District I
1625 N. French Dr., Hobbs, NM 88240
Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III
1000 Rio Brazos Rd., Aztec, NM 87410

State of New Mexico Energy, 1220 S. St Francis Dr.

Form C-101 August 1, 2011

	•	
Minerals and Natural Resources	Permit 3068	34
Dil Conservation Division		

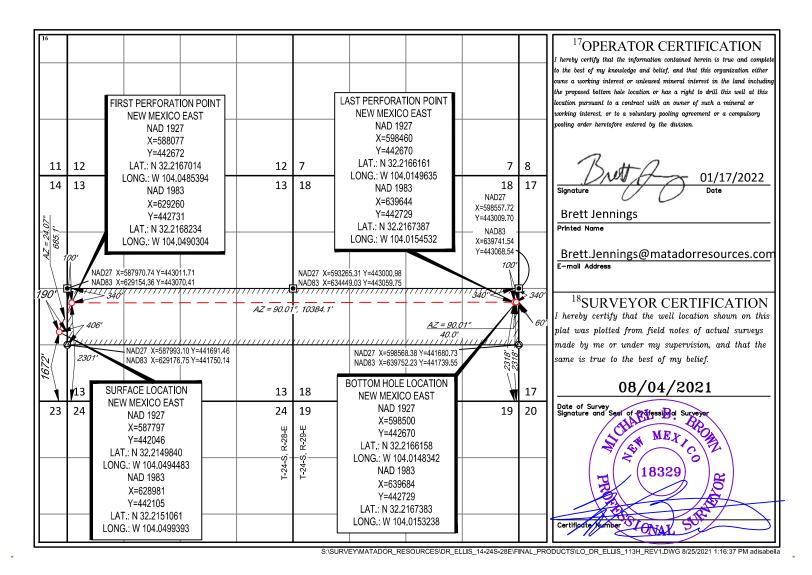
District IV	34-6178 Fax:(505) 33	4-6170										
1220 S. St Frai	ncis Dr., Santa Fe, NN	M 87505		Sant	ta Fe, NI	M 875	05					
hone:(505) 47	76-3470 Fax:(505) 47	6-3462										
		APPLICATI(ON FOR PE	RMIT TO DRILL,	RE-ENTER,	DEEPEN	N, PLUGBAC	CK, OR AD	DAZO	NE		
	me and Address			·			•	-		RID Number		
	TADOR PRODUCT e Lincoln Centre	ION COMPANY							3 ADI	228937 Number		
	las, TX 75240								J. Al 1	30-015-492	23	
. Property Co		5. F	Property Name						6. We			
332	2102		Dr Ellis							113H		
L - Lot	Section	Township	Range	Lot Idn	Surface Locati Feet From	ion	N/S Line	Foot From	•	E/M Line	County	
I - LOI	14	24S		28E Lot Idil		Feet From N/S Line Feet From E/W Line 0					Eddy	
			•	8 Propos	ed Bottom Hol	e I ocation	1	•		•		
IL - Lot	Section	Township	Range	Lot Idn	Feet From		N/S Line	Feet Fro	om	E/W Line	County	
	18	24S	29E I	I	2318	S		60	Е	Eddy		
				9.	Pool Informati	ion						
IERCE CRO	OSSING;BONE SP	RING								50371		
				Additi	onal Well Infor	mation						
1. Work Type		12. Well Type		13. Cable/Rotary		21				Level Elevation		
New Well OIL						10.4	Private		2973 20. Spud Date			
16. Multiple 17. Proposed Depth 18. Formation N 17718 Bone Spring						19. 0	Contractor	2		ate 2/15/2022		
epth to Grour	nd water			Distance from neares				С		nearest surface wa	iter	
We will be	using a closed-loc	op system in lieu o	f lined pits									
					Casing and Ce					•		
Type	Hole Size	Casing Siz		Casing Weight/ft		Setting De	pth		of Cement		Estimated TOC	
Surf Int1	17.5 12.25	13.375 9.625		54.5 40		600 2720			30			
Prod	8.75	5.5		20		17718			800		2520	
-				Casing/Cement	Program: Addi	tional Cor	nmonte					
				ousing/ocinicity	r rogram. Addi	tional ooi	iiiioiita					
				22 Drangard	Plantant Prove	ntion Dro	avam					
	Type Working Pressure					ention Pro		sure		Ma	nufacturer	
	Type Annular				Blowout Preve	ention Pro	gram Test Pres				nufacturer ameron	
	•			Working Pressure	Blowout Preve	ention Pro	Test Pres)		С		
	Annular			Working Pressure 5000	Blowout Preve	ention Pro	Test Pres)		C C	ameron	
	Annular Double Ram Pipe			Working Pressure 5000 10000 10000		ention Pro	Test Pres 3000 5000 5000)		C C	ameron ameron	
,	Annular Double Ram Pipe certify that the infor	mation given above	e is true and c	Working Pressure 5000 10000		ention Pro	Test Pres 3000 5000 5000)	RVATION	C C	ameron ameron	
nowledge a	Annular Double Ram Pipe certify that the inforund belief. cify I have complie	Ü	_	Working Pressure 5000 10000 10000	of my	ention Pro	Test Pres 3000 5000 5000)	RVATION	C C	ameron ameron	
nowledge a	Annular Double Ram Pipe certify that the inforund belief. cify I have complie	Ü	_	Working Pressure 5000 10000 10000 complete to the best of	of my	ention Pro	Test Pres 3000 5000 5000)	RVATION	C C	ameron ameron	
nowledge a further cert ☑, if applical	Annular Double Ram Pipe certify that the inforund belief. cify I have complie	Ü	_	Working Pressure 5000 10000 10000 complete to the best of	of my	ention Pro	Test Pres 3000 5000 5000)	RVATION	C C	ameron ameron	
nowledge a further cert , if applical signature:	Annular Double Ram Pipe certify that the inform the lief. iffy I have complied ble.	ed with 19.15.14.9 ((A) NMAC 🗆 a	Working Pressure 5000 10000 10000 complete to the best of	of my NMAC		Test Pres 3000 5000 5000	OIL CONSER	RVATION	C C	ameron ameron	
nowledge a further cert d, if applical Signature:	Annular Double Ram Pipe certify that the inform the lief. iffy I have complied ble.	ed with 19.15.14.9((A) NMAC 🗆 a	Working Pressure 5000 10000 10000 complete to the best of	of my		Test Pres 3000 5000 5000 5000	OIL CONSER		C C	ameron ameron	
nowledge a	Annular Double Ram Pipe certify that the inform belief. cify I have complied ble. Electronica	ed with 19.15.14.9(A) NMAC □ a	Working Pressure 5000 10000 10000 complete to the best of	NMAC Approv		Test Pres 3000 5000 5000 5000	OIL CONSER	A	C C	ameron ameron ameron	

