Form 3160-3 (June 2015)	MITED STATES		OMB N	APPROVED To. 1004-0137 anuary 31, 2018
DEPARTM	NITED STATES ENT OF THE INTERIOR F LAND MANAGEMEN		5. Lease Serial No.	
	PERMIT TO DRILL OR		6. If Indian, Allotee	e or Tribe Name
1a. Type of work: DRILL	REENTER		7. If Unit or CA Ag	greement, Name and No.
1b. Type of Well: Oil Well	Gas Well Other		8. Lease Name and	Wall No.
1c. Type of Completion: Hydraulic Fra	cturing Single Zone	Multiple Zone		[326046]
2. Name of Operator	[372165]		9. API Well No. 30	0-025-49737
3a. Address		No. (include area code)	10. Field and Pool,	or Exploratory [5695]
4. Location of Well (Report location clearly	and in accordance with any State	e requirements.*)	11. Sec., T. R. M. o	r Blk. and Survey or Area
At surface				
At proposed prod. zone				
14. Distance in miles and direction from near	rest town or post office*		12. County or Paris	sh 13. State
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	16. No of a	acres in lease 17. Sp	acing Unit dedicated to	this well
18. Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft.	19. Propose	ed Depth 20. BI	M/BIA Bond No. in file	;
21. Elevations (Show whether DF, KDB, RT,	GL, etc.) 22. Approx	cimate date work will start*	23. Estimated durat	tion
	24. Atta	chments	,	
The following, completed in accordance with (as applicable)	the requirements of Onshore Oi	l and Gas Order No. 1, and th	e Hydraulic Fracturing	rule per 43 CFR 3162.3-3
Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on N SUPO must be filed with the appropriate F	ational Forest System Lands, the	Item 20 above).	•	s may be requested by the
25. Signature	Name	e (Printed/Typed)		Date
Title				
Approved by (Signature)	Name	e (Printed/Typed)		Date
Title	Offic	e		
Application approval does not warrant or cert applicant to conduct operations thereon. Conditions of approval, if any, are attached.	ify that the applicant holds legal	or equitable title to those rig	hts in the subject lease w	hich would entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S. of the United States any false, fictitious or fra				any department or agency
NGMP Rec 02/01/2021			1	
	417	TH CONDITION	02	(CZ) (01/2022
SL	ANDOVED W	III (V		
(Continued on page 2)	APPROVI		*(In	nstructions on page 2)

Released to Imaging: 2/1/2022 3:26:11 PM Approval Date: 08/13/2021

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 <u>District III</u> 1000 Rio Brazos Road, Aztec, NM 87410

Phone: (505) 334-6178 Fax: (505) 334-6170 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

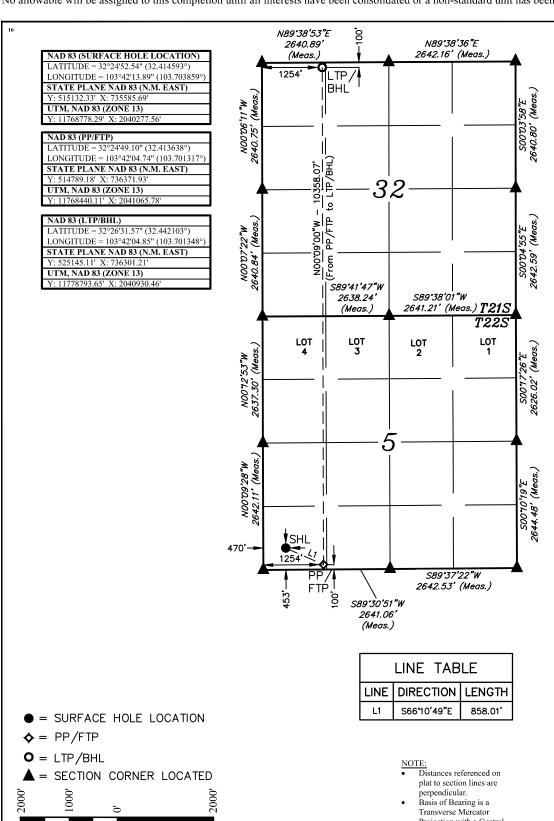
State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Number 30-025-49737	² Pool Code 5695	Bilbrev Basin: Bone S	Sprina						
⁴ Property Code 326046		⁵ Property Name CHEDDAR FED COM							
⁷ OGRID No. 372165	CENTENNIAL	* Operator Name RESOURCE PRODUCTION, LLC	⁹ Elevation 3664.8'						


¹⁰ Surface Location

M Section Township Range S 22S 32E		from the North/South line SOUTH	Feet from the 470	East/West line WEST	County LEA
------------------------------------	--	---------------------------------	-------------------	------------------------	---------------

11 Bottom Hole Location If Different From Surface

_												
	UL or lot no.	Sect	tion	Township	Range	Lot Idn	F	eet from the	North/South line	Feet from the	East/West line	County
	D	32 218			32E	100		100	NORTH	1254	WEST	LEA
	12 Dedicated Acre	es 13 Joint or Infill		14 Conso	olidation Code		15 Order No.					
	319.68		l									

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

17 OPERATOR CERTIFICATION

I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief, and that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with no worker of such entirend. to a contract with an owner of such a mineral to a contract with an owner of such a mineral or working interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division.

<u>12/12/19</u>

Signature

Kanicia Schlichting

kanicia.schlichting@cdevinc.com

18 SURVEYOR CERTIFICATION

I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief.

September 11, 2018

Released to Imaging: 2/1/2022 3:26:11 PM

Certificate Number

- Projection with a Central
- Meridian of W103°53'00"

Received by OCD: 1/31/2022 3:38:31 PM

SCALE

DRAWN BY: J.N. 09-11-18

DRAWN BY: J.N. 09-11-18

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 Phone: (575).

District III
1000 Rio Brazos Road, Aztec, NM 87410
Phone: (505) 334-6178 Fax: (505) 334-6170 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

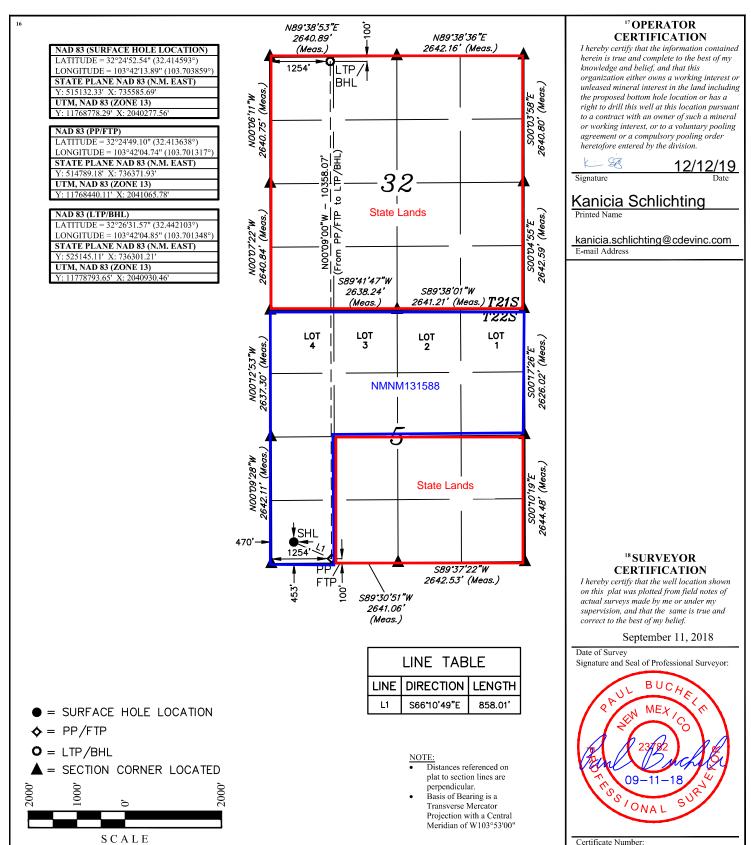
State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT

Released to Imaging: 2/1/2022 3:26:11 PM

WELL LOCATION AND ACREAGE DEDICATION PLAT


¹ API Number	r	² Pool Code 5695	Sprina	
⁴ Property Code		⁵ Pr CHEDI	6 Well Number #502H	
⁷ OGRID No. 372165			perator Name DURCE PRODUCTION, LLC	⁹ Elevation 3664.8'

¹⁰ Surface Location

	UL or lot no. M	Section 5	Township 22S	Range 32E	Lot Idn	Feet from the 453	North/South line SOUTH	Feet from the 470	East/West line WEST	County LEA
•				11	Bottom H	ole Location I	f Different From	Surface		

UL or lot no. D	Section 32	on	Township 21S	Range 32E	Lot Idn	Feet from 100		North/South line NORTH	Feet from the 1254	East/West line WEST	County LEA
12 Dedicated Acr 319.68	es	¹³ Jo	int or Infill	¹⁴ Conso	olidation Code	15 Or	der No.				

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: Centennial Resources

LEASE NO.: | NMNM131588

LOCATION: Section 5, T.22 S., R.32 E., NMPM

COUNTY: Lea County, New Mexico

WELL NAME & NO.: | Cheddar Fed Com 502H

SURFACE HOLE FOOTAGE: 453'/S & 470'/W **BOTTOM HOLE FOOTAGE** 100'/N & 1254'/W

COA

H2S	O Yes	⊙ No	
Potash	O None	Secretary	© R-111-P
Cave/Karst Potential	• Low	© Medium	C High
Cave/Karst Potential	Critical		
Variance	O None	• Flex Hose	Other
Wellhead	Conventional	Multibowl	© Both
Other	□4 String Area	☐ Capitan Reef	□WIPP
Other	Fluid Filled	☐ Cement Squeeze	☐ Pilot Hole
Special Requirements	☐ Water Disposal	☑ COM	□ Unit

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The 13-3/8 inch surface casing shall be set at approximately 750 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of

<u>24 hours in the Potash Area</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)

- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept 1/3rd fluid filled to meet BLM minimum collapse requirement.

- 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

- ❖ In Secretary Potash Areas if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 500 feet into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
 - 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County
 Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).

- b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.

- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.

- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
- e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
 - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
 - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall

have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.

- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

ZS071421

Page 11 of 80

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report

08/23/2021

APD ID: 10400052340 **Submission Date:** 12/13/2019

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: CHEDDAR FEDERAL COM Well Number: 502H

Well Type: OIL WELL Well Work Type: Drill

Highlighted data reflects the most recent changes

Show Final Text

Section 1 - General

BLM Office: Carlsbad User: Kanicia Schlichting Title: Sr. Regulatory Analyst

Federal/Indian APD: FED Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM131588 Lease Acres:

Surface access agreement in place? Allotted? Reservation:

Agreement in place? YES Federal or Indian agreement: FEDERAL

Agreement number: NMNM138602

Agreement name:

Keep application confidential? Y

Permitting Agent? NO APD Operator: CENTENNIAL RESOURCE PRODUCTION LLC

Operator letter of designation:

Operator Info

Operator Organization Name: CENTENNIAL RESOURCE PRODUCTION LLC

Operator Address: 1001 17th Street, Suite 1800

Operator PO Box:

Operator City: Denver State: CO

Operator Phone: (720)499-1400 Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO Master Development Plan name:

Well in Master SUPO? NO Master SUPO name:

Well in Master Drilling Plan? NO Master Drilling Plan name:

Well Name: CHEDDAR FEDERAL COM Well Number: 502H Well API Number:

Field Pool or Exploratory? Field and Pool Field Name: 2ND BONESPRING Pool Name: RED HILLS; BONE

SAND SPRING, NORTH

Zip: 80202

Is the proposed well in an area containing other mineral resources? USEABLE WATER, NATURAL GAS, OIL, POTASH

Well Name: CHEDDAR FEDERAL COM Well Number: 502H

Is the proposed well in an area containing other mineral resources? USEABLE WATER, NATURAL GAS, OIL, POTASH

Is the proposed well in a Helium production area? N Use Existing Well Pad? Y New surface disturbance? Y

Type of Well Pad: MULTIPLE WELL Multiple Well Pad Name: Number: 1

Well Class: HORIZONTAL

CHEDDAR DRILL ISLAND

Number of Legs: 1

Well Work Type: Drill
Well Type: OIL WELL
Describe Well Type:
Well sub-Type: INFILL

Describe sub-type:

Distance to town: 43 Miles Distance to nearest well: 30 FT Distance to lease line: 453 FT

Reservoir well spacing assigned acres Measurement: 320 Acres

Well plat: CHEDDAR_FEDERAL_COM_502H_C102_20191212131219.pdf

CHEDDAR_FEDERAL_COM_502H_C102_lease_20191212131219.pdf

Well work start Date: 02/01/2021 Duration: 45 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83 Vertical Datum: NAVD88

Survey number: 23782 Reference Datum: GROUND LEVEL

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
SHL Leg #1	453	FSL	470	FW L	22\$	32E	5	Aliquot SWS W	32.41459 3	- 103.7038 59	LEA	NEW MEXI CO	l .			366 5	0	0	Υ
KOP Leg #1	453	FSL	470	FW L	228	32E	5	Aliquot SWS W	32.41459 3	- 103.7038 59	LEA	NEW MEXI CO	ı	F	NMNM 131588	- 636 2	100 75	100 27	Y

Well Name: CHEDDAR FEDERAL COM Well Number: 502H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
PPP	100	FSL	125	FW	22S	32E	5	Aliquot	32.41363	-	LEA	NEW	NEW	F	NMNM	-	109	106	Υ
Leg			4	L				sws	8	103.7013		MEXI	MEXI		131588	693	74	00	
#1-1								W		17		CO	CO			5			
EXIT	100	FNL	125	FW	21S	32E	32	Aliquot	32.44210	-	LEA	NEW	NEW	S	STATE	-	207	106	Υ
Leg			4	L				NWN	3	103.7013		MEXI		7		693	04	00	
#1								W		48		СО	CO			5			
BHL	100	FNL	125	FW	21S	32E	32	Aliquot	32.44210	-	LEA	NEW	NEW	S	STATE	-	207	106	Υ
Leg			4	L				NWN	3	103.7013		MEXI	1			693	04	00	
#1								W		48		CO	CO			5			

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

08/23/2021

APD ID: 10400052340 **Submission Date:** 12/13/2019

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: CHEDDAR FEDERAL COM Well Number: 502H

Well Type: OIL WELL Well Work Type: Drill

Highlighted data reflects the most recent changes

Show Final Text

Section 1 - Geologic Formations

Formation	Formation Name	Elevation	True Vertical Depth	Measured Depth	Lithologies	Mineral Resources	Producing Formation
608154	RUSTLER	3665	624	624	SANDSTONE	NONE	N
608156	CAPITAN REEF	-957	4622	4622	OTHER : Carbonate	USEABLE WATER	N
608157	BELL CANYON	-1065	4730	4730	SANDSTONE	NATURAL GAS, OIL	N
608158	CHERRY CANYON	-1862	5527	5527	SANDSTONE	NATURAL GAS, OIL	N
608161	BRUSHY CANYON	-3192	6857	6857	SANDSTONE	NATURAL GAS, OIL	N
608162	BONE SPRING LIME	-4919	8584	8584	OTHER : Carbonate	NATURAL GAS, OIL	N
608164	AVALON SAND	-5071	8736	8736	SHALE	CO2, NATURAL GAS, OIL	N
608159	BONE SPRING 1ST	-5958	9623	9623	SANDSTONE	NATURAL GAS, OIL	N
608160	BONE SPRING 2ND	-6222	9887	9887	OTHER, SHALE : Carbonate	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 10M Rating Depth: 10600

Equipment: The BOP and related equipment will meet or exceed the requirements of a 5M-psi system as set forth in On Shore Order No. 2. See attached BOP Schematic. A. Casinghead: 13 5/8" – 5,000 psi SOW x 13" – 5,000 psi WP Intermediate Spool: 13" – 5,000 psi WP x 11" – 5,000 psi WP Tubinghead: 11" – 5,000 psi WP x 7 1/16" – 15,000 psi WP B. Minimum Specified Pressure Control Equipment • Annular preventer • One Pipe ram, One blind ram • Drilling spool, or blowout preventer with 2 side outlets. Choke side will be a 3-inch minimum diameter, kill line shall be at least 2-inch diameter • 3 inch diameter choke line • 2 – 3 inch choke line valves • 2 inch kill line • 2 chokes with 1 remotely controlled from rig floor (see Figure 2) • 2 – 2 inch kill line valves and a check valve • Upper kelly cock valve with handle available • When the expected pressures approach working pressure of the system, 1 remote kill line tested to stack pressure (which shall run to the outer edge of the substructure and be unobstructed) • Lower kelly cock valve with handle available • Safety valve(s) and subs to fit all drill string connections in use • Inside BOP or float sub available • Pressure gauge on choke manifold • All BOPE connections subjected to well pressure shall be flanged, welded, or clamped • Fill-up line above the uppermost preventer. C. Auxiliary Equipment • Audio and visual mud monitoring equipment shall be placed to detect volume changes indicating loss or gain of circulating fluid volume. (OOS 1, III.C.2) • Gas Buster will be used below intermediate casing setting depth. • Upper and lower kelly cocks with handles, safety valve and subs to fit all drill string connections and a pressure gauge installed on choke manifold.

Well Name: CHEDDAR FEDERAL COM Well Number: 502H

Requesting Variance? YES

Variance request: Centennial is requesting to use a flex hose on the choke manifold. Please see section 8 for hose specs attachment. We would also like to request a variance to use a 5M Annular Preventer. Please see attached multi-bowl procedure.

