District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

2/15/2022

Phone: 432-215-8939

State of New Mexico **Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

Form C-101 August 1, 2011 Permit 308204

APPLICATION FOR PERMIT TO DRILL, RE-ENTER, DEEPEN, PLUGBACK, OR ADD A ZONE

	me and Address							2. OGRID Nur		
	O ENERGY, INC							53		
	01 Holiday Hill Road							3. API Numbe		
	lland, TX 79707	1							-015-4928	36
4. Property Co	de 7790	5. Pr	operty Name	NORTH 25 STATE				6. Well No.	ЗH	
31	7790		REIVIUDA I	NORTH 25 STATE				70	зн	
				7. Surfac	e Location					
UL - Lot	Section	Township	Range		et From	N/S Line	Feet From	E/W	Line	County
к	25	23S	29		2370	S	20	39	W	Eddy
•		•	•					•		
UL - Lot	Section	Township	Range	8. Proposed Bot	iom Hole Locat	N/S Line	Feet From	E ///	Line	County
C	24	23S	Kange 29E		200	N/S Line		090	W	Eddy
				9 Pool II	nformation					,
FORTY NINE	ER RIDGE BONE SF	RING,WEST		0.1 0011	lionnation				96	526
				A -1-1/4/						
11 Work Tupo		10 Wall Type			ell Information	14. Lease Type	15	Ground Level E	lovation	
11. Work Type 12. Well Type OIL			13. Cable/Rotary		State	15.	3070	levation		
16. Multiple			th	18. Formation		19. Contractor	20.	Spud Date		
N				Bone Spring				4/12/2022		
Depth to Ground water				Distance from nearest fresh	water well	Dist	istance to nearest surface water			
⊠ We will be using a closed-loop system in lieu of lined pits										
	using a closed-loop	system in neu or	linea pits							
				21. Proposed Casing	and Cement P	rogram				
Туре	Hole Size	Casing Size		Casing Weight/ft	Setting I	Depth	Sacks of	Cement		Estimated TOC
Surf	14.75	11.75		54	395		32	-		0
Int1	8.75	7.625		29.7	318		32			0
Prod	6.75	5.5		20	1680)4	87	0	2678	
				Casing/Cement Progra	m: Additional C	omments				
				ed) surface, intermediate						
				sure on the csg annulus,						
0				rocedure and pressure i						
				is moved off the current						
				is used, a copy of the m	anufacturer's ce	rtification and p	ressure test ch	art will be kept	on the rig	. Attached is an
example of a	a certification and pr	essure test chart.	The manufactur	er does not require						
				22. Proposed Blowo	ut Prevention P					
	Туре			Working Pressure		Test Pre				nufacturer
	Double Ram			2045		300	00		С	amron
					1					
		nation given above	is true and com	plete to the best of my			OIL CONSERV	ATION DIVISIO	N	
knowledge a				/or 19.15.14.9 (B) NMAC						
X, if applica		with 19.15.14.9 (A		OF 19.15.14.9 (B) NWAC						
	DIC.									
Signature:										
Printed Name:	Electronicall	y filed by Tiffany Ya	ancey		Approved By:	Katherine	e Pickford			
Title:	Production A		2		Title:	Geoscier	ntist			
Email Address		y@exxonmobil.cor	n		Approved Date:	2/21/202		Expiratio	n Date: 2/2	1/2024

Conditions of Approval Attached

Date:

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

1	¹ API Number			² Pool Code		³ Pool Name						
	³⁰⁻⁰¹⁵⁻ 49286				96526 Forty-Niner Ridge; Bone Spring West							
⁴ Property C	ode		L.		⁵ Property	Property Name				⁶ Well Number		
317790			I	REMUDA NORT	TH 25 STATE				703H			
⁷ OGRID N				⁸ Operator	Name				⁹ Elevation			
005380					XTO ENERO	GY, INC.				3,070'		
	·				¹⁰ Surface	Location						
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East	t/West line	County		
K	25	23 S	29 E		2,370	SOUTH	2,039	WE	ST	EDDY		
			¹¹ Bo	ttom Hol	e Location I	f Different Fron	n Surface					
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East	t/West line	County		
C	24	23 S	29 E		200	NORTH	2,090	WE	ST	EDDY		
¹² Dedicated Acres	¹³ Joint o	r Infill 14 (Consolidation	Code ¹⁵ Or	der No.		I					
240												

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

¹⁶ SEC.	,			1				¹⁷ OPERATO	R CERTIFICATION
14	Б.Н.L. 2006 			SHL (I	NAD83 NME)	ITP (N	IAD83 NME)	I hereby certify that the inform	ation contained herein is true and complete
	$H \setminus H$	D SEC.	13	Y =	464,036.5	Y =	471,959.9	to the best of my knowledge ar	d belief, and that this organization either
	2.090' 4			- x=	662.855.8	X =	662.857.9	owns a working interest or un	eased mineral interest in the land including
2,090' 🗧		1		LAT. =	32.275099 °N	LAT. =	32.296879 °N		
	L.T.P.			LONG. =	103.940146 °W	LONG. =	103.940046 °W		tion or has a right to drill this well at this
		SEC.	24	FTP (1	NAD83 NME)	BHL (N	AD83 NME)	location pursuant to a contrac	t with an owner of such a mineral or workin
+ _	· – – + – – – –		+	Y=	464,699.1	Y =	472,089.9	interest, or to a voluntary pool	ing agreement or a compulsory pooling
SEC.		1		X =	662,906.8	X =	662,856.7	order heretofore entered by the	division.
23		1		LAT. =	32.276919 °N	LAT. =	32.297236 °N	0.0	02/07/2022
		1		LONG. =	103.939974 °W	LONG. =	103.940048 °W	Casou Wang	02/01/2022
		· 			CORNER COORDIN	ATES (NAD83	NME)	Signature	Date
	G	<u>c</u>		A - Y =	464,319.1 N ,	X =	663,469.2 E	Cassie Evans	
		1		B - Y =	466,979.3 N ,	X =	663,464.2 E		
		GRID AZ.=35	9'36'40"	C - Y =	469,631.9 N ,	X =	663,440.1 E	Printed Name	
			=7,391.00'	D - Y =	472,289.1 N ,	X =	663,415.9 E	cassie.evans@e>	wanmahil aam
	· + - I	÷ – – – –	+	E - Y =	464,319.7 N ,	X =	662,143.0 E		xonnobil.com
				F - Y =	466,978.8 N ,	X =	662,140.6 E	E-mail Address	
				G - Y =	469,634.0 N ,	X =	662,115.2 E		
	330'	1		H - Y =	472,291.0 N ,	X =	662,090.3 E		
					NAD27 NME)	•	IAD27 NME)	¹⁸ SURVEYOR	CERTIFICATION
	FIA	В		T Y=	463,976.6	Y =	471,899.8	I hereby certify that th	e well location shown on this
SEC.		SEC.		X =	621,673.0	X =	621,675.4		* 11 / / / 1
26		T23S	R29E	LAT. =	32.274975 °N	LAT. =	32.296755 °N	plat was plottea from j	ield notes of actual surveys
~~	580,	1		LONG. =	103.939655 °W NAD27 NME)		103.939553 °W IAD27 NME)	made by me or under i	ny supervision, and that the
			+	- FIP (F	464,639.1	ынс (м Y =	472,029.8		
		1		X =	621,724.1	Y =	621,674.1	same is true and corre	ct to the best of my belief.
		GRID AZ.=		LAT. =	32.276796 °N	LAT. =	32.297112 °N	01-31-2022	WAY DILLON HAND
-	— 2,090'— Ц	HORIZ. DIS	T.=664.53'	LONG. =	103.939482 °W		103.939556 °W	01-51-2022	A DILLOW &
	F.T.P.	· +			CORNER COORDIN			Date of Survey	M MEY TO
-	2,039 ^{,E}	A	1	A - Y =	464,259.2 N ,	X =	622,286.4 E	Signatue and Seal of	NOT LEW MEXICO PO
		۰ ۱.L.		B - Y =	466,919.3 N ,	X =	622,281.5 E	Professional Surveyor:	
		·····		C - Y =	469,571.8 N ,	X =	622,257.5 E		((23786))
				D - Y =	472,229.0 N ,	X =	622,233.4 E		
+ -	+ 3	<u> </u>	+	— E - Y =	464,259.9 N ,	X =	620,960.2 E		PR S
	-0			F - Y =	466,918.8 N ,	X =	620,957.9 E		10m Su
		1		G - Y =	469,574.0 N ,	X =	620,932.6 E		PROFISSIONAL SURVEY
		1	1	H - Y =	472,230.9 N ,	X =	620,907.7 E	1	VUNAL SV
		1			472,230.3 N ,	X =	020,307.7 L	MARK DILLON HARP 23786	