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720
District II
811 S. First St., Artesia, NM 88210
Phone: (575) 748-1283 Fax: (575) 748-9720
District III
1000 Rio Brazos Road, Aztec, NM 87410
Phone: (505) 334-6178 Fax: (505) 334-6170
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505
Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico
Energy, Minerals & Natural Resources
Department
OIL CONSERVATION DIVISION
1220 South St. Francis Dr.
Santa Fe, NM 87505

FORM C-102
Revised August 1, 2011
Submit one copy to appropriate
District Office

AMENDED REPORT


WELL LOCATION AND ACREAGE DEDICATION PLAT

30-015-49223	50371	² Pool Code ³ Pool Name 50371 PIERCE CROSSING; BONE SPRINC				
⁴ Property Code 332102		Property Name R ELLIS	⁶ Well Number 113H			
⁷ OGRID No. 228937		perator Name DUCTION COMPANY	⁹ Elevation 2973'			

¹⁰Surface Location

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
I			28-E	_	1672'	SOUTH	190'	EAST	EDDY
			11	Bottom Ho	le Location If D	Different From Su	rface		
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
I	18	24-S	29-E	_	2318'	SOUTH	60'	EAST	EDDY
¹² Dedicated Acres	¹³ Joint or l	Infill 14Co	nsolidation Co	de ¹⁵ Ord	er No.				
319.76									

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Form APD Conditions

Permit 306834

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

PERMIT CONDITIONS OF APPROVAL

Operator Name and Address:	API Number:
MATADOR PRODUCTION COMPANY [228937]	30-015-49223
One Lincoln Centre	Well:
Dallas, TX 75240	Dr Ellis #113H

OCD Reviewer	Condition
kpickford	Surface casing must be set 25' below top of Rustler Anhydrite or other competent layer in order to seal off protectable water
dmcclure	Notify OCD 24 hours prior to casing & cement
dmcclure	Will require a File As Drilled C-102 and a Directional Survey with the C-104
dmcclure	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string
dmcclure	Cement is required to circulate on both surface and intermediate1 strings of casing
dmcclure	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system

Matador Production Company

Rustler Breaks Dr Ellis Dr Ellis #113H

Wellbore #1

Plan: State Plan #1

Standard Planning Report

13 August, 2021

Database: Company: EDM 5000.14 Server

Matador Production Company

Project: Site: Well:

Rustler Breaks Dr Ellis

Dr Ellis #113H Wellbore: Wellbore #1 Design: State Plan #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Dr Ellis #113H KB @ 3001.5usft KB @ 3001.5usft

Grid

Minimum Curvature

Project

Rustler Breaks,

Map System: Geo Datum: Map Zone:

US State Plane 1927 (Exact solution) NAD 1927 (NADCON CONUS)

0.0 usft

New Mexico East 3001

System Datum: Mean Sea Level

Using geodetic scale factor

Site Dr Ellis

Site Position: From: **Position Uncertainty:**

Lat/Long

Northing: Easting: **Slot Radius:** 442,046.44 usft 587,797.06 usft 13-3/16 "

Latitude: Longitude: Grid Convergence:

32° 12' 53.942 N 104° 2' 58.014 W

0.15°

Well Dr Ellis #113H

Well Position

+N/-S +E/-W 0.0 usft Northing: 0.0 usft Easting: 0.0 usft

442,046.44 usft 587,797.06 usft

Latitude: Longitude:

32° 12' 53.942 N 104° 2' 58.014 W

Position Uncertainty

Wellhead Elevation:

Ground Level:

