.7 14.8 70.20 5,080.7 -1,119.9 6,060.5 6,030.1 30.40 199.351 4,300.0 4,275.3 4,341.8 4,335.5 16.1 15.2 70.35 5,080.1 -1,119.7 6,055.2 6,024.0 31.23 193.914 4,400.0 4,374.4 4,438.2 4,431.9 16.5
15.6 70.48 5,080.0 -1,118.7 6,049.8 6,017.9 31.95 189.349 4,500.0 4,473.4 4,624.1 4,617.9 17.3 16.2 70.75 5,080.3 -1,116.9 6,044.5 6,011.8 32.68 184.959 4,600.0 4,572.4 4,624.1 4,617.9 17.3 16.2 70.75 5,081.0 -1,114.9 6,039.3 6,006.0 33.38 180.937 4,700.0 4,671.5 4,793.4 4,793.1 18.2 16.7 71.01 5,082.9 -1,111.0 6,029.6 5,994.8 34.77 173.395 4,900.0 4,869.5 4,885.3 4,879.0 18.6 17.0 71.13 5,083.8 -1,109.4 6,025.1 5,989.6 35.47 169.873 5,000.0 4,968.5 4,979.1 4,972.7 19.0 17.3 71.26 5,084.8 -1,109.4 6,025.1 5,989.6 35.47 169.873 | | | | | | | | | | | | | | | | | 3,700.0 3,681.2 3,737.0 3,731.0 13.6 13.1 69.74 5,089.2 -1,108.7 6,085.7 6,059.1 26.63 228.534 3,800.0 3,780.2 3,827.6 3,821.5 14.0 13.4 69.81 5,086.4 -1,112.3 6,080.4 6,053.0 27.37 222.163 3,900.0 3,879.2 3,916.5 3,910.4 14.4 13.8 69.88 5,084.1 -1,115.2 6,075.3 6,047.2 28.10 216.194 4,000.0 3,978.3 4,010.1 4,003.8 14.8 14.1 69.97 5,082.4 -1,117.8 6,070.3 6,041.5 28.85 210.436 4,100.0 4,077.3 4,107.3 4,101.0 15.3 14.4 70.07 5,081.2 -1,119.4 6,065.4 6,035.8 29.60 204.895 4,200.0 4,176.3 4,219.7 4,213.4 15.7 14.8 70.20 5,080.7 -1,119.9 6,060.5 6,030.1 30.40 199.351 4,300.0 4,275.3 4,341.8 4,335.5 16.1 15.2 70.35 5,080.1 -1,119.7 6,055.2 6,024.0 31.23 193.914 4,400.0 4,374.4 4,438.2 4,431.9 16.5 15.6 70.48 5,080.0 -1,118.7 6,049.8 6,017.9 31.95 189.349 4,500.0 4,473.4 4,535.6 4,529.4 16.9 15.9 70.62 5,080.3 -1,116.9 6,044.5 6,011.8 32.68 184.959 4,600.0 4,572.4 4,624.1 4,617.9 17.3 16.2 70.75 5,081.0 -1,114.9 6,039.3 6,006.0 33.38 180.937 4,700.0 4,671.5 4,713.6 4,707.3 17.7 16.4 70.88 5,081.9 -1,112.8 6,034.4 6,000.3 34.08 177.064 4,800.0 4,770.5 4,799.4 4,793.1 18.2 16.7 71.01 5,082.9 -1,111.0 6,029.6 5,994.8 34.77 173.395 4,900.0 4,869.5 4,885.3 4,879.0 18.6 17.0 71.13 5,083.8 -1,109.4 6,025.1 5,989.6 35.47 169.873 5,000.0 4,968.5 4,979.1 4,972.7 19.0 17.3 71.26 5,084.8 -1,108.2 6,020.8 5,984.6 36.19 166.364 | | | | | | | | | | | | | | | | | 3,700.0 3,681.2 3,737.0 3,731.0 13.6 13.1 69.74 5,089.2 -1,108.7 6,085.7 6,059.1 26.63 228.534 3,800.0 3,780.2 3,827.6 3,821.5 14.0 13.4 69.81 5,086.4 -1,112.3 6,080.4 6,053.0 27.37 222.163 3,900.0 3,879.2 3,916.5 3,910.4 14.4 13.8 69.88 5,084.1 -1,115.2 6,075.3 6,047.2 28.10 216.194 4,000.0 3,978.3 4,010.1 4,003.8 14.8 14.1 69.97 5,082.4 -1,117.8 6,070.3 6,041.5 28.85 210.436 4,100.0 4,077.3 4,107.3 4,101.0 15.3 14.4 70.07 5,081.2 -1,119.4 6,065.4 6,035.8 29.60 204.895 4,200.0 4,176.3 4,219.7 4,213.4 15.7 14.8 70.20 5,080.7 -1,119.9 6,060.5 6,030.1 30.40 199.351 4,300.0 4,275.3 4,341.8 4,335.5 16.1 15.2 70.35 5,080.1 -1,119.7 6,055.2 6,024.0 31.23 193.914 4,400.0 4,374.4 4,438.2 4,431.9 16.5 15.6 70.48 5,080.0 -1,118.7 6,049.8 6,017.9 31.95 189.349 4,500.0 4,473.4 4,535.6 4,529.4 16.9 15.9 70.62 5,080.3 -1,116.9 6,044.5 6,011.8 32.68 184.959 4,600.0 4,572.4 4,624.1 4,617.9 17.3 16.2 70.75 5,081.0 -1,114.9 6,039.3 6,006.0 33.38 180.937 4,700.0 4,671.5 4,713.6 4,707.3 17.7 16.4 70.88 5,081.9 -1,112.8 6,034.4 6,000.3 34.08 177.064 4,800.0 4,770.5 4,799.4 4,793.1 18.2 16.7 71.01 5,082.9 -1,111.0 6,029.6 5,994.8 34.77 173.395 4,900.0 4,869.5 4,885.3 4,879.0 18.6 17.0 71.13 5,083.8 -1,109.4 6,025.1 5,989.6 35.47 169.873 5,000.0 4,968.5 4,979.1 4,972.7 19.0 17.3 71.26 5,084.8 -1,108.2 6,020.8 5,984.6 36.19 166.364 | 3,600.0 | 3,582.2 | 3,643.0 | 3,637.2 | 13.2 | 12.7 | 69.68 | 5.093.0 | -1,103.7 | 6.091.2 | 6,065.3 | 25.87 | 235.426 | | | | 3,800.0 3,780.2 3,827.6 3,821.5 14.0 13.4 69.81 5,086.4 -1,112.3 6,080.4 6,053.0 27.37 222.163 3,900.0 3,879.2 3,916.5 3,910.4 14.4 13.8 69.88 5,084.1 -1,115.2 6,075.3 6,047.2 28.10 216.194 4,000.0 3,978.3 4,010.1 4,003.8 14.8 14.1 69.97 5,082.4 -1,117.8 6,070.3 6,041.5 28.85 210.436 4,100.0 4,077.3 4,107.3 4,101.0 15.3 14.4 70.07 5,081.2 -1,119.4 6,065.4 6,035.8 29.60 204.895 4,200.0 4,176.3 4,219.7 4,213.4 15.7 14.8 70.20 5,080.7 -1,119.9 6,060.5 6,030.1 30.40 199.351 4,300.0 4,275.3 4,341.8 4,335.5 16.1 15.2 70.35 5,080.1 -1,119.7 6,055.2 6,024.0 31.23 193.914 4,400.0 4,374.4 4,438.2 4,431.9 16.5 15.6 70.48 5,080.0 -1,118.7 6,049.8 6,017.9 31.95 189.349 4,500.0 4,473.4 4,535.6 4,529.4 16.9 15.9 70.62 5,080.3 -1,116.9 6,044.5 6,011.8 32.68 184.959 4,600.0 4,572.4 4,624.1 4,617.9 17.3 16.2 70.75 5,081.0 -1,114.9 6,039.3 6,006.0 33.38 180.937 4,700.0 4,671.5 4,713.6 4,707.3 17.7 16.4 70.88 5,081.9 -1,112.8 6,034.4 6,000.3 34.08 177.064 4,800.0 4,770.5 4,799.4 4,793.1 18.2 16.7 71.01 5,082.9 -1,111.0 6,029.6 5,989.8 34.77 173.395 4,900.0 4,869.5 4,885.3 4,879.0 18.6 17.0 71.13 5,083.8 -1,109.4 6,025.1 5,989.6 35.47 169.873 5,000.0 4,968.5 4,979.1 4,972.7 19.0 17.3 71.26 5,084.8 -1,108.2 6,020.8 5,984.6 36.19 166.364 | | | | | | | | | | | | | | | | | 3,900.0 3,879.2 3,916.5 3,910.4 14.4 13.8 69.88 5,084.1 -1,115.2 6,075.3 6,047.2 28.10 216.194 4,000.0 3,978.3 4,010.1 4,003.8 14.8 14.1 69.97 5,082.4 -1,117.8 6,070.3 6,041.5 28.85 210.436 4,100.0 4,077.3 4,107.3 4,101.0 15.3 14.4 70.07 5,081.2 -1,119.4 6,065.4 6,035.8 29.60 204.895 4,200.0 4,176.3 4,219.7 4,213.4 15.7 14.8 70.20 5,080.7 -1,119.9 6,060.5 6,030.1 30.40 199.351 4,300.0 4,275.3 4,341.8 4,335.5 16.1 15.2 70.35 5,080.1 -1,119.7 6,055.2 6,024.0 31.23 193.914 4,400.0 4,374.4 4,438.2 4,431.9 16.5 15.6 70.48 5,080.0 -1,118.7 6,049.8 6,017.9 31.95 189.349 4,500.0 4,473.4 4,535.6 4,529.4 16.9 15.9 70.62 5,080.3 -1,116.9 6,044.5 6,011.8 32.68 184.959 4,600.0 4,572.4 4,624.1 4,617.9 17.3 16.2 70.75 5,081.0 -1,114.9 6,039.3 6,006.0 33.38 180.937 4,700.0 4,671.5 4,713.6 4,707.3 17.7 16.4 70.88 5,081.9 -1,112.8 6,034.4 6,000.3 34.08 177.064 4,800.0 4,770.5 4,799.4 4,793.1 18.2 16.7 71.01 5,082.9 -1,111.0 6,029.6 5,994.8 34.77 173.395 4,900.0 4,869.5 4,885.3 4,879.0 18.6 17.0 71.13 5,083.8 -1,109.4 6,025.1 5,989.6 35.47 169.873 5,000.0 4,968.5 4,979.1 4,972.7 19.0 17.3 71.26 5,084.8 -1,108.2 6,020.8 5,984.6 36.19 166.364 | | , | | | | | | | | | | | | | | | 4,100.0 4,077.3 4,107.3 4,101.0 15.3 14.4 70.07 5,081.2 -1,119.4 6,065.4 6,035.8 29.60 204.895 4,200.0 4,176.3 4,219.7 4,213.4 15.7 14.8 70.20 5,080.7 -1,119.9 6,060.5 6,030.1 30.40 199.351 4,300.0 4,275.3 4,341.8 4,335.5 16.1 15.2 70.35 5,080.1 -1,119.7 6,055.2 6,024.0 31.23 193.914 4,400.0 4,374.4 4,438.2 4,431.9 16.5 15.6 70.48 5,080.0 -1,118.7 6,049.8 6,017.9 31.95 189.349 4,500.0 4,473.4 4,535.6 4,529.4 16.9 15.9 70.62 5,080.3 -1,116.9 6,044.5 6,011.8 32.68 184.959 4,600.0 4,572.4 4,624.1 4,617.9 17.3 16.2 70.75 5,081.0 -1,114.9 6,039.3 6,006.0 33.38 180.937 4,700.0 4,671.5 4,713.6 4,707.3 17.7 16.4 70.88 5,081.9< | | | | | | | | | | 6,075.3 | 6,047.2 | | | | | | 4,200.0 4,176.3 4,219.7 4,213.4 15.7 14.8 70.20 5,080.7 -1,119.9 6,060.5 6,030.1 30.40 199.351 4,300.0 4,275.3 4,341.8 4,335.5 16.1 15.2 70.35 5,080.1 -1,119.7 6,055.2 6,024.0 31.23 193.914 4,400.0 4,374.4 4,438.2 4,431.9 16.5 15.6 70.48 5,080.0 -1,118.7 6,049.8 6,017.9 31.95 189.349 4,500.0 4,473.4 4,535.6 4,529.4 16.9 15.9 70.62 5,080.3 -1,116.9 6,044.5 6,011.8 32.68 184.959 4,600.0 4,572.4 4,624.1 4,617.9 17.3 16.2 70.75 5,081.0 -1,114.9 6,039.3 6,006.0 33.38 180.937 4,700.0 4,671.5 4,713.6 4,707.3 17.7 16.4 70.88 5,081.9 -1,112.8 6,034.4 6,000.3 34.08 177.064 4,800.0 4,770.5 4,799.4 4,793.1 18.2 16.7 71.01 5,082.9< | 4,000.0 | 3,978.3 | 4,010.1 | 4,003.8 | 14.8 | 14.1 | 69.97 | 5,082.4 | -1,117.8 | 6,070.3 | 6,041.5 | 28.85 | 210.436 | | | | 4,200.0 4,176.3 4,219.7 4,213.4 15.7 14.8 70.20 5,080.7 -1,119.9 6,060.5 6,030.1 30.40 199.351 4,300.0 4,275.3 4,341.8 4,335.5 16.1 15.2 70.35 5,080.1 -1,119.7 6,055.2 6,024.0 31.23 193.914 4,400.0 4,374.4 4,438.2 4,431.9 16.5 15.6 70.48 5,080.0 -1,118.7 6,049.8 6,017.9 31.95 189.349 4,500.0 4,473.4 4,535.6 4,529.4 16.9 15.9 70.62 5,080.3 -1,116.9 6,044.5 6,011.8 32.68 184.959 4,600.0 4,572.4 4,624.1 4,617.9 17.3 16.2 70.75 5,081.0 -1,114.9 6,039.3 6,006.0 33.38 180.937 4,700.0 4,671.5 4,713.6 4,707.3 17.7 16.4 70.88 5,081.9 -1,112.8 6,034.4 6,000.3 34.08 177.064 4,800.0 4,770.5 4,799.4 4,793.1 18.2 16.7 71.01 5,082.9< | 4,100.0 | 4,077.3 | 4,107.3 | 4,101.0 | 15.3 | 14.4 | 70.07 | 5,081.2 | -1,119.4 | 6,065.4 | 6,035.8 | 29.60 | 204.895 | | | | 4,300.0 4,275.3 4,341.8 4,335.5 16.1 15.2 70.35 5,080.1 -1,119.7 6,055.2 6,024.0 31.23 193.914 4,400.0 4,374.4 4,438.2 4,431.9 16.5 15.6 70.48 5,080.0 -1,118.7 6,049.8 6,017.9 31.95 189.349 4,500.0 4,473.4 4,535.6 4,529.4 16.9 15.9 70.62 5,080.3 -1,116.9 6,044.5 6,011.8 32.68 184.959 4,600.0 4,572.4 4,624.1 4,617.9 17.3 16.2 70.75 5,081.0 -1,114.9 6,039.3 6,006.0 33.38 180.937 4,700.0 4,671.5 4,713.6 4,707.3 17.7 16.4 70.88 5,081.9 -1,112.8 6,034.4 6,000.3 34.08 177.064 4,800.0 4,770.5 4,799.4 4,793.1 18.2 16.7 71.01 5,082.9 -1,111.0 6,024.6 5,994.8 34.77 173.395 4,900.0 4,869.5 4,885.3 4,879.0 18.6 17.0 71.13 5,084.8< | | | | , | | | | • | | | | | | | | | 4,500.0 4,473.4 4,535.6 4,529.4 16.9 15.9 70.62 5,080.3 -1,116.9 6,044.5 6,011.8 32.68 184.959 4,600.0 4,572.4 4,624.1 4,617.9 17.3 16.2 70.75 5,081.0 -1,114.9 6,039.3 6,006.0 33.38 180.937 4,700.0 4,671.5 4,713.6 4,707.3 17.7 16.4 70.88 5,081.9 -1,112.8 6,034.4 6,000.3 34.08 177.064 4,800.0 4,770.5 4,799.4 4,793.1 18.2 16.7 71.01 5,082.9 -1,111.0 6,029.6 5,994.8 34.77 173.395 4,900.0 4,869.5 4,885.3 4,879.0 18.6 17.0 71.13 5,083.8 -1,109.4 6,025.1 5,989.6 35.47 169.873 5,000.0 4,968.5 4,979.1 4,972.7 19.0 17.3 71.26 5,084.8 -1,108.2 6,020.8 5,984.6 36.19 166.364 | | | | | | | | | | | | | | | | | 4,600.0 4,572.4 4,624.1 4,617.9 17.3 16.2 70.75 5,081.0 -1,114.9 6,039.3 6,006.0 33.38 180.937 4,700.0 4,671.5 4,713.6 4,707.3 17.7 16.4 70.88 5,081.9 -1,112.8 6,034.4 6,000.3 34.08 177.064 4,800.0 4,770.5 4,799.4 4,793.1 18.2 16.7 71.01 5,082.9 -1,111.0 6,029.6 5,994.8 34.77 173.395 4,900.0 4,869.5 4,885.3 4,879.0 18.6 17.0 71.13 5,083.8 -1,109.4 6,025.1 5,989.6 35.47 169.873 5,000.0 4,968.5 4,979.1 4,972.7 19.0 17.3 71.26 5,084.8 -1,108.2 6,020.8 5,984.6 36.19 166.364 | 4,400.0 | 4,374.4 | 4,438.2 | 4,431.9 | 16.5 | 15.6 | 70.48 | 5,080.0 | -1,118.7 | 6,049.8 | 6,017.9 | 31.95 | 189.349 | | | | 4,700.0 4,671.5 4,713.6 4,707.3 17.7 16.4 70.88 5,081.9 -1,112.8 6,034.4 6,000.3 34.08 177.064 4,800.0
4,770.5 4,799.4 4,793.1 18.2 16.7 71.01 5,082.9 -1,111.0 6,029.6 5,994.8 34.77 173.395 4,900.0 4,869.5 4,885.3 4,879.0 18.6 17.0 71.13 5,083.8 -1,109.4 6,025.1 5,989.6 35.47 169.873 5,000.0 4,968.5 4,979.1 4,972.7 19.0 17.3 71.26 5,084.8 -1,108.2 6,020.8 5,984.6 36.19 166.364 | 4,500.0 | 4,473.4 | 4,535.6 | 4,529.4 | 16.9 | 15.9 | 70.62 | 5,080.3 | -1,116.9 | 6,044.5 | 6,011.8 | 32.68 | 184.959 | | | | 4,800.0 4,770.5 4,799.4 4,793.1 18.2 16.7 71.01 5,082.9 -1,111.0 6,029.6 5,994.8 34.77 173.395 4,900.0 4,869.5 4,885.3 4,879.0 18.6 17.0 71.13 5,083.8 -1,109.4 6,025.1 5,989.6 35.47 169.873 5,000.0 4,968.5 4,979.1 4,972.7 19.0 17.3 71.26 5,084.8 -1,108.2 6,020.8 5,984.6 36.19 166.364 | 4,600.0 | 4,572.4 | 4,624.1 | 4,617.9 | 17.3 | 16.2 | 70.75 | 5,081.0 | -1,114.9 | 6,039.3 | 6,006.0 | 33.38 | 180.937 | | | | 4,900.0 4,869.5 4,885.3 4,879.0 18.6 17.0 71.13 5,083.8 -1,109.4 6,025.1 5,989.6 35.47 169.873 5,000.0 4,968.5 4,979.1 4,972.7 19.0 17.3 71.26 5,084.8 -1,108.2 6,020.8 5,984.6 36.19 166.364 | 4,700.0 | 4,671.5 | 4,713.6 | 4,707.3 | 17.7 | 16.4 | 70.88 | 5,081.9 | -1,112.8 | 6,034.4 | 6,000.3 | 34.08 | 177.064 | | | | 5,000.0 4,968.5 4,979.1 4,972.7 19.0 17.3 71.26 5,084.8 -1,108.2 6,020.8 5,984.6 36.19 166.364 | | 4,770.5 | 4,799.4 | 4,793.1 | | | | | -1,111.0 | 6,029.6 | | 34.77 | 173.395 | | | | | 4,900.0 | 4,869.5 | 4,885.3 | | 18.6 | 17.0 | | | -1,109.4 | 6,025.1 | | 35.47 | 169.873 | | | | 5,100.0 5,067.6 5,085.6 5,079.2 19.4 17.7 71.41 5,085.8 -1,106.9 6,016.4 5,979.5 36.96 162.802 | 5,000.0 | 4,968.5 | 4,979.1 | 4,972.7 | 19.0 | 17.3 | 71.26 | 5,084.8 | -1,108.2 | 6,020.8 | 5,984.6 | 36.19 | 166.364 | | | | | 5,100.0 | 5,067.6 | 5,085.6 | 5,079.2 | 19.4 | 17.7 | 71.41 | 5,085.8 | -1,106.9 | 6,016.4 | 5,979.5 | 36.96 | 162.802 | | | Company: Matador Production Company Project: Antelope Ridge Reference Site: Nina Cortell Site Error: 0.0 usft Reference Well: Nina Cortell Fed Com #203H Well Error: 0.0 usft Reference Wellbore Wellbore #1 Reference Design: BLM Plan #1 Local Co-ordinate Reference: Site TVD Reference: MD Reference: North Reference: North Reference: Survey Calculation Method: Output errors are at Database: Offset TVD Reference: Database: Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) Grid Minimum Curvature 2.00 sigma EDM 5000.14 Server | Survey Pro | gram: 199 | 9-MWD | | | | | | | | | | | Offset Well Error: | 0.0 us | |----------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------|------------------|-----------------------------|----------------------------------|------------------------------|------------------------------|-------------------------------|---------------------------------|--------------------|--------------------|--------| | Refer | | Offs | et | Semi Major | r Axis | | | | Dista | ance | | | Offset Well Effor. | 0.0 us | | easured
Depth
(usft) | Vertical
Depth
(usft) | Measured
Depth
(usft) | Vertical
Depth
(usft) | Reference
(usft) | Offset
(usft) | Highside
Toolface
(°) | Offset Wellbo
+N/-S
(usft) | re Centre
+E/-W
(usft) | Between
Centres
(usft) | Between
Ellipses
(usft) | Minimum
Separation
(usft) | • | Warning | | | 5,200.0 | 5,166.6 | 5,185.9 | 5,179.5 | 19.8 | 18.0 | 71.55 | 5,086.7 | -1,105.6 | 6,012.1 | | 37.70 | 159.461 | | | | 5,300.0 | 5,265.6 | 5,285.8 | 5,179.4 | 20.2 | 18.3 | 71.70 | 5,087.5 | -1,103.0 | 6,007.7 | 5,969.3 | 38.45 | 156.252 | | | | 5,400.0 | 5,364 6 | 5,369.8 | 5,363.4 | 20.2 | 18.6 | 71.70 | 5,088.3 | -1,103.4 | 6,003.5 | 5,964 4 | 39 15 | 153 360 | | | | 5,500.0 | 5,463.7 | 5,454.8 | 5,448.4 | 21.1 | 18.9 | 71.93 | 5,089.1 | -1,102.7 | 5,999.6 | 5,959.8 | 39.85 | 150.564 | | | | 5,600.0 | 5,562.7 | 5,549.3 | 5,542.9 | 21.5 | 19.2 | 72.06 | 5,090.1 | -1,102.2 | 5,995.9 | 5,955.3 | 40.58 | 147.743 | | | | 5,700.0 | 5,661.7 | 5,645.8 | 5,639.3 | 21.9 | 19.5 | 72.19 | 5,091.0 | -1,101.9 | 5,992.2 | 5,950.9 | 41.33 | 144.997 | | | | 5,800.0 | 5,760.7 | 5,760.4 | 5,754.0 | 22.3 | 19.9 | 72.34 | 5,091.9 | -1,101.7 | 5,988.5 | 5,946.4 | 42.13 | 142.137 | | | | 5,900.0 | 5,859.8 | 5,877.4 | 5,871.0 | 22.8 | 20.3 | 72.49 | 5,092.4 | -1,101.3 | 5,984.5 | 5,941.6 | 42.95 | 139.353 | | | | 6,000.0 | 5,958.8 | 5,974.3 | 5,967.9 | 23.2 | 20.7 | 72.62 | 5,092.8 | -1,100.9 | 5,980.5 | 5,936.8 | 43.69 | 136.880 | | | | 6,100.0 | 6,057.8 | 6,077.9 | 6,071.5 | 23.6 | 21.0 | 72.76 | 5,093.3 | -1,100.4 | 5,976.4 | 5,932.0 | 44.46 | 134.422 | | | | 6,200.0 | 6,156.9 | 6,185.0 | 6,178.5 | 24.0 | 21.4 | 72.91 | 5,093.8 | -1,099.5 | 5,972.3 | 5,927.1 | 45.24 | 132.011 | | | | 0.000.0 | 0.055.0 | 0.240.2 | 0.000.7 | 24.4 | 24.0 | 72.00 | 5.004.0 | 1.000.0 | F 000 0 | E 004 0 | 40.00 | 400 507 | | | | 6,300.0 | 6,255.9 | 6,310.2 | 6,303.7 | 24.4 | 21.8 | 73.08 | 5,094.2 | -1,098.2 | 5,968.0 | 5,921.9 | 46.08 | 129.507 | | | | 6,400.0 | 6,354.9 | 6,445.1 | 6,438.7 | 24.9 | 22.3 | 73.26 | 5,093.7 | -1,096.9 | 5,963.1 | 5,916.1 | 46.96 | 126.996 | | | | 6,500.0 | 6,453.9 | 6,500.7 | 6,494.3 | 25.3 | 22.5 | 73.32 | 5,093.1 | -1,097.4 | 5,958.5 | 5,910.9 | 47.58 | 125.235 | | | | 6,600.0
6,700.0 | 6,553.0
6,652.0 | 6,572.7
6,656.7 | 6,566.2
6,650.1 | 25.7
26.1 | 22.7
23.0 | 73.40
73.48 | 5,092.2
5,090.9 | -1,098.8
-1,101.6 | 5,954.3
5,950.6 | 5,906.1
5,901.6 | 48.25
48.97 | 123.401
121.515 | | | | 0,700.0 | 0,002.0 | 0,000.7 | 0,000.1 | 20.1 | 20.0 | 70.40 | 0,000.0 | -1,101.0 | 0,000.0 | 0,001.0 | 40.07 | 121.010 | | | | 6,800.0 | 6,751.0 | 6,747.8 | 6,741.2 | 26.5 | 23.3 | 73.57 | 5,089.7 | -1,104.6 | 5,947.0 | 5,897.3 | 49.71 | 119.622 | | | | 6,900.0 | 6,850.0 | 6,852.1 | 6,845.5 | 27.0 | 23.7 | 73.67 | 5,088.5 | -1,107.9 | 5,943.5 | 5,893.0 | 50.51 | 117.679 | | | | 7,000.0 | 6,949.1 | 6,966.9 | 6,960.2 | 27.4 | 24.1 | 73.78 | 5,087.0 | -1,111.1 | 5,939.8 | 5,888.5 | 51.33 | 115.711 | | | | 7,100.0 | 7,048.1 | 7,128.1 | 7,121.4 | 27.8 | 24.7 | 73.94 | 5,083.9 | -1,115.5 | 5,935.5 | 5,883.2 | 52.32 | 113.449 | | | | 7,200.0 | 7,147.1 | 7,370.3 | 7,363.3 | 28.2 | 25.5 | 74.18 | 5,076.2 | -1,119.2 | 5,929.7 | 5,876.1 | 53.55 | 110.721 | | | | 7,300.0 | 7,246.1 | 7,419.2 | 7,412.2 | 28.6 | 25.7 | 74.24 | 5,074.7 | -1,119.2 | 5,923.0 | 5,868.8 | 54.16 | 109.358 | | | | 7,400.0 | 7,345.2 | 7,479.9 | 7,472.9 | 29.1 | 25.9 | 74.32 | 5,073.3 | -1,119.0 | 5,917.0 | 5,862.2 | 54.80 | 107.967 | | | | 7,500.0 | 7,444.2 | 7,543.0 | 7,536.0 | 29.5 | 26.1 | 74.40 | 5,072.4 | -1,118.5 | 5,911.7 | 5,856.2 | 55.45 | 106.608 | | | | 7,600.0 | 7,543.2 | 7,640.6 | 7,633.5 | 29.9 | 26.5 | 74.53 | 5,071.6 | -1,117.6 | 5,906.7 | 5,850.5 | 56.21 | 105.087 | | | | 7,700.0 | 7,642.3 | 7,742.8 | 7,735.7 | 30.3 | 26.8 | 74.67 | 5,070.9 | -1,116.3 | 5,901.7 | 5,844.7 | 56.98 | 103.578 | | | | 7,800.0 | 7,741.3 | 7,849.0 | 7,841.9 | 30.7 | 27.2 | 74.82 | 5,070.1 | -1,114.7 | 5,896.7 | 5,838.9 | 57.76 | 102.087 | | | | 7,900.0 | 7,840.3 | 7,956.8 | 7,949.7 | 31.2 | 27.6 | 74.97 | 5,069.1 | -1,113.1 | 5,891.5 | 5,833.0 | 58.55 | 100.623 | | | | 8,000.0 | 7,939.3 | 8,068.2 | 8,061.1 | 31.6 | 28.0 | 75.12 | 5,067.9 | -1,111.5 | 5,886.2 | 5,826.9 | 59.35 | 99.176 | | | | 8,100.0 | 8,038.4 | 8,183.4 | 8,176.3 | 32.0 | 28.3 | 75.28 | 5,066.2 | -1,109.9 | 5,880.7 | 5,820.6 | 60.17 | 97.742 | | | | 8,200.0 | 8,137.4 | 8,300.9 | 8,293.7 | 32.4 | 28.8 | 75.44 | 5,064.3 | -1,108.1 | 5,875.0 | 5,814.0 | 60.99 | 96.331 | | | | 9 200 0 | 0.006.4 | 0.412.2 | 9 406 4 | 22.0 | 20.1 | 75.60 | E 063.3 | 1 106 2 | E 960 0 | E 907.2 | 61.70 | 04.077 | | | | 8,300.0 | 8,236.4 | 8,413.2 | 8,406.1 | 32.8 | 29.1 | 75.60 | 5,062.2 | -1,106.2 | 5,869.0 | 5,807.2 | 61.79 | 94.977 | | | | 8,401.2 | 8,336.6 | 8,524.2 | 8,517.0 | 33.3 | 29.5 | 75.75 | 5,059.8 | -1,104.2 | 5,862.7 | 5,800.1 | 62.60 | 93.652 | | | | 8,500.0 | 8,434.7 | 8,628.0
8,716.7 | 8,620.8 | 33.7 | 29.9
30.2 | 75.76
75.75 | 5,057.4
5,055.4 | -1,102.4 | 5,856.9 | 5,793.5 | 63.36 | 92.433 | | | | 8,600.0
8,700.0 | 8,534.3 | • | 8,709.4
8,785.4 | 34.1 | 30.2 | 75.75
75.71 | • | -1,100.8
1,000.7 | 5,851.9
5,848.1 | 5,787.8
5,783.4 | 64.06
64.69 | 91.350 | | | | 8,700.0 | 8,634.2 | 8,792.7 | 8,785.4 | 34.4 | 30.3 | 75.71 | 5,053.9 | -1,099.7 | 5,848.1 | 5,783.4 | 04.09 | 90.400 | | | | 8,801.2 | 8,735.3 | 8,862.0 | 8,854.7 | 34.7 | 30.7 | -26.55 | 5,052.6 | -1,098.9 | 5,845.6 | 5,780.3 | 65.27 | 89.556 | | | | 8,900.0 | 8,834.1 | 8,909.8 | 8,902.5 | 35.0 | 30.9 | -26.55 | 5,052.1 | -1,098.5 | 5,844.3 | 5,778.5 | 65.76 | 88.879 | | | | 8,989.7 | 8,923.8 | 8,949.2 | 8,941.8 | 35.3 | 31.0 | -26.55 | 5,051.9 | -1,098.5 | 5,843.9 | 5,777.7 | 66.18 | 88.307 | | | | 9,000.0 | 8,934.1 | 8,953.7 | 8,946.4 | 35.4 | 31.0 | -26.55 | 5,051.9 | -1,098.5 | 5,843.9 | 5,777.7 | 66.22 | 88.243 | | | | 9,100.0 | 9,034.1 | 8,997.6 | 8,990.2 | 35.7 | 31.2 | -26.55 | 5,052.1 | -1,098.6 | 5,844.5 | 5,777.8 | 66.69 | 87.637 | | | | 9,200.0 | 9,134.1 | 9,051.0 | 9,043.7 | 36.0 | 31.4 | -26.56 | 5,052.8 | -1,099.2 | 5,846.0 | 5,778.8 | 67.18 | 87.016 | | | | 9,300.0 | 9,234.1 | 9,165.0 | 9,157.6 | 36.3 | 31.8 | -26.56 | 5,054.5 | -1,100.8 | 5,848.0 | 5,780.1 | 67.89 | 86.137 | | | | 9,400.0 | 9,334.1 | 9,272.7 | 9,265.3 | 36.6 | 32.1 | -26.57 | 5,055.4 | -1,102.3 | 5,849.3 | 5,780.8 | 68.58 | 85.294 | | | | 9,500.0 | 9,434.1 | 9,339.9 | 9,332.5 | 36.9 | 32.4 | -26.58 | 5,056.2 | -1,103.3 | 5,851.1 | 5,782.0 | 69.12 | 84.648 | | | | 9,600.0 | 9,534.1 | 9,407.2 | 9,399.8 | 37.2 | 32.6 | -26.58 | 5,057.5 | -1,104.3 | 5,853.4 | 5,783.8 | 69.67 | 84.022 | | | | 0.700.0 | 0 624 4 | 0 477 5 | 9,470.0 | 37.5 | 22.0 | 26 50 | E 050 4 | 1 105 5 | 5 056 2 | 5 706 4 | 70.22 | 83 400 | | | | 9,700.0
9,800.0 | 9,634.1
9,734.1 | 9,477.5
9,549.1 | 9,470.0 | 37.5
37.9 | 32.8
33.1 | -26.58
-26.59 | 5,059.1
5,060.9 | -1,105.5
-1,107.3 | 5,856.3
5,859.6 | 5,786.1
5,788.9 | 70.22
70.78 | 83.400
82.791 | | | | 9,800.0
 9,734.1 | 9,629.3 | 9,541.6 | 38.2 | 33.4 | -26.59
-26.61 | 5,060.9 | -1,107.3 | 5,863.5 | | 70.78 | 82.161 | | | | 10,000.0 | 9,834.1 | | | | | | | | | | 71.37
72.98 | | | | | 10,000.0 | | 10,000.0
9,916.0 | 9,768.6
9,908.3 | 38.5
38.8 | 34.7
34.4 | -26.62
-26.61 | 5,066.6
5,070.0 | -1,112.8
-1,113.9 | 5,866.3
5,868.7 | 5,793.3
5,795.7 | 72.98 | 80.380
80.378 | 10,200.0 | 10,134.1 | 10,007.5 | 9,999.8 | 39.1 | 34.7 | -26.60 | 5,072.4 | -1,114.2 | 5,871.2 | 5,797.6 | 73.65 | 79.722 | | | Company: Matador Production Company Project: Antelope Ridge Reference Site: Nina Cortell Site Error: 0.0 usft Reference Well: Nina Cortell Fed Com #203H Well Error: 0.0 usft Reference Wellbore #1 Reference Design: BLM Plan #1 Site Nina Cortell Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Output errors are at Database: KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) **Survey Calculation Method:** Minimum Curvature 2.00 sigma EDM 5000.14 Server Offset TVD Reference: Offset Datum | Reference Offset Semi Major Axis Distance | or: 0.0 or: 0.0 or: | |--|---------------------| | | 0.0 | | 10.300 1 0.2241 10.1220 10.1142 39.4 35.1 26.59 50.75.6 3.1145 8.87.7 5.79.3 74.30 78.987 19.0000 19.0000 19.0000 19.0000 19.0000 19.000 19.00 | ning | | 19,400 19,334 10,226 10,218 39,8 35,4 26,58 5,078 1,114 5,870 5,800 75,04 78,300 1,0500 10,534 10,416 10,411 40,4 361 26,58 5,062 41,116 5,880 5,800 77,075 70,19 1,000 10,734 10,800 10,641 41,0 37,4 26,58 5,062 41,116 5,880 5,800 77,075 70,534 10,800 10,734 10,800 10,841 41,0 37,4 26,58 5,066 41,118 5,884 5,800 78,33 75,117 1,000 10,734 10,800 10,841 41,0 37,4 26,58 5,066 41,118 5,884 5,800 78,33 75,117 1,000 10,841 11,000 10,841 11,000 10,800 10,800 41,7 382 28,83 5,800 41,000 5,800 41,000 10,800 10,800 41,000 41,7 382 28,83 5,800 41,000 41 | | | 19.500 10.6344 10.307 10.1192 401 36.7 26.58 5.082 4.11181 5.8787 5.8007 5.0840 77.695 77.69 | | | 10,000 0 10,034 1 10,040 10,041 1 10,000 10,051 4 07 385 265 | | | 10,700 | | | 10,800 | | | 1,000 1,0034 1,000 1,001 417 32 2,08 5,083 1,122 5,826 5,802 7,071 73,803 1,1000 1,1341 1,1354 1,1254 1,2054 42 38 38 2,68 5,807 1,128 5,881 5,800 6,700 6,707 7,254 1,400 1,1341 1,1350 1,1320 42 38 38 2,68 5,077 1,128 5,881 5,800 6,708 6,18 7,127 1,400 1,2341 1,330 1,428 43 39 2,28 8 5,077 1,128 5,881 5,800 6,708 8,18 7,177 1,400 1,3441 1,300 1,540 43 40 26 27 5,073 1,128 5,87 5,708 8,25 7,035 1,500 1,541 1,540 1,540 43 40 26 27 5,073 1,128 5,87 5,744 8,31 7,070 1,588 1,540 1,540 1,540 43 40 26 27 5,073 1,128 5,87 5,794 8,38 7,072 1,700 1,684 1,540 1,540 44 40 40 26 27 5,073 1,128 5,87 5,794 8,38 7,072 1,700 1,684 1,540 1,540 44 40 40 26 27 5,073 4,128 5,87 5,794 8,38 7,070 1,700 1,684 1,540 1,540 44 40 40 26 27 5,073 4,128 5,876 5,794 8,38 7,070 1,700 1,684 1,540 1,540 44 40 40 26 27 5,073 4,128 5,876 5,794 8,38 7,070 1,700 1,684 1,540 1,540 44 40 40 26 27 5,073 4,128 5,876 5,794 8,38 7,070 1,700 1,894 1,540 1,540 44 40 40 26 27 5,073 4,128 5,876 5,794 8,38 7,070 1,700 1,894 1,896 1,540 1,540 44 40 40 26 26 5,073 4,128 5,876 5,794 8,38 7,007 1,700 1,894 1,896 1,896 1,896 4,40