Received by OCD: 2/21/2022 8:52:17 AM

Intent	Х	As Drilled
--------	---	------------

API #		
Operator Name:	Property Name:	Well Number
XTO ENERGY INC	REMUDA NORTH 25 STATE	703H

Kick Off Point (KOP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
K	25	23S	29E		2370	South	2039	WEST	EDDY
Latitu 32.2	^{ide} 275099)			Longitude -103.940)146			NAD NAD83

First Take Point (FTP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
F	25	23S	29E		2280	North	2090	WEST	EDDY
Latitu 32.2	^{de} 276919)			Longitude -103.939	974			NAD NAD83

Last Take Point (LTP)

UL C	Section 24	Township 23S	Range 29E	Lot	Feet 330	From N/S North	Feet 2090	From E/W WEST	County EDDY
Latitu	de				Longitud	le			NAD
32.2	296879)			-103.9	940046			NAD83

Is this well the defining well for the Horizontal Spacing Unit?

Υ

Is this well an infill well?

If infill is yes please provide API if available, Operator Name and well number for Defining well for Horizontal

Spacing Unit.		
API #		
Operator Name: XTO ENERGY INC	Property Name:	Well Number

KZ 06/29/2018

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

District IV

.

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

PERMIT COMMENTS

Operator	Name and Address: XTO ENERGY, INC [5380]	API Number: 30-015-49286			
	6401 Holiday Hill Road	Well:			
	Midland, TX 79707	REMUDA NORTH 25 STATE #703H			
-	Comment		Comment		
By	A variance is requested to allow use of a flex hose as the choke line from the BOP to the Choke Manifold. If thi	s hose is used a conv of the manufacturer's	Date 2/13/2022		
	certification and pressure test chart will be kept on the rig. Attached is an example of a certification and pressu anchors. XTO requests a variance to be able to batch drill this well if necessary. In doing so, XTO will set casir (unless approval is given for offline cementing) and the well is static. With floats holding, no pressure on the c per Cactus recommendations, XTO will contact the NMOCD to skid the rig to drill the remaining wells on the p completed, XTO will begin drilling the production hole on each of the wells.	re test chart. The manufacturer does not require ag and ensure that the well is cemented properly sg annulus, and the installation of a 10K TA cap as			

.

Form APD Comments

Permit 308204

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

PERMIT CONDITIONS OF APPROVAL

Operator N	lame and Address:	API Number:				
	XTO ENERGY, INC [5380]	30-015-49286				
	6401 Holiday Hill Road	Well:				
	Midland, TX 79707	REMUDA NORTH 25 STATE #703H				
OCD	Condition					
Reviewer	<i>r</i> iewer					
kpickford	Notify OCD 24 hours prior to casing & cement					
kpickford	ickford Will require a File As Drilled C-102 and a Directional Survey with the C-104					
kpickford	ckford The Operator is to notify NMOCD by sundry (Form C-103) within ten (10) days of the well being spud					
kpickford	kford Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string					
kpickford	Cement is required to circulate on both surface and intermediate1 strings of casing					
kpickford	ckford Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud,					

ı pı ıg drilling fluids and solids must be contained in a steel closed loop system

.

Form APD Conditions

Permit 308204

Subject: Request for a Variance Allowing break Testing of the Blowout Preventer Equipment (BOPE)

XTO Energy requests a variance to ONLY test broken pressure seals on the BOPE and function test BOP when skidding a drilling rig between multiple wells on a pad.

Background

Onshore Oil and Gas Order (OOGO) No. 2, Drilling Operations, Sections III.A.2.i.iv.B states that the BOP test must be performed whenever any seal subject to test pressure is broken. The current interpretation of the Bureau of Land Management (BLM) requires a complete BOP test and not just a test of the affected component. OOGO No. 2, Section I.D.2 states, "Some situation may exist either on a well-by-well basis or field-wide basis whereby it is commonly accepted practice to vary a particular minimum standard(s) established in this order. This situation can be resolved by requesting a variance...". XTO Energy feels the break testing the BOPE is such a situation. Therefore, as per OOGO No. 2, Section IV., XTO Energy submits this request for the variance.

Supporting Documentation

OOGO No. 2 became effective on December 19, 1988 and has remained the standard for regulating BLM onshore drilling operations for over 30 years. During this time there have been significant changes in drilling technology. BLM continues to use the variance request process to allow for the use of modern technology and acceptable engineering practices that have arisen since OOGO No. 2 was originally released. The XTO Energy drilling rig fleet has many modern upgrades that allow the intact BOP stack to be moved between well slots on a multi-well pad, as well as, wellhead designs that incorporate quick connects facilitating release of the BOP from the wellhead without breaking any BOP stack components apart. These technologies have been used extensively offshore, and other regulators, API, and many operators around the world have endorsed break testing as safe and reliable.

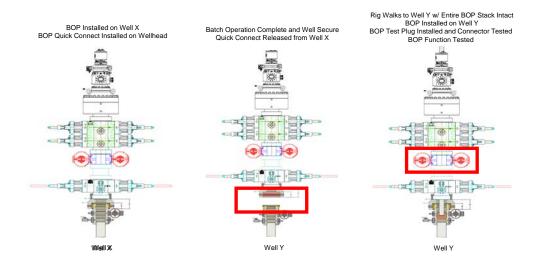
Figure 1: Winch System attached to BOP Stack

Figure 2: BOP Winch System

American Petroleum Institute (API) standards, specification and recommended practices are considered the industry standard and are consistently utilized and referenced by the industry. OOGO No. 2 recognizes API recommended Practices (RP) 53 in its original development. API Standard 53, *Well Control Equipment Systems for Drilling Wells* (Fifth Edition, December 2018, Annex C, Table C.4) recognizes break testing as an acceptable practice. Specifically, API Standard 53, Section 5.3.7.1 states "A pressure test of the pressure containing component shall be performed following the disconnection or repair, limited to the affected component." See Table C.4 below for reference.