2,973.0 usft

Wellbore #1 Wellbore

Model Name Declination **Dip Angle** Field Strength Magnetics Sample Date (°) (°) (nT) 47.460.00139397 IGRF2015 8/11/2021 6.73 59.93

Design

State Plan #1

Audit Notes:

Version:

Phase:

PROTOTYPE

Tie On Depth:

0.0

Vertical Section:

Depth From (TVD) (usft)

0.0

+N/-S (usft) 0.0

+E/-W (usft)

0.0

Direction (°) 90.01

Plan Survey Tool Program

(usft)

Depth From Depth To

(usft)

Survey (Wellbore)

Date 8/13/2021

Tool Name

Remarks

1

0.0

17,718.6 State Plan #1 (Wellbore #1)

MWD

OWSG MWD - Standard

Plan Section	s									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,400.0	8.00	23.51	1,398.7	25.6	11.1	2.00	2.00	0.00	23.51	
5,141.5	8.00	23.51	5,103.7	503.0	218.8	0.00	0.00	0.00	0.00	
5,541.5	0.00	0.00	5,502.4	528.6	230.0	2.00	-2.00	0.00	180.00	
6,910.5	0.00	0.00	6,871.5	528.6	230.0	0.00	0.00	0.00	0.00 \	VP - Dr Ellis #113H
7,799.6	88.91	82.60	7,444.4	601.0	787.3	10.00	10.00	0.00	82.60	
8,169.9	88.85	90.01	7,451.6	624.9	1,156.6	2.00	-0.02	2.00	90.50	
17,718.6	88.85	90.01	7,642.5	623.6	10,703.3	0.00	0.00	0.00	0.00 I	BHL - Dr Ellis #113ŀ

Database: EDM 5000.14 Server
Company: Matador Production Company

Project: Rustler Breaks
Site: Dr Ellis
Well: Dr Ellis #113H
Wellbore: Wellbore #1
Design: State Plan #1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference:

North Reference: Grid
Survey Calculation Method: Minimum Curvature

Well Dr Ellis #113H KB @ 3001.5usft KB @ 3001.5usft Grid

esign:		State Plan #	1							
lanned Surv	ev									
Measu Dept (usft	red h	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
	0.0 00.0 00.0	0.00 0.00 0.00	0.00 0.00 0.00	0.0 100.0 200.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
28 Z (Sa l	87.0 lado)	0.00	0.00	287.0	0.0	0.0	0.0	0.00	0.00	0.00
	00.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
5(6) 7(00.0 00.0 00.0 00.0 00.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	400.0 500.0 600.0 700.0 800.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
90	00.0	0.00 0.00	0.00 0.00 0.00	900.0 1,000.0	0.0 0.0	0.0 0.0	0.0 0.0	0.00 0.00	0.00 0.00	0.00 0.00 0.00
Start			0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,05 Z (Ca :	59.0 stile (1.18 T))	23.51	1,059.0	0.6	0.2	0.2	2.00	2.00	0.00
1,10	00.0	2.00 4.00	23.51 23.51	1,100.0 1,199.8	1.6 6.4	0.7 2.8	0.7 2.8	2.00 2.00	2.00 2.00	0.00 0.00
1,40	0.00	6.00 8.00	23.51 23.51	1,299.5 1,398.7	14.4 25.6	6.3 11.1	6.3 11.1	2.00 2.00	2.00 2.00	0.00 0.00
		5 hold at 1400		4 407 7	00.0	40.7	40.7	0.00	0.00	0.00
1,60	00.0 00.0 00.0	8.00 8.00 8.00	23.51 23.51 23.51	1,497.7 1,596.8 1,695.8	38.3 51.1 63.9	16.7 22.2 27.8	16.7 22.2 27.8	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
1,90 2,00 2,10	00.0 00.0 00.0 00.0 00.0	8.00 8.00 8.00 8.00 8.00	23.51 23.51 23.51 23.51 23.51	1,794.8 1,893.8 1,992.9 2,091.9 2,190.9	76.6 89.4 102.1 114.9 127.7	33.3 38.9 44.4 50.0 55.5	33.3 38.9 44.4 50.0 55.5	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
2,40 2,50 2,60	00.0 00.0 00.0 00.0 00.0 34.9	8.00 8.00 8.00 8.00 8.00	23.51 23.51 23.51 23.51 23.51	2,289.9 2,389.0 2,488.0 2,587.0 2,621.6	140.4 153.2 165.9 178.7 183.2	61.1 66.6 72.2 77.7 79.7	61.1 66.6 72.2 77.7 79.7	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
Z (G3	0:CS1	4-CSB)								
	81.4	8.00	23.51	2,667.7	189.1	82.3	82.2	0.00	0.00	0.00
2,70 2,80 2,90	6: Bel 00.0 00.0 00.0 00.0	8.00 8.00 8.00 8.00 8.00	23.51 23.51 23.51 23.51	2,686.1 2,785.1 2,884.1 2,983.1	191.5 204.2 217.0 229.8	83.3 88.8 94.4 100.0	83.3 88.8 94.4 99.9	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
3,20 3,30 3,40	00.0 00.0 00.0 00.0 00.0	8.00 8.00 8.00 8.00 8.00	23.51 23.51 23.51 23.51 23.51	3,082.2 3,181.2 3,280.2 3,379.2 3,478.3	242.5 255.3 268.0 280.8 293.6	105.5 111.1 116.6 122.2 127.7	105.5 111.0 116.6 122.1 127.7	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
3,60 3,60	00.0 39.8	8.00 8.00	23.51 23.51	3,577.3 3,616.7	306.3 311.4	133.3 135.5	133.2 135.4	0.00 0.00	0.00 0.00	0.00 0.00
Z (G1	3: Ch	erry Cyn.)								
3,80	0.00 00.0 00.0	8.00 8.00 8.00	23.51 23.51 23.51	3,676.3 3,775.3 3,874.4	319.1 331.9 344.6	138.8 144.4 149.9	138.8 144.3 149.9	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
•	0.00	8.00	23.51	3,973.4	357.4	155.5	155.4	0.00	0.00	0.00

