Form 3160-3 (June 2015)				OMB	1 APPRO No. 1004 January					
UNITED STA				5. Lease Serial No						
DEPARTMENT OF TH BUREAU OF LAND M		¬		3. Lease Seriai No).					
APPLICATION FOR PERMIT TO				6. If Indian, Alloto	ee or Tril	oe Name				
1a. Type of work: DRILL	REENTER			7. If Unit or CA Agreement, Name and No.						
1b. Type of Well: Oil Well Gas Well	Other			Lease Name an	d Well N	lo.				
1c. Type of Completion: Hydraulic Fracturing	Single Zone	Multiple Zone		o. Deuse Prante an	a well i					
				_ ([3318	368]				
2. Name of Operator [229137]				9. API Well No.	30-	025-49675				
3a. Address	3b. Phone N	o. (include area co	ode)	10. Field and Poo	l, or Exp	loratory [96689]				
4. Location of Well (Report location clearly and in accordance)	ınce with any State	requirements.*)		11. Sec., T. R. M.	or Blk. a	and Survey or Area				
At surface										
At proposed prod. zone										
14. Distance in miles and direction from nearest town or pos	st office*			12. County or Par	ish	13. State				
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	16. No of ac	eres in lease	17. Spacir	ng Unit dedicated to	this we	II				
18. Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft.	19. Proposed	d Depth	20, BLM/	BIA Bond No. in fi	le					
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22. Approxi	mate date work wil	ll start*	23. Estimated dur	ation					
	24. Attac	hments								
The following, completed in accordance with the requireme (as applicable)	nts of Onshore Oil	and Gas Order No.	. 1, and the H	ydraulic Fracturing	g rule per	43 CFR 3162.3-3				
 Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest Support of Suppo		Item 20 above) 5. Operator certif). fication.	s unless covered by mation and/or plans		ng bond on file (see				
25. Signature	Name	(Printed/Typed)			Date					
Title										
Approved by (Signature)	Name	(Printed/Typed)			Date					
Title	Office				'					
Application approval does not warrant or certify that the apparent to conduct operations thereon. Conditions of approval, if any, are attached.	plicant holds legal o	or equitable title to	those rights	in the subject lease	which w	rould entitle the				
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 12 of the United States any false, fictitious or fraudulent statem					o any de _l	partment or agency				
NGMP Rec 12/21/2021										
CI.	ROVED WI	rh CONDI	TIONS	1	K. 2/21/2	Z 2021				
SL (Continued on page 2)	KOARD 41			*/1	nstruct	tions on page 2)				
(The second second			(,		on pube 2)				

Released to Imaging: 12/21/2021 1:14:27 PM Approval Date: 12/02/2021

DISTRICT I

1925 N. FRENCE DB. BORRS, NU 00240 Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION

1220 SOUTH ST. FRANCIS DR. Santa Fe, New Mexico 87505

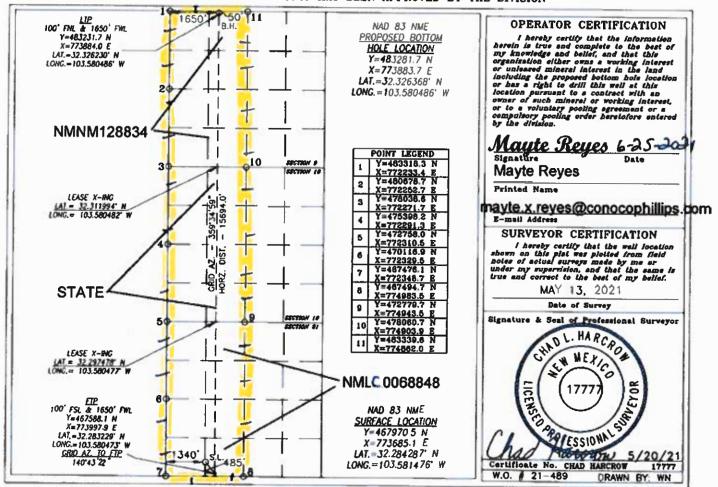
Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT

DISTRICT II 811 S. FIRST ST., ARTESIA, NM 88210 Phone: (575) 748-1283 Par: (575) 748-8720 DISTRICT III 1000 RIO BRAZOS RD., AZTEC, NM 87410 Phone: (605) 334-8178 Pax: (606) 334-6170

DISTRICT IV 1228 S. ST. FRANCIS DR., SANTA PR. NM. 87665 Phone: (505) 478-3460 782: (505) 478-3462

30-025- 49675	Peol Code 96689	ACREAGE DEDICATION PLAT Pool Name Brinninstool; Wolfcamp, Wes	st
Property Code 331868	_	erty Name FEDERAL COM	Well Number 606H
229137		ator Name RATING, LLC	Blevation 3692.2'


Surface Location

UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
N	21	23-5	33-E		485	SOUTH	1340	WEST	LEA

Bottom Hole Location If Different From Surface

UL or tot No.	Section	Township	Range	Lot 1dn	Feet from the	North/South line	Feet from the	East/West line	County
С	9	23-S	33-E		50	NORTH	1650	WEST	LEA
Dedicated Acre	Joint o	r Infill Con	solidation (Code Ore	der No.			<u></u>	

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator:	COG Operating LLC	OGRID: 229137	Date: 06 / 25 / 21
II. Type: ☒ (Original □ Amendment due to □ 19.	15.27.9.D(6)(a) NMAC □ 19.15.27.9.D((6)(b) NMAC \square Other.
If Other, pleas	se describe:		
TTT XX/ 11/ \ 1			11 17 1 171 1

III. Well(s): Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	ULSTR	Footages	Anticipated	Anticipated	Anticipated
			_	Oil BBL/D	Gas MCF/D	Produced Water
						BBL/D
Supreme Federal Com 606H	30-025-	N-21-23S-33E	485 FSL & 1340 FWL	± 1400	± 2240	± 4900
30	-025-49675					

IV. (Central	Deliver	y Point	Name:
-------	---------	---------	---------	-------

[See 19.15.27.9(D)(1) NMAC]

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	Spud Date	TD Reached	Completion	Initial Flow	First Production
			Date	Commencement Date	Back Date	Date
Supreme Federal Com 606H	Pending		± 25 days from spud	TBD	TBD	TBD
30	-025-49675					

- VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture.
- VII. Operational Practices: ☑ Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.
- VIII. Best Management Practices:

 Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

			Enhanced Plan E APRIL 1, 2022		
	2022, an operator the complete this section		with its statewide natural ga	as capture requirem	nent for the applicable
_	es that it is not requit t for the applicable re	-	tion because Operator is in o	compliance with its	statewide natural gas
IX. Anticipated Na	ntural Gas Producti	on:			
W	/ell	API	Anticipated Average Natural Gas Rate MCF/D		Volume of Natural ne First Year MCF
X. Natural Gas Ga	thering System (NO	GGS):			
Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date		num Daily Capacity Segment Tie-in
production operation the segment or portion the segment or portion with the segment or portion with the segment or portion with the segment of the segment o	ns to the existing or plan from the natural gas gas from the well prior to e. Operator does g system(s) describe s plan to manage profity: Operator assed in Paragraph (2) o	planned interconnect of the gathering system(s) to the thering system will to the date of first product does not anticipate the dabove will continue to poduction in response to the terts confidentiality pursuant to the system.	at its existing well(s) connect meet anticipated increases in he increased line pressure. suant to Section 71-2-8 NMS 27.9 NMAC, and attaches a f	em(s), and the maximected. ather 100% of the action of the action of the same segnation pressure causes at 1978 for the interest of the same segnation of	mum daily capacity of anticipated natural gas nent, or portion, of the ed by the new well(s).

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

🗵 Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

□ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system.

If Operator checks this box, Operator will select one of the following:

Well Shut-In. □ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. □ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- **(b)** power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

Released to Imaging: 12/21/2021 1:14:27 PM

VI. Separation Equipment

How Operator will size separation equipment to optimize gas capture:

Initial separation equipment will be sized with adequate retention time to effectively separate all phases of production and capture gas prior to liquid phases entering storage tanks.

VII. Operational Practices

Actions Operator will take to comply with the requirements below:

- Install VCU on all vent lines from tanks to combust gas emitted due to normal tank breathing
- All flare stacks are equipped with auto ignition devices and are located at a minimum of 150' from storage tanks and wellheads
- Install meters on all flare lines to quantify volume of gas being flared during an upset condition
- A properly sized mud gas separator and flare stack located a minimum of 100 feet from the nearest surface hole location will be used to combust natural gas from normal drilling operations. Will report natural gas vented or flared due to an emergency or malfunction.

VIII. Best Management Practices

Operator's best management practices to minimize venting during active and planned maintenance:

Operations plan will be to shut in production for planned maintenance activities that may result in venting of natural gas.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature:
Printed Name: Mayte Reyes
Title: Sr. Regulatory Coodinator
E-mail Address: mayte.x.reyes@conocophillips.com
Date: 6/25/2021
Phone: 575-748-6945
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD Print Report

APD ID: 10400076476

Operator Name: COG OPERATING LLC

Well Name: SUPREME FEDERAL COM

Well Type: OIL WELL

Submission Date: 06/25/2021

Federal/Indian APD: FED

Well Number: 606H

Well Work Type: Drill

Highlighted data reflects the most recent changes

Show Final Text

Application

Section 1 - General

BLM Office: Hobbs User: MAYTE REYES Title: Regulatory Analyst

Federal/Indian APD: FED Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMLC0068848 Lease Acres:

Surface access agreement in place? Allotted? Reservation:

Agreement in place? NO Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? Y

Permitting Agent? NO APD Operator: COG OPERATING LLC

Operator letter of designation:

Operator Info

Operator Organization Name: COG OPERATING LLC

Operator Address: 600 West Illinois Ave
Zip: 79701

Operator PO Box:

Operator City: Midland State: TX

Operator Phone: (432)683-7443

Operator Internet Address: RODOM@CONCHO.COM

Section 2 - Well Information

Well in Master Development Plan? EXISTING Master Development Plan name: No

Well in Master SUPO? Master SUPO name:

Approval Date: 12/02/2021 Page 1 of 23

Well Name: SUPREME FEDERAL COM Well Number: 606H

Well in Master Drilling Plan? Master Drilling Plan name:

Well Name: SUPREME FEDERAL COM Well Number: 606H Well API Number:

Field/Pool or Exploratory? Field and Pool Field Name: BRINNINSTOOL Pool Name: WOLFCAMP,

WEST

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL

Is the proposed well in a Helium production area? N Use Existing Well Pad? N New surface disturbance?

Type of Well Pad: MULTIPLE WELL Multiple Well Pad Name: Number: 605H, 606H, 607H,

Well Class: HORIZONTAL Supreme FEDERAL COM 608H Number of Legs: 1

Well Work Type: Drill
Well Type: OIL WELL
Describe Well Type:

Well sub-Type: EXPLORATORY (WILDCAT)

Describe sub-type:

Distance to town: 21 Miles Distance to nearest well: 30 FT Distance to lease line: 50 FT

Reservoir well spacing assigned acres Measurement: 960 Acres Well plat: COG_Supreme_606H_C102_20210722082040.pdf

Well work start Date: 12/01/2021 Duration: 30 DAYS

Well Work Start Date. 12/01/2021

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83 Vertical Datum: NAVD88

Survey number: Reference Datum: GROUND LEVEL

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
SHL Leg #1	485	FSL	134 0	FW L	23S	33E	21	Aliquot SESW		- 103.5814 76	LEA	NEW MEXI CO	NEW MEXI CO	ı	NMLC0 068848		0	0	Υ
KOP Leg #1	485	FSL	134 0	FW L	23S	33E	21	Aliquot SESW	32.28428 7	- 103.5814 76	LEA	NEW MEXI CO	NEW MEXI CO	ı	NMLC0 068848		0	0	Υ

Approval Date: 12/02/2021 Page 2 of 23

Well Name: SUPREME FEDERAL COM Well Number: 606H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT	Will this well produce from this lease?
PPP	100	FSL	165	FW	23S	33E	21	Aliquot	32.28322	-	LEA	NEW	NEW	F	NMLC0	-	123	122	Υ
Leg			0	L				SESW	9	103.5804		MEXI	1		068848	860	71	94	
#1-1										73		СО	СО			2			
PPP	1	FSL	165	FW	23S	33E	16	Aliquot	32.29747	-	LEA	NEW	NEW	S	STATE	-	178	124	Υ
Leg			0	L				SESW	8	103.5804		MEXI		7		871	30	11	
#1-2										77		СО	СО			9			
EXIT	100	FNL	165	FW	23S	33E	9	Aliquot	32.32623	-	LEA	NEW	NEW	F	NMNM	-	279	123	Υ
Leg			0	L				NENW		103.5804		MEXI	l .		128834	865	00	47	
#1										86		СО	СО			5			
BHL	50	FNL	165	FW	23S	33E	9	Aliquot	32.32636	-	LEA	NEW	NEW	F	NMNM	-	279	124	Υ
Leg			0	L				NENW	8	103.5804		MEXI		6	128834	875	56	47	
#1										86		CO	СО			5			

Drilling Plan

Section 1 - Geologic Formations

						1	
Formation ID	Formation Name	Elevation	True Vertical Depth	Measured Depth	Lithologies	Mineral Resources	Producing Formation
6112757	RED BEDS	3692	Ö	0	ALLUVIUM	NONE	N
6112759	RUSTLER	2373	1319	1319	GYPSUM	NONE	N
6112760	TOP OF SALT	1868	1824	1824	SALT	NONE	N
6112761	BASE OF SALT	-1230	4922	4922	ANHYDRITE, SALT	NONE	N
6112762	LAMAR	-1486	5178	5178	LIMESTONE	NATURAL GAS, OIL	N
6112763	BELL CANYON	-1542	5234	5234	SANDSTONE	NATURAL GAS, OIL	N
6112764	CHERRY CANYON	-2458	6150	6150	SANDSTONE	NATURAL GAS, OIL	N
6112765	BRUSHY CANYON	-3775	7467	7467	SANDSTONE	NATURAL GAS, OIL	N
6112766	BONE SPRING LIME	-5399	9091	9091	LIMESTONE, SANDSTONE	NATURAL GAS, OIL	N
6112769	BONE SPRING 1ST	-6523	10215	10215	HALITE, SANDSTONE	NATURAL GAS, OIL	N

Approval Date: 12/02/2021

Page 3 of 23

Well Name: SUPREME FEDERAL COM Well Number: 606H

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
6112770	BONE SPRING 2ND	-7118	10810	10810	HALITE, SANDSTONE	NATURAL GAS, OIL	N
6112771	BONE SPRING 3RD	-8294	11986	11986	HALITE, SANDSTONE	NATURAL GAS, OIL	N
6112772	WOLFCAMP	-8666	12358	12358	SHALE, SILTSTONE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 10M Rating Depth: 12447

Equipment: Accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold.