	Pressure Test-Low	Pressure Test-	-High Pressure ^{ac}
Component to be Pressure Tested	Pressure Test—Low Pressure ^{ac} psig (MPa)	Change Out of Component, Elastomer, or Ring Gasket	No Change Out of Component, Elastomer, or Ring Gasket
Annular preventer ^b	250 to 350 (1.72 to 2.41)	RWP of annular preventer	MASP or 70% annular RWP, whichever is lower.
Fixed pipe, variable bore, blind, and BSR preventers ^{bd}	250 to 350 (1.72 to 2.41)	RWP of ram preventer or wellhead system, whichever is lower	ITP
Choke and kill line and BOP side outlet valves below ram preventers (both sides)	250 to 350 (1.72 to 2.41)	RWP of side outlet valve or wellhead system, whichever is lower	ITP
Choke manifold—upstream of chokes ^e	250 to 350 (1.72 to 2.41)	RWP of ram preventers or wellhead system, whichever is lower	ITP
Choke manifold—downstream of chokes ^e	250 to 350 (1.72 to 2.41)	RWP of valve(s), line(s), or M whichever is lower	ASP for the well program,
Kelly, kelly valves, drill pipe safety valves, IBOPs	250 to 350 (1.72 to 2.41)	MASP for the well program	
	during the evaluation period. The p	ressure shall not decrease below the allest OD drill pipe to be used in well	
	from one wellhead to another within when the integrity of a pressure sea	n the 21 days, pressure testing is req	uired for pressure-containing an

The Bureau of Safety and Environmental Enforcement (BSEE), Department of Interior, has also utilized the API standards, specification and best practices in the development of its offshore oil and gas regulations and incorporates them by reference within its regulations.


Break testing has been approved by the BLM in the past with other operators based on the detailed information provided in this document.

XTO Energy feels break testing and our current procedures meet the intent of OOGO No. 2 and often exceed it. There has been no evidence that break testing results in more components failing than seen on full BOP tests. XTO Energy's internal standards requires complete BOPE tests more often than that of OOGO No. 2 (Every 21 days). In addition to function testing the annular, pipe rams and blind rams after each BOP nipple up, XTO Energy performs a choke drill with the rig crew prior to drilling out every casing shoe. This is additional training for the rig crew that exceeds the requirements of the OOGO No.2.

Procedures

- XTO Energy will use this document for our break testing plan for New Mexico Delaware basin. The summary below will be referenced in the APD or Sundry Notice and receive approval prior to implementing this variance.
- 2. XTO Energy will perform BOP break testing on multi-wells pads where multiple intermediate sections can be drilled and cased within the 21-day BOP test window.
 - a. A full BOP test will be conducted on the first well on the pad.
 - b. The first intermediate hole section drilled on the pad will be the deepest. All of the remaining hole sections will be the same depth or shallower.
 - i. Our Lower WC targets set the intermediate casing shoe no deeper than the Wolfcamp B.
 - ii. Our Upper WC targets set the intermediate casing shoe shallower than the Wolfcamp B.
 - c. A Full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.
 - d. A full BOP test will be required prior to drilling any production hole.
- 3. After performing a complete BOP test on the first well, the intermediate hole section will be drilled and cased, two breaks would be made on the BOP equipment.
 - a. Between the HCV valve and choke line connection
 - b. Between the BOP quick connect and the wellhead
- 4. The BOP is then lifted and removed from the wellhead by a hydraulic system.
- 5. After skidding to the next well, the BOP is moved to the wellhead by the same hydraulic system and installed.
- 6. The connections mentioned in 3a and 3b will then be reconnected.
- 7. Install test plug into the wellhead using test joint or drill pipe.
- 8. A shell test is performed against the upper pipe rams testing the two breaks.
- 9. The shell test will consist of a 250 psi low test and a high test to the value submitted in the APD or Sundry (e.g. 5,000 psi or 10,000psi).
- 10. Function test will be performed on the following components: lower pipe rams, blind rams, and annular.

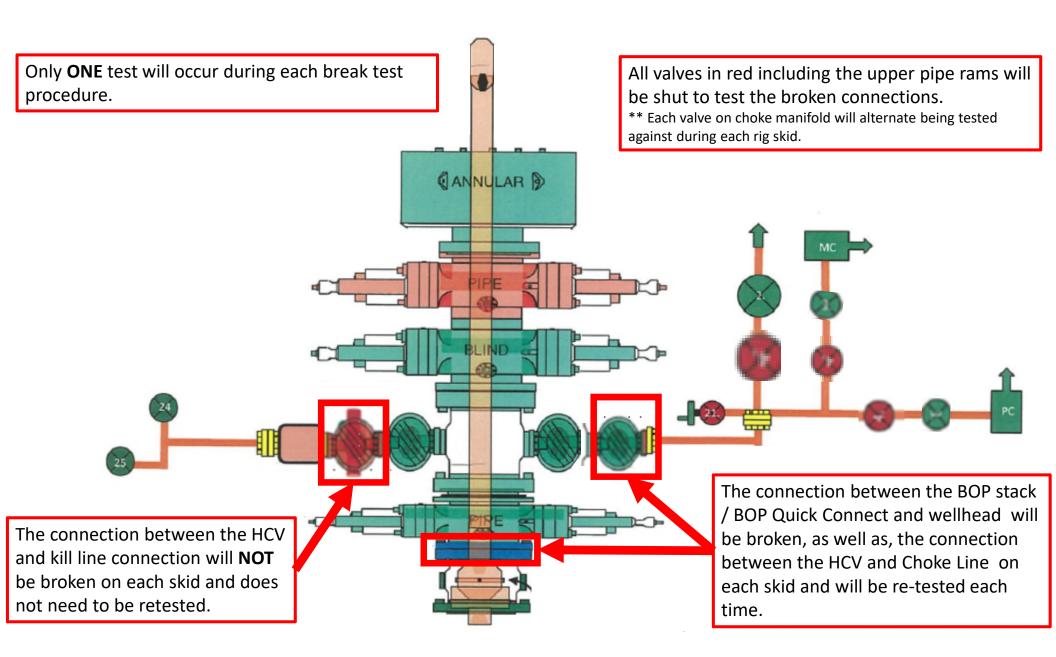
- 11. For a multi-well pad the same two breaks on the BOP would be made and on the next wells and steps 4 through 10 would be repeated.
- 12. A second break test would only be done if the intermediate hole section being drilled could not be completed within the 21 day BOP test window.

Note: Picture below highlights BOP components that will be tested during batch operations

Summary

A variance is requested to **ONLY** test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API Standard 53 states, that for pad drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken.

The BOP will be secured by a hydraulic carrier or cradle. The BLM will be contacted if a Well Control event occurs prior to the commencement of a BOPE Break Testing operation.