Database: EDM 5000.14 Server Company: Matador Production C

Matador Production Company Rustler Breaks

Project: Rustler Breaks
Site: Dr Ellis
Well: Dr Ellis #113H
Wellbore: Wellbore #1
Design: State Plan #1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Dr Ellis #113H KB @ 3001.5usft KB @ 3001.5usft

Grid Minimum Curvature

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
4,100.0 4,200.0 4,300.0 4,400.0	8.00 8.00 8.00 8.00	23.51 23.51 23.51 23.51	4,072.4 4,171.5 4,270.5 4,369.5	370.1 382.9 395.7 408.4	161.0 166.6 172.1 177.7	161.0 166.5 172.1 177.6	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
4,500.0 4,600.0 4,700.0 4,783.2	8.00 8.00 8.00 8.00	23.51 23.51 23.51 23.51	4,468.5 4,567.6 4,666.6 4,749.0	421.2 433.9 446.7 457.3	183.2 188.8 194.3 199.0	183.2 188.7 194.3 198.9	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
Z (G7: Bru									
4,800.0	8.00	23.51	4,765.6	459.5	199.9	199.8	0.00	0.00	0.00
4,900.0 5,000.0 5,100.0 5,141.5	8.00 8.00 8.00 8.00	23.51 23.51 23.51 23.51	4,864.6 4,963.7 5,062.7 5,103.7	472.2 485.0 497.8 503.0	205.4 211.0 216.5 218.8	205.4 210.9 216.5 218.8	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
Start Drop		00.54	F 404 0	540.0	004.0	004.0	0.00	0.00	0.00
5,200.0 5,300.0 5,400.0 5,500.0 5,541.5	6.83 4.83 2.83 0.83 0.00	23.51 23.51 23.51 23.51 0.00	5,161.8 5,261.3 5,361.0 5,461.0 5,502.4	510.0 519.3 525.4 528.3 528.6	221.9 225.9 228.6 229.8 230.0	221.8 225.8 228.5 229.8 229.9	2.00 2.00 2.00 2.00 2.00	-2.00 -2.00 -2.00 -2.00 -2.00	0.00 0.00 0.00 0.00 0.00
·	1 hold at 5541	.5 MD	,						
5,600.0	0.00	0.00	5,561.0	528.6	230.0	229.9	0.00	0.00	0.00
5,700.0 5,800.0 5,900.0 6,000.0 6,100.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	5,661.0 5,761.0 5,861.0 5,961.0 6,061.0	528.6 528.6 528.6 528.6 528.6	230.0 230.0 230.0 230.0 230.0	229.9 229.9 229.9 229.9 229.9	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
6,200.0 6,300.0 6,400.0 6,407.6	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	6,161.0 6,261.0 6,361.0 6,368.6	528.6 528.6 528.6 528.6	230.0 230.0 230.0 230.0	229.9 229.9 229.9 229.9	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
Z (G4: BSC		0.00	0.404.0	F00.0	220.0	220.0	0.00	0.00	0.00
6,500.0 6,600.0 6,700.0 6,800.0 6,900.0 6,910.5	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	6,461.0 6,561.0 6,661.0 6,761.0 6,861.0 6,871.5	528.6 528.6 528.6 528.6 528.6 528.6	230.0 230.0 230.0 230.0 230.0 230.0	229.9 229.9 229.9 229.9 229.9 229.9	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
	10.00 - VP - D								
7,000.0 7,100.0 7,149.5	8.95 18.95 23.90	82.60 82.60 82.60	6,960.6 7,057.6 7,103.6	529.5 532.6 534.9	236.9 260.8 278.7	236.8 260.7 278.6	10.00 10.00 10.00	10.00 10.00 10.00	0.00 0.00 0.00
Z (L5.3: FB		00.00	7 4 4 0 0	507.0	204.0	200.0	40.00	40.00	0.00
7,200.0 7,300.0	28.95 38.95	82.60 82.60	7,148.8 7,231.7	537.8 545.0	301.0 356.3	300.9 356.2	10.00 10.00	10.00 10.00	0.00 0.00
7,400.0 7,401.5	48.95 49.10	82.60 82.60	7,303.6 7,304.6	553.9 554.1	425.0 426.1	424.9 426.0	10.00 10.00	10.00 10.00	0.00 0.00
Z (L5.1: FB									
7,500.0 7,600.0 7,700.0	58.95 68.95 78.95	82.60 82.60 82.60	7,362.4 7,406.2 7,433.8	564.3 575.9 588.3	505.1 594.1 689.2	505.0 594.0 689.1	10.00 10.00 10.00	10.00 10.00 10.00	0.00 0.00 0.00
7,799.6 Start DLS 2	88.91 2.00 TFO 90.5 (82.60)	7,444.4	601.0	787.3	787.2	10.00	10.00	0.00