Requesting Variance? YES

Variance request: Request a 5M annular variance on a 10M system. (5M variance attached in section 8). A variance is requested for the use of a flexible choke line from the BOP to the choke manifold. See attached for specs and hydrostatic test chart.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

Choke Diagram Attachment:

COG_Supreme_10M_Choke_20210621081151.pdf

BOP Diagram Attachment:

COG_Supreme_10M_BOP_20210621081200.pdf

COG_Supreme_605H_606H_607H_608H_Flex_Hose_20210623112403.pdf

Pressure Rating (PSI): 5M Rating Depth: 11800

Equipment: Annular, Blind Ram, Pipe Ram. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to the choke manifold. See attached for specs and hydrostatic test chart.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

Choke Diagram Attachment:

COG Supreme 5M Choke 20210618131914.pdf

Approval Date: 12/02/2021 Page 4 of 23

Well Name: SUPREME FEDERAL COM Well Number: 606H

COG_Supreme_5M_Choke_20210618131914.pdf

BOP Diagram Attachment:

COG_Supreme_5M_BOP_20210621081100.pdf

COG_Supreme_605H_606H_607H_608H_Flex_Hose_20210623112332.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	ا ا
1	SURFACE	14.7 5	10.75	NEW	API	N	0	1350	0	1350	3692	2342	1350	J-55	100	OTHER - BTC	3.38	1.14	DRY	12.9 6	DRY	11 4
	INTERMED IATE	8.75	7.625	NEW	API	Y	0	11800	0	11800	3697	-8108	11800	HCP -110	-	OTHER - FJM	1.21	1.38	DRY	1.59	DRY	2.
3	PRODUCTI ON	6.75	5.5	NEW	API	Y	0	27956	0	12447	3697	-8755	27956	P- 110	-	OTHER - Talon	1.8	2.12	DRY	2.47	DRY	2.

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

COG_Supreme_606H_Casing_Program_20210624155413.pdf

Approval Date: 12/02/2021 Page 5 of 23

Well Name: SUPREME FEDERAL COM Well Number: 606H

Casing Attachments

Casing ID: 2 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

COG_Supreme_606H_Casing_Program_20210624155431.pdf

Casing Design Assumptions and Worksheet(s):

COG_Supreme_606H_Casing_Program_20210624155446.pdf

Casing ID: 3 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

 $COG_Supreme_606H_Casing_Program_20210624155325.pdf$

Casing Design Assumptions and Worksheet(s):

COG_Supreme_606H_Casing_Program_20210624155350.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1350	644	1.75	13.5	1127	50	Class C + 4% Gel	1% CaCl2
SURFACE	Tail		0	1350	250	1.34	14.8	335	50	Class C	2% CaCl2
INTERMEDIATE	Lead		0	1180 0	840	3.3	10.3	2772	50	Halliburton tunded light	As needed
INTERMEDIATE	Tail		0	1180 0	250	1.35	14.8	337	50	Class H	As needed

Approval Date: 12/02/2021 Page 6 of 23

Well Name: SUPREME FEDERAL COM Well Number: 606H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Lead		1244 7	2795 6	524	2	12.7	1048	35	50:50:10 H Blend	As needed
PRODUCTION	Tail		1244 7	2795 6	1571	1.24	14.4	1948	35	50:50:2 Class H Blend	As needed

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	РН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
1350	1180 0	OTHER : Brine Diesel Emulsion	8.4	9							Brine Diesel Emulsion
1180 0	2795 6	OTHER : OBM	9.6	12.5							ОВМ
0	1350	OTHER : FW Gel	8.6	8.8							FW Gel

Approval Date: 12/02/2021 Page 7 of 23

Well Name: SUPREME FEDERAL COM Well Number: 606H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

None planned

List of open and cased hole logs run in the well:

CEMENT BOND LOG, COMPENSATED NEUTRON LOG, GAMMA RAY LOG,

Coring operation description for the well:

None planned

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 8095 Anticipated Surface Pressure: 5356

Anticipated Bottom Hole Temperature(F): 180

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

COG_Supreme_605H_606H_607H_608H_H2S_Schem_20210623114341.pdf COG_Supreme_H2S_SUP_20210623114348.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

COG_Supreme_606H_AC_RPT_20210624155913.pdf

COG_Supreme_606H_Directional_Plan_20210624155920.pdf

Other proposed operations facets description:

Drilling program attached.

GCP attached.

Cement program attached.

Other proposed operations facets attachment:

CDC_HTQ_RD_5.5000_23.0000_0.4150__P110_RY_20210623114527.pdf

LFJM_7.6250_29.7000_0.3750__P110_HC_20210623114659.pdf

COG_Supreme_606H_Drilling_Program_20210624155859.pdf

COG_Supreme_606H_Cement_Program_20210624155906.pdf

COG_Supreme_606H_GCP_20210625120252.pdf

Other Variance attachment:

Approval Date: 12/02/2021 Page 8 of 23

Well Name: SUPREME FEDERAL COM Well Number: 606H

5M Variance Well Plan 20200925152216.pdf

SUPO

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

COG_Supreme_605H_606H_607H_608H_Existing_Road_20210623121431.pdf

Existing Road Purpose: ACCESS Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

COG_Supreme_605H_606H_607H_608H_Road_Plats_20210623121456.pdf

New road type: RESOURCE

Length: 1579.5 Feet **Width (ft.):** 30

Max slope (%): 33 Max grade (%): 1

Army Corp of Engineers (ACOE) permit required? N

ACOE Permit Number(s):

New road travel width: 14

New road access erosion control: Water will be diverted where necessary to avoid ponding, prevent erosion, maintain good drainage, and to be consistent with local drainage patterns.

New road access plan or profile prepared? N

New road access plan attachment:

Access road engineering design? N

Access road engineering design attachment:

Approval Date: 12/02/2021 Page 9 of 23

Well Name: SUPREME FEDERAL COM Well Number: 606H

Turnout? N

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: Blading

Access other construction information: No turnouts are planned

Access miscellaneous information:

Number of access turnouts: Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: None necessary

Road Drainage Control Structures (DCS) description: None needed

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

COG_Supreme_606H_1_Mile_Data_20210623130234.pdf

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Supreme Federal 21M CTB. This CTB will be built to accommodate the Supreme Federal Com #605H, #606, #607H and #608. We plan to install (1) buried 4 FP 601HT production flowline from each wellhead to the inlet manifold of the proposed CTB (4 lines total); the route for these flowlines will remain on the pad, as the CTB pad and well pad are adjacent. We will install (1) buried 4 gas line for gas lift supply from the CTB to well pad (1 lines total); the route for the gas lift lines will follow the gas lift route as shown in the attached layout.

Production Facilities map:

COG_Supreme_Fed_21_M_CTB_20210623122341.pdf

Approval Date: 12/02/2021 Page 10 of 23

Well Name: SUPREME FEDERAL COM Well Number: 606H

Section 5 - Location and Types of Water Supply

Water Source Table

Water source type: OTHER

Describe type: Brine Water

Water source use type: INTERMEDIATE/PRODUCTION

CASING

Source latitude: Source longitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Water source transport method: TRUCKING

Source land ownership: COMMERCIAL

Source transportation land ownership: COMMERCIAL

Water source volume (barrels): 30000 Source volume (acre-feet): 3.86679289

Source volume (gal): 1260000

Water source type: OTHER

Describe type: Fresh Water

Water source use type: ICE PAD CONSTRUCTION &

MAINTENANCE SURFACE CASING

Source latitude: Source longitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Water source transport method: PIPELINE

Source land ownership: PRIVATE

Source transportation land ownership: PRIVATE

Water source volume (barrels): 450000 Source volume (acre-feet): 58.00189335

Source volume (gal): 18900000

Approval Date: 12/02/2021 Page 11 of 23

Well Name: SUPREME FEDERAL COM Well Number: 606H

Water source and transportation map:

COG_Supreme_605H_606H_607H_608H_Fresh_H2O_20210623122539.pdf COG_Supreme_605H_606H_607H_608H_Brine_H2O_20210623122549.pdf

Water source comments: Fresh water will be obtained from the Brininstool Frac Pond located in Section 21. T23S, R33E. Brine water will be obtained from the Malaga II Brine station in Section 12. T23S. R28E.

New water well? N

New Water Well Info

Well latitude: Well Longitude: Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft): Est thickness of aquifer:

Aquifer comments:

Aquifer documentation:

Well depth (ft): Well casing type:

Well casing outside diameter (in.): Well casing inside diameter (in.):

New water well casing?

Used casing source:

Drilling method: Drill material:

Grout material: Grout depth:

Casing length (ft.): Casing top depth (ft.):

Well Production type: Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Using any construction materials: YES

Construction Materials description: Caliche will be obtained from the actual well site if available. If not available onsite, caliche will be hauled from Limestone caliche pit located in Section 8. T23S. R33E.

Construction Materials source location attachment:

Approval Date: 12/02/2021 Page 12 of 23

Well Name: SUPREME FEDERAL COM Well Number: 606H

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drilling fluids and produced oil and water during drilling and completion operations

Amount of waste: 6000 barrels

Waste disposal frequency : One Time Only

Safe containment description: All drilling waste will be stored safely and disposed of properly

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: Trucked to an approved disposal facility

Waste type: SEWAGE

Waste content description: Human waste and gray water

Amount of waste: 250 gallons

Waste disposal frequency: Weekly

Safe containment description: Waste will be properly contained and disposed of properly at a state approved disposal

facility

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: Trucked to an approved disposal facility

Waste type: GARBAGE

Waste content description: Garbage and trash produced during drilling and completion operations

Amount of waste: 125 pounds

Waste disposal frequency: Weekly

Safe containment description: Garbage and trash produced during drilling and completion operations will be collected in a

trash container and disposed of properly at a state approved disposal facility

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: Trucked to an approved disposal facility

Approval Date: 12/02/2021 Page 13 of 23

Well Name: SUPREME FEDERAL COM Well Number: 606H

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.)

Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? Y

Description of cuttings location Roll off cuttings containers on tracks

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: N

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

COG_Supreme_605H_606H_607H_608H_Layout_20210623122642.pdf

Comments:

Approval Date: 12/02/2021 Page 14 of 23

Well Name: SUPREME FEDERAL COM Well Number: 606H

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance Multiple Well Pad Name: Supreme FEDERAL COM

Multiple Well Pad Number: 605H, 606H, 607H, 608H

Recontouring attachment:

COG_Supreme_605H_606H_607H_608H_Reclamation_20210623122707.pdf

Drainage/Erosion control construction: Immediately following construction, straw waddles will be placed as necessary at the well site to reduce sediment impacts to fragile/sensitive soils.

Drainage/Erosion control reclamation: Immediately following construction, straw waddles will be placed as necessary at the well site to reduce sediment impacts to fragile/sensitive soils.