Based on discussions with the BLM on February 27th 2020 and the supporting documentation submitted to the BLM, we will request permission to ONLY retest broken pressure seals if the following conditions are met:


1. After a full BOP test is conducted on the first well on the pad.

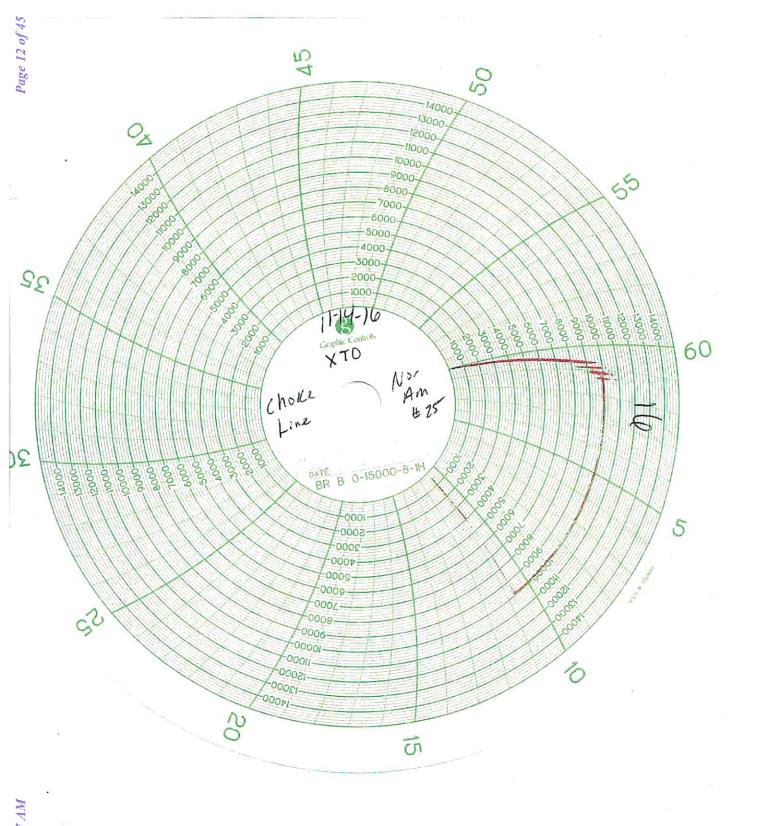
2. The first intermediate hole section drilled on the pad will be the deepest. All of the remaining hole sections will be the same depth or shallower.

3. Full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.

4. Full BOP test will be required prior to drilling the production hole.

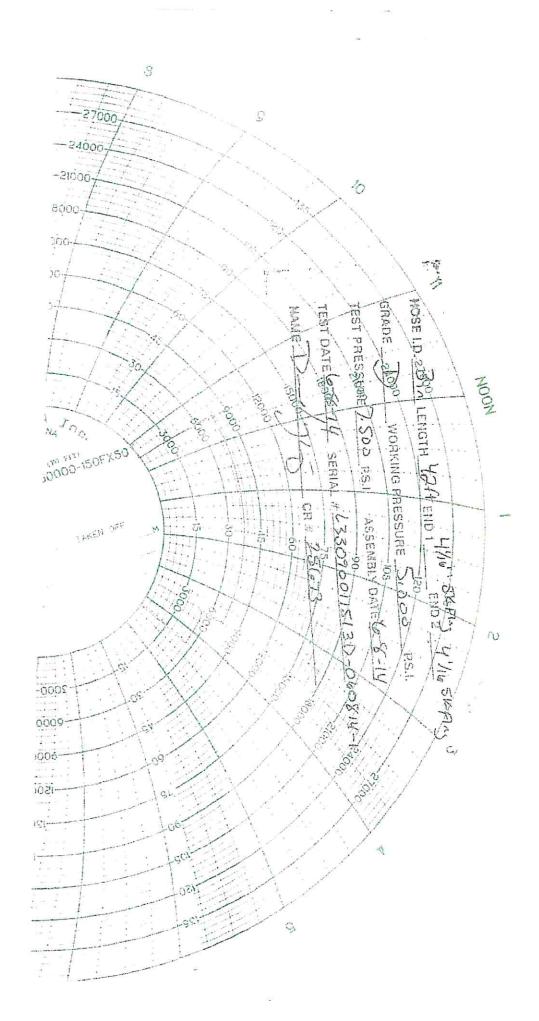
GATES E & S NORTH AMERICA, INC DU-TEX 134 44TH STREET CORPUS CHRISTI, TEXAS 78405

PHONE: 361-887-9807 FAX: 361-887-0812 EMAIL: crpe&s@gates.com WEB: www.gates.com


GRADE D PRESSURE TEST CERTIFICATE

Customer :	AUSTIN DISTRIBUTING Test Date:		C (0.17.5.)		
Customer Ref. :	PENDING	Hose Serial No.:	6/8/2014		
Invoice No. : 201709	201709	5	D-060814-1		
		Created By:	NORMA		
Product Description:		FD3.042.0R41/16.5KFLGE/E	LE		
		FD3.042.0R41/16.5KFLGE/E	LE		
	4 1/16 in.5K FLG				
Product Description:	4 1/16 in.5K FLG 4774-6001	FD3.042.0R41/16.5KFLGE/E End Fitting 2 : Assembly Code :	4 1/16 in.5K FLG L33090011513D-060814-1		

Gates E & S North America, Inc. certifies that the following hose assembly has been tested to the Gates Oilfield Roughneck Agreement/Specification requirements and passed the 15 minute hydrostatic test per API Spec 7K/Q1, Fifth Edition, June 2010, Test pressure 9.6.7 and per Table 9 to 7,500 psi in accordance with this product number. Hose burst pressure 9.6.7.2 exceeds the minimum of 2.5 times the working pressure per Table 9.


	11		
tγ:	QUALITY	Technical Supervisor :	
	111, 6/8/201871	Date :	PRODUCTION
ture :	White the	2 Signature :	6/8/2014

Form PTC - 01 Rev.0 2

-

Rece	ived by	OCD:	2/21/20	022 8:52	2:17 AM
------	---------	------	---------	----------	---------

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator: __XTO Energy, Inc._____ OGRID: __05380 ____ Date: __02_/_18_/2022__

II. Type: \Box Original \boxtimes Amendment due to \Box 19.15.27.9.D(6)(a) NMAC \Box 19.15.27.9.D(6)(b) NMAC \Box Other.

If Other, please describe:

III. Well(s): Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water
					mer/D	BBL/D
Remuda South 25 State 801H		K-25-23S-29E	2369'FSL & 1949'FWL	1500	2600	1000
Remuda North 25 State 701H		K-25-23S-29E	2369'FSL & 1949'FWL	1500	2600	1000
Remuda North 25 State 702H		K-25-23S-29E	2369'FSL & 2009'FWL	1500	2600	1000
Remuda North 25 State 703H		K-25-23S-29E	2370'FSL & 2090'FWL	1500	2600	1000
Remuda North 25 State 708H		K-25-23S-29E	2369'FSL & 1979' FWL	1500	2600	1000
Remuda North 25 State 705H		E-30-23S-29E	2370'FNL & 600'FWL	1500	2600	1000
Remuda North 25 State 706H		E-30-23S-29E	2370'FNL & 630'FWL	1500	2600	1000
Remuda North 25 State 707H		E-30-23S-29E	2370'FNL & 660'FWL	1500	2600	1000
Remuda North 25 State 708H		E-30-23S-29E	2370'FNL & 690'FWL	1500	2600	1000
Remuda North 25 State 704H		E-30-23S-29E	2370'FNL & 570'FWL	1500	2600	1000