4,40 4,40 4,40 4,40 4,40 4,40 4,40 4,40 | | | 1,000 | | | 1,100 | | | 11,200 | | | 1,300 11,241 11,330 11,322 427 39.3 -26.86 5,077.9 -1,1264 5,870 5,798.2 81.81 71.877 1,400 11,344 11,430 11,438.9 11,428.9 43.0 39.7 -26.70 5,075.9 -1,127.5 5,878.8 5,796.3 82.51 71,251 1,500 11,441 11,500 11,540 11,540.9 43.0 40.1 -26.72 5,073.9 -1,128.4 5,877.0 5,793.4 83.53 70,303 1,680 11,540 11,540 11,540.9 44.0 40.1 -26.72 5,073.9 -1,128.4 5,877.0 5,794.0 83.88 70,072 1,700 11,684 11,540 11,540.9 44.0 40.1 -26.72 5,073.9 -1,128.4 5,877.0 5,794.0 83.88 70,072 1,700 11,684 11,540 11,540.9 44.0 40.1 -26.72 5,073.9 -1,128.4 5,878.0 5,794.0 83.88 70,072 1,700 11,684 11,540 11,540.9 44.0 40.1 -26.32 5,073.9 -1,128.4 5,878.0 5,794.0 83.88 70,072 1,800 1,733 11,540 11,540.9 44.1 40.1 -26.32 5,073.9 -1,128.4 5,878.0 5,794.7 84.05 69.919 1,800 1,735 11,540 11,540.9 44.3 40.1 -26.90 5,073.9 -1,128.4 5,878.0 5,797.7 84.31 69.552 1,900 1,900 1,915 11,540.9 44.6 40.1 -27.44 5,073.9 -1,128.4 5,878.0 5,797.0 84.19 69.552 1,900 1,900 1,900 1,900 44.6 40.1 -27.44 5,073.9 -1,128.4 5,878.0 5,797.0 84.19 69.552 1,900 1,900 1,900 1,900 44.6 40.1 -27.44 5,073.9 -1,128.4 5,878.0 5,797.0 84.19 69.552 1,900 1,900 1,900 1,900 1,900 44.6 40.1 -27.44 5,073.9 -1,128.4 5,878.0 5,798.0 84.22 69.308 1,900 1,900 1,900 1,900 1,900 44.6 40.1 -27.44 5,073.9 -1,128.4 5,878.0 5,798.0 84.22 69.308 1,900 1,900 1,900 1,900 1,900 44.6 40.1 -27.44 5,073.9 -1,128.4 5,878.0 5,798.0 84.22 69.308 1,900 1,900 1,900 1,900 1,900 4.7 4.9 | | | 1,500 | | | 1,500 | | | 1,588.8 1,522.9 1,549.0 1,540.9 43.6 40.1 -26.72 5,073.9 -1,128.4 5,877.0 5,793.4 83.53 70.352 1,694.9 1,629.0 1,549.0 1,540.9 44.0 40.1 -26.72 5,073.9 -1,128.4 5,877.0 5,794.0 83.88 70.072 1,700.0 1,684.1 1,549.0 1,540.9 44.0 40.1 -26.72 5,073.9 -1,128.4 5,877.0 5,794.0 83.88 70.072 1,700.0 1,684.1 1,549.0 1,540.9 44.0 40.1 -26.72 5,073.9 -1,128.4 5,876.0 5,794.1 83.90 70.080 1,700.0 1,684.1 1,549.0 1,540.9 44.1 40.1 -26.52 5,073.9 -1,128.4 5,876.0 5,794.7 40.5 69.91 1,800.0 1,733.5 1,549.0 1,540.9 44.3 40.1 -26.53 5,773.9 -1,128.4 5,876.0 5,779.7 84.11 69.52 1,800.0 1,722.2 1,549.0 1,540.9 44.5 40.1 -27.44 40.1 -28.92 5,073.9 -1,128.4 5,871.0 5,779.7 84.11 69.52 1,800.0 1,875.8 1,549.0 1,540.9 44.5 40.1 -27.44 5,073.9 -1,128.4 5,876.0 5,731.1 84.51 69.079 1,800.0 1,875.8 1,549.0 1,540.9 44.7 40.1 -28.17 5,073.9 -1,128.4 5,877.6 5,733.1 84.75 68.649 1,200.0 1,919.1 1,591.3 1,583.2 44.8 40.2 -2.92.1 5,075.2 -1,128.4 5,876.0 5,733.1 84.75 68.649 1,200.0 1,191.9 1,1540.9 1,540.9 44.5 40.2 -2.92.1 5,075.2 -1,128.4 5,876.0 5,733.1 84.75 68.649 1,200.0 1,191.9 1,1643.0 1,645.5 45.1 40.4 -36.03 5,076.5 -1,128.3 5,776.3 5,731.1 84.75 68.649 1,200.0 1,200.7 1,1643.0 1,645.5 45.2 40.4 -38.69 5,081.6 -1,127.6 5,580.5 5,680.5 86.0 67.91 1,2230.0 1,217.7 1,643.0 1,643.5 45.2 40.4 -38.69 5,081.6 -1,127.6 5,680.5 5,486.0 44.9 66.79 1,2300.0 1,219.7 1,643.0 1,643.5 45.2 40.4 -38.69 5,081.6 -1,127.6 5,680.5 5,486.0 44.9 65.98 1,2500.0 1,260.9 1,643.0 1,643.5 45.5 40.4 -36.03 5,081.6 -1,127.6 5,580.5 5,486.0 44.9 65.98 1,2500.0 1,200.9 1,643.0 1,643.5 45.5 40.4 -38.00 | | | 1,800 | | | 1,6949 1,6290 1,5490 1,5490 44.0 40.1 -26.72 5,073.9 -1,128.4 5,877.9 5,794.0 83.88 70.072 11,7000 11,634.0 11,549.0 44.0 40.1 -26.32 5,073.9 -1,128.4 5,878.0 5,794.1 83.90 70.080 11,7000 11,7000 11,7000 11,640.0 11,540.9 44.1 40.1 -26.53 5,073.9 -1,128.4 5,878.0 5,767.9 84.19 69.749 11,800.0 17,872.2 11,540.0 11,540.9 44.3 40.1 -26.53 5,073.9 -1,128.4 5,872.1 5,767.9 84.19 69.749 11,800.0 17,822 11,540.0 11,540.9 44.6 40.1 -27.44 5,073.9 -1,128.4 5,852.4 5,768.0 84.42 69.328 11,950.0 11,829.8 11,540.0 11,540.9 44.6 40.1 -27.44 5,073.9 -1,128.4 5,852.4 5,768.0 84.42 69.328 11,950.0 11,829.8 11,540.0 11,540.9 44.6 40.1 -27.44 5,073.9 -1,128.4 5,837.6 5,763.1 84.51 69.079 12,000.0 11,991.9 11,991.3 11,891.3 11,893.2 44.8 40.2 -29.21 5,075.5 -1,128.3 5,778.3 84.51 69.079 12,000.0 11,991.9 11,991.3 11,891.3 11,893.2 44.8 40.2 -29.21 5,075.5 -1,128.3 5,768.5 5,771.6 5,686.8 84.82 68.308 12,100.0 12,007.8 11,643.0 11,634.5 45.1 40.4 -33.84 5,081.6 -1,127.6 5,682.2 5,677.2 85.08 67.533 12,200.0 12,017.1 11,643.0 11,634.5 45.2 40.4 -33.84 5,081.6 -1,127.6 5,682.2 5,677.2 85.08 67.533 12,200.0 12,107.1 11,643.0 11,634.5 45.2 40.4 -33.86 5,081.6 -1,127.6 5,682.2 5,677.2 85.08 66.791 12,200.0 12,107.1 11,643.0 11,634.5 45.3 40.4 -45.74 5,081.6 -1,127.6 5,602.5 5,607.2 85.08 66.791 12,200.0 12,109.1 11,643.0 11,634.5 45.3 40.4 -45.74 5,081.6 -1,127.6 5,602.5 5,607.2 85.08 66.791 12,200.0 12,109.1 11,643.0 11,634.5 45.5 40.4 -47.80.0 5,081.6 -1,127.6 5,403.7 5,445.6 84.91 65.956 63.96 | | | 11,750 11,840 11,549 0 11,549 0 11,54 | | | 11,750 11,840 11,549 0 11,549 0 11,54 | | | 11,800 11,733.5 11,549.0 11,540.9 44.3 40.1 -26.53 5,073.9 -1,128.4 5,872.1 5,787.9 84.19 69.749 11,850.0 11,828.8 11,549.0 11,540.9 44.6 40.1 -26.80 5,073.9 -1,128.4 5,884.0 5,779.7 84.31 69.525 11,900.0 11,828.8 11,549.0 11,540.9 44.6 40.1 -27.44 5,073.9 -1,128.4 5,887.6 5,793.1 84.51 69.079 12,000.0 11,919.9 11,541.3 11,583.2 44.8 40.2 -29.21 5,075.2 -1,128.4 5,817.8 5,733.1 84.51 69.079 12,000.0 11,919.9 11,541.3 11,583.2 44.8 40.2 -29.21 5,075.2 -1,128.4 5,817.8 5,733.1 84.57 68.649 12,000.0 12,001.2 11,599.5 11,591.4 44.9 40.2 -30.41 5,075.5 -1,128.3 5,771.6 5,868.8 84.8 68.001 12,100.0 12,001.2 11,599.5 11,591.4 45.0 40.2 -30.41 5,075.5 -1,128.3 5,771.6 5,868.8 84.8 68.001 12,150.0 12,001.2 11,643.0 11,634.5 45.1 40.4 -33.84 5,081.6 -1,127.6 5,745.6 5,660.5 85.08 67.533 12,200.0 12,071.2 11,643.0 11,634.5 45.1 40.4 -38.69 5,081.6 -1,127.6 5,745.6 5,660.5 85.08 67.10 12,250.0 12,101.3 11,643.0 11,634.5 45.2 40.4 -38.69 5,081.6 -1,127.6 5,745.0 5,560.5 85.08 66.791 12,250.0 12,101.3 11,643.0 11,634.5 45.2
40.4 -41.88 5,081.6 -1,127.6 5,682.2 5,597.2 85.08 66.791 12,250.0 12,101.3 11,643.0 11,634.5 45.3 40.4 -45.74 5,081.6 -1,127.6 5,609.9 5,524.9 85.01 65.988 12,300.0 12,150.4 11,643.0 11,634.5 45.3 40.4 -50.36 5,081.6 -1,127.6 5,500.9 5,542.9 85.01 65.988 12,300.0 12,194.1 11,643.0 11,634.5 45.3 40.4 -50.38 5,081.6 -1,127.6 5,500.9 5,482.0 84.97 65.597 12,450.0 12,194.1 11,643.0 11,634.5 45.3 40.4 -50.38 5,081.6 -1,127.6 5,500.9 5,482.0 84.97 65.597 12,450.0 12,194.1 11,643.0 11,634.5 45.3 40.4 -50.38 5,081.6 -1,127.6 5,482.7 5,482.9 84.91 65.135 12,560.0 12,194.1 11,643.0 11,634.5 45.5 40.4 -60.28 5,081.6 -1,127.6 5,482.7 5,482.9 84.91 65.135 12,560.0 12,194.1 11,643.0 11,634.5 45.5 40.4 -78.00 5,081.6 -1,127.6 5,482.7 5,482.9 84.91 65.135 12,560.0 12,194.1 11,643.0 11,634.5 45.5 40.4 -78.00 5,081.6 -1,127.6 5,482.7 5,482.9 84.91 65.135 12,560.0 12,194.1 11,643.0 11,634.5 45.5 40.4 -78.00 5,081.6 -1,127.6 5,482.7 5,583.0 84.91 63.79 12,560.0 12,194.1 11,643.0 11,634.5 45.5 40.4 -78.00 5,081.6 -1,127.6 5, | | | 11,8500 11,782 | | | 11,900.0 11,829.8 11,549.0 11,540.9 44.6 40.1 27.44 5,073.9 1,128.4 5,852.4 5,768.0 84.42 69.328 11,950.0 11,973.0 11,973.0 11,540.9 44.7 40.1 28.17 5,073.9 1,128.4 5,852.4 5,768.0 84.42 69.328 11,959.0 11,919.0 11,591.3 11,540.9 44.7 40.1 28.17 5,073.9 1,128.4 5,837.6 5,733.1 84.51 69.079 12,000.0 11,919.0 11,591.3 11,583.2 44.8 40.2 2.92.1 5,075.5 1,128.3 5,796.3 5,711.4 84.2 68.336 12,100.0 12,001.2 11,595.5 11,587.4 44.9 40.2 30.41 5,075.5 1,128.3 5,796.3 5,711.4 84.2 68.336 12,100.0 12,001.2 11,595.5 11,587.4 44.9 40.2 30.41 5,075.5 1,128.3 5,776.3 5,766.0 84.88 68.001 12,150.0 12,037.8 11,643.0 11,634.5 45.1 40.4 33.84 5,081.6 1,127.6 5,745.6 5,680.5 85.08 67.533 12,200.0 12,071.2 11,683.0 11,634.5 45.1 40.4 38.69 5,081.6 1,127.6 5,745.6 5,680.5 85.08 67.533 12,200.0 12,071.2 11,643.0 11,834.5 45.2 40.4 38.69 5,081.6 1,127.6 5,682.2 5,597.2 85.08 66.791 12,300.0 12,127.7 11,643.0 11,834.5 45.3 40.4 45.8 5,081.6 1,127.6 5,682.2 5,597.2 85.08 66.791 12,300.0 12,127.7 11,643.0 11,834.5 45.3 40.4 45.8 5,081.6 1,127.6 5,682.2 5,597.2 85.08 66.791 12,300.0 12,169.1 11,643.0 11,834.5 45.3 40.4 45.8 5,081.6 1,127.6 5,697.0 5,486.0 84.97 65.567 12,450.0 12,183.7 11,643.0 11,834.5 45.3 40.4 45.8 5,081.6 1,127.6 5,570.9 5,486.0 84.97 65.567 12,500.0 12,194.1 11,643.0 11,834.5 45.3 40.4 45.8 5,081.6 1,127.6 5,570.9 5,486.0 84.97 65.567 12,500.0 12,200.2 11,643.0 11,834.5 45.3 40.4 45.8 5,081.6 1,127.6 5,487.1 5,580.9 84.8 4 64.894 12,550.0 12,200.2 11,643.0 11,834.5 45.3 40.4 45.8 5,081.6 1,127.6 5,487.1 5,488.7 5,483.9 84.8 4 64.894 12,550.0 12,200.2 11,643.0 11,834.5 45.5 40.4 40.4 82.3 5,081.6 1,127.6 5,403.7 5,319.0 84.77 64.23 12,599.0 12,201.9 11,643.0 11,834.5 45.5 40.4 78.00 5,081.6 1,127.6 5,403.7 5,319.0 84.77 64.23 12,599.0 12,201.9 11,643.0 11,834.5 45.5 40.4 78.00 5,081.6 1,127.6 5,403.7 5,319.0 84.70 63.797 12,500.0 12,201.2 11,643.0 11,834.5 45.5 40.4 78.00 5,081.6 1,127.6 5,403.7 5,319.0 84.70 63.797 13,500.0 12,199.4 11,643.0 11,834.5 45.5 40.4 78.00 5,081.6 1,127.6 5,403.7 5,319.0 84.77 64.23 12,500 | | | 12,000 | | | 12,000 | | | 12,050.0 11,961.8 11,565.5 11,587.4 44.9 40.2 -30.41 5,075.5 -1,128.3 5,796.3 5,771.4 84.82 68.336 12,100.0 12,001.2 11,569.4 11,599.4 45.0 40.2 -31.88 5,075.9 -1,128.3 5,771.6 5,686.8 84.88 68.001 12,200.0 12,077.8 11,643.0 11,634.5 45.1 40.4 -36.03 5,081.6 -1,127.6 5,745.1 5,630.1 85.08 67.170 12,200.0 12,071.3 11,643.0 11,634.5 45.2 40.4 -38.69 5,081.6 -1,127.6 5,682.2 5,597.2 85.08 66.791 12,200.0 12,127.7 11,643.0 11,634.5 45.2 40.4 -41.88 5,081.6 -1,127.6 5,647.1 5,560.0 85.08 66.791 12,200.0 12,181.7 11,643.0 11,634.5 45.3 40.4 -55.88 5,081.6 -1,127.6 5,645.6 84.97 65.567 12,450.0 | | | 12,1000 12,001 2 11,599.5 11,591.4 45.0 40.2 -31.88 5,075.9 -1,127.6 5,745.6 5,686.8 84.88 68.001 12,150.0 12,071.2 11,643.0 11,634.5 45.1 40.4 -33.84 5,081.6 -1,127.6 5,745.6 5,680.5 85.08 67.533 12,200.0 12,071.2 11,643.0 11,634.5 45.1 40.4 -38.69 5,081.6 -1,127.6 5,745.6 5,680.1 85.08 67.170 12,250.0 12,101.3 11,643.0 11,634.5 45.2 40.4 -41.88 5,081.6 -1,127.6 5,682.2 5,597.2 85.08 66.791 12,250.0 12,150.4 11,643.0 11,634.5 45.3 40.4 -45.74 5,081.6 -1,127.6 5,682.1 5,50.0 85.05 66.396 12,250.0 12,183.7 11,643.0 11,634.5 45.4 40.4 -55.88 5,081.6 -1,127.6 5,505.9 5,445.6 84.91 65.135 | | | 12,150.0 12,037.8 11,643.0 11,634.5 45.1 40.4 -33.84 5,081.6 -1,127.6 5,745.6 5,660.5 85.08 67.533 12,200.0 12,071.2 11,643.0 11,634.5 45.1 40.4 -38.69 5,081.6 -1,127.6 5,715.1 5,690.1 85.08 66.791 12,200.0 12,127.7 11,643.0 11,634.5 45.2 40.4 -43.689 5,081.6 -1,127.6 5,682.2 5,597.2 85.08 66.791 12,300.0 12,150.4 11,643.0 11,634.5 45.3 40.4 -45.74 5,081.6 -1,127.6 5,680.9 5,524.9 85.01 65.988 12,450.0 12,169.1 11,643.0 11,634.5 45.3 40.4 -55.88 5,081.6 -1,127.6 5,500.5 5,486.0 84.91 65.567 12,450.0 12,191.1 11,643.0 11,634.5 45.5 40.4 -68.38 5,081.6 -1,127.6 5,486.1 49.41 64.243 12,550.0 | | | 12,250.0 12,101.3 11,643.0 11,643.5 45.2 40.4 -38.69 5,081.6 -1,127.6 5,682.2 5,597.2 85.08 66.791 12,300.0 12,167.7 11,643.0 11,634.5 45.2 40.4 -41.88 5,081.6 -1,127.6 5,687.1 5,562.9 85.05 66.396 12,300.0 12,169.1 11,643.0 11,634.5 45.3 40.4 -50.36 5,081.6 -1,127.6 5,570.9 5,486.0 84.97 65.567 12,450.0 12,183.7 11,643.0 11,634.5 45.4 40.4 -55.88 5,081.6 -1,127.6 5,530.5 5,445.6 84.91 65.135 12,550.0 12,183.7 11,643.0 11,634.5 45.4 40.4 -62.38 5,081.6 -1,127.6 5,485.7 5,409.9 84.84 64.694 12,550.0 12,201.2 11,643.0 11,634.5 45.5 40.4 -78.00 5,081.6 -1,127.6 5,402.7 5,318.0 84.70 63.797 | | | 12,250.0 12,101.3 11,643.0 11,643.5 45.2 40.4 -38.69 5,081.6 -1,127.6 5,682.2 5,597.2 85.08 66.791 12,300.0 12,167.7 11,643.0 11,634.5 45.2 40.4 -41.88 5,081.6 -1,127.6 5,687.1 5,562.9 85.05 66.396 12,300.0 12,169.1 11,643.0 11,634.5 45.3 40.4 -50.36 5,081.6 -1,127.6 5,570.9 5,486.0 84.97 65.567 12,450.0 12,183.7 11,643.0 11,634.5 45.4 40.4 -55.88 5,081.6 -1,127.6 5,530.5 5,445.6 84.91 65.135 12,550.0 12,183.7 11,643.0 11,634.5 45.4 40.4 -62.38 5,081.6 -1,127.6 5,485.7 5,409.9 84.84 64.694 12,550.0 12,201.2 11,643.0 11,634.5 45.5 40.4 -78.00 5,081.6 -1,127.6 5,402.7 5,318.0 84.70 63.797 | | | 12,300.0 12,127.7 11,643.0 11,634.5 45.2 40.4 -41.88 5,081.6 -1,127.6 5,647.1 5,562.0 85.05 66.396 12,350.0 12,150.4 11,643.0 11,634.5 45.3 40.4 -45.74 5,081.6 -1,127.6 5,609.9 5,524.9 85.01 65.988 12,450.0 12,189.1 11,643.0 11,634.5 45.3 40.4 -55.88 5,081.6 -1,127.6 5,507.9 5,486.0 84.91 65.567 12,450.0 12,189.1 11,643.0 11,634.5 45.4 40.4 -55.88 5,081.6 -1,127.6 5,585.5 5,445.6 84.91 65.135 12,500.0 12,201.2 11,643.0 11,634.5 45.5 40.4 -69.86 5,081.6 -1,127.6 5,485.1 84.77 64.243 12,500.0 12,201.2 11,643.0 11,634.5 45.5 40.4 -78.00 5,081.6 -1,127.6 5,403.7 5,318.0 84.70 63.786 12,700.0 | | | 12.350.0 12.150.4 11.643.0 11.634.5 45.3 40.4 -45.74 5.081.6 -1.127.6 5.609.9 5.524.9 85.01 65.988 12.400.0 12.183.7 11.634.5 45.3 40.4 -50.36 5.081.6 -1,127.6 5.530.5 5.486.0 84.97 65.567 12.500.0 12.194.1 11.643.0 11.634.5 45.4 40.4 -62.38 5.081.6 -1,127.6 5.530.5 5.445.6 84.91 65.135 12.500.0 12.194.1 11.643.0 11.634.5 45.4 40.4 -62.38 5.081.6 -1,127.6 5.403.9 84.84 64.694 12.550.0 12.201.9 11.643.0 11.634.5 45.5 40.4 -78.00 5.081.6 -1,127.6 5.403.7 5.319.0 84.77 64.243 12.590.0 12.201.9 11.643.0 11.634.5 45.5 40.4 -78.00 5.081.6 -1,127.6 5.402.7 5.318.0 84.70 63.786 12.700.0 12.201.2 | | | 12,400.0 12,169.1 11,643.0 11,634.5 45.3 40.4 -50.36 5,081.6 -1,127.6 5,570.9 5,486.0 84.97 65.567 12,450.0 12,183.7 11,643.0 11,634.5 45.4 40.4 -62.38 5,081.6 -1,127.6 5,530.5 5,445.6 84.91 65.135 12,500.0 12,194.1 11,643.0 11,634.5 45.5 40.4 -69.86 5,081.6 -1,127.6 5,488.7 5,403.9 84.84 64.694 12,598.9 12,201.9 11,643.0 11,634.5 45.5 40.4 -78.00 5,081.6 -1,127.6 5,486.7 5,301.3 84.77 64.243 12,598.9 12,201.9 11,643.0 11,634.5 45.5 40.4 -78.00 5,081.6 -1,127.6 5,402.7 5,318.0 84.70 63.786 12,700.0 12,201.2 11,643.0 11,634.5 45.7 40.4 -78.00 5,081.6 -1,127.6 5,415.1 84.4 61.932 12,700.0 12,201.2 11,643.0 11,634.5 46.7 40.4 -78.00 5,0 | | | 12,500.0 12,194.1 11,643.0 11,634.5 45.4 40.4 -62.38 5,081.6 -1,127.6 5,488.7 5,403.9 84.84 64.694 12,550.0 12,200.2 11,643.0 11,634.5 45.5 40.4 -69.86 5,081.6 -1,127.6 5,403.7 5,319.0 84.70 63.797 12,600.0 12,201.9 11,643.0 11,634.5 45.5 40.4 -78.00 5,081.6 -1,127.6 5,403.7 5,319.0 84.70 63.797 12,600.0 12,201.2 11,643.0 11,634.5 45.7 40.4 -78.00 5,081.6 -1,127.6 5,402.7 5,318.0 84.56 62.863 12,700.0 12,201.2 11,643.0 11,634.5 45.7 40.4 -78.00 5,081.6 -1,127.6 5,229.5 5,145.1 84.44 61.932 12,800.0 12,199.8 11,643.0 11,634.5 46.3 40.4 -78.00 5,081.6 -1,127.6 5,229.5 5,145.1 84.44 61.932 13,000.0 12,199.1 11,643.0 11,634.5 47.2 40.4 - | | | 12,500.0 12,194.1 11,643.0 11,634.5 45.4 40.4 -62.38 5,081.6 -1,127.6 5,488.7 5,403.9 84.84 64.694 12,550.0 12,200.2 11,643.0 11,634.5 45.5 40.4 -69.66 5,081.6 -1,127.6 5,403.7 5,319.0 84.70 63.797 12,600.0 12,201.9 11,643.0 11,634.5 45.5 40.4 -78.00 5,081.6 -1,127.6 5,403.7 5,319.0 84.70 63.797 12,700.0 12,201.2 11,643.0 11,634.5 45.7 40.4 -78.00 5,081.6 -1,127.6 5,402.7 5,318.0 84.56 62.863 12,700.0 12,201.2 11,643.0 11,634.5 46.7 40.4 -78.00 5,081.6 -1,127.6 5,229.5 5,145.1 84.44 61.932 12,800.0 12,199.8 11,643.0 11,634.5 46.3 40.4 -78.00 5,081.6 -1,127.6 5,145.1 84.44 61.932 13,000.0 12,199.1 11,643.0 11,634.5 46.7 40.4 -78.00 5, | | | 12,550.0 12,200.2 11,643.0 11,634.5 45.5 40.4 -69.86 5,081.6 -1,127.6 5,446.1 5,361.3 84.77 64.243 12,598.9 12,201.9 11,643.0 11,634.5 45.5 40.4 -78.00 5,081.6 -1,127.6 5,403.7 5,319.0 84.70 63.797 12,600.0 12,201.9 11,643.0 11,634.5 45.5 40.4 -78.00 5,081.6 -1,127.6 5,402.7 5,318.0 84.70 63.786 12,700.0 12,201.2 11,643.0 11,634.5 45.7 40.4 -78.00 5,081.6 -1,127.6 5,315.9 5,231.3 84.56 62.863 12,800.0 12,200.5 11,643.0 11,634.5 46.0 40.4 -78.00 5,081.6 -1,127.6 5,229.5 5,145.1 84.44 61.932 12,900.0 12,199.8 11,643.0 11,634.5 46.7 40.4 -78.00 5,081.6 -1,127.6 5,058.3 4,974.1 84.25 60.039 13,000.0 12,199.1 11,643.0 11,634.5 47.2 40.4 - | | | 12,598.9 12,201.9 11,643.0 11,634.5 45.5 40.4 -78.00 5,081.6 -1,127.6 5,403.7
5,319.0 84.70 63.797 12,600.0 12,201.9 11,643.0 11,634.5 45.5 40.4 -78.00 5,081.6 -1,127.6 5,402.7 5,318.0 84.70 63.786 12,700.0 12,201.2 11,643.0 11,634.5 45.7 40.4 -78.00 5,081.6 -1,127.6 5,315.9 5,231.3 84.56 62.863 12,800.0 12,200.5 11,643.0 11,634.5 46.0 40.4 -78.00 5,081.6 -1,127.6 5,229.5 5,145.1 84.44 61.932 12,900.0 12,199.8 11,643.0 11,634.5 46.3 40.4 -78.00 5,081.6 -1,127.6 5,143.7 5,059.3 84.34 60.991 13,000.0 12,199.1 11,643.0 11,634.5 47.2 40.4 -78.00 5,081.6 -1,127.6 5,058.3 4,974.1 84.25 60.039 13,200.0 12,197.7 11,643.0 11,634.5 47.7 40.4 - | | | 12,600.0 12,201.9 11,643.0 11,634.5 45.5 40.4 -78.00 5,081.6 -1,127.6 5,402.7 5,318.0 84.70 63.786 12,700.0 12,201.2 11,643.0 11,634.5 45.7 40.4 -78.00 5,081.6 -1,127.6 5,315.9 5,231.3 84.56 62.863 12,800.0 12,200.5 11,643.0 11,634.5 46.0 40.4 -78.00 5,081.6 -1,127.6 5,229.5 5,145.1 84.44 61.932 12,900.0 12,199.8 11,643.0 11,634.5 46.3 40.4 -78.00 5,081.6 -1,127.6 5,059.3 84.34 60.991 13,000.0 12,199.1 11,643.0 11,634.5 46.7 40.4 -78.00 5,081.6 -1,127.6 5,058.3 4,974.1 84.25 60.039 13,200.0 12,197.7 11,643.0 11,634.5 47.2 40.4 -78.00 5,081.6 -1,127.6 4,889.3 4,805.2 84.15 58.102 13,300.0 12,197.7 11,643.0 11,634.5 48.3 40.4 -78.00 5, | | | 12,800.0 12,200.5 11,643.0 11,634.5 46.0 40.4 -78.00 5,081.6 -1,127.6 5,229.5 5,145.1 84.44 61.932 12,900.0 12,199.8 11,643.0 11,634.5 46.3 40.4 -78.00 5,081.6 -1,127.6 5,143.7 5,059.3 84.34 60.991 13,000.0 12,199.1 11,643.0 11,634.5 46.7 40.4 -78.00 5,081.6 -1,127.6 5,058.3 4,974.1 84.25 60.039 13,200.0 12,198.4 11,643.0 11,634.5 47.2 40.4 -78.00 5,081.6 -1,127.6 4,973.5 4,889.3 84.19 59.076 13,200.0 12,197.7 11,643.0 11,634.5 47.7 40.4 -78.00 5,081.6 -1,127.6 4,889.3 4,805.2 84.15 58.102 13,300.0 12,197.0 11,643.0 11,634.5 49.0 40.4 -78.00 5,081.6 -1,127.6 4,805.7 4,721.5 84.14 57.115 13,400.0 12,196.4 11,643.0 11,634.5 49.7 40.4 - | | | 12,800.0 12,200.5 11,643.0 11,634.5 46.0 40.4 -78.00 5,081.6 -1,127.6 5,229.5 5,145.1 84.44 61.932 12,900.0 12,199.8 11,643.0 11,634.5 46.3 40.4 -78.00 5,081.6 -1,127.6 5,143.7 5,059.3 84.34 60.991 13,000.0 12,199.1 11,643.0 11,634.5 46.7 40.4 -78.00 5,081.6 -1,127.6 5,058.3 4,974.1 84.25 60.039 13,200.0 12,198.4 11,643.0 11,634.5 47.2 40.4 -78.00 5,081.6 -1,127.6 4,973.5 4,889.3 84.19 59.076 13,200.0 12,197.7 11,643.0 11,634.5 47.7 40.4 -78.00 5,081.6 -1,127.6 4,889.3 4,805.2 84.15 58.102 13,300.0 12,197.0 11,643.0 11,634.5 49.0 40.4 -78.00 5,081.6 -1,127.6 4,805.7 4,721.5 84.14 57.115 13,400.0 12,196.4 11,643.0 11,634.5 49.7 40.4 - | | | 12,900.0 12,199.8 11,643.0 11,634.5 46.3 40.4 -78.00 5,081.6 -1,127.6 5,143.7 5,059.3 84.34 60.991 13,000.0 12,199.1 11,643.0 11,634.5 46.7 40.4 -78.00 5,081.6 -1,127.6 5,058.3 4,974.1 84.25 60.039 13,100.0 12,198.4 11,643.0 11,634.5 47.2 40.4 -78.00 5,081.6 -1,127.6 4,973.5 4,889.3 84.19 59.076 13,200.0 12,197.7 11,643.0 11,634.5 47.7 40.4 -78.00 5,081.6 -1,127.6 4,889.3 4,805.2 84.15 58.102 13,300.0 12,197.0 11,643.0 11,634.5 48.3 40.4 -78.00 5,081.6 -1,127.6 4,889.3 4,805.2 84.15 58.102 13,400.0 12,196.4 11,643.0 11,634.5 49.0 40.4 -78.00 5,081.6 -1,127.6 4,805.7 4,721.5 84.14 57.115 13,500.0 12,195.7 11,643.0 11,634.5 50.4 40.4 - | | | 13,000.0 12,199.1 11,643.0 11,634.5 46.7 40.4 -78.00 5,081.6 -1,127.6 5,058.3 4,974.1 84.25 60.039 13,100.0 12,198.4 11,643.0 11,634.5 47.2 40.4 -78.00 5,081.6 -1,127.6 4,973.5 4,889.3 84.19 59.076 13,200.0 12,197.7 11,643.0 11,634.5 47.7 40.4 -78.00 5,081.6 -1,127.6 4,889.3 4,805.2 84.15 58.102 13,300.0 12,197.0 11,643.0 11,634.5 48.3 40.4 -78.00 5,081.6 -1,127.6 4,889.3 4,805.2 84.15 58.102 13,400.0 12,196.4 11,643.0 11,634.5 49.0 40.4 -78.00 5,081.6 -1,127.6 4,805.7 4,721.5 84.14 57.115 13,500.0 12,195.7 11,643.0 11,634.5 49.7 40.4 -78.00 5,081.6 -1,127.6 4,640.4 4,556.2 84.21 55.103 13,600.0 12,195.0 11,643.0 11,634.5 50.4 40.4 - | | | 13,100.0 12,198.4 11,643.0 11,634.5 47.2 40.4 -78.00 5,081.6 -1,127.6 4,973.5 4,889.3 84.19 59.076 13,200.0 12,197.7 11,643.0 11,634.5 47.7 40.4 -78.00 5,081.6 -1,127.6 4,889.3 4,805.2 84.15 58.102 13,300.0 12,197.0 11,643.0 11,634.5 48.3 40.4 -78.00 5,081.6 -1,127.6 4,805.7 4,721.5 84.14 57.115 13,400.0 12,195.7 11,643.0 11,634.5 49.0 40.4 -78.00 5,081.6 -1,127.6 4,805.7 4,721.5 84.14 57.115 13,500.0 12,195.7 11,643.0 11,634.5 49.7 40.4 -78.00 5,081.6 -1,127.6 4,640.4 4,556.2 84.21 55.103 13,600.0 12,195.0 11,643.0 11,634.5 50.4 40.4 -78.00 5,081.6 -1,127.6 4,677.9 4,393.5 84.44 53.034 13,700.0 12,194.3 11,643.0 11,634.5 51.2 40.4 - | | | 13,300.0 12,197.0 11,643.0 11,634.5 48.3 40.4 -78.00 5,081.6 -1,127.6 4,805.7 4,721.5 84.14 57.115 13,400.0 12,196.4 11,643.0 11,634.5 49.0 40.4 -78.00 5,081.6 -1,127.6 4,722.7 4,638.5 84.16 56.116 13,500.0 12,195.7 11,643.0 11,634.5 49.7 40.4 -78.00 5,081.6 -1,127.6 4,640.4 4,556.2 84.21 55.103 13,700.0 12,195.0 11,643.0 11,634.5 51.2 40.4 -78.00 5,081.6 -1,127.6 4,477.9 4,393.5 84.44 53.034 13,700.0 12,194.3 11,643.0 11,634.5 51.2 40.4 -78.00 5,081.6 -1,127.6 4,477.9 4,393.5 84.44 53.034 13,800.0 12,193.6 11,643.0 11,634.5 52.0 40.4 -78.00 5,081.6 -1,127.6 4,397.9 4,313.2 84.61 51.97 13,900.0 12,192.9 11,643.0 11,634.5 52.9 40.4 -7 | | | 13,300.0 12,197.0 11,643.0 11,634.5 48.3 40.4 -78.00 5,081.6 -1,127.6 4,805.7 4,721.5 84.14 57.115 13,400.0 12,196.4 11,643.0 11,634.5 49.0 40.4 -78.00 5,081.6 -1,127.6 4,722.7 4,638.5 84.16 56.116 13,500.0 12,195.7 11,643.0 11,634.5 49.7 40.4 -78.00 5,081.6 -1,127.6 4,640.4 4,556.2 84.21 55.103 13,700.0 12,195.0 11,643.0 11,634.5 51.2 40.4 -78.00 5,081.6 -1,127.6 4,477.9 4,393.5 84.44 53.034 13,700.0 12,194.3 11,643.0 11,634.5 51.2 40.4 -78.00 5,081.6 -1,127.6 4,477.9 4,393.5 84.44 53.034 13,800.0 12,192.6 11,643.0 11,634.5 52.0 40.4 -78.00 5,081.6 -1,127.6 4,397.9 4,313.2 84.61 51.977 13,900.0 12,192.9 11,643.0 11,634.5 52.9 40.4 - | | | 13,400.0 12,196.4 11,643.0 11,643.0 11,634.5 49.0 40.4 -78.00 5,081.6 -1,127.6 4,722.7 4,638.5 84.16 56.116 13,500.0 12,195.7 11,643.0 11,634.5 50.4 40.4 -78.00 5,081.6 -1,127.6 4,640.4 4,556.2 84.21 55.103 13,700.0 12,195.0 11,643.0 11,634.5 51.2 40.4 -78.00 5,081.6 -1,127.6 4,477.9 4,393.5 84.44 53.034 13,800.0 12,193.6 11,643.0 11,634.5 52.0 40.4 -78.00 5,081.6 -1,127.6 4,397.9 4,313.2 84.61 51.97 13,900.0 12,192.9 11,643.0 11,634.5 52.0 40.4 -78.00 5,081.6 -1,127.6 4,397.9 4,313.2 84.61 51.97 13,900.0 12,192.9 11,643.0 11,634.5 52.9 40.4 -78.00 5,081.6 -1,127.6 4,318.6 4,233.8 84.83 50.906 14,000.0 12,192.2 11,643.0 11,634.5 53.8 <td< td=""><td></td></td<> | | | 13,500.0 12,195.7 11,643.0 11,634.5 49.7 40.4 -78.00 5,081.6 -1,127.6 4,640.4 4,556.2 84.21 55.103 13,600.0 12,195.0 11,643.0 11,634.5 50.4 40.4 -78.00 5,081.6 -1,127.6 4,640.4 4,558.2 84.21 55.103 13,700.0 12,194.3 11,643.0 11,634.5 51.2 40.4 -78.00 5,081.6 -1,127.6 4,477.9 4,393.5 84.44 53.034 13,800.0 12,193.6 11,643.0 11,634.5 52.0 40.4 -78.00 5,081.6 -1,127.6 4,397.9 4,313.2 84.61 51.97 13,900.0 12,192.9 11,643.0 11,634.5 52.9 40.4 -78.00 5,081.6 -1,127.6 4,318.6 4,233.8 84.83 50.906 14,000.0 12,192.2 11,643.0 11,634.5 53.8 40.4 -78.00 5,081.6 -1,127.6 4,318.6 4,233.8 84.83 50.906 | | | 13,600.0 12,195.0 11,643.0 11,643.0 50.4 40.4 -78.00 5,081.6 -1,127.6 4,558.8 4,474.5 84.30 54.075 13,700.0 12,194.3 11,643.0 11,634.5 51.2 40.4 -78.00 5,081.6 -1,127.6 4,477.9 4,393.5 84.44 53.034 13,800.0 12,193.6 11,643.0 11,634.5 52.0 40.4 -78.00 5,081.6 -1,127.6 4,397.9 4,313.2 84.61 51.97 13,900.0 12,192.9 11,643.0 11,634.5 52.9 40.4 -78.00 5,081.6 -1,127.6 4,318.6 4,233.8 84.83 50.906 14,000.0 12,192.2 11,643.0 11,634.5 53.8 40.4 -78.00 5,081.6 -1,127.6 4,240.3 4,155.1 85.11 49.821 | | | 13,800.0 12,193.6 11,643.0 11,643.0 11,643.5 52.0 40.4 -78.00 5,081.6 -1,127.6 4,397.9 4,313.2 84.61 51.977 13,900.0 12,192.9 11,643.0 11,634.5 52.9 40.4 -78.00 5,081.6 -1,127.6 4,318.6 4,233.8 84.83 50.906 14,000.0 12,192.2 11,643.0 11,634.5 53.8 40.4 -78.00 5,081.6 -1,127.6 4,240.3 4,155.1 85.11 49.821 | | | 13,800.0 12,193.6 11,643.0 11,643.0 11,643.5 52.0 40.4 -78.00 5,081.6 -1,127.6 4,397.9 4,313.2 84.61 51.977 13,900.0 12,192.9 11,643.0 11,634.5 52.9 40.4 -78.00 5,081.6 -1,127.6 4,318.6 4,233.8 84.83 50.906 14,000.0 12,192.2 11,643.0 11,634.5 53.8 40.4 -78.00 5,081.6 -1,127.6 4,240.3 4,155.1 85.11 49.821 | | | 13,900.0 12,192.9 11,643.0 11,634.5 52.9 40.4 -78.00 5,081.6 -1,127.6 4,318.6 4,233.8 84.83 50.906 14,000.0 12,192.2 11,643.0 11,634.5 53.8 40.4 -78.00 5,081.6 -1,127.6 4,240.3 4,155.1 85.11 49.821 | | | 14,000.0 12,192.2 11,643.0 11,634.5 53.8 40.4 -78.00 5,081.6 -1,127.6 4,240.3 4,155.1 85.11 49.821 | | | | | | 1 -1,100.0 12,101.0 11,040.0 11,004.0 04.0 40.4 10.4 10.00 0,001.0 -1,127.0 4,102.0 4,077.4 00.44 40.72 1 | | | 14,200.0 12,190.8 11,643.0 11,634.5 55.7 40.4 -78.00 5,081.6 -1,127.6 4,086.4 4,000.5 85.84 47.607 | | Company: Matador Production Company Project: Antelope Ridge Reference Site: Nina Cortell Site Error: 0.0 usft Reference Well: Nina Cortell Fed Com #203H Well Error: 0.0 usft Reference Wellbore #1 Reference Design: BLM Plan #1 **Local Co-ordinate Reference:** TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Output errors are at Database: Offset TVD Reference: Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) Minimum Curvature 2.00 sigma EDM 5000.14 Server | Offset D | esign | Nina C | ortell - 1 | Nina Cortell | Fed Co | m #201H - | Wellbore #1 | - Actual S | urvey | | | | Offset Site Error: | 0.0 usft | |----------------------|----------------------|----------------------|----------------------|-------------------------|--------------|------------------|--------------------|----------------------|--------------------|--------------------|----------------------|------------------|--------------------|----------| | Survey Pro | ogram: 199 | 9-MWD | | | | | | | | | | | Offset Well Error: | 0.0 usft | | Refer