Well pad proposed disturbance

(acres): 5.74

Road proposed disturbance (acres):

0.51

Powerline proposed disturbance

(acres): 0

Pipeline proposed disturbance

(acres): 0

Other proposed disturbance (acres):

3.67

Total proposed disturbance: 9.92

Well pad interim reclamation (acres): Well pad long term disturbance

0.06 (acres): 5.17

Road interim reclamation (acres): 0.51 Road long term disturbance (acres):

Powerline interim reclamation (acres):

(acres): 0 Pipeline interim reclamation (acres): 0

Pipeline long term disturbance

Other interim reclamation (acres): 3.67 (acres): 0

Other long term disturbance (acres): Total interim reclamation: 4.24

3.67

Total long term disturbance: 9.35

Powerline long term disturbance

Disturbance Comments:

Reconstruction method: If needed, portions of the pad not needed for production operations will be re-contoured to its original state as much as possible. The caliche that is removed will be reused. The stockpiled topsoil will be spread out over reclaimed area and reseeded with BLM approved seed mixture.

Topsoil redistribution: East

Soil treatment: None

Existing Vegetation at the well pad: Shinnery Oak/Mesquite grassland

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: Shinnery Oak/Mesquite grassland

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline: Shinnery Oak/Mesquite grassland

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances: N/A

Existing Vegetation Community at other disturbances attachment:

Approval Date: 12/02/2021 Page 15 of 23

Well Name: SUPREME FEDERAL COM Well Number: 606H

Non native seed used? N

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? N

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? N

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table

Seed Summary

Total pounds/Acre:

Seed Type

Pounds/Acre

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name: Last Name:

Phone: Email:

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? N

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: N/A

Weed treatment plan attachment: Monitoring plan description: N/A

Monitoring plan attachment:

Approval Date: 12/02/2021

Page 16 of 23

Well Name: SUPREME FEDERAL COM Well Number: 606H

Success standards: N/A

Pit closure description: N/A

Pit closure attachment:

COG_Supreme_Closed_Loop_20210621135633.pdf

Section 11 - Surface Ownership

Disturbance type: WELL PAD

Describe:

Surface Owner: PRIVATE OWNERSHIP

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Approval Date: 12/02/2021 Page 17 of 23

Well Name: SUPREME FEDERAL COM Well Number: 606H

Fee Owner: Fee Owner Depercated

Fee Owner Address:

Phone: (999)999-9999

Email: none@aol.com

Surface use plan certification: NO

Surface use plan certification document:

Surface access agreement or bond: AGREEMENT

Surface Access Agreement Need description: Hughes Properties, LLC Attn: Trey Hughes P.O. Box 5097

Carlsbad, NM 88221 (575) 361-3217 Trey.hcp@gmail.com

Surface Access Bond BLM or Forest Service:

BLM Surface Access Bond number:

USFS Surface access bond number:

Section 12 - Other Information

Right of Way needed? N

Use APD as ROW?

ROW Type(s):

ROW Applications

SUPO Additional Information: SUP attached. Onsite was done by Gerald Herrera (COP); Zane Kirsch (BLM); on May 12th,

2021 Private Surface

Use a previously conducted onsite? N

Previous Onsite information:

Other SUPO Attachment

COG_Supreme_605H_606H_607H_608H_Existing_Road_20210623123048.pdf

COG_Supreme_605H_606H_607H_608H_Road_Plats_20210623123039.pdf

COG_Supreme_Fed_21_M_CTB_20210623123026.pdf

COG_Supreme_606H_C102_20210625120315.pdf

COG_Supreme_606H_SUP_20210625120324.pdf

PWD

Approval Date: 12/02/2021 Page 18 of 23

Well Name: SUPREME FEDERAL COM Well Number: 606H

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Approval Date: 12/02/2021

Page 19 of 23

PWD disturbance (acres):

Well Name: SUPREME FEDERAL COM Well Number: 606H

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD disturbance (acres): PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Approval Date: 12/02/2021 Page 20 of 23

Well Name: SUPREME FEDERAL COM Well Number: 606H

Section 4 - Injection

Would you like to utilize Injection PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

Injection well number: Injection well name:

Assigned injection well API number? Injection well API number:

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Other PWD discharge volume (bbl/day):

Other PWD type description:

Approval Date: 12/02/2021 Page 21 of 23

Well Name: SUPREME FEDERAL COM Well Number: 606H

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

Bond Info

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB000215

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Operator Certification

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: MAYTE REYES Signed on: 06/23/2021

Title: Regulatory Analyst

Street Address: 925 N ELDRIDGE PARKWAY

City: HOUSTON State: TX Zip: 77252

Phone: (281)293-1000

Email address: MAYTE.X.REYES@CONOCOPHILLIPS.COM

Approval Date: 12/02/2021 Page 22 of 23

Well Name: SUPREME FEDERAL COM Well Number: 606H

Field Representative

Representative Name: Gerald Herrera
Street Address: 2208 West Main Street

City: Artesia State: NM Zip: 88210

Phone: (575)748-6940

Email address: Gerald.A.Herrera@conocophillips.com

Payment Info

Payment

APD Fee Payment Method: PAY.GOV pay.gov Tracking ID: 26SGCF29

APD ID: 10400076476

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

Submission Date: 06/25/2021

Operator Name: COG OPERATING LLC

Well Name: SUPREME FEDERAL COM Well Number: 606H

Well Type: OIL WELL Well Work Type: Drill

Highlighted data reflects the most recent changes

Show Final Text

Section 1 - Geologic Formations

Formation	Engado Nova	Ele effect	True Vertical			Min and David and	Producing
1D 6112757	Formation Name RED BEDS	Elevation 3692	Depth 0	Depth 0	Lithologies ALLUVIUM	Mineral Resources	Formation N
0112737	KED BEDS	3092		0	ALLOVIOW	NONE	IN
6112759	RUSTLER	2373	1319	1319	GYPSUM	NONE	N
6112760	TOP OF SALT	1868	1824	1824	SALT	NONE	N
6112761	BASE OF SALT	-1230	4922	4922	ANHYDRITE, SALT	NONE	N
6112762	LAMAR	-1486	5178	5178	LIMESTONE	NATURAL GAS, OIL	N
6112763	BELL CANYON	-1542	5234	5234	SANDSTONE	NATURAL GAS, OIL	N
6112764	CHERRY CANYON	-2458	6150	6150	SANDSTONE	NATURAL GAS, OIL	N
6112765	BRUSHY CANYON	-3775	7467	7467	SANDSTONE	NATURAL GAS, OIL	N
6112766	BONE SPRING LIME	-5399	9091	9091	LIMESTONE, SANDSTONE	NATURAL GAS, OIL	N
6112769	BONE SPRING 1ST	-6523	10215	10215	HALITE, SANDSTONE	NATURAL GAS, OIL	N
6112770	BONE SPRING 2ND	-7118	10810	10810	HALITE, SANDSTONE	NATURAL GAS, OIL	N
6112771	BONE SPRING 3RD	-8294	11986	11986	HALITE, SANDSTONE	NATURAL GAS, OIL	N
6112772	WOLFCAMP	-8666	12358	12358	SHALE, SILTSTONE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Well Name: SUPREME FEDERAL COM Well Number: 606H

Pressure Rating (PSI): 10M Rating Depth: 12447

Equipment: Accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines

and choke manifold.

Requesting Variance? YES

Variance request: Request a 5M annular variance on a 10M system. (5M variance attached in section 8). A variance is requested for the use of a flexible choke line from the BOP to the choke manifold. See attached for specs and hydrostatic test chart.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

Choke Diagram Attachment:

COG_Supreme_10M_Choke_20210621081151.pdf

BOP Diagram Attachment:

COG_Supreme_10M_BOP_20210621081200.pdf

COG_Supreme_605H_606H_607H_608H_Flex_Hose_20210623112403.pdf

Pressure Rating (PSI): 5M Rating Depth: 11800

Equipment: Annular, Blind Ram, Pipe Ram. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to the choke manifold. See attached for specs and hydrostatic test chart.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

Choke Diagram Attachment:

COG_Supreme_5M_Choke_20210618131914.pdf

BOP Diagram Attachment:

COG_Supreme_5M_BOP_20210621081100.pdf

COG_Supreme_605H_606H_607H_608H_Flex_Hose_20210623112332.pdf

Well Name: SUPREME FEDERAL COM Well Number: 606H

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	14.7 5	10.75	NEW	API	N	0	1350	0	1350	3692	2342	1350	J-55		OTHER - BTC	3.38	1.14	DRY	12.9 6	DRY	11.6 4
2	INTERMED IATE	8.75	7.625	NEW	API	Υ	0	11800	0	11800	3697	-8108		HCP -110		OTHER - FJM	1.21	1.38	DRY	1.59	DRY	2.68
3	PRODUCTI ON	6.75	5.5	NEW	API	Υ	0	27956	0	12447	3697	-8755	27956	P- 110	23	OTHER - Talon	1.8	2.12	DRY	2.47	DRY	2.55

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

COG_Supreme_606H_Casing_Program_20210624155413.pdf

Well Name: SUPREME FEDERAL COM Well Number: 606H

Casing Attachments

Casing ID: 2

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

COG_Supreme_606H_Casing_Program_20210624155431.pdf

Casing Design Assumptions and Worksheet(s):

COG_Supreme_606H_Casing_Program_20210624155446.pdf

Casing ID: 3

String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

COG_Supreme_606H_Casing_Program_20210624155325.pdf

Casing Design Assumptions and Worksheet(s):

COG_Supreme_606H_Casing_Program_20210624155350.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1350	644	1.75	13.5	1127	50	Class C + 4% Gel	1% CaCl2
SURFACE	Tail		0	1350	250	1.34	14.8	335	50	Class C	2% CaCl2
INTERMEDIATE	Lead		0	1180 0	840	3.3	10.3	2772	50	Halliburton tunded light	As needed
INTERMEDIATE	Tail		0	1180 0	250	1.35	14.8	337	50	Class H	As needed
PRODUCTION	Lead		1244 7	2795 6	524	2	12.7	1048	35	50:50:10 H Blend	As needed

Well Name: SUPREME FEDERAL COM Well Number: 606H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Tail		1244 7	2795 6	1571	1.24	14.4	1948	35	50:50:2 Class H Blend	As needed

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	НА	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
1350	1180 0	OTHER : Brine Diesel Emulsion	8.4	9							Brine Diesel Emulsion
1180 0	2795 6	OTHER : OBM	9.6	12.5							ОВМ
0	1350	OTHER : FW Gel	8.6	8.8							FW Gel

Well Name: SUPREME FEDERAL COM Well Number: 606H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

None planned

List of open and cased hole logs run in the well:

CEMENT BOND LOG, COMPENSATED NEUTRON LOG, GAMMA RAY LOG,

Coring operation description for the well:

None planned

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 8095 Anticipated Surface Pressure: 5356

Anticipated Bottom Hole Temperature(F): 180

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

COG_Supreme_605H_606H_607H_608H_H2S_Schem_20210623114341.pdf COG_Supreme_H2S_SUP_20210623114348.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

COG_Supreme_606H_AC_RPT_20210624155913.pdf

COG_Supreme_606H_Directional_Plan_20210624155920.pdf

Other proposed operations facets description:

Drilling program attached.

GCP attached.

Cement program attached.

Other proposed operations facets attachment:

CDC_HTQ_RD_5.5000_23.0000_0.4150__P110_RY_20210623114527.pdf

LFJM_7.6250_29.7000_0.3750__P110_HC_20210623114659.pdf

COG_Supreme_606H_Drilling_Program_20210624155859.pdf

COG_Supreme_606H_Cement_Program_20210624155906.pdf

COG_Supreme_606H_GCP_20210625120252.pdf

Other Variance attachment:

5M Variance Well Plan 20200925152216.pdf

DELAWARE BASIN EAST

BULLDOG PROSPECT (NM-E) SUPREME FED COM PROJECT SUPREME FED COM #606H

OWB

Plan: PWP1

Standard Survey Report

08 June, 2021

Survey Report

Company: **DELAWARE BASIN EAST** Project: **BULLDOG PROSPECT (NM-E)** Site: SUPREME FED COM PROJECT Well: SUPREME FED COM #606H

Wellbore: **OWB** PWP1 Design:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method: Database:

Well SUPREME FED COM #606H KB-30' @ 3722.2usft (SCAN QUEST) KB-30' @ 3722.2usft (SCAN QUEST)

Minimum Curvature **EDT 15 Central Prod**

BULLDOG PROSPECT (NM-E) Project

Map System: Geo Datum:

Map Zone:

US State Plane 1927 (Exact solution) NAD 1927 (NADCON CONUS)

New Mexico East 3001

System Datum:

Mean Sea Level

Well SUPREME FED COM #606H

Well Position +N/-S +E/-W 0 0 usft 0.0 usft

Date 6/8/2021

Northing: Easting:

467,911.10 usft 732,501.60 usft Latitude: Longitude:

32° 17' 2.987 N 103° 34' 51.583 W

Position Uncertainty 3.0 usft Wellhead Elevation: usft **Ground Level:** 3,692.2 usft

Wellbore **OWB**

Magnetics Model Name Sample Date Declination **Dip Angle** Field Strength (°) (°) (nT) IGRF2020 6/7/2021 6.56 59.95 47,528.71951496

Design PWP1

Audit Notes:

Version:

Phase:

PLAN

Tie On Depth:

0.0

Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°)

0.0 0.0 0.0 0.74

Survey Tool Program

From

(usft)

To

(usft) Survey (Wellbore) **Tool Name**

11,901.0 PWP1 (OWB) 0.0 27,955.6 PWP1 (OWB) 11,901.0

Standard Keeper 104 MWD+IFR1+FDIR

Description Standard Wireline Keeper ver 1.0.4

OWSG MWD + IFR1 + FDIR Correction

Planned Survey										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00	
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00	
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00	
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00	
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00	
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00	
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00	
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00	
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00	
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00	

Survey Report

Company: DELAWARE BASIN EAST
Project: BULLDOG PROSPECT (NM-E)
Site: SUPREME FED COM PROJECT
Well: SUPREME FED COM #606H

Wellbore: OWB
Design: PWP1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method: Database:

Well SUPREME FED COM #606H KB-30' @ 3722.2usft (SCAN QUEST) KB-30' @ 3722.2usft (SCAN QUEST)

Grid

Colgii.				Dutubus	•				
lanned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,200.0	0.00	0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00
2,300.0	0.00	0.00	2,300.0	0.0	0.0	0.0	0.00	0.00	0.00
2,400.0	0.00	0.00	2,400.0	0.0	0.0	0.0	0.00	0.00	0.00
2,500.0	0.00	0.00	2,500.0	0.0	0.0	0.0	0.00	0.00	0.00
Start Build			,						
2,600.0	2.00	142.74	2,600.0	-1.4	1.1	-1.4	2.00	2.00	0.00
2,700.0	4.00	142.74	2,699.8	-5.6	4.2	-5.5	2.00	2.00	0.00
2,800.0	6.00	142.74	2,799.5	-12.5	9.5	-12.4	2.00	2.00	0.00
•	7 hold at 2800		,, ,, ,,,,						5.55
2,900.0	6.00	142.74	2,898.9	-20.8	15.8	-20.6	0.00	0.00	0.00
3,000.0	6.00	142.74	2,998.4	-29.1	22.2	-28.8	0.00	0.00	0.00
3,100.0	6.00	142.74	3,097.8	-37.4	28.5	-37.1	0.00	0.00	0.00
3,200.0	6.00	142.74	3,197.3	-45.8	34.8	-45.3	0.00	0.00	0.00
3,300.0	6.00	142.74	3,197.3	- - 45.0	41.1	-53.5	0.00	0.00	0.00
3,400.0	6.00	142.74	3,396.2	-54.1 -62.4	47.5	-61.8	0.00	0.00	0.00
3,400.0	0.00	142.74	3,390.2	-02.4	47.3	-01.0	0.00		
3,500.0	6.00	142.74	3,495.6	-70.7	53.8	-70.0	0.00	0.00	0.00
3,600.0	6.00	142.74	3,595.1	-79.0	60.1	-78.3	0.00	0.00	0.00
3,700.0	6.00	142.74	3,694.5	-87.4	66.5	-86.5	0.00	0.00	0.00
3,800.0	6.00	142.74	3,794.0	-95.7	72.8	-94.7	0.00	0.00	0.00
3,900.0	6.00	142.74	3,893.4	-104.0	79.1	-103.0	0.00	0.00	0.00
4,000.0	6.00	142.74	3,992.9	-112.3	85.4	-111.2	0.00	0.00	0.00
4,100.0	6.00	142.74	4,092.3	-120.6	91.8	-119.4	0.00	0.00	0.00
4,200.0	6.00	142.74	4,191.8	-129.0	98.1	-127.7	0.00	0.00	0.00
4,300.0	6.00	142.74	4,291.2	-137.3	104.4	-135.9	0.00	0.00	0.00
4,400.0	6.00	142.74	4,390.7	-145.6	110.8	-144.2	0.00	0.00	0.00
4,500.0	6.00	142.74	4,490.1	-153.9	117.1	-152.4	0.00	0.00	0.00
4,600.0	6.00	142.74	4,589.6	-162.2	123.4	-160.6	0.00	0.00	0.00
4,700.0	6.00	142.74	4,689.0	-170.6	129.7	-168.9	0.00	0.00	0.00
4,800.0	6.00	142.74	4,788.5	-178.9	136.1	-177.1	0.00	0.00	0.00
4,900.0	6.00	142.74	4,887.9	-187.2	142.4	-185.3	0.00	0.00	0.00
5,000.0	6.00	142.74	4,987.4	-195.5	148.7	-193.6	0.00	0.00	0.00
5,100.0	6.00	142.74	5,086.9	-203.8	155.1	-201.8	0.00	0.00	0.00
5,200.0	6.00	142.74	5,186.3	-212.2	161.4	-210.0	0.00	0.00	0.00
5,300.0	6.00	142.74	5,285.8	-220.5	167.7	-218.3	0.00	0.00	0.00
5,400.0	6.00	142.74	5,385.2	-228.8	174.0	-226.5	0.00	0.00	0.00
5,500.0	6.00	142.74	5,484.7	-237.1	180.4	-234.8	0.00	0.00	0.00

Survey Report

Company: **DELAWARE BASIN EAST** Project: BULLDOG PROSPECT (NM-E) Site: SUPREME FED COM PROJECT SUPREME FED COM #606H Well:

Wellbore: OWB PWP1 Design:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method: Database:

Well SUPREME FED COM #606H KB-30' @ 3722.2usft (SCAN QUEST)

KB-30' @ 3722.2usft (SCAN QUEST)

ed Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,600.0	6.00	142.74	5,584.1	-245.4	186.7	-243.0	0.00	0.00	0.00
5,700.0	6.00	142.74	5,683.6	-253.8	193.0	-251.2	0.00	0.00	0.00
5,800.0	6.00	142.74	5,783.0	-262.1	199.4	-259.5	0.00	0.00	0.00
5,900.0	6.00	142.74	5,882.5	-270.4	205.7	-267.7	0.00	0.00	0.00
6,000.0	6.00	142.74	5,981.9	-278.7	212.0	-275.9	0.00	0.00	0.00
6,100.0	6.00	142.74	6,081.4	-287.0	218.3	-284.2	0.00	0.00	0.00
6,200.0	6.00	142.74	6,180.8	-295.4	224.7	-292.4	0.00	0.00	0.00
6,300.0	6.00	142.74	6,280.3	-303.7	231.0	-300.6	0.00	0.00	0.00
6,400.0	6.00	142.74	6,379.7	-312.0	237.3	-308.9	0.00	0.00	0.00
6,500.0	6.00	142.74	6,479.2	-320.3	243.6	-317.1	0.00	0.00	0.00
6,600.0	6.00	142.74	6,578.6	-328.6	250.0	-325.4	0.00	0.00	0.00
6,700.0	6.00	142.74	6,678.1	-337.0	256.3	-333.6	0.00	0.00	0.00
6,800.0	6.00	142.74	6,777.5	-345.3	262.6	-341.8	0.00	0.00	0.00
6,900.0	6.00	142.74	6,877.0	-353.6	269.0	-350.1	0.00	0.00	0.00
0,900.0	0.00	142.74	0,077.0	-333.0	209.0	-330.1	0.00	0.00	0.00
7,000.0	6.00	142.74	6,976.4	-361.9	275.3	-358.3	0.00	0.00	0.00
7,100.0	6.00	142.74	7,075.9	-370.2	281.6	-366.5	0.00	0.00	0.00
7,200.0	6.00	142.74	7,175.3	-378.5	287.9	-374.8	0.00	0.00	0.00
7,300.0	6.00	142.74	7,274.8	-386.9	294.3	-383.0	0.00	0.00	0.00
7,400.0	6.00	142.74	7,374.3	-395.2	300.6	-391.3	0.00	0.00	0.00
7,500.0	6.00	142.74	7,473.7	-403.5	306.9	-399.5	0.00	0.00	0.00
7,600.0	6.00	142.74	7,573.2	-411.8	313.3	-407.7	0.00	0.00	0.00
7,611.7	6.00	142.74	7,584.8	-412.8	314.0	-408.7	0.00	0.00	0.00
Start 4289	.3 hold at 7611	.7 MD							
7,700.0	0.00	0.00	7,673.1	-412.8	314.0	-408.7	6.79	-6.79	0.00
7,800.0	0.00	0.00	7,773.1	-412.8	314.0	-408.7	0.00	0.00	0.00
7,900.0	0.00	0.00	7,873.1	-412.8	314.0	-408.7	0.00	0.00	0.00
8,000.0	0.00	0.00	7,973.1	-412.8	314.0	-408.7	0.00	0.00	0.00
8,100.0	0.00	0.00	8,073.1	-412.8	314.0	-408.7	0.00	0.00	0.00
8,200.0	0.00	0.00	8,173.1	-412.8	314.0	-408.7	0.00	0.00	0.00
8,300.0	0.00	0.00	8,273.1	-412.8	314.0	-408.7	0.00	0.00	0.00
8,400.0	0.00	0.00	8,373.1	-412.8	314.0	-408.7	0.00	0.00	0.00
8,500.0	0.00	0.00	8,473.1	-412.8	314.0	-408.7	0.00	0.00	0.00
8,600.0	0.00	0.00	8,573.1	-412.8	314.0	-408.7	0.00	0.00	0.00
8,700.0	0.00	0.00	8,673.1	-412.8	314.0	-408.7	0.00	0.00	0.00
8,800.0	0.00	0.00	8,773.1	-412.8	314.0	-408.7	0.00	0.00	0.00
	0.00								0.00
8,900.0		0.00	8,873.1	-412.8	314.0	-408.7	0.00	0.00	
9,000.0	0.00	0.00	8,973.1	-412.8	314.0	-408.7	0.00	0.00	0.00
9,100.0	0.00	0.00	9,073.1	-412.8	314.0	-408.7	0.00	0.00	0.00
9,200.0	0.00	0.00	9,173.1	-412.8	314.0	-408.7	0.00	0.00	0.00
9,300.0	0.00	0.00	9,273.1	-412.8	314.0	-408.7	0.00	0.00	0.00
9,400.0	0.00	0.00	9,373.1	-412.8	314.0	-408.7	0.00	0.00	0.00
9,500.0	0.00	0.00	9,473.1	-412.8	314.0	-408.7	0.00	0.00	0.00
9,600.0	0.00	0.00	9,573.1	-412.8	314.0	-408.7	0.00	0.00	0.00
9,700.0	0.00	0.00	9,673.1	-412.8	314.0	-408.7	0.00	0.00	0.00

Survey Report

Company: DELAWARE BASIN EAST
Project: BULLDOG PROSPECT (NM-E)
Site: SUPREME FED COM PROJECT
Well: SUPREME FED COM #606H

Wellbore: OWB
Design: PWP1

Local Co-ordinate Reference: TVD Reference:

MD Reference:
North Reference:

Survey Calculation Method: Database:

Well SUPREME FED COM #606H KB-30' @ 3722.2usft (SCAN QUEST) KB-30' @ 3722.2usft (SCAN QUEST)