Database: EDM 5000.14 Server
Company: Matador Production Company

Project: Rustler Breaks
Site: Dr Ellis
Well: Dr Ellis #113H
Wellbore: Wellbore #1
Design: State Plan #1

Local Co-ordinate Reference: TVD Reference: MD Reference:

North Reference: Survey Calculation Method: Well Dr Ellis #113H KB @ 3001.5usft KB @ 3001.5usft Grid

Minimum Curvature

ned Survey									
Measured Depth (usft)	d Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
7,800.		82.61	7,444.4	601.1	787.7	787.6	2.00	-0.02	2.00
7,900.		84.61	7,446.3	612.2	887.1	887.0	2.00	-0.02	2.00
8,000.		86.61	7,448.2	619.8	986.8	986.7	2.00	-0.02	2.00
8,100.		88.61	7,450.2	624.0	1,086.7	1,086.5	2.00	-0.01	2.00
			-						
8,169.		90.01	7,451.6	624.9	1,156.6	1,156.5	2.00	-0.01	2.00
	48.6 hold at 8169	90.01	7 450 0	624.0	1 100 0	1 100 E	0.00	0.00	0.00
8,200.			7,452.2 7,454.2	624.9	1,186.6	1,186.5 1,286.5		0.00	
8,300.		90.01	7,454.2	624.8	1,286.6 1,386.6		0.00		0.00
8,400.		90.01		624.8		1,386.5	0.00	0.00	0.00
8,500.		90.01	7,458.2	624.8	1,486.6	1,486.5	0.00	0.00	0.00
8,600.		90.01	7,460.2	624.8	1,586.5	1,586.4	0.00	0.00	0.00
8,700.		90.01	7,462.2	624.8	1,686.5	1,686.4	0.00	0.00	0.00
8,800.		90.01	7,464.2	624.8	1,786.5	1,786.4	0.00	0.00	0.00
8,900.		90.01	7,466.2	624.8	1,886.5	1,886.4	0.00	0.00	0.00
9,000.	0 88.85	90.01	7,468.2	624.7	1,986.5	1,986.4	0.00	0.00	0.00
9,100.	0 88.85	90.01	7,470.2	624.7	2,086.4	2,086.3	0.00	0.00	0.00
9,200.		90.01	7,472.2	624.7	2,186.4	2,186.3	0.00	0.00	0.00
9,300.		90.01	7,474.2	624.7	2,286.4	2,286.3	0.00	0.00	0.00
9,400.		90.01	7,476.2	624.7	2,386.4	2,386.3	0.00	0.00	0.00
9,500.		90.01	7,478.2	624.7	2,486.4	2,486.3	0.00	0.00	0.00
•									
9,600.		90.01	7,480.2	624.7	2,586.3	2,586.2	0.00	0.00	0.00
9,700.		90.01	7,482.2	624.7	2,686.3	2,686.2	0.00	0.00	0.00
9,800.		90.01	7,484.2	624.6	2,786.3	2,786.2	0.00	0.00	0.00
9,900.		90.01	7,486.2	624.6	2,886.3	2,886.2	0.00	0.00	0.00
10,000.		90.01	7,488.2	624.6	2,986.3	2,986.2	0.00	0.00	0.00
10,100.		90.01	7,490.2	624.6	3,086.2	3,086.1	0.00	0.00	0.00
10,200.		90.01	7,492.2	624.6	3,186.2	3,186.1	0.00	0.00	0.00
10,300.		90.01	7,494.2	624.6	3,286.2	3,286.1	0.00	0.00	0.00
10,400.		90.01	7,496.2	624.6	3,386.2	3,386.1	0.00	0.00	0.00
10,500.	0 88.85	90.01	7,498.2	624.6	3,486.2	3,486.1	0.00	0.00	0.00
10,600.	0 88.85	90.01	7,500.2	624.5	3,586.1	3,586.0	0.00	0.00	0.00
10,700.		90.01	7,502.2	624.5	3,686.1	3,686.0	0.00	0.00	0.00
10,800.		90.01	7,504.2	624.5	3,786.1	3,786.0	0.00	0.00	0.00
10,900.	0 88.85	90.01	7,506.2	624.5	3,886.1	3,886.0	0.00	0.00	0.00
11,000.	0 88.85	90.01	7,508.2	624.5	3,986.1	3,986.0	0.00	0.00	0.00
11,100.	0 88.85	90.01	7,510.2	624.5	4,086.0	4,085.9	0.00	0.00	0.00
11,200.		90.01	7,510.2	624.5	4,186.0	4,185.9	0.00	0.00	0.00
11,300.		90.01	7,514.2	624.4	4,286.0	4,285.9	0.00	0.00	0.00
11,400.		90.01	7,516.2	624.4	4,386.0	4,385.9	0.00	0.00	0.00
11,500.		90.01	7,518.2	624.4	4,486.0	4,485.9	0.00	0.00	0.00
11,600.		90.01	7,520.2	624.4	4,585.9	4,585.8	0.00	0.00	0.00
11,700.		90.01	7,520.2 7,522.2	624.4 624.4	4,585.9 4,685.9	4,585.8 4,685.8	0.00	0.00	0.00
11,700.		90.01	7,522.2 7,524.2	624.4	4,005.9	4,005.0 4,785.8	0.00	0.00	0.00
11,900.		90.01	7,524.2	624.4	4,765.9	4,765.8	0.00	0.00	0.00
12,000.		90.01	7,528.2	624.4	4,985.9	4,985.8	0.00	0.00	0.00
•									
12,100.		90.01	7,530.2	624.3	5,085.8	5,085.7	0.00	0.00	0.00
12,200.		90.01	7,532.2	624.3	5,185.8	5,185.7	0.00	0.00	0.00
12,300.		90.01	7,534.2	624.3	5,285.8	5,285.7	0.00	0.00	0.00
12,400.		90.01	7,536.2	624.3	5,385.8	5,385.7	0.00	0.00	0.00
12,500.		90.01	7,538.2	624.3	5,485.8	5,485.7	0.00	0.00	0.00
12,600.		90.01	7,540.2	624.3	5,585.7	5,585.6	0.00	0.00	0.00
12,700.	0 88.85	90.01	7,542.2	624.3	5,685.7	5,685.6	0.00	0.00	0.00
12,800.		90.01	7,544.2	624.2	5,785.7	5,785.6	0.00	0.00	0.00
12,900.	0 88.85	90.01	7,546.2	624.2	5,885.7	5,885.6	0.00	0.00	0.00