Measured | rence
Vertical | Offs
Measured | et
Vertical | Semi Major
Reference | | Highside | Offset Wellbo | re Centro | | ance
Between | Minimum | Separation | 187 | | | Depth
(usft) |
Depth
(usft) | Depth
(usft) | Depth
(usft) | (usft) | (usft) | Toolface
(°) | +N/-S
(usft) | +E/-W
(usft) | Centres
(usft) | Ellipses
(usft) | Separation
(usft) | Factor | Warning | | | 14,300.0 | | 11,643.0 | 11,634.5 | 56.7 | 40.4 | -78.00 | 5,081.6 | -1,127.6 | 4,010.9 | 3,924.6 | 86.29 | 46.480 | | | | , | 12,189.4 | 11,643.0 | 11,634.5 | | 40.4 | -78.00 | 5,081.6 | -1,127.6 | 3,936.6 | | | 45.342 | | | | | 12,188 7 | 11,643 0 | 11,634 5 | | 40.4 | -78 00 | 5,081 6 | -1,127 6 | 3,863 4 | | | 44 194 | | | | | 12,188.0
12,187.3 | 11,643.0
11,664.5 | 11,634.5
11,655.5 | | 40.4
40.5 | -78.00
-78.44 | 5,081.6
5,085.9 | -1,127.6 | 3,791.5 | | | 43.037
41.825 | | | | | 12,186.6 | 11,667.4 | 11,658.3 | | 40.5 | -78.50 | 5,086.6 | -1,127.1
-1,127.0 | 3,720.4
3,651.0 | | | 40.653 | 12,185.9
12,185.2 | 11,690.0
11,690.0 | 11,680.1
11,680.1 | | 40.5
40.5 | -78.96
-78.96 | 5,092.6
5,092.6 | -1,126.5
-1,126.5 | 3,583.4 | | | 39.452
38.289 | | | | 15,000.0
15,100.0 | | 11,690.0 | 11,680.1 | 65.7 | 40.5 | -78.96 | 5,092.6 | -1,126.5 | 3,516.8
3,451.8 | | | 37.131 | | | | 15,100.0 | | 11,690.0 | 11,680.1 | 67.0 | 40.5 | -78.96 | 5,092.6 | -1,126.5 | 3,388.5 | | 94.17 | 35.982 | | | | 15,300.0 | | 11,690.0 | 11,680.1 | 68.2 | 40.5 | -78.96 | 5,092.6 | -1,120.5 | 3,327.0 | | | 34.847 | | | | | | | | CO F | 40.5 | 70.00 | | | | | | 22.720 | | | | 15,400.0
15,500.0 | | 11,690.0
11,690.0 | 11,680.1
11,680.1 | 69.5
70.7 | 40.5
40.5 | -78.96
-78.96 | 5,092.6
5,092.6 | -1,126.5 | 3,267.5
3,209.9 | | | 33.728
32.630 | | | | 15,600.0 | | 11,690.0 | 11,680.1 | 70.7 | 40.5 | -78.96
-78.96 | 5,092.6 | -1,126.5
-1,126.5 | 3,209.9 | | | 31.557 | | | | 15,700.0 | | 11,708.5 | 11,697.6 | | 40.5 | -79.34 | 5,098.4 | -1,126.1 | 3,101.0 | | 101.70 | 30.492 | | | | 15,800.0 | | 11,716.2 | 11,704.9 | 74.7 | 40.6 | -79.49 | 5,101.1 | -1,125.9 | 3,049.9 | | 103.49 | 29.471 | | | | 15,900.0 | 12,178.9 | 11,738.0 | 11,725.1 | 76.0 | 40.7 | -79.92 | 5,109.3 | -1,125.3 | 3,001.3 | 2,895.9 | 105.39 | 28.477 | | | | 16,000.0 | | 11,738.0 | 11,725.1 | 77.3 | 40.7 | -79.92 | 5,109.3 | -1,125.3 | 2,955.0 | | 107.32 | 27.534 | | | | 16,100.0 | | 11,751.3 | 11,737.2 | | 40.7 | -80.18 | 5,114.7 | -1,124.9 | 2,911.3 | | | 26.624 | | | | 16,200.0 | | 11,777.4 | 11,760.7 | 80.1 | 40.8 | -80.68 | 5,125.9 | -1,123.9 | 2,870.1 | 2,758.6 | | 25.751 | | | | 16,300.0 | | 11,798.9 | 11,779.9 | 81.4 | 40.9 | -81.09 | 5,135.6 | -1,123.1 | 2,831.5 | | | 24.925 | | | | 16,400.0 | 12,175.4 | 11,832.0 | 11,808.9 | 82.8 | 41.0 | -81.71 | 5,151.6 | -1,121.5 | 2,795.5 | 2,679.7 | 115.80 | 24.141 | | | | 16,500.0 | 12,174.7 | 11,832.0 | 11,808.9 | 84.2 | 41.0 | -81.71 | 5,151.6 | -1,121.5 | 2,762.3 | 2,644.3 | 118.00 | 23.409 | | | | 16,600.0 | | 11,861.5 | 11,834.1 | 85.6 | 41.0 | -82.26 | 5,166.9 | -1,120.1 | 2,731.9 | 2,611.6 | 120.24 | 22.720 | | | | 16,700.0 | 12,173.3 | 11,879.7 | 11,849.2 | 87.1 | 41.1 | -82.59 | 5,176.9 | -1,119.4 | 2,704.6 | 2,582.1 | 122.48 | 22.081 | | | | 16,800.0 | 12,172.6 | 11,899.8 | 11,865.6 | 88.5 | 41.1 | -82.94 | 5,188.6 | -1,118.7 | 2,680.3 | 2,555.6 | 124.73 | 21.489 | | | | 16,900.0 | 12,171.9 | 11,927.0 | 11,887.1 | 89.9 | 41.2 | -83.41 | 5,205.2 | -1,117.8 | 2,659.1 | 2,532.2 | 126.95 | 20.946 | | | | 17,000.0 | 12,171.2 | 11,927.0 | 11,887.1 | 91.4 | 41.2 | -83.41 | 5,205.2 | -1,117.8 | 2,641.2 | 2,512.0 | 129.17 | 20.448 | | | | 17,100.0 | 12,170.5 | 11,972.3 | 11,921.3 | 92.8 | 41.3 | -84.16 | 5,234.9 | -1,117.0 | 2,626.0 | 2,494.7 | 131.34 | 19.995 | | | | 17,200.0 | | 12,021.0 | 11,955.9 | | 41.5 | -84.92 | 5,269.1 | -1,116.8 | 2,614.2 | | 133.45 | 19.589 | | | | 17,300.0 | 12,169.1 | 12,040.2 | 11,969.0 | 95.7 | 41.5 | -85.21 | 5,283.2 | -1,116.9 | 2,604.9 | 2,469.4 | 135.54 | 19.218 | | | | 17,400.0 | 12,168.4 | 12,101.8 | 12,008.5 | 97.2 | 41.7 | -86.09 | 5,330.4 | -1,117.2 | 2,598.2 | 2,460.6 | 137.56 | 18.888 | | | | 17,500.0 | 12,167.7 | 12,211.0 | 12,070.1 | 98.7 | 42.1 | -87.46 | 5,420.5 | -1,115.8 | 2,592.1 | 2,452.6 | 139.47 | 18.586 | | | | 17,600.0 | | 12,259.1 | 12,093.0 | 100.1 | 42.2 | -87.97 | 5,462.7 | -1,115.0 | 2,587.5 | | 141.42 | 18.297 | | | | 17,700.0 | | 12,305.0 | 12,111.4 | 101.6 | 42.4 | -88.39 | 5,504.8 | -1,115.3 | 2,585.7 | | 143.32 | 18.041 | | | | 17,723.3 | 12,166.2 | 12,305.0 | 12,111.4 | 102.0 | 42.4 | -88.39 | 5,504.8 | -1,115.3 | 2,585.6 | 2,441.8 | 143.77 | 17.984 | | | | 17,800.0 | 12,165.6 | 12,376.2 | 12,130.9 | 103.1 | 42.6 | -88.83 | 5,573.1 | -1,116.5 | 2,585.8 | 2,440.7 | 145.18 | 17.811 | | | | 17,900.0 | 12,164.9 | 12,465.9 | 12,147.6 | 104.6 | 43.0 | -89.21 | 5,661.2 | -1,118.2 | 2,586.6 | 2,439.6 | 147.03 | 17.592 | | | | 18,000.0 | 12,164.2 | 12,523.0 | 12,154.6 | 106.1 | 43.2 | -89.38 | 5,717.9 | -1,119.6 | 2,588.2 | | 148.91 | 17.381 | | | | | 12,163.5 | 12,603.1 | | 107.6 | 43.5 | -89.52 | 5,797.7 | -1,122.6 | 2,591.1 | | | 17.181 | | | | 18,200.0 | 12,162.8 | 12,689.8 | 12,165.0 | 109.1 | 43.9 | -89.64 | 5,884.2 | -1,126.4 | 2,594.7 | 2,441.9 | 152.76 | 16.985 | | | | 18,300.0 | 12,162.1 | 12,788.8 | 12,169.6 | 110.6 | 44.4 | -89.75 | 5,983.0 | -1,131.0 | 2,598.5 | 2,443.7 | 154.78 | 16.788 | | | | 18,400.0 | 12,161.4 | 12,889.5 | 12,170.5 | 112.1 | 45.0 | -89.79 | 6,083.6 | -1,135.5 | 2,602.2 | 2,445.3 | 156.87 | 16.589 | | | | 18,500.0 | | 12,982.6 | 12,170.2 | | 45.6 | -89.80 | 6,176.6 | -1,140.0 | 2,606.2 | 2,447.2 | 158.98 | 16.393 | | | | 18,600.0 | | 13,078.5 | 12,169.3 | | 46.2 | -89.79 | 6,272.3 | -1,144.6 | 2,610.2 | | | 16.197 | | | | 18,700.0 | 12,159.4 | 13,163.2 | 12,168.4 | 116.7 | 46.8 | -89.79 | 6,356.9 | -1,149.1 | 2,614.7 | 2,451.3 | 163.33 | 16.009 | | | | 18,800.0 | 12,158.7 | 13,331.2 | 12,166.2 | 118.3 | 48.1 | -89.76 | 6,524.7 | -1,157.4 | 2,619.3 | 2,453.4 | 165.95 | 15.784 | | | | 18,900.0 | | 13,474.1 | 12,165.4 | 119.8 | 49.3 | -89.77 | 6,667.5 | -1,160.0 | 2,620.2 | | 168.51 | 15.549 | | | | 19,000.0 | 12,157.3 | 13,616.4 | 12,163.9 | 121.3 | 50.5 | -89.76 | 6,809.9 | -1,161.1 | 2,620.3 | 2,449.2 | 171.11 | 15.313 | | | | 19,100.0 | | 13,718.4 | 12,162.6 | | 51.5 | -89.74 | 6,911.8 | -1,160.8 | 2,619.2 | | | 15.087 | | | | 19,200.0 | 12,155.9 | 13,822.7 | 12,161.0 | 124.4 | 52.5 | -89.72 | 7,016.2 | -1,160.3 | 2,618.0 | 2,441.9 | 176.14 | 14.863 | | | | 19,300.0 | 12,155.2 | 13,891.8 | 12,160.6 | 126.0 | 53.2 | -89.73 | 7,085.2 | -1,160.4 | 2,617.3 | 2,438.8 | 178.54 | 14.660 | | | | | | | | | | | | | | | | | | | Company: Matador Production Company Project: Antelope Ridge Reference Site: Nina Cortell Site Error: 0.0 usft Reference Well: Nina Cortell Fed Com #203H Well Error: 0.0 usft Reference Wellbore #1 Reference Design: BLM Plan #1 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Output errors are at Database: Offset TVD Reference: Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) Minimum Curvature 2.00 sigma EDM 5000.14 Server | Offset D | esign | Nina C | ortell - N | lina Cortell | Fed Co | m #201H - | Wellbore #1 | Actual S | urvey | | | | Offset Site Error: | 0.0 us | |--------------------------------------|-----------------------------|-------------------------------------|-----------------------------------|-----------------------------------|--------------|-----------------------------|-----------------------------------|------------------------------|------------------------------|---------------------------------------|---------------------------------|----------------------|--------------------|--------| | • | gram : 199 | | | Cami Maia | . Awia | | | | Diet | | | | Offset Well Error: | 0.0 us | | Refer
leasured
Depth
(usft) | Vertical
Depth
(usft) | Offs
Measured
Depth
(usft) | et
Vertical
Depth
(usft) | Semi Major
Reference
(usft) | | Highside
Toolface
(°) | Offset Wellbor
+N/-S
(usft) | re Centre
+E/-W
(usft) | Between
Centres
(usft) | ance
Between
Ellipses
(usft) | Minimum
Separation
(usft) | Separation
Factor | Warning | | | 19,400.0 | 12,154.5 | 13,999.7 | 12,162.0 | 127.5 | 54.3 | -89.77 | 7,193.1 | -1,161.1 | 2,617.2 | ` ' | 181.16 | 14.447 | | | | 19,400.0 | | 14,162.9 | 12,162.0 | 127.5 | 54.3
56.0 | -89.81 | 7,193.1 | -1,159.3 | 2,617.2 | | 184.11 | 14.447 | | | | 19,500.0 | | 14,102.9 | 12,162.6 | 130 6 | 57.4 | -89.86 | 7,336.3
7,486.2 | -1,155.9 | 2,611.8 | | 186 90 | 13 974 | | | | 19,700.0 | | 14,384.7 | 12,166.0 | 132.2 | 58.5 | -89.92 | 7,578.0 | -1,153.1 | 2,607.9 | | 189.55 | 13.758 | | | | 19,800.0 | | 14,462.1 | 12,166.7 | 133.7 | 59.4 | -89.95 | 7,655.3 | -1,151.2 | 2,604.7 | 2,410.4 | 192.15 | 13.555 | | | | 19,900.0 | | 14,551.4 | 12,165.0 | 135.3 | 60.4 | -89.92 | 7,744.6 | -1,131.2 | 2,602.1 | | | 13.355 | | | | 20,000.0 | 12,150.3 | 14,693.5 | 12,162.0 | 136.9 | 62.1 | -89.88 | 7,886.7 | -1,146.3 | 2,599.1 | 2,401.2 | 197.84 | 13.137 | | | | 20,100.0 | 12,149.6 | 14,832.0 | 12,159.0 | 138.4 | 63.8 | -89.83 | 8,025.0 | -1,140.6 | 2,594.1 | 2,393.3 | 200.81 | 12.918 | | | | 20,200.0 | 12,148.9 | 14,967.5 | 12,155.1 | 140.0 | 65.5 | -89.77 | 8,160.2 | -1,133.0 | 2,587.6 | 2,383.8 | 203.77 | 12.699 | | | | 20,300.0 | 12,148.2 | 15,040.4 | 12,154.4 | 141.6 | 66.4 | -89.76 | 8,232.9 | -1,128.9 | 2,581.2 | 2,374.7 | 206.49 | 12.500 | | | | 20,400.0 | 12,147.5 | 15,144.7 | 12,155.8 | 143.1 | 67.7 | -89.81 | 8,337.2 | -1,123.4 | 2,575.2 | 2,365.8 | 209.36 | 12.300 | | | | 20,500.0 | | 15,217.2 | 12,157.8 | 144.7 | 68.7 | -89.86 | 8,409.6 | -1,120.0 | 2,569.7 | 2,357.6 | 212.10 | 12.116 | | | | 20,600.0 | 12,146.1 | 15,267.7 | 12,159.4 | 146.3 | 69.3 | -89.91 | 8,459.9 | -1,118.3 | 2,565.6 | 2,350.9 | 214.70 | 11.950 | | | | 20,700.0 | 12,145.4 | 15,322.0 | 12,160.8 | 147.9 | 70.0 | -89.95 | 8,514.2 | -1,117.8 | 2,563.6 | 2,346.4 | 217.27 | 11.799 | | |
 20,800.0 | | 15,401.7 | 12,162.3 | 149.4 | 71.1 | -89.99 | 8,593.9 | -1,118.0 | 2,563.0 | | 220.02 | 11.649 | | | | 20,900.0 | 12,144.0 | 15,509.8 | 12,164.0 | 151.0 | 72.6 | -90.05 | 8,702.0 | -1,118.2 | 2,562.5 | 2,339.5 | 223.00 | 11.491 | | | | 21,000.0 | 12,143.3 | 15,594.0 | 12,165.7 | 152.6 | 73.7 | -90.10 | 8,786.2 | -1,118.4 | 2,562.0 | 2,336.2 | 225.81 | 11.346 | | | | 21,015.2 | 12,143.2 | 15,605.0 | 12,166.0 | 152.8 | 73.8 | -90.11 | 8,797.2 | -1,118.5 | 2,562.0 | 2,335.7 | 226.22 | 11.325 (| CC | | | 21,100.0 | 12,142.6 | 15,657.2 | 12,166.8 | 154.2 | 74.6 | -90.13 | 8,849.4 | -1,119.2 | 2,562.5 | 2,334.1 | 228.42 | 11.218 | | | | 21,200.0 | 12,141.9 | 15,722.8 | 12,165.9 | 155.8 | 75.5 | -90.12 | 8,914.9 | -1,121.1 | 2,564.5 | 2,333.5 | 231.02 | 11.101 E | S | | | 21,300.0 | 12,141.2 | 15,801.8 | 12,165.2 | 157.4 | 76.6 | -90.12 | 8,993.9 | -1,124.1 | 2,567.5 | 2,333.8 | 233.76 | 10.984 | | | | 21,400.0 | 12,140.5 | 15,892.4 | 12,165.0 | 159.0 | 77.8 | -90.13 | 9,084.4 | -1,128.1 | 2,571.1 | 2,334.5 | 236.63 | 10.866 | | | | 21,500.0 | 12,139.8 | 15,973.1 | 12,164.8 | 160.5 | 78.9 | -90.14 | 9,165.0 | -1,132.1 | 2,575.3 | 2,335.9 | 239.38 | 10.758 | | | | 21,600.0 | 12,139.1 | 16,113.2 | 12,162.7 | 162.1 | 80.9 | -90.11 | 9,304.9 | -1,138.3 | 2,579.0 | 2,336.1 | 242.89 | 10.618 | | | | 21,700.0 | 12,138.4 | 16,223.2 | 12,161.4 | 163.7 | 82.5 | -90.10 | 9,414.9 | -1,142.3 | 2,581.8 | 2,335.8 | 246.03 | 10.494 | | | | 21,800.0 | 12,137.7 | 16,335.6 | 12,164.4 | 165.3 | 84.1 | -90.18 | 9,527.2 | -1,145.8 | 2,584.1 | 2,334.9 | 249.20 | 10.370 | | | | 21,900.0 | 12,137.0 | 16,422.7 | 12,169.4 | 166.9 | 85.4 | -90.31 | 9,614.1 | -1,148.4 | 2,586.4 | 2,334.3 | 252.08 | 10.260 | | | | 22,000.0 | 12,136.3 | 16,499.7 | 12,174.3 | 168.5 | 86.5 | -90.43 | 9,690.8 | -1,151.3 | 2,589.4 | 2,334.6 | 254.84 | 10.161 | | | | 22,100.0 | , | 16,582.4 | 12,180.4 | 170.1 | 87.7 | -90.58 | 9,773.2 | -1,155.2 | 2,593.4 | 2,335.7 | 257.66 | 10.065 | | | | 22,200.0 | 12,134.9 | 16,644.0 | 12,185.6 | 171.7 | 88.6 | -90.70 | 9,834.5 | -1,158.2 | 2,597.9 | | 260.18 | 9.985 | | | | 22,300.0 | 12,134.2 | 16,703.4 | 12,191.3 | 173.3 | 89.5 | -90.83 | 9,893.5 | -1,162.0 | 2,603.9 | 2,341.3 | 262.60 | 9.916 | | | | 22,400.0 | 12,133.5 | 16,792.5 | 12,200.4 | 174.9 | 90.8 | -91.04 | 9,981.9 | -1,169.8 | 2,612.1 | 2,346.6 | 265.48 | 9.839 | | | | 22,462.7 | 12,133.0 | 16,880.5 | 12,206.6 | 175.9 | 92.1 | -91.19 | 10,069.4 | -1,176.4 | 2,616.3 | | 267.80 | 9.769 \$ | SF. | | Database: Company: Matador Production Company Project: Antelope Ridge Reference Site: Nina Cortell Site Error: 0.0 usft Reference Well: Nina Cortell Fed Com #203H Well Error: 0.0 usft Reference Wellbore #1 Reference Design: BLM Plan #1 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: KB @ 3817.5usft (Original Well Elev) **Survey Calculation Method:** Minimum Curvature Output errors are at 2.00 sigma EDM 5000.14 Server KB @ 3817.5usft (Original Well Elev) Site Nina Cortell Offset TVD Reference: Offset Datum | |)esign
ogram: 0-N | Nina C | Orten - I | ina conci | | | | | | | | | Officet Moll Error | 0.0 | |----------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------|--------|-----------------------------|----------------------------------|------------------------------|------------------------------|-------------------------------|---------------------------------|----------------------|--------------------|--------| | urvey Pro
Refer | _ | /IWD
Offs | et | Semi Major | r Axis | | | | Dist | ance | | | Offset Well Error: | 0.0 us | | easured
Depth
(usft) | | Measured
Depth
(usft) | Vertical
Depth
(usft) | Reference
(usft) | | Highside
Toolface
(°) | Offset Wellbo
+N/-S
(usft) | re Centre
+E/-W
(usft) | Between
Centres
(usft) | Between
Ellipses
(usft) | Minimum
Separation
(usft) | Separation
Factor | Warning | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -90.66 | 0.0 | 0.0 | 2,452.9 | | | | | | | 100.0 | 100.0 | | 100.0 | 0.1 | 0.1 | -90.66 | 0.0 | 0.0 | 2,452.9 | 2,452.6 | 0.26 | 9,570.102 | | | | 200.0 | 200 0 | | 200 0 | 0.5 | 0.5 | -90 66 | 0.0 | 0.0 | 2,452.9 | 2,451.9 | | 2,520 306 | | | | 300.0 | 300.0 | 300.0 | 300.0 | 8.0 | 8.0 | -90.66 | 0.0 | 0.0 | 2,452.9 | 2,451.2 | 1.69 | 1,451.247 | | | | 400.0 | 400.0 | 400.0 | 400.0 | 1.2 | 1.2 | -90.66 | 0.0 | 0.0 | 2,452.9 | 2,450.5 | 2.41 | 1,019.007 | | | | 500.0 | 500.0 | 500.0 | 500.0 | 1.6 | 1.6 | -90.66 | 0.0 | 0.0 | 2,452.9 | 2,449.8 | 3.12 | 785.156 | | | | 600.0 | 600.0 | 600.0 | 600.0 | 1.9 | 1.9 | -90.66 | 0.0 | 0.0 | 2,452.9 | 2,449.0 | 3.84 | 638.603 | | | | 700.0 | 700.0 | 700.0 | 700.0 | 2.3 | 2.3 | -90.66 | 0.0 | 0.0 | 2,452.9 | 2,448.3 | 4.56 | 538.154 | | | | 800.0 | 800.0 | 800.0 | 800.0 | 2.6 | 2.6 | -90.66 | 0.0 | 0.0 | 2,452.9 | 2,447.6 | 5.27 | 465.011 | | | | 900.0 | 900.0 | 900.0 | 900.0 | 3.0 | 3.0 | -90.66 | 0.0 | 0.0 | 2,452.9 | 2,446.9 | 5.99 | 409.371 | | | | 1,000.0 | 1,000.0 | 1,000.0 | 1,000.0 | 3.4 | 3.4 | -90.66 | 0.0 | 0.0 | 2,452.9 | 2,446.2 | 6.71 | 365.623 | | | | 1,100.0 | 1,100.0 | 1,100.0 | 1,100.0 | 3.7 | 3.7 | -90.66 | 0.0 | 0.0 | 2,452.9 | 2,445.5 | 7.43 | 330.323 | | | | 1,200.0 | 1,200.0 | 1,200.0 | 1,200.0 | 4.1 | 4.1 | -90.66 | 0.0 | 0.0 | 2,452.9 | 2,444.7 | 8.14 | 301.238 | | | | 1,300.0 | 1,300.0 | 1,300.0 | 1,300.0 | 4.4 | 4.4 | -90.66 | 0.0 | 0.0 | 2,452.9 | 2,444.0 | 8.86 | 276.861 | | | | 1,400.0 | 1,400.0 | 1,400.0 | 1,400.0 | 4.8 | 4.8 | -90.66 | 0.0 | 0.0 | 2,452.9 | 2,443.3 | 9.58 | 256.134 | | | | 1,500.0 | 1,500.0 | 1,500.0 | 1,500.0 | 5.1 | 5.1 | -90.66 | 0.0 | 0.0 | 2,452.9 | 2,442.6 | 10.29 | 238.295 | | | | 1,600.0 | 1,600.0 | 1,747.6 | 1,747.3 | 5.5 | 6.0 | 11.44 | -7.6 | 7.5 | 2,448.2 | 2,436.7 | 11.46 | 213.621 | | | | 1,700.0 | 1,699.8 | 1,936.9 | 1,935.2 | 5.8 | 6.6 | 11.15 | -23.4 | 23.3 | 2,434.5 | 2,422.1 | 12.42 | 196.049 | | | | 1,800.0 | 1,799.5 | 2,034.9 | 2,032.3 | 6.2 | 7.0 | 11.03 | -33.0 | 32.9 | 2,416.4 | 2,403.3 | 13.10 | 184.478 | | | | 1,900.0 | 1,898.7 | 2,132.2 | 2,128.7 | 6.5 | 7.3 | 10.93 | -42.6 | 42.5 | 2,394.9 | 2,381.1 | 13.78 | 173.764 | | | | 2,000.0 | 1,997.7 | 2,229.3 | 2,224.8 | 6.9 | 7.7 | 10.75 | -52.2 | 52.0 | 2,371.8 | 2,357.4 | 14.47 | 163.928 | | | | 2,100.0 | 2,096.8 | 2,326.3 | 2,320.8 | 7.3 | 8.1 | 10.56 | -61.8 | 61.6 | 2,348.7 | 2,333.6 | 15.16 | 154.944 | | | | 2,200.0 | 2,195.8 | 2,423.3 | 2,416.9 | 7.6 | 8.4 | 10.38 | -71.3 | 71.1 | 2,325.7 | 2,309.8 | 15.85 | 146.686 | | | | 2,300.0 | 2,294.8 | 2,520.3 | 2,513.0 | 8.0 | 8.8 | 10.18 | -80.9 | 80.6 | 2,302.6 | 2,286.1 | 16.56 | 139.078 | | | | 2,400.0 | 2,393.8 | 2,617.3 | 2,609.0 | 8.4 | 9.2 | 9.99 | -90.5 | 90.2 | 2,279.6 | 2,262.3 | 17.26 | 132.053 | | | | 2,500.0 | 2,492.9 | 2,714.3 | 2,705.1 | 8.8 | 9.6 | 9.79 | -100.0 | 99.7 | 2,256.6 | 2,238.6 | 17.97 | 125.552 | | | | 2,600.0 | 2,591.9 | 2,811.4 | 2,801.2 | 9.2 | 9.9 | 9.59 | -109.6 | 109.2 | 2,233.7 | 2,215.0 | 18.69 | 119.523 | | | | 2,700.0 | 2,690.9 | 2,908.4 | 2,897.3 | 9.6 | 10.3 | 9.38 | -119.1 | 118.8 | 2,210.7 | 2,191.3 | 19.41 | 113.918 | | | | 2,800.0 | 2,789.9 | 3,005.4 | 2,993.3 | 10.0 | 10.7 | 9.17 | -128.7 | 128.3 | 2,187.8 | 2,167.7 | 20.13 | 108.698 | | | | 2,900.0 | 2,889.0 | 3,102.4 | 3,089.4 | 10.4 | 11.1 | 8.95 | -138.3 | 137.8 | 2,164.9 | 2,144.1 | 20.85 | 103.826 | | | | 3,000.0 | 2,988.0 | 3,200.6 | 3,185.5 | 10.8 | 11.5 | 8.73 | -147.8 | 147.4 | 2,142.1 | 2,120.5 | 21.58 | 99.251 | | | | 3,100.0 | 3,087.0 | 3,303.6 | 3,281.6 | 11.2 | 11.9 | 8.51 | -157.4 | 156.9 | 2,119.3 | 2,096.9 | 22.33 | 94.886 | | | | 3,200.0 | 3,186.1 | 3,393.5 | 3,377.6 | 11.6 | 12.3 | 8.28 | -167.0 | 166.4 | 2,096.5 | 2,073.4 | 23.04 | 90.998 | | | | 3,300.0 | 3,285.1 | 3,471.7 | 3,455.1 | 12.0 | 12.6 | 8.09 | -174.5 | 173.9 | 2,074.0 | 2,050.3 | 23.72 | 87.449 | | | | 3,400.0 | | 3,538.0 | 3,521.0 | 12.4 | 12.8 | 7.97 | -179.8 | 179.2 | 2,052.9 | 2,028.5 | 24.35 | 84.290 | | | | 3,500.0 | 3,483.1 | 3,600.0 | 3,582.7 | 12.8 | 13.1 | 7.88 | -183.9 | 183.3 | 2,033.3 | 2,008.3 | 24.98 | 81.412 | | | | 3,600.0 | 3,582.2 | 3,672.3 | 3,654.9 | 13.2 | 13.4 | 7.81 | -187.3 | 186.7 | 2,015.2 | 1,989.5 | 25.62 | 78.670 | | | | 3,700.0 | 3,681.2 | 3,740.2 | 3,722.7 | 13.6 | 13.6 | 7.78 | -189.5 | 188.8 | 1,998.5 | 1,972.3 | 26.23 | 76.182 | | | | 3,800.0 | 3,780.2 | 3,808.3 | 3,790.8 | 14.0 | 13.8 | 7.79 | -190.4 | 189.8 | 1,983.5 | 1,956.6 | 26.85 | 73.885 | | | | 3,900.0 | 3,879.2 | 3,903.3 | 3,879.2 | 14.4 | 14.1 | 7.84 | -190.5 | 189.9 | 1,969.6 | 1,942.1 | 27.53 | 71.547 | | | | 4,000.0 | 3,978.3 | 4,004.2 | 3,978.3 | 14.8 | 14.5 | 7.89 | -190.5 | 189.9 | 1,955.8 | 1,927.6 | 28.23 | 69.282 | | | | 4,100.0 | 4,077.3 | 4,105.2 | 4,077.3 | 15.3 | 14.8 | 7.95 | -190.5 | 189.9 | 1,942.0 | 1,913.1 | 28.93 | 67.123 | | | | 4,200.0 | 4,176.3 | 4,206.2 | 4,176.3 | 15.7 | 15.2 | 8.00 | -190.5 | 189.9 | 1,928.2 | 1,898.6 | 29.64 | 65.063 | | | | 4,300.0 | 4,275.3 | 4,307.1 | 4,275.3 | 16.1 | 15.5 | 8.06 | -190.5 | 189.9 | 1,914.4 | 1,884.1 | 30.34 | 63.096 | | | | 4,400.0 | 4,374.4 | 4,408.1 | 4,374.4 | 16.5 | 15.8 | 8.12 | -190.5 | 189.9 | 1,900.7 | 1,869.6 | 31.05 | 61.217 | | | | 4,500.0 | 4,473.4 | 4,509.1 | 4,473.4 | 16.9 | 16.2 | 8.18 | -190.5 | 189.9 | 1,886.9 | 1,855.1 | 31.76 | 59.418 | | | | 4,600.0 | 4,572.4 | 4,589.9 | 4,572.4 | 17.3 | 16.4 | 8.24 | -190.5 | 189.9 | 1,873.1 | 1,840.7 | 32.40 | 57.818 | | | | 4,700.0 | 4,671.5 | 4,689.0 | 4,671.5 | 17.7 | 16.8 | 8.30 | -190.5 | 189.9 | 1,859.3 | 1,826.2 | 33.10 | 56.174 | | | | 4,800.0 | 4,770.5 | 4,788.0 | 4,770.5 | 18.2 | 17.1 | 8.37 | -190.5 | 189.9 | 1,845.6 | 1,811.7 | 33.80 | 54.596 | | | | 4,900.0 | 4,869.5 | 4,887.0 | 4,869.5 | 18.6 | 17.4 | 8.43 | -190.5 | 189.9 | 1,831.8 | 1,797.3 | 34.51 | 53.081 | | | | 5,000.0 | 4,968.5 | 4,986.0 | 4,968.5 | 19.0 | 17.8 | 8.49 | -190.5 | 189.9 | 1,818.0 | 1,782.8 | 35.21 | 51.626 | | | | 5,100.0 | 5,067.6 | 5,085.1 |
5,067.6 | 19.4 | 18.1 | 8.56 | -190.5 | 189.9 | 1,804.2 | 1,768.3 | 35.92 | 50.227 | | | Company: Matador Production Company Project: Antelope Ridge Reference Site: Nina Cortell Site Error: 0.0 usft Reference Well: Nina Cortell Fed Com #203H Well Error: 0.0 usft Reference Wellbore #1 Reference Design: BLM Plan #1 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Minimum Curvature Output errors are at Database: Offset TVD Reference: Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) 2.00 sigma EDM 5000.14 Server | | esign
gram: 0-M | Nina C | | | | | | | | | | | Offset Well Error: | 0.0 us | |-----------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------|------------------|-----------------------------|----------------------------------|------------------------------|------------------------------|-------------------------------|---------------------------------|--------|--------------------|--------| | Refer | _ | Offs | et | Semi Major | Axis | | | | Dist | ance | | | Oliset Well Ellor. | 0.0 us | | leasured
Depth
(usft) | Vertical
Depth
(usft) | Measured
Depth
(usft) | Vertical
Depth
(usft) | Reference
(usft) | Offset
(usft) | Highside
Toolface
(°) | Offset Wellbo
+N/-S
(usft) | re Centre
+E/-W
(usft) | Between
Centres
(usft) | Between
Ellipses
(usft) | Minimum
Separation