Grid

anned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,800.0	0.00	0.00	9,773.1	-412.8	314.0	-408.7	0.00	0.00	0.00
9,900.0	0.00	0.00	9,873.1	-412.8	314.0	-408.7	0.00	0.00	0.00
10,000.0	0.00	0.00	9,973.1	-412.8	314.0	-408.7	0.00	0.00	0.00
10,100.0	0.00	0.00	10,073.1	-412.8	314.0	-408.7	0.00	0.00	0.00
10,200.0	0.00	0.00	10,173.1	-412.8	314.0	-408.7	0.00	0.00	0.00
10,300.0	0.00	0.00	10,273.1	-412.8	314.0	-408.7	0.00	0.00	0.00
10,400.0	0.00	0.00	10,373.1	-412.8	314.0	-408.7	0.00	0.00	0.00
10,500.0	0.00	0.00	10,473.1	-412.8	314.0	-408.7	0.00	0.00	0.00
10,600.0	0.00	0.00	10,573.1	-412.8	314.0	-408.7	0.00	0.00	0.00
10,700.0	0.00	0.00	10,673.1	-412.8	314.0	-408.7	0.00	0.00	0.00
10,800.0	0.00	0.00	10,773.1	-412.8	314.0	-408.7	0.00	0.00	0.00
10,900.0	0.00	0.00	10,873.1	-412.8	314.0	-408.7	0.00	0.00	0.00
11,000.0	0.00	0.00	10,973.1	-412.8	314.0	-408.7	0.00	0.00	0.00
11,100.0	0.00	0.00	11,073.1	-412.8	314.0	-408.7	0.00	0.00	0.00
11,200.0	0.00	0.00	11,173.1	-412.8	314.0	-408.7	0.00	0.00	0.00
11,300.0	0.00	0.00	11,273.1	-412.8	314.0	-408.7	0.00	0.00	0.00
11,400.0	0.00	0.00	11,373.1	-412.8	314.0	-408.7	0.00	0.00	0.00
11,500.0	0.00	0.00	11,473.1	-412.8	314.0	-408.7	0.00	0.00	0.00
11,600.0	0.00	0.00	11,573.1	-412.8	314.0	-408.7	0.00	0.00	0.00
11,700.0	0.00	0.00	11,673.1	-412.8	314.0	-408.7	0.00	0.00	0.00
11,800.0	0.00	0.00	11,773.1	-412.8	314.0	-408.7	0.00	0.00	0.00
11,900.0	0.00	0.00	11,873.1	-412.8	314.0	-408.7	0.00	0.00	0.00
11,901.0	0.00	0.00	11,874.1	-412.8	314.0	-408.7	0.00	0.00	0.00
Start Build	1 10.00								
12,000.0	9.90	359.58	11,972.6	-404.3	313.9	-400.2	10.00	10.00	0.00
12,100.0	19.90	359.58	12,069.1	-378.6	313.7	-374.5	10.00	10.00	0.00
12,200.0	29.90	359.58	12,159.7	-336.5	313.4	-332.4	10.00	10.00	0.00
12,300.0	39.90	359.58	12,241.6	-279.4	313.0	-275.3	10.00	10.00	0.00
12,400.0	49.90	359.58	12,312.4	-208.9	312.5	-204.8	10.00	10.00	0.00
12,500.0	59.90	359.58	12,369.8	-127.2	311.9	-123.1	10.00	10.00	0.00
12,600.0	69.90	359.58	12,412.2	-36.8	311.2	-32.7	10.00	10.00	0.00
12,700.0	79.90	359.58	12,438.2	59.7	310.5	63.7	10.00	10.00	0.00
12,800.0	89.90	359.58	12,447.1	159.1	309.8	163.1	10.00	10.00	0.00
12,804.8	90.38	359.58	12,447.0	163.9	309.8	168.0	10.00	10.00	0.00
	.1 hold at 1280								
12,900.0	90.38	359.58	12,446.4	259.1	309.1	263.1	0.00	0.00	0.00
13,000.0	90.38	359.58	12,445.8	359.1	308.3	363.1	0.00	0.00	0.00
13,100.0	90.38	359.58	12,445.1	459.1	307.6	463.1	0.00	0.00	0.00
13,200.0	90.38	359.58	12,444.4	559.1	306.9	563.1	0.00	0.00	0.00
13,300.0	90.38	359.58	12,443.8	659.1	306.2	663.0	0.00	0.00	0.00
13,400.0	90.38	359.58	12,443.1	759.1	305.4	763.0	0.00	0.00	0.00
13,500.0	90.38	359.58	12,442.4	859.1	304.7	863.0	0.00	0.00	0.00
13,600.0	90.38	359.58	12,441.8	959.1	304.0	963.0	0.00	0.00	0.00

Survey Report

Company: DELAWARE BASIN EAST Project: BULLDOG PROSPECT (NM-E) Site: SUPREME FED COM PROJECT Well: SUPREME FED COM #606H

Wellbore: OWB PWP1 Design:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Database:

Survey Calculation Method:

Well SUPREME FED COM #606H KB-30' @ 3722.2usft (SCAN QUEST) KB-30' @ 3722.2usft (SCAN QUEST)

nned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,700.0	90.38	359.58	12,441.1	1,059.1	303.2	1,062.9	0.00	0.00	0.00
13,800.0	90.38	359.58	12,440.4	1,159.1	302.5	1,162.9	0.00	0.00	0.00
13,900.0	90.38	359.58	12,439.8	1,259.1	301.8	1,262.9	0.00	0.00	0.00
14,000.0	90.38	359.58	12,439.1	1,359.1	301.0	1,362.9	0.00	0.00	0.00
·					300.3				
14,100.0	90.38	359.58	12,438.5	1,459.1	300.3	1,462.8	0.00	0.00	0.00
14,200.0	90.38	359.58	12,437.8	1,559.1	299.6	1,562.8	0.00	0.00	0.00
14,300.0	90.38	359.58	12,437.1	1,659.1	298.8	1,662.8	0.00	0.00	0.00
14,400.0	90.38	359.58	12,436.5	1,759.1	298.1	1,762.8	0.00	0.00	0.00
14,463.9	90.38	359.58	12,436.0	1,823.0	297.6	1,826.7	0.00	0.00	0.00
Start DLS	2.00 TFO -87.0)1				·			
14,500.0	90.42	358.86	12,435.8	1,859.0	297.1	1,862.8	2.00	0.10	-2.00
14,600.0	00.52	356.86	12,435.0	1 050 0	293.4	1 062 6	2.00	0.10	-2.00
,	90.52 90.58	355.66	,	1,959.0	293.4 289.5	1,962.6		0.10	
14,660.1			12,434.4	2,018.9	289.5	2,022.5	2.00	0.10	-2.00
	hold at 14660		40.404.6	0.050.7	000 =	0.000.0	2.22	2.22	2.22
14,700.0	90.58	355.66	12,434.0	2,058.7	286.5	2,062.3	0.00	0.00	0.00
14,800.0	90.58	355.66	12,433.0	2,158.4	278.9	2,161.9	0.00	0.00	0.00
14,900.0	90.58	355.66	12,431.9	2,258.1	271.3	2,261.5	0.00	0.00	0.00
15,000.0	90.58	355.66	12,430.9	2,357.8	263.8	2,361.1	0.00	0.00	0.00
15,100.0	90.58	355.66	12,429.9	2,457.6	256.2	2,460.7	0.00	0.00	0.00
15,142.6	90.58	355.66	12,429.5	2,500.0	253.0	2,503.1	0.00	0.00	0.00
	2.00 TFO 91.56		,	_,		_,			
15,200.0	90.55	356.81	12,428.9	2,557.3	249.2	2,560.3	2.00	-0.05	2.00
15,300.0	90.50	358.81	12,428.0	2,657.2	245.4	2,660.2	2.00	-0.06	2.00
10,000.0									
15,400.0	90.44	0.81	12,427.2	2,757.2	245.1	2,760.2	2.00	-0.06	2.00
15,500.0	90.39	2.81	12,426.5	2,857.2	248.2	2,860.1	2.00	-0.06	2.00
15,509.6	90.38	3.00	12,426.4	2,866.7	248.7	2,869.7	2.00	-0.06	2.00
•) hold at 15509					•			
15,600.0	90.38	3.00	12,425.8	2,957.0	253.4	2,960.1	0.00	0.00	0.00
15,700.0	90.38	3.00	12,425.1	3,056.9	258.7	3,060.0	0.00	0.00	0.00
10,100.0	55.55	0.00	12, 420.1	0,000.0	200.1	0,000.0	0.00	0.00	0.00
15,800.0	90.38	3.00	12,424.5	3,156.7	263.9	3,159.9	0.00	0.00	0.00
15,900.0	90.38	3.00	12,423.8	3,256.6	269.1	3,259.8	0.00	0.00	0.00
16,000.0	90.38	3.00	12,423.1	3,356.5	274.4	3,359.7	0.00	0.00	0.00
16,100.0	90.38	3.00	12,423.1	3,456.3	279.6	3,459.7	0.00	0.00	0.00
16,100.0	90.38	3.00	12,422.5	3,456.3 3,556.2	284.8	3,459.7 3,559.6	0.00	0.00	0.00
10,200.0	90.36	3.00	12,421.0	J,JJ0.Z	∠04.0	3,559.6	0.00	0.00	0.00
16,300.0	90.38	3.00	12,421.1	3,656.0	290.1	3,659.5	0.00	0.00	0.00
16,400.0	90.38	3.00	12,420.5	3,755.9	295.3	3,759.4	0.00	0.00	0.00
16,429.6	90.38	3.00	12,420.3	3,785.5	296.9	3,789.0	0.00	0.00	0.00
	2.00 TFO -90.2		,0.0	2,. 00.0		2,. 55.0	2.20	0.00	0.00
16,500.0	90.37	1.59	12,419.8	3,855.8	299.7	3,859.4	2.00	-0.01	-2.00
16,600.0	90.36	359.59	12,419.0	3,955.8	300.7	3,959.4	2.00	-0.01	-2.00
16,605.3	90.36	359.49	12,419.1	3,961.1	300.7	3,964.6	2.00	-0.01	-2.00
Start 1135	0.3 hold at 166	05.3 MD							
16,700.0	90.36	359.49	12,418.5	4,055.8	299.8	4,059.3	0.00	0.00	0.00
16,800.0	90.36	359.49	12,417.9	4,155.8	298.9	4,159.3	0.00	0.00	0.00
16,900.0	90.36	359.49	12,417.3	4,255.8	298.0	4,259.3	0.00	0.00	0.00

Survey Report

Company: **DELAWARE BASIN EAST** Project: BULLDOG PROSPECT (NM-E) Site: SUPREME FED COM PROJECT SUPREME FED COM #606H Well:

Wellbore: OWB PWP1 Design:

Local Co-ordinate Reference: TVD Reference:

MD Reference: North Reference:

Survey Calculation Method:

Database:

Well SUPREME FED COM #606H KB-30' @ 3722.2usft (SCAN QUEST)

KB-30' @ 3722.2usft (SCAN QUEST)

Planned Survey										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	
17,000.0	90.36	359.49	12,416.6	4,355.8	297.1	4,359.3	0.00	0.00	0.00	
17,100.0	90.36	359.49	12,416.0	4,455.8	296.2	4,459.2	0.00	0.00	0.00	
17,200.0	90.36	359.49	12,415.4	4,555.8	295.3	4,559.2	0.00	0.00	0.00	
17.300.0	90.36	359.49	12,414.7	4,655.7	294.4	4,659.2	0.00	0.00	0.00	
17,400.0	90.36	359.49	12,414.1	4,755.7	293.6	4,759.2	0.00	0.00	0.00	
17,500.0	90.36	359.49	12,413.5	4,855.7	292.7	4,859.1	0.00	0.00	0.00	
17,600.0	90.36	359.49	12,412.8	4,955.7	291.8	4,959.1	0.00	0.00	0.00	
17,700.0	90.36	359.49	12,412.0	5,055.7	290.9	5,059.1	0.00	0.00	0.00	
17,700.0	90.36	359.49	12,412.2	5,055.7 5,155.7	290.9	5,059.1	0.00	0.00	0.00	
17,900.0	90.36	359.49	12,410.9	5,255.7	289.1	5,259.0	0.00	0.00	0.00	
18,000.0	90.36	359.49	12,410.3	5,355.7	288.2	5,359.0	0.00	0.00	0.00	
18,100.0	90.36	359.49	12,409.6	5,455.7	287.3	5,459.0	0.00	0.00	0.00	
18,200.0	90.36	359.49	12,409.0	5,555.7	286.4	5,558.9	0.00	0.00	0.00	
18,300.0	90.36	359.49	12,408.4	5,655.7	285.5	5,658.9	0.00	0.00	0.00	
18,400.0	90.36	359.49	12,407.7	5,755.7	284.6	5,758.9	0.00	0.00	0.00	
18,500.0	90.36	359.49	12,407.1	5,855.7	283.7	5,858.9	0.00	0.00	0.00	
18,600.0	90.36	359.49	12,406.5	5,955.7	282.8	5,958.8	0.00	0.00	0.00	
18,700.0	90.36	359.49	12,405.8	6.055.7	281.9	6,058.8	0.00	0.00	0.00	
18,800.0	90.36	359.49	12,405.2	6,155.7	281.0	6,158.8	0.00	0.00	0.00	
18,900.0	90.36	359.49	12,404.6	6,255.7	280.1	6,258.8	0.00	0.00	0.00	
19,000.0	90.36	359.49	12,404.0	6,355.6	279.2	6,358.7	0.00	0.00	0.00	
19,000.0	90.30	339.49	12,403.9	0,333.0	219.2	0,330.7	0.00	0.00	0.00	
19,100.0	90.36	359.49	12,403.3	6,455.6	278.3	6,458.7	0.00	0.00	0.00	
19,200.0	90.36	359.49	12,402.7	6,555.6	277.4	6,558.7	0.00	0.00	0.00	
19,300.0	90.36	359.49	12,402.0	6,655.6	276.5	6,658.7	0.00	0.00	0.00	
19,400.0	90.36	359.49	12,401.4	6,755.6	275.6	6,758.6	0.00	0.00	0.00	
19,500.0	90.36	359.49	12,400.7	6,855.6	274.7	6,858.6	0.00	0.00	0.00	
19,600.0	90.36	359.49	12,400.1	6,955.6	273.8	6,958.6	0.00	0.00	0.00	
19,700.0	90.36	359.49	12,400.1	7,055.6	273.6	7,058.6	0.00	0.00	0.00	
19,700.0	90.36	359.49	12,399.5	7,055.6 7,155.6	272.9 272.0	7,056.6 7,158.5	0.00	0.00	0.00	
19,000.0	90.36	359.49	12,396.6	7,155.6 7,255.6	272.0 271.1	7,156.5 7,258.5	0.00	0.00	0.00	
		359.49 359.49					0.00	0.00		
20,000.0	90.36	339.49	12,397.6	7,355.6	270.2	7,358.5	0.00	0.00	0.00	
20,100.0	90.36	359.49	12,396.9	7,455.6	269.3	7,458.4	0.00	0.00	0.00	
20,200.0	90.36	359.49	12,396.3	7,555.6	268.4	7,558.4	0.00	0.00	0.00	
20,300.0	90.36	359.49	12,395.7	7,655.6	267.5	7,658.4	0.00	0.00	0.00	
20,400.0	90.36	359.49	12,395.0	7,755.6	266.6	7,758.4	0.00	0.00	0.00	
20,500.0	90.36	359.49	12,394.4	7,855.6	265.8	7,858.3	0.00	0.00	0.00	
20,600.0	90.36	359.49	12,393.8	7,955.5	264.9	7,958.3	0.00	0.00	0.00	
20,700.0	90.36	359.49	12,393.1	8,055.5	264.0	8,058.3	0.00	0.00	0.00	
20,800.0	90.36	359.49	12,392.5	8,155.5	263.1	8,158.3	0.00	0.00	0.00	
20,900.0	90.36	359.49	12,391.8	8,255.5	262.2	8,258.2	0.00	0.00	0.00	
21,000.0	90.36	359.49	12,391.2	8,355.5	261.3	8,358.2	0.00	0.00	0.00	
21,100.0	90.36	359.49	12,390.6	8,455.5	260.4	8,458.2	0.00	0.00	0.00	
21,200.0	90.36	359.49	12,389.9	8,555.5	259.5	8,558.2	0.00	0.00	0.00	