Database: Company: EDM 5000.14 Server

State Plan #1

Matador Production Company

Project: Rustler Breaks
Site: Dr Ellis
Well: Dr Ellis #113H
Wellbore: Wellbore #1

Local Co-ordinate Reference: TVD Reference: MD Reference:

North Reference: Survey Calculation Method: Well Dr Ellis #113H KB @ 3001.5usft KB @ 3001.5usft

Grid Minimum Curvature

Planned Survey

Design:

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,000.0	88.85	90.01	7,548.2	624.2	5,985.7	5,985.6	0.00	0.00	0.00
13,100.0	88.85	90.01	7,550.2	624.2	6,085.6	6,085.5	0.00	0.00	0.00
13,200.0	88.85	90.01	7,552.2	624.2	6,185.6	6,185.5	0.00	0.00	0.00
13,300.0	88.85	90.01	7,554.2	624.2	6,285.6	6,285.5	0.00	0.00	0.00
13,400.0	88.85	90.01	7,556.2	624.2	6,385.6	6,385.5	0.00	0.00	0.00
13,500.0	88.85	90.01	7,558.2	624.2	6,485.6	6,485.5	0.00	0.00	0.00
13,600.0	88.85	90.01	7,560.2	624.1	6.585.5	6,585.4	0.00	0.00	0.00
13,700.0	88.85	90.01	7,562.2	624.1	6,685.5	6,685.4	0.00	0.00	0.00
13,800.0	88.85	90.01	7,564.2	624.1	6,785.5	6,785.4	0.00	0.00	0.00
13,900.0	88.85	90.01	7,566.2	624.1	6,885.5	6,885.4	0.00	0.00	0.00
14,000.0	88.85	90.01	7,568.2	624.1	6,985.5	6,985.4	0.00	0.00	0.00
-						•			
14,100.0	88.85	90.01	7,570.2	624.1	7,085.4	7,085.3	0.00	0.00	0.00
14,200.0	88.85	90.01	7,572.2	624.1	7,185.4	7,185.3	0.00	0.00	0.00
14,300.0	88.85	90.01	7,574.2	624.0	7,285.4	7,285.3	0.00	0.00	0.00
14,400.0	88.85	90.01	7,576.1	624.0	7,385.4	7,385.3	0.00	0.00	0.00
14,500.0	88.85	90.01	7,578.1	624.0	7,485.4	7,485.3	0.00	0.00	0.00
14,600.0	88.85	90.01	7,580.1	624.0	7,585.3	7,585.2	0.00	0.00	0.00
14,700.0	88.85	90.01	7,582.1	624.0	7,685.3	7,685.2	0.00	0.00	0.00
14,800.0	88.85	90.01	7,584.1	624.0	7,785.3	7,785.2	0.00	0.00	0.00
14,900.0	88.85	90.01	7,586.1	624.0	7,885.3	7,885.2	0.00	0.00	0.00
15,000.0	88.85	90.01	7,588.1	624.0	7,985.3	7,985.2	0.00	0.00	0.00
15,100.0	88.85	90.01	7,590.1	623.9	8,085.2	8,085.1	0.00	0.00	0.00
15,200.0	88.85	90.01	7,592.1	623.9	8,185.2	8,185.1	0.00	0.00	0.00
15,300.0	88.85	90.01	7,594.1	623.9	8,285.2	8,285.1	0.00	0.00	0.00
15,400.0	88.85	90.01	7,596.1	623.9	8,385.2	8,385.1	0.00	0.00	0.00
15,500.0	88.85	90.01	7,598.1	623.9	8,485.2	8,485.1	0.00	0.00	0.00
15,600.0	88.85	90.01	7,600.1	623.9	8,585.1	8,585.0	0.00	0.00	0.00
15,700.0	88.85	90.01	7,602.1	623.9	8,685.1	8,685.0	0.00	0.00	0.00
15,800.0	88.85	90.01	7,604.1	623.9	8,785.1	8,785.0	0.00	0.00	0.00
15,900.0	88.85	90.01	7,606.1	623.8	8,885.1	8,885.0	0.00	0.00	0.00
16,000.0	88.85	90.01	7,608.1	623.8	8,985.1	8,985.0	0.00	0.00	0.00