(usft) | | Warning | | | 5,200.0 | 5,166.6 | 5,184.1 | 5,166.6 | 19.8 | 18.5 | 8.62 | -190.5 | 189.9 | 1,790.5 | 1,753.9 | 36.63 | 48.881 | | | | 5,300.0 | 5,265.6 | 5,283.1 | 5,265.6 | 20.2 | 18.8 | 8.69 | -190.5 | 189.9 | 1,776.7 | 1,739.4 | 37.34 | 47.585 | | | | 5,400.0 | 5,364 6 | 5,382 1 | 5,364 6 | 20.7 | 19 1 | 8 76 | -190 5 | 189 9 | 1,763.0 | 1,724 9 | 38 05 | 46 336 | | | | 5,500.0 | 5,463.7 | 5,481.2 | 5,463.7 | 21.1 | 19.5 | 8.83 | -190.5 | 189.9 | 1,749.2 | 1,710.4 | 38.76 | 45.133 | | | | 5,600.0 | 5,562.7 | 5,580.2 | 5,562.7 | 21.5 | 19.8 | 8.90 | -190.5 | 189.9 | 1,735.4 | 1,696.0 | 39.47 | 43.972 | | | | 5,700.0 | 5,661.7 | 5,679.2 | 5,661.7 | 21.9 | 20.2 | 8.97 | -190.5 | 189.9 | 1,721.7 | 1,681.5 | 40.18 | 42.851 | | | | 5,800.0 | 5,760.7 | 5,778.3 | 5,760.7 | 22.3 | 20.5 | 9.04 | -190.5 | 189.9 | 1,707.9 | 1,667.1 | 40.89 | 41.769 | | | | 5,900.0 | 5,859.8 | 5,877.3 | 5,859.8 | 22.8 | 20.8 | 9.12 | -190.5 | 189.9 | 1,694.2 | 1,652.6 | 41.60 | 40.723 | | | | 6,000.0 | 5,958.8 | 5,976.3 | 5,958.8 | 23.2 | 21.2 | 9.19 | -190.5 | 189.9 | 1,680.5 | 1,638.1 | 42.32 | 39.713 | | | | 6,100.0 | 6,057.8 | 6,075.3 | 6,057.8 | 23.6 | 21.5 | 9.27 | -190.5 | 189.9 | 1,666.7 | 1,623.7 | 43.03 | 38.735 | | | | 6,200.0 | 6,156.9 | 6,174.4 | 6,156.9 | 24.0 | 21.9 | 9.35 | -190.5 | 189.9 | 1,653.0 | 1,609.2 | 43.74 | 37.789 | | | | 6,300.0 | 6,255.9 | 6,273.4 | 6,255.9 | 24.4 | 22.2 | 9.43 | -190.5 | 189.9 | 1,639.2 | 1,594.8 | 44.46 | 36.872 | | | | 6,400.0 | 6,354.9 | 6,372.4 | 6,354.9 | 24.9 | 22.6 | 9.51 | -190.5 | 189.9 | 1,625.5 | 1,580.3 | 45.17 | 35.985 | | | | 6,500.0 | 6,453.9 | 6,471.4 | 6,453.9 | 25.3 | 22.9 | 9.59 | -190.5 | 189.9 | 1,611.8 | 1,565.9 | 45.89 | 35.125 | | | | 6,600.0 | 6,553.0 | 6,570.5 | 6,553.0 | 25.7 | 23.2 | 9.67 | -190.5 | 189.9 | 1,598.1 | 1,551.5 | 46.60 | 34.291 | | | | 6,700.0 | 6,652.0 | 6,669.5 | 6,652.0 | 26.1 | 23.6 | 9.76 | -190.5 | 189.9 | 1,584.3 | 1,537.0 | 47.32 | 33.482 | | | | 6,800.0 | 6,751.0 | 6,768.5 | 6,751.0 | 26.5 | 23.9 | 9.84 | -190.5 | 189.9 | 1,570.6 | 1,522.6 | 48.04 | 32.696 | | | | 6,900.0 | 6,850.0 | 6,867.5 | 6,850.0 | 27.0 | 24.3 | 9.93 | -190.5 | 189.9 | 1,556.9 | 1,508.2 | 48.75 | 31.934 | | | | 7,000.0 | 6,949.1 | 6,966.6 | 6,949.1 | 27.4 | 24.6 | 10.02 | -190.5 | 189.9 | 1,543.2 | 1,493.7 | 49.47 | 31.194 | | | | 7,100.0 | 7,048.1 | 7,065.6 | 7,048.1 | 27.8 | 25.0 | 10.11 | -190.5 | 189.9 | 1,529.5 | 1,479.3 | 50.19 | 30.475 | | | | 7,200.0 | 7,147.1 | 7,164.6 | 7,147.1 | 28.2 | 25.3 | 10.20 | -190.5 | 189.9 | 1,515.8 | 1,464.9 | 50.91 | 29.775 | | | | 7,300.0 | 7,246.1 | 7,263.7 | 7,246.1 | 28.6 | 25.7 | 10.30 | -190.5 | 189.9 | 1,502.1 | 1,450.5 | 51.63 | 29.095 | | | | 7,400.0 | 7,345.2 | 7,362.7 | 7,345.2 | 29.1 | 26.0 | 10.39 | -190.5 | 189.9 | 1,488.4 | 1,436.0 | 52.35 | 28.434 | | | | 7,500.0 | 7,444.2 | 7,461.7 | 7,444.2 | 29.5 | 26.4 | 10.49 | -190.5 | 189.9 | 1,474.7 | 1,421.6 | 53.06 | 27.790 | | | | 7,600.0 | 7,543.2 | 7,560.7 | 7,543.2 | 29.9 | 26.7 | 10.59 | -190.5 | 189.9 | 1,461.0 | 1,407.2 | 53.78 | 27.164 | | | | 7,700.0 | 7,642.3 | 7,659.8 | 7,642.3 | 30.3 | 27.0 | 10.69 | -190.5 | 189.9 | 1,447.3 | 1,392.8 | 54.51 | 26.554 | | | | 7,800.0 | 7,741.3 | 7,758.8 | 7,741.3 | 30.7 | 27.4 | 10.79 | -190.5 | 189.9 | 1,433.7 | 1,378.4 | 55.23 | 25.960 | | | | 7,900.0 | 7,840.3 | 7,857.8 | 7,840.3 | 31.2 | 27.7 | 10.90 | -190.5 | 189.9 | 1,420.0 | 1,364.0 | 55.95 | 25.381 | | | | 8,000.0 | 7,939.3 | 7,956.8 | 7,939.3 | 31.6 | 28.1 | 11.00 | -190.5 | 189.9 | 1,406.3 | 1,349.6 | 56.67 | 24.817 | | | | 8,100.0 | 8,038.4 | 8,055.9 | 8,038.4 | 32.0 | 28.4 | 11.11 | -190.5 | 189.9 | 1,392.6 | 1,335.3 | 57.39 | 24.266 | | | | 8,200.0 | 8,137.4 | 8,154.9 | 8,137.4 | 32.4 | 28.8 | 11.23 | -190.5 | 189.9 | 1,379.0 | 1,320.9 | 58.11 | 23.730 | | | | 8,300.0 | 8,236.4 | 8,253.9 | 8,236.4 | 32.8 | 29.1 | 11.34 | -190.5 | 189.9 | 1,365.3 | 1,306.5 | 58.83 | 23.206 | | | | 8,401.2 | 8,336.6 | 8,354.1 | 8,336.6 | 33.3 | 29.5 | 11.46 | -190.5 | 189.9 | 1,351.5 | 1,292.0 | 59.57 | 22.690 | | | | 8,500.0 | 8,434.7 | 8,452.2 | 8,434.7 | 33.7 | 29.8 | 11.51 | -190.5 | 189.9 | 1,339.7 | 1,279.4 | 60.28 | 22.225 | | | | 8,600.0 | 8,534.3 | 8,551.8 | 8,534.3 | 34.1 | 30.2 | 11.55 | -190.5 | 189.9 | 1,331.1 | 1,270.1 | 60.99 | 21.824 | | | | 8,700.0 | 8,634.2 | 8,651.7 | 8,634.2 | 34.4 | 30.5 | 11.58 | -190.5 | 189.9 | 1,326.0 | 1,264.2 | 61.70 | 21.489 | | | | 8,801.2 | 8,735.3 | 8,752.8 | 8,735.3 | 34.7 | 30.9 | -90.65 | -190.5 | 189.9 | 1,324.2 | 1,261.8 | 62.41 | 21.218 | | | | 8,900.0 | 8,834.1 | 8,851.6 | 8,834.1 | 35.0 | 31.2 | -90.65 | -190.5 | 189.9 | 1,324.2 | 1,261.1 | 63.09 | 20.991 | | | | 9,000.0 | 8,934.1 | 8,951.6 | 8,934.1 | 35.4 | 31.6 | -90.65 | -190.5 | 189.9 | 1,324.2 | 1,260.4 | 63.77 | 20.765 | | | | 9,100.0 | 9,034.1 | 9,051.6 | 9,034.1 | 35.7 | 31.9 | -90.65 | -190.5 | 189.9 | 1,324.2 | 1,259.7 | 64.46 | 20.544 | | | | 9,200.0 | 9,134.1 | 9,151.6 | 9,134.1 | 36.0 | 32.3 | -90.65 | -190.5 | 189.9 | 1,324.2 | 1,259.1 | 65.14 | 20.327 | | | | 9,300.0 | 9,234.1 | 9,251.6 | 9,234.1 | 36.3 | 32.7 | -90.65 | -190.5 | 189.9 | 1,324.2 | 1,258.4 | 65.83 | 20.115 | | | | 9,400.0 | 9,334.1 | 9,351.6 | 9,334.1 | 36.6 | 33.0 | -90.65 | -190.5 | 189.9 | 1,324.2 | 1,257.7 | 66.52 | 19.907 | | | | 9,500.0 | 9,434.1 | 9,451.6 | 9,434.1 | 36.9 | 33.4 | -90.65 | -190.5 | 189.9 | 1,324.2 | 1,257.0 | 67.21 | 19.703 | | | | 9,600.0 | 9,534.1 | 9,551.6 | 9,534.1 | 37.2 | 33.7 | -90.65 | -190.5 | 189.9 | 1,324.2 | 1,256.3 | 67.90 | 19.503 | | | | 9,700.0 | 9,634.1 | 9,651.6 | 9,634.1 | 37.5 | 34.1 | -90.65 | -190.5 | 189.9 | 1,324.2 | 1,255.6 | 68.59 | 19.307 | | | | 9,800.0 | 9,734.1 | 9,751.6 | 9,734.1 | 37.9 | 34.4 | -90.65 | -190.5 | 189.9 | 1,324.2 | 1,254.9 | 69.28 | 19.115 | | | | 9,900.0 | 9,834.1 | 9,851.6 | 9,834.1 | 38.2 | 34.8 | -90.65 | -190.5 | 189.9 | 1,324.2 | 1,254.2 | 69.97 | 18.926 | | | | 10,000.0 | 9,934.1 | 9,951.6 | 9,934.1 | 38.5 | 35.1 | -90.65 | -190.5 | 189.9 | 1,324.2 | 1,253.5 | 70.66 | 18.741 | | | | 10,100.0 | 10,034.1 | 10,051.6 | 10,034.1 | 38.8 | 35.5 | -90.65 | -190.5 | 189.9 | 1,324.2 | 1,252.9 | 71.35 | 18.559 | | | | 10,200.0 | 10,134.1 | 10,151.6 | 10,134.1 | 39.1 | 35.8 | -90.65 | -190.5 | 189.9 | 1,324.2 | 1,252.2 | 72.04 | 18.381 | | | | 10,300.0 | 10,234.1 | 10,251.6 | 10,234.1 | 39.4 | 36.2 | -90.65 | -190.5 | 189.9 | 1,324.2 | 1,251.5 | 72.74 | 18.206 | | | Company: Matador Production Company Project: Antelope Ridge Reference Site: Nina Cortell Site Error: 0.0 usft Reference Well: Nina Cortell Fed Com #203H Well Error: 0.0 usft Reference Wellbore #1 Reference Design: BLM Plan #1 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Output errors are at Database: Offset TVD Reference: Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) Minimum Curvature 2.00 sigma EDM 5000.14 Server | Offset D | esign
gram: 0-M | | ortell - N | lina Cortell | Fed Co | m #202H - | Wellbore #1 | - BLM Pla | n #1 | | | | Offset Site Error: Offset Well Error: | 0.0 usf
0.0 usf | |-----------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------|------------------|-----------------------------|----------------------------------|------------------------------|------------------------------|-------------------------------|---------------------------------|----------------------|---------------------------------------|--------------------| | Refer | _ | Offs | et | Semi Major | Axis | | | | Dist | ance | | | Offset Well Effor. | 0.0 us | | Measured
Depth
(usft) | Vertical
Depth
(usft) | Measured
Depth
(usft) | Vertical
Depth
(usft) | Reference
(usft) | Offset
(usft) | Highside
Toolface
(°) | Offset Wellbo
+N/-S
(usft) | re Centre
+E/-W
(usft) | Between
Centres
(usft) | Between
Ellipses
(usft) | Minimum
Separation
(usft) | Separation
Factor | Warning | | | 10,400.0 | 10,334.1 | 10,351.6 | 10,334.1 | 39.8 | 36.5 | -90.65 | -190.5 | 189.9 | 1,324.2 | 1,250.8 | 73.43 | 18.034 | | | | 10,500.0 | 10,434.1 | 10,451.6 | 10,434.1 | 40.1 | 36.9 | -90.65 | -190.5 | 189.9 | 1,324.2 | 1,250.1 | 74.12 | 17.865 | | | | 10,600 0 | | 10,551 6 | 10,534 1 | 40 4 | 37 3 | -90 65 | -190 5 | 189 9 | 1,324 2 | | | 17 699 | | | | 10,700.0 | 10,634.1 | 10,651.6 | 10,634.1 | 40.7 | 37.6 | -90.65 | -190.5 |
189.9 | 1,324.2 | | 75.51 | | | | | 10,800.0 | 10,734.1 | 10,751.6 | 10,734.1 | 41.0 | 38.0 | -90.65 | -190.5 | 189.9 | 1,324.2 | | | | | | | 10,900.0 | 10,834.1 | 10,851.6 | 10,834.1 | 41.4 | 38.3 | -90.65 | -190.5 | 189.9 | 1,324.2 | | | | | | | 11,000.0 | 10,934.1 | 10,951.6 | 10,934.1 | 41.7 | 38.7 | -90.65 | -190.5 | 189.9 | 1,324.2 | | | 17.065 | | | | 11,100.0 | 11,034.1 | 11,051.6 | 11,034.1 | 42.0 | 39.0 | -90.65 | -190.5 | 189.9 | 1,324.2 | | | 16.913 | | | | 11,200.0 | 11,134.1 | 11,151.6 | 11,134.1 | 42.3 | 39.4 | -90.65 | -190.5 | 189.9 | 1,324.2 | | | 16.764 | | | | 11,300.0 | 11,234.1 | 11,251.6 | 11,234.1 | 42.7 | 39.7 | -90.65 | -190.5 | 189.9 | 1,324.2 | | | 16.618 | | | | 11,400.0 | 11,334.1 | 11,351.6 | 11,334.1 | 43.0 | 40.1 | -90.65 | -190.5 | 189.9 | 1,324.2 | | | 16.473 | | | | 11,500.0 | 11,434.1 | 11,451.6 | 11,434.1 | 43.3 | 40.4 | -90.65 | -190.5 | 189.9 | 1,324.2 | | 81.08 | 16.332 | | | | 11,600.0 | 11,534.1 | 11,551.6 | 11,534.1 | 43.6 | 40.8 | -90.65 | -190.5 | 189.9 | 1,324.2 | | 81.78 | 16.192 | | | | 11,694.9 | 11,629.0 | 11,646.6 | 11,629.1 | 44.0 | 41.1 | -90.65 | -190.4 | 189.9 | 1,324.2 | | | 16.062 | | | | 11,700.0 | 11,634.1 | 11,651.8 | 11,634.3 | 44.0 | 41.2 | -90.19 | -190.3 | 189.9 | 1,324.2 | | 82.48 | 16.055 | | | | 11,750.0 | 11,684.0 | 11,702.1 | 11,684.5 | 44.1 | 41.3 | -90.16 | -186.9 | 189.9 | 1,324.2 | 1,241.4 | 82.82 | 15.989 | | | | 11,800.0 | 11,733.5 | 11,752.4 | 11,734.1 | 44.3 | 41.5 | -90.12 | -179.0 | 189.8 | 1,324.2 | | 83.15 | 15.925 | | | | 11,850.0 | 11,782.2 | 11,802.6 | 11,782.9 | 44.4 | 41.7 | -90.08 | -166.9 | 189.7 | 1,324.2 | 1,240.7 | 83.47 | 15.865 | | | | 11,900.0 | 11,829.8 | 11,852.8 | 11,830.3 | 44.6 | 41.8 | -90.05 | -150.5 | 189.6 | 1,324.2 | 1,240.4 | 83.77 | 15.807 | | | | 11,950.0 | 11,875.8 | 11,902.9 | 11,876.0 | 44.7 | 42.0 | -90.01 | -130.1 | 189.4 | 1,324.2 | | 84.06 | 15.753 | | | | 12,000.0 | 11,919.9 | 11,952.8 | 11,919.7 | 44.8 | 42.1 | -89.97 | -105.9 | 189.2 | 1,324.2 | 1,239.8 | 84.34 | 15.701 | | | | 12,050.0 | 11,961.8 | 12,002.8 | 11,961.0 | 44.9 | 42.2 | -89.93 | -78.0 | 189.0 | 1,324.2 | 1,239.6 | 84.60 | 15.652 | | | | 12,100.0 | 12,001.2 | 12,052.6 | 11,999.7 | 45.0 | 42.3 | -89.89 | -46.6 | 188.8 | 1,324.2 | 1,239.3 | 84.85 | 15.605 | | | | 12,150.0 | 12,037.8 | 12,102.3 | 12,035.5 | 45.1 | 42.4 | -89.86 | -12.1 | 188.5 | 1,324.2 | 1,239.1 | 85.10 | 15.560 | | | | 12,200.0 | 12,071.2 | 12,152.0 | 12,068.1 | 45.1 | 42.5 | -89.82 | 25.4 | 188.2 | 1,324.2 | 1,238.8 | 85.34 | 15.516 | | | | 12,250.0 | 12,101.3 | 12,201.6 | 12,097.3 | 45.2 | 42.6 | -89.79 | 65.5 | 187.9 | 1,324.2 | 1,238.6 | 85.58 | 15.474 | | | | 12,300.0 | 12,127.7 | 12,251.2 | 12,122.9 | 45.2 | 42.7 | -89.76 | 107.9 | 187.6 | 1,324.2 | 1,238.3 | 85.81 | 15.431 | | | | 12,350.0 | 12,150.4 | 12,300.7 | 12,144.7 | 45.3 | 42.8 | -89.73 | 152.3 | 187.2 | 1,324.2 | 1,238.1 | 86.04 | 15.389 | | | | 12,400.0 | 12,169.1 | 12,350.1 | 12,162.6 | 45.3 | 42.9 | -89.70 | 198.4 | 186.9 | 1,324.1 | 1,237.9 | 86.28 | 15.347 | | | | 12,450.0 | 12,183.7 | 12,399.5 | 12,176.4 | 45.4 | 43.0 | -89.67 | 245.8 | 186.5 | 1,324.1 | 1,237.6 | 86.52 | 15.305 | | | | 12,500.0 | 12,194.1 | 12,448.8 | 12,186.1 | 45.4 | 43.2 | -89.65 | 294.1 | 186.2 | 1,324.1 | 1,237.4 | 86.76 | 15.263 | | | | 12,550.0 | 12,200.2 | 12,498.1 | 12,191.6 | 45.5 | 43.3 | -89.63 | 343.1 | 185.8 | 1,324.1 | 1,237.1 | 87.00 | 15.220 | | | | 12,598.9 | 12,201.9 | 12,546.3 | 12,192.9 | 45.5 | 43.4 | -89.61 | 391.2 | 185.4 | 1,324.1 | 1,236.9 | 87.24 | 15.177 | | | | 12,600.0 | 12,201.9 | 12,547.4 | 12,192.9 | 45.5 | 43.4 | -89.61 | 392.4 | 185.4 | 1,324.1 | 1,236.9 | 87.25 | 15.176 | | | | 12,700.0 | 12,201.2 | 12,647.4 | 12,192.2 | 45.7 | 43.7 | -89.61 | 492.3 | 184.6 | 1,324.1 | 1,236.3 | 87.83 | 15.076 | | | | 12,800.0 | 12,200.5 | 12,747.4 | 12,191.5 | 46.0 | 44.1 | -89.61 | 592.3 | 183.9 | 1,324.1 | 1,235.6 | 88.52 | 14.958 | | | | 12,900.0 | 12,199.8 | 12,847.4 | | 46.3 | 44.5 | -89.61 | 692.3 | 183.1 | 1,324.1 | 1,234.7 | 89.33 | 14.822 | | | | 13,000.0 | 12,199.1 | 12,947.4 | 12,190.1 | 46.7 | 44.9 | -89.61 | 792.3 | 182.3 | 1,324.1 | 1,233.8 | | 14.670 | | | | | 12,198.4 | | 12,189.4 | 47.2 | 45.5 | -89.61 | 892.3 | 181.6 | 1,324.0 | | 91.29 | 14.503 | | | | | 12,197.7 | | 12,188.7 | 47.7 | 46.0 | -89.61 | 992.3 | 180.8 | 1,324.0 | | | | | | | 13,300.0 | 12,197.0 | 13,247.4 | 12,188.0 | 48.3 | 46.7 | -89.61 | 1,092.3 | 180.0 | 1,324.0 | 1,230.3 | 93.68 | 14.133 | | | | 13,400.0 | | 13,347.4 | 12,187.3 | 49.0 | 47.4 | -89.61 | 1,192.3 | 179.3 | 1,324.0 | | | 13.933 | | | | 13,500.0 | 12,195.7 | 13,447.4 | 12,186.6 | 49.7 | 48.1 | -89.61 | 1,292.3 | 178.5 | 1,324.0 | | | 13.725 | | | | 13,600.0 | | 13,547.4 | 12,185.9 | 50.4 | 48.9 | -89.61 | 1,392.3 | 177.7 | 1,324.0 | | | 13.510 | | | | | 12,194.3 | 13,647.4 | 12,185.2 | 51.2 | 49.7 | -89.61 | 1,492.3 | 177.0 | 1,323.9 | | | | | | | 13,800.0 | 12,193.6 | 13,747.4 | 12,184.5 | 52.0 | 50.5 | -89.61 | 1,592.3 | 176.2 | 1,323.9 | 1,222.6 | 101.32 | 13.067 | | | | 13,900.0 | 12,192.9 | 13,847.4 | 12,183.8 | 52.9 | 51.4 | -89.61 | 1,692.3 | 175.4 | 1,323.9 | 1,220.8 | 103.10 | 12.841 | | | | 14,000.0 | 12,192.2 | 13,947.4 | 12,183.1 | 53.8 | 52.3 | -89.61 | 1,792.3 | 174.7 | 1,323.9 | 1,218.9 | 104.95 | 12.614 | | | | 14,100.0 | 12,191.5 | 14,047.4 | 12,182.4 | 54.8 | 53.3 | -89.61 | 1,892.3 | 173.9 | 1,323.9 | 1,217.0 | 106.87 | 12.387 | | | | | | 14,147.4 | 12,181.7 | 55.7 | 54.3 | -89.61 | 1,992.3 | 173.1 | 1,323.8 | 1,215.0 | 108.87 | 12.160 | | | | 14,300.0 | 12,190.1 | 14,247.4 | 12,181.0 | 56.7 | 55.3 | -89.61 | 2,092.3 | 172.3 | 1,323.8 | 1,212.9 | 110.92 | 11.935 | | | | 14,400.0 | 12,189.4 | 14,347.4 | 12,180.3 | 57.8 | 56.4 | -89.61 | 2,192.3 | 171.6 | 1,323.8 | 1,210.8 | 113.03 | 11.712 | | | Company: Matador Production Company Project: Antelope Ridge Reference Site: Nina Cortell Site Error: 0.0 usft Reference Well: Nina Cortell Fed Com #203H Well Error: 0.0 usft Reference Wellbore #1 Reference Design: BLM Plan #1 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Output errors are at Database: Offset TVD Reference: Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) Minimum Curvature 2.00 sigma EDM 5000.14 Server | Offset D | esign
gram: 0-M | | ortell - N | lina Cortell | Fed Co | m #202H - | Wellbore #1 | - BLM Pla | ın #1 | | | | Offset Site Error: Offset Well Error: | 0.0 ust | |-----------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------|------------------|-----------------------------|----------------------------------|------------------------------|------------------------------|-------------------------------|---------------------------------|----------------------|---------------------------------------|---------| | Refer | ence | Offs | | Semi Majo | | | | | | ance | | | Offset Well Error: | 0.0 us | | Measured
Depth
(usft) | Vertical
Depth
(usft) | Measured
Depth
(usft) | Vertical
Depth
(usft) | Reference
(usft) | Offset
(usft) | Highside
Toolface
(°) | Offset Wellbo
+N/-S
(usft) | re Centre
+E/-W
(usft) | Between
Centres
(usft) | Between
Ellipses
(usft) | Minimum
Separation
(usft) | Separation
Factor | Warning | | | 14,500.0 | | 14,447.4 | 12,179.6 | 58.8 | 57.5 | -89.61 | 2,292.2 | 170.8 | 1,323.8 | | 115.21 | | | | | 14,600.0 | | 14,547.4 | 12,178.9 | 59.9 | 58.6 | -89.61 | 2,392.2 | 170.0 | 1,323.8 | | 117.43 | | | | | | 12,187 3 | 14,647 4 | 12,178 2 | 61 0 | 59 7 | -89 61 | 2,492.2 | 169 3 | 1,323 8 | | | | | | | 14,800.0 | | 14,747.4 | 12,177.5 | 62.2 | 60.9 | -89.61 | 2,592.2 | 168.5 | 1,323.7 | | 122.03 | 10.848 | | | | 14,900.0 | | 14,847.4 | 12,176.8 | 63.3 | 62.1 | -89.61 | 2,692.2 | 167.7 | 1,323.7 | | 124.39 | 10.641 | | | | 15,000.0 | | 14,947.4 | 12,176.1 | 64.5 | 63.3 | -89.61 | 2,792.2 | 167.0 | 1,323.7 | | 126.80 | 10.439 | | | | | 12,184.5 | 15,047.4 | 12,175.4 | 65.7 | 64.5 | -89.61 | 2,892.2 | 166.2 | 1,323.7 | | 129.25 | 10.241 | | | | 15,200.0 | | 15,147.4 | 12,174.8 | 67.0 | 65.8 | -89.61 | 2,992.2 | 165.4 | 1,323.7 | | 131.74 | 10.048 | | | | 15,300.0 | 12,183.1 | 15,247.4 | 12,174.1 | 68.2 | 67.0 | -89.61 | 3,092.2 | 164.7 | 1,323.7 | | 134.26 | 9.859 | | | | 15,400.0 | | 15,347.4 | 12,173.4 | 69.5 | 68.3 | -89.61 | 3,192.2 | 163.9 | 1,323.6 | | 136.82 | 9.674 | | | | 15,500.0 | 12,181.7 | 15,447.4 | 12,172.7 | 70.7 | 69.6 | -89.61 | 3,292.2 | 163.1 | 1,323.6 | 1,184.2 | 139.41 | 9.494 | | | | 15,600.0 | | 15,547.4 | 12,172.0 | 72.0 | 70.9 | -89.61 | 3,392.2 | 162.4 | 1,323.6 | | 142.03 | 9.319 | | | | 15,700.0 | 12,180.3 | 15,647.4 | 12,171.3 | 73.3 | 72.3 | -89.61 | 3,492.2 | 161.6 | 1,323.6 | | 144.68 | 9.149 | | | | 15,800.0 | | 15,747.4 | 12,170.6 | 74.7 | 73.6 | -89.61 | 3,592.2 | 160.8 | 1,323.6 | | 147.35 | 8.982 | | | | 15,900.0 | | 15,847.4 | 12,169.9 | 76.0 | 75.0 | -89.61 | 3,692.2 | 160.1 | 1,323.5 | | 150.05 | 8.821 | | | | 16,000.0 | 12,178.2 | 15,947.4 | 12,169.2 | 77.3 | 76.3 | -89.61 | 3,792.2 | 159.3 | 1,323.5 | 1,170.8 | 152.78 | 8.663 | | | | 16,100.0 | 12,177.5 | 16,047.4 | 12,168.5 | 78.7 | 77.7 | -89.61 | 3,892.2 | 158.5 | 1,323.5 | 1,168.0 | 155.52 | 8.510 | | | | 16,200.0 | 12,176.8 | 16,147.4 | 12,167.8 | 80.1 | 79.1 | -89.61 | 3,992.2 | 157.8 | 1,323.5 | 1,165.2 | 158.29 | 8.361 | | | | 16,300.0 | 12,176.1 | 16,247.4 | 12,167.1 | 81.4 | 80.5 | -89.61 | 4,092.2 | 157.0 | 1,323.5 | 1,162.4 | 161.08 | 8.216 | | | | 16,400.0 | 12,175.4 | 16,347.4 | 12,166.4 | 82.8 | 81.9 | -89.61 | 4,192.1 | 156.2 | 1,323.5 | 1,159.6 | 163.89 | 8.075 | | | | 16,500.0 | 12,174.7 | 16,447.4 | 12,165.7 | 84.2 | 83.3 | -89.61 | 4,292.1 | 155.5 | 1,323.4 | 1,156.7 | 166.72 | 7.938 | | | | 16,600.0 | 12,174.0 | 16,547.4 | 12,165.0 | 85.6 | 84.7 | -89.61 | 4,392.1 | 154.7 | 1,323.4 | 1,153.9 | 169.56 | 7.805 | | | | 16,700.0 | 12,173.3 | 16,647.4 |
12,164.3 | 87.1 | 86.2 | -89.61 | 4,492.1 | 153.9 | 1,323.4 | 1,151.0 | 172.42 | 7.675 | | | | 16,800.0 | 12,172.6 | 16,747.4 | 12,163.6 | 88.5 | 87.6 | -89.61 | 4,592.1 | 153.2 | 1,323.4 | 1,148.1 | 175.30 | 7.549 | | | | 16,900.0 | 12,171.9 | 16,847.4 | 12,162.9 | 89.9 | 89.0 | -89.61 | 4,692.1 | 152.4 | 1,323.4 | 1,145.2 | 178.19 | 7.427 | | | | 17,000.0 | 12,171.2 | 16,947.4 | 12,162.2 | 91.4 | 90.5 | -89.61 | 4,792.1 | 151.6 | 1,323.4 | 1,142.3 | 181.10 | 7.307 | | | | 17,100.0 | 12,170.5 | 17,047.4 | 12,161.5 | 92.8 | 92.0 | -89.61 | 4,892.1 | 150.8 | 1,323.3 | 1,139.3 | 184.02 | 7.191 | | | | 17,200.0 | | 17,147.4 | 12,160.8 | 94.3 | 93.4 | -89.61 | 4,992.1 | 150.1 | 1,323.3 | | 186.96 | 7.078 | | | | 17,300.0 | 12,169.1 | 17,247.4 | 12,160.1 | 95.7 | 94.9 | -89.61 | 5,092.1 | 149.3 | 1,323.3 | | 189.90 | 6.968 | | | | 17,400.0 | | 17,347.4 | 12,159.4 | 97.2 | 96.4 | -89.61 | 5,192.1 | 148.5 | 1,323.3 | | 192.86 | 6.861 | | | | 17,500.0 | | 17,447.4 | 12,158.7 | 98.7 | 97.9 | -89.61 | 5,292.1 | 147.8 | 1,323.3 | | 195.83 | 6.757 | | | | 17,600.0 | 12,167.0 | 17,547.4 | 12,158.0 | 100.1 | 99.4 | -89.61 | 5,392.1 | 147.0 | 1,323.3 | 1,124.4 | 198.81 | 6.656 | | | | 17,700.0 | | 17,647.4 | 12,157.3 | 101.6 | 100.9 | -89.61 | 5,492.1 | 146.2 | 1,323.2 | | 201.80 | 6.557 | | | | 17,800.0 | 12,165.6 | 17,747.4 | 12,156.6 | 103.1 | 102.4 | -89.61 | 5,592.1 | 145.5 | 1,323.2 | | 204.80 | 6.461 | | | | 17,900.0 | 12,164.9 | 17,847.4 | 12,155.9 | 104.6 | 103.9 | -89.61 | 5,692.1 | 144.7 | 1,323.2 | | 207.81 | 6.367 | | | | 18,000.0 | | 17,947.4 | 12,155.2 | 106.1 | 105.4 | -89.61 | 5,792.1 | 143.9 | 1,323.2 | | 210.83 | 6.276 | | | | | | 18,047.4 | 12,154.5 | 107.6 | 106.9 | -89.61 | 5,892.1 | 143.2 | 1,323.2 | | 213.86 | 6.187 | | | | 18,200.0 | | 18,147.4 | 12,153.8 | 109.1 | 108.4 | -89.61 | 5,992.0 | 142.4 | 1,323.1 | | 216.90 | 6.100 | | | | | 12,162.1 | , | 12,153.1 | 110.6 | 109.9 | -89.61 | 6,092.0 | 141.6 | 1,323.1 | | 219.94 | 6.016 | | | | | 12,161.4 | | 12,152.4 | 112.1 | 111.5 | -89.61 | 6,192.0 | 140.9 | 1,323.1 | | | | | | | 18,500.0 | 12,160.7 | 18,447.4 | 12,151.7 | 113.7 | 113.0 | -89.61 | 6,292.0 | 140.1 | 1,323.1 | 1,097.0 | 226.06 | 5.853 | | | | 18,600.0 | 12,160.0 | 18,547.4 | 12,151.0 | 115.2 | 114.5 | -89.61 | 6,392.0 | 139.3 | 1,323.1 | 1,094.0 | 229.12 | 5.775 | | | | 18,700.0 | 12,159.4 | 18,647.4 | 12,150.3 | 116.7 | 116.1 | -89.61 | 6,492.0 | 138.6 | 1,323.1 | 1,090.9 | 232.20 | 5.698 | | | | 18,800.0 | 12,158.7 | 18,747.4 | 12,149.6 | 118.3 | 117.6 | -89.61 | 6,592.0 | 137.8 | 1,323.0 | 1,087.8 | 235.28 | 5.623 | | | | 18,900.0 | 12,158.0 | 18,847.4 | 12,148.9 | 119.8 | 119.2 | -89.61 | 6,692.0 | 137.0 | 1,323.0 | 1,084.7 | 238.36 | 5.550 | | | | 19,000.0 | 12,157.3 | 18,947.4 | 12,148.2 | 121.3 | 120.7 | -89.61 | 6,792.0 | 136.3 | 1,323.0 | 1,081.6 | 241.46 | 5.479 | | | | 19,100.0 | 12,156.6 | 19,047.4 | 12,147.5 | 122.9 | 122.3 | -89.61 | 6,892.0 | 135.5 | 1,323.0 | 1,078.4 | 244.55 | 5.410 | | | | 19,200.0 | 12,155.9 | 19,147.4 | 12,146.8 | 124.4 | 123.8 | -89.61 | 6,992.0 | 134.7 | 1,323.0 | 1,075.3 | 247.66 | 5.342 | | | | | 12,155.2 | 19,247.4 | 12,146.1 | 126.0 | 125.4 | -89.61 | 7,092.0 | 134.0 | 1,323.0 | | 250.77 | 5.276 | | | | | 12,154.5 | 19,347.4 | 12,145.4 | 127.5 | 126.9 | -89.61 | 7,192.0 | 133.2 | 1,322.9 | | 253.88 | | | | | 19,500.0 | | 19,447.4 | 12,144.7 | 129.1 | 128.5 | -89.61 | 7,292.0 | 132.4 | 1,322.9 | | 257.00 | 5.148 | | | | 19,600.0 | 12,153.1 | 19,547.4 | 12,144.0 | 130.6 | 130.0 | -89.61 | 7,392.0 | 131.6 | 1,322.9 | 1,062.8 | 260.12 | 5.086 | | | Company: Matador Production Company Project: Antelope Ridge Reference Site: Nina Cortell Site Error: 0.0 usft Reference Well: Nina Cortell Fed Com #203H Well Error: 0.0 usft Reference Wellbore #1 Reference Design: BLM Plan #1 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Output errors are at Database: Offset TVD Reference: Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) Minimum Curvature 2.00 sigma EDM 5000.14 Server | Offset D | _ | | ortell - N | lina Cortell | Fed Co | m #202H - | Wellbore #1 | - BLM Pla | n #1 | | | | Offset Site Error: | 0.0 u | |--------------------|-------------------|-------------------|-------------------|--------------|--------|----------------------|------------------------|--------------------|---------|---------------------|-----------------------|----------------------|--------------------|-------| | urvey Pro
Refer | gram: 0-M
ence | Offs | et | Semi Majo | Axis | | | | Dista | ance | | | Offset Well Error: | 0.0 u | | easured
Depth | | Measured
Depth | Vertical
Depth | Reference | Offset | Highside
Toolface | Offset Wellbo
+N/-S | re Centre
+E/-W | | Between
Ellipses | Minimum
Separation | Separation