Survey Report

Company: **DELAWARE BASIN EAST** Project: BULLDOG PROSPECT (NM-E) Site: SUPREME FED COM PROJECT SUPREME FED COM #606H Well:

Wellbore: OWB PWP1 Design:

Local Co-ordinate Reference: TVD Reference:

MD Reference: North Reference:

Survey Calculation Method:

Database:

Well SUPREME FED COM #606H KB-30' @ 3722.2usft (SCAN QUEST)

KB-30' @ 3722.2usft (SCAN QUEST)

nned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
21,300.0	90.36	359.49	12,389.3	8,655.5	258.6	8,658.1	0.00	0.00	0.00
21,400.0	90.36	359.49	12,388.7	8,755.5	257.7	8,758.1	0.00	0.00	0.00
21,500.0	90.36	359.49	12,388.0	8,855.5	256.8	8,858.1	0.00	0.00	0.00
21,600.0	90.36	359.49	12,387.4	8,955.5	255.9	8,958.1	0.00	0.00	0.00
21,700.0	90.36	359.49	12,386.8	9,055.5	255.0	9,058.0	0.00	0.00	0.00
21,800.0	90.36	359.49	12,386.1	9,155.5	254.1	9,158.0	0.00	0.00	0.00
21,900.0	90.36	359.49	12,385.5	9,255.5	253.2	9,258.0	0.00	0.00	0.00
22,000.0	90.36	359.49	12,384.9	9,355.5	252.3	9,358.0	0.00	0.00	0.00
22,100.0	90.36	359.49	12,384.2	9,455.5	251.4	9,457.9	0.00	0.00	0.00
22,200.0	90.36	359.49	12,383.6	9,555.5	250.5	9,557.9	0.00	0.00	0.00
22,300.0	90.36	359.49	12,382.9	9,655.4	249.6	9,657.9	0.00	0.00	0.00
22,400.0	90.36	359.49	12,382.3	9,755.4	248.7	9,757.8	0.00	0.00	0.00
22,500.0	90.36	359.49	12,381.7	9,855.4	247.8	9,857.8	0.00	0.00	0.00
22,600.0	90.36	359.49	12,381.0	9,955.4	246.9	9,957.8	0.00	0.00	0.00
22,700.0	90.36	359.49	12,380.4	10.055.4	246.0	10,057.8	0.00	0.00	0.00
22,800.0	90.36	359.49	12,379.8	10,155.4	245.1	10,157.7	0.00	0.00	0.00
22,900.0	90.36	359.49	12,379.1	10,155.4	244.2	10,157.7	0.00	0.00	0.00
23,000.0	90.36	359.49	12,378.5	10,355.4	243.3	10,357.7	0.00	0.00	0.00
23,100.0	90.36	359.49	12,377.9	10,455.4	242.4	10,457.7	0.00	0.00	0.00
23,200.0	90.36	359.49	12,377.2	10,555.4	241.5	10,557.6	0.00	0.00	0.00
23,300.0	90.36	359.49	12,376.6	10,655.4	240.6	10,657.6	0.00	0.00	0.00
23,400.0	90.36	359.49	12,376.0	10,755.4	239.7	10,757.6	0.00	0.00	0.00
23,500.0	90.36	359.49	12,375.3	10,855.4	238.9	10,857.6	0.00	0.00	0.00
23,600.0	90.36	359.49	12,374.7	10,955.4	238.0	10,957.5	0.00	0.00	0.00
23,700.0	90.36	359.49	12,374.0	11,055.4	237.1	11,057.5	0.00	0.00	0.00
23,800.0	90.36	359.49	12,373.4	11,155.4	236.2	11,157.5	0.00	0.00	0.00
23,900.0	90.36	359.49	12,373.4	11,255.3	235.3	11,157.5	0.00	0.00	0.00
24,000.0	90.36	359.49	12,372.1	11,355.3	234.4	11,357.4	0.00	0.00	0.00
24,100.0	90.36	359.49	12,371.5	11,455.3	233.5	11,457.4	0.00	0.00	0.00
24,200.0	90.36	359.49	12,370.9	11,555.3	232.6	11,557.4	0.00	0.00	0.00
24,300.0	90.36	359.49	12,370.2	11,655.3	231.7	11,657.4	0.00	0.00	0.00
24,400.0	90.36	359.49	12,369.6	11,755.3	230.8	11,757.3	0.00	0.00	0.00
24,500.0	90.36	359.49	12,369.0	11,855.3	229.9	11,857.3	0.00	0.00	0.00
24,600.0	90.36	359.49	12,368.3	11,955.3	229.0	11,957.3	0.00	0.00	0.00
24,700.0	90.36	359.49	12,367.7	12,055.3	228.1	12,057.2	0.00	0.00	0.00
24,800.0	90.36	359.49	12,367.1	12,155.3	227.2	12,157.2	0.00	0.00	0.00
24,900.0	90.36	359.49	12,366.4	12,155.3	226.3	12,157.2	0.00	0.00	0.00
25,000.0	90.36	359.49	12,365.8	12,355.3	225.4	12,357.2	0.00	0.00	0.00
25,100.0	90.36	359.49	12,365.2	12,455.3	224.5	12,457.1	0.00	0.00	0.00
25,200.0	90.36	359.49	12,364.5	12,555.3	223.6	12,557.1	0.00	0.00	0.00
25,300.0	90.36	359.49	12,363.9	12,655.3	222.7	12,657.1	0.00	0.00	0.00
25,400.0	90.36	359.49	12,363.2	12,755.3	221.8	12,757.1	0.00	0.00	0.00
25,500.0	90.36	359.49	12,362.6	12,755.3	220.9	12,757.1	0.00	0.00	0.00

Survey Report

Company: DELAWARE BASIN EAST
Project: BULLDOG PROSPECT (NM-E)
Site: SUPREME FED COM PROJECT
Well: SUPREME FED COM #606H

Wellbore: OWB
Design: PWP1

Local Co-ordinate Reference: TVD Reference: MD Reference:

North Reference: Survey Calculation Method: Database: Well SUPREME FED COM #606H KB-30' @ 3722.2usft (SCAN QUEST) KB-30' @ 3722.2usft (SCAN QUEST)

Grid

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
25,600.0	90.36	359.49	12,362.0	12,955.2	220.0	12,957.0	0.00	0.00	0.00
25,700.0	90.36	359.49	12,361.3	13,055.2	219.1	13,057.0	0.00	0.00	0.00
25,800.0	90.36	359.49	12,360.7	13,155.2	218.2	13,157.0	0.00	0.00	0.00
25,900.0	90.36	359.49	12,360.1	13,255.2	217.3	13,256.9	0.00	0.00	0.00
26,000.0	90.36	359.49	12,359.4	13,355.2	216.4	13,356.9	0.00	0.00	0.00
26,100.0	90.36	359.49	12,358.8	13,455.2	215.5	13,456.9	0.00	0.00	0.00
26,200.0	90.36	359.49	12,358.2	13,555.2	214.6	13,556.9	0.00	0.00	0.00
26,300.0	90.36	359.49	12,357.5	13,655.2	213.7	13,656.8	0.00	0.00	0.00
26,400.0	90.36	359.49	12,356.9	13,755.2	212.8	13,756.8	0.00	0.00	0.00
26,500.0	90.36	359.49	12,356.3	13,855.2	212.0	13,856.8	0.00	0.00	0.00
26,600.0	90.36	359.49	12,355.6	13,955.2	211.1	13,956.8	0.00	0.00	0.00
26,700.0	90.36	359.49	12,355.0	14,055.2	210.2	14,056.7	0.00	0.00	0.00
26,800.0	90.36	359.49	12,354.3	14,155.2	209.3	14,156.7	0.00	0.00	0.00
26,900.0	90.36	359.49	12,353.7	14,255.2	208.4	14,256.7	0.00	0.00	0.00
27,000.0	90.36	359.49	12,353.1	14,355.2	207.5	14,356.6	0.00	0.00	0.00
27,100.0	90.36	359.49	12,352.4	14,455.2	206.6	14,456.6	0.00	0.00	0.00
27,200.0	90.36	359.49	12,351.8	14,555.2	205.7	14,556.6	0.00	0.00	0.00
27,300.0	90.36	359.49	12,351.2	14,655.1	204.8	14,656.6	0.00	0.00	0.00
27,400.0	90.36	359.49	12,350.5	14,755.1	203.9	14,756.5	0.00	0.00	0.00
27,500.0	90.36	359.49	12,349.9	14,855.1	203.0	14,856.5	0.00	0.00	0.00
27,600.0	90.36	359.49	12,349.3	14,955.1	202.1	14,956.5	0.00	0.00	0.00
27,700.0	90.36	359.49	12,348.6	15,055.1	201.2	15,056.5	0.00	0.00	0.00
27,800.0	90.36	359.49	12,348.0	15,155.1	200.3	15,156.4	0.00	0.00	0.00
27,900.0	90.36	359.49	12,347.4	15,255.1	199.4	15,256.4	0.00	0.00	0.00
27,955.6	90.36	359.49	12,347.0	15,310.7	198.9	15,312.0	0.00	0.00	0.00
TD at 27955			,	-,		- / -			

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
PBHL (SUPREME FE - plan hits target ce - Rectangle (sides			,	15,310.7	198.9	483,221.80	732,700.50	32° 19' 34.478 N	103° 34' 48.013 W
LTP (SUPREME FED - plan misses targe - Point	0.00 et center by		12,347.0 7900.0usft	15,260.7 MD (12347.4	199.3 TVD, 1525	483,171.80 5.1 N, 199.4 E)	732,700.90	32° 19' 33.983 N	103° 34' 48.012 W
POI#1 (SUPREME FE - plan hits target ce - Point		0.01	12,429.5	2,500.0	253.0	470,411.10	732,754.60	32° 17' 27.708 N	103° 34' 48.431 W
FTP (SUPREME FED - plan misses targe - Circle (radius 50.	,		12,447.0 t 12372.9u:	-382.4 sft MD (1229	312.8 4.4 TVD, -22	467,528.70 9.2 N, 312.7 E)	732,814.40	32° 16' 59.181 N	103° 34' 47.970 W

Survey Report

Database:

Company: DELAWARE BASIN EAST
Project: BULLDOG PROSPECT (NM-E)
Site: SUPREME FED COM PROJECT
Well: SUPREME FED COM #606H

Wellbore: OWB
Design: PWP1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Well SUPREME FED COM #606H KB-30' @ 3722.2usft (SCAN QUEST) KB-30' @ 3722.2usft (SCAN QUEST)

Grid

Plan Annota	Plan Annotations									
	Measured Depth (usft)	Vertical Depth (usft)	Local Coord +N/-S (usft)	dinates +E/-W (usft)	Comment					
	2500	2500	0	0	Start Build 2.00					
	2800	2799	-12	10	Start 4811.7 hold at 2800.0 MD					
	7612	7585	-413	314	Start 4289.3 hold at 7611.7 MD					
	11,901	11,874	-413	314	Start Build 10.00					
	12,805	12,447	164	310	Start 1659.1 hold at 12804.8 MD					
	14,464	12,436	1823	298	Start DLS 2.00 TFO -87.01					
	14,660	12,434	2019	289	Start 482.5 hold at 14660.1 MD					
	15,143	12,429	2500	253	Start DLS 2.00 TFO 91.56					
	15,510	12,426	2867	249	Start 920.0 hold at 15509.6 MD					
	16,430	12,420	3785	297	Start DLS 2.00 TFO -90.25					
	16,605	12,419	3961	301	Start 11350.3 hold at 16605.3 MD					
	27,956	12,347	15,311	199	TD at 27955.6					