Testing Procedure: The BOP test shall be performed before drilling out of the surface casing shoe and will occur at a minimum: a. when initially installed b. whenever any seal subject to test pressure is broken c. following related repairs d. at 30 day intervals e. checked daily as to mechanical operating conditions. The ram type preventer(s) will be tested using a test plug to 250 psi (low) and 5,000 psi (high) (casinghead WP) with a test plug upon its installation onto the 13" surface casing. If a test plug is not used, the ram type preventer(s) shall be tested to 70% of the minimum internal yield pressure of the casing. The annular type preventer(s) shall be tested to 50% of its working pressure. Pressure will be maintained for at least 10 minutes or until provisions of the test are met, whichever is longer. • A Sundry Notice (Form 3160 5), along with a copy of the BOP test report, shall be submitted to the local BLM office within 5 working days following the test. • If the bleed line is connected into the buffer tank (header), all BOP equipment including the buffer tank and associated valves will be rated at the required BOP pressure. • The BLM office will be provided with a minimum of four (4) hours' notice of BOP testing to allow witnessing. The BOP Configuration, choke manifold layout, and accumulator system, will be in compliance with Onshore Order 2 for a 5,000 psi system. A remote accumulator will be used. Pressures, capacities, and specific placement and use of the manual and/or hydraulic controls, accumulator controls, bleed lines, etc., will be identified at the time of the BLM witnessed BOP test. Any remote controls will be capable of both opening and closing all preventers and shall be readily accessible.

Choke Diagram Attachment:

HP650_10M_Choke_Manifold_20190329140051.pdf

BOP Diagram Attachment:

CRD__Well_Control_Plan_v2_20181107133139.pdf

HP650_BOP_Schematic_CoFlex_Choke_10K_2019_1_29_20190325122316.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	CONDUCT OR	26	20.0	NEW	API	N	0	120	0	120	3665	3545	120	H-40		OTHER - Weld						
2	SURFACE	17.5	13.375	NEW	API	N	0	750	0	750	3665	2915	750	J-55		OTHER - BTC	3.05	7.38	DRY	20.8 7	DRY	20.8 7
	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	4610	0	4600	3665	-935	4610	J-55	40	LT&C	1.52	1.65	DRY	2.83	DRY	3.42
	PRODUCTI ON	8.75	5.5	NEW	API	N	0	10075	0	10027	3665	-6362	10075	P- 110	20	OTHER - TMK UP DQX	2.13	2.43	DRY	3.2	DRY	3.2
	PRODUCTI ON	8.5	5.5	NEW	API	N	10075	20704	10027	10630	-6362	-6965	10629	P- 110		OTHER - TMK UP DQX	2.02	2.3	DRY	55.9 3	DRY	55.9 3

Well Name: CHEDDAR FEDERAL COM Well Number: 502H

Casing ID: 1

String Type: CONDUCTOR

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

CASING_ASSUMPTIONS_WORKSHEET_20181031160011.pdf

Casing ID: 2

String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

CASING_ASSUMPTIONS_WORKSHEET_20181031160036.pdf

Casing ID: 3

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

TMK_UP_DQX_5.5_x_20_P110_HC_20181031161313.pdf

Casing Design Assumptions and Worksheet(s):

CASING_ASSUMPTIONS_WORKSHEET_20181107142525.pdf

Well Name: CHEDDAR FEDERAL COM Well Number: 502H

Casing Attachments

Casing ID: 4

String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

TMK_UP_DQX_5_x_18_P110_HC_20181031161259.pdf

Casing Design Assumptions and Worksheet(s):

CASING_ASSUMPTIONS_WORKSHEET_20181107142600.pdf

Technical_Data_Sheet_TMK_UP_DQX_5.5_x_20_P110_CY_20191212111404.pdf

Casing ID: 5

String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

CASING_ASSUMPTIONS_WORKSHEET_20181107142618.pdf

Technical_Data_Sheet_TMK_UP_DQX_5.5_x_20_P110_CY_20191212111456.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Lead		0	0	0	0	0	0		0	0

CONDUCTOR	Lead	0	120	121	1.49	12.9	181	Grout	Bentonite 4% BWOC, Cellophane 0.25 pps
									CACL2 2% BWOC

Well Name: CHEDDAR FEDERAL COM Well Number: 502H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1300	1038	1.74	13.5	1806	100	Class C Premium	Premium Gel Bentonite 4%, C-45 Econolite 0.25%, Phenoseal 0.25#/sk, CaCl 1%, Defoamer C-41P 0.75%
SURFACE	Tail		1300	1800	518	1.34	14.8	695	100	Class C Premium	C-45 Econolite 0.10%, CaCl 1.0%
INTERMEDIATE	Lead		0	4110	1000	3.44	10.7	3441	150	TXI Lightweight	Salt 1.77/sk, C-45 Econolite 2.25%, STE 6.00%, Citric Acid 0.18%, C-19 0.10%, CSA-1000 0.20%, C- 530P 0.30%, CTB-15 LCM 7#/sk, Gyp Seal 8#/sk
INTERMEDIATE	Tail		4110	4610	141	1.33	14.8	188	20	Class C Premium	C-45 Econolite 0.10%, Citric acid 0.05%, C503P 0.25%
PRODUCTION	Lead		0	1007 5	984	3.41	10.6	3357	30	TXI Lightweight	Salt 8.98#/sk, STE 6.00%, Citric acid 0.20%, CSA-1000 0.23%, C47B 0.10%, C- 503P 0.30%
PRODUCTION	Tail		1007 5	2070 4	2455	1.24	14.2	3044	25	50:25:25 Class H: Poz: CPO18	Citric acid 0.03%, CSA- 1000 0.05%, C47B 0.25%, C-503P 0.30%

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient quantities of mud materials will be on the well site at all times for the purpose of assuring well control and maintaining wellbore integrity. Surface interval will employ fresh water mud. The intermediate hole will utilize a diesel emulsified brine fluid to inhibit salt washout and prevent severe fluid losses. The production hole will employ oil base fluid to inhibit formation reactivity and of the appropriate density to maintain well control.

Describe the mud monitoring system utilized: Centrifuge separation system. Open tank monitoring with EDR will be used for drilling fluids and return volumes. Open tank monitoring will be used for cement and cuttings return volumes. Mud properties will be monitored at least every 24 hours using industry accepted mud check practices.

Circulating Medium Table

Well Name: CHEDDAR FEDERAL COM Well Number: 502H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	2070 4	OTHER : Brine/OBM	8.8	10							
1800	4610	OTHER : Brine	9	10							
0	1800	OTHER : FW	8.6	9.5							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Will utilize MWD/LWD (Gamma ray logging) from intermediate hole to TD of the well.

List of open and cased hole logs run in the well:

DIRECTIONAL SURVEY, GAMMA RAY LOG,

Coring operation description for the well:

Will not be coring this well.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 5512 Anticipated Surface Pressure: 3180

Anticipated Bottom Hole Temperature(F): 170

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

H2S_Plan_Chedder_Fed_Com_502H_20191212134850.pdf

Well Name: CHEDDAR FEDERAL COM Well Number: 502H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

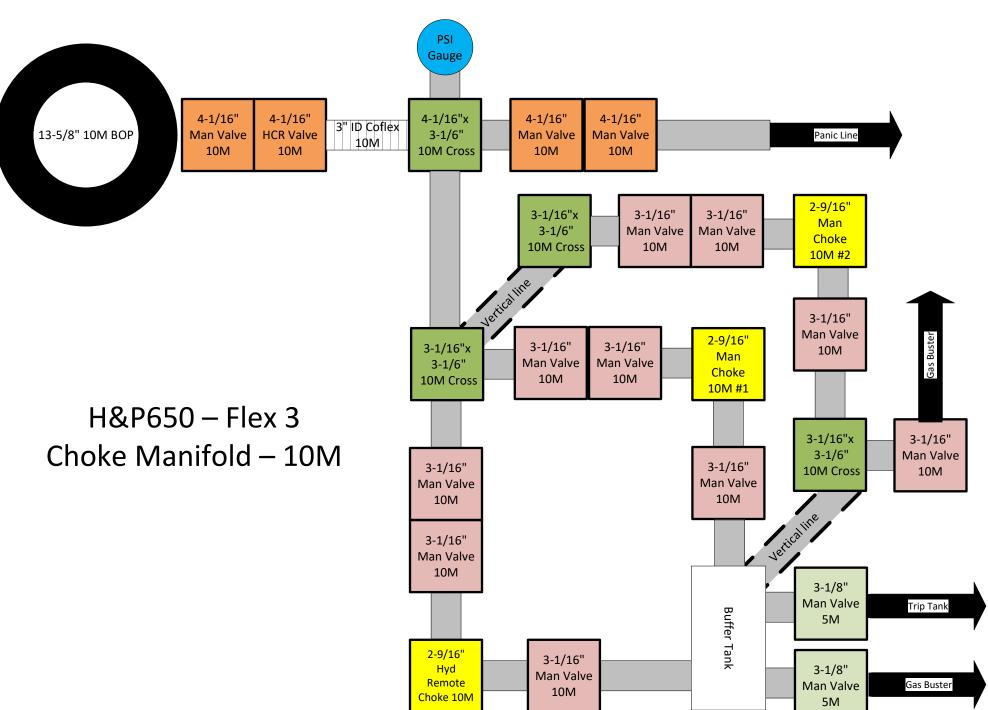
Chedder_FC_502H_Planning_Report_20191212134909.pdf

Other proposed operations facets description:

We are planning to use spudder rig to preset surface casing. Gas Caputre Plan is attached. geoprog attached.

Other proposed operations facets attachment:

CRD_Batch_Setting_Procedures_20191212112515.pdf


Gas_Capture_Plan_Cheddar_301H_20191213123417.docx

CDEV_Multi_Bowl_Procedure_Cheddar_Fed_Com_502H_20191213123507.pdf

GEOPROG_Cheddar_Federal_Com_502H_PRELIM_20200828125252.pdf

Other Variance attachment:

H_P_650_Flex_Hose_Specs_Continental_Hose_SN_67255_20191212112427.pdf

Released to Imaging: 2/1/2022 3:26:11 PM

Centennial Resource Development - Well Control Plan

A. Component and Preventer Compatibility Table

Component	OD (inches)	Preventer	RWP
Drillpipe	4	Upper VBR: 3.5 – 5.5	10M
		Lower VBR: 3.5 – 5.5	
Heavyweight Drillpipe	4	Upper VBR: 3.5 – 5.5	10M
		Lower VBR: 3.5 – 5.5	
Drill collars and MWD tools	4 3/4	Upper VBR: 3.5 – 5.5	10M
		Lower VBR: 3.5 – 5.5	
Mud Motor	4 3/4	Upper VBR: 3.5 – 5.5	10M
		Lower VBR: 3.5 – 5.5	
Production Casing	5.5 & 5	Upper VBR: 3.5 – 5.5	10M
		Lower VBR: 3.5 – 5.5	
All	0 – 13 5/8	Annular	5M
Open-hole	-	Blind rams	10M

VBR = Variable Bore Rams

RWP = Rated Working Pressure

MWD = Measurement While Drilling (directional tools)

B. Well Control Procedures

I. General Procedures While Drilling:

- 1. Sound alarm (alert crew).
- 2. Space out drill-string.
- 3. Shut down pumps and stop rotary.
- 4. Open HCR
- 5. Shut-in well utilizing upper VBRs.
- 6. Close choke
- 7. Confirm shut-in.
- 8. Notify rig manager and Centennial company representative.
- 9. Call Centennial drilling engineer
- 10. Read and record
 - I. Shut-in drillpipe pressure (SIDPP) and shut-in casing pressure (SCIP).
 - II. Pit gain
 - III. Time
- 11. Regroup, identify forward plan

II. General Procedure While Tripping

- 1. Sound alarm (alert crew).
- 2. Stab full opening safety valve and close
- 3. Space out drillstring.
- 4. Open HCR
- 5. Shut-in well utilizing upper VBRs
- 6. Close choke
- 7. Confirm shut-in.
- 8. Notify rig manager and Centennial company representative.
- 9. Call Centennial drilling engineer
- 10. Read and record:
 - I. SIDPP AND SICP
 - II. Pit gain
 - III. Time
- 11. Regroup and identify forward plan.

III. General Procedure While Running Casing

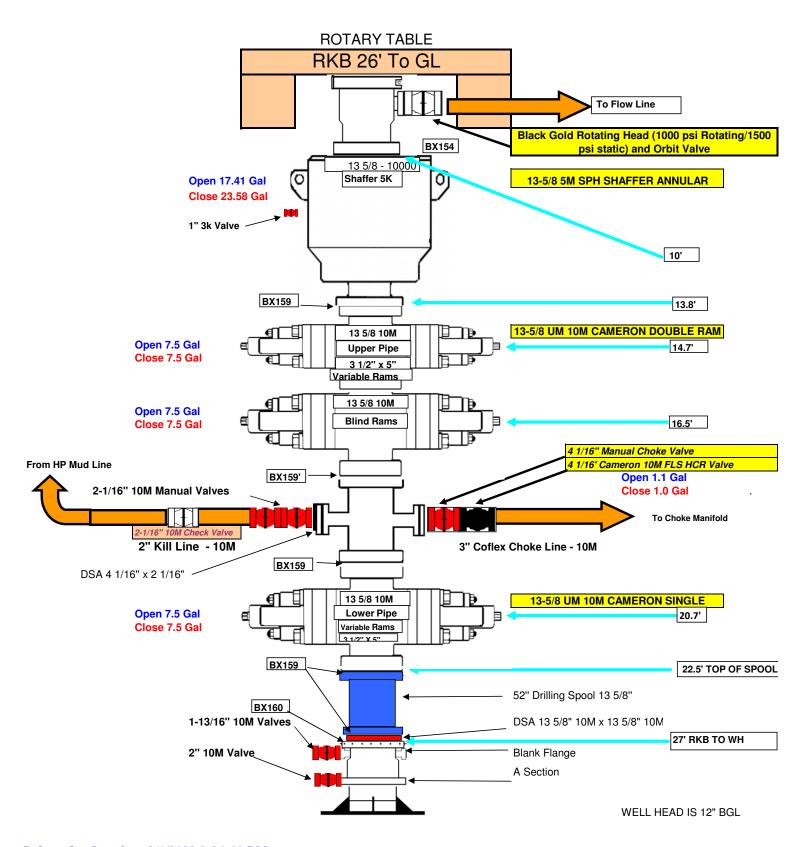
- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close
- 3. Space out string.
- 4. Open HCR
- 5. Shut-in well utilizing upper VBRs.
- 6. Close choke
- 7. Confirm shut-in.
- 8. Notify rig manager and Centennial company representative.
- 9. Call Centennial drilling engineer
- 10. Read and record:
 - I. SIDPP AND SICP
 - II. Pit gain
 - III. Time
- 11. Regroup and identify forward plan.

IV. General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Open HCR
- 3. Shut-in with blind rams
- 4. Close choke
- 5. Confirm shut-in
- 6. Notify rig manager and Centennial company representative.
- 7. Call Centennial drilling engineer
- 8. Read and record:
 - I. SIDPP AND SICP
 - II. Pit gain
 - III. Time
- 9. Regroup and identify forward plan.

V. General Procedures While Pulling BHA Thru BOP Stack

- 1. Prior to pulling last joint of drillpipe thru stack:
 - I. Perform flow check, if flowing
 - a. Sound alarm, alert crew
 - b. Stab full opening safety valve and close
 - c. Space out drillstring with tool joint just beneath the upper pipe ram.
 - d. Open HCR
 - e. Shut-in utilizing upper VBRs
 - f. Close choke
 - g. Confirm shut-in
 - h. Notify rig manager and Centennial company representative.
 - i. Call Centennial drilling engineer
 - j. Read and record:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - II. Regroup and identify forward plan

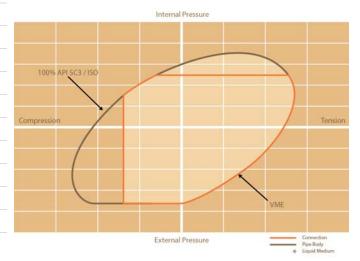

2. With BHA in the BOP stack and compatible ram preventer and pipe combo immediately available:

- a. Sound alarm, alert crew
- b. Stab full opening safety valve and close
- c. Space out drillstring with tool joint just beneath the upper pipe ram.
- d. Open HCR
- e. Shut-in utilizing upper VBRs
- f. Close choke
- g. Confirm shut-in
- h. Notify rig manager and Centennial company representative.
- i. Call Centennial drilling engineer
- j. Read and record:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
- II. Regroup and identify forward plan

- 3. With BHA in the BOP stack and no compatible ram preventer and pipe combo immediately availiable:
 - I. Sound alarm, alert crew.
 - II. If possible to pick up high enough, pull string clear of the stack and follow Open Hole (III) scenario.
 - III. If impossible to pick up high enough to pull the string clear of the stack:
 - a. Stab crossover, make up one joint/stand of drill pipe and full opening safety valve and close.
 - b. Space out drillstring with tool joint just beneath the upper pipe ram.
 - c. Open HCR
 - d. Shut-in utilizing upper VBRs.
 - e. Close choke
 - f. Confirm shut-in
 - g. Notify rig manager and Centennial company representative.
 - h. Call Centennial drilling engineer
 - i. Read and record:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - IV. Regroup and identify forward plan.

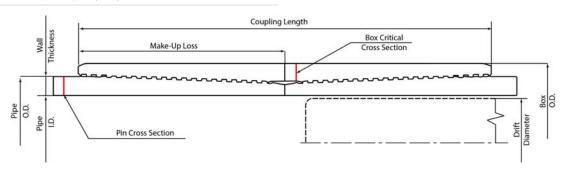
^{**} If annular is used to shut-in well and pressure builds to OR is expected to get to 50% of RWP, confirm space-out and swap to upper VBRs for shut-in.