16,100.0	88.85	90.01	7,610.1	623.8	9,085.0	9,084.9	0.00	0.00	0.00
16,100.0	88.85	90.01	7,610.1	623.8	9,065.0	9,084.9	0.00	0.00	0.00
16,200.0	88.85	90.01	7,612.1 7,614.1	623.8	9,185.0	9,164.9	0.00	0.00	0.00
16,300.0	88.85	90.01	7,614.1	623.8	9,385.0	9,284.9	0.00	0.00	0.00
16,400.0	88.85	90.01	7,618.1	623.8	9,365.0	9,364.9	0.00	0.00	0.00
-						•			
16,600.0	88.85	90.01	7,620.1	623.7	9,584.9	9,584.8	0.00	0.00	0.00
16,700.0	88.85	90.01	7,622.1	623.7	9,684.9	9,684.8	0.00	0.00	0.00
16,800.0	88.85	90.01	7,624.1	623.7	9,784.9	9,784.8	0.00	0.00	0.00
16,900.0	88.85	90.01	7,626.1	623.7	9,884.9	9,884.8	0.00	0.00	0.00
17,000.0	88.85	90.01	7,628.1	623.7	9,984.9	9,984.8	0.00	0.00	0.00
17,100.0	88.85	90.01	7,630.1	623.7	10,084.8	10,084.7	0.00	0.00	0.00
17,200.0	88.85	90.01	7,632.1	623.7	10,184.8	10,184.7	0.00	0.00	0.00
17,300.0	88.85	90.01	7,634.1	623.7	10,284.8	10,284.7	0.00	0.00	0.00
17,400.0	88.85	90.01	7,636.1	623.6	10,384.8	10,384.7	0.00	0.00	0.00
17,500.0	88.85	90.01	7,638.1	623.6	10,484.8	10,484.7	0.00	0.00	0.00
17,600.0	88.85	90.01	7,640.1	623.6	10,584.7	10,584.6	0.00	0.00	0.00
17,700.0	88.85	90.01	7,642.1	623.6	10,684.7	10,684.6	0.00	0.00	0.00
17,718.6	88.85	90.01	7,642.5	623.6	10,703.3	10,703.2	0.00	0.00	0.00

Design:

Planning Report

Database: EDM 5000.14 Server
Company: Matador Production Company
Project: Rustler Breaks
Site: Dr Ellis
Well: Dr Ellis #113H
Wellbore: Wellbore #1

State Plan #1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Well Dr Ellis #113H KB @ 3001.5usft KB @ 3001.5usft Grid Minimum Curvature

Design Targets									
Target Name - hit/miss target I - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
VP - Dr Ellis #113H - plan hits target ce - Point	0.00 nter	0.00	6,871.5	528.6	230.0	442,575.00	588,027.00	32° 12' 59.167 N	104° 2' 55.321 W
BHL - Dr Ellis #113H - plan hits target ce - Point	0.00 nter	0.00	7,642.5	623.6	10,703.3	442,670.04	598,500.44	32° 12' 59.817 N	104° 0' 53.403 W

Formations						
	Measured Depth (usft)	Vertical Depth (usft)	Name	Lithology	Dip (°)	Dip Direction (°)
	287.0	287.0	Z (Salado)		1.15	90.01
	1,059.0	1,059.0	Z (Castile (T))		1.15	90.01
	2,634.9	2,621.6	Z (G30:CS14-CSB)		1.15	90.01
	2,681.4	2,667.7	Z (G26: Bell Cyn.)		1.15	90.01
	3,639.8	3,616.7	Z (G13: Cherry Cyn.)		1.15	90.01
	4,783.2	4,749.0	Z (G7: Brushy Cyn.)		1.15	90.01
	6,407.6	6,368.6	Z (G4: BSGL (CS9))		1.15	90.01
	7,149.5	7,103.6	Z (L5.3: FBSC)		1.15	90.01
	7,401.5	7,304.6	Z (L5.1: FBSG)		1.15	90.01