Checked By: Approved By: Date:	
--------------------------------	--

Received by OCD: 12/16/2021 2:17:12 PM Project: BULLDOG PROSPECT (NM-E)
Site: SUPREME FED COM PROJECT ConocoPhillips Well: SUPREME FED COM #606H Wellbore: OWB Design: PWP1 GL: 3692.2 KB-30' @ 3722.2usft (SCAN QUEST) WELL DETAILS: SUPREME FED COM #606H Longitude 103° 34' 51.583 W 467911.10 732501.60 32° 17' 2.987 N SUPREME FED COM #608H/PWP1 SUPREME FED COM #607H/PWP1 SUPREME FED COM #606H/PWP1 SUPREME FED COM #605H/PW LEASE LINE PBHL (SUPREME FED COM #606H) **Azimuths to Grid Nort** True North: -0.40 **DESIGN TARGET DETAILS** Magnetic North: 6.16 HARD LINE: 100' 15000-**Easting** Latitude Longitude Magnetic Fiel LTP (SUPREME FED COM #606H) 15260.7 732700.90 32° 19' 33.983 N 103° 34' 48.012 W LTP (SUPREME FED COM #606H) 199.3 483171.80 Strength: 47528.7n 12347.0 PBHL (SUPREME FED COM #606H) 198.9 483221.80 32° 19' 34.478 N 103° 34' 48.013 W Dip Angle: 59.95 Date: 6/7/202 POI#1 (SUPREME FED COM #606H) 12429.5 2500.0 253.0 470411.10 732754.60 32° 17' 27.708 N 103° 34' 48.431 W FTP (SUPREME FED COM #606H) 12447.0 732814.40 32° 16' 59.181 N 103° 34' 47.970 W 312.8 467528.70 14500 Model: IGRF202 14250 14000 13500 11865 11874.1 Start Build 10.00 13250 13000 11900-11918-12500 11935-2000 12250-2200 12000-Start Build 2.00 2400 Start 4811.7 hold at 2800.0 MD 11000 10250 12093-**SUPREME FED COM #606H Annotation** Start Build 2.00 Start 4811.7 hold at 2800.0 MD Start 4289.3 hold at 7611.7 MD Start 4289.3 hold at 7611.7 MD Start Build 10.00 Start 1659.1 hold at 12804.8 MD Start DLS 2.00 TFO -87.01 2.00 -87.01 2022.5 Start 482.5 hold at 14660.1 MD Start DLS 2.00 TFO 91.56 3.00 12426.4 2.00 91.56 2869.7 Start 920.0 hold at 15509.6 MD 0.00 0.00 3789.0 Start DLS 2.00 TFO -90.25 2.00 -90.25 3964.6 Start 11350.3 hold at 16605.3 MD 90.36 359.49 12347.0 15310.7 0.00 0.00 15312.0 TD at 27955.6 Start 1659.1 hold at 12804.8 MD Start 4289.3 hold at 7611.7 MD FTP (SUPREME FED COM #606H 8000 12478 8200 8400-4250 -438 -420 -403 -385 -368 -350 -333 -315 -298 -280 -263 -245 -228 -210 -193 -175 -158 -140 -123 -105 -88 -70 -53 -35 -18 0 18 35 53 70 88 105 123 140 158 175 193 210 228 245 263 280 298 315 333 350 368 385 8600 4000 8800 SUPREME FED COM #607H/PWP1 **LEASE LINE** SUPREME FED COM #606H/PWP SUPREME FED COM #605H/PWP SUPREME FED COM #605H/PWP1 SUPREME FED COM #607H/PWP1 PBHL (SUPREME FED COM #606H) SUPREME FED COM #606H/PWF 9200-3250-TD at 27955.6 9400-3000-**HARD LINE: 100' FNL** LTP (SUPREME FED COM #606H) **2500**-300 POI#1 (SUPREME FED COM #606H) 10000 **225** 10200 2000-្ណា14925-10400 10600 10800 FTP (SUPREME FED COM #606H) 11000 -225 1400-14475 **1**1600 – FTP (SUPREME FED COM #606H) THISTLE UNIT #155H/A 14400 11800 11874.1 14325 LEASE LINE Vertical Section at 0.74° (300 usft/in) -600 -525 -450 -375 -300 -225 -150 -75 0 75 150 225 300 375 450 525 600 675 750 825 900 975 -750 -675 -600 -525 -450 -375 -300 -225 -150 -75 0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050 West(-)/East(+) (150 usft/in) West(-)/East(+) (150 usft/in) 1925 -1350-1200-1050 -900 -750 -600 -450 -300 -150 0 150 <u>300 450 600 750 900 1050 1200</u> 2000 PBHL (SUPREME FED COM #606H) TRGT WNDW: 10 A/B LTP (SUPREME FED COM #606H) 2225⁻ 2300⁻ Start 920.0 hold at 15509.6 MD 2375-SUPREME FED COM #606H/PWP1 POI#1 (SUPREME FED COM #606H) FTP (SUPREME FED COM #606H)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: COG

> NMLC0068848 LEASE NO.:

LOCATION: Section 21, T.23 S., R.33 E., NMPM

Lea County, New Mexico **COUNTY:**

WELL NAME & NO.: Supreme Fed Com 606H

SURFACE HOLE FOOTAGE: 485'/S & 1340'/W **BOTTOM HOLE FOOTAGE**

50'/N & 1650'/W

COA

H2S	• Yes	O No	
Potash	None	Secretary	© R-111-P
Cave/Karst Potential	• Low	© Medium	C High
Cave/Karst Potential	Critical		
Variance	O None	• Flex Hose	Other
Wellhead	Conventional	Multibowl	© Both
Other	□4 String Area	☐ Capitan Reef	□WIPP
Other	☐ Fluid Filled	☐ Cement Squeeze	☐ Pilot Hole
Special Requirements	☐ Water Disposal	☑ COM	□ Unit

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Delaware Group** formation. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- 1. The 10-3/4 inch surface casing shall be set at approximately 1385 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of $\underline{8}$

- **hours** or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the **7-5/8** inch intermediate casing is: Cement to surface. If cement does not circulate see B.1.a, c-d above. **Excess calculates** to 22%. Additional cement maybe required.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
 - Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.

- Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
- BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.

- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.

- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
- e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
 - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
 - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - e. The results of the test shall be reported to the appropriate BLM office.

- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

ZS110821

COG OPERATING LLC HYDROGEN SULFIDE DRILLING OPERATIONS PLAN

1. <u>HYDROGEN SULFIDE TRAINING</u>

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- a. The hazards and characteristics of hydrogen sulfide (H₂S).
- b. The proper use and maintenance of personal protective equipment and life support systems.
- c. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- d. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- a. The effects of H2S on metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- b. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- c. The contents and requirements of the H₂S Drilling Operations Plan and the Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H2S zone (within 3 days or 500 feet) and weekly H2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H2S Drilling Operations Plan and the Public Protection Plan. This plan shall be available at the well site. All personnel will be required to carry documentation that they have received the proper training.

2. <u>H₂S SAFETY EQUIPMENT AND SYSTEMS</u>

Note: All H₂S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H2S. If H2S greater than 100 ppm is encountered in the gas stream we will shut in and install H2S equipment.

a. Well Control Equipment:

Flare line.

Choke manifold with remotely operated choke.

Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit.

Auxiliary equipment to include: annular preventer, mud-gas separator, rotating head.

- b. Protective equipment for essential personnel:
 Mark II Surviveair 30-minute units located in the dog house and at briefing areas.
- c. H2S detection and monitoring equipment:
 2 portable H2S monitor positioned on location for best coverage and response. These units have warning lights and audible sirens when H2S levels of 20 ppm are reached.
- d. Visual warning systems: Caution/Danger signs shall be posted on roads providing direct access to location. Signs will be painted a high visibility yellow with black lettering of sufficient size to be readable at a reasonable distance from the immediate location. Bilingual signs will be used, when appropriate. See example attached.
- e. Mud Program:
 The mud program has been designed to minimize the volume of H2S circulated to the surface.
- f. Metallurgy:
 All drill strings, casings, tubing, wellhead, blowout preventers, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.
- g. Communication:Company vehicles equipped with cellular telephone.

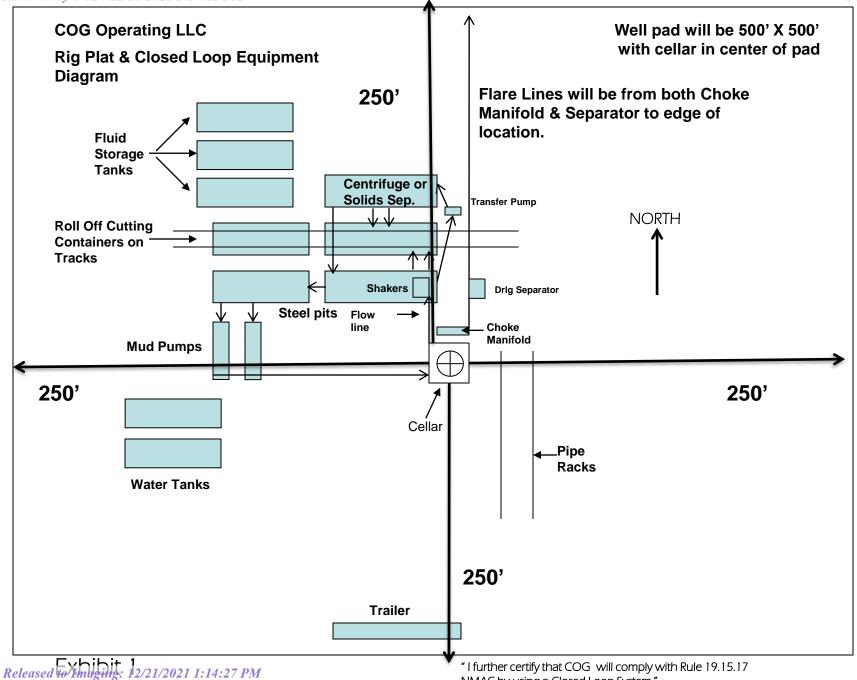
COG OPERATING LLC has conducted a review to determine if an H2S contingency plan is required for the above referenced well. We were able to conclude that any potential hazardous volume would be minimal. H2S concentrations of wells in this area from surface to TD are low enough; therefore, we do not believe that an H2S contingency plan is necessary.

WARNING

YOU ARE ENTERING AN H₂S AREA AUTHORIZED PERSONNEL ONLY

- 1. BEARDS OR CONTACT LENSES NOT ALLOWED
- 2. HARD HATS REQUIRED
- 3. SMOKING IN DESIGNATED AREAS ONLY
- 4. BE WIND CONSCIOUS AT ALL TIMES
- 5. CK WITH COG OPERATING LLC FOREMAN AT MAIN OFFICE

COG OPERATING LLC


1-575-748-6940

EMERGENCY CALL LIST

	<u>OFFICE</u>	<u>MOBILE</u>
COG OPERATING LLC OFFICE	575-748-6940	
SETH WILD	432-683-7443	432-528-3633
WALTER ROYE	575-748-6940	432-934-1886

EMERGENCY RESPONSE NUMBERS

	<u>OFFICE</u>
STATE POLICE	575-748-9718
EDDY COUNTY SHERIFF	575-746-2701
EMERGENCY MEDICAL SERVICES (AMBULANCE)	911 or 575-746-2701
EDDY COUNTY EMERGENCY MANAGEMENT (HARRY BURGESS)	575-887-9511
STATE EMERGENCY RESPONSE CENTER (SERC)	575-476-9620
CARLSBAD POLICE DEPARTMENT	575-885-2111
CARLSBAD FIRE DEPARTMENT	575-885-3125
NEW MEXICO OIL CONSERVATION DIVISION	575-748-1283
INDIAN FIRE & SAFETY	800-530-8693
HALLIBURTON SERVICES	800-844-8451

"I further certify that COG will comply with Rule 19.15.17 NMAC by using a Closed Loop System."