Factor | Warning | | | (usft) | (usft) | (usft) | (usft) | (usft) | (usft) | (°) | (usft) | (usft) | (usft) | (usft) | (usft) | | | | | 19,700.0 | 12,152.4 | 19,647.4 | 12,143.3 | 132.2 | 131.6 | -89.61 | 7,492.0 | 130.9 | 1,322.9 | 1,059.6 | 263.25 | 5.025 | | | | 19,800.0 | 12,151.7 | 19,747.4 | 12,142.6 | 133.7 | 133.2 | -89.61 | 7,592.0 | 130.1 | 1,322.9 | 1,056.5 | 266.39 | 4.966 | | | | 19,900 0 | 12,151 0 | 19,847 4 | 12,141 9 | 135 3 | 134 7 | -89 61 | 7,692 0 | 129 3 | 1,322 9 | 1,053.3 | 269 52 | 4 908 | | | | 20,000.0 | 12,150.3 | 19,947.4 | 12,141.2 | 136.9 | 136.3 | -89.61 | 7,792.0 | 128.6 | 1,322.8 | 1,050.2 | 272.67 | 4.851 | | | | 20,100.0 | 12,149.6 | 20,047.4 | 12,140.5 | 138.4 | 137.9 | -89.61 | 7,891.9 | 127.8 | 1,322.8 | 1,047.0 | 275.81 | 4.796 | | | | 20,200.0 | 12,148.9 | 20,147.4 | 12,139.8 | 140.0 | 139.5 | -89.61 | 7,991.9 | 127.0 | 1,322.8 | 1,043.8 | 278.96 | 4.742 | | | | 20,300.0 | 12,148.2 | 20,247.4 | 12,139.1 | 141.6 | 141.0 | -89.61 | 8,091.9 | 126.3 | 1,322.8 | 1,040.7 | 282.11 | 4.689 | | | | 20,400.0 | 12,147.5 | 20,347.4 | 12,138.4 | 143.1 | 142.6 | -89.61 | 8,191.9 | 125.5 | 1,322.8 | 1,037.5 | 285.27 | 4.637 | | | | 20,500.0 | 12,146.8 | 20,447.4 | 12,137.8 | 144.7 | 144.2 | -89.61 | 8,291.9 | 124.7 | 1,322.7 | 1,034.3 | 288.43 | 4.586 | | | | 20,600.0 | 12,146.1 | 20,547.4 | 12,137.1 | 146.3 | 145.8 | -89.61 | 8,391.9 | 124.0 | 1,322.7 | 1,031.1 | 291.60 | 4.536 | | | | 20,700.0 | 12,145.4 | 20,647.4 | 12,136.4 | 147.9 | 147.4 | -89.61 | 8,491.9 | 123.2 | 1,322.7 | 1,027.9 | 294.76 | 4.487 | | | | 20,800.0 | 12,144.7 | 20,747.4 | 12,135.7 | 149.4 | 149.0 | -89.61 | 8,591.9 | 122.4 | 1,322.7 | 1,024.8 | 297.93 | 4.440 | | | | 20,900.0 | 12,144.0 | 20,847.4 | 12,135.0 | 151.0 | 150.5 | -89.61 | 8,691.9 | 121.7 | 1,322.7 | 1,021.6 | 301.11 | 4.393 | | | | 21,000.0 | 12,143.3 | 20,947.4 | 12,134.3 | 152.6 | 152.1 | -89.61 | 8,791.9 | 120.9 | 1,322.7 | 1,018.4 | 304.28 | 4.347 | | | | 21,100.0 | 12,142.6 | 21,047.4 | 12,133.6 | 154.2 | 153.7 | -89.61 | 8,891.9 | 120.1 | 1,322.6 | 1,015.2 | 307.46 | 4.302 | | | | 21,200.0 | 12,141.9 | 21,147.4 | 12,132.9 | 155.8 | 155.3 | -89.61 | 8,991.9 | 119.4 | 1,322.6 | 1,012.0 | 310.65 | 4.258 | | | | 21,300.0 | 12,141.2 | 21,247.4 | 12,132.2 | 157.4 | 156.9 | -89.61 | 9,091.9 | 118.6 | 1,322.6 | 1,008.8 | 313.83 | 4.214 | | | | 21,400.0 | 12,140.5 | 21,347.4 | 12,131.5 | 159.0 | 158.5 | -89.61 | 9,191.9 | 117.8 | 1,322.6 | 1,005.6 | 317.02 | 4.172 | | | | 21,500.0 | 12,139.8 | 21,447.4 | 12,130.8 | 160.5 | 160.1 | -89.61 | 9,291.9 | 117.1 | 1,322.6 | 1,002.4 | 320.21 | 4.130 | | | | 21,600.0 | 12,139.1 | 21,547.4 | 12,130.1 | 162.1 | 161.7 | -89.61 | 9,391.9 | 116.3 | 1,322.6 | 999.2 | 323.40 | 4.090 | | | | 21,700.0 | 12,138.4 | 21,647.4 | 12,129.4 | 163.7 | 163.3 | -89.61 | 9,491.9 | 115.5 | 1,322.5 | 995.9 | 326.60 | 4.049 | | | | 21,800.0 | 12,137.7 | 21,747.4 | 12,128.7 | 165.3 | 164.9 | -89.61 | 9,591.9 | 114.8 | 1,322.5 | 992.7 | 329.79 | 4.010 | | | | 21,900.0 | 12,137.0 | 21,847.4 | 12,128.0 | 166.9 | 166.5 | -89.61 | 9,691.8 | 114.0 | 1,322.5 | 989.5 | 332.99 | 3.972 | | | | 22,000.0 | 12,136.3 | 21,947.4 | 12,127.3 | 168.5 | 168.1 | -89.61 | 9,791.8 | 113.2 | 1,322.5 | 986.3 | 336.20 | 3.934 | | | | 22,100.0 | 12,135.6 | 22,047.4 | 12,126.6 | 170.1 | 169.7 | -89.61 | 9,891.8 | 112.5 | 1,322.5 | 983.1 | 339.40 | 3.896 | | | | 22,200.0 | 12,134.9 | 22,147.4 | 12,125.9 | 171.7 | 171.3 | -89.61 | 9,991.8 | 111.7 | 1,322.5 | 979.8 | 342.61 | 3.860 | | | | 22,300.0 | 12,134.2 | 22,247.4 | 12,125.2 | 173.3 | 172.9 | -89.61 | 10,091.8 | 110.9 | 1,322.4 | 976.6 | 345.81 | 3.824 | | | | 22,400.0 | 12,133.5 | 22,350.7 | 12,124.4 | 174.9 | 174.6 | -89.61 | 10,195.1 | 110.2 | 1,322.3 | 973.2 | 349.05 | 3.788 | | | | 22,462.7 | 12,133.0 | 22,413.4 | 12,124.0 | 175.9 | 175.6 | -89.61 | 10,257.8 | 109.9 | 1,322.1 | 971.0 | 351.06 | 3.766 | CC, ES, SF | | Company: Matador Production Company Project: Antelope Ridge Reference Site: Nina Cortell Site Error: 0.0 usft Reference Well: Nina Cortell Fed Com #203H Well Error: 0.0 usft Reference Wellbore Reference Design: BLM Plan #1 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Output errors are at Database: Offset TVD Reference: Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) Grid Minimum Curvature 2.00 sigma EDM 5000.14 Server | | esign
ogram: 0-N | | orten - iv | illa Cortell | 1 eu co | 111 #20411 - | Wellbore #1 | - DLIVI PIA | 11#1 | | | | Offset Well Error: | 0.0 ust | |----------------------------|---------------------|-----------------------------|-----------------------------|---------------------|---------|-----------------------------|----------------------------------|------------------------------|------------------------------|-------------------------------|---------------------------------|----------------------|--------------------|---------| | urvey Pro
Refer | _ | Offs | et | Semi Major | r Axis | | | | Dist | ance | | | Offset Well Error: | 0.0 us | | easured
Depth
(usft) | |
Measured
Depth
(usft) | Vertical
Depth
(usft) | Reference
(usft) | | Highside
Toolface
(°) | Offset Wellbo
+N/-S
(usft) | re Centre
+E/-W
(usft) | Between
Centres
(usft) | Between
Ellipses
(usft) | Minimum
Separation
(usft) | Separation
Factor | Warning | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.42 | 58.0 | 2,452.5 | 29.9 | | | | | | | 100.0 | 100.0 | 100.0 | 100.0 | 0.1 | 0.1 | -0.42 | 58.0 | 2,452.5 | 29.9 | 29.7 | 0.26 | 116.820 | | | | 200 0 | 200 0 | 200 0 | 200 0 | 0.5 | 0.5 | -0 42 | 58 0 | 2,452 5 | 29 9 | 29 0 | 0 97 | 30 765 | | | | 300.0 | 300.0 | 300.0 | 300.0 | 8.0 | 8.0 | -0.42 | 58.0 | 2,452.5 | 29.9 | 28.3 | 1.69 | 17.715 | | | | 400.0 | 400.0 | 400.0 | 400.0 | 1.2 | 1.2 | -0.42 | 58.0 | 2,452.5 | 29.9 | 27.5 | 2.41 | 12.439 | | | | 500.0 | 500.0 | 500.0 | 500.0 | 1.6 | 1.6 | -0.42 | 58.0 | 2,452.5 | 29.9 | 26.8 | 3.12 | 9.584 | | | | 600.0 | 600.0 | 600.0 | 600.0 | 1.9 | 1.9 | -0.42 | 58.0 | 2,452.5 | 29.9 | 26.1 | 3.84 | 7.795 | | | | 700.0 | 700.0 | 700.0 | 700.0 | 2.3 | 2.3 | -0.42 | 58.0 | 2,452.5 | 29.9 | 25.4 | 4.56 | 6.569 | | | | 800.0 | 800.0 | 0.008 | 800.0 | 2.6 | 2.6 | -0.42 | 58.0 | 2,452.5 | 29.9 | 24.7 | 5.27 | 5.676 | | | | 900.0 | 900.0 | 900.0 | 900.0 | 3.0 | 3.0 | -0.42 | 58.0 | 2,452.5 | 29.9 | 23.9 | 5.99 | 4.997 | | | | 1,000.0 | 1,000.0 | 1,000.0 | 1,000.0 | 3.4 | 3.4 | -0.42 | 58.0 | 2,452.5 | 29.9 | 23.2 | 6.71 | 4.463 | | | | 1,100.0 | 1,100.0 | 1,100.0 | 1,100.0 | 3.7 | 3.7 | -0.42 | 58.0 | 2,452.5 | 29.9 | 22.5 | 7.43 | 4.032 | | | | 1,200.0 | 1,200.0 | 1,200.0 | 1,200.0 | 4.1 | 4.1 | -0.42 | 58.0 | 2,452.5 | 29.9 | 21.8 | 8.14 | 3.677 | | | | 1,300.0 | 1,300.0 | 1,300.0 | 1,300.0 | 4.4 | 4.4 | -0.42 | 58.0 | 2,452.5 | 29.9 | 21.1 | 8.86 | 3.380 | | | | 1,400.0 | 1,400.0 | 1,400.0 | 1,400.0 | 4.8 | 4.8 | -0.42 | 58.0 | 2,452.5 | 29.9 | 20.4 | 9.58 | 3.127 | | | | 1,500.0 | 1,500.0 | 1,500.0 | 1,500.0 | 5.1 | 5.1 | -0.42 | 58.0 | 2,452.5 | 29.9 | 19.6 | 10.29 | 2.909 | | | | 1,565.1 | 1,565.0 | 1,565.2 | 1,565.2 | 5.4 | 5.4 | 103.81 | 57.8 | 2,452.8 | 29.9 | 19.2 | 10.74 | 2.785 C | С | | | 1,600.0 | 1,600.0 | 1,600.2 | 1,600.2 | 5.5 | 5.5 | 106.54 | 57.6 | 2,453.3 | 30.0 | 19.0 | 10.99 | 2.727 E | S | | | 1,700.0 | 1,699.8 | 1,700.1 | 1,700.1 | 5.8 | 5.8 | 120.17 | 56.3 | 2,455.5 | 31.2 | 19.5 | 11.66 | 2.675 S | F | | | 1,800.0 | 1,799.5 | 1,799.4 | 1,799.2 | 6.2 | 6.2 | 138.76 | 54.1 | 2,459.3 | 36.6 | 24.3 | 12.34 | 2.967 | | | | 1,900.0 | 1,898.7 | 1,897.7 | 1,897.4 | 6.5 | 6.5 | 155.33 | 51.1 | 2,464.5 | 48.6 | 35.5 | 13.02 | 3.731 | | | | 2,000.0 | 1,997.7 | 1,995.1 | 1,994.5 | 6.9 | 6.8 | 166.60 | 47.3 | 2,471.0 | 65.6 | 51.9 | 13.68 | 4.791 | | | | 2,100.0 | 2,096.8 | 2,091.9 | 2,090.9 | 7.3 | 7.2 | 173.96 | 42.7 | 2,479.0 | 85.1 | 70.8 | 14.34 | 5.935 | | | | 2,200.0 | 2,195.8 | 2,188.1 | 2,186.4 | 7.6 | 7.5 | 179.14 | 37.4 | 2,488.2 | 106.7 | 91.7 | 15.00 | 7.117 | | | | 2,300.0 | 2,294.8 | 2,283.5 | 2,281.0 | 8.0 | 7.9 | -176.98 | 31.2 | 2,498.8 | 130.2 | 114.5 | 15.65 | 8.319 | | | | 2,400.0 | 2,393.8 | 2,379.8 | 2,376.4 | 8.4 | 8.2 | -174.01 | 24.5 | 2,510.4 | 154.9 | 138.5 | 16.32 | 9.489 | | | | 2,500.0 | 2,492.9 | 2,476.4 | 2,472.1 | 8.8 | 8.6 | -171.84 | 17.8 | 2,522.0 | 179.9 | 162.9 | 17.01 | 10.578 | | | | 2,600.0 | 2,591.9 | 2,573.1 | 2,567.8 | 9.2 | 9.0 | -170.21 | 11.1 | 2,533.7 | 205.1 | 187.4 | 17.69 | 11.589 | | | | 2,700.0 | 2,690.9 | 2,669.7 | 2,663.5 | 9.6 | 9.3 | -168.93 | 4.4 | 2,545.3 | 230.4 | 212.0 | 18.39 | 12.529 | | | | 2,800.0 | 2,789.9 | 2,766.3 | 2,759.2 | 10.0 | 9.7 | -167.90 | -2.4 | 2,557.0 | 255.8 | 236.7 | 19.08 | 13.402 | | | | 2,900.0 | 2,889.0 | 2,863.0 | 2,854.9 | 10.4 | 10.1 | -167.06 | -9.1 | 2,568.6 | 281.2 | 261.4 | 19.78 | 14.215 | | | | 3,000.0 | 2,988.0 | 2,959.6 | 2,950.6 | 10.8 | 10.5 | -166.36 | -15.8 | 2,580.3 | 306.7 | 286.3 | 20.49 | 14.972 | | | | 3,100.0 | 3,087.0 | 3,056.2 | 3,046.3 | 11.2 | 10.8 | -165.77 | -22.6 | 2,591.9 | 332.3 | 311.1 | 21.19 | 15.679 | | | | 3,200.0 | 3,186.1 | 3,152.8 | 3,141.9 | 11.6 | 11.2 | -165.26 | -29.3 | 2,603.6 | 357.9 | 336.0 | 21.90 | 16.341 | | | | 3,300.0 | 3,285.1 | 3,249.5 | 3,237.6 | 12.0 | 11.6 | -164.82 | -36.0 | 2,615.2 | 383.5 | 360.8 | 22.61 | 16.960 | | | | 3,400.0 | 3,384.1 | 3,346.1 | 3,333.3 | 12.4 | 12.0 | -164.44 | -42.7 | 2,626.8 | 409.1 | 385.7 | 23.32 | 17.541 | | | | 3,500.0 | 3,483.1 | 3,442.7 | 3,429.0 | 12.8 | 12.4 | -164.10 | -49.5 | 2,638.5 | 434.7 | 410.7 | 24.03 | 18.088 | | | | 3,600.0 | 3,582.2 | 3,539.4 | 3,524.7 | 13.2 | 12.8 | -163.79 | -56.2 | 2,650.1 | 460.3 | 435.6 | 24.75 | 18.602 | | | | 3,700.0 | 3,681.2 | 3,636.0 | 3,620.4 | 13.6 | 13.2 | -163.52 | -62.9 | 2,661.8 | 486.0 | 460.5 | 25.46 | 19.087 | | | | 3,800.0 | 3,780.2 | 3,732.6 | 3,716.1 | 14.0 | 13.5 | -163.28 | -69.7 | 2,673.4 | 511.7 | 485.5 | 26.18 | 19.544 | | | | 3,900.0 | 3,879.2 | 3,829.2 | 3,811.8 | 14.4 | 13.9 | -163.06 | -76.4 | 2,685.1 | 537.3 | 510.4 | 26.90 | 19.977 | | | | 4,000.0 | 3,978.3 | 3,925.9 | 3,907.5 | 14.8 | 14.3 | -162.86 | -83.1 | 2,696.7 | 563.0 | 535.4 | 27.62 | 20.387 | | | | 4,100.0 | 4,077.3 | 4,022.5 | 4,003.1 | 15.3 | 14.7 | -162.68 | -89.8 | 2,708.3 | 588.7 | 560.3 | 28.34 | 20.776 | | | | 4,200.0 | 4,176.3 | 4,119.1 | 4,098.8 | 15.7 | 15.1 | -162.51 | -96.6 | 2,720.0 | 614.4 | 585.3 | 29.06 | 21.144 | | | | 4,300.0 | 4,275.3 | 4,215.8 | 4,194.5 | 16.1 | 15.5 | -162.36 | -103.3 | 2,731.6 | 640.1 | 610.3 | 29.78 | 21.495 | | | | 4,400.0 | 4,374.4 | 4,312.4 | 4,290.2 | 16.5 | 15.9 | -162.21 | -110.0 | 2,743.3 | 665.8 | 635.3 | 30.50 | 21.829 | | | | 4,500.0 | 4,473.4 | 4,409.0 | 4,385.9 | 16.9 | 16.3 | -162.08 | -116.8 | 2,754.9 | 691.5 | 660.2 | 31.22 | 22.146 | | | | 4,600.0 | 4,572.4 | 4,505.7 | 4,481.6 | 17.3 | 16.7 | -161.96 | -123.5 | 2,766.6 | 717.2 | 685.2 | | 22.449 | | | | 4,700.0 | 4,671.5 | 4,602.3 | 4,577.3 | 17.7 | 17.1 | -161.85 | -130.2 | 2,778.2 | 742.9 | 710.2 | 32.67 | 22.738 | | | | 4,800.0 | 4,770.5 | 4,701.1 | 4,673.0 | 18.2 | 17.5 | -161.74 | -136.9 | 2,789.9 | 768.6 | 735.2 | 33.40 | 23.009 | | | | 4,900.0 | 4,869.5 | 4,795.5 | 4,768.7 | 18.6 | 17.9 | -161.64 | -143.7 | 2,801.5 | 794.3 | 760.2 | 34.12 | 23.279 | | | | 5,000.0 | 4,968.5 | 4,914.9 | 4,887.1 | 19.0 | 18.4 | -161.58 | -151.1 | 2,814.4 | 818.7 | 783.7 | 35.04 | 23.364 | | | Company: Matador Production Company Project: Antelope Ridge Reference Site: Nina Cortell Site Error: 0.0 usft Reference Well: Nina Cortell Fed Com #203H Well Error: 0.0 usft Reference Wellbore #1 Reference Design: BLM Plan #1 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Output errors are at Database: Offset TVD Reference: Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) Minimum Curvature 2.00 sigma EDM 5000.14 Server | | esign
gram: 0-N | | ortell - N | | | | | | | | | | Offset Well Error: | 0.0 us | |-----------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------|------------------|-----------------------------|----------------------------------|------------------------------|------------------------------|-------------------------------|---------------------------------|--------|--------------------|--------| | Refer | _ | Offs | et | Semi Major | Axis | | | | Dist | ance | | | Oliset Well Ellor. | 0.0 us | | leasured
Depth
(usft) | Vertical
Depth
(usft) | Measured
Depth
(usft) | Vertical
Depth
(usft) | Reference
(usft) | Offset
(usft) | Highside
Toolface
(°) | Offset Wellbo
+N/-S
(usft) | re Centre
+E/-W
(usft) | Between
Centres
(usft) | Between
Ellipses
(usft) | Minimum
Separation
(usft) | | Warning | | | 5,100.0 | 5,067.6 | 5,036.7 | 5,008.4 | 19.4 | 18.9 | -161.63 | -156.8 | 2,824.2 | 840.3 | 804.4 | 35.95 | 23.377 | | | | 5,200.0 | 5,166.6 | 5,159.9 | 5,131.3 | 19.8 | 19.3 | -161.79 | -160.5 | 2,830.7 | 859.0 | 822.2 | 36.82 | 23.329 | | | | 5,300 0 | 5,265 6 | 5,284 3 | 5,255.7 | 20.2 | 19 7 | -162 05 | -162 3 | 2,833.8 | 874 9 | 837 2 | 37 67 | 23 227 | | | | 5,400.0 | 5,364.6 | 5,406.7 | 5,364.6 | 20.7 | 20.1 | -162.35 | -162.5 | 2,834.1 | 888.4 | 849.9 | 38.46 | 23.100 | | | | 5,500.0 | 5,463.7 | 5,507.7 | 5,463.7 | 21.1 | 20.5 | -162.61 | -162.5 | 2,834.1 | 901.6 | 862.5 | 39.17 | 23.021 | | | | 5,600.0 | 5,562.7 | 5,608.7 | 5,562.7 | 21.5 | 20.8 | -162.87 | -162.5 | 2,834.1 | 914.9 | 875.1 | 39.88 | 22.944 | | | | 5,700.0 | 5,661.7 | 5,709.6 | 5,661.7 | 21.9 | 21.1 | -163.13 | -162.5 | 2,834.1 | 928.3 | 887.7 | 40.59 | 22.871 | | | | 5,800.0 | 5,760.7 | 5,789.4 | 5,760.7 | 22.3 | 21.4 | -163.37 | -162.5 | 2,834.1 | 941.6 | 900.4 | 41.23 | 22.840 | | | | 5,900.0 | 5,859.8 | 5,888.4 | 5,859.8 | 22.8 | 21.7 | -163.61 | -162.5 | 2,834.1 | 955.0 | 913.0 | 41.93 | 22.775 | | | | 6,000.0 | 5,958.8 | 5,987.4 | 5,958.8 | 23.2 | 22.0 | -163.84 | -162.5 | 2,834.1 | 968.3 | 925.7 | 42.64 | 22.711 | | | | 6,100.0 | 6,057.8 | 6,086.5 | 6,057.8 | 23.6 | 22.4 | -164.07 | -162.5 | 2,834.1 | 981.7 | 938.4 | 43.34 | 22.650 | | | | 6,200.0 | 6,156.9 | 6,185.5 | 6,156.9 | 24.0 | 22.7 | -164.29 | -162.5 | 2,834.1 | 995.1 | 951.1 | 44.05 | 22.591 | | | | 6,300.0 | 6,255.9 | 6,284.5 | 6,255.9 | 24.4 | 23.0 | -164.50 | -162.5 | 2,834.1 | 1,008.5 | 963.8 | 44.75 | 22.534 | | | | 6,400.0 | 6,354.9 | 6,383.6 | 6,354.9 | 24.9 | 23.3 | -164.71 | -162.5 | 2,834.1 | 1,022.0 | 976.5 | 45.46 | 22.479 | | | | 6,500.0 | 6,453.9 | 6,482.6 | 6,453.9 | 25.3 | 23.7 | -164.91 | -162.5 | 2,834.1 | 1,035.4 | 989.2 | 46.17 | 22.426 | | | | 6,600.0 | 6,553.0 | 6,581.6 | 6,553.0 | 25.7 | 24.0 | -165.11 | -162.5 | 2,834.1 | 1,048.8 | 1,002.0 | 46.88 | 22.374 | | | | 6,700.0 | 6,652.0 | 6,680.6 | 6,652.0 | 26.1 | 24.3 | -165.30 | -162.5 | 2,834.1 | 1,062.3 | 1,014.7 | 47.59 | 22.324 | | | | 6,800.0 | 6,751.0 | 6,779.7 | 6,751.0 | 26.5 | 24.7 | -165.49 | -162.5 | 2,834.1 | 1,075.8 | 1,027.5 | 48.29 | 22.275 | | | |
6,900.0 | 6,850.0 | 6,878.7 | 6,850.0 | 27.0 | 25.0 | -165.68 | -162.5 | 2,834.1 | 1,089.3 | 1,040.3 | 49.00 | 22.228 | | | | 7,000.0 | 6,949.1 | 6,977.7 | 6,949.1 | 27.4 | 25.3 | -165.85 | -162.5 | 2,834.1 | 1,102.8 | 1,053.1 | 49.71 | 22.183 | | | | 7,100.0 | 7,048.1 | 7,076.7 | 7,048.1 | 27.8 | 25.7 | -166.03 | -162.5 | 2,834.1 | 1,116.3 | 1,065.9 | 50.42 | 22.138 | | | | 7,200.0 | 7,147.1 | 7,175.8 | 7,147.1 | 28.2 | 26.0 | -166.20 | -162.5 | 2,834.1 | 1,129.8 | 1,078.7 | 51.13 | 22.095 | | | | 7,300.0 | 7,246.1 | 7,274.8 | 7,246.1 | 28.6 | 26.3 | -166.37 | -162.5 | 2,834.1 | 1,143.3 | 1,091.5 | 51.84 | 22.053 | | | | 7,400.0 | 7,345.2 | 7,373.8 | 7,345.2 | 29.1 | 26.7 | -166.53 | -162.5 | 2,834.1 | 1,156.9 | 1,104.3 | 52.55 | 22.013 | | | | 7,500.0 | 7,444.2 | 7,472.8 | 7,444.2 | 29.5 | 27.0 | -166.69 | -162.5 | 2,834.1 | 1,170.4 | 1,117.1 | 53.27 | 21.973 | | | | 7,600.0 | 7,543.2 | 7,571.9 | 7,543.2 | 29.9 | 27.3 | -166.84 | -162.5 | 2,834.1 | 1,184.0 | 1,130.0 | 53.98 | 21.935 | | | | 7,700.0 | 7,642.3 | 7,670.9 | 7,642.3 | 30.3 | 27.7 | -166.99 | -162.5 | 2,834.1 | 1,197.5 | 1,142.8 | 54.69 | 21.897 | | | | 7,800.0 | 7,741.3 | 7,769.9 | 7,741.3 | 30.7 | 28.0 | -167.14 | -162.5 | 2,834.1 | 1,211.1 | 1,155.7 | 55.40 | 21.861 | | | | 7,900.0 | 7,840.3 | 7,869.0 | 7,840.3 | 31.2 | 28.3 | -167.29 | -162.5 | 2,834.1 | 1,224.7 | 1,168.6 | 56.11 | 21.825 | | | | 8,000.0 | 7,939.3 | 7,968.0 | 7,939.3 | 31.6 | 28.7 | -167.43 | -162.5 | 2,834.1 | 1,238.3 | 1,181.4 | 56.83 | 21.791 | | | | 8,100.0 | 8,038.4 | 8,067.0 | 8,038.4 | 32.0 | 29.0 | -167.57 | -162.5 | 2,834.1 | 1,251.9 | 1,194.3 | 57.54 | 21.757 | | | | 8,200.0 | 8,137.4 | 8,166.0 | 8,137.4 | 32.4 | 29.3 | -167.70 | -162.5 | 2,834.1 | 1,265.5 | 1,207.2 | 58.25 | 21.724 | | | | 8,300.0 | 8,236.4 | 8,265.1 | 8,236.4 | 32.8 | 29.7 | -167.83 | -162.5 | 2,834.1 | 1,279.1 | 1,220.1 | 58.96 | 21.692 | | | | 8,401.2 | 8,336.6 | 8,365.2 | 8,336.6 | 33.3 | 30.0 | -167.97 | -162.5 | 2,834.1 | 1,292.8 | 1,233.1 | 59.69 | 21.661 | | | | 8,500.0 | 8,434.7 | 8,463.3 | 8,434.7 | 33.7 | 30.4 | -168.13 | -162.5 | 2,834.1 | 1,304.6 | 1,244.3 | 60.39 | 21.604 | | | | 8,600.0 | 8,534.3 | 8,562.9 | 8,534.3 | 34.1 | 30.7 | -168.24 | -162.5 | 2,834.1 | 1,313.2 | 1,252.1 | 61.10 | 21.494 | | | | 8,700.0 | 8,634.2 | 8,662.8 | 8,634.2 | 34.4 | 31.1 | -168.31 | -162.5 | 2,834.1 | 1,318.4 | 1,256.6 | 61.80 | 21.333 | | | | 8,801.2 | 8,735.3 | 8,763.9 | 8,735.3 | 34.7 | 31.4 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,257.6 | 62.50 | 21.122 | | | | 8,900.0 | 8,834.1 | 8,862.8 | 8,834.1 | 35.0 | 31.7 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,257.0 | 63.17 | 20.898 | | | | 9,000.0 | 8,934.1 | 8,962.8 | 8,934.1 | 35.4 | 32.1 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,256.3 | 63.85 | 20.675 | | | | 9,100.0 | 9,034.1 | 9,062.8 | 9,034.1 | 35.7 | 32.4 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,255.6 | 64.53 | 20.457 | | | | 9,200.0 | 9,134.1 | 9,162.8 | 9,134.1 | 36.0 | 32.8 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,254.9 | 65.21 | 20.243 | | | | 9,300.0 | 9,234.1 | 9,262.8 | 9,234.1 | 36.3 | 33.1 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,254.2 | 65.90 | 20.033 | | | | 9,400.0 | 9,334.1 | 9,362.8 | 9,334.1 | 36.6 | 33.5 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,253.5 | 66.58 | 19.828 | | | | 9,500.0 | 9,434.1 | 9,462.8 | 9,434.1 | 36.9 | 33.8 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,252.9 | 67.26 | 19.626 | | | | 9,600.0 | 9,534.1 | 9,562.8 | 9,534.1 | 37.2 | 34.2 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,252.2 | 67.95 | 19.428 | | | | 9,700.0 | 9,634.1 | 9,662.8 | 9,634.1 | 37.5 | 34.5 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,251.5 | 68.63 | 19.234 | | | | 9,800.0 | 9,734.1 | 9,762.8 | 9,734.1 | 37.9 | 34.8 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,250.8 | 69.32 | 19.044 | | | | 9,900.0 | 9,834.1 | 9,862.8 | 9,834.1 | 38.2 | 35.2 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,250.1 | 70.01 | 18.857 | | | | 10,000.0 | 9,934.1 | 9,962.8 | 9,934.1 | 38.5 | 35.5 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,249.4 | 70.69 | 18.674 | | | | 10,100.0 | 10,034.1 | 10,062.8 | 10,034.1 | 38.8 | 35.9 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,248.7 | 71.38 | 18.494 | | | | 10,200.0 | 10,134.1 | 10,162.8 | 10,134.1 | 39.1 | 36.2 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,248.1 | 72.07 | 18.317 | | | Company: Matador Production Company Project: Antelope Ridge Reference Site: Nina Cortell Site Error: 0.0 usft Reference Well: Nina Cortell Fed Com #203H Well Error: 0.0 usft Reference Wellbore #1 Reference Design: BLM Plan #1 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Output errors are at Database: Offset TVD Reference: Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) Minimum Curvature 2.00 sigma EDM 5000.14 Server | Offset Design Nina Cortell - Nina Cortell Fed Com #204H - Wellbore #1 - BLM Plan #1 Survey Program: 0-MWD | | | | | | | | | | | | | Offset Well Error: | 0.0 usf
0.0 usf | |--|-----------------------------|-----------------------------|-----------------------------|---------------------|------------------|-----------------------------|----------------------------------|------------------------------|------------------------------|-------------------------------|---------------------------------|----------------------|--------------------|--------------------| | Reference Offset Semi Major Axis Distance | | | | | | | | | | | | | Office Well Effor. | 0.0 43 | | leasured
Depth
(usft) | Vertical
Depth
(usft) | Measured
Depth
(usft) | Vertical
Depth
(usft) | Reference
(usft) | Offset
(usft) | Highside
Toolface
(°) | Offset Wellbo
+N/-S
(usft) | re Centre
+E/-W
(usft) | Between
Centres
(usft) | Between
Ellipses
(usft) | Minimum
Separation
(usft) | Separation
Factor | Warning | | | 10,300.0 | 10,234.1 | 10,262.8 | 10,234.1 | 39.4 | 36.6 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,247.4 | 72.76 | 18.144 | | | | 10,400.0 | | 10,362.8 | 10,334.1 | 39.8 | 36.9 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,246.7 | 73.45 | 17.973 | | | | 10,500 0 | | 10,462 8 | 10,434 1 | 40 1 | 37.3 | 89 44 | -162 5 | 2,834 1 | 1,320 1 | 1,246 0 | 74 14 | 17 806 | | | | 10,600.0 | | 10,562.8 | 10,534.1 | 40.4 | 37.6 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,245.3 | 74.83 | 17.642 | | | | 10,700.0 | 10,634.1 | 10,662.8 | 10,634.1 | 40.7 | 38.0 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,244.6 | 75.52 | 17.480 | | | | 10,800.0 | 10,734.1 | 10,762.8 | 10,734.1 | 41.0 | 38.3 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,243.9 | 76.21 | 17.322 | | | | 10,900.0 | 10,834.1 | 10,862.8 | 10,834.1 | 41.4 | 38.7 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,243.2 | 76.90 | 17.166 | | | | 11,000.0 | 10,934.1 | 10,962.8 | 10,934.1 | 41.7 | 39.0 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,242.5 | 77.60 | 17.013 | | | | 11,100.0 | 11,034.1 | 11,062.8 | 11,034.1 | 42.0 | 39.4 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,241.8 | 78.29 | 16.862 | | | | 11,200.0 | 11,134.1 | 11,162.8 | 11,134.1 | 42.3 | 39.7 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,241.1 | 78.98 | 16.714 | | | | 11,300.0 | 11,234.1 | 11,262.8 | 11,234.1 | 42.7 | 40.1 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,240.4 | 79.68 | 16.569 | | | | 11,400.0 | 11,334.1 | 11,362.8 | 11,334.1 | 43.0 | 40.4 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,239.8 | 80.37 | 16.426 | | | | 11,500.0 | 11,434.1 | 11,462.8 | 11,434.1 | 43.3 | 40.8 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,239.1 | 81.06 | 16.285 | | | | 11,600.0 | | 11,562.8 | 11,534.1 | 43.6 | 41.1 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,238.4 | 81.76 | 16.146 | | | | 11,694.9 | 11,629.0 | 11,657.6 | 11,629.0 | 44.0 | 41.5 | 89.44 | -162.5 | 2,834.1 | 1,320.1 | 1,237.7 | 82.42 | 16.017 | | | | 11,700.0 | 11,634.1 | 11,662.8 | 11,634.1 | 44.0 | 41.5 | 89.89 | -162.5 | 2,834.1 | 1,320.1 | 1,237.7 | 82.45 | 16.010 | | | | 11,750.0 | 11,684.0 | 11,712.6 | 11,683.9 | 44.1 | 41.6 | 89.92 | -160.6 | 2,834.0 | 1,320.1 | 1,237.3 | 82.80 | 15.944 | | | | 11,800.0 | 11,733.5 | 11,762.4 | 11,733.3 | 44.3 | 41.8 | 89.95 | -154.3 | 2,834.0 | 1,320.1 | 1,237.0 | 83.12 | 15.881 | | | | 11,850.0 | 11,782.2 | 11,812.4 | 11,782.1 | 44.4 | 42.0 | 89.98 | -143.8 | 2,833.9 | 1,320.1 | 1,236.7 | 83.44 | 15.821 | | | | 11,881.5 | 11,812.3 | 11,843.9 | 11,812.3 | 44.5 | 42.1 | 90.00 | -135.0 | 2,833.8 | 1,320.1 | 1,236.5 | 83.63 | 15.785 | | | | 11,900.0 | 11,829.8 | 11,862.4 | 11,829.9 | 44.6 | 42.1 | 90.01 | -129.0 | 2,833.8 | 1,320.1 | 1,236.4 | 83.74 | 15.764 | | | | 11,950.0 | 11,875.8 | 11,912.4 | 11,876.2 | 44.7 | 42.3 | 90.04 | -110.2 | 2,833.6 | 1,320.1 | 1,236.1 | 84.03 | 15.710 | | | | 12,000.0 | 11,919.9 | 11,962.5 | 11,920.8 | 44.8 | 42.4 | 90.08 | -87.3 | 2,833.5 | 1,320.1 | 1,235.8 | 84.30 | 15.659 | | | | 12,050.0 | 11,961.8 | 12,012.7 | 11,963.2 | 44.9 | 42.5 | 90.11 | -60.6 | 2,833.3 | 1,320.1 | 1,235.6 | 84.57 | 15.611 | | | | 12,100.0 | 12,001.2 | 12,062.9 | 12,003.2 | 45.0 | 42.6 | 90.14 | -30.2 | 2,833.0 | 1,320.1 | 1,235.3 | 84.82 | 15.564 | | | | 12,150.0 | 12,037.8 | 12,113.2 | 12,040.4 | 45.1 | 42.7 | 90.17 | 3.6 | 2,832.8 | 1,320.1 | 1,235.1 | 85.06 | 15.520 | | | | 12,200.0 | 12,071.2 | 12,163.6 | 12,074.6 | 45.1 | 42.8 | 90.19 | 40.6 | 2,832.5 | 1,320.1 | 1,234.8 | 85.30 | 15.477 | | | | 12,250.0 | 12,101.3 | 12,214.0 | 12,105.4 | 45.2 | 42.8 | 90.22 | 80.5 | 2,832.2 | 1,320.1 | 1,234.6 | 85.53 | 15.435 | | | | 12,300.0 | 12,127.7 | 12,264.5 | 12,132.6 | 45.2 | 42.9 | 90.24 | 123.0 | 2,831.8 | 1,320.1 | 1,234.4 | 85.76 | 15.394 | | | | 12,350.0 | 12,150.4 | 12,315.0 | 12,156.0 | 45.3 | 42.9 | 90.27 | 167.7 | 2,831.5 | 1,320.1 | 1,234.2 | 85.98 | 15.353 | | | | 12,400.0 | 12,169.1 | 12,365.6 | 12,175.4 | 45.3 | 42.9 | 90.29 | 214.4 | 2,831.1 | 1,320.1 | 1,233.9 | 86.21 | 15.312 | | | | 12,450.0 | 12,183.7 | 12,416.2 | 12,190.6 | 45.4 | 43.0 | 90.31 | 262.7 | 2,830.7 | 1,320.1 | 1,233.7 | 86.45 | 15.271 | | |