IV. Central Delivery Point Name: Remuda 500 TB [See 19.15.27.9(D)(1) NMAC]

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	Spud Date	TD	Completion	Initial Flow	First Production
		_	Reached	Commencement Date	Back Date	Date
			Date			
Remuda South 25 State 801H		04/09/2022	04/21/22	Not yet Scheduled	Not yet Scheduled	Not yet Scheduled
Remuda North 25 State 701H		04/08/2022	04/20/22	Not yet Scheduled	Not yet Scheduled	Not yet Scheduled
Remuda North 25 State 702H		04/11/2022	05/01/22	Not yet Scheduled	Not yet Scheduled	Not yet Scheduled
Remuda North 25 State 703H		04/12/2022	05/02/22	Not yet Scheduled	Not yet Scheduled	Not yet Scheduled
Remuda North 25 State 708H		04/08/2022	04/20/22	Not yet Scheduled	Not yet Scheduled	Not yet Scheduled
Remuda North 25 State 705H		04/05/2022	04/17/22	Not yet Scheduled	Not yet Scheduled	Not yet Scheduled
Remuda North 25 State 706H		04/06/2022	04/18/22	Not yet Scheduled	Not yet Scheduled	Not yet Scheduled
Remuda North 25 State 707H		04/07/2022	04/19/22	Not yet Scheduled	Not yet Scheduled	Not yet Scheduled
Remuda North 25 State 708H		04/08/2022	04/20/22	Not yet Scheduled	Not yet Scheduled	Not yet Scheduled
Remuda North 25 State 704H		04/04/2022	04/16/22	Not yet Scheduled	Not yet Scheduled	Not yet Scheduled

VI. Separation Equipment:

XTO Permian Operating, LLC. production tank batteries include separation equipment designed to efficiently separate gas from liquid phases to optimize gas capture based on projected and estimated volumes from the targeted pool in conjunction with the total number of wells planned to or existing within the facility. Separation equipment is upgraded prior to well being drilled or completed, if determined to be undersized or needed. The separation equipment is designed and built according to the relevant industry specifications (API Specification 12J and ASME Sec VIII Div I). Other recognized industry publications such as the Gas Processors Suppliers Association (GPSA) are referenced when designing separation equipment to optimize gas capture.

VII. Operational Practices:

- 1. Subsection B.
 - During drilling, flare stacks will be located a minimum of 150 feet from the nearest surface hole location. All gas is captured or combusted. If an emergency or malfunction occurs, gas will be flared or vented for public health, safety and the environment and be properly reported to the NMOCD pursuant to 19.15.27.8.G.
 - Measure or estimate the volume of natural gas that is vented, flared or beneficially used during drilling, completion and production operations, regardless of the reason or authorization for such venting or flaring.
 - At any point in the well life (drilling, completion, production, inactive) an audio, visual and olfactory (AVO) inspection will be performed weekly (at minimum) to confirm that all production equipment is operating properly and there are no leaks or releases except as allowed in Subsection D of 19.15.27.8 NMAC.
- 2. Subsection C.
 - During completion operations, operator does not produce oil or gas but maintains adequate well control through completion operations.

For emergencies, equipment malfunction, or if the operator decides to produce oil and gas during well completion:

- Flowlines will be routed for flowback fluids into a completion or storage tank and, if feasible under well conditions, flare rather than vent and commence operation of a separator as soon as it is technically feasible for a separator to function.
- Measure or estimate the volume of natural gas that is vented, flared or beneficially used during drilling, completion and production operations, regardless of the reason or authorization for such venting or flaring.
- At any point in the well life (drilling, completion, production, inactive) an audio, visual and olfactory (AVO) inspection will be performed weekly (at minimum) to confirm that all production equipment is operating properly and there are no leaks or releases except as allowed in Subsection D of 19.15.27.8 NMAC.
- 3. Subsection D.
 - At any point in the well life (drilling, completion, production, inactive) an audio, visual and olfactory (AVO) inspection will be performed weekly (at minimum) to confirm that all production equipment is operating properly and there are no leaks or releases except as allowed in Subsection D of 19.15.27.8 NMAC.
 - Monitor manual liquid unloading for wells on-site or in close proximity (<30 minutes' drive time), take reasonable actions to achieve a stabilized rate and pressure at the earliest practical time, and take reasonable actions to minimize venting to the maximum extent practicable.

- Measure or estimate the volume of natural gas that is vented, flared or beneficially used during drilling, completion and production operations, regardless of the reason or authorization for such venting or flaring.
- 4. Subsection E.
 - All tanks and separation equipment are designed for maximum throughput and pressure to minimize waste.
 - Flare stack was installed prior to May 25, 2021 but has been designed for proper size and combustion efficiency. Flare currently has a continuous pilot and is located more than 100 feet from any known well and storage tanks.
 - At any point in the well life (drilling, completion, production, inactive) an audio, visual and olfactory (AVO) inspection will be performed weekly (at minimum) to confirm that all production equipment is operating properly and there are no leaks or releases except as allowed in Subsection D of 19.15.27.8 NMAC.
- 5. Subsection F.
 - Measurement equipment is installed to measure the volume of natural gas flared from process piping or a flowline piped from the equipment associated with a well and facility associated with the approved application for permit to drill that has an average daily production greater than 60 mcf of natural gas.
 - Measurement equipment installed is not designed or equipped with a manifold to allow diversion of natural gas around the metering equipment, except for the sole purpose of inspecting and servicing the measurement equipment, as noted in NMAC 19.15.27.8 Subsection G.

VIII. Best Management Practices:

- 1. During completion operations, operator does not produce oil or gas but maintains adequate well control through completion operations.
- 2. Operator does not flow well (well shut in) during initial production until all flowlines, tank batteries, and oil/gas takeaway are installed, tested, and determined operational.
- 3. Operator equips storage tanks with an automatic gauging system to reduce venting of natural gas.
- 4. Operator reduces the number of blowdowns by looking for opportunities to coordinate repair and maintenance activities.
- 5. Operator combusts natural gas that would otherwise be vented or flared, when feasible.
- 6. Operator has a flare stack designed in accordance with need and to handle sufficient volume to ensure proper combustion efficiency. Flare stacks are equipped with continuous pilots and securely anchored at least 100 feet (at minimum) from storage tanks and wells.
- 7. Operator minimizes venting (when feasible) through pump downs of vessels and reducing time required to purge equipment before returning equipment to service.
- 8. Operator will shut in wells (when feasible) in the event of a takeaway disruption, emergency situation, or other operations where venting or flaring may occur due to equipment failures.

VI. Separation Equipment: 🖂 Attach a complete description of how Operator will size separation equipment to optimize gas capture.

VII. Operational Practices: \boxtimes Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

VIII. Best Management Practices: 🛛 Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Section 2 – Enhanced Plan <u>EFFECTIVE APRIL 1, 2022</u>

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

 \Box Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF		

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \Box Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \Box will \Box will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \Box does \Box does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

□ Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \Box Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \Box Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \boxtimes Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. \boxtimes Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \boxtimes Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (**b**) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (**h**) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature:
Printed Name: Cassie Evans
Title: Regulatory Analyst
E-mail Address: cassie.evans@exxonmobil.com
Date: 02/18/2022
Phone:432-218-3671
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

Cement Variance Request

XTO requests to pump a two stage cement job on the 7-5/8" intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon (5733) and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. If cement is not visually confirmed to circulate to surface, the final cement top after the second stage job will be verified by Echo-meter. If necessary, a top out consisting of 1,500 sack of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (2.30 yld, 12.91 ppg) will be executed as a contingency. If cement is still unable to circulate to surface, another Echo-meter run will be performed for cement top verification.

XTO will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program.

XTO will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures.