H&P 650



TECHNICAL DATA SHEET TMK UP DQX 5.5 X 20 P110 HC

TUBULAR PARAMETERS PIPE BODY PROPERTIES

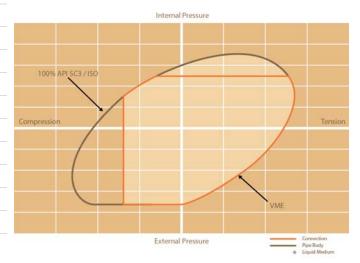

Nominal OD, (inch)	5.500	PE Weight, (lbs/ft)	19.81
Wall Thickness, (inch)	0.361	Nominal Weight, (lbs/ft)	20.00
Pipe Grade	P110 HC	Nominal ID, (inch)	4.778
Coupling	Regular	Drift Diameter, (inch)	4.653
Coupling Grade	P110 HC	Nominal Pipe Body Area, (sq inch)	5.828
Drift	Standard	Yield Strength in Tension, (klbs)	641
		Min. Internal Yield Pressure, (psi)	12 640
CONNECTION PARAMETERS		Collapse Pressure, (psi)	12 780

Connection OD (inch)	6.05
Connection ID, (inch)	4.778
Make-Up Loss, (inch)	4.122
Connection Critical Area, (sq inch)	5.828
Yield Strength in Tension, (klbs)	641
Yeld Strength in Compression, (klbs)	641
Tension Efficiency	100%
Compression Efficiency	100%
Min. Internal Yield Pressure, (psi)	12 640
Collapse Pressure, (psi)	12 780
Uniaxial Bending (deg/100ft)	91.7

MAKE-UP TORQUES

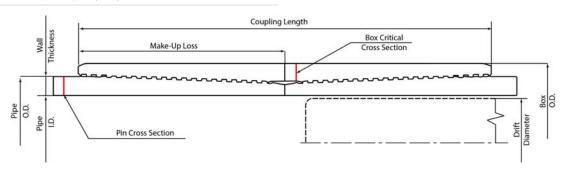
Yield Torque, (ft-lb)	20 600
Minimum Make-Up Torque, (ft-lb)	11 600
Optimum Make-Up Torque, (ft-lb)	12 900
Maximum Make-Up Torque, (ft-lb)	14 100

NOTE: The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. This information supersede all prior versions for this connection. Information that is printed or downloaded is no longer controlled by TMK and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest technical information, please contact PAO "TMK" Technical Sales in Russia (Tel: +7 (495) 775-76-00, Email: techsales@tmk-group.com) and TMK IPSCO in North America (Tel: +1 (281)949-1044, Email: techsales@tmk-ipsco.com).


Print date: 03/02/2018 20:57

TECHNICAL DATA SHEET TMK UP DQX 5 X 18 P110 HC

TUBULAR PARAMETERS PIPE BODY PROPERTIES


Nominal OD, (inch)	5.000	PE Weight, (lbs/ft)	17.93
Wall Thickness, (inch)	0.362	Nominal Weight, (lbs/ft)	18.00
Pipe Grade	P110 HC	Nominal ID, (inch)	4.276
Coupling	Regular	Drift Diameter, (inch)	4.151
Coupling Grade	P110 HC	Nominal Pipe Body Area, (sq inch)	5.275
Drift	Standard	Yield Strength in Tension, (klbs)	580
CONNECTION PARAMETERS		Min. Internal Yield Pressure, (psi)	13 940
		Collapse Pressure. (psi)	14 820

Connection OD (inch)	5.56
Connection ID, (inch)	4.276
Make-Up Loss, (inch)	4.097
Connection Critical Area, (sq inch)	5.275
Yield Strength in Tension, (klbs)	580
Yeld Strength in Compression, (klbs)	580
Tension Efficiency	100%
Compression Efficiency	100%
Min. Internal Yield Pressure, (psi)	13 940
Collapse Pressure, (psi)	14 820
Uniaxial Bending (deg/100ft)	100.9

MAKE-UP TORQUES

Yield Torque, (ft-lb)	17 500
Minimum Make-Up Torque, (ft-lb)	9 800
Optimum Make-Up Torque, (ft-lb)	10 900
Maximum Make-Up Torque, (ft-lb)	11 900

NOTE: The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. This information supersede all prior versions for this connection. Information that is printed or downloaded is no longer controlled by TMK and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest technical information, please contact PAO "TMK" Technical Sales in Russia (Tel: +7 (495) 775-76-00, Email: techsales@tmk-group.com) and TMK IPSCO in North America (Tel: +1 (281)949-1044, Email: techsales@tmk-ipsco.com).

Print date: 03/02/2018 20:54

Centralizer Program:

Surface: - 3 welded bow spring centralizers, one on each of the bottom 3 joints, plus one on the shoe

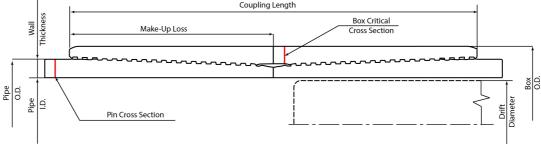
joint (4 minimum)

- No Cement baskets will be run

Production: - 1 welded bow spring centralizer on a stop ring 6' above float shoe

- 1 centralizer every other joint to the top of the tail cement

- 1 centralizer every 4 joints to 500' below the top of the lead cement


- The actual number and placement of centralizers will be determined from hole deviation and potential production zones. Centralizers will be run for maximum practical standoff

and through all potential productive zones.

All casing strings below the conductor shall be tested, prior to drilling out the casing shoe, to 0.22 psi/ft of casing string length or 1500 psi, whichever is greater, but not to exceed 70% of the internal yield pressure of the casing. If pressure declines more than 10 percent in 30 minutes, corrective action will be taken.

No freshly hard banded pipe will be rotated in the surface casing

TUBULAR PARAMETERS		PIPE BODY PROPERTIES	
Nominal OD, (inch)	5.500	PE Weight, (lbs/ft)	19.81
Wall Thickness, (inch)	0.361	Nominal Weight, (lbs/ft)	20.00
Pipe Grade	P110 CY	Nominal ID, (inch)	4.778
Coupling	Regular	Drift Diameter, (inch)	4.653
Coupling Grade	P110 CY	Nominal Pipe Body Area, (sq inch)	5.828
Drift	Standard	Yield Strength in Tension, (klbs)	641
CONNECTION PARAMETERS		Min. Internal Yield Pressure, (psi) Collapse Pressure, (psi)	12 640 11 110
Connection OD (inch)	6.05		
Connection ID, (inch)	4.778	Internal Pressure	
Make-Up Loss, (inch)	4.122		
Connection Critical Area, (sq inch)	5.828		
Yield Strength in Tension, (klbs)	641	100% API 5C3 / ISO	
Yeld Strength in Compression, (klbs)	641		
Tension Efficiency	100%		
Compression Efficiency	100%	Compression	Tension
Min. Internal Yield Pressure, (psi)	12 640		
Collapse Pressure, (psi)	11 110		
Uniaxial Bending (deg/100ft)	92.0		
MAKE-UP TORQUES			VME
Yield Torque, (ft-lb)	20 600	External Pressure	Connection Pipe Body
Minimum Make-Up Torque, (ft-lb)	11 600		* Liquid Medium
Optimum Make-Up Torque, (ft-lb)	12 900		
Maximum Make-Up Torque, (ft-lb)	14 100		
Operating Torque, (ft-lb)	17 500		
_∞	Соц	pling Length	

NOTE: The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. This information supersede all prior versions for this connection. Information that is printed or downloaded is no longer controlled by TMK and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest technical information, please contact PAO "TMK" Technical Sales in Russia (Tel: +7 (495) 775-76-00, Email: techsales@tmk:group.com) and TMK IPSCO in North America (Tel: +1 (281)949-1044, Email: techsales@tmk:group.com).

Print date: 12/04/2018 19:42

Centralizer Program:

Surface: - 3 welded bow spring centralizers, one on each of the bottom 3 joints, plus one on the shoe

joint (4 minimum)

- No Cement baskets will be run

Production: - 1 welded bow spring centralizer on a stop ring 6' above float shoe

- 1 centralizer every other joint to the top of the tail cement

- 1 centralizer every 4 joints to 500' below the top of the lead cement

- The actual number and placement of centralizers will be determined from hole deviation and potential production zones. Centralizers will be run for maximum practical standoff

and through all potential productive zones.

• All casing strings below the conductor shall be tested, prior to drilling out the casing shoe, to 0.22 psi/ft of casing string length or 1500 psi, whichever is greater, but not to exceed 70% of the internal yield pressure of the casing. If pressure declines more than 10 percent in 30 minutes, corrective action will be taken.

No freshly hard banded pipe will be rotated in the surface casing

Centralizer Program:

Surface: - 3 welded bow spring centralizers, one on each of the bottom 3 joints, plus one on the shoe

joint (4 minimum)

- No Cement baskets will be run

Production: - 1 welded bow spring centralizer on a stop ring 6' above float shoe

- 1 centralizer every other joint to the top of the tail cement

- 1 centralizer every 4 joints to 500' below the top of the lead cement

- The actual number and placement of centralizers will be determined from hole deviation and potential production zones. Centralizers will be run for maximum practical standoff

and through all potential productive zones.

• All casing strings below the conductor shall be tested, prior to drilling out the casing shoe, to 0.22 psi/ft of casing string length or 1500 psi, whichever is greater, but not to exceed 70% of the internal yield pressure of the casing. If pressure declines more than 10 percent in 30 minutes, corrective action will be taken.

No freshly hard banded pipe will be rotated in the surface casing

Centralizer Program:

Surface: - 3 welded bow spring centralizers, one on each of the bottom 3 joints, plus one on the shoe

joint (4 minimum)

- No Cement baskets will be run

Production: - 1 welded bow spring centralizer on a stop ring 6' above float shoe

- 1 centralizer every other joint to the top of the tail cement

- 1 centralizer every 4 joints to 500' below the top of the lead cement

- The actual number and placement of centralizers will be determined from hole deviation and potential production zones. Centralizers will be run for maximum practical standoff

and through all potential productive zones.

All casing strings below the conductor shall be tested, prior to drilling out the casing shoe, to 0.22 psi/ft of casing string length or 1500 psi, whichever is greater, but not to exceed 70% of the internal yield pressure of the casing. If pressure declines more than 10 percent in 30 minutes, corrective action will be taken.

No freshly hard banded pipe will be rotated in the surface casing

Centralizer Program:

Surface: - 3 welded bow spring centralizers, one on each of the bottom 3 joints, plus one on the shoe

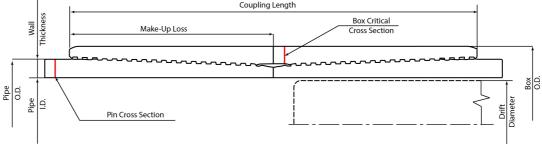
joint (4 minimum)

- No Cement baskets will be run

Production: - 1 welded bow spring centralizer on a stop ring 6' above float shoe

- 1 centralizer every other joint to the top of the tail cement

- 1 centralizer every 4 joints to 500' below the top of the lead cement


- The actual number and placement of centralizers will be determined from hole deviation and potential production zones. Centralizers will be run for maximum practical standoff

and through all potential productive zones.

• All casing strings below the conductor shall be tested, prior to drilling out the casing shoe, to 0.22 psi/ft of casing string length or 1500 psi, whichever is greater, but not to exceed 70% of the internal yield pressure of the casing. If pressure declines more than 10 percent in 30 minutes, corrective action will be taken.

No freshly hard banded pipe will be rotated in the surface casing

TUBULAR PARAMETERS		PIPE BODY PROPERTIES	
Nominal OD, (inch)	5.500	PE Weight, (lbs/ft)	19.81
Wall Thickness, (inch)	0.361	Nominal Weight, (lbs/ft)	20.00
Pipe Grade	P110 CY	Nominal ID, (inch)	4.778
Coupling	Regular	Drift Diameter, (inch)	4.653
Coupling Grade	P110 CY	Nominal Pipe Body Area, (sq inch)	5.828
Drift	Standard	Yield Strength in Tension, (klbs)	641
CONNECTION PARAMETERS		Min. Internal Yield Pressure, (psi) Collapse Pressure, (psi)	12 640 11 110
Connection OD (inch)	6.05		
Connection ID, (inch)	4.778	Internal Pressure	
Make-Up Loss, (inch)	4.122		
Connection Critical Area, (sq inch)	5.828		
Yield Strength in Tension, (klbs)	641	100% API 5C3 / ISO	
Yeld Strength in Compression, (klbs)	641		
Tension Efficiency	100%		
Compression Efficiency	100%	Compression	Tension
Min. Internal Yield Pressure, (psi)	12 640		
Collapse Pressure, (psi)	11 110		
Uniaxial Bending (deg/100ft)	92.0		
MAKE-UP TORQUES			VME
Yield Torque, (ft-lb)	20 600	External Pressure	Connection Pipe Body
Minimum Make-Up Torque, (ft-lb)	11 600		* Liquid Medium
Optimum Make-Up Torque, (ft-lb)	12 900		
Maximum Make-Up Torque, (ft-lb)	14 100		
Operating Torque, (ft-lb)	17 500		
	Cou	pling Length	

NOTE: The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. This information supersede all prior versions for this connection. Information that is printed or downloaded is no longer controlled by TMK and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest technical information, please contact PAO "TMK" Technical Sales in Russia (Tel: +7 (495) 775-76-00, Email: techsales@tmk:group.com) and TMK IPSCO in North America (Tel: +1 (281)949-1044, Email: techsales@tmk:group.com).

Print date: 12/04/2018 19:42

HYDROGEN SULFIDE CONTINGENCY PLAN

Chedder Fed Com 502H

Section 5

T 22S R 32E

Lea County, NM

Initial Date: 3/4/18

Revision Date:

Table of Contents

- Page 3: Introduction
- Page 4: Directions to Location
- Page 5: Safe Briefing Areas
- Page 6: Drill Site Location Setup
- Page 7: Toxicity of Various Gases
- Page 10: H2S Required Equipment
- Page 11: Determination of Radius of Exposure
- Page 12: Emergency Contact List

INTRODUCTION

This plan specifies precautionary measures, safety equipment, emergency procedures, responsibilities, duties, and the compliance status pertaining to the production operations of Hydrogen Sulfide producing wells on:

Centennial Resource Development, Inc.

This plan will be in full effect prior to and continuing with all drilling operations for all wells producing potential Hydrogen Sulfide on the

Chedder Fed Com 502H

This plan was developed in response to the potential hazards involved when producing formations that may contain Hydrogen Sulfide (H₂S) It has been written in compliance with current New Mexico Oil Conservation Division Rule 118 and Bureau of Land Management 43 CFR 3160 Onshore Order No. 6.

All personnel shall receive proper H2S training in accordance with Onshore Order III.C.3.a

This plan shall require the full cooperation and efforts of all individuals participating in the production of potential H₂S wells.

Each individual is required to know their assigned responsibilities and duties in regard to normal production operations and emergency procedures.

Each person should thoroughly understand and be able to use all safety related equipment on the production facility.

Each person should become familiar with the location of all safety equipment and become involved in ensuring that all equipment is properly stored, easily accessible, and routinely maintained.

An ongoing training program will remain in effect with regular training, equipment inspections, and annual certifications for all personnel.

Centennial Resource Development, Inc. shall make every reasonable effort to provide all possible safeguards to protect all personnel, both on this location and in the immediate vicinity, from the harmful effects of H₂S exposure, if a release to the atmosphere should occur.

DIRECTIONS TO LOCATION

Chedder Fed Com 502H

Section 5

T 22S R 32E

Lea County, NM

PROCEED IN A NORTHEASTLY, THEN EASTERLY DIRECTION FROM CARLSBAD, NEW MEXICO ALONG U.S. HIGHWAY 62 APPROXIMATELY 31.1 MILES TO THE JUNCTION OF THIS ROAD AND CAMPBELL ROAD TO THE SOUTH; TURN RIGHT AND PROCEED IN A SOUTHERLY, THEN SOUTHEASTERLY, THEN SOUTHERLY DIRECTION APPROXIMATELY 9.0 MILES TO THE JUNCTION OF THIS ROAD AND AN EXISTING ROAD TO THE EAST; TURN LEFT AND PROCEED IN AN EASTERLY, THEN NORTHERLY, THEN EASTERLY DIRECTION APPROXIMATELY 1.6 MILES TO THE JUNCTION OF THIS ROAD AND AN EXISTING ROAD TO THE SOUTH; TURN RIGHT AND PROCEED IN A SOUTHERLY DIRECTION APPROXIMATELY 1.3 MILES TO THE BEGINNING OF THE PROPOSED ACCESS ROAD TO THE SOUTHWEST; FOLLOW ROAD FLAGS IN AN SOUTHWESTERLY, THEN SOUTHERLY, THEN EASTERLY DIRECTION APPROXIMATELY 1,101' TO THE PROPOSED LOCATION.

TOTAL DISTANCE FROM CARLSBAD, NEW MEXICO TO THE PROPOSED WELL LOCATION IS APPROXIMATELY 43.2 MILES.TOTAL DISTANCE FROM JAL, NEW MEXICO TO THE PROPOSED WELL LOCATION IS APPROXIMATELY 29.0 MILES.

SAFE BRIEFING AREAS

Two areas will be designated as "SAFE BRIEFING AREAS".

The Primary Safe Briefing Area

If the Primary Safe Briefing Area cannot be used due to wind conditions; the designated secondary safe briefing area will be used.

These two areas are so designated for accessibility reasons related to self-contained safe breathing air device locations, evacuation muster point utility, and for ease of overall communication, organizational support, as well as the all-important prevailing wind directions. Drawings of the facility denoting these locations are included on Page 15.

If H₂S is detected in concentrations equal to or in excess of 15 PPM, all personnel not assigned emergency duties are to assemble in the appropriate "SAFE BRIEFING AREA" for instructions.

Wind Direction Indicators: A windsock, shall be positioned, allowing the wind direction to be observed from anywhere on the charted facility location.

Warning-DANGER SIGNS for Approaching Traffic: All signs shall also be illuminated under conditions of poor visibility.

DANGER POISONOUS GAS HYDROGEN SULFIDE DO NOT APPROACH IF AMBER LIGHTS ARE FLASHING

An amber strobe light system will be activated for H₂S concentrations of 10 PPM or greater and an audible alarm will sound when H₂S exceeds 15 ppm, and. This condition will exist until the all clear is given.