Inten ⁻	t	As Dril	led									
API#												
Ope	rator Nai	me:			Property N	lame					Well Number	
Kick C	Off Point	(KOP)										
UL	Section	Township	Range	Lot	Feet	From N	1/S	Feet	Fro	om E/W	County	
Latitu	ıde				Longitu	ıde					NAD	
UL	Section	t (FTP)	Range	Lot	Feet	From N	1/S	Feet	Fro	om E/W	County	
Latitu	ıde				Longitu	ıde					NAD	
Last T UL Latitu	Section	t (LTP) Township	Range	Lot	Feet Longitu	From N/S	Feet		From E/W	Coun	ty	
					Longico					, with		
s this	well the	defining w	vell for th	e Hori	zontal Տլ	pacing Unit?]			
s this	well an	infill well?										
	l is yes p ng Unit.	lease provi	de API if	availal	ole, Ope	rator Name	and v	vell nu	umber fo	r Defini	ng well fo	or Horizontal
API#												
Ope	rator Nai	me:	ı			Property N	lame					Well Number

KZ 06/29/2018

1. Geologic Formations

TVD of target	12,447' EOL	Pilot hole depth	NA
MD at TD:	27,956'	Deepest expected fresh water:	345'

Formation	Depth (TVD) from KB	Water/Mineral Bearing/ Target Zone?	Hazards*
Quaternary Fill	Surface	Water	
Rustler	1319	Water	
Top of Salt	1824	Salt	
Base of Salt	4922	Salt	
Lamar	5178	Salt Water	
Bell Canyon	5234	Salt Water	
Cherry Canyon	6150	Oil/Gas	
Brushy Canyon	7467	Oil/Gas	
Bone Spring Lime	9091	Oil/Gas	
1st Bone Spring Sand	10215	Oil/Gas	
2nd Bone Spring Sand	10810	Oil/Gas	
3rd Bone Spring Sand	11986	Oil/Gas	
Wolfcamp A	12358	Target	
Wolfcamp B	0	Not Penetrated	
Wolfcamp D	0	Not Penetrated	

2. Casing Program

Hole Size	Casing	Interval	Csg. Size	Weight	Grade	Conn.	SF	SF Burst	SF	SF
Tiole Size	From	То	Cag. Size	(lbs)	Grade	COIIII.	Collapse	or Burst	Body	Joint
14.75"	0	1350	10.75"	45.5	J55	ВТС	3.38	1.14	11.64	12.96
9.875"	0	8500	7.625"	29.7	HCL80	BTC	1.56	1.00	2.71	2.90
8.750"	8500	11800	7.625"	29.7	HCP110	FJM	1.21	1.38	2.68	1.59
6.75"	0	11300	5.5"	23	P110	BTC	1.98	2.34	2.80	2.79
6.75"	11300	27,956	5.5"	23	P110	Talon	1.80	2.12	2.55	2.47
				BLM Minimum Safety Factor			1.125	1	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet

Intermediate casing will be kept at least 1/3 full while running casing.to mitigate collapse. Surface burst based on 0.7 frac gradient at the shoe with Gas Gradient 0.1 psi/ft to surface and All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

The 5 1/2" talon casing will be run back 200' into the intermediate casing to ensure the coupling OD clearance is greater than .422" for the cement bond tie in.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Υ
Does casing meet API specifications? If no, attach casing specification sheet.	Υ
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Υ
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary?	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	IN
l · · · · ·	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	- ',

3. Cementing Program

Casing	# Sks	Wt. lb/	Yld ft3/	H₂0 gal/sk	500# Comp. Strength (hours)	Slurry Description
Surf.	644	13.5	1.75	9	12	Lead: Class C + 4% Gel + 1% CaCl2
Sull.	250	14.8	1.34	6.34	8	Tail: Class C + 2% CaCl2
Inter.	840	10.3	3.3	22	24	Halliburton tunded light
Stage 1	250	14.8	1.35	6.6	8	Tail: Class H
Prod	524	12.7	2	10.7	72	Lead: 50:50:10 H Blend
Fiou	1571	14.4	1.24	5.7	19	Tail: 50:50:2 Class H Blend

If losses are encountered in the intermediate section a DV/ECP tool will be run ~50' above the Lamar Lime top, cement will be adjusted accordingly if this contingency is necessary.

Volumes Subject to Observed Hole Conditions and/or Fluid Caliper Results Lab reports with the 500 psi compressive strength time for the cement will be onsite for review.

Casing String	TOC	% Excess
Surface	0'	50%
1 st Intermediate	0'	50%
Production	11,300'	35% OH in Lateral (KOP to EOL)

4. Pressure Control Equipment

A variance is requested for the use of a diverter on the surface casing. See attached for schematic.

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		x	Tested to:
			Ann	ular	Х	2500psi
9-7/8"	13-5/8"	5M	Blind	Ram	Х	
			Pipe Ram		Х	5000psi
			Double Ram		Х	
			Other*			
			5M Aı	nnular	Х	5000psi
6-3/4"			Blind Ram		Х	10000psi
	13-5/8"	10M	Pipe Ram		Х	
			Double Ram		Х	
			Other*			

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

	Formation integrity test will be performed per Onshore Order #2.
Y	On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.
Y	A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.
	N Are anchors required by manufacturer?
Y	A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

5. Mud Program

Depth		Туре	Weight	Viscosity	Water Loss	
From	То	Type	(ppg)	Viscosity	Water Loss	
0	Surf. Shoe	FW Gel	8.6 - 8.8	28-34	N/C	
Surf csg	7-5/8" Int shoe	Brine Diesel Emulsion	8.4 - 9	28-34	N/C	
7-5/8" Int shoe	Lateral TD	OBM	9.6 - 12.5	35-45	<20	

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, Coring and Testing.	
Y	Will run GR/CNL from TD to surface (horizontal well – vertical portion of hole). Stated logs run will be in the Completion Report and submitted to the BLM.
Y	No Logs are planned based on well control or offset log information.
N	Drill stem test? If yes, explain.
N	Coring? If yes, explain.

Add	litional logs planned	Interval
N	Resistivity	Pilot Hole TD to ICP
N	Density	Pilot Hole TD to ICP
Y	CBL	Production casing (If cement not circulated to surface)
Υ	Mud log	Intermediate shoe to TD
N	PEX	

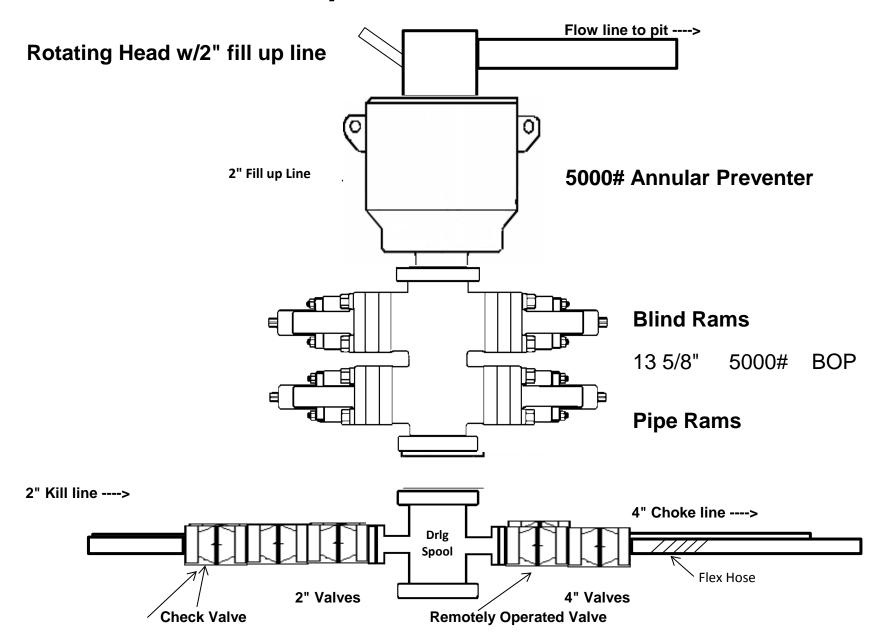
7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	8095 psi at 12447' TVD
Abnormal Temperature	NO 180 Deg. F.

No abnormal pressure or temperature conditions are anticipated. Sufficient mud materials to maintain mud properties and weight increase requirements will be kept on location at all times.

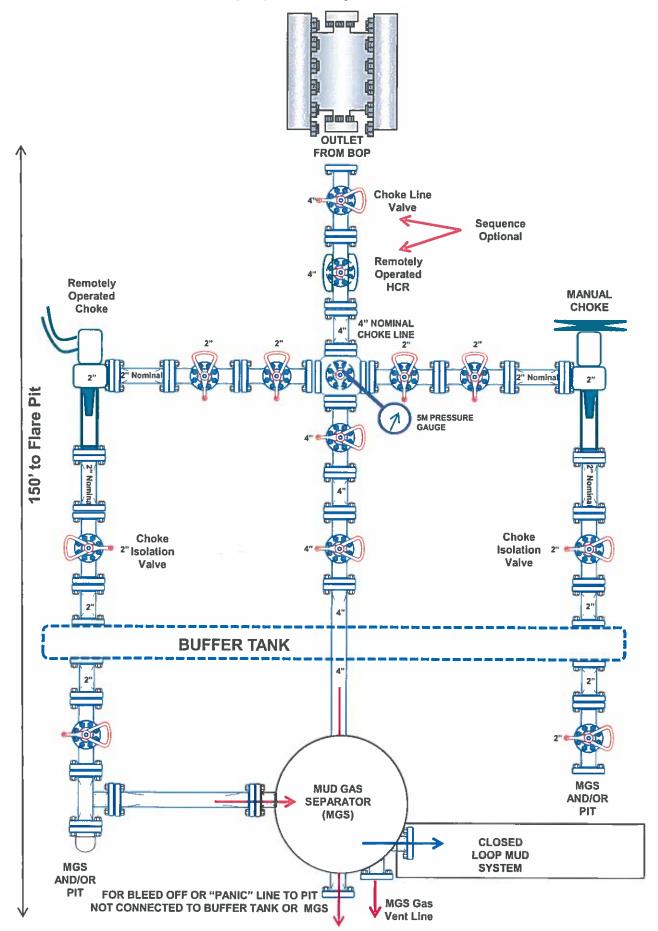
Sufficient supplies of Paper/LCM for periodic sweeps to control seepage and losses will be maintained on location.

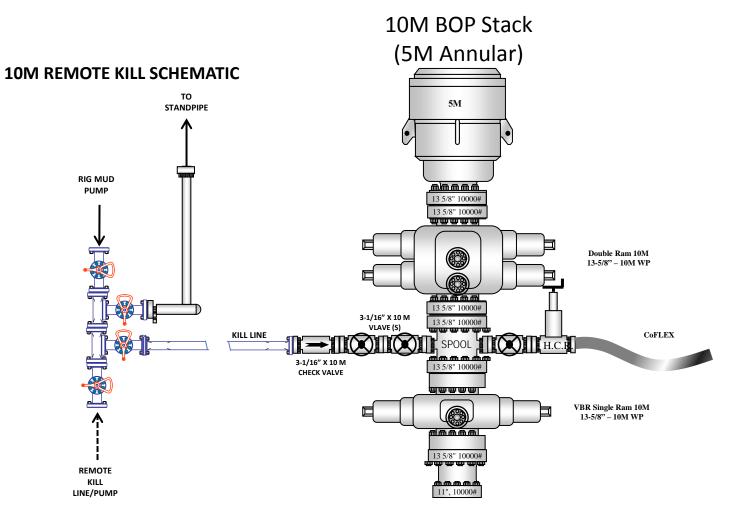
Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

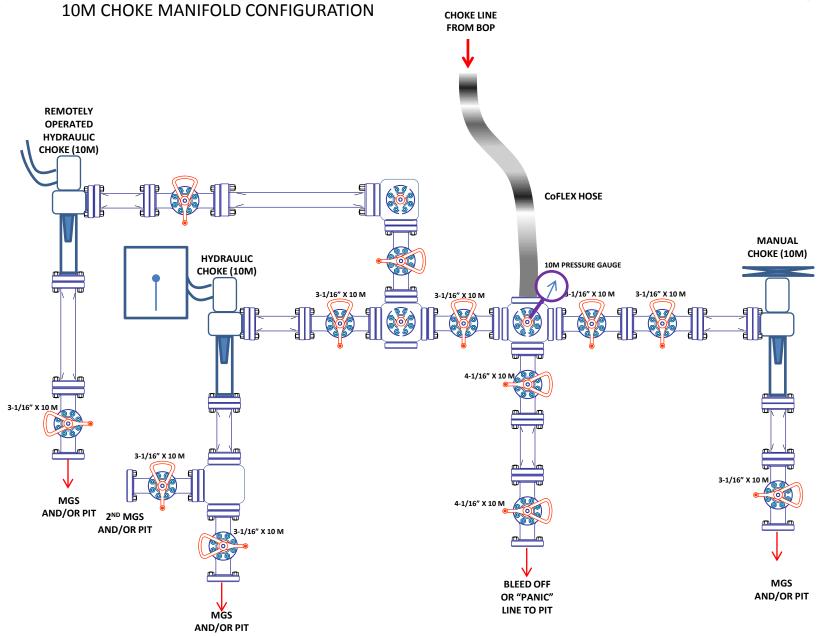

N	H2S is present
Y	H2S Plan attached

8. Other Facets of Operation

Y	Is it a walking operation?
Y	Is casing pre-set?


х	H2S Plan.
х	BOP & Choke Schematics.
х	Directional Plan


5,000 psi BOP Schematic



Released to Imaging: 12/21/2021 1:14:27 PM

5M Choke Manifold Equipment (WITH MGS + CLOSED LOOP)

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 67544

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	67544
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
pkautz	Will require a File As Drilled C-102 and a Directional Survey with the C-104	12/21/2021
pkautz	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string	12/21/2021
pkautz	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system	12/21/2021
pkautz	Cement is required to circulate on both surface and intermediate1 strings of casing	12/21/2021