XTO requests to pump an Optional Lead if well conditions dictate in an attempt to bring cement to surface on the first stage. If cement is brought to surface, the BLM will be notified and the second stage bradenhead squeeze and subsequent TOC verification will be negated.

In the event cement is not circulated to surface on the first stage, whether intentionally or unintentionally, XTO requests the option to conduct the bradenhead squeeze and TOC verification offline as per standard approval from BLM when unplanned remediation is needed and batch drilling is approved. In the event the bradenhead is conducted, we will ensure first stage cement job is cemented properly and the well is static with floats holding and no pressure on the csg annulus as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed per GE procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Well Plan Report - Remuda North 25 State 703H

Measured Depth:	16803.00 ft
TVD RKB:	9000.00 ft
Location	
Cartographic Reference System:	New Mexico East - NAD 27
Northing:	463937.00 ft
Easting:	621673.10 ft
RKB:	3095.00 ft
Ground Level:	3065.00 ft
North Reference:	Grid
Convergence Angle:	0.21 Deg
Site:	South Pad 2
Slot:	5

.

Plan Sections	Remuda North 25 State 703H					
Measured Depth	Inclination	Azimuth	TVD RKB	Y Offset	X Offset	Build Rate
(ft)	(Deg)	(Deg)	(ft)	(ft)	(ft)	(Deg/100ft)
0	0	0	0	0	0	0
2200	0	0	2200	0	0	0
2446.83	4.94	107.35	2446.52	-3.17	10.14	2
2955.67	4.94	107.35	2953.48	-16.23	51.94	0
3202.5	0	0	3200	-19.4	62.08	-2
5202.5	0	-				
8280.5	0	0	8278	-19.4	62.08	0
		0 10	8278 8784.43	-19.4 187.18	62.08 98.51	0 8

10419.98	90	358.4	9000.22	1704.37	99.54	0
16803.69	90	0.04	9000	8087.27	12.38	0

Position Uncertainty	Remuda North 25 State 703H					
Measured			TVD	Highside		Lateral
Depth	Inclination	Azimuth	RKB	Error	Bias	Error
(ft)		(°)	(ft)	(ft)	(ft)	(ft)
0	0	0	0	0	0	0
100	0	0	100	0.468	0	0.468
200	0	0	200	0.983	0	0.983
300	0	0	300	1.403	0	1.403
400	0	0	400	1.797	0	1.797
500	0	0	500	2.179	0	2.179
600	0	0	600	2.554	0	2.554
700	0	0	700	2.925	0	2.925
800	0	0	800	3.292	0	3.292
900	0	0	900	3.659	0	3.659
1000	0	0	1000	4.024	0	4.024
1100	0	0	1100	4.387	0	4.387
1200	0	0	1200	4.751	0	4.751
1300	0	0	1300	5.113	0	5.113
1400	0	0	1400	5.474	0	5.474
1500	0	0	1500	5.836	0	5.836
1600	0	0	1600	6.197	0	6.197
1700	0	0	1700	6.558	0	6.558
1800	0	0	1800	6.918	0	6.918
1900	0	0	1900	7.279	0	7.279
2000	0	0	2000	7.639	0	7.639

•

.

2100	0	0	2100	7.999	0	7.999
2200	0	0	2200	8.359	0	8.359
2300	1.999	107.3	2299.98	8.536	0	8.934
2400	4	107.3	2399.838	9.15	0	9.264
2446.8	4.936	107.3	2446.523	9.322	0	9.412
2500	4.936	107.3	2499.498	9.497	0	9.58
2600	4.936	107.3	2599.127	9.826	0	9.906
2700	4.936	107.3	2698.756	10.164	0	10.237
2800	4.936	107.3	2798.385	10.503	0	10.578
2900	4.936	107.3	2898.014	10.846	0	10.917
2955.6	4.936	107.3	2953.477	11.031	0	11.098
3000	4.049	107.3	2997.671	11.186	0	11.244
3100	2.049	107.3	3097.525	11.651	0	11.579
3202.4	0	0	3200	11.874	0	12.12
3300	0	0	3297.502	12.292	0	12.462
3400	0	0	3397.502	12.645	0	12.81
3500	0	0	3497.502	13	0	13.157
3600	0	0	3597.502	13.353	0	13.506
3700	0	0	3697.502	13.708	0	13.856
3800	0	0	3797.502	14.061	0	14.206
3900	0	0	3897.502	14.415	0	14.557
4000	0	0	3997.502	14.772	0	14.91
4100	0	0	4097.502	15.126	0	15.261
4200	0	0	4197.502	15.479	0	15.611
4300	0	0	4297.502	15.834	0	15.966
4400	0	0	4397.502	16.19	0	16.316
4500	0	0	4497.502	16.544	0	16.67
4600	0	0	4597.502	16.9	0	17.021
4700	0	0	4697.502	17.257	0	17.375

-

4800	0	0	4797.502	17.612	0	17.729
4900	0	0	4897.502	17.967	0	18.083
5000	0	0	4997.502	18.322	0	18.436
5100	0	0	5097.502	18.679	0	18.788
5200	0	0	5197.502	19.034	0	19.144
5300	0	0	5297.502	19.391	0	19.499
5400	0	0	5397.502	19.748	0	19.852
5500	0	0	5497.502	20.105	0	20.206
5600	0	0	5597.502	20.46	0	20.562
5700	0	0	5697.502	20.818	0	20.917
5800	0	0	5797.502	21.173	0	21.272
5900	0	0	5897.502	21.531	0	21.626
6000	0	0	5997.502	21.886	0	21.982
6100	0	0	6097.502	22.244	0	22.336
6200	0	0	6197.502	22.601	0	22.691
6300	0	0	6297.502	22.956	0	23.048
6400	0	0	6397.502	23.315	0	23.403
6500	0	0	6497.502	23.671	0	23.759
6600	0	0	6597.502	24.029	0	24.114
6700	0	0	6697.502	24.384	0	24.47
6800	0	0	6797.502	24.743	0	24.825
6900	0	0	6897.502	25.1	0	25.181
7000	0	0	6997.502	25.456	0	25.538
7100	0	0	7097.502	25.813	0	25.894
7200	0	0	7197.502	26.171	0	26.249
7300	0	0	7297.502	26.527	0	26.606
7400	0	0	7397.502	26.885	0	26.963
7500	0	0	7497.502	27.243	0	27.318
7600	0	0	7597.502	27.601	0	27.675

7700	0	0	7697.502	27.957	0	28.032
7800	0	0	7797.502	28.314	0	28.388
7900	0	0	7897.502	28.672	0	28.744
8000	0	0	7997.502	29.029	0	29.102
8100	0	0	8097.502	29.387	0	29.457
8200	0	0	8197.502	29.746	0	29.814
8280.4	0	0	8278	30.032	0	30.1
8300	1.56	10	8297.5	30.214	0	30.044
8400	9.56	10	8396.948	30.745	0	30.397
8500	17.56	10	8494.082	31.694	0	30.748
8600	25.56	10	8587.009	32.147	0	31.087
8700	33.56	10	8673.923	32.152	0	31.401
8800	41.56	10	8753.13	31.78	0	31.701
8842.9	45	10	8784.428	31.062	0	31.824
8900	49.39	8.326	8823.152	29.963	0	32.036
9000	57.14	5.861	8882.919	28.504	0	32.431
9100	64.93	3.795	8931.302	27.566	0	32.82
9200	72.75	1.977	8967.36	26.784	0	33.182
9300	80.59	0.309	8990.392	26.315	0	33.506
9400	88.43	358.7	8999.948	26.292	0	33.79
9419.9	90	358.4	9000.222	26.054	0	33.84
9500	90	358.4	9000.222	26.186	0	33.928
9600	90	358.4	9000.222	26.359	0	34.046
9700	90	358.4	9000.222	26.554	0	34.192
9800	90	358.4	9000.222	26.769	0	34.337
9900	90	358.4	9000.222	27.007	0	34.511
10000	90	358.4	9000.222	27.267	0	34.684
10100	90	358.4	9000.222	27.545	0	34.871
10200	90	358.4	9000.222	27.842	0	35.071