DRILL SITE LOCATION:

- 1. The drilling rig should be situated on location such that the prevailing winds blow across the rig toward the reserve pit or at right angles to a line from the rig to the reserve pit.
- 2. The entrance to the location should be designated so that it can be barricaded if Hydrogen Sulfide emergency conditions arise. An auxiliary exit (or entrance) should be available in case of a catastrophe; a shift in wind direction would not preclude escape from the location. Appropriate warning signs and flags should be placed at all location entrances.
- 3. Once H2S safety procedures are established on location, no beards or facial hair, which will interfere with face seal or mask, will be allowed on location.
- 4. A minimum of two BRIEFING AREAS will be established, no less than 250 feet from the wellhead and in such location that at least one area will be up-wind from the well at all times. Upon recognition of an emergency situation, all personnel should assemble at the designated briefing areas for instructions.
- 5. A safety equipment trailer will be station at one of the briefing areas.
- 6. Windsocks will be installed and wind streamers (6 to 8 feet above ground level) placed at the location entrance. Windsocks shall be illuminated for nighttime operations. Personnel should develop wind direction consciousness.
- 7. The mud-logging trailer will be located so as to minimize the danger from the gas that breaks out of the drilling fluid.
- 8. Shale shaker mud tanks will be located so as to minimize the danger from gas that breaks out of the drilling fluid.
- 9. Electric power plant(s) will be located as far from the well bore as practical so that it may be used under conditions where it otherwise would have to be shut down.
- 10. When approaching depth where Hydrogen Sulfide may be encountered, appropriate warning signs will be posted on all access roads to the location and at the foot of all stairways to the derrick floor.
- 11. Appropriate smoking areas will be designated, and smoking will be prohibited elsewhere.

The table below lists various poisonous gases and the concentrations at which they become dangerous.

TOXICITY OF VARIOUS GASES

TOXICITY OF GASES (Taken from API RP-49 September 1974 – Re-issued August 1978)									
Common Name	Chemical Formula	Gravity (Air = 1)	Hazardous 2 Limit	Lethal 3 Limit					
Hydrogen Sulfide	H_2S	1.18	10 ppm	250 ppm/1hr	600 ppm				
Sulfur Dioxide	SO_2	2.21	20 ppm		1000 ppm				
Carbon Monoxide	СО	0.97	50 ppm	400 ppm/1hr	1000 ppm				
Carbon Dioxide	CO_2	1.52	5000 ppm	5%	10%				
Methane	CH ₄	0.55	90000 ppm	Combustible A	_				

1. Threshold	2. Hazardous	3. Lethal concentration
concentration at	concentration that	that will cause death
which it is believed	may cause death	with short-term
that all workers may		exposure
repeatedly be exposed		
day after day, without		
adverse effect		

Properties of Gases

The produced gas will probably be a mixture of Carbon Dioxide, Hydrogen Sulfide, and Methane.

Carbon Dioxide

Carbon Dioxide (CO₂) is usually considered inert and is commonly used to extinguish fires.

It is heavier than air (1.52 times) and it will concentrate in low areas of still air.

Humans cannot breathe air containing more than 10% CO₂ without losing consciousness. Air containing 5% CO₂ will cause disorientation in a few minutes.

Continued exposures to CO₂ after being affected will cause convulsions, coma, and respiratory failure.

The threshold limit of CO₂ is 5000 ppm.

Short-term exposure to 50,000 PPM (5%) is reasonable. This gas is colorless and odorless and can be tolerated in relatively high concentrations.

Hydrogen Sulfide

Hydrogen Sulfide (H₂S) itself is a colorless, transparent gas and is flammable. It is heavier than air and, hence, may accumulate in low places.

Although the slightest presence of H₂S in the air is normally detectable by its characteristic "rotten egg" odor, it is dangerous to rely on the odor as a means of detecting excessive concentrations because the sense of smell is rapidly lost, allowing lethal concentrations to be accumulated without warning. The following table indicates the poisonous nature of Hydrogen Sulfide.

	HYDROGEN SULFIDE TOXICITY								
	Concent	ration	Effects						
%H ₂ S	PPM	GR/100 SCF 1							
0.001	10	0.65	Safe for 8 hours without respirator. Obvious and unpleasant odor.						
0.002	20	1.30	Burning in eyes and irritation of respiratory tract after on hour.						
0.01	100	6.48	Kills smell in 3 to 15 minutes; may sting eyes and throat.						
0.02	200	12.96	Kills smell shortly; stings eyes and throat.						
0.05	500	32.96	Dizziness; breathing ceases in a few minutes; need prompt artificial respiration.						
0.07	700	45.92	Unconscious quickly; death will result if not rescued promptly						
0.10	1000	64.80	DEATH!						
Note: 1	grain per 10	00 cubic feet							

Sulfur Dioxide

Sulfur Dioxide is a colorless, transparent gas and is non-flammable.

Sulfur Dioxide (SO₂) is produced during the burning of H₂S. Although SO₂ is heavier than air, it will be picked up by a breeze and carried downwind at elevated temperatures. Since Sulfur Dioxide is extremely irritating to the eyes and mucous membranes of the upper respiratory tract, it has exceptionally good warning powers in this respect. The following table indicates the toxic nature of the gas.

	SULFUR DIOXIDE TOXICITY							
Conce	entration	Effects						
%SO ₂	PPM							
0.0005	3 to 5	Pungent odor-normally a person can detect SO ₂ in this						
		range.						
0.0012	12	Throat irritation, coughing, and constriction of the ches						
		tearing and smarting of eyes.						
0.15	150	So irritating that it can only be endured for a few						
		minutes.						
0.05	500	Causes a sense of suffocation, even with first breath.						

H2S REQUIRED EQUIPMENT LIST

RESPIRATORY SAFETY SYSTEMS

- Working cascade system available on rig floor and pit system & 750' of air line hose
- Four (4) breathing air manifolds
- Four (4) 30-minute rescue packs
- Five (5) work/Escape units
- Five (5) escape units
- One (1) filler hose for the work/escape/rescue units

DETECTION AND ALARM SYSTEM

- 4 channel H2S monitor
- 4 wireless H2S monitors
- H2S alarm system (Audible/Red strobe)
- Personal gas monitor for each person on location
- Gas sample tubes

WELL CONTROL EQUIPMENT

- Flare line with remote ignitor and backup flare gun, placed 150' from wellhead
- Choke manifold with remotely operated choke
- Mud gas separator

VISUAL WARNING SYSTEMS

- One color code condition sign will be placed at each entrance reflecting possible conditions at the site
- A colored condition flag will be on display, reflecting current condition at the site at the time
- At least 4 wind socks placed on location, visible at all angles and locations

MUD PROGRAM

Mud will contain sufficient weight and additives to control and minimize H2S

METALLURGY

- All drill strings, casing, tubing, wellhead, BOP, spools, kill lines, choke manifold and lines, and valves shall be suitable for anticipated H2S volume and pressure

COMMUNICATION

- Cell phones, intercoms, and satellite phones will be available on location

ADDITIONAL SAFETY RELATED ITEMS

- Stretcher
- 2 OSHA full body harness
- 20# class ABC fire extinguisher

DETERMINATION OF RADIUS OF EXPOSURE

Potentially hazardous volume means a volume of gas of such H2S concentration and flow rate that it may result in radius of exposure-calculated ambient concentrations of 100 ppm H2S at any occupied residence, school, church, park, school bus stop, place of business or other area where the public could reasonably be expected to frequent, or 500 ppm H2S at any Federal, State, County or municipal road or highway.

Currently there are no residence located within the ROE

Radius of exposure means the calculation resulting from using the Pasquill -Gifford derived equation, or by such other method(s) that may be approved by the authorized officer. Advanced Fire and Safety has provided the Pasquill-Gifford formula in excel format for simple calculations.

NEW MEXICO OIL & GAS CONSERVATION DIVISION 118

Chedder Fed Com 502H

H2S Concentration- 250 PPM

Maximum Escape Volume- 5000 MCF/Day

100 PPM Radius of Exposure - 116

(Formula= $1.589 \times (250/1000000) \times (5000 \times 1000) \times .6258$

500 PPM Radius of Exposure (Block 16)- 53

Formula= $.4546 \times (250/1000000) \times (5000 \times 1000) \times .6258$

EMERGENCY CONTACT LIST

911 is available in the area									
NAME	POSITION	COMPANY	NUMBER						
Centennial Contacts									
Jeremy Ray	Drilling Engineer	CDEV	303-263-7872						
Ricky Mills/John Helm	Superintendent	CDEV	432-305-1068						
Mike Ponder/Wayne Miller	Field Superintendent	CDEV	432-287-3003						
Brett Thompson	Drilling Manager	CDEV	720-656-7027						
Reggie Phillips	HSE Manager	CDEV	432-638-3380						
H&P 650 Drilling Office	Drilling Supervisor	CDEV	432-538-3343						
Local Emergency Response									
Fire Department			575-395-2511						
Jal Community Hospital			505-395-2511						
State Police			505-827-9000						
Lea County Sheriff			575-396-3611						
	Safety Contractor								
Advanced Safety	Office	Advanced Safety	833-296-3913						
Joe Gadway	Permian Supervisor	Advanced Safety	318-446-3716						
Clint Hudson	Operations Manager	Advanced Safety	337-552-8330						
	Well Control Compa	ny							
Wild Well Control			866-404-9564						
	Contractors								
Tommy E Lee	Pump Trucks		432-813-7140						
Paul Smith	Drilling Fluids	Momentum	307-258-6254						
Compass Coordinators	Cement	Compass	432-561-5970						

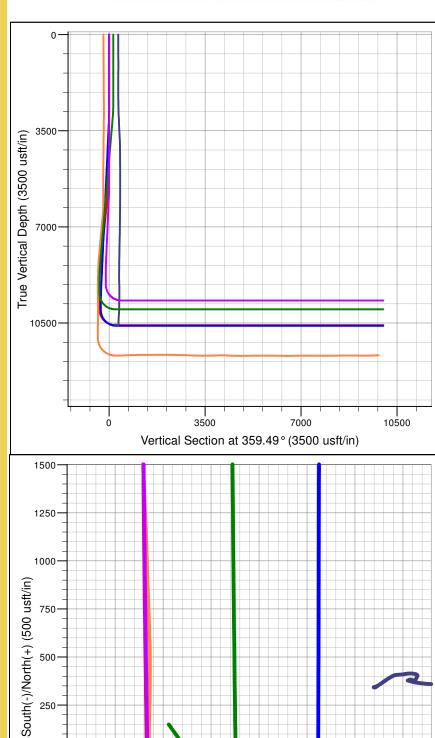
Project: CHEDDER FEDERAL Site: CHEDDAR

Wells: CHEDDAR FED COM 301H, 401H, 502H

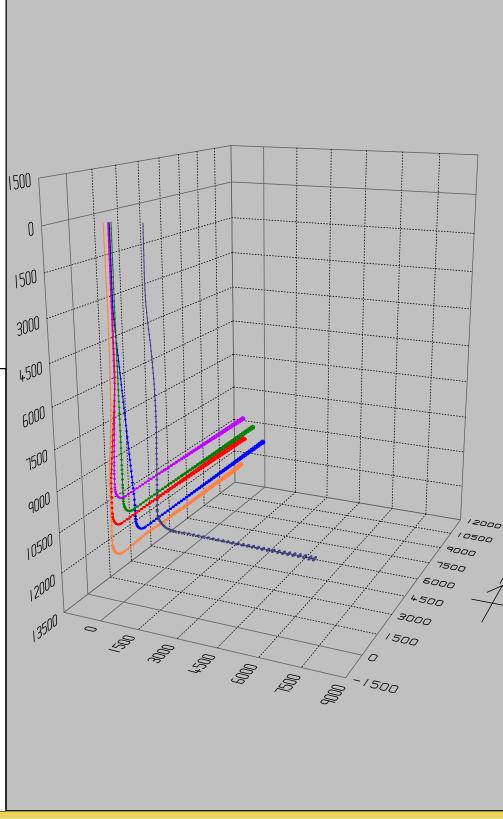
Design: APD PLAN RKB: 3664.7

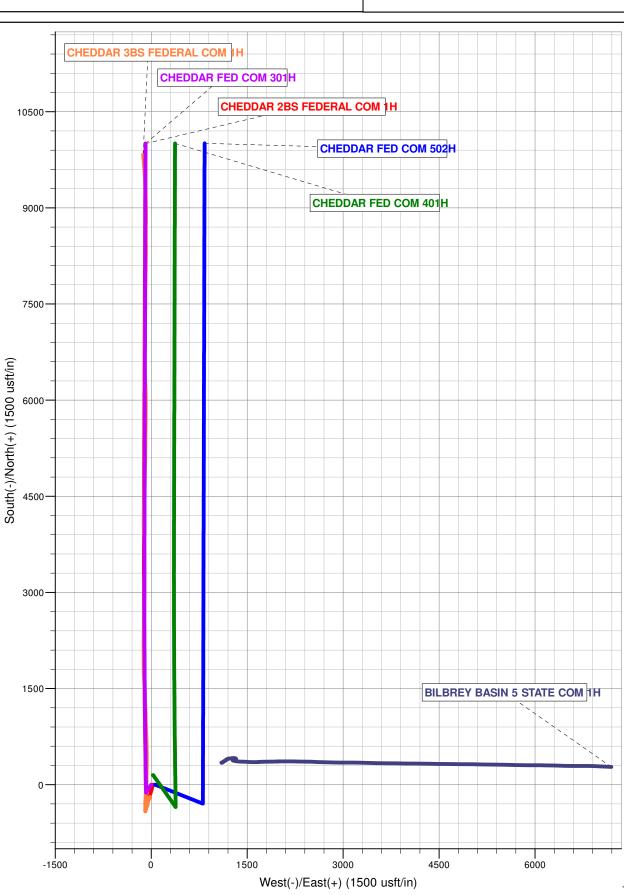
Geodetic System: Universal Transverse Mercator (US Survey Feet)

Datum: North American Datum 1983 Ellipsoid: GRS 1980


Zone: Zone 13N (108 W to 102 W)

System Datum: Mean Sea Level




Page 48 of 80 Azimuths to True North Magnetic North: 7.82°

Magnetic Field Strength: 48891.4snT Dip Angle: 60.40° Date: 11/6/2018 Model: IGRF200510

Released to Imaging: 2/1/2002st3:25ast(PM500 usft/in)

NEW MEXICO

LEA CHEDDAR CHEDDAR FED COM 502H

CHEDDAR FED COM 502H

Plan: PWP0

Survey Report - Geographic

04 March, 2019

Survey Report - Geographic

Company: NEW MEXICO

Project: LEA

Site: CHEDDAR Well: CHEDDAR FED COM 502H

Wellbore: CHEDDAR FED COM 502H

Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Database:

Well CHEDDAR FED COM 502H

RKB=3665+25 @ 3690.0usft RKB=3665+25 @ 3690.0usft

True

Minimum Curvature

Centennial EDM SQL Server

Project LEA

Map System: Geo Datum:

Map Zone:

Universal Transverse Mercator (US Survey Fee System Datum:

North American Datum 1983 Zone 13N (108 W to 102 W) Mean Sea Level

Site CHEDDAR

Site Position: Northing: From: Map Easting:

Position Uncertainty: 0.0 usft Slot Radius:

0.00 usft **Latitu** 97,504,799.39 usft **Longi**

13-3/16 "

Latitude: Longitude:

Grid Convergence:

0° 0' 0.000 N 152° 28' 52.124 W

0.00°

Well CHEDDAR FED COM 502H

Well Position +N/-S 0.0 usft **Northing**: 11,768,778.29 usft **Latitude**: 32° 24′ 52.536 N

+E/-W 0.0 usft Easting: 2,040,277.56 usfl Longitude:

Position Uncertainty 0.0 usft Wellhead Elevation: usfl Ground Level:

tude: 32° 24' 52.536 N gitude: 103° 42' 13.891 W und Level: 3.665.0 usfi

Wellbore CHEDDAR FED COM 502H

 Magnetics
 Model Name
 Sample Date
 Declination (°)
 Dip Angle (°)
 Field Strength (nT)

 IGRF200510
 12/31/2009
 7.82
 60.40
 48,891.43140410

Design PWP0

Audit Notes:

Version: Phase: PROTOTYPE Tie On Depth: 0.0

 Vertical Section:
 Depth From (TVD) (usft)
 +N/-S (usft)
 +E/-W (usft)
 Direction (vsft)

 0.0
 0.0
 0.0
 0.0
 0.0

Survey Tool Program Date 3/4/2019

From To

(usft) Survey (Wellbore

Survey (Wellbore) Tool Name Description

0.0 20,704.4 PWP0 (CHEDDAR FED COM 502H) MWD+IFR1+MS OWSG MWD + IFR1 + Multi-Station Correction

Planned Survey Measured Vertical Мар Мар Depth Inclination Azimuth Depth Northing Easting +N/-S +E/-W (usft) (usft) (usft) (usft) (usft) (usft) Latitude (°) (°) Longitude 0.0 0.00 0.00 0.0 0.0 32° 24' 52.536 N 103° 42' 13.891 W 0.0 11,768,778.29 2,040,277.56 103° 42' 13.891 W 100.0 0.00 0.00 100.0 0.0 0.0 11,768,778.29 2,040,277.56 32° 24' 52.536 N 200.0 0.00 0.00 200.0 0.0 0.0 11,768,778.29 2,040,277.56 32° 24' 52.536 N 103° 42' 13.891 W 300.0 0.00 0.00 300.0 0.0 0.0 11,768,778.29 2,040,277.56 32° 24' 52.536 N 103° 42' 13.891 W 400.0 0.00 0.00 400.0 0.0 0.0 11.768.778.29 2.040.277.56 32° 24' 52.536 N 103° 42' 13.891 W 500.0 0.00 0.00 500.0 0.0 11,768,778.29 2,040,277.56 32° 24' 52.536 N 103° 42' 13.891 W 0.0 600.0 0.00 0.00 600.0 0.0 0.0 11,768,778.29 2,040,277.56 32° 24' 52.536 N 103° 42' 13.891 W 700.0 0.00 0.00 700.0 0.0 0.0 11,768,778.29 2.040.277.56 32° 24' 52.536 N 103° 42' 13.891 W 800.0 0.00 0.00 0.008 0.0 0.0 11,768,778.29 2,040,277.56 32° 24' 52.536 N 103° 42' 13.891 W 900.0 32° 24' 52.536 N 103° 42' 13.891 W 900.0 0.00 0.00 0.0 0.0 11,768,778.29 2,040,277.56 1,000.0 0.00 0.00 1,000.0 0.0 0.0 11,768,778.29 2,040,277.56 32° 24' 52.536 N 103° 42' 13.891 W 0.00 1,100.0 11,768,778.29 32° 24' 52.536 N 103° 42' 13.891 W 1,100.0 0.00 0.0 0.0 2,040,277.56