Plan Annotations				
Measured Depth (usft)	Vertical Depth (usft)	Local Coor +N/-S (usft)	dinates +E/-W (usft)	Comment
1,000.0	1,000.0	0.0	0.0	Start Build 2.00
1,400.0	1,398.7	25.6	11.1	Start 3741.5 hold at 1400.0 MD
5,141.5	5,103.7	503.0	218.8	Start Drop -2.00
5,541.5	5,502.4	528.6	230.0	Start 1369.1 hold at 5541.5 MD
6,910.5	6,871.5	528.6	230.0	Start Build 10.00
7,799.6	7,444.4	601.0	787.3	Start DLS 2.00 TFO 90.50
8,169.9	7,451.6	624.9	1,156.6	Start 9548.6 hold at 8169.9 MD
17,718.6	7,642.5	623.6	10,703.3	TD at 17718.6

I. Operator: Matador Production Company

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically
Via E-permitting

Date: 12/21/2021

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

OGRID: 228937

II. Type: ⊠Original □] Amendment	due to □ 19.15.27.	9.D(6)(a) NMAC	□ 19.15.27.9.D(0	6)(b) N	MAC 🗆 C	other.		
If Other, please describ	e:								
III. Well(s): Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.									
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D			Anticipated Produced Water BBL/D	
Dr. Ellis 113H	TBD	I 14-24S-28E	1,672' FSL & 190' FEL	1,906	5,082		6,031		
Dr. Ellis 123H	TBD	I 14-24S-28E	1,671' FSL & 220' FEL	1,800	3,500		6,000		
V. Anticipated Schedu proposed to be recomp					n	Initial Back I	Flow	First Production Date	
Dr. Ellis 113H	TBD	04/29/2023	05/26/2023	07/22/2023	09/01/2023			09/01/2023	
Dr. Ellis 123H	TBD	12/11/2022	12/28/2022	01/18/2023	03/01/2023		03/01/2023		
 VI. Separation Equipment: ☐ Attach a complete description of how Operator will size separation equipment to optimize gas capture. VII. Operational Practices: ☐ Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC. VIII. Best Management Practices: ☐ Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance. 									

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

		<u>EFFECTIV</u>	<u>E APRIL 1, 2022</u>	
Beginning April 1, 2 reporting area must			ith its statewide natural gas c	capture requirement for the applicable
☐ Operator certifie capture requirement			on because Operator is in cor	mpliance with its statewide natural gas
IX. Anticipated Na	tural Gas Product	ion:		
Well		API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF
X. Natural Gas Ga	thering System (No	GGS):		
Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in
production operation the segment or portion in the segment of t	ns to the existing or on of the natural gas or. The natural gas gas from the well prior the operator does [planned interconnect of the sign of the si	he natural gas gathering systewhich the well(s) will be commod will not have capacity to guition.	ather 100% of the anticipated natural gas ed to the same segment, or portion, of the
			meet anticipated increases in he increased line pressure.	line pressure caused by the new well(s).
XIV. Confidentiali Section 2 as provide	ity: □Operator assed in Paragraph (2) o	erts confidentiality pursu	nant to Section 71-2-8 NMS 27.9 NMAC, and attaches a f	SA 1978 for the information provided in full description of the specific information

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

⊠Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

□Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. If Operator checks this box, Operator will select one of the following:

Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. □ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- **(b)** power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Addendum to Natural Gas Management Plan for Matador's

Dr. Ellis 113H and 123H

VI. Separation Equipment

Flow from the wells will be routed via flowlines to a 48"x15" three phase separator dedicated to each well. These first stage separators are sized with input from BRE ProMax and API 12J. Expected production from each well is approximately 5,000 mcfd, 2,000 bopd, and 6,000 bwpd. Liquid retention times at expected maximum rates will be >3 minutes. Gas will be routed from the first stage separators to sales. Hydrocarbon liquids are dumped from the first stage separators and commingled to one or more heater treaters. The flash gas from the heater treater(s) could either be sent to sales or routed to a compressor if the sales line pressure is higher than the MAWP of the heater treater (125 psi). From the heater treaters, hydrocarbon liquid will be routed to the tanks where vapor is compressed by a VRU if technically feasible to either sales or a compressor if the sales line pressure is higher than the VRU's maximum discharge pressure (~150 psi). Therefore, Matador has sized our separation equipment to optimize gas capture and of sufficient size to handle the expected volumes of gas we anticipate.

VII. Operation Practices

Although not a complete recitation of all our efforts to comply with a subsection A through F of 19.15.27.8 NMAC, a summary is as follows. During drilling, Matador will have a properly sized flare stack at least 100 feet from the nearest surface hole. During initial flowback we will route the flowback fluids in a completion or storage tanks and, to the extent possible, flare rather than vent any gas. We will commence operation of a separator as soon as technically feasible, and have instructed our team that we want to connect the gas to sales as soon as possible but not later than 30 days after initial flowback.

Regarding production operations, we have designed our production facilities to be compliant with the requirements of Part E of 19.15.27.8 NMAC. We will instruct our team to perform the AVOs on the frequency required under the rules. While the well is producing, we will take steps to minimize flaring during maintenance, as set forth below, and we have a process in place for the measuring of any flared gas and the reporting of any reportable flaring events.

VII. Best Management Practices

Steps are taken to minimize venting during active or planned maintenance when technically feasible including:

- Isolating the affected component and reducing pressure through process piping
- Blowing down the equipment being maintained to a control device
- Performing preventative maintenance and minimizing the duration of maintenance activities
- Shutting in sources of supply as possible
- Other steps that are available depending on the maintenance being performed