 12,500.0 | | 12,466.8 | 12,201.5 | 45.4 | 43.1 | 90.32 | 312.1 | 2,830.3 | 1,320.1 | 1,233.5 | 86.68 | 15.230 | | | | 12,550.0 | | 12,517.5 | 12,207.9 | 45.5 | 43.2 | 90.34 | 362.3 | 2,829.9 | 1,320.1 | 1,233.2 | 86.92 | 15.188 | | | | 12,598.9 | | 12,567.0 | 12,210.0 | 45.5 | 43.4 | 90.35 | 411.8 | 2,829.5 | 1,320.1 | 1,233.0 | 87.16 | 15.147 | | | | 12,600.0 | | 12,568.2 | 12,210.0 | 45.5 | 43.4 | 90.35 | 413.0 | 2,829.5 | 1,320.1 | 1,233.0 | 87.16 | 15.146 | | | | 12,700.0 | 12,201.2 | 12,668.2 | 12,209.3 | 45.7 | 43.7 | 90.35 | 513.0 | 2,828.8 | 1,320.1 | 1,232.4 | 87.72 | 15.050 | | | | 12,800.0 | 12,200.5 | 12,768.2 | 12,208.6 | 46.0 | 44.0 | 90.35 | 613.0 | 2,828.0 | 1,320.1 | 1,231.8 | 88.39 | 14.935 | | | | 12,900.0 | 12,199.8 | 12,868.2 | 12,207.8 | 46.3 | 44.4 | 90.35 | 713.0 | 2,827.2 | 1,320.1 | 1,231.0 | 89.18 | 14.803 | | | | 13,000.0 | 12,199.1 | 12,968.2 | 12,207.1 | 46.7 | 44.9 | 90.35 | 813.0 | 2,826.4 | 1,320.1 | 1,230.1 | 90.09 | 14.654 | | | | 13,100.0 | 12,198.4 | 13,068.2 | 12,206.4 | 47.2 | 45.4 | 90.34 | 913.0 | 2,825.6 | 1,320.1 | 1,229.0 | 91.10 | 14.491 | | | | 13,200.0 | 12,197.7 | 13,168.2 | 12,205.6 | 47.7 | 46.0 | 90.34 | 1,013.0 | 2,824.8 | 1,320.1 | 1,227.9 | 92.23 | 14.314 | | | | 13,300.0 | | 13,268.2 | 12,204.9 | 48.3 | 46.6 | 90.34 | 1,113.0 | 2,824.0 | 1,320.1 | 1,226.7 | 93.45 | 14.126 | | | | 13,400.0 | | 13,368.2 | 12,204.2 | 49.0 | 47.2 | 90.34 | 1,213.0 | 2,823.2 | 1,320.1 | 1,225.3 | 94.78 | 13.928 | | | | 13,500.0 | | 13,468.2 | 12,203.4 | 49.7 | 47.9 | 90.34 | 1,313.0 | 2,822.5 | 1,320.1 | 1,223.9 | 96.20 | 13.722 | | | | 13,600.0 | 12,195.0 | 13,568.2 | 12,202.7 | 50.4 | 48.7 | 90.34 | 1,413.0 | 2,821.7 | 1,320.1 | 1,222.4 | 97.72 | 13.510 | | | | 13,700.0 | 12,194.3 | 13,668.2 | 12,202.0 | 51.2 | 49.5 | 90.34 | 1,513.0 | 2,820.9 | 1,320.1 | 1,220.8 | 99.32 | 13.292 | | | | 13,800.0 | | 13,768.2 | 12,201.3 | 52.0 | 50.3 | 90.33 | 1,613.0 | 2,820.1 | 1,320.1 | 1,219.1 | 101.00 | 13.070 | | | | 13,900.0 | | 13,868.2 | 12,200.5 | 52.9 | 51.2 | 90.33 | 1,713.0 | 2,819.3 | 1,320.1 | 1,217.4 | 102.77 | 12.846 | | | | | 12,192.2 | 13,968.2 | 12,199.8 | 53.8 | 52.1 | 90.33 | 1,813.0 | 2,818.5 | 1,320.1 | 1,215.5 | 104.61 | 12.620 | | | | 14,100.0 | | 14,068.2 | 12,199.1 | 54.8 | 53.1 | 90.33 | 1,913.0 | 2,817.7 | 1,320.1 | 1,213.6 | 106.52 | 12.394 | | | | 14 200 0 | 12,190.8 | 14.168.2 | 12,198.3 | 55.7 | 54.1 | 90.33 | 2,012.9 | 2,816.9 | 1,320.1 | 1,211.6 | 108.49 | 12.168 | | | Company: Matador Production Company Project: Antelope Ridge Reference Site: Nina Cortell Site Error: 0.0 usft Reference Well: Nina Cortell Fed Com #203H Well Error: 0.0 usft Reference Wellbore #1 Reference Design: BLM Plan #1 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Output errors are at Database: Offset TVD Reference: Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) Minimum Curvature 2.00 sigma EDM 5000.14 Server Offset Datum | Offset D | esign | Nina C | ortell - 1 | Nina Cortell | Fed Co | m #204H - | Wellbore #1 | - BLM Pla | ın #1 | | | | Offset Site Error: | 0.0 usft | |-------------------------------------|-----------------|-----------------------------|----------------------|---------------------|--------------|-----------------|-----------------------------------|--------------------|------------------------------|-------------------------------|----------------------|----------------------|--------------------|----------| | Survey Pro | gram: 0-M | | | _ | | | | | | | | | Offset Well Error: | 0.0 usft | | Refer
Measured | | Offs | et
Vertical | Semi Major | | Highside | Officet Mallha | ro Contro | | ance | Minimum | Congretion | W | | | Depth
(usft) | Depth
(usft) | Measured
Depth
(usft) | Depth
(usft) | Reference
(usft) | (usft) | Toolface
(°) | Offset Wellbor
+N/-S
(usft) | +E/-W
(usft) | Between
Centres
(usft) | Between
Ellipses
(usft) | Separation
(usft) | Separation
Factor | Warning | | | 14,300.0 | 12,190.1 | 14,268.2 | 12,197.6 | 56.7 | 55.1 | 90.33 | 2,112.9 | 2,816.2 | 1,320.1 | 1,209.6 | 110.53 | 11.943 | | | | 14,400.0 | | 14,368.2 | 12,196.9 | 57.8 | 56.1 | 90.33 | 2,212.9 | 2,815.4 | 1,320.1 | | 112.64 | 11.720 | | | | 14,500 0 | | 14,468 2 | 12,196 1 | 58 8 | 57 2 | 90 32 | 2,312.9 | 2,814 6 | 1,320 1 | | 114 79 | 11 500 | | | | 14,600.0
14,700.0 | | 14,568.2
14,668.2 | 12,195.4
12,194.7 | 59.9
61.0 | 58.3
59.4 | 90.32
90.32 | 2,412.9 | 2,813.8
2,813.0 | 1,320.1
1,320.1 | | 117.01 | 11.282
11.068 | | | | 14,700.0 | | | 12,194.7 | 62.2 | 60.6 | 90.32 | 2,512.9
2,612.9 | 2,812.2 | 1,320.1 | | 119.27
121.58 | 10.858 | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | | | | 121100 | | | | | 14,900.0 | | 14,868.2 | 12,193.2 | 63.3 | 61.8 | 90.32 | 2,712.9 | 2,811.4 | 1,320.1 | | 123.94 | 10.652 | | | | 15,000.0 | | 14,968.2 | 12,192.5 | 64.5 | 63.0 | 90.32 | 2,812.9 | 2,810.6 | 1,320.1 | 1,193.8 | 126.33 | 10.449 | | | | 15,100.0 | | 15,068.2 | 12,191.8 | 65.7 | 64.2 | 90.32 | 2,912.9 | 2,809.9 | 1,320.1 | 1,191.3 | 128.77 | 10.251 | | | | 15,200.0
15,300.0 | | 15,168.2
15,268.2 | 12,191.0
12,190.3 | 67.0
68.2 | 65.4
66.7 | 90.31
90.31 | 3,012.9
3,112.9 | 2,809.1
2,808.3 | 1,320.1
1,320.1 | 1,188.8
1,186.3 | 131.25
133.76 | 10.058
9.869 | | | | 10,500.0 | 12,100.1 | 10,200.2 | 12,100.0 | 00.2 | 00.7 | 30.51 | 5,112.5 | 2,000.0 | 1,020.1 | 1,100.5 | 100.70 | 3.003 | | | | 15,400.0 | | 15,368.2 | 12,189.6 | 69.5 | 67.9 | 90.31 | 3,212.9 | 2,807.5 | 1,320.1 | 1,183.8 | 136.31 | 9.684 | | | | 15,500.0 | 12,181.7 | 15,468.2 | 12,188.9 | 70.7 | 69.2 | 90.31 | 3,312.9 | 2,806.7 | 1,320.1 | 1,181.2 | 138.89 | 9.504 | | | | 15,600.0 | | 15,568.2 | 12,188.1 | 72.0 | 70.5 | 90.31 | 3,412.9 | 2,805.9 | 1,320.1 | 1,178.6 | 141.50 | 9.329 | | | | 15,700.0
15,800.0 | | 15,668.2
15,768.2 | 12,187.4 | 73.3
74.7 | 71.8
73.2 | 90.31
90.31 | 3,512.9
3,612.9 | 2,805.1
2,804.3 | 1,320.1
1,320.1 | 1,175.9
1,173.3 | 144.14
146.81 | 9.158
8.992 | | | | 13,000.0 | 12,179.0 | 13,700.2 | 12,100.7 | 14.1 | 13.2 | 90.51 | 3,012.9 | 2,004.3 | 1,320.1 | 1,173.3 | 140.01 | 0.992 | | | | 15,900.0 | 12,178.9 | 15,868.2 | 12,185.9 | 76.0 | 74.5 | 90.31 | 3,712.8 | 2,803.6 | 1,320.1 | 1,170.6 | 149.50 | 8.830 | | | | 16,000.0 | | | 12,185.2 | 77.3 | 75.9 | 90.30 | 3,812.8 | 2,802.8 | 1,320.1 | 1,167.9 | 152.21 | 8.673 | | | | 16,100.0 | | 16,068.2 | 12,184.5 | 78.7 | 77.2 | 90.30 | 3,912.8 | 2,802.0 | 1,320.1 | 1,165.1 | 154.95 | 8.519 | | | | 16,200.0 | | | 12,183.7 | 80.1 | 78.6 | 90.30 | 4,012.8 | 2,801.2 | 1,320.1 | 1,162.4 | 157.71 | 8.370 | | | | 16,300.0 | 12,176.1 | 16,268.2 | 12,183.0 | 81.4 | 80.0 | 90.30 | 4,112.8 | 2,800.4 | 1,320.1 | 1,159.6 | 160.49 | 8.225 | | | | 16,400.0 | 12,175.4 | 16,368.2 | 12,182.3 | 82.8 | 81.4 | 90.30 | 4,212.8 | 2,799.6 | 1,320.1 | 1,156.8 | 163.30 | 8.084 | | | | 16,500.0 | 12,174.7 | 16,468.2 | 12,181.6 | 84.2 | 82.8 | 90.30 | 4,312.8 | 2,798.8 | 1,320.1 | 1,153.9 | 166.12 | 7.947 | | | | 16,600.0 | 12,174.0 | 16,568.2 | 12,180.8 | 85.6 | 84.2 | 90.30 | 4,412.8 | 2,798.0 | 1,320.1 | 1,151.1 | 168.95 | 7.813 | | | | 16,700.0 | | 16,668.2 | 12,180.1 | 87.1 | 85.6 | 90.29 | 4,512.8 | 2,797.3 | 1,320.1 | 1,148.2 | 171.81 | 7.683 | | | | 16,800.0 | 12,172.6 | 16,768.2 | 12,179.4 | 88.5 | 87.1 | 90.29 | 4,612.8 | 2,796.5 | 1,320.1 | 1,145.4 | 174.68 | 7.557 | | | | 16,900.0 | 12,171.9 | 16.868.2 | 12,178.6 | 89.9 | 88.5 | 90.29 | 4,712.8 | 2,795.7 | 1,320.1 | 1,142.5 | 177.57 | 7.434 | | | | 17,000.0 | | | 12,177.9 | 91.4 | 90.0 | 90.29 | 4,812.8 | 2,794.9 | 1,320.0 | 1,139.6 | 180.47 | 7.315 | | | | 17,100.0 | 12,170.5 | 17,068.2 | 12,177.2 | 92.8 | 91.4 | 90.29 | 4,912.8 | 2,794.1 | 1,320.0 | 1,136.7 | 183.38 | 7.198 | | | | 17,200.0 | 12,169.8 | 17,168.2 | 12,176.4 | 94.3 | 92.9 | 90.29 | 5,012.8 | 2,793.3 | 1,320.0 | 1,133.7 | 186.31 | 7.085 | | | | 17,300.0 | 12,169.1 | 17,268.2 | 12,175.7 | 95.7 | 94.3 | 90.29 | 5,112.8 | 2,792.5 | 1,320.0 | 1,130.8 | 189.25 | 6.975 | | | | 17,400.0 | 12,168.4 | 17,368.2 | 12,175.0 | 97.2 | 95.8 | 90.28 | 5,212.8 | 2,791.7 | 1,320.0 | 1,127.8 | 192.20 | 6.868 | | | | 17,500.0 | | 17,468.2 | 12,174.3 | 98.7 | 97.3 | 90.28 | 5,312.8 | 2,791.0 | 1,320.0 | 1,124.9 | 195.16 | 6.764 | | | | 17,600.0 | | 17,568.2 | 12,173.5 | 100.1 | 98.8 | 90.28 | 5,412.7 | 2,790.2 | 1,320.0 | 1,121.9 | 198.14 | 6.662 | | | | 17,700.0 | 12,166.3 | 17,668.2 | 12,172.8 | 101.6 | 100.3 | 90.28 | 5,512.7 | 2,789.4 | 1,320.0 | 1,118.9 | 201.12 | 6.563 | | | | 17,800.0 | 12,165.6 | 17,768.2 | 12,172.1 | 103.1 | 101.8 | 90.28 | 5,612.7 | 2,788.6 | 1,320.0 | 1,115.9 | 204.12 | 6.467 | | | | 17,900.0 | 12,164.9 | 17,868.2 | 12 171 3 | 104.6 | 103.3 | 90.28 | 5,712.7 | 2,787.8 | 1,320.0 | 1,112.9 | 207.12 | 6.373 | | | | 18,000.0 | | 17,868.2 | 12,171.3 | 104.0 | 103.3 | 90.28 | 5,712.7
5,812.7 | 2,787.0 | 1,320.0 | 1,112.9 | 210.14 | 6.282 | | | | 18,100.0 | | | 12,169.9 | 107.6 | 106.3 | 90.28 | 5,912.7 | 2,786.2 | 1,320.0 | 1,106.9 | 213.16 | 6.193 | | | | 18,200.0 | | 18,168.2 | | 109.1 | 107.8 | 90.27 | 6,012.7 | 2,785.4 | 1,320.0 | 1,103.8 | 216.19 | 6.106 | | | | 18,300.0 | 12,162.1 | 18,268.2 | 12,168.4 | 110.6 | 109.3 | 90.27 | 6,112.7 | 2,784.7 | 1,320.0 | 1,100.8 | 219.23 | 6.021 | | | | 18,400.0 | | | 12,167.7 | 112.1 | 110.8 | 90.27 | 6,212.7 | 2,783.9 | 1,320.0 | 1,097.7 | 222.28 | 5.939 | | | | 18,500.0 | | 18,468.2 | 12,167.0 | 113.7 | 112.3 | 90.27 | 6,312.7 | 2,783.1 | 1,320.0 | 1,094.7 | 225.33 | 5.858 | | | | 18,600.0 | | 18,568.2 | | 115.2 | 113.9 | 90.27 | 6,412.7 | 2,782.3 | 1,320.0 | 1,091.6 | 228.39 | 5.780 | | | | 18,700.0 | | | 12,165.5 | 116.7 | 115.4 | 90.27 | 6,512.7 | 2,781.5 | 1,320.0 | 1,088.5 | 231.46 | 5.703 | | | | 18,800.0 | 12,158.7 | 18,768.2 | 12,164.8 | 118.3 | 116.9 | 90.27 | 6,612.7 | 2,780.7 | 1,320.0 | 1,085.5 | 234.54 | 5.628 | | | | 18,900.0 |
12,158.0 | 18,868.2 | 12,164.0 | 119.8 | 118.5 | 90.26 | 6,712.7 | 2,779.9 | 1,320.0 | 1,082.4 | 237.62 | 5.555 | | | | 19,000.0 | 12,157.3 | 18,968.2 | 12,163.3 | 121.3 | 120.0 | 90.26 | 6,812.7 | 2,779.1 | 1,320.0 | 1,079.3 | 240.70 | 5.484 | | | | 19,100.0 | 12,156.6 | 19,068.2 | 12,162.6 | 122.9 | 121.6 | 90.26 | 6,912.7 | 2,778.4 | 1,320.0 | 1,076.2 | 243.80 | 5.414 | | | | 19,200.0 | 12,155.9 | 19,168.2 | 12,161.8 | 124.4 | 123.1 | 90.26 | 7,012.7 | 2,777.6 | 1,320.0 | 1,073.1 | 246.90 | 5.346 | | | | 19,300.0 | | 19,268.2 | 12,161.1 | 126.0 | 124.7 | 90.26 | 7,112.7 | 2,776.8 | 1,320.0 | 1,070.0 | 250.00 | 5.280 | | | | 19,400.0 | 12,154.5 | 19,368.2 | 12,160.4 | 127.5 | 126.2 | 90.26 | 7,212.6 | 2,776.0 | 1,320.0 | 1,066.9 | 253.11 | 5.215 | | | Company: Matador Production Company Project: Antelope Ridge Reference Site: Nina Cortell Site Error: 0.0 usft Reference Well: Nina Cortell Fed Com #203H Well Error: 0.0 usft Reference Wellbore #1 Reference Design: BLM Plan #1 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Output errors are at Database: Offset TVD Reference: Site Nina Cortell KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) Minimum Curvature 2.00 sigma EDM 5000.14 Server Offset Datum | Offset D | esign | Nina C | ortell - N | lina Cortell | Fed Co | m #204H - | Wellbore #1 | - BLM Pla | ın #1 | | | | Offset Site Error: | 0.0 us | |-----------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------|------------------|-----------------------------|----------------------------------|------------------------------|------------------------------|-------------------------------|----------------------|----------------------|--------------------|--------| | | gram: 0-M | | | 0 | | | | | Di-4 | | | | Offset Well Error: | 0.0 us | | Refer | | Offs | | Semi Major | | Himboida | Officet Wellba | Cambra | | ance | Minimum | Camanatian | | | | Measured
Depth
(usft) | Vertical
Depth
(usft) | Measured
Depth
(usft) | Vertical
Depth
(usft) | Reference
(usft) | Offset
(usft) | Highside
Toolface
(°) | Offset Wellbo
+N/-S
(usft) | re Centre
+E/-W
(usft) | Between
Centres
(usft) | Between
Ellipses
(usft) | Separation
(usft) | Separation
Factor | Warning | | | 19,500.0 | 12,153.8 | 19,468.2 | 12,159.7 | 129.1 | 127.8 | 90.26 | 7,312.6 | 2,775.2 | 1,320.0 | 1,063.8 | 256.22 | 5.152 | | | | 19,600.0 | 12,153.1 | 19,568.2 | 12,158.9 | 130.6 | 129.3 | 90.25 | 7,412.6 | 2,774.4 | 1,320.0 | 1,060.6 | 259.34 | 5.090 | | | | 19,700 0 | 12,152 4 | 19,668 2 | 12,158.2 | 132.2 | 130 9 | 90 25 | 7,512 6 | 2,773 6 | 1,320 0 | 1,057.5 | 262 47 | 5 029 | | | | 19,800.0 | 12,151.7 | 19,768.2 | 12,157.5 | 133.7 | 132.4 | 90.25 | 7,612.6 | 2,772.8 | 1,320.0 | 1,054.4 | 265.60 | 4.970 | | | | 19,900.0 | 12,151.0 | 19,868.2 | 12,156.7 | 135.3 | 134.0 | 90.25 | 7,712.6 | 2,772.1 | 1,320.0 | 1,051.3 | 268.73 | 4.912 | | | | 20,000.0 | 12,150.3 | 19,968.2 | 12,156.0 | 136.9 | 135.6 | 90.25 | 7,812.6 | 2,771.3 | 1,320.0 | 1,048.1 | 271.86 | 4.855 | | | | 20,100.0 | 12,149.6 | 20,068.2 | 12,155.3 | 138.4 | 137.1 | 90.25 | 7,912.6 | 2,770.5 | 1,320.0 | 1,045.0 | 275.01 | 4.800 | | | | 20,200.0 | 12,148.9 | 20,168.2 | 12,154.5 | 140.0 | 138.7 | 90.25 | 8,012.6 | 2,769.7 | 1,320.0 | 1,041.8 | 278.15 | 4.746 | | | | 20,300.0 | 12,148.2 | 20,268.2 | 12,153.8 | 141.6 | 140.3 | 90.24 | 8,112.6 | 2,768.9 | 1,320.0 | 1,038.7 | 281.30 | 4.692 | | | | 20,400.0 | 12,147.5 | 20,368.2 | 12,153.1 | 143.1 | 141.9 | 90.24 | 8,212.6 | 2,768.1 | 1,320.0 | 1,035.5 | 284.45 | 4.640 | | | | 20,500.0 | 12,146.8 | 20,468.2 | 12,152.4 | 144.7 | 143.4 | 90.24 | 8,312.6 | 2,767.3 | 1,320.0 | 1,032.4 | 287.61 | 4.589 | | | | 20,600.0 | 12,146.1 | 20,568.2 | 12,151.6 | 146.3 | 145.0 | 90.24 | 8,412.6 | 2,766.5 | 1,320.0 | 1,029.2 | 290.77 | 4.540 | | | | 20,700.0 | 12,145.4 | 20,668.2 | 12,150.9 | 147.9 | 146.6 | 90.24 | 8,512.6 | 2,765.8 | 1,320.0 | 1,026.0 | 293.93 | 4.491 | | | | 20,800.0 | 12,144.7 | 20,768.2 | 12,150.2 | 149.4 | 148.2 | 90.24 | 8,612.6 | 2,765.0 | 1,320.0 | 1,022.9 | 297.09 | 4.443 | | | | 20,900.0 | 12,144.0 | 20,868.2 | 12,149.4 | 151.0 | 149.8 | 90.24 | 8,712.6 | 2,764.2 | 1,320.0 | 1,019.7 | 300.26 | 4.396 | | | | 21,000.0 | 12,143.3 | 20,968.2 | 12,148.7 | 152.6 | 151.3 | 90.24 | 8,812.6 | 2,763.4 | 1,320.0 | 1,016.5 | 303.43 | 4.350 | | | | 21,100.0 | 12,142.6 | 21,068.2 | 12,148.0 | 154.2 | 152.9 | 90.23 | 8,912.5 | 2,762.6 | 1,320.0 | 1,013.3 | 306.61 | 4.305 | | | | 21,200.0 | 12,141.9 | 21,168.2 | 12,147.2 | 155.8 | 154.5 | 90.23 | 9,012.5 | 2,761.8 | 1,320.0 | 1,010.2 | 309.79 | 4.261 | | | | 21,300.0 | 12,141.2 | 21,268.2 | 12,146.5 | 157.4 | 156.1 | 90.23 | 9,112.5 | 2,761.0 | 1,320.0 | 1,007.0 | 312.97 | 4.218 | | | | 21,400.0 | 12,140.5 | 21,368.2 | 12,145.8 | 159.0 | 157.7 | 90.23 | 9,212.5 | 2,760.2 | 1,319.9 | 1,003.8 | 316.15 | 4.175 | | | | 21,500.0 | 12,139.8 | 21,468.2 | 12,145.1 | 160.5 | 159.3 | 90.23 | 9,312.5 | 2,759.5 | 1,319.9 | 1,000.6 | 319.34 | 4.133 | | | | 21,600.0 | 12,139.1 | 21,568.2 | 12,144.3 | 162.1 | 160.9 | 90.23 | 9,412.5 | 2,758.7 | 1,319.9 | 997.4 | 322.52 | 4.093 | | | | 21,700.0 | 12,138.4 | 21,668.2 | 12,143.6 | 163.7 | 162.5 | 90.23 | 9,512.5 | 2,757.9 | 1,319.9 | 994.2 | 325.71 | 4.052 | | | | 21,800.0 | 12,137.7 | 21,768.2 | 12,142.9 | 165.3 | 164.1 | 90.22 | 9,612.5 | 2,757.1 | 1,319.9 | 991.0 | 328.91 | 4.013 | | | | 21,900.0 | 12,137.0 | 21,868.2 | 12,142.1 | 166.9 | 165.7 | 90.22 | 9,712.5 | 2,756.3 | 1,319.9 | 987.8 | 332.10 | 3.974 | | | | 22,000.0 | 12,136.3 | 21,968.2 | 12,141.4 | 168.5 | 167.2 | 90.22 | 9,812.5 | 2,755.5 | 1,319.9 | 984.6 | 335.30 | 3.937 | | | | 22,100.0 | 12,135.6 | 22,068.2 | 12,140.7 | 170.1 | 168.8 | 90.22 | 9,912.5 | 2,754.7 | 1,319.9 | 981.4 | 338.50 | 3.899 | | | | 22,200.0 | 12,134.9 | 22,168.2 | 12,140.0 | 171.7 | 170.4 | 90.22 | 10,012.5 | 2,753.9 | 1,319.9 | 978.2 | 341.70 | 3.863 | | | | 22,300.0 | 12,134.2 | 22,268.2 | 12,139.2 | 173.3 | 172.0 | 90.22 | 10,112.5 | 2,753.2 | 1,319.9 | 975.0 | 344.90 | 3.827 | | | | 22,400.0 | 12,133.5 | 22,368.2 | 12,138.5 | 174.9 | 173.6 | 90.22 | 10,212.5 | 2,752.4 | 1,319.9 | 971.8 | 348.11 | 3.792 | | | | 22,431.8 | 12,133.3 | 22,400.1 | 12,138.3 | 175.4 | 174.2 | 90.22 | 10,244.3 | 2,752.1 | 1,319.9 | 970.8 | 349.13 | 3.781 | | | | 22,462.7 | 12,133.0 | 22,430.9 | 12,138.0 | 175.9 | 174.6 | 90.22 | 10,275.2 | 2,751.9 | 1,320.0 | 969.9 | 350.12 | 3.770 | | | Company: Matador Production Company Project: Antelope Ridge Nina Cortell Reference Site: 0.0 usft Site Error: **Reference Well:** Nina Cortell Fed Com #203H Well Error: 0.0 usft Reference Wellbore #1 BLM Plan #1 Reference Design: Site Nina Cortell **Local Co-ordinate Reference:** TVD Reference: KB @ 3817.5usft (Original Well Elev) MD Reference: KB @ 3817.5usft (Original Well Elev) North Reference: **Survey Calculation Method:** Minimum Curvature Output errors are at 2.00 sigma EDM 5000.14 Server Database: Offset TVD Reference: Offset Datum Reference Depths are relative to KB @ 3817.5usft (Original Well Elev) Coordinates are relative to: Nina Cortell Offset Depths are relative to Offset Datum Coordinate System is US State Plane 1927 (Exact solution), New Mexico East 30 Grid Convergence at Surface is: 0.36° Company: Matador Production Company Project: Antelope Ridge Reference Site: Nina Cortell 0.0 usft Site Error: **Reference Well:** Nina Cortell Fed Com #203H Well Error: 0.0 usft Reference Wellbore #1 BLM Plan #1 Reference Design: Site Nina Cortell **Local Co-ordinate Reference:** TVD Reference: KB @ 3817.5usft (Original Well Elev) KB @ 3817.5usft (Original Well Elev) **MD Reference:** North Reference: Minimum Curvature **Survey Calculation Method:** Output errors are at 2.00 sigma EDM 5000.14 Server Database: Offset TVD Reference: Offset Datum Reference Depths are relative to KB @ 3817.5usft (Original Well Elev) Coordinates are relative to: Nina Cortell Offset Depths are relative to Offset Datum Coordinate System is US State Plane 1927 (Exact solution), New Mexico East 30 Central Meridian is 104° 20' 0.000 W Grid Convergence at Surface is: 0.36° ## 13-5/8" 10M MN-DS Wellhead 2018-083-01 Rev 01 Nina Cortell Fed Com #203H SHL: 244 FSL & 1370' FEL Section 10 BHL: 60' FNL & 2310' FEL Section 3 Township/Range: 22S 32E **Elevation Above Sea Level: 3789** ## **Drilling Operation Plan** Proposed Drilling Depth: 22463' MD / 12133' TVD Type of well: Horizontal well, no pilot hole Permitted Well Type: Oil Geologic Name of Surface Formation: Quaternary Deposits KOP Lat/Long (NAD83): 32.3991217497 N / -103.6614946474 W TD Lat/Long (NAD83): 32.4278206659 N / -103.6615483297 W ## 1. Estimated Tops | Formation | MD (ft) | TVD (ft) | Thickness (ft) | Lithology | Resource | |----------------------|---------|----------|----------------|-----------|-----------------| | Rustler | 839 | 839 | 352 | Anhydrite | Barren | | Salado (Top of Salt) | 1,191 | 1,191 | 3,706 | Salt | Barren | | Lamar (Base of Salt) | 4,897 | 4,897 | 42 | Dolomite | Barren | | Bell Canyon | 4,939 | 4,939 | 903 | Sandstone | Oil/Natural Gas | | Cherry Canyon | 5,842 | 5,842 | 1,143 | Sandstone | Oil/Natural Gas | | Brushy Canyon | 6,985 | 6,985 | 1,841 | Sandstone | Oil/Natural Gas | | Bone Spring Lime | 8,826 | 8,826 | 838 | Limestone | Oil/Natural Gas | | 1st Bone Spring Carb | 9,664 | 9,664 | 233 | Carbonate | Oil/Natural Gas | | 1st Bone Spring Sand | 9,897 | 9,897 | 281 | Sandstone | Oil/Natural Gas | | 2nd Bone Spring Carb | 10,178 | 10,178 | 379 | Carbonate | Oil/Natural Gas | | 2nd Bone Spring Sand | 10,557 | 10,557 | 422 | Sandstone | Oil/Natural Gas | | 3rd Bone Spring Carb | 10,979 | 10,979 | 636 | Carbonate | Oil/Natural Gas | | 3rd Bone Spring Sand | 11,615 | 11,615 | 14 | Sandstone | Oil/Natural Gas | | KOP | 11,695 | 11,629 | 376 | Sandstone | Oil/Natural Gas | | Wolfcamp A | 12,106
 12,005 | 128 | Carbonate | Oil/Natural Gas | | TD | 22,463 | 12,133 | | Carbonate | Oil/Natural Gas | #### 2. Notable Zones Wolfcamp A is the goal. All perforations will be within the setback requirements as prescribed or permitted by the New Mexico Oil Conservation Division. OSE estimated ground water depth at this location is 375'. ## 3. Pressure Control **Equipment** A 18,000' 10,000-psi BOP stack consisting of 3 rams with 2 pipe rams, 1 blind ram, and one annular preventer will be utilized below surface casing to TD. See attachments for BOP and choke manifold diagrams. An accumulator complying with Onshore Order #2 requirements for the pressure rating of the BOP stack will be present. A rotating head will also be installed as needed. #### **Testing Procedure** BOP will be inspected and operated as required in Onshore Order #2. Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. A third party company will test the BOPs. After setting surface casing, a minimum 10M BOPE system will be installed. Test pressures will be 250 psi low and 10,000 psi high with the annular preventer being tested to 250 psi low and 5000 psi high before drilling below surface shoe. In the event that the rig drills multiple wells on the pad and any seal subject to test pressures are broken, a full BOP test will be performed when the rig returns and the 10M BOPE system is re-installed. #### Variance Request Matador requests a variance to have the option of running a multi-bowl wellhead assembly for setting the Intermediate 1, and Production Strings. The BOPs will not be tested again unless any flanges are separated. Matador requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. The hose is not required by the manufacturer to be anchored. If the specific hose is not available, then one of equal or higher rating will be used. Matador requests a variance to have the option of batch drilling this well with other wells on the same pad. In the event that this well is batch drilled, the wellbore will be secured with a blind flange of like pressure. When the rig returns to this well and BOPs are installed, the operator will perform a full BOP test. Matador requests a variance to drill this well using a 5M annular preventer with a 10M BOP ram stack. The "Well Control Plan For 10M MASP Section of Wellbore" is attached. ### 4. Casing & Cement All casing will be API and new. See attached casing assumption worksheet. | String | Hole
Size (in) | Set MD (ft) | Set TVD
(ft) | Casing
Size (in) | Wt.