Survey Report - Geographic

Company: NEW MEXICO

Project: LEA Site: CHEDDAR

Well: CHEDDAR FED COM 502H
Wellbore: CHEDDAR FED COM 502H

Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Database:

Well CHEDDAR FED COM 502H RKB=3665+25 @ 3690.0usft

RKB=3665+25 @ 3690.0usft

True

Minimum Curvature

Centennial EDM SQL Server

Planned Surv	еу								
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
1,200.0	0.00	0.00	1,200.0	0.0	0.0	11,768,778.29	2,040,277.56	32° 24' 52.536 N	103° 42' 13.891 W
1,300.0	0.00	0.00	1,300.0	0.0	0.0	11,768,778.29	2,040,277.56	32° 24' 52.536 N	103° 42' 13.891 W
1,400.0		0.00	1,400.0	0.0	0.0	11,768,778.29	2,040,277.56	32° 24' 52.536 N	103° 42' 13.891 W
1,500.0	0.00	0.00	1,500.0	0.0	0.0	11,768,778.29	2,040,277.56	32° 24' 52.536 N	103° 42' 13.891 W
1,600.0	0.00	0.00	1,600.0	0.0	0.0	11,768,778.29	2,040,277.56	32° 24' 52.536 N	103° 42′ 13.891 W
1,700.0 1,800.0	0.00 0.00	0.00 0.00	1,700.0 1,800.0	0.0 0.0	0.0 0.0	11,768,778.29 11,768,778.29	2,040,277.56 2,040,277.56	32° 24' 52.536 N 32° 24' 52.536 N	103° 42' 13.891 W 103° 42' 13.891 W
1,900.0	0.00	0.00	1,900.0	0.0	0.0	11,768,778.29	2,040,277.56	32° 24' 52.536 N	103° 42' 13.891 W
2,000.0	0.00	0.00	2,000.0	0.0	0.0	11,768,778.29	2,040,277.56	32° 24' 52.536 N	103° 42' 13.891 W
2,100.0	0.00	0.00	2,100.0	0.0	0.0	11,768,778.29	2,040,277.56	32° 24' 52.536 N	103° 42' 13.891 W
2,200.0	0.00	0.00	2,200.0	0.0	0.0	11,768,778.29	2,040,277.56	32° 24' 52.536 N	103° 42' 13.891 W
2,300.0	0.00	0.00	2,300.0	0.0	0.0	11,768,778.29	2,040,277.56	32° 24' 52.536 N	103° 42' 13.891 W
2,400.0	0.00	0.00	2,400.0	0.0	0.0	11,768,778.29	2,040,277.56	32° 24' 52.536 N	103° 42' 13.891 W
2,500.0	0.00	0.00	2,500.0	0.0	0.0	11,768,778.29	2,040,277.56	32° 24' 52.536 N	103° 42' 13.891 W
2,600.0	0.00	0.00	2,600.0	0.0	0.0	11,768,778.29	2,040,277.56	32° 24′ 52.536 N	103° 42' 13.891 W
2,700.0	1.00	111.60	2,700.0	-0.3	0.8	11,768,777.98	2,040,278.37	32° 24' 52.533 N	103° 42' 13.881 W
2,800.0	2.00	111.60	2,800.0	-1.3	3.2	11,768,777.05	2,040,280.82	32° 24' 52.524 N	103° 42' 13.853 W
2,900.0	3.00	111.60	2,899.9	-2.9	7.3	11,768,775.49	2,040,284.89	32° 24' 52.508 N	103° 42' 13.806 W
3,000.0		111.60	2,999.7	-5.1	13.0	11,768,773.31	2,040,290.59	32° 24' 52.486 N	103° 42' 13.739 W
3,100.0	5.00	111.60	3,099.4	-8.0	20.3	11,768,770.51	2,040,297.92	32° 24' 52.457 N	103° 42' 13.654 W
3,200.0	6.00	111.60	3,198.9	-11.6	29.2	11,768,767.09	2,040,306.88	32° 24' 52.422 N	103° 42' 13.550 W
3,300.0		111.60	3,298.3	-15.7	39.7	11,768,763.05	2,040,317.45	32° 24′ 52.381 N	103° 42' 13.428 W
3,400.0		111.60	3,397.5	-20.2	51.0 62.4	11,768,758.71	2,040,328.84	32° 24′ 52.336 N	103° 42' 13.295 W
3,500.0 3,600.0	7.00 7.00	111.60 111.60	3,496.8 3,596.0	-24.7 -29.2	73.7	11,768,754.36 11,768,750.01	2,040,340.22 2,040,351.61	32° 24' 52.292 N 32° 24' 52.248 N	103° 42' 13.163 W 103° 42' 13.031 W
3,700.0	7.00	111.60	3,695.3	-33.7	85.0	11,768,745.66	2,040,362.99	32° 24' 52.203 N	103° 42' 12.899 W
3,800.0		111.60	3,794.5	-38.2	96.4	11,768,741.31	2,040,374.38	32° 24' 52.159 N	103° 42' 12.767 W
3,900.0	7.00	111.60	3,893.8	-42.6	107.7	11,768,736.96	2,040,385.76	32° 24' 52.114 N	103° 42' 12.634 W
4,000.0	7.00	111.60	3,993.0	-47.1	119.0	11,768,732.61	2,040,397.14	32° 24' 52.070 N	103° 42' 12.502 W
4,100.0		111.60	4,092.3	-51.6	130.4	11,768,728.27	2,040,408.53	32° 24' 52.026 N	103° 42' 12.370 W
4,200.0		111.60	4,191.6	-56.1	141.7	11,768,723.92	2,040,419.91	32° 24' 51.981 N	103° 42' 12.238 W
4,300.0	7.00	111.60	4,290.8	-60.6	153.0	11,768,719.57	2,040,431.30	32° 24' 51.937 N	103° 42' 12.106 W
4,400.0	7.00	111.60	4,390.1	-65.1	164.4	11,768,715.22	2,040,442.68	32° 24' 51.892 N	103° 42' 11.973 W
4,500.0	7.00	111.60	4,489.3	-69.6	175.7	11,768,710.87	2,040,454.07	32° 24' 51.848 N	103° 42' 11.841 W
4,600.0		111.60	4,588.6	-74.0	187.0	11,768,706.52	2,040,465.45	32° 24' 51.804 N	103° 42' 11.709 W
4,700.0	7.00	111.60	4,687.8	-78.5	198.3	11,768,702.17	2,040,476.84	32° 24' 51.759 N	103° 42' 11.577 W
4,800.0	7.00	111.60	4,787.1	-83.0	209.7	11,768,697.83	2,040,488.22	32° 24' 51.715 N	103° 42' 11.444 W
4,900.0		111.60	4,886.3	-87.5	221.0	11,768,693.48	2,040,499.61	32° 24′ 51.670 N	103° 42' 11.312 W
5,000.0		111.60	4,985.6	-92.0	232.3	11,768,689.13	2,040,510.99	32° 24′ 51.626 N	103° 42' 11.180 W
5,100.0 5,200.0		111.60 111.60	5,084.8 5,184.1	-96.5 -101.0	243.7 255.0	11,768,684.78 11,768,680.43	2,040,522.38 2,040,533.76	32° 24' 51.582 N 32° 24' 51.537 N	103° 42' 11.048 W 103° 42' 10.916 W
5,200.0		111.60	5,164.1	-101.0	266.3	11,768,676.08	2,040,535.76	32° 24' 51.537 N	103° 42' 10.783 W
5,400.0		111.60	5,382.6	-105.4	277.7	11,768,671.73	2,040,556.53	32° 24' 51.448 N	103° 42' 10.763 W
5,500.0		111.60	5,481.9	-114.4	289.0	11,768,667.39	2,040,567.92	32° 24' 51.404 N	103° 42' 10.519 W
5,600.0		111.60	5,581.1	-118.9	300.3	11,768,663.04	2,040,579.30	32° 24' 51.360 N	103° 42' 10.387 W
5,700.0		111.60	5,680.4	-123.4	311.7	11,768,658.69	2,040,590.68	32° 24' 51.315 N	103° 42' 10.255 W
5,800.0		111.60	5,779.6	-127.9	323.0	11,768,654.34	2,040,602.07	32° 24' 51.271 N	103° 42' 10.122 W
5,900.0		111.60	5,878.9	-132.4	334.3	11,768,649.99	2,040,613.45	32° 24' 51.226 N	103° 42' 9.990 W
6,000.0		111.60	5,978.1	-136.9	345.6	11,768,645.64	2,040,624.84	32° 24' 51.182 N	103° 42' 9.858 W
6,100.0	7.00	111.60	6,077.4	-141.3	357.0	11,768,641.29	2,040,636.22	32° 24' 51.138 N	103° 42' 9.726 W
6,200.0		111.60	6,176.6	-145.8	368.3	11,768,636.95	2,040,647.61	32° 24' 51.093 N	103° 42' 9.594 W
6,300.0		111.60	6,275.9	-150.3	379.6	11,768,632.60	2,040,658.99	32° 24' 51.049 N	103° 42' 9.461 W
6,400.0		111.60	6,375.2	-154.8	391.0	11,768,628.25	2,040,670.38	32° 24' 51.004 N	103° 42' 9.329 W
6,500.0		111.60	6,474.4	-159.3	402.3	11,768,623.90	2,040,681.76	32° 24' 50.960 N	103° 42' 9.197 W
6,600.0	7.00	111.60	6,573.7	-163.8	413.6	11,768,619.55	2,040,693.15	32° 24' 50.916 N	103° 42' 9.065 W

Survey Report - Geographic

Company: NEW MEXICO

Project: LEA Site: CHEDDAR

Well: CHEDDAR FED COM 502H
Wellbore: CHEDDAR FED COM 502H

Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Database:

Well CHEDDAR FED COM 502H RKB=3665+25 @ 3690.0usft

RKB=3665+25 @ 3690.0usft

rue

Minimum Curvature

Centennial EDM SQL Server

Planned Surv	ey								
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
6,700.0		111.60	6,672.9	-168.3	425.0	11,768,615.20	2,040,704.53	32° 24' 50.871 N	103° 42' 8.933 W
6,800.0		111.60	6,772.2	-172.7	436.3	11,768,610.85	2,040,715.92	32° 24' 50.827 N	103° 42' 8.800 W
6,900.0		111.60	6,871.4	-177.2	447.6	11,768,606.51	2,040,727.30	32° 24' 50.782 N	103° 42' 8.668 W
7,000.0		111.60	6,970.7	-181.7	459.0	11,768,602.16	2,040,738.69	32° 24' 50.738 N	103° 42' 8.536 W
7,100.0		111.60	7,069.9	-186.2	470.3	11,768,597.81	2,040,750.07	32° 24' 50.694 N	103° 42' 8.404 W
7,200.0		111.60	7,169.2	-190.7	481.6	11,768,593.46	2,040,761.46	32° 24' 50.649 N	103° 42' 8.272 W
7,300.0		111.60	7,268.4	-195.2	493.0	11,768,589.11	2,040,772.84	32° 24' 50.605 N	103° 42' 8.139 W
7,400.0		111.60	7,367.7	-199.7	504.3	11,768,584.76	2,040,784.22	32° 24' 50.560 N	103° 42' 8.007 W
7,500.0 7,600.0		111.60 111.60	7,467.0 7,566.2	-204.1 -208.6	515.6 526.9	11,768,580.42 11,768,576.07	2,040,795.61 2,040,806.99	32° 24' 50.516 N 32° 24' 50.472 N	103° 42' 7.875 W 103° 42' 7.743 W
7,700.0		111.60	7,566.2 7,665.5	-206.6 -213.1	538.3	11,768,576.07	2,040,808.99	32° 24' 50.472 N	103 42 7.743 W 103° 42' 7.610 W
7,700.0		111.60	7,764.7	-213.1 -217.6	549.6	11,768,567.37	2,040,818.38	32° 24' 50.383 N	103° 42' 7.478 W
7,900.0		111.60	7,764.7	-222.1	560.9	11,768,563.02	2,040,841.15	32° 24' 50.338 N	103° 42' 7.346 W
8,000.0		111.60	7,963.2	-226.6	572.3	11,768,558.67	2,040,852.53	32° 24' 50.294 N	103° 42' 7.214 W
8,100.0		111.60	8,062.5	-231.1	583.6	11,768,554.32	2,040,863.92	32° 24' 50.250 N	103° 42' 7.082 W
8,200.0		111.60	8,161.7	-235.6	594.9	11,768,549.98	2,040,875.30	32° 24' 50.205 N	103° 42' 6.949 W
8,300.0		111.60	8,261.0	-240.0	606.3	11,768,545.63	2,040,886.69	32° 24' 50.161 N	103° 42' 6.817 W
8,400.0		111.60	8,360.2	-244.5	617.6	11,768,541.28	2,040,898.07	32° 24' 50.116 N	103° 42' 6.685 W
8,500.0		111.60	8,459.5	-249.0	628.9	11,768,536.93	2,040,909.46	32° 24' 50.072 N	103° 42' 6.553 W
8,600.0		111.60	8,558.8	-253.5	640.3	11,768,532.58	2,040,920.84	32° 24' 50.028 N	103° 42' 6.421 W
8,700.0	7.00	111.60	8,658.0	-258.0	651.6	11,768,528.23	2,040,932.23	32° 24' 49.983 N	103° 42' 6.288 W
8,800.0	7.00	111.60	8,757.3	-262.5	662.9	11,768,523.88	2,040,943.61	32° 24' 49.939 N	103° 42' 6.156 W
8,900.0	7.00	111.60	8,856.5	-267.0	674.3	11,768,519.54	2,040,955.00	32° 24' 49.894 N	103° 42' 6.024 W
9,000.0	7.00	111.60	8,955.8	-271.4	685.6	11,768,515.19	2,040,966.38	32° 24' 49.850 N	103° 42' 5.892 W
9,100.0	7.00	111.60	9,055.0	-275.9	696.9	11,768,510.84	2,040,977.76	32° 24' 49.805 N	103° 42' 5.760 W
9,200.0	7.00	111.60	9,154.3	-280.4	708.2	11,768,506.49	2,040,989.15	32° 24' 49.761 N	103° 42' 5.627 W
9,300.0		111.60	9,253.6	-284.6	718.8	11,768,502.45	2,040,999.72	32° 24' 49.720 N	103° 42' 5.505 W
9,400.0		111.60	9,353.2	-288.1	727.7	11,768,499.03	2,041,008.68	32° 24' 49.685 N	103° 42' 5.401 W
9,500.0		111.60	9,452.9	-291.0	735.0	11,768,496.23	2,041,016.01	32° 24' 49.656 N	103° 42' 5.316 W
9,600.0		111.60	9,552.7	-293.2	740.7	11,768,494.05	2,041,021.71	32° 24' 49.634 N	103° 42' 5.249 W
9,700.0		111.60	9,652.6	-294.9	744.7	11,768,492.50	2,041,025.78	32° 24' 49.618 N	103° 42' 5.202 W
9,800.0		111.60	9,752.5	-295.8	747.1	11,768,491.56	2,041,028.23	32° 24' 49.609 N	103° 42' 5.174 W
9,900.0		0.00	9,852.5	-296.1	748.0	11,768,491.25	2,041,029.05	32° 24' 49.605 N	103° 42' 5.164 W
10,000.0		0.00	9,952.5	-296.1	748.0	11,768,491.25	2,041,029.05	32° 24' 49.605 N	103° 42' 5.164 W
10,074.5		0.00	10,027.0	-296.1	748.0	11,768,491.25	2,041,029.05	32° 24' 49.605 N	103° 42' 5.164 W
10,100.0		0.15	10,052.5	-295.6	748.0	11,768,491.82	2,041,029.04	32° 24' 49.611 N	103° 42' 5.164 W
10,200.0		0.15	10,151.5	-282.4	748.0	11,768,504.94	2,041,028.92	32° 24' 49.741 N	103° 42' 5.164 W
10,300.0 10,400.0		0.15 0.15	10,246.8 10,335.3	-252.3 -206.1	748.1 748.2	11,768,535.05 11,768,581.25	2,041,028.63 2,041,028.19	32° 24' 50.039 N 32° 24' 50.496 N	103° 42' 5.163 W 103° 42' 5.161 W
10,400.0		0.15	10,335.3	-206.1 -145.3	748.2 748.3	11,768,581.25	2,041,028.19	32° 24' 50.496 N 32° 24' 51.099 N	103 42 5.161 W 103° 42' 5.159 W
10,500.0		0.15	10,414.5	-145.3 -71.6	746.3 748.5	11,768,715.80	2,041,027.61	32° 24' 51.828 N	103 42 5.159 W 103° 42' 5.157 W
10,700.0		0.15	10,481.9	12.7	748.8	11,768,800.08	2,041,026.11	32° 24' 52.662 N	103° 42' 5.155 W
10,700.0		0.15	10,533.6	105.0	749.0	11,768,892.38	2,041,025.23	32° 24' 53.576 N	103° 42' 5.152 W
10,900.0		0.15	10,575.0	202.5	749.3	11,768,989.90	2,041,024.30	32° 24' 54.541 N	103° 42' 5.149 W
10,974.5		0.15	10,600.0	276.8	749.5	11,769,064.18	2,041,023.60	32° 24' 55.276 N	103° 42' 5.146 W
11,000.0		0.15	10,600.0	302.3	749.5	11,769,089.68	2,041,023.35	32° 24' 55.528 N	103° 42' 5.146 W
11,035.9		0.15	10,600.0	338.2	749.6	11,769,125.57	2,041,023.01	32° 24' 55.884 N	103° 42' 5.145 W
11,100.0		0.15	10,600.0	402.3	749.8	11,769,189.68	2,041,022.40	32° 24' 56.518 N	103° 42' 5.143 W
11,200.0		0.15	10,600.0	502.3	750.0	11,769,289.67	2,041,021.45	32° 24' 57.508 N	103° 42' 5.140 W
11,300.0		0.15	10,600.0	602.3	750.3	11,769,389.67	2,041,020.50	32° 24' 58.497 N	103° 42' 5.136 W
11,400.0	90.00	0.15	10,600.0	702.3	750.6	11,769,489.66	2,041,019.55	32° 24' 59.487 N	103° 42' 5.133 W
11,500.0		0.15	10,600.0	802.3	750.8	11,769,589.66	2,041,018.60	32° 25' 0.477 N	103° 42' 5.130 W
11,600.0		0.15	10,600.0	902.3	751.1	11,769,689.65	2,041,017.65	32° 25′ 1.467 N	103° 42' 5.127 W
11,700.0		0.15	10,600.0	1,002.3	751.4	11,769,789.65	2,041,016.69	32° 25′ 2.456 N	103° 42' 5.124 W
11,800.0	90.00	0.15	10,600.0	1,102.3	751.6	11,769,889.65	2,041,015.74	32° 25' 3.446 N	103° 42' 5.121 W