10300	90	358.4	9000.222	28.158	0	35.283
10400	90	358.4	9000.222	28.494	0	35.509
10419	90	358.4	9000.222	28.56	0	35.551
10500	90	358.4	9000.222	28.839	0	35.733
10600	90	358.4	9000.221	29.208	0	35.97
10700	90	358.4	9000.221	29.592	0	36.233
10800	90	358.4	9000.221	29.993	0	36.494
10900	90	358.5	9000.22	30.409	0	36.761
11000	90	358.5	9000.22	30.84	0	37.059
11100	90	358.5	9000.219	31.283	0	37.354
11200	90	358.5	9000.218	31.733	0	37.647
11300	90	358.6	9000.217	32.202	0	37.959
11400	90	358.6	9000.216	32.68	0	38.286
11500	90	358.6	9000.215	33.181	0	38.611
11600	90	358.7	9000.214	33.69	0	38.954
11700	90	358.7	9000.213	34.191	0	39.299
11800	90	358.7	9000.211	34.728	0	39.653
11900	90	358.7	9000.21	35.256	0	40.03
12000	90	358.8	9000.208	35.805	0	40.397
12100	90	358.8	9000.206	36.359	0	40.779
12200	90	358.8	9000.204	36.919	0	41.157
12300	90	358.8	9000.202	37.483	0	41.556
12400	90	358.9	9000.2	38.066	0	41.958
12500	90	358.9	9000.198	38.652	0	42.362
12600	90	358.9	9000.196	39.243	0	42.773
12700	90	358.9	9000.193	39.837	0	43.203
12800	90	359	9000.191	40.435	0	43.624
12900	90	359	9000.188	41.049	0	44.058
13000	90	359	9000.185	41.665	0	44.498

13100	90	359	9000.183	42.285	0	44.934
13200	90	359.1	9000.18	42.919	0	45.384
13300	90	359.1	9000.177	43.543	0	45.844
13400	90	359.1	9000.173	44.181	0	46.3
13500	90	359.1	9000.17	44.822	0	46.772
13600	90	359.2	9000.167	45.475	0	47.236
13700	90	359.2	9000.163	46.119	0	47.71
13800	90	359.2	9000.159	46.776	0	48.19
13900	90	359.2	9000.156	47.434	0	48.675
14000	90	359.3	9000.152	48.104	0	49.162
14100	90	359.3	9000.148	48.765	0	49.647
14200	90	359.3	9000.144	49.437	0	50.148
14300	90	359.3	9000.14	50.11	0	50.654
14400	90	359.4	9000.135	50.784	0	51.151
14500	90	359.4	9000.131	51.468	0	51.657
14600	90	359.4	9000.127	52.144	0	52.168
14700	90	359.4	9000.122	52.83	0	52.683
14800	90	359.5	9000.117	53.516	0	53.198
14900	90	359.5	9000.112	54.213	0	53.722
15000	90	359.5	9000.108	54.9	0	54.25
15100	90	359.5	9000.103	55.597	0	54.773
15200	90	359.6	9000.097	56.294	0	55.305
15300	90	359.6	9000.092	56.991	0	55.836
15400	90	359.6	9000.087	57.697	0	56.38
15500	90	359.7	9000.081	58.404	0	56.914
15600	90	359.7	9000.076	59.11	0	57.457
15700	90	359.7	9000.07	59.816	0	58.002
15800	90	359.7	9000.064	60.523	0	58.551
15900	90	359.8	9000.058	61.237	0	59.092

16000	90	359.8	9000.052	61.952	0	59.648
16100	90	359.8	9000.046	62.666	0	60.198
16200	90	359.8	9000.04	63.388	0	60.761
16300	90	359.9	9000.034	64.101	0	61.314
16400	90	359.9	9000.027	64.823	0	61.874
16500	90	359.9	9000.021	65.544	0	62.437
16600	90	359.9	9000.014	66.272	0	63.003
16700	90	0.009	9000.007	66.993	0	63.569
16803	90	0.035	9000	67.75	0	64.163

Plan Targets	Remuda North 25 State 703H			
	Measured Depth	Grid Northing	Grid Easting	TVD MSL Target Shape
Target Name	(ft)	(ft)	(ft)	(ft)
FTP 8	9485.67	464634.6	621735.18	5905 CIRCLE
LTP 3	16673.85	471894.41	621686.58	5905 CIRCLE
BHL 8	16803.7	472024.27	621685.48	5905 CIRCLE

Turn Rate	Dogleg Rate	
(Deg/100ft)	(Deg/100ft)	Target
0	0	
0	0	
0	2	
0	0	
-		
0	2	
0	2 0	
-	_	

-

0	0
0.03	0.03 BHL 8

	Vertical		Magnitude	Semi-major	Semi-minor	Semi-minor Tool
Bias	Error	Bias	of Bias	Error	Error	Azimuth Used
(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(°)
0	2.297	0	0	0	0	0 MWD+IFR1+ MS
0	2.299	0	0	0.556	0.358	135 MWD+IFR1+ MS
0	2.307	0	0	1.191	0.717	135 MWD+IFR1+ MS
0	2.321	0	0	1.668	1.075	135 MWD+IFR1+ MS
0	2.34	0	0	2.099	1.434	135 MWD+IFR1+ MS
0	2.364	0	0	2.507	1.792	135 MWD+IFR1+ MS
0	2.393	0	0	2.902	2.151	135 MWD+IFR1+ MS
0	2.428	0	0	3.288	2.509	135 MWD+IFR1+ MS
0	2.467	0	0	3.669	2.867	135 MWD+IFR1+ MS
0	2.511	0	0	4.046	3.226	135 MWD+IFR1+ MS
0	2.559	0	0	4.42	3.584	135 MWD+IFR1+ MS
0	2.613	0	0	4.791	3.943	135 MWD+IFR1+ MS
0	2.67	0	0	5.161	4.302	135 MWD+IFR1+ MS
0	2.731	0	0	5.529	4.66	135 MWD+IFR1+ MS
0	2.797	0	0	5.896	5.018	135 MWD+IFR1+ MS
0	2.866	0	0	6.262	5.377	135 MWD+IFR1+ MS
0	2.939	0	0	6.627	5.735	135 MWD+IFR1+ MS
0	3.015	0	0	6.992	6.094	135 MWD+IFR1+ MS
0	3.095	0	0	7.355	6.452	135 MWD+IFR1+ MS
0	3.178	0	0	7.719	6.811	135 MWD+IFR1+ MS
0	3.265	0	0	8.081	7.169	135 MWD+IFR1+ MS

•

.