(lb/ft) | Grade | Joint | Collapse | Burst | Tensi
on | |----------------|-------------------|-------------|-----------------|---------------------|----------------|-------|--------------------|----------|-------|-------------| | Surface | 17.5 | 0 - 1216 | 0 - 1216 | 13.375 | 54.5 | J-55 | BUTT | 1.125 | 1.125 | 1.8 | | Intermediate 1 | 9.875 | 0 - 11595 | 0 - 11595 | 7.625 | 29.7 | P-110 | BUTT | 1.125 | 1.125 | 1.8 | | Production | 6.75 | 0 - 22463 | 0 - 12133 | 5.5 | 20 | P-110 | Hunting TLW-
SC | 1.125 | 1.125 | 1.8 | - All casing strings will be tested in accordance with Onshore Order #2 III.B.1.h - Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed - All non-API joint connections will be of like or greater quality and as run specification sheets will be on location for review - Request option to deepen Intermediate 1 set depth into curve, no changes in pipe weight or grade is neccesary. #### Variance Request Matador request a variance to wave the centralizer requirement for the 7-5/8" casing and the 5-1/2" SF/Flush casing in the 6-3/4" hole. If a DV tool is used, depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above the current shoe. Lab reports with the 500 psi compressive strength time for the cement will be onsite for review. Matador request option to perform a bradenhead cement squeeze on Intermediate 1 string. Matador request a variance to utilize a surface setting rig. If this is used, Matador request the option to drill either 17.5" or 20" surface hole. | String | Туре | Sacks | Yield | Cu.
Ft. | Weight | Percent
Excess | Top of
Cement | Class | Blend | |----------------|------|-------|-------|------------|--------|-------------------|------------------|-------|---| | Surface | Lead | 600 | 1.72 | 1027 | 12.5 | 50% | 0 | С | 5% NaCl + LCM | | Surface | Tail | 250 | 1.38 | 347 | 14.8 | 50% | 916 | С | 5% NaCl + LCM | | Intermediate 1 | Lead | 990 | 3.66 | 3624 | 10.3 | 35% | 0 | A/C | Bentonite + 1% CaCL2 + 8%
NaCl + LCM | | | Tail | 230 | 1.38 | 311 | 13.2 | 35% | 10595 | A/C | 5% NaCl + LCM | | Production | Lead | 20 | 1.71 | 28 | 12.5 | 10% | 11395 | A/C | Fluid Loss + Dispersant +
Retarder + LCM | | Production | Tail | 690 | 1.44 | 999 | 13.2 | 10% | 11695 | A/C | Fluid Loss + Dispersant +
Retarder + LCM | #### 5. Mud Program An electronic Pason mud monitoring system complying with Onshore Order 2 will be used. All necessary mud products (barite, bentonite, LCM) for weight addition and fluid loss control will be on location at all times. Mud program is subject to change due to hole conditions. | Hole Section | Hole Size (in) | Mud Type | Interval MD (ft) | Density (lb/gal) | Viscosity | Fluid Loss | |----------------|----------------|-------------------------|------------------|------------------|-----------|------------| | Surface | 17.5 | Spud Mud | 0 - 1216 | 8.4 - 8.8 | 28-30 | NC | | Intermediate 1 | 9.875 | Diesel Bine
Emulsion | 1216 - 11595 | 8.7 - 9.4 | 28-30 | NC | | Production | 6.75 | OBM | 11595 - 22463 | 11.5 - 12.5 | 30-50 | <20 | #### 6. Cores, Test, & Logs No core or drill stem test is planned. No electric logs are planned at this time. GR will be collected through the MWD tools from Intermediate casing to TD. CBL with CCL will be run as far as gravity will let it fall to top of curve. #### 7. Down Hole Conditions **Drill Plan** No abnormal pressure or temperature is expected. Bottom hole pressure is 7886 psi. Maximum anticipated surface pressure is 5217 psi. Expected bottom hole temperature is 180 F. In accordance with Onshore Order 6, Matador does not anticipate that there will be enough H2S from the surface to the Bone Spring formations to meet the BLM's minimum requirements for the submission of a "H2S Drilling Operation Plan" or "Public Protection Plan" for the drilling and completion of this well. Since we have a H2S safety package on all wells, attached is a "H2S Drilling Operations Plan." Adequate flare lines will be installed off the mud/gas separator where gas may be flared safely. All personnel will be familiar with all aspects of safe operation of the equipment being used. ## **Closed-Loop System** ## **Operating and Maintenance Plan:** During drilling operations, third party service companies will utilize solids control equipment to remove cuttings from the drilling fluids and collect it in haul-off bins. Equipment will be closely monitored at all times while drilling by the derrick man and the service company employees. ## **Closure Plan:** During drilling operations, third party service companies will haul off drill solids and fluids to an approved disposal facility. At the end of the well, all closed loop equipment will be removed from the location. ## Hydrogen Sulfide Drilling Operations Plan Matador Resources ## 1 H2S safety instructions to the following: - Characteristics of H2S - Physical effects and hazards - Principal and operation of H2S detectors, warning system and briefing areas - Evacuation procedures, routes and first aid - Proper use of safety equipment & life support systems - Essential personnel meeting medical evaluation criteria will receive additional training on the proper use of 30min pressure demand air packs #### 2 H2S Detection and Alarm Systems: - H2S sensor/detectors to be located on the drilling rig floor, in the base of the sub structure / cellar area, on the mud pits in the shale shaker area. Additional H2S detectors may be placed as deemed necessary - An audio alarm system will be installed on the derrick floor and in the doghouse #### 3 Windsocks and / Wind Streamers: - Windsocks at mud pit area should be high enough to be visible - Windsock on the rig floor and / top of doghouse should be high enough to be visible ## 4 <u>Condition Flags and Signs:</u> - Warning sign on access road to location - Flags to be displayed on sign at entrance to location - o Green Flag Normal Safe Operation Condition - Yellow Flag Potential Pressure and Danger - Red Flag Danger (H2S present in dangerous concentrations) Only H2S trained personnel admitted on location #### 5 Well Control Equipment: • See Exhibit E-1 #### 6 Communication: - While working under masks chalkboards will be used for communications - Hand signals will be used where chalk board is inappropriate - Two way radio will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at most drilling foreman's trailer or living quarters. #### 7 Drilling Stem Testing: • No DST cores are planned at this time - 8 Drilling contractor supervisor will be required to be familiar with the effects H2S has on tubulars good and other mechanical equipment - 9 If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary - 11 Emergency Contacts - See exhibit E-6 # HYDROGEN SULFIDE CONTINGENCY PLAN Drilling, Testing, & Completion ## MRC ENERGY CO. **H2S
Contingency Plan # 0165** Revision# 0 This H2S Contingency Plan is subject to updating Effective date: July 8, 2015 ## TABLE OF CONTENTS | I. | INTRODUCTION | 3 | |-------------|--|--------| | II. | PURPOSE | 4 | | | A. Operating Procedures | 5 | | | B. Procedures to be Initiated Prior to reaching | 6 | | | H2S Contingency Plan Compliance | _ | | | C. Drilling Below Contingency Plan DepthD. Procedures program | 7
7 | | | D. Trocedures program | , | | III. | CONDITIONS & II2S EMERGENCY PROCEDURES | 10 | | | A. Definition of Operational "Conditions" | 10 | | | B. H2S Emergency Procedures; In Scope Personnel | 12 | | | C. Instructions for Igniting the Well | 16 | | | D. Coring | 17 | | TX 7 | E. Normal Operations | 18 | | IV. | SAFETY EQUIPMENT | 21 | | V. | TOXICITY OF VARIOUS GASES | 23 | | VI. | PROPERTIES OF GASES | 24 | | VII. | TREATMENT PROCEDURES FOR H2S POISONING | 25 | | VIII. | BREATHING AIR EQUIPMENT DRILLS ON/OFF DUTY | 26 | | IX. | HYDROGEN SULFIDE TRAINING CURRICULUM | 27 | | х. | FIT TEST | 29 | | XI. | H2S EQUIPMENT LIST | 30 | | XII. | EMERGENCY PHONE NUMBERS | 32 | | XIII. | EVACUATION OF GENERAL PUBLIC | 37 | | XIV. | SEPCO EMERGENCY PHONE NUMBERS AND DIRECTIONS TO WELL SITE | 38 | | XV. | ROE MAP (RADIUS OF EXPOSURE) | 39 | | XVI. | RESIDENCE LIST WITHIN ROE | 40 | ## INTRODUCTION The H2S equipment will be rigged up 2 days prior to reaching a potential H2S containing zone. Drilling into any potential H2S zone shall not commence until the on-site MRC Drilling Supervisor has confirmed this plan in place. The onsite Drilling Foreman will give Total Safety one week (7 days) notice to prepare for rig up of H2S equipment) To be effective, the plan requires the cooperation and effort of each person participating in the drilling of an H₂S well. Each person must know his/her responsibilities and all emergency and safety procedures. He/she should thoroughly understand and be able to use with accuracy, all safety equipment while performing his/her normal duties, if the circumstance should arise. He/she should therefore familiarize himself/herself with the location of all safety equipment and check to see that it is properly stored, easily accessible at all times, and routinely maintained. It is the intention of MRC ENERGY CO. and the Drilling Contractor to make every effort to provide adequate safeguards against harm to persons on the rig and in the immediate vicinity from the effects of hydrogen sulfide, which may be released into the atmosphere under emergency conditions. However, the initiative rests with the individual in utilizing the safeguards provided. The ideas and suggestions of the individuals involved in the drilling of this well are highly welcomed and act as a fundamental tool for providing the safest working conditions possible. The drilling representative is required to enforce these procedures. They are set up for your safety and the safety of all others. ### II. PURPOSE It is MRC Energy Co.'s intent to provide a safe working place, not only for its employees, but also for other contractors who are aiding in the drilling of this well. The safety of the general public is of utmost concern. All precautions will be taken to keep a safe working environment and protect the public. There is a possibility of encountering toxic hydrogen sulfide gas. Safety procedures must be adhered to in order to protect all personnel connected with the operations as well as people living within the area. The MRC Energy Co. representative will enforce all aspects of the H2S Contingency Plan. This job will become easier by a careful study of the following pages and training and informing all personnel that will be working on the well, their duties and responsibilities. #### A. OPERATING PROCEDURES ## **DEFINITIONS:** For purpose of this plan, on-site personnel shall be referred to as "In Scope Personnel" or "Out of Scope Personnel", per the following definitions: **In Scope Personnel** – Personnel who will be working or otherwise present in potential H2S release areas, including the rig floor, cellar, pits, and shaker areas. Out of Scope Personnel – Personnel who will not be working or Otherwise present in potential H2S areas. Such personnel include rig Site visitor, delivery and camp services personnel. #### **GENERAL:** Before this H₂S contingency plan becomes operational, all regularly assigned In Scope Personnel (primarily the MRC, drilling contractor, and certain service personnel,) shall be thoroughly trained in the use of breathing equipment, emergency procedures, and responsibilities. Total Safety Technician or a designee assigned by the MRC Drilling Foreman shall keep a list of all personnel who have been through the on-site H₂S training program at the drill site. All In Scope Personnel shall be given H2S training and the steps to be taken during H2S conditions under which the well may be drilled. General information will be explained about toxic gases, as well as the physiological effects of H₂S and the various classified operating conditions. In addition, the reader will be informed his/her general responsibility concerning safety equipment and emergency procedures. The Total Safety H₂S Safety Technician or MRC on-site RSE Technician shall make available the H2S Contingency Plan for all personnel to review. Without exception, all personnel that arrive on location must proceed directly to and sign-in with the on-site MRC RSE Technician. In Scope Personnel will be required to complete an on-site H2S training and respirator fit testing before starting work, or produce evidence that they have received equivalent training. Out of Scope Personnel will be required to complete a site H2S awareness and general safety briefing. This briefing will consist of a H2S hazard overview, alarm review and required response to alarms. ## B. PROCEDURES TO BE INITIATED PRIOR TO H2S CONTINGENCY PLAN COMPLIANCE: A list of emergency phone numbers and contacts will be on location and posted at the following locations: - 1. MRC ENERGY CO.'S Representative's Office - 2. Drilling Contractor's, Toolpusher Office - 3. Living Quarters Area All safety equipment and H₂S related hardware must be set up as required by MRC Energy Co. with regard to location of briefing areas, breathing equipment, etc. All safety equipment must be inspected periodically (at least weekly) with particular attention to resuscitators and breathing equipment. In Scope Personnel working in the well site area will be assigned breathing apparatus. Operator and drilling contractor personnel required to work in the following areas will be provided with Self Contained Breathing Apparatus: - 1. Rig Floor - 2. Mud Pits - 3. Derrick - 4. Shale Shaker - 5. Cellar The Total Safety H₂S Safety Technician will be responsible for rigging up all H₂S continuous monitoring-type detectors. The Total Safety Technician will monitor and bump test the detector units periodically (at least at least once a week to test alarm function during drilling conditions. In the event H₂S is detected, or when drilling in a zone confirmed to contain H₂S, the units shall be bump tested at least once every 24 hours. A bump test/calibration log will be kept on location. All results will be reported to the MRC on-site Drilling Foreman. All Total Safety H2S equipment will be maintained and inspected by a Total Safety Technician on at least a Weekly basis. #### C. DRILLING BELOW CONTINGENCY PLAN DEPTH H2S response drills will be held at least once per week if possible or as often as necessary to acquaint the crews and service company personnel of their responsibilities and the proper procedures to shut-in a well. Initial drills will be performed until crews demonstrate competency donning and working under mask. After the MRC Energy Co.'s representative is satisfied with initial blowout drill procedures, a drill will be conducted weekly with each crew, as necessary. The H2S Safety Technician or designee will conduct safety talks and maintain the safety equipment, consult and carry out the instructions of the drilling supervisor. All personnel allowed in the well work area during drilling or testing operations will be instructed in the use of breathing equipment until supervisory personnel are satisfied that they are capable of using it. After familiarization, each person must perform a drill with breathing equipment. The drill should include getting the breathing equipment, donning the breathing apparatus, and performing expected duties for a short period. A record shall be kept of all personnel drilled and the date of the drill. H2S training records will be kept on location for all personnel. Rig crews and service company personnel shall be made aware of the location of spare air bottles, resuscitation equipment, portable fire extinguishers, H₂S monitors and detectors. Knowledge of the location of the H₂S monitors and detectors are vital in determining as our gas location and the severity of the emergency conditions. After any device has initially detected H2S, all areas of poor ventilation shall be inspected periodically by means of a portable H₂S detector instrument. The buddy system will be utilized. (When an alarm sounds, personnel will don an SCBA, shut the well in, and proceed to SBA for roll call. The H2S Technician or designee will mask up, with a buddy and will verify source of H2S and report back to the on-site MRC Foreman.) #### D. PROCEDURES PROGRAM #### Drill Site - a. The drilling rig will be located to allow prevailing winds to blow across the reserve pit. - b. A Safe Briefing Area will be provided with a breathing air cascade trailer and or 30-minute SCBA's at the Primary Area. Personnel will assemble at the most up-wind station under alarm conditions, or when so ordered by the MRC Energy Co. representative, the Contractor representative, or - the Total Safety
H₂S Safety Technician. Windsocks or streamers will be anchored to various strategic places on a pole about 10 feet high, so it is in easy view from the rig floor at all times. - c. Warning signs will be posted on the perimeters. "No Smoking" signs will be posted by MRC Energy Co.as well. - d. One multi-channel automatic H₂S monitor will be provided by Total Safety and the detector heads will be at the shale shaker, bell nipple, mud pits, rig floor, and quarter's area. The monitor will be located inside HSE or Company man trailer. Should the alarm be shut off to silence the sirens, the blinker light must continue to warn of H₂S presence. The Total Safety H2S Safety Technician or designee will continuously monitor the detectors and will reactivate the alarm if H₂S concentrations increase to a dangerous level. - e. A method of escape will be open at all times. - f. If available, land line telephone service will be provided or cell phones provided. (Primary communications provided) - g. A rig communication system will be provided, as needed. - h. A gas trap, choke manifold, and degasser will be installed. - i. A kill line, securely anchored and of ample strength, will be laid to the well-head from a safe location. This line is to be used only in an emergency. ## General - a. The MRC Energy Co. representative and/or the Contractor's Toolpusher will be available at all times. The drilling supervisor, while on duty, will have complete charge of the rig and location operations and will take whatever action is deemed necessary to insure personnel safety, to protect the well, and to prevent damage. - b. A Mud Engineer will be on location at all times when drilling takes place at the depth H₂S may be expected. The mud engineer will be able to verify the presence or absence of H2S. ## III. CONDITIONS AND EMERGENCY PROCEDURES A. DEFINITION OF OPERATIONAL "CONDITIONS" CONDITION I "POSSIBLE DANGER" Warning Flags Green Alarms No Alarm. Less than 10 ppm Characterized By: Drilling operations in zones that may contain hydrogen sulfide. This condition remains in effect unless H₂S is detected and it becomes necessary to go to Condition II. General Action: a. Be alert for a condition change b. Check all safety equipment for availability and proper functioning. c. Perform all drills for familiarization and proficiency. CONDITION II ' "MODERATE DANGER" Warning Flags Yellow Alarms: Actuates at 10 ppm. Continuous flashing light. Characterized By: Drilling operations in zones containing hydrogen sulfide. This condition will remain in effect until adding chemicals to the mud system neutralizes the hydrogen sulfide or it becomes necessary to go to Condition III. General Action: - a. Be alert for a condition change - b. WHEN DRILLING AHEAD Driller and designated crewmember will don 30 min SCBA, shut-in the well and immediately proceed to the Safe Briefing Area. WHEN TRIPPING – Driller and two designated crewmembers will don 30 min SCBA, shut in the well and immediately proceed to the Safe Briefing Area. The Derrickman will don a 5-minute escape pack, descend to the rig floor, don a 30-min SCBA (if necessary) and immediately proceed to the Safe Briefing Area. - c. All In Scope Personnel will proceed directly to the appropriate Safe Briefing Area. - d. Remain in safe briefing area, take roll call and wait for instructions - e. Contact the Total H2S Technician if not on location. - f. Personnel shall ensure that their breathing apparatus is properly fitted and operational before entering an H₂S contaminated area to provide assistance to anyone who may be injured or overcome by toxic gases. - g. All Out of Scope Personnel will report to the appropriate Safe Briefing Area. ## CONDITION III "EXTREME DANGER" Warning Flags Red Alarms Actuate at 15 ppm. Continuous Sirens and Flashing Lights Characterized by: Critical well operations which pose an immediate threat of H₂S exposure to on-site personnel and a potential threat to the public. General Action: a. WHEN DRILLING AHEAD Driller and designated crewmember will don 30 min SCBA, shut-in the well and immediately proceed to the Safe Briefing Area. WHEN TRIPPING – Driller and two designated crewmembers will don 30 - min SCBA, shut in the well and immediately proceed to the Safe Briefing Area. The Derrickman will don a 5-minute escape pack, descend to the rig floor, don a 30-min SCBA (if necessary) and immediately proceed to the Safe Briefing Area. - b. All In Scope Personnel should don SCBA if nearby and immediately proceed to Safe Briefing Area. If SCBA in not nearby at time of alarm, DO NOT GO TOWARDS RIG AREA, but proceed directly to the Safe Briefing Area - c. All out of Scope Personnel shall evacuate the location. - d. Remain in the Safe Briefing Area, take roll call and wait for instructions. - e. Contact the Total H2S Technician if not on location. - f. Personnel shall ensure that their breathing apparatus is properly fitted and operational before entering an H₂S contaminated area to provide assistance to anyone who may be injured or overcome by toxic gases. Use the buddy system. - g. Remain in safe briefing area, take roll call and wait for instructions. - h. A cascade breathing air systems shall be mobilized and utilized to conduct any additional on rig work required to correct the H2S release condition. - i. If well is ignited do not assume area is safe. SO2 is hazardous and not all H2S will burn. ## H₂S EMERGENCY PROCEDURES; IN SCOPE PERSONNEL ## A. Day To Day Drilling Operations - 1. Upon discovering a release of H₂S gas in the ambient air by warning alarms or in any other way **Do Not Panic**. - 2. Hold your breath donning the nearest Self Contained Breathing Apparatus and rapidly move up or across-wind away from the areas where H₂S sensing devices are in place, to the closest available safe briefing area. Continue to use breathing apparatus until it has been determined that the exposure of H₂S gas in the ambient air no longer exists. **Do Not Panic!** - 3. Utilize the "Buddy System", i.e.; select and pair up each person participating in the drilling of an H₂S well prior to an emergency situation. - 4. Help anyone who is overcome or affected by the H₂S gas by taking him/her up-wind out of the contaminated area. (This should be done utilizing an SCBA and with a buddy.) - 5. Take necessary steps to confirm the release of the H₂S gas into the ambient air. - When an H2S alarm activates, two designated personnel using the buddy system, while wearing their self contained breathing apparatus, will determine by the read-out on the fixed monitor which sensing device has detected the release of the H₂S gas. - They will utilize the hand-held sniffer type device at the particular sensing point disclosed on the fixed monitor to corroborate the fact that H₂S gas has actually been released. This will rule out the possibility of a false alarm. This will be done with a buddy and under mask after reporting to the Safe Briefing Area for roll call and instructions by on-site MRC Foreman. - 6. Refer to the Emergency Phone Numbers and call emergency personnel. - 7. Take the necessary steps to suppress the release of H₂S gas into the ambient air. Comply with the MRC Energy Co. Representative to physically suppress the release of H₂S gas at the actual release point. 8. Check all of MRC Energy Co.'s monitoring devices and increase gasmonitoring activities with the portable hand-operated H₂S and gas detector units. #### Do Not Panic! The MRC Energy Co. representative will assess the situation and with assistance of the Contractor's Representative and Total Safety's H₂S Safety Technician or on site designee, will assign duties to each person to bring the situation under control. #### B. RESPONSIBILITIES OF WELL-SITE PERSONNEL In the event of a release of potentially hazardous amounts of H_2S , all personnel will immediately don their protective breathing apparatus, the well will be shut in and personnel will proceed upwind to the nearest designated safe briefing area for roll call and instructions by MRC Foreman. Consideration will be given to evacuating Out of Scope Personnel, as situation warrants. ## 1. MRC ENERGY CO.'S Well-site Representatives - a. If MRC Energy Co.'s well-site representative is incapacitated or not on location, this responsibility will fall to the Toolpusher/Driller. - b. Immediately upon assessing the situation, set this plan into Action by initiating the proper procedures to contain the gas and notify the appropriate people and agencies. - c. Ensure that the alarm area indicated by the fixed H₂S Monitor is checked and verified with a portable H₂S detector. (Safety Technician if on location or MRC assigned designee with a buddy utilizing SCBA's) - d. Consult Pusher/driller of remedial actions as needed. - e. Ensure that non-essential personnel proceed to the safe briefing area. - f. Ensure location entrance barricades are positioned. Keep the number of persons on location to a minimum during hazardous operations. - g. Consult each contractor, Service Company and all others allowed to enter the site, that H2S gas may be encountered and the potential hazards that may exist. - h. Authorize the evacuation of local residents if H_2S threatens Their safety. - i. Non essential personnel should be evacuated from location if Situation warrants. ## 2. Toolpusher - a. Toolpusher/Driller will assume responsibilities of MRC Energy Co.'s well-site representative if that person is incapacitated or not on location. - b. Ensure that the alarm area indicated by the fixed H₂S monitor is checked and verified with a portable H₂S gas detector. (Alarm area indicated by the monitor will be Checked by the H2S Technician and a buddy, under mask.) This will be done after checking in and roll call at the Upwind Safe Briefing Area. - c. Confer with MRC Energy Co.'s well-site representative or superintendent and direct remedial action to suppress the H₂S and control the well. - d. Ensure that personnel at the safe
briefing area are instructed on emergency actions required. - e. Ensure that personnel at the drill floor area are instructed on emergency actions required. - f. Ensure that all personnel observe the appropriate safety and emergency procedures. - g. Ensure that all persons are accounted for and provided emergency assistance as necessary. ## 3. Mud Engineer - a. Run a sulfide check on the flowline mud. - Take steps to determine the source of the H₂S and suppress it. Lime and H₂S scavenger shall be added to the mud as necessary. ## 4. Total H₂S Safety Technician, if on location, or MRC Designee - a. H2S Safety Technician or designee don nearest SCBA and report to Safe Briefing Area for roll call, take a buddy masked up and check monitor and verify with a portable H₂S detector the alarm area indicated by the fixed H₂S monitor. Advise the Toolpusher/Driller and MRC Energy Co.'s well-site representative of findings. Record all findings. - b. If H₂S is flared, check for sulfur dioxide (SO₂) near the flare as necessary. Take hourly readings at different perimeters, log readings and record on location. - c. Ensure that personnel at the safe briefing area are instructed on emergency actions required. - d. Ensure that the appropriate warning flags are displayed. - e. Ensure that all personnel are in S.C.B.A. as necessary. - f. Ensure that all persons are accounted for and provide emergency assistance as necessary. - g. Be prepared to evacuate rig if order is issued. #### 5. General Personnel & Visitors a. All In Scope Personnel, if not specifically designated to shut the well in or control the well, shall proceed to the (upwind) safe briefing area. All Out of Scope Personnel shall immediately proceed to the appropriate (upwind) safe briefing area or evacuate the site as conditions warrant. - b. During any emergency, use the "buddy" system to prevent anyone from entering or being left in a gas area alone, even wearing breathing apparatus. - c. Provide assistance to anyone who may be injured or overcome by toxic gases. Personnel shall ensure that their breathing apparatus is properly fitted and operational before entering a potentially H₂S contaminated area. - d. Remain in safe briefing area and wait for instructions. #### C. INSTRUCTIONS FOR IGNITING THE WELL 1. The Toolpusher/Driller will confer with MRC Energy Co.'s well-site representative who will secure the approval of the "Texas Wells Delivery Manager, prior to igniting the well, if at all possible. The Toolpusher/Driller will be responsible for igniting the well in the event of severe well control problems. This decision should be made only as a last resort in situations where it is clear that: - a. Human life and property are endangered, or - b. There is no hope of controlling the well under current conditions. - 2. Once the decision has been made, the following procedures should be followed: - a. Two people wearing self-contained breathing apparatus will be needed for the actual lighting of the well. They must first establish the flammable perimeter by using an explosimeter. This should be established at 30% to 40% of the lower flammable limits. - b. After the flammable perimeter has been established and everyone removed from the area, the ignition team should select a site upwind of the well from which to ignite the well. This site should offer the maximum protection and have a clear path for retreat from the area. - c. The ignition team should have safety belts and lifeline attached and manned before attempting ignition. If the leak is not ignited on the first attempt, move in 20 to 30 feet and fire again. Continue to monitor with the explosimeter and NEVER fire from an area with over 75% of the Lower Explosive Limit (LEL). If having trouble igniting the well, try firing 40 degrees to 90 degrees on either side of the well. - d. If ignition is not possible due to the makeup of the gas, the toxic perimeter must be established and evacuation continued until the well is contained. - e. All personnel must act only as directed by the person in charge of the operations. NOTE: After the well is ignited, burning hydrogen sulfide (H₂S) will convert to sulfur dioxide (SO₂), which is also a highly toxic gas. #### DO NOT ASSUME THE AREA IS SAFE AFTER THE WELL IS IGNITED #### D. CORING PROCEDURES Only essential personnel shall be on the rig floor. Ten (10) stands prior to retrieving core barrel; all personnel on drill floor and in derrick shall confirm self-Contained breathing apparatus available and ready for use. A Total H2S Technician will don a SCBA with a buddy assigned from the rig crew, and continuously monitor for H2S at each connection. Any levels detected will require operations to be shut down and all involved personnel to don SCBAs. Precautions will remain in place until barrel is laid down. All involved personnel will don SCBAs when removing the inner barrel from the outer barrel. SCBAs can be removed once the absence of H2S in confirmed by the Total H2S Technician. Cores will be appropriately marked and sealed for transportation. ## **Normal Operations** ## 1. Responsibilities of well-site personnel ## a. Well-site Representative - 1. Notify H₂S Technician of expected date to reach Contingency Plan implementation depth (Two (2) days prior to reaching suspected H₂S bearing zone) or prior to starting well work. - 2. Ensure H₂S Safety Technician completes rig-up procedures prior to reaching Contingency Plan effective depth. - 3. Restrict the number of personnel at the drilling rig or well site to a minimum while drilling, starting well work, testing or coring. - 4. Ensure weekly H₂S drills/training are performed, if possible. ## B. Toolpusher - 1. Ensure that necessary H₂S safety equipment is provided on the rig, and that it is properly inspected and maintained. - 2. Ensure that all personnel that work in the well area, are thoroughly trained in the use of H₂S safety equipment and periodic drills are held to maintain an adequate level of proficiency. ## C. In Scope Personnel - 1. Remain clean-shaven. Beards and long sideburns do not allow a proper facepiece seal. - 2. Receive H₂S safety training on location, or confirm prior training by certification that is one year within date. - 3. Familiarize yourself with the rig's Contingency Plan. - 4. Inspect and practice putting on your breathing apparatus. - 5. Know the location of the "safe briefing areas". - 6. Keep yourself "wind conscious". Be prepared to quickly move upwind and away in the event of any emergency involving release of H₂S. ## D. Total Safety H₂S Safety Technician or MRC Designee - 1. Conduct training as necessary to ensure all personnel working in well area are familiar with the contingency procedures and the operation of emergency equipment. - 2. Check all H₂S safety equipment to ensure that it is ready for emergency use: - Check pressure weekly for each shift on breathing apparatus (both 30-minute and hippacks) to make sure they are charged to full volume. - Check pressure on cascade air bottles, if on location, to see that they are capable of recharging breathing apparatus. - Check oxygen resuscitator, if on location, to ensure that it is charged to full volume. - Check H₂S detectors weekly for each shift (fixed and portable), and explosimeter, to ensure they are working properly. - 3. Provide a weekly report to MRC Energy Co.'s well-site representative documenting: - Calibrations performed on H₂S detectors. - Proper location and working order of H₂S safety equipment. - Attendance of all personnel, trained or retrained, and their company. - Weekly drills, if held and a list of personnel participating and summary of actions. ## **OUT OF SCOPE PERSONNEL** MRC Energy Co. policy will not require Out of Scope Personnel to be clean shaven, have processed medical questionnaires, fit testing, or have certified H2S Training. ## **SAFETY EQUIPMENT** All respirators will be designed, selected, used and maintained in conformance with ANSI Z88.2, American National Standard for respiratory protection. Personal protective equipment must be provided and used. Those who are expected to use respiratory equipment in case of an emergency will be carefully instructed in the proper use and told why the equipment is being used. Careful attention will be given to the minute details in order to avoid possible misuse of the equipment during periods of extreme stress. Self-contained breathing apparatus provides complete respiratory and eye protection in any concentration of toxic gases and under any condition of oxygen deficiency. The wearer is independent of the surrounding atmosphere because he/she is breathing with a system admitting no outside air. It consists of a full face mask, breathing tube, pressure demand regulator, air supply cylinder, and harness. Pure breathing air from the supply cylinder flows to the mask automatically through the pressure demand regulator which reduces the pressure to a breathing level. Upon inhalation, air flows into the mask at a rate precisely regulated to the user's demand. Upon exhalation, the flow to the mask stops and the exhaled breath passes through a valve in the face piece to the surrounding atmosphere. The apparatus includes an alarm & gauge which warns the wearer to leave the contaminated area for a new cylinder of air or cylinder refill. The derrickman is provided with a full face piece unit attached to a 5– minute escape cylinder. He will also have his own self-contained 30-minute unit breathing apparatus located on the drilling floor. He will use the 5-minute unit to exit the derrick to the floor, donning the 30-minute unit located on the floor, if needed. All respiratory protective equipment, when not in use, should be stored in a clean, cool, dry place, and out of direct sunlight to retard the deterioration of rubber parts. After each use, the mask assembly will be scrubbed with soap and water, rinsed thoroughly, and dried. Air cylinders can be recharged to a full
condition from a cascade system. Personnel in each crew will be trained in the proper techniques of bottle filling. The primary piece of equipment to be utilized, should anyone be overcome by hydrogen sulfide, is the oxygen resuscitator, if on location. When asphyxiation occurs, the victim must be moved to fresh air and immediately given artificial respiration. In order to assure readiness, the bottles of oxygen will be checked at regular intervals and an extra tank kept on hand. Hand-operated pump-type detectors incorporating detector tubes will give more accurate readings of hydrogen sulfide. The pump-type draws air to be tested through the detector tube containing lead acetate-silica gel granules. Presence of hydrogen sulfide in the air sample is shown by the development of a dark brown stain on the granules, which is the scale reading of the concentration of hydrogen sulfide. By changing the type of detector tube used, this detector may also be used for sulfur dioxide (SO_2) detection when hydrogen sulfide (H_2S) is being burned in the flare area. Provisions must be made for the storage of all safety equipment as is evident from the foregoing discussion. All equipment must be stored in an available location so that anyone engaged in normal work situations is no more than "one breath away' from a mask. #### V – TOXICITY OF VARIOUS GASES | Lethal | Chemical | Specific | | | |----------------------------------|------------------|----------------------|-------------------------|--------------------| | Common Name
ppm ⁴ | Formula | Gravity ¹ | PEL (OSHA) ² | STEL ³ | | Hydrogen Cyanide
300 | HCN | 0.94 | 10 | 150 | | Hydrogen Sulfide
600 | H ₂ S | 1.18 | 20 Pea | ak- 50ppm | | Note: The ACGIH(7) re | commends a TW | A(6) value of 10 | ppm as the TLV(5) for | H2S and an STEL of | | 15ppm.