Survey Report - Geographic

Company: NEW MEXICO

Project: LEA Site: CHEDDAR

Well: CHEDDAR FED COM 502H
Wellbore: CHEDDAR FED COM 502H

Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Database:

Well CHEDDAR FED COM 502H

RKB=3665+25 @ 3690.0usft RKB=3665+25 @ 3690.0usft

True

Minimum Curvature

Centennial EDM SQL Server

Planned Surv	<i>r</i> ey								
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
11,900.0		0.15	10,600.0	1,202.3	751.9	11,769,989.64	2,041,014.79	32° 25′ 4.436 N	103° 42' 5.118 W
12,000.0		0.15	10,600.0	1,302.3	752.1	11,770,089.64	2,041,013.84	32° 25' 5.425 N	103° 42' 5.115 W
12,100.0		0.15	10,600.0	1,402.3	752.4	11,770,189.63	2,041,012.89	32° 25' 6.415 N	103° 42' 5.112 W
12,200.0		0.15	10,600.0	1,502.3	752.7	11,770,289.63	2,041,011.94	32° 25' 7.405 N	103° 42' 5.109 W
12,300.0		0.15	10,600.0	1,602.3	752.9	11,770,389.62	2,041,010.99	32° 25' 8.394 N	103° 42' 5.106 W
12,400.0		0.15	10,600.0	1,702.3	753.2	11,770,489.62	2,041,010.04	32° 25' 9.384 N	103° 42' 5.103 W
12,500.0		0.15 0.15	10,600.0 10,600.0	1,802.3	753.4	11,770,589.61	2,041,009.09	32° 25' 10.374 N	103° 42' 5.099 W
12,600.0 12,700.0		0.15	10,600.0	1,902.3 2,002.3	753.7 754.0	11,770,689.61 11,770,789.60	2,041,008.13 2,041,007.18	32° 25' 11.364 N 32° 25' 12.353 N	103° 42' 5.096 W 103° 42' 5.093 W
12,700.0		0.15	10,600.0	2,002.3	754.0 754.2	11,770,789.60	2,041,007.18	32° 25' 13.343 N	103° 42' 5.090 W
12,900.0		0.15	10,600.0	2,102.3	754.2 754.5	11,770,989.60	2,041,005.28	32° 25' 14.333 N	103° 42' 5.087 W
13,000.0		0.15	10,600.0	2,302.3	754.8	11,771,089.59	2,041,004.33	32° 25' 15.322 N	103° 42' 5.084 W
13,100.0		0.15	10,600.0	2,402.3	755.0	11,771,189.59	2,041,003.38	32° 25' 16.312 N	103° 42' 5.081 W
13,200.0		0.15	10,600.0	2,502.3	755.3	11,771,289.58	2,041,002.43	32° 25' 17.302 N	103° 42' 5.078 W
13,300.0		0.15	10,600.0	2,602.3	755.5	11,771,389.58	2,041,001.48	32° 25' 18.291 N	103° 42' 5.075 W
13,400.0		0.15	10,600.0	2,702.3	755.8	11,771,489.57	2,041,000.53	32° 25' 19.281 N	103° 42' 5.072 W
13,500.0	90.00	0.15	10,600.0	2,802.3	756.1	11,771,589.57	2,040,999.58	32° 25' 20.271 N	103° 42' 5.069 W
13,600.0	90.00	0.15	10,600.0	2,902.3	756.3	11,771,689.56	2,040,998.62	32° 25' 21.261 N	103° 42' 5.066 W
13,700.0	90.00	0.15	10,600.0	3,002.3	756.6	11,771,789.56	2,040,997.67	32° 25' 22.250 N	103° 42' 5.062 W
13,800.0		0.15	10,600.0	3,102.3	756.8	11,771,889.55	2,040,996.72	32° 25′ 23.240 N	103° 42' 5.059 W
13,900.0		0.15	10,600.0	3,202.3	757.1	11,771,989.55	2,040,995.77	32° 25' 24.230 N	103° 42' 5.056 W
14,000.0		0.15	10,600.0	3,302.3	757.4	11,772,089.55	2,040,994.82	32° 25' 25.219 N	103° 42' 5.053 W
14,100.0		0.15	10,600.0	3,402.3	757.6	11,772,189.54	2,040,993.87	32° 25' 26.209 N	103° 42' 5.050 W
14,200.0		0.15	10,600.0	3,502.3	757.9	11,772,289.54	2,040,992.92	32° 25' 27.199 N	103° 42' 5.047 W
14,300.0		0.15	10,600.0	3,602.3	758.2	11,772,389.53	2,040,991.97	32° 25' 28.188 N	103° 42' 5.044 W
14,400.0		0.15	10,600.0	3,702.3	758.4	11,772,489.53	2,040,991.02	32° 25' 29.178 N	103° 42' 5.041 W
14,500.0		0.15	10,600.0	3,802.3	758.7	11,772,589.52	2,040,990.06	32° 25' 30.168 N	103° 42' 5.038 W
14,600.0 14,700.0		0.15 0.15	10,600.0 10,600.0	3,902.3 4,002.3	758.9 759.2	11,772,689.52 11,772,789.51	2,040,989.11 2,040,988.16	32° 25' 31.157 N 32° 25' 32.147 N	103° 42' 5.035 W 103° 42' 5.032 W
14,700.0		0.15	10,600.0	4,002.3	759.2 759.5	11,772,889.51	2,040,988.10	32° 25' 33.137 N	103° 42' 5.029 W
14,900.0		0.15	10,600.0	4,202.3	759.7	11,772,989.51	2,040,986.26	32° 25' 34.127 N	103° 42' 5.025 W
15,000.0		0.15	10,600.0	4,302.3	760.0	11,773,089.50	2,040,985.31	32° 25' 35.116 N	103° 42' 5.023 W
15,100.0		0.15	10,600.0	4,402.3	760.3	11,773,189.50	2,040,984.36	32° 25' 36.106 N	103° 42' 5.019 W
15,200.0		0.15	10,600.0	4,502.3	760.5	11,773,289.49	2,040,983.41	32° 25′ 37.096 N	103° 42' 5.016 W
15,300.0		0.15	10,600.0	4,602.3	760.8	11,773,389.49	2,040,982.46	32° 25' 38.085 N	103° 42' 5.013 W
15,400.0		0.15	10,600.0	4,702.3	761.0	11,773,489.48	2,040,981.51	32° 25' 39.075 N	103° 42' 5.010 W
15,500.0	90.00	0.15	10,600.0	4,802.3	761.3	11,773,589.48	2,040,980.55	32° 25′ 40.065 N	103° 42' 5.007 W
15,600.0		0.15	10,600.0	4,902.3	761.6	11,773,689.47	2,040,979.60	32° 25′ 41.054 N	103° 42' 5.004 W
15,700.0		0.15	10,600.0	5,002.3	761.8	11,773,789.47	2,040,978.65	32° 25′ 42.044 N	103° 42' 5.001 W
15,800.0		0.15	10,600.0	5,102.3		11,773,889.46	2,040,977.70	32° 25′ 43.034 N	103° 42' 4.998 W
15,900.0		0.15	10,600.0	5,202.3	762.3	11,773,989.46	2,040,976.75	32° 25' 44.024 N	103° 42' 4.995 W
16,000.0		0.15	10,600.0	5,302.3	762.6	11,774,089.46	2,040,975.80	32° 25' 45.013 N	103° 42' 4.992 W
16,100.0		0.15	10,600.0	5,402.3	762.9	11,774,189.45	2,040,974.85	32° 25' 46.003 N	103° 42' 4.988 W
16,200.0		0.15	10,600.0	5,502.3	763.1	11,774,289.45	2,040,973.90	32° 25' 46.993 N	103° 42' 4.985 W
16,300.0		0.15	10,600.0	5,602.3	763.4	11,774,389.44	2,040,972.95	32° 25' 47.982 N	103° 42' 4.982 W
16,400.0		0.15 0.15	10,600.0 10,600.0	5,702.3	763.7 763.9	11,774,489.44	2,040,971.99	32° 25′ 48.972 N	103° 42' 4.979 W
16,500.0 16,600.0		0.15	10,600.0	5,802.3 5,902.3	763.9 764.2	11,774,589.43 11,774,689.43	2,040,971.04 2,040,970.09	32° 25' 49.962 N 32° 25' 50.951 N	103° 42' 4.976 W 103° 42' 4.973 W
16,700.0		0.15	10,600.0	6,002.3	764.2 764.4	11,774,789.42	2,040,970.09	32° 25' 51.941 N	103° 42' 4.970 W
16,800.0		0.15	10,600.0	6,102.3	764.4 764.7	11,774,789.42	2,040,968.19	32° 25' 52.931 N	103° 42' 4.967 W
16,900.0		0.15	10,600.0	6,202.3	765.0	11,774,989.41	2,040,967.24	32° 25' 53.920 N	103° 42' 4.964 W
17,000.0		0.15	10,600.0	6,302.3	765.2	11,775,089.41	2,040,966.29	32° 25' 54.910 N	103° 42' 4.961 W
17,100.0		0.15	10,600.0	6,402.3	765.5	11,775,189.41	2,040,965.34	32° 25' 55.900 N	103° 42' 4.958 W
17,200.0		0.15	10,600.0	6,502.3	765.7	11,775,289.40	2,040,964.39	32° 25' 56.890 N	103° 42' 4.954 W
17,300.0		0.15	10,600.0	6,602.3	766.0	11,775,389.40	2,040,963.43	32° 25' 57.879 N	103° 42' 4.951 W

Survey Report - Geographic

Company: NEW MEXICO

Project: LEA Site: CHEDDAR

Well: CHEDDAR FED COM 502H
Wellbore: CHEDDAR FED COM 502H

Design: PWP0

Planned Survey

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Database:

Well CHEDDAR FED COM 502H

RKB=3665+25 @ 3690.0usft RKB=3665+25 @ 3690.0usft

True

Minimum Curvature

Centennial EDM SQL Server

Date:

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
17,400.0	90.00	0.15	10,600.0	6,702.3	766.3	11,775,489.39	2,040,962.48	32° 25' 58.869 N	103° 42' 4.948 V
17,500.0	90.00	0.15	10,600.0	6,802.3	766.5	11,775,589.39	2,040,961.53	32° 25' 59.859 N	103° 42' 4.945 V
17,600.0	90.00	0.15	10,600.0	6,902.3	766.8	11,775,689.38	2,040,960.58	32° 26' 0.848 N	103° 42' 4.942 V
17,700.0	90.00	0.15	10,600.0	7,002.3	767.1	11,775,789.38	2,040,959.63	32° 26' 1.838 N	103° 42' 4.939 V
17,800.0	90.00	0.15	10,600.0	7,102.3	767.3	11,775,889.37	2,040,958.68	32° 26' 2.828 N	103° 42' 4.936 V
17,900.0	90.00	0.15	10,600.0	7,202.3	767.6	11,775,989.37	2,040,957.73	32° 26' 3.817 N	103° 42' 4.933 V
18,000.0	90.00	0.15	10,600.0	7,302.3	767.8	11,776,089.37	2,040,956.78	32° 26' 4.807 N	103° 42' 4.930 V
18,100.0	90.00	0.15	10,600.0	7,402.3	768.1	11,776,189.36	2,040,955.83	32° 26' 5.797 N	103° 42' 4.927 V
18,200.0	90.00	0.15	10,600.0	7,502.3	768.4	11,776,289.36	2,040,954.88	32° 26' 6.786 N	103° 42' 4.924 \
18,300.0	90.00	0.15	10,600.0	7,602.3	768.6	11,776,389.35	2,040,953.92	32° 26' 7.776 N	103° 42' 4.921 \
18,400.0	90.00	0.15	10,600.0	7,702.3	768.9	11,776,489.35	2,040,952.97	32° 26' 8.766 N	103° 42' 4.917 \
18,500.0	90.00	0.15	10,600.0	7,802.3	769.2	11,776,589.34	2,040,952.02	32° 26' 9.756 N	103° 42' 4.914 \
18,600.0	90.00	0.15	10,600.0	7,902.3	769.4	11,776,689.34	2,040,951.07	32° 26' 10.745 N	103° 42' 4.911 V
18,700.0	90.00	0.15	10,600.0	8,002.3	769.7	11,776,789.33	2,040,950.12	32° 26' 11.735 N	103° 42' 4.908 V
18,800.0	90.00	0.15	10,600.0	8,102.3	769.9	11,776,889.33	2,040,949.17	32° 26' 12.725 N	103° 42' 4.905 \
18,900.0	90.00	0.15	10,600.0	8,202.3	770.2	11,776,989.32	2,040,948.22	32° 26' 13.714 N	103° 42' 4.902 \
19,000.0	90.00	0.15	10,600.0	8,302.3	770.5	11,777,089.32	2,040,947.27	32° 26' 14.704 N	103° 42' 4.899 \
19,100.0	90.00	0.15	10,600.0	8,402.3	770.7	11,777,189.32	2,040,946.32	32° 26' 15.694 N	103° 42' 4.896 \
19,200.0	90.00	0.15	10,600.0	8,502.3	771.0	11,777,289.31	2,040,945.36	32° 26' 16.683 N	103° 42' 4.893 \
19,300.0	90.00	0.15	10,600.0	8,602.3	771.2	11,777,389.31	2,040,944.41	32° 26' 17.673 N	103° 42' 4.890 \
19,400.0	90.00	0.15	10,600.0	8,702.3	771.5	11,777,489.30	2,040,943.46	32° 26' 18.663 N	103° 42' 4.887 \
19,500.0	90.00	0.15	10,600.0	8,802.3	771.8	11,777,589.30	2,040,942.51	32° 26' 19.652 N	103° 42' 4.883 \
19,600.0	90.00	0.15	10,600.0	8,902.3	772.0	11,777,689.29	2,040,941.56	32° 26' 20.642 N	103° 42' 4.880 \
19,700.0	90.00	0.15	10,600.0	9,002.3	772.3	11,777,789.29	2,040,940.61	32° 26' 21.632 N	103° 42' 4.877 \
19,800.0	90.00	0.15	10,600.0	9,102.3	772.6	11,777,889.28	2,040,939.66	32° 26' 22.622 N	103° 42' 4.874 \
19,900.0	90.00	0.15	10,600.0	9,202.3	772.8	11,777,989.28	2,040,938.71	32° 26' 23.611 N	103° 42' 4.871 \
20,000.0	90.00	0.15	10,600.0	9,302.3	773.1	11,778,089.27	2,040,937.76	32° 26' 24.601 N	103° 42' 4.868 \
20,100.0	90.00	0.15	10,600.0	9,402.3	773.3	11,778,189.27	2,040,936.81	32° 26' 25.591 N	103° 42' 4.865 \
20,200.0	90.00	0.15	10,600.0	9,502.3	773.6	11,778,289.27	2,040,935.85	32° 26' 26.580 N	103° 42' 4.862 \
20,300.0	90.00	0.15	10,600.0	9,602.3	773.9	11,778,389.26	2,040,934.90	32° 26' 27.570 N	103° 42' 4.859 \
20,400.0	90.00	0.15	10,600.0	9,702.3	774.1	11,778,489.26	2,040,933.95	32° 26' 28.560 N	103° 42' 4.856 \
20,500.0	90.00	0.15	10,600.0	9,802.3	774.4	11,778,589.25	2,040,933.00	32° 26' 29.549 N	103° 42' 4.853 \
20,600.0	90.00	0.15	10,600.0	9,902.3	774.7	11,778,689.25	2,040,932.05	32° 26' 30.539 N	103° 42' 4.849 \
20,700.0	90.00	0.15	10,600.0	10,002.3	774.9	11,778,789.24	2,040,931.10	32° 26' 31.529 N	103° 42' 4.846 \
20,704.4	90.00	0.15	10,600.0	10,006.7	774.3	11,778,793.65	2,040,930.46	32° 26' 31.573 N	103° 42' 4.853 \
esign Target		0.15	10,600.0	10,006.7	774.3	11,778,793.65	2,040,930.46	32 20 31.573 N	103 42 4.853
J									
arget Name - hit/miss to - Shape			o Dir. TVD (°) (usft		+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
TD OUESS						` ,			
TP - CHEDD. - plan miss - Circle (ra	ses target ce	0.00 enter by 276.	0.00 10,60 9usft at 10500			4.1 11,768,440. <i>′</i>), -145.3 N, 748.3		32° 24' 49.095 N	103° 42' 4.743 '
TP/BHL - CH - plan hits t	EDDAF target center	0.00 r	0.00 10,60	0.0 10,006	.7 774	1.3 11,778,793.6	55 2,040,930.46	32° 26' 31.573 N	103° 42' 4.853

Approved By:

- Point

Checked By:

Centennial Resource Development New Mexico Multi-Well Pad Drilling Batch Setting Procedures

Avalon and Bone Springs Formations

13-3/8" Surface Casing - CRD intends to preset 13-3/8" casing to a depth approved in the APD. 17-1/2" Surface Holes will be batch drilled by a Surface Preset rig. Appropriate notifications will be made prior to spudding the well, running and cementing casing and prior to skidding to the rig to the next well on pad.

- 1. Drill 17-1/2" Surface hole to Approved Depth with Surface Preset Rig and perform wellbore cleanup cycles. Trip out and rack back drilling BHA.
- 2. Run and land 13-3/8" 54.5# J55 BTC casing to depth approved in APD.
- 3. Cement 13-3/8" casing with cement to surface and floats holding.
- 4. Cut / Dress 20" Conductor and 13-3/8" casing as needed, weld on Cameron Multi-bowl system with baseplate supported by 20" conductor (see Illustration 1-1 Below). Weld performed per Cameron weld procedure.
- 5. Test Weld to 70% of 13-3/8" casing collapse or ~ 790psi.
- 6. Install nightcap with Pressure Gauge on wellhead. Nightcap is shown on final wellhead Stack up Illustration #2-2 page 3.
- 7. Skid Rig to adjacent well to drill Surface hole.
- 8. Surface casing test will be performed by the Big Rig in order to allow ample time for Cement to develop 500psi compressive strength. Casing test to 0.22 psi/ft or 1500 psi whichever is greater not to exceed 70% casing burst.

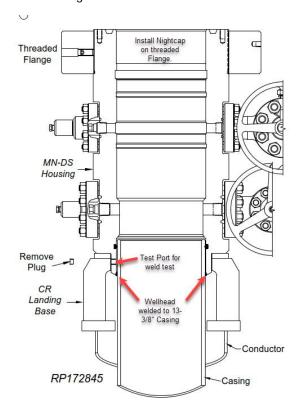
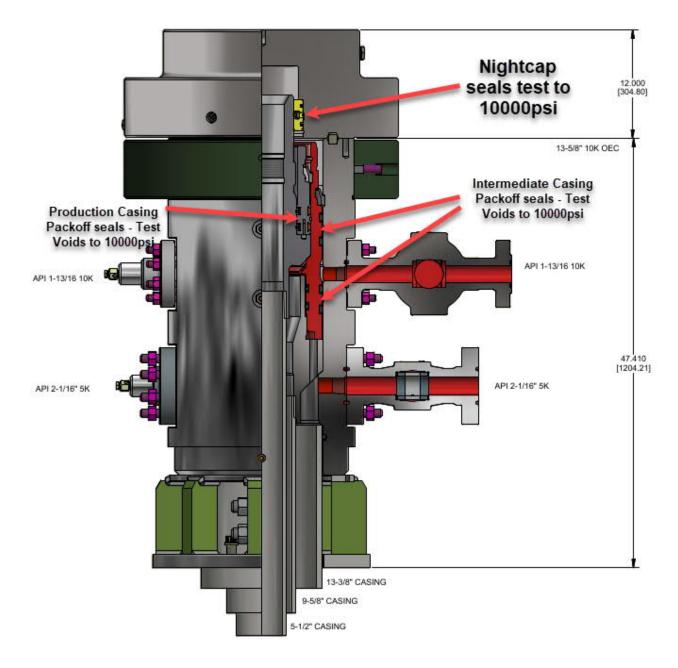


Illustration 1-1

o Intermediate and Production Casing – For all subsequent Intermediate and Production Casing Strings, the Big Rig will remove the nightcap and install and test BOPE. Prior to drill out the 13-3/8" Casing will be tested to 0.22psi/ft or 1500psi whichever is greater. The well will be drilled below 13-3/8" to its intended final TD in the Avalon or Bonesprings formations. Batch drilling will not be executed for casing strings below the 13-3/8". Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings. The


> Wolfcamp Formations

<u>13-3/8" Surface Casing</u> - CRD intends to preset 13-3/8" casing to a depth approved in the APD. Surface Holes will be batch set by a Surface Preset rig. Appropriate notifications will be made prior to spudding the well, running and cementing casing and prior to skidding to the rig to the next well on pad.

- 1. Drill 17-1/2" Surface hole to Approved Depth with Surface Preset Rig and perform wellbore cleanup cycles. Trip out and rack back drilling BHA.
- 2. Run and land 13-3/8" 54.5# J55 BTC casing to depth approved in APD.
- 3. Cement 13-3/8" casing with cement to surface and floats holding.
- 4. Cut / Dress 20" Conductor and 13-3/8" casing as needed, weld on Cameron Multi-bowl system with baseplate supported by 20" conductor (see Illustration 1-1). Weld performed per Cameron weld procedure.
- 5. Test Weld to 70% of 13-3/8" casing collapse or ~ 790psi.
- 6. Install nightcap with Pressure Gauge on wellhead. Nightcap is shown on final wellhead Stack up Illustration #2-2 on page 3.
- 7. Subsequent casing test will be performed by the Big Rig in order to allow ample time for Cement to develop 500psi compressive strength. Casing test to 0.22 psi/ft or 1500 psi whichever is greater not to exceed 70% casing burst.

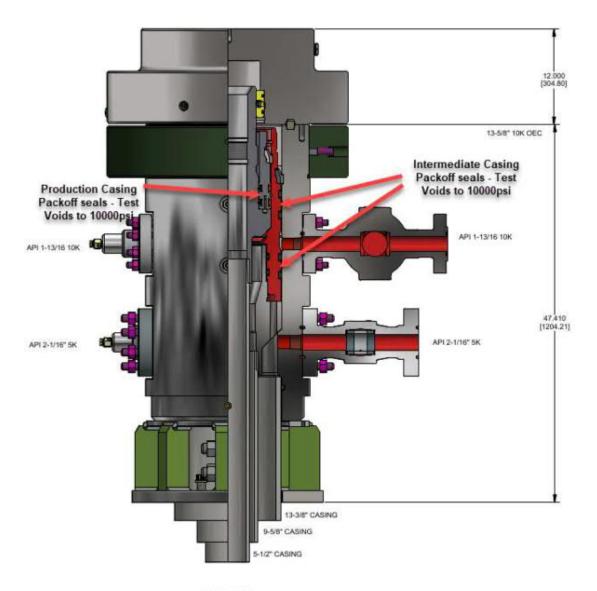
<u>Intermediate Casing</u> – CRD intends to Batch set all intermediate casing strings to a depth approved in the APD, typically set 100′ above KOP in the 3rd Bonesprings Carbonate. For the last intermediate section drilled on pad, the associated production interval will immediately follow. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

- 1. Big Rig will remove the nightcap and install and test BOPE.
- 2. Test Surface casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 3. Install wear bushing then drill out 13-3/8" shoe-track plus 20' and conduct FIT to minimum of the MW equivalent anticipated to control the formation pressure to the next casing point.
- 4. Drill Intermediate hole to approved casing point. Trip out of hole with BHA to run Casing.
- 5. Remove wear bushing then run and land Intermediate Casing with mandrel hanger in wellhead.
- 6. Cement casing to surface with floats holding.
- 7. Washout stack then run wash tool in wellhead and wash hanger and pack-off setting area.
- 8. Install pack-off and test void to 10000 psi for 15 minutes. Nightcap shown on final wellhead stack up illustration 2-2 on page 3.
- 9. Test casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 10. Install nightcap skid rig to adjacent well to drill Intermediate hole.

WITH CAP
Illustration 2-2

<u>Production Casing</u> – CRD intends to Batch set all Production casings, except for the last intermediate hole. In this case the production interval will immediately follow the intermediate section on that well. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

- 1. Big Rig will remove the nightcap and install and test BOPE.
- 2. Install wear bushing then drill Intermediate shoe-track plus 20' and conduct FIT to minimum MW equivalent to control the formation pressure to TD of well.
- 3. Drill Vertical hole to KOP Trip out for Curve BHA.
- 4. Drill Curve, landing in production interval Trip for Lateral BHA.


- 5. Drill Lateral / Production hole to Permitted BHL, perform cleanup cycles and trip out to run 5-1/2" Production Casing.
- 6. Remove wear bushing then run 5-1/2" production casing to TD landing casing mandrel in wellhead.
- 7. Cement 5-1/2" Production string to surface with floats holding.
- 8. Run in with wash tool and wash wellhead area install pack-off and test void to 10000psi for 15 minutes.
- 9. Install BPV in 5-1/2" mandrel hanger Nipple down BOPE and install nightcap.
- 10. Test nightcap void to 10000psi for 30 minutes per illustration 2-2 page 3.
- 11. Skid rig to adjacent well on pad to drill production hole.

Cheddar Fed Com 502H

Centennial Drilling Plan for 3-Casing String Bone Springs Formation

13-3/8" x 9-5/8" x 5-1/2" Casing Design

- 1. Drill 17-1/2" surface hole to Total Depth with Spudder Rig and perform wellbore cleanup cycles.
- 2. Run and land 13-3/8" casing to Depth.
- 3. Cement 13-3/8" casing cement to surface.
- 4. Cut / Dress Conductor and 13-3/8" casing as needed, weld on Multi-bowl system with baseplate supported by 20" conductor.
- 5. Test Weld to 70% of 13-3/8" casing collapse. Place nightcap with Pressure Gauge on wellhead and test seals to 70% of Casing Collapse.
- 6. Bleed Pressure if necessary and remove nightcap. Nipple up and test BOPE with test plug per Onshore Order 2.
- 7. Test casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 8. Install wear bushing then drill out 13-3/8" shoe-track plus 20' and conduct FIT to minimum of the MW equivalent anticipated to control the formation pressure to the next casing point.
- 9. Drill 12-1/4" Intermediate hole to 9-5/8" casing point. (Base Capitan Reef).
- 10. Remove wear bushing then run and land 9-5/8" Intermediate Casing with mandrel hanger in wellhead.
- 11. Cement 9-5/8 casing cement to surface.
- 12. Washout stack then run wash tool in wellhead and wash hanger and pack-off setting area.
- 13. Install pack-off and test to 5000 psi for 15 minutes.
 - a. Test casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 14. Install wear bushing then drill out 9-5/8" shoe-track plus 20' and conduct FIT to minimum MW equivalent to control the formation pressure to TD of well.
- 15. Drill 8-3/4" Vertical hole to KOP Trip out for Curve BHA.
- 16. Drill 8-3/4" Curve, landing in production interval Trip for Lateral BHA.
- 17. Drill 8-1/2" Lateral to Permitted BHL, perform cleanup cycles and trip out to run 5-1/2" Production Casing.
- 18. Remove wear bushing then run 5-1/2" production casing to TD landing casing mandrel in wellhead.
- 19. Cement 5-1/2" Production string to surface.
- 20. Run in with wash tool and wash wellhead area install pack-off and test to 5000psi for 15 minutes.
- 21. Install BPV in 5-1/2" mandrel hanger Nipple down BOPE and install nightcap.
- 22. Test nightcap void to 5000psi for 30 minutes.

WITH CAP

			WELL NAME		Cheddar Federal Co		om 502H	8/28/	2020
	-0-			EA		ratta	API	0/20/	2020
CEN 17				RGET		Sand	WI %		
CENT	IENN	NAL		NGTH	10,000		AFE#		
RESOURC	RESOURCE DEVELOPMENT, LLC		TRRC PERMIT				COUNTY	Le	а
	TWNP	RNG		TION	FOO ⁻	TAGE		COMMENT	
SHL	22S	32E		5		470' FWL		ease. Drill S	to N.
FTP/PP	22S	32E		<u> </u>		1254' FWL			
LTP	21\$	32E	3	2		1254' FWL			
BHL	21S	32E	3	2	-	1254' FWL			
			GROUN	D LEVEL	3,665'	RIG KB	26'	KB ELEV	3,691'
GEOLOGIST	Isabel I	Harper	isa	bel.harper@	@cdevinc.co	<u>om</u>	(3	03) 589-884	1
LOGG	ING				No open ho	ole logging.		·	
		V	IWD GR fro	m drill out o	of surface c	asing to TD			
MUDLO	GGING		(Standard m	ud logging a	and mud ga	as detection	l.	
		Mud	loggers on						
FC	ORMATION		TVD	SSTVD		KNESS		FINAL TVD	DELTA
	Rustler		743'	2,948'	3,9	00'			
	Salado		916'	2,775'	3,8	11'			
BX BLM (I	BX BLM (Fletcher Anhydrite)			298'	2,1	31'			
	Lamar		4,643'	-952'	84'				
В	ell Canyon		4,727'	-1,036'	797'				
Ch	erry Canyor	า	5,524'	-1,833'	23	30'			
Ma	nzanita Lim	е	5,754'	-2,063'	1,1	00'			
Bru	ushy Canyor	า	6,854'	-3,163'	1,7	27'			
Bon	e Spring Lin	ne	8,581'	-4,890'	15	52'			
	Avalon		8,733'	-5,042'	88	37'			
I	BSG Sand		9,620'	-5,929'	26	54'			
	BSG Shale		9,884'	-6,193')5'			
(SBSG Sand		10,289'	-6,598'		54'			
-	TBSG Carb		10,743'	-7,052'	52	29'			
	TBSG Sand		11,272'	-7,581'					
	et Top at 0'		10,602'	-6,911'	6	9'			
Targe	et Base at 0'	VS	10,671'	-6,980'					
HZ TA	ARGET AT 0'	VS	10,641'	-6,950'					
T100==	1/DT) /5								
TARGET:	KBTVD = 10),641 at VS	s, INC = 90.0	deg					


Target Window +10/-10'

COMMENT:

		PE WELL:	S			
DRILLIN	G WELL	Cheddai	r Federal C	om 502H	8/28/	2020
HZ TA	RGET	SBSG	SBSG Sand		AREA Burratta	
PRIM	1ARY TYPE	LOG		SECONDARY TYPE LOG		
CHEDDAR	3BS FEDER	AL 001H	1	FEDERAL 8 1		
22S/32E/	5; 244' FSL/3	370' FWL		22S/32E/8	; 1980' FNL/	1980' FEL
1	80' S of SHI	_	1	32	50' SE of SH	I L
	Υ				N	
	3,694'				3,748'	
TVD	SSTVD	DELTA		TVD	SSTVD	DELTA
746'	2,948'		1	722'	3,026'	
919'	2,775'		1	894'	2,854'	
4,646'	-952']	4,701'	-953'	
4,730'	-1,036'	797']	4,768'	-1,020'	836
5,527'	-1,833'	230'		5,604'	-1,856'	235
5,757'	-2,063'	1,100'		5,839'	-2,091'	1,105
6,857'	-3,163'	1,727'		6,944'	-3,196'	1,701
8,584'	-4,890'	152'		8,645'	-4,897'	192
8,736'	-5,042'	887'		8,837'	-5,089'	914
9,623'	-5,929'	264'		9,751'	-6,003'	255
9,887'	-6,193'	405'		10,006'	-6,258'	324
10,292'	-6,598'	454'		10,330'	-6,582'	488
10,746'	-7,052'	529'		10,818'	-7,070'	591
11,275'	-7,581'			11,409'	-7,661'	423
				11,832'	-8,084'	
728'			13 3/8	818'		
4,501'			9 5/8	4,560'		
21,661'			7	12,555'		
10,605'	-6,911'	69'		10,686'	-6,938'	60
10,674'	-6,980'		1	10,746'	-6,998'	
	30 22\$/32E/ 1 746' 919' 4,646' 4,730' 5,527' 5,757' 6,857' 8,584' 8,736' 9,623' 9,887' 10,292' 10,746' 11,275' 728' 4,501' 21,661'	30-025-4469 22S/32E/5; 244' FSL/3 180' S of SHI Y 3,694' TVD SSTVD 746' 2,948' 919' 2,775' 4,646' -952' 4,730' -1,036' 5,527' -1,833' 5,757' -2,063' 6,857' -3,163' 8,584' -4,890' 8,736' -5,042' 9,623' -5,929' 9,887' -6,193' 10,292' -6,598' 10,746' -7,052' 11,275' -7,581' 728' 4,501' 21,661'	3,694' TVD SSTVD DELTA 746' 2,948' 919' 2,775' 4,646' -952' 4,730' -1,036' 797' 5,527' -1,833' 230' 5,757' -2,063' 1,100' 6,857' -3,163' 1,727' 8,584' -4,890' 152' 8,736' -5,042' 887' 9,623' -5,929' 264' 9,887' -6,193' 405' 10,292' -6,598' 454' 10,746' -7,052' 529' 11,275' -7,581' 728' 4,501' 21,661' 10,605' -6,911' 69'	30-025-44692 22S/32E/5; 244' FSL/370' FWL 180' S of SHL Y 3,694' TVD SSTVD DELTA 746' 2,948' 919' 2,775' 4,646' -952' 4,730' -1,036' 797' 5,527' -1,833' 230' 5,757' -2,063' 1,100' 6,857' -3,163' 1,727' 8,584' -4,890' 152' 8,736' -5,042' 887' 9,623' -5,929' 264' 9,887' -6,193' 405' 10,292' -6,598' 454' 10,746' -7,052' 529' 11,275' -7,581' 728' 4,501' 95/8 21,661' 7	30-025-44692 22S/32E/5; 244' FSL/370' FWL 180' S of SHL Y 3,694' TVD SSTVD DELTA 746' 2,948' 722' 919' 2,775' 4,768' 5,527' -1,833' 230' 5,757' -2,063' 1,100' 6,857' -3,163' 1,727' 8,584' -4,890' 152' 8,736' -5,042' 887' 9,623' -5,929' 264' 9,887' -6,193' 405' 10,292' -6,598' 454' 10,746' -7,052' 529' 11,275' -7,581' 728' 13 3/8 4,501' 9 5/8 21,661' 7 10,686'	30-025-44692 22\$/32E/\$; 244' F\$S/370' FWL 180' \$ of \$ SHL