Sulfur Dioxide
1000 | SO ₂ | 2.21 | 2 | 5 ppm | | Chlorine | CL_2 | 2.45 | 1 | | | Carbon Monoxide
1000 | CO | 0.97 | 35 | 200/1 Hour | | Carbon Dioxide
10% | CO ₂ | 1.52 | 5000 | 5% | | Methane | CH ₄ | 0.55 | 90000 | | $^{^{1}}$ Air = 1.0 **TLV** – Threshold Limit Value; a concentration recommended by the American Conference of Governmental Industrial Hygienists (ACGIH) **TWA** – Time Weighted Average; the average concentration of contaminant one can be exposed to over a given eight-hour period. ACGIH – (American Conference of Governmental Industrial Hygienists) is an organization comprised of Occupational Health Professionals believed by many to be the top experts in the field of Industrial Hygiene. They are recognized as an expert rexource by OSHA. The ACGIH releases a biannual publication "Threshold Limit Values and Biological Indices" that many safety professionals consider to be the authoritative document on airborne contaminants. Reference: API RP-49, September 1974 - Reissued August 1978 ² Permissible - Concentration at which is believed that all workers may repeatedly be exposed, day after day, without adverse effect. ³ **STEL** - Short Term Exposure Limit. A 15-minute time weighted average. ⁴ **Lethal -** Concentration that will cause death with short-term exposure. ## VI. PROPERTIES OF GASES ## A. CARBON DIOXIDE - 1. Carbon Dioxide (CO_2) is usually considered inert and is commonly used to extinguish fires. It is 1.52 times heavier than air and will concentrate in low areas of still air. Humans cannot breathe air containing more than 10% CO_2 without losing conscience or becoming disorientation in a few minutes. Continued exposure to CO_2 after being affected will cause convulsions, coma, and respiratory failure. - 2. The threshold limit of CO_2 is 5000 ppm. Short-term exposure to 50,000 ppm (5%) is reasonable. This gas is colorless, odorless, and can be tolerated in relatively high concentrations. ## B. HYDROGEN SULFIDE - 1. Hydrogen Sulfide (H_2S) is a colorless, transparent, flammable gas. It is heavier than air and, hence, may accumulate in low places. - 2. Although the slightest presence of H_2S in the air is normally detectable by its characteristic "rotten egg" odor, it is dangerous to rely on the odor as a means of detecting excessive concentrations because the sense of smell is rapidly lost, allowing lethal concentrations to be accumulated without warning. The following table indicates the poisonous nature of H_2S . | CC | ONCENT | TRATION | EFFECTS | |--------------------|--------|-------------------------|---| | % H ₂ S | PPM | GR/100 SCF ¹ | | | 0.001 | 10 | .65 | Safe for 8 hours without respirator. Obvious and unpleasant odor. | | 0.0015 | 15 | 0.975 | Safe for 15 minutes of exposure without respirator. | | 0.01 | 100 | 6.48 | Kills smell in 3-15 minutes; may sting eyes and throat. | | 0.02 | 200 | 12.96 | Kills smell quickly; stings eyes and throat. | | 0.05 | 500 | 32.96 | Dizziness; breathing ceases in a few minutes; need prompt artificial respiration. | | 0.07 | 700 | 45.92 | Rapid Unconsciousness; death will result if not rescued promptly. | | 0.1 | 1000 | 64.80 | Instant unconsciousness, followed by death within minutes. | ¹ Grains per 100 Cubic Feet # VII. Treatment Procedures for Hydrogen Sulfide Poisoning - A. Remove the victim to fresh air. - B. If breathing has ceased or is labored, begin resuscitation immediately. Note: This is the quickest and preferred method of clearing victim's lungs of contaminated air; however, under disaster conditions, it may not be practical to move the victim to fresh air. In such instances, where those rendering first aid must continue to wear masks, a resuscitator should be used. - C. Apply resuscitator to help purge H₂S from the blood stream. - D. Keep the victim at rest and prevent chilling. - E. Get victim under physician's care as soon as possible. # C. <u>SULPHUR DIOXIDE</u> - 1. Sulfur Dioxide (SO₂) is a colorless, non-flammable, transparent gas. - 2. SO₂ is produced during the burning of H₂S. Although SO₂ is heavier than air, it can be picked up by a breeze and carried downwind at elevated temperatures. Since SO₂ is extremely irritating to the eyes and mucous membranes of the upper respiratory tract, it has exceptionally good warning powers in this respect. The following table indicates the toxic nature of SO₂: | CONCEN | TRATION | EFFECTS | | |-------------------|---------|---|--| | % SO ₂ | PPM | | | | 0.0005 | 3 to 5 | Pungent odor, normally a person can detect SO_2 in this range. | | | 0.0012 | 12 | Throat irritation, coughing, constriction of the chest, tearing and smarting of eyes. | | | 0.015 | 150 | So irritating that it can only be endured for a few minutes. | | | .05 | 500 | Causes a sense of suffocation, event with the first breath. | | # VIII. BREATHING AIR EQUIPMENT DRILLS FOR ON & OFF DUTY PERSONNEL An H₂S Drill and Training Session must be given once a week to ALL on-duty personnel with off duty personnel. On-duty and Off-duty personnel will reverse roles on alternate drills. An H2S drill and training session must be given once a week to all off-duty personnel in coincidence with on-duty personnel reversing roles on alternate drills. The purpose of this drill is to instruct the crews in the operation and use of breathing air and H₂S related emergency equipment and to allow the personnel to become acquainted with using the equipment under working conditions. The crews should be trained to put on the breathing air equipment within one minute when required or requested to do so. The following procedure should be used for weekly drills. The MRC supervisor must be satisfied that the crews are proficient with the equipment. - 1. All personnel should be informed that a drill will be held. - 2. The Total H2S Safety Technician or a designee assigned by the MRC Drilling Foreman should initiate the drill by signaling as he/she would if H2S was detected. - 3. Personnel should don their breathing apparatus. - 4. Once the breathing air equipment is on, the H2S Technician should check all personnel to insure proper operation. A training and information session will be conducted after each drill to answer any H₂S related questions and to cover any gaps identified from one of the following topics: - Condition II, and III alerts and steps to be taken by all personnel. - The importance of wind direction when dealing with H_2S . - Proper use and storage of all types of breathing equipment. - · Proper use and storage of oxygen resuscitators. - Proper use and storage of H₂S detectors (Mini Checks or equivalent). - The "buddy system" and the procedure for rescuing a person overcome by H₂S. - · Responsibilities and duties. - · Location of H₂S safety equipment. - Other parts of the "H₂S Contingency Plan" that should be reviewed. NOTE: A record of attendance must be kept for weekly drills and training sessions. # IX. HYDROGEN SULFIDE TRAINING CURRICULUM (FOR EMPLOYERS, VISITORS, AND CONTRACTORS) EACH PERSON WILL BE INFORMED ON THE RESTRICTIONS OF HAVING BEARDS AND CONTACT LENS. THEY WILL ALSO BE INFORMED OF THE AVAILABILITY OF SPECTACLE KITS. AFTER THE H2S EQUIPMENT IS RIGGED UP, ALL IN SCOPE PERSONNEL WILL BE H2S TRAINED AND PUT THROUGH A DRILL. ANY DEFICIENCIES WILL BE CORRECTED. Training Completion cards are good for one year and will indicate date of completion or expiration. Personnel previously trained on another facility and visiting, must attend a "supplemental briefing" on H2S equipment and procedures before beginning duty. Visitors who remain on the location more than 24 hours must receive full H2S training given all crew members. A "supplemental briefing" will include but not be limited to: Location of respirators, familiarization with safe briefing areas, alarms with instruction on responsibilities in the event of a release and hazards of H2S and (SO2, if applicable). A training and drill log will be kept. Topics for full H2S training shall
include the following equipment if on location, but not be limited to the following: # 1. Brief Introduction on H2S - A. Slide or Computer presentation (If Available) - B. H2S material will be distributed - C. Re-emphasize the properties, toxicity, and hazards of H2S - D. Source of SO2 (if applicable) # 2. **H2S** Detection - A. Description of H2S sensors - B. Description of warning system (how it works & it's location) - C. Actual location of H2S sensors - D. Instruction on use of pump type detector (Gastec) - E. Use of card detectors, ampoules, or dosimeters - F. Use of combustible gas detector - G. Other personnel detectors used - H. Alarm conditions I & II, - I. SO2 alarms (if applicable) # 3. **H2S Protection** - A. Types of breathing apparatus provided (30-minute SCBA & 5-minute SCBA (with voice diaphragms for communication if supplied) - B. Principle of how breathing apparatus works - C. Demonstration on how to use breathing apparatus - D. Location of breathing apparatus # 4. Cascade System - A. Description of cascade system - B. How system works - C. Cascade location of rig with reference to briefing areas - D. How to use cascade system (with 5-minute hose work line units & refill, if supplied) - E. Importance of wind direction and actual location of Windsocks - F. Purpose of compressor/function (if one is on site) # 5. **H2S Rescue and First Aid** - A. Importance of wind direction - B. Safe briefing area - C. Buddy system - D. H2S symptoms - E. Methods of rescue # 6. Hands on Training - A. Donning/familiarization of SCBA 30-minue unit - B. Donning/familiarization of SKADA 5- MIN. Packs - C. Familiarization of cascades - D. Use of O2 resuscitator - E. Alarm conditions upwind briefing areas, etc... - F. Duties and responsibilities of all personnel - G. Procedures for evacuation - H. Search and Rescue teams # 7. Certification A. Testing on material covered # TOTAL SAFETY US INC., FIT TEST # X. EMPLOYEE INFORMATION Employee Name: _____ Date: ____ Date of Employee Medical Evaluation: _____ Medical Status (circle): Unrestricted Limitations on Use Use Not Authorized RESPIRATOR INFORMATIOIN Respirator Type (Dustmask, SCBA, etc):_____ Size: (circle): XS S M L XL FIT TEST INFORMATION Type of Fit Test Performed: Quantitative Porta Count Fit Factor:_____ Fittester 3000 Fit Factor: Qualitative Irritant Smoke Passed / Failed Passed / Failed Isoamyl Acetate (Banana Oil) Saccharin Passed / Failed **Bitrex** Passed / Failed I hereby certify that this fittest was conducted in accordance with the OSHA Fit Testing Protocols found in Appendix A of 1910.134. Fit Tester Name (Print):_____ Signature:_____ Date: #### XI. H2S SAFETY SERVICES HYDROGEN SULFIDE SAFETY PACKAGE – Contained on location in Total Safety H2S Equipment Trailer, unless otherwise noted: ## RESPIRATORY SAFETY SYSTEMS # QTY DESCRIPTION - 30-Minute Pressure Demand SCBA (4-Primary Safe Briefing Area, 4-Secondary Safe Briefing Area, 4-floor with one of these for derrick man) - 9 Hose Line 5-minute Work Unit w/Escape Cylinder (1 in derrick, 6 on drill floor, 1 in mud pit wt area, 1 in shaker area) The following shall be part of the package if requested by the MRC Foremen (at least one trailer with cascade system is required to be located in the MRC Magnolia asset for use as needed) - 1 Breathing air cascade of 10 bottles w/regulator - 2 Refill lines to refill 30-minute units on location - 6-Man manifold that can be rigged up to work area on floor, if needed - 6 25 foot hose lines - 2 50 foot hose lines - 100 Feet of hose line to rig cascade up to 12 man manifold on floor - 12 30-minute Self Contained Breathing apparatus ## **DETECTION AND ALARM SAFETY SYSTEM** - H2S Fixed Monitor w/8Channels (Loc determined at rig up) suggested. (Mud pit area, shaker area, bell nipple area, floor/driller area, & outside quarters) - 5 H2S Sensors - Explosion Proof Alarms (Light and Siren) (1 on floor, 1 in work area, 1 in trailer area where quarters are located) - 2 Personal H2S monitors - 1 Portable Tri-Gas Hand Held Meter (O2, LEL, H2S) - 1 Sensidyne/Gastech Manual Pump Type Detector - 8 Boxes H2S Tubes Various Ranges - 2 Boxes SO2 Tubes Various Ranges - 1 Calibration Gas - 1 Set Paper Work for Records: Training, Cal, Inspection, other # ADDITIONAL SAFETY RELATED EQUIPMENT # QTY DESCRIPTION - Windsocks with Pole and Bracket - 1 Set Well Condition Sign w/Green, Yellow, Red Flags - 1 Primary Safe Briefing Area Sign - 1 Secondary Safe Briefing Area Sign - 6 Operating Condition Signs for Work Areas & Living Quarters # TRAILER WITH BREATHING AIR CASCADE WILL ALSO INCLUDE THE FOLLOWING: This equipment will be part of the H2S equipment stored in the trailer, when on location - 1 First aid kit - 1 Fire Blanket - 1 Eye wash station - 2 Safety Harness w/150' safety line # XII. EMERGENCY PHONE NUMBERS (Updated March 18, 2009) # **EMERGENCY PHONE NUMBERS** MRC Energy Co. Emergency Phone # MRC Energy Co. Permian Operations Phone-----MRC Energy Co. Production 113 Daw Rd Mansfield LA 71052 | Title | Names | Phone | Cell | |--------------------|-------|-------|------| | Operations Manager | | | | | Operation Supt. | | | | | Operations | | | | | Supervisor | | | | | Operations | | | | | Supervisor | | | | | Office Supervisor | | | | | HSE | | | | | Scheduler Planner | | | | **Hydrogen Sulfide Safety Consultants** | Total Safety W. Bender | 575-392-2973 | After Hours 24 Hour Call | |------------------------|--------------|--------------------------| | Blvd. Hobbs, NM | | Center Through Office | | | | Number | | Tommy Throckmorton | 575-392-2973 | 940-268-9614 | | Operations Manager | | | | Rodney Jourdan Sales | 575-392-2973 | 432-349-3928 | | Contact | | | # MRC Energy Co. MEDICAL RESPONSE PLAN AND IT'S MEDICAL PROTOCOLS WILL BE FOLLOWED MEDICAL COORDINATOR # ----- **Emergency Numbers & Directions** # Hospitals (911) | Artesia General Hospital | | | |-----------------------------------|-------------------|--------------| | 702 N. 13 th St. | Main Phone Number | 575-748-3333 | | Artesia, NM 88210 | | | | Nor-Lea General Hospital | | | | 1600 N. Main Ave. | Main Phone Number | 575-396-6611 | | Lovington, NM 88260 | | | | Lea Regional Medical | | | | Center | Main Phone Number | 575-492-5260 | | 5419 N. Lovington Hwy | | | | Hobbs, NM 88240 | | | | Carlsbad General Hospital | | | | 2430 W. Pierce St. | Main Phone Number | 575-887-4100 | | Carlsbad, NM | | | | Lovelace Regional Hospital | | | | 117 E. 19 th St | Main Phone Number | 575-627-7000 | | Roswell, NM 88201 | | | | Winkler Co. Memorial | | | | Hospital | Main Phone Number | 432-586-8299 | | 821 Jeffee Dr. | | | | Kermit, Texas 79745 | | | | Reeves County Hospital | | | | 2323 Texas St. | Main Phone Number | 432-447-3551 | | Pecos, Texas 79772 | | | State Police (911) | Texas DPS Loving co. | | | |----------------------------|---------------|--------------| | 225 N.Pecos | Office Number | 432-377-2411 | | Mentone, Texas 79754 | | | | Texas DPS Winkler Co. | | | | 100 E Winkler | Office Number | 432-586-3465 | | Kermit, Texas 79745 | | | | Texas DPS Pecos Co. | | | | 148 N I-20 Frontage RD | Office Number | 432-447-3532 | | Pecos, Texas 79772 | | | | New Mexico State Police | | | | 3300 W. Main St | Office Number | 575-748-9718 | | Artesia, NM | | | | New Mexico State Police | | | | 304 N. Canyon St | Office Number | 575-885-3137 | | Carlsbad, NM 88220 | | | | New Mexico State Police | | | | 5100 Jack Gomez Blvd. | Office Number | 575-392-5588 | | Hobbs, NM 88240 | | | **Local Law Enforcement (911) (Sheriff)** | Local Law Emorecment (7) | 1) (SHEIIII) | | |--------------------------|---------------|--------------| | Reeves Co. Sheriff | 0.00 N 1 | 122 145 1001 | | 500 N. Oak ST | Office Number | 432-445-4901 | | Pecos, Texas 79722 | | | | Winkler Co. Sheriff | | | | 1300 Bellaire St. | Office Number | 432-586-3461 | | Kermit, Texas 79745 | | | | Loving Co. Sheriff | | | | Courthouse | Office Number | 432-377-2411 | | Mentone, Texas | | | | Lea Co. Sheriff | | | | 1417 S. Commercial St. | Office Number | | | Lovington, NM 88260 | | | | Eddy Co. Sheriff | | | | 305 N 7th St. | Office Number | 575-766-9888 | | Artesia, NM 88210 | | | | Eddy Co. Sheriff | | | | 305 N 7th St. | Office Number | 575-746-9888 | | Carlsbad, NM 88220 | | | Federal & State Agencies | OSHA Lubbock Area Office 1205 Texas Av. Room 806 Main Number 806-472-7681 EXT 7685 | |---| | | | 1205 Texas Av. Room 806 | | | | Lubbock, Texas 79401 | | New Mexico Environment | | Department Joe Fresquez 575-623-3935 | | 400 N Pennsylvania | | Roswell, NM 88201 | | Texas Railroad | | Commission Main Number 844-773-0305 | | Midland, Texas | | | | BLM Carlsbad, NM Field | | Office Main Number 575-234-5972 | | 620 E. Green ST | | Carlsbad, NM 88220 | | BLM Hobbs Field Station | | 414 W. Taylor Rd. Main Number 575-393-3612 | | Hobbs, NM 88240 | | BLM Roswell District | | Office Main Number 575-627-0272 | | 2909 W. Second St. | | Roswell, NM 88201 | | TECQ Texas Commission | | on Environmental Quality Main Number 800-832-8224 | | | | New Mexico OCD | | U.S. Environmental | | Protection Agency Region Main Number 214-655-2222 | | 6 | | Texas/New Mexico | | National Response Center | | Toxic Chemicals & Oil Main Number 800-424-8802 | | Spills | | | **Rig Company** | Ing Compa | · · · · · · | | |-----------|-------------|--| | | | | | | | | | | | | ## XIII. EVACUATION OF THE GENERAL PUBLIC The procedure to be used in alerting nearby persons in the event of any occurrence that could pose a threat to life or property will be arranged and completed with public officials in detail, prior to drilling into the hydrogen sulfide formations. In the event of an actual emergency, the following steps will be immediately taken: - 1. The MRC Energy Co.'s representative will dispatch sufficient personnel to immediately warn each resident and transients down-wind within radius of exposure from the well site.
Then warn all residence in the radius of exposure. Additional evacuation zones may be necessary as the situation warrants. - 2. The MRC Energy Co.'s representative will immediately notify proper authorities, including the Sheriff's Office, Highway Patrol, and any other public officials as described above and will enlist their assistance in warning residents and transients in the calculated radius of exposure. - 3. The MRC Energy Co.'s representative will dispatch sufficient personnel to divert traffic in the vicinity away from the potentially dangerous area. A guard to the entrance of the well site will be posted to monitor essential and non essential traffic. # 4. General: - A. The area included within the radius of exposure is considered to be the zone of maximum potential hazard from a hydrogen sulfide gas escape. Immediate evacuation of public areas, in accordance with the provisions of this contingency plan, is imperative. When it is determined that conditions exist which create an additional area (beyond the initial zone of maximum potential hazard) vulnerable to possible hazard, public areas in the additional hazardous area will be evacuated in accordance with the contingency plan. - B. In the event of a disaster, after the public areas have been evacuated and traffic stopped, it is expected that local civil authorities will have arrived and within a few hours will have assumed direction of and control of the public, including all public areas. MRC Energy Co. will cooperate with these authorities to the fullest extent and will exert every effort by careful advice to such authorities to prevent panic or rumors. - C. MRC Energy Co. will dispatch appropriate management personnel at the disaster site as soon as possible. The company's personnel - will cooperate with and provide such information to civil authorities as they might require. - D. One of the products of the combustion of hydrogen sulfide is sulfur dioxide (SO₂). Under certain conditions this gas may be equally as dangerous as H₂S. A pump type detector device, which determines the percent of SO₂ in air through concentrations in ppm, will be available. Although normal air movement is sufficient to dissipate this material to safe levels, the SO₂ detector should be utilized to check concentrations in the proximity of the well once every hour, or as necessary and the situation warrants. Also, if any low areas are suspected of having high concentrations, personnel should be made aware of these areas, and steps should be taken to determine whether or not these low areas are hazardous. Exhibit E-6: H2S Contingency Plan Emergency Contacts Matador Resources Company | Company Office | | | | |---|-----------------------------|--------------|-----------------| | Matador Resources Company | (972)-371-5200 | | | | Key Personnel | | | | | Name | Title | Office | Mobile | | Billy Goodwin | Vice President Drilling | 972-371-5210 | 817-522-2928 | | Gary Martin | Drilling Superintendent | | 601-669-1774 | | Dee Smith | Drilling Superintendent | 972-371-5447 | 972-822-1010 | | Blake Hermes | Drilling Engineer | 972-371-5485 | 713-876-8558 | | | Construction Superintendent | | | | | Construction Superintendent | | | | <u>Artesia</u> | | | | | Ambulance | | 911 | | | State Police | | 575-746-2703 | | | City Police | | 575-746-2703 | | | Sheriff's Office | | 575-746-9888 | | | Fire Department | | 575-746-2701 | | | Local Emergency Planning Committee | | 575-746-2122 | | | New Mexico Oil Conservation Division | | 575-748-1283 | | | <u>Carlsbad</u> | | | | | Ambulance | | 911 | | | State Police | | 575-885-3137 | | | City Police | | 575-885-2111 | | | Sheriff's Office | | 575-887-7551 | | | Fire Department | | 575-887-3798 | | | Local Emergency Planning Committee | | 575-887-6544 | | | New Mexico Oil Conservation Division | | 575-887-6544 | | | <u>Santa Fe</u> | | | | | New Mexico Emergency Response Comiss | | 505-476-9600 | | | New Mexico Emergency Response Comiss | | 505-827-9126 | | | New Mexico State Emergency Operations | Center | 505-476-9635 | | | <u>National</u> | | | | | National Emegency Response Center (Was | shington, D.C.) | 800-424-8802 | | | <u>Medical</u> | | | | | Flight for Life- 4000 24th St.; Lubbock, TX | | 806-743-9911 | | | Aerocare- R3, Box 49F; Lubbock, TX | | 806-747-8923 | | | Med Flight Air Amb- 2301 Yale Blvd S.E., D | | 505-842-4433 | | | SB Air Med Service- 2505 Clark Carr Loop | S.E.; Albuquerque, NM | 505-842-4949 | | | <u>Other</u> | | | | | Boots & Coots IWC | | 800-256-9688 | or 281-931-8884 | | Cudd Pressure Control | | 432-699-0139 | or 432-563-3356 | | Haliburton | | 575-746-2757 | | | B.J. Services | | 575-746-3569 | | District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 # State of New Mexico Energy, Minerals and Natural Resources Department Submit Original to Appropriate District Office Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 # GAS CAPTURE PLAN | X Original | Operator & OGRID No.: <u>Matador Production Company (228937)</u> | | | | |-----------------------|--|--|--|--| | ☐ Amended | Date: 12/8/2020 | | | | | Reason for Amendment: | | | | | | | | | | | This Gas Capture Plan outlines actions to be taken by the Operator to reduce well/production facility flaring/venting for new completion (new drill, recomplete to new zone, re-frac) activity. Note: A C-129 must be submitted and approved prior to exceeding 60 days allowed by Rule 19.15.18.12.A ## Well(s)/Production Facility – Name of facility The wells that will be located at the production facility are shown in the table below. | Well Name | API | Well Location (ULSTR) | Footages | Expected MCF/D | Flared or
Vented | Comments | |------------------------------|-----|-----------------------------|-----------------------|----------------|---------------------|--| | Nina Cortell Fed Com
202H | N/A | UL-N Sec 10
&3 T22S R32E | 242'FSL
1,461' FWL | +/- 5,000 | ~30 days | Flare ~30 days on flowback before turn into TB. Time est. depends on sales connect and well cleanup. | | Nina Cortell Fed Com
203H | N/A | UL-O Sec 10
&3 T22S R32E | 244'FSL
1,370' FEL | +/- 5,000 | ~30 days | Flare ~30 days on flowback before turn into TB. Time est. depends on sales connect and well cleanup. | | Nina Cortell Fed Com
204H | N/A | UL-O Sec 10
&3 T22S R32E | 274'FSL
1,370' FEL | +/- 5,000 | ~30 days | Flare ~30 days on flowback before turn into TB. Time est. depends on sales connect and well cleanup. | ## **Gathering System and Pipeline Notification** The wells will be connected to a production facility after flowback operations are complete so long as the gas transporter system is in place. The gas produced from the production facility should be connected to either DCP Midstream LP, Lucid Energy Delaware LLC, or Enterprise Field Services LLC. It will require ~1,000'-5000' of pipeline to connect the facility to either DCP Midstream LP, Lucid Energy Delaware LLC, or Enterprise Field Services LLC. Matador Production Company periodically provides a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future to either DCP Midstream LP, Lucid Energy Delaware LLC, or Enterprise Field Services LLC. If changes occur that will affect the drilling and completion schedule, Matador Production Company will notify either DCP Midstream LP, Lucid Energy Delaware LLC, or Enterprise Field Services LLC. Additionally, the gas produced from the well will be processed at a processing plant further downstream and, although unanticipated, any issues with downstream facilities could cause flaring at the wellhead. The actual flow of the gas will be based on compression operating parameters and gathering system pressures measured when the well starts producing. # Flowback Strategy After the fracture treatment/completion operations (flowback), the well will be produced to temporary production tanks and the gas will be flared or vented. During flowback, the fluids and sand content will be monitored. If the produced fluids contain minimal sand, then the well will be turned to production facilities. The gas sales should start as soon as the well starts flowing through the production facilities, unless there are operational issues on the midstream system at that time. Based on current information, it is Matador's belief the system will be able to take the gas upon completion of the well. Safety requirements during cleanout operations may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis. #### **Alternatives to Reduce Flaring** Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared. - Power Generation On lease - Operating a generator will only utilize a portion of the produced gas and the remainder of gas would still need to be flared. - Power Company has to be willing to purchase gas back and if they are willing they require a 5 year commitment to supply the agreed upon amount of power back to them. With gas decline rates and unpredictability of markets it is impossible to agree to such long term demands. If the demands are not met then operator is burdened with penalty for not delivering. - Compressed Natural Gas On lease - Compressed Natural Gas is likely to be uneconomic to operate when the gas volume declines. - NGL Removal On lease - NGL Removal requires a plant and is expensive on such a small scale rendering it uneconomic and still requires residue gas to be flared. District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720
District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462 State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505 FORM C-102 Revised August 1, 2011 Submit one copy to appropriate District Office AMENDED REPORT # WELL LOCATION AND ACREAGE DEDICATION PLAT | ¹ API Numbe | iber ² Pool Code | | ³ Pool Name | | |----------------------------|-----------------------------|----------------------------|------------------------------------|------------------------| | 30-025-49628 | | 98166 | WC-025 G-09 S233216K, UPR WOLFCAMP | | | ⁴ Property Code | | ⁵ Property Name | | | | 320841 | NINA CORTELL FED COM 203H | | | 203Н | | ⁷ OGRID №. | ⁸ Operator Name | | | ⁹ Elevation | | 228937 | | 3789' | | | ¹⁰Surface Location | UL o | or lot no.
O | Section
10 | Township 22-S | 32-E | | Feet from the 244' | North/South line SOUTH | Feet from the 1370' | EAST | LEA | | |-------------------|--|--------------------------|-----------------------|------------------|-----------------------|--------------------|------------------------|---------------------|----------------|--------|--| | | ¹¹ Bottom Hole Location If Different From Surface | | | | | | | | | | | | UL o | or lot no. | Section | Township | Range | Lot Idn | Feet from the | North/South line | Feet from the | East/West line | County | | | | 2 | 3 | 22-S | 32-E | _ | 60' | NORTH | 2310' | EAST | LEA | | | ¹² Ded | licated Acres | ¹³ Joint or I | nfill ¹⁴ C | Consolidation Co | ode ¹⁵ Ord | er No. | | | | | | | | 320 | | | | | | | | | | | No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division. Released to Imaging: 12/10/2021 1:48:55 PM URVEYMATADOR_RESOURCESININA_CORTELL_10-22S-32E\FINAL_PRODUCTSILO_NINA_CORTELL_FED_COM_203H.DWG 11/11/2020 2:47:08 PM adisable to Imaging: 12/10/2021 1:48:55 PM URVEYMATADOR_RESOURCESININA_CORTELL_10-22S-32E\FINAL_PRODUCTSILO_NINA_CORTELL_FED_COM_203H.DWG 11/11/2020 2:47:08 PM adisable to Imaging: 12/10/2021 1:48:55 PM URVEYMATADOR_RESOURCESININA_CORTELL_10-22S-32E\FINAL_PRODUCTSILO_NINA_CORTELL_FED_COM_203H.DWG 11/11/2020 2:47:08 PM adisable to Imaging: 12/10/2021 1:48:55 PM URVEYMATADOR_RESOURCESININA_CORTELL_10-22S-32E\FINAL_PRODUCTSILO_NINA_CORTELL_FED_COM_203H.DWG 11/11/2020 2:47:08 PM adisable to Imaging: 12/10/2021 1:48:55 PM URVEYMATADOR_RESOURCESININA_CORTELL_10-22S-32E\FINAL_PRODUCTSILO_NINA_CORTELL_FED_COM_203H.DWG 11/11/2020 2:47:08 PM adisable to Imaging: 12/10/2021 1:48:55 PM URVEYMATADOR_RESOURCESININA_CORTELL_10-22S-32E\FINAL_PRODUCTSILO_NINA_CORTELL_FED_COM_203H.DWG 11/11/2020 2:47:08 PM adisable to Imaging: 12/10/2021 1:48:55 PM URVEYMATADOR_RESOURCESININA_CORTELL_10-22S-32E\FINAL_PRODUCTSILO_NINA_CORTELL_FED_COM_203H.DWG 11/11/2020 2:47:08 PM adisable to Imaging: 12/10/2021 1:48:55 PM URVEYMATADOR_RESOURCESININA_CORTELL_10-22S-32E\FINAL_PRODUCTSILO_NINA_CORTELL_FED_COM_203H.DWG 11/11/2020 2:47:08 PM adisable to Imaging t **LEGEND** SECTION LINE PROPOSED ROAD SECTION 10, TOWNSHIP 22-S, RANGE 32-E, N.M.P.M. € PROPOSED LEA COUNTY, NEW MEXICO ROAD - ±6591' DETAIL VIEW SCALE: 1" = 100' 3791.3 3792.0' CENTER OF PAD X=749818 Y=509859 LAT.: N 32.3998600 LONG.: W 103.6578496 NINA CORTELL NINA CORTELL FED COM 134H FED COM 128H NINA CORTELL NINA CORTELL FED COM 204H FED COM 114H SECTION LINE 265' 265 NINA CORTELL FED COM 224H 230' *80′* _____ NINA CORTELL FED COM 223H NINA CORTELL FED COM 203H NINA CORTELL NINA CORTELL FED COM 133H FED COM 113H NINA CORTELL FED COM 127H 3783.7' 3788.6' > NINA CORTELL FED COM 203H LEASE NAME & WELL NO .: 203H LATITUDE_ N 32.3996658 203H LONGITUDE W 103.6584489 SECTION LINE CENTER OF PAD IS 314' FSL & 1185' FEL Angel M. Baeza, P.S. No. 25116 ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO COORDINATE SYSTEM OF 1983, EAST ZONE, U.S. SURVEY FEET. ELEVATIONS USED ARE NAVD88, OBTAINED THROUGH AN OPUS SOLUTION. THIS PROPOSED PAD SITE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY MATADOR PRODUCTION COMPANY. ONLY THE DATA SHOWN ABOVE IS BEING CERTIFIED TO, ALL OTHER INFORMATION WAS INTENTIONALLY OMITTED. THIS PLAT IS CALLY INTENDED TO BE USED FOR A PERMIT AND IS NOT A BOUNDARY SURVEY. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY. SCALE: 1" 100' 100 1400 EVERMAN PARKWAY, Ste. 146 • FT. WORTH, TEXAS 76140 TELEPHONE: (817) 744-7512 • FAX (817) 744-7554 2903 NORTH BIG SPRING • MIDLAND, TEXAS 79705 TELEPHONE: (432) 682-1653 OR (800) 767-1653 • FAX (432) 682-1743 WWW.TOPOGRAPHIC.COM # State of New Mexico Energy, Minerals and Natural Resources Department Submit Electronically Via E-permitting Received by OCD: 12/2/2021 9:13:48 PM Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 # NATURAL GAS MANAGEMENT PLAN This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well. # Section 1 - Plan Description Effective May 25, 2021 | I. Operator: Matador | Production Co | ompany | _OGRID: <u>22</u> | 8937 | | Date: | 1. | 2/03/2021 | |--|-----------------------------|--|--------------------------|----------------------------|----------|-------------------|---------|--| | II. Type: ⊠Original □ | Amendment d | ue to 19.15.27.9. | D(6)(a) NMAC | C □ 19.15.27.9.D(6 | 5)(b) N | MAC 🗆 Oti | ner. | | | If Other, please describe | e: | | | | | | | | | III. Well(s): Provide the recompleted from a sing | | | | | vells pr | oposed to b | e drill | led or proposed to be | | Well Name | API | ULSTR | Footages | Anticipated
Oil BBL/D | Gas | icipated
MCF/D | | Anticipated
Produced Water
BBL/D | | Nina Cortell Fed Com #125H | TBD | UL-N Sec 10 T22S R32I | E 272' FSL
1,461' FWL | 1,086 | 1,100 | 2 | ,650 | | | Nina Cortell Fed Com #203H | TBD
30-025-496 | UL-O Sec 10 T22S R321
28 | | 1,810 | 3,637 | 17 | ,780 | | | Nina Cortell Fed Com #204H | | UL-O Sec 10 T22S R32 | E 274' FSL
1,370' FEL | 1,810 | 3,637 | 17 | ,780 | | | V. Anticipated Schedu proposed to be recompl | le: Provide the | following informati | ion for each ne | | ell or s | W | | 7.9(D)(1) NMAC] sed to be drilled or | | Well Name | API | Spud Date | TD Reached
Date | Completion
Commencement | | Initial F | | First Production Date | | Nina Cortell Fed Com #125H | | 1/13/2022 | 2/11/2022 | 2/20/2022 | | 4/2/2022 | | 4/2/2022 | | Nina Cortell Fed Com #203H | 30 ₁025-49628 | | 3/5/2022 | 1/15/2023 | | 3/25/2023 | | 3/25/2023 | | Nina Cortell Fed Com #204H | man | | 0/4/2022 | 1/15/2023 | | 3/25/2023 | | 3/25/2023 | | VI. Separation Equipm
VII. Operational Prac
Subsection A through F
VIII. Best Management
during active and plann | tices: Attact of 19.15.27.8 | h a complete descripNMAC. Attach a complete | ption of the act | ions Operator will | take to | comply wit | th the | requirements of | # Received by OCD: 12/2/2021 9:13:48 PM # Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022 Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section. Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area. #### IX. Anticipated Natural Gas Production: | Well | API | Anticipated Average
Natural Gas Rate MCF/D | Anticipated Volume of Natural Gas for the First Year MCF | |------|-----|---|--| | | | | | | | | | | # X. Natural Gas Gathering System (NGGS): | Operator | System | ULSTR of Tie-in | Anticipated Gathering
Start Date | Available Maximum Daily Capacity of System Segment Tie-in | | |----------|--------|-----------------|-------------------------------------|---|--| | | | | | | | | | | | | | | - XI. Map. \square Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected. - XII. Line Capacity. The natural gas gathering system \square will \square will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production. - XIII. Line Pressure. Operator \(\text{ does } \) does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s). - ☐ Attach Operator's plan to manage production in response to the increased line pressure. - XIV. Confidentiality: Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific
information for which confidentiality is asserted and the basis for such assertion. # Section 3 - Certifications Effective May 25, 2021 Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal: ☑Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. If Operator checks this box, Operator will select one of the following: Well Shut-In. Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or Venting and Flaring Plan. Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including: - (a) power generation on lease: - power generation for grid; (b) - compression on lease; (c) - (d) liquids removal on lease; - (e) reinjection for underground storage; - (f) reinjection for temporary storage; - reinjection for enhanced oil recovery; (g) - fuel cell production; and (h) - other alternative beneficial uses approved by the division. (i) # **Section 4 - Notices** - 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud: - Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or - Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas (b) capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement. - 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud. Received by OCD: 12/2/2021 9:13:48 PM I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act. | Signature: Be He | |---| | Printed Name: Ben Peterson | | Title: Staff Production Engineer | | E-mail Address: bpeterson@matadorresources.com | | Date: 12/3/2021 | | Phone: (972) 371-5427 | | OIL CONSERVATION DIVISION | | (Only applicable when submitted as a standalone form) | | Approved By: | | Title: | | Approval Date: | | Conditions of Approval: | | | | | | | | | # Addendum to Natural Gas Management Plan for Matador's Nina Cortell Fed Com 125H, 203H and 204H # VI. Separation Equipment Flow from the wells will be routed via a flowline to a 48"x15" three phase separator dedicated to the well. The first stage separators are sized with input from BRE ProMax and API 12J. Expected production from the 125H well is approximately 1,100 mcfd, 1,086 bopd, and 2,650 bwpd. Expected production from the 203H and 204H wells is approximately 3,637 mcfd, 1,810 bopd, and 7,780 bwpd. Liquid retention times at expected maximum rates will be >3 minutes. Gas will be routed from the first stage separator to sales. Hydrocarbon liquids are dumped from the first stage separator and commingled to one or more heater treaters. The flash gas from the heater treater(s) could either be sent to sales or routed to a compressor if the sales line pressure is higher than the MAWP of the heater treater (125 psi). From the heater treaters, hydrocarbon liquid will be routed to the tanks where vapor is compressed by a VRU if technically feasible to either sales or a compressor if the sales line pressure is higher than the VRU's maximum discharge pressure (~150 psi). Therefore, Matador has sized our separation equipment to optimize gas capture and our separation equipment is of sufficient size to handle the expected volumes of gas. # VII. Operation Practices Although not a complete recitation of all our efforts to comply with a subsection A through F of 19.15.27.8 NMAC, a summary is as follows. During drilling, Matador will have a properly sized flare stack at least 100 feet from the nearest surface hole. During initial flowback we will route the flowback fluids into completion or storage tanks and, to the extent possible, flare rather than vent any gas. We will commence operation of a separator as soon as technically feasible, and have instructed our team that we want to connect the gas to sales as soon as possible but not later than 30 days after initial flowback. Regarding production operations, we have designed our production facilities to be compliant with the requirements of Part E of 19.15.27.8 NMAC. We will instruct our team to perform the AVOs on the frequency required under the rules. While the well is producing, we will take steps to minimize flaring during maintenance, as set forth below, and we have a process in place for the measuring of any flared gas and the reporting of any reportable flaring events. ## VII. Best Management Practices Steps are taken to minimize venting during active or planned maintenance when technically feasible including: - Isolating the affected component and reducing pressure through process piping - Blowing down the equipment being maintained to a control device - Performing preventative maintenance and minimizing the duration of maintenance activities - Shutting in sources of supply as possible - Other steps that are available depending on the maintenance being performed District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462 **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505** COMMENTS Action 64851 #### **COMMENTS** | Operator: | OGRID: | |----------------------------|---| | MATADOR PRODUCTION COMPANY | 228937 | | One Lincoln Centre | Action Number: | | Dallas, TX 75240 | 64851 | | | Action Type: | | | [C-101] BLM - Federal/Indian Land Lease (Form 3160-3) | #### COMMENTS | Created
By | Comment | Comment
Date | |---------------|------------------------|-----------------| | pkautz | HOLD MISSING FORM NGMP | 12/6/2021 | District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462 **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505** CONDITIONS Action 64851 ## **CONDITIONS** | Operator: | OGRID: | |----------------------------|---| | MATADOR PRODUCTION COMPANY | 228937 | | One Lincoln Centre | Action Number: | | Dallas, TX 75240 | 64851 | | | Action Type: | | | [C-101] BLM - Federal/Indian Land Lease (Form 3160-3) | #### CONDITIONS | Created
By | Condition | Condition Date | |---------------|--|----------------| | pkautz | Will require a File As Drilled C-102 and a Directional Survey with the C-104 | 12/10/2021 | | pkautz | Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string | 12/10/2021 | | pkautz | Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed
loop system | 12/10/2021 | | pkautz | Cement is required to circulate on both surface and intermediate1 strings of casing | 12/10/2021 |