OFFSET TYPE WELLS									
	DRILLING WELL	Cheddar	r Federal Co	om 502H	8/28/2020				
	HZ TARGET	SBSG Sand		AREA	Burratta				
CENTENNIAL	PRIMARY TYPE		SECONDARY TYPE LOG						
RESOURCE DEVELOPMENT, LLC	CHEDDAR 3BS FEDER		FEDERAL 8 1						
RESOURCE DEVELOPMENT, LEC	30-025-4469		30-025-32709						
LOCATION	22S/32E/5; 244' FSL/	/370' FWL		22S/32E/8; 1980' FNL/1980' FEL					
DISTANCE	180' S of SH	L		3250' SE of SHL					
DIRECTION SURVEY	Υ			N					
KB ELEV	3,694'			3,748'					
	LOCATION & ST	RUCTURE N	ЛАР	•					

WFMP SS Structure Map

		MIDIO	C DISTRI	BUTION [)ETVII C		
			NAME		Federal Co	om 502H	8/28/2020
	C		REA	Burr		API	0/20/2020
^ENIT			ARGET	SBSG		WI %	
CENI	ENNIAL		NGTH	100		AFE#	
	DEVELOPMENT, LLC		PERMIT			COUNTY	Lea
GEOLOGIST	Isabel Harper			ecdevinc.co	nm		303) 589-8841
020200101	isabor riai por		/lud Loggin		2111		,00,007,0011
			TB	<u> </u>			
	TBD			3D			TBD
Co	ntact 2		em				phone
	ontact 3			nail			phone
		v distributi		quirements	and proto	col	p
neodata@cdevir	nc.com; joe.woodske@	,		•			nc com
				1 9 12 12			
		Dai	ily email dis	stribution li	st		
		Final dis	stribution d	lata require	ments		
				·	ments		
Contact	Information		Final distril	oution list		ul data	Cuttings
	Information		Final distril Hard (bution list		ıl data	Cuttings
Centenr Development,	Information nial Resource , c/o Joe Woodske, treet, Suite 1800,		Final distril Hard (2 copies Vertical, 2	oution list	Digita	ıl data inal set	Cuttings
Centenr Development, 1001 17th st SCAL, Inc., 26	nial Resource , c/o Joe Woodske,	Reports email	Final distril Hard (2 copies Vertical, 2	bution list Copies of 5" MD	Digita		Cuttings No Dried Samples to be Collected
Centenr Development, 1001 17th st SCAL, Inc., 26 Road 1257, N MWD Only: Ce Developm	nial Resource , c/o Joe Woodske, treet, Suite 1800, 613 South County	Reports email	Final distril Hard (2 copies Vertical, 2 5" Horizo 2 copies	bution list Copies of 5" MD copies of ontal and of the 5" cal logs 2	Digita email f		No Dried Samples to
Centenr Development, 1001 17th st SCAL, Inc., 26 Road 1257, N MWD Only: Ce Developm	nial Resource , c/o Joe Woodske, treet, Suite 1800, 613 South County Midland, TX 79706 entennial Resource nent, c/o Sarah	Reports email final set email	Final distril Hard (2 copies Vertical, 2 5" Horizo 2 copies MD verti	bution list Copies of 5" MD copies of ontal and of the 5" cal logs 2	Digita email f	inal set	No Dried Samples to
Centenr Development, 1001 17th st SCAL, Inc., 26 Road 1257, N MWD Only: Co Developm Ferreyros, 100	nial Resource , c/o Joe Woodske, treet, Suite 1800, 613 South County Midland, TX 79706 entennial Resource nent, c/o Sarah	Reports email final set email final set	Final distril Hard (2 copies Vertical, 2 5" Horizo 2 copies MD verti	oution list Copies of 5" MD copies of ontal and of the 5" cal logs 2 of the 5"	Digita email f email f	inal set	No Dried Samples to be Collected
Centenr Development, 1001 17th st SCAL, Inc., 26 Road 1257, M MWD Only: Co Developm Ferreyros, 100	nial Resource , c/o Joe Woodske, treet, Suite 1800, 613 South County Midland, TX 79706 entennial Resource nent, c/o Sarah 1 17th street, Suite	Reports email final set email final set	Final distril Hard (2 copies Vertical, 2 5" Horizo 2 copies MD verti	oution list Copies of 5" MD copies of ontal and of the 5" cal logs 2 of the 5"	Digita email f email f	inal set inal set	No Dried Samples to be Collected

ContiTech

CONTITECH RUBBER

No:QC-DB- 210/ 2014

Page: 9 / 113

QUALITY CONTROL INSPECTION AND TEST CERTIFICATE						CERT. N	l°:	504				
PURCH	IASER:		Conti ⁻	Tech (Oil & l	Marine (Corp.		P.O. N°:		4500409659	
CONTIT	ECH RUE	3BER ord	er N°: 538	236	HOS	E TYPE:	3"	ID		Choke and	d Kill Hose	
HOSE S	SERIAL N	V °:	672	55	NOM	INAL / AC	TUAL LI	ENGTH:		10,67 m	ı / 10,77 m	
W.P.	68,9	MPa	10000	psi	T.P.	103,4	MPa	1500	O psi	Duration:	60	min.

Pressure test with water at ambient temperature

See attachment. (1 page)

 \uparrow 10 mm = 10 Min. \rightarrow 10 mm = 20 MPa

COUPLINGS Type	Seri	al Nº	Quality	Heat N°	
3" coupling with	9251	9254	AISI 4130	A0579N	
4 1/16" 10K API b.w. Flange end			AISI 4130	035608	

Not Designed For Well Testing

API Spec 16 C

Temperature rate:"B"

All metal parts are flawless

WE CERTIFY THAT THE ABOVE HOSE HAS BEEN MANUFACTURED IN ACCORDANCE WITH THE TERMS OF THE ORDER INSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT.

STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity with the terms, conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested in accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.

COUNTRY OF ORIGIN HUNGARY/EU

Date:	Inspector	Quality Control
		Industrial Kft.
20. March 2014.		Person Seco (1) Sand

ATTACHMENT OF QUALITY CONTROL INSPECTION AND TEST CERTIFICATE No: 501, 504, 505

Page: 1/1

		Chara S
		Cantilla Rubber
		The Frial Kfr.
GN +21.22 90	01:20	Control Dept.
RD 21_95 96	91-22	
BL +1053 bar CN +21-15 90	01 20	
RD ++21-91-96	01:10	
BL #1055. bar	0:F1:0 01:10	
GN +21-18 °C	01:00	
RD +21-30 98	01-90	
BLT 41259 : 223017	100 5d 100 a-10,5	88608
	01 : 60 00 : 50 00 : 50 00 : 50 00 : 50	
BL +1057- bar GN +21-28 90	100,04	
R0 + +21 - 34 - 90	00:48 80:48	
BL #1059. bar	00 40 00 30	
GN +21-38 90 RD +21-42 96	00.80	
BL +1061. bar	99138 99138	
GN +21.35 9C	00:20	
R0 +21.98 96 BL +1064. bar	00:28 00:28 00:28	
PL MI054- DOK	199:28	
Arthur Ar		
Approximation of the second of		
10 20 30 4		
	D 50 60 70 80	90 100
19.03.2014. 23:50 67252.67255.67256 2		
	3 [5 % [8]] 3 [5 % [8]]	
2000000		
		110

Industrial Kft.

CONTITECH RUBBER No:QC-DB- 210/ 2014

15 / 113 Page:

ContiTech

Hose Data Sheet

CRI Order No.	538236
Customer	ContiTech Oil & Marine Corp.
Customer Order No	4500409659
Item No.	1
Hose Type	Flexible Hose
Standard	API SPEC 16 C
Inside dia in inches	3
Length	35 ft
Type of coupling one end	FLANGE 4.1/16" 10K API SPEC 6A TYPE 6BX FLANGE C/W BX155 R.GR.SOUR
Type of coupling other end	FLANGE 4.1/16" 10K API SPEC 6A TYPE 6BX FLANGE C/W BX155 R.GR.SOUR
H2S service NACE MR0175	Yes
Working Pressure	10 000 psi
Design Pressure	10 000 psi
Test Pressure	15 000 psi
Safety Factor	2,25
Marking	USUAL PHOENIX
Cover	NOT FIRE RESISTANT
Outside protection	St.steel outer wrap
Internal stripwound tube	No
Lining	OIL + GAS RESISTANT SOUR
Safety clamp	No
Lifting collar	No
Element C	No
Safety chain	No
Safety wire rope	No
Max.design temperature [°C]	100
Min.design temperature [°C]	-20
Min. Bend Radius operating [m]	0,90
Min. Bend Radius storage [m]	0,90
Electrical continuity	The Hose is electrically continuous
Type of packing	WOODEN CRATE ISPM-15

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT PWD Data Report

PWD disturbance (acres):

APD ID: 10400052340 **Submission Date:** 12/13/2019

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: CHEDDAR FEDERAL COM Well Number: 502H

Well Type: OIL WELL Well Work Type: Drill

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: CHEDDAR FEDERAL COM Well Number: 502H

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD disturbance (acres): PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: CHEDDAR FEDERAL COM Well Number: 502H

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

Injection well number: Injection well name:

Assigned injection well API number? Injection well API number:

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? ${\sf N}$

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Other PWD discharge volume (bbl/day):

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: CHEDDAR FEDERAL COM Well Number: 502H

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Info Data Report

08/23/2021

APD ID: 10400052340 **Submission Date:** 12/13/2019

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: CHEDDAR FEDERAL COM Well Number: 502H

Well Type: OIL WELL Well Work Type: Drill

Highlighted data reflects the most recent changes

Show Final Text

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001841

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

Effective May 25, 2021									
I. Operator: Centen	nial Resour	ce Prod, LLC	OGRID: <u>37</u>	2165		Date: _	<u>12</u> /	13/21_	
II. Type: ■ Original [II. Type: ■ Original □ Amendment due to □ 19.15.27.9.D(6)(a) NMAC □ 19.15.27.9.D(6)(b) NMAC □ Other.								
If Other, please describe	e:								
III. Well(s): Provide the be recompleted from a s					wells pr	oposed to	be dril	led or proposed to	
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D		cipated MCF/D		Anticipated oduced Water BBL/D	
Cheddar Fed Com 502H 30	-025-49737	M-5-22S-32E	453 FSL& 470 FWL	1270 BBL/D	1295	1295 MCF/D 5		5860 BBL/D	
V. Anticipated Schedu proposed to be recomple	le: Provide the	following informat	ion for each new		vell or s			7.9(D)(1) NMAC] sed to be drilled or	
Well Name	API	Spud Date	TD Reached Date	Completion Commencement		Initial F Back D		First Production Date	
Cheddar Fed Com 502H 30	-025-49737	02/24/2022	03/05/2022	04/23/2022		05/05/20)22	05/05/2022	
Cheddar Fed Com 502H 30-025-49737 02/24/2022 03/05/2022 04/23/2022 05/05/2022 05/05/2022 VI. Separation Equipment: ■ Attach a complete description of how Operator will size separation equipment to optimize gas capture. VII. Operational Practices: ■ Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC. VIII. Best Management Practices: ■ Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.									

	Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022						
	2022, an operator that complete this section.	t is not in compliance	with its statewide natural ga	s capture	requirement for the applicable		
	s that it is not require for the applicable rep		tion because Operator is in c	ompliance	with its statewide natural gas		
IX. Anticipated Na	tural Gas Production	ı:					
W	ell	API	Anticipated Average Natural Gas Rate MCF/D		ticipated Volume of Natural Gas for the First Year MCF		
X. Natural Gas Ga	thering System (NGC	GS):		•			
Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date		le Maximum Daily Capacity System Segment Tie-in		
production operation the segment or portion the segment or portion with the segment or portion with the segment or construction volume and with the segment of the segment	ns to the existing or place on of the natural gas gath from the well prior to be of the control	anned interconnect of the athering system(s) to the ering system will the date of first product does not anticipate the above will continue to duction in response to the transfer of the confidentiality pursuant at the confidentiality at the confidentiality at the confidentiality at the	the natural gas gathering syste which the well(s) will be community will not have capacity to getion. at its existing well(s) connect meet anticipated increases in the increased line pressure. Suant to Section 71-2-8 NMS 27.9 NMAC, and attaches a fixed which we have a suant to section at the context of	em(s), and nected. ather 100% ed to the solution press	sipeline route(s) connecting the the maximum daily capacity of 6 of the anticipated natural gas ame segment, or portion, of the ure caused by the new well(s).		

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after	r reasonable inquiry and based on the available information at the time of submittal:
one hundred percent of the	connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport anticipated volume of natural gas produced from the well(s) commencing on the date of first production, rent and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering
hundred percent of the anti- into account the current and	le to connect to a natural gas gathering system in the general area with sufficient capacity to transport one cipated volume of natural gas produced from the well(s) commencing on the date of first production, taking d anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. x, Operator will select one of the following:
Well Shut-In. ☐ Operator D of 19.15.27.9 NMAC; or	will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection
alternative beneficial uses (a) (b) (c) (d) (e) (f) (g) (h)	Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential for the natural gas until a natural gas gathering system is available, including: power generation on lease; power generation for grid; compression on lease; liquids removal on lease; reinjection for underground storage; reinjection for temporary storage; reinjection for enhanced oil recovery; fuel cell production; and other alternative beneficial uses approved by the division.

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Herrary Machelle 1/31/2022
Printed Name: Stewart MacCallum
Title: Director of Marketing
E-mail Address: Stewart.MacCallum@cdevinc.com
Date:
Phone: (720) 499-1458
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

Centennial Resource Production, LLC (372165)

Natural Gas Management Plan Descriptions

VI. Separation Equipment:

Centennial utilizes a production forecast from our Reservoir Engineering team to appropriately size each permanent, 3-phase separator and heater treater utilized for production operations. Our goal is to maintain 5 minutes of retention time in the test vessel and 20 minutes in the heater treater at peak production rates. The gas produced is routed from the separator to the gas sales line.

VII. Operational Practices:

Drilling

During Centennial's drilling operations it is uncommon for venting or flaring to occur. If flaring is needed due to safety concerns, gas will be routed to a flare and volumes will be estimated.

Flowback

During completion/recompletion flowback operations, after separation flowback begins and as soon as it is technically feasible, Centennial routes gas though a permanent separator and the controlled facility where the gas is either sold or flared through a high-pressure flare if needed.

Production

Per 19.15.27.8.D, Centennial's facilities are designed to minimize waste. Our produced gas will only be vented or flared in an emergency or malfunction situation, except as allowed for normal operations noted in 19.15.27.8.D(2) & (4). All gas that is flared is metered. All gas that may be vented will be estimated.

Performance Standards

Centennial utilizes a production forecast from our Reservoir Engineering team to appropriately size each permanent, 3-phase separator and heater treater utilized for production operations.

All of Centennial's permanent storage tanks associated with production operations which are routed to a flare or control device are equipped with an automatic gauging system.

All of Centennial's flare stacks, both currently installed and for future installation, are:

- 1) Appropriately sized and designed to ensure proper combustion efficiency.
- 2) Equipped with an automatic ignitor or continuous pilot.
- 3) Anchored and located at least 100 feet from the well and storage tanks.

Centennial's field operations and HSE teams have implemented an AVO inspection schedule that adheres to the requirements of 19.15.27.8.E(5).

All of our operations and facilities are designed to minimize waste. We routinely employ the following methods and practices:

- Closed-loop systems
- Enclosed and properly sized tanks

Centennial Resource Production, LLC (372165)

- Vapor recovery units to maximize recovery of low-pressure gas streams and potential unauthorized emissions
- Low-emitting or electric engines whenever practical
- Combustors and flare stacks in the event of a malfunction or emergency
- Routine facility inspections to identify leaking components, functioning control devices, such as flares and combustors, and repair / replacement of malfunctioning components where applicable

Measurement or estimation

Centennial measures or estimates the volumes of natural gas vented, flared and/or beneficially used for all of our drilling, completing and producing wells. We utilize accepted industry standards and methodology which can be independently verified. Annual GOR testing is completed on our wells and will be submitted as required by the OCD. None of our equipment is designed to allow diversion around metering elements except during inspection, maintenance and repair operations.

VIII. Best Management Practices:

Centennial utilizes the following BMPs to minimize venting during active and planned maintenance activities:

- Use a closed-loop process wherever possible during planned maintenance activities, such as blowdowns, liquid removal, and work over operations.
- Employ low-emitting or electric engines for equipment, such as compressors
- Adhere to a strict preventative maintenance program which includes routine facility inspections, identification of component malfunctions, and repairing or replacing components such as hatches, seals, valves, etc. where applicable
- Utilize vapor recovery units (VRU's) to maximize recovery of volumes of low-pressure gas streams and potential unauthorized emissions
- Route low pressure gas and emissions streams to a combustion device to prevent venting where necessary

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 77038

CONDITIONS

Operator:	OGRID:
CENTENNIAL RESOURCE PRODUCTION, LLC	372165
1001 17th Street, Suite 1800	Action Number:
Denver, CO 80202	77038
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
pkautz	Will require a File As Drilled C-102 and a Directional Survey with the C-104	2/1/2022
pkautz	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string	2/1/2022
pkautz	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system	2/1/2022
pkautz	Cement is required to circulate on both surface and intermediate1 strings of casing	2/1/2022