0	3.354	0	0	8.444	7.527	135 MWD+IFR1+ MS
0	3.447	0	0	8.806	7.886	135 MWD+IFR1+ MS
0	3.543	0	0	9.147	8.312	-41.768 MWD+IFR1+ MS
0	3.641	0	0	9.488	8.934	-32.755 MWD+IFR1+ MS
0	3.688	0	0	9.638	9.116	-31.149 MWD+IFR1+ MS
0	3.742	0	0	9.802	9.296	-30.847 MWD+IFR1+ MS
0	3.846	0	0	10.11	9.642	-31.03 MWD+IFR1+ MS
0	3.955	0	0	10.42	10.001	-31.086 MWD+IFR1+ MS
0	4.066	0	0	10.736	10.365	-31.701 MWD+IFR1+ MS
0	4.179	0	0	11.055	10.728	-32.078 MWD+IFR1+ MS
0	4.244	0	0	11.232	10.915	-31.878 MWD+IFR1+ MS
0	4.297	0	0	11.373	11.066	-32.057 MWD+IFR1+ MS
0	4.417	0	0	11.735	11.493	-19.186 MWD+IFR1+ MS
0	4.543	0	0	12.159	11.835	-20.292 MWD+IFR1+ MS
0	4.664	0	0	12.537	12.216	-29.07 MWD+IFR1+ MS
0	4.79	0	0	12.895	12.559	-30.32 MWD+IFR1+ MS
0	4.917	0	0	13.253	12.902	-31.706 MWD+IFR1+ MS
0	5.049	0	0	13.611	13.245	-32.655 MWD+IFR1+ MS
0	5.182	0	0	13.971	13.591	-33.484 MWD+IFR1+ MS
0	5.318	0	0	14.329	13.935	-34.214 MWD+IFR1+ MS
0	5.457	0	0	14.689	14.281	-34.86 MWD+IFR1+ MS
0	5.598	0	0	15.05	14.629	-35.436 MWD+IFR1+ MS
0	5.742	0	0	15.409	14.975	-35.953 MWD+IFR1+ MS
0	5.888	0	0	15.767	15.32	-36.416 MWD+IFR1+ MS
0	6.037	0	0	16.128	15.668	-36.65 MWD+IFR1+ MS
0	6.189	0	0	16.486	16.016	-37.221 MWD+IFR1+ MS
0	6.344	0	0	16.847	16.364	-37.397 MWD+IFR1+ MS
0	6.5	0	0	17.204	16.712	-37.889 MWD+IFR1+ MS
0	6.66	0	0	17.566	17.063	-38.183 MWD+IFR1+ MS

.

0 6.822 0 0 17.925 17.413 -38.433 MS 0 6.986 0 0 18.284 17.762 -38.556 MWD+IFR1 0 7.154 0 0 18.643 18.112 -38.756 MWD+IFR1 0 7.324 0 0 19.002 18.462 -39.153 MWD+IFR1 0 7.672 0 0 19.721 19.164 -39.412 MWD+IFR1 0 7.672 0 0 20.081 19.516 -39.717 MWD+IFR1 0 8.03 0 0 20.44 19.867 -39.881 MWD+IFR1 0 8.214 0 0 21.159 20.572 -40.184 MWD+IFR1 0 8.78 0 0 21.877 21.276 -40.45 MWD+IFR1 0 9.171 0 0 22.595 21.981 -40.692 MWD+IFR1 0 9.573 0							
0 6.996 0 0 18.284 17.762 38.386 MS 0 7.324 0 0 18.643 18.112 -38.793 MVD+FR1 0 7.324 0 0 19.002 18.462 -39.133 MVD+FR1 0 7.672 0 0 19.721 19.164 -39.412 MVD+FR1 0 7.85 0 20.081 19.516 -39.717 MVD+FR1 0 8.03 0 20.4799 20.219 -39.881 MVD+FR1 0 8.214 0 0 21.159 20.572 -40.184 MVD+FR1 0 8.589 0 21.877 21.276 -40.45 MVD+FR1 0 8.78 0 21.877 21.276 -40.45 MVD+FR1 0 9.771 0 0 22.595 21.981 -40.692 MVD+FR1 0 9.778 0 23.673 23.041 -40.692 MVD+	0	6.822	0	0	17.925	17.413	-38.453 MWD+IFR1+ MS
0 7.154 0 0 18.643 18.112 -38.793 $MVD+FR1$ MS 0 7.324 0 0 19.002 18.462 39.153 $MVD+FR1$ MS 0 7.497 0 0 19.362 18.813 -99.164 $MVD+FR1$ MS 0 7.672 0 0 19.721 19.164 -39.421 $MVD+FR1$ MS 0 8.03 0 0 20.081 19.516 -39.717 $MVD+FR1$ MS 0 8.03 0 0 20.799 20.219 -39.281 $MVD+FR1$ MS 0 8.74 0 0 21.518 20.923 40.209 $MVD+FR1$ MS 0 8.78 0 0 22.362 21.628 -40.77 $MVD+FR1$ MS 0 9.771 0 0 22.356 21.628 -40.77 $MVD+FR1$ MS 0 9.771 0 0 22.595 21.941 40.62	0	6.986	0	0	18.284	17.762	-38.556 MWD+IFR1+ MS
0 7.324 0 0 19.002 18.462 -39.153 MS 0 7.497 0 0 19.362 18.813 -39.216 MWD+IFR1 0 7.672 0 0 19.721 19.164 -39.412 MWD+IFR1 0 7.85 0 0 20.081 19.516 -39.717 MWD+IFR1 0 8.03 0 0 20.44 19.867 -39.881 MWD+IFR1 0 8.214 0 0 20.799 20.219 -39.921 MS 0 8.589 0 0 21.518 20.923 -40.209 MWD+IFR1 0 8.78 0 0 21.877 21.276 -40.45 MS 0 9.171 0 0 22.595 21.981 -40.692 MVD+IFR1 0 9.371 0 0 23.313 22.687 -40.811 MS 0 9.978 0 23.673 <td>0</td> <td>7.154</td> <td>0</td> <td>0</td> <td>18.643</td> <td>18.112</td> <td>-38.793 MWD+IFR1+ MS</td>	0	7.154	0	0	18.643	18.112	-38.793 MWD+IFR1+ MS
0 7.497 0 0 19.362 18.813 -39.216 MS 0 7.672 0 0 19.721 19.164 -39.412 MWDHFR1 0 8.03 0 0 20.081 19.516 -39.717 MWDHFR1 0 8.03 0 0 20.44 19.867 -39.881 MWDHFR1 0 8.214 0 0 21.159 20.572 -40.184 MWDHFR1 0 8.289 0 0 21.877 21.276 -40.45 MWDHFR1 0 8.78 0 0 22.236 21.628 -40.47 MWDHFR1 0 8.974 0 0 22.595 21.981 -40.692 MWDHFR1 0 9.371 0 0 23.673 23.041 -40.692 MWDHFR1 0 9.778 0 0 23.673 23.041 -41.09 MWDHFR1 0 10.407 0 24.491 23.748 -41.193 MWDHFR1 0 10.625 0	0	7.324	0	0	19.002	18.462	-39.153 MWD+IFR1+ MS
0 7.672 0 0 19.721 19.164 -39.412 MS 0 7.85 0 0 20.081 19.516 -39.717 MS 0 8.03 0 0 20.44 19.867 -39.81 MWD+IFR1 0 8.214 0 0 20.799 20.219 -39.921 MS 0 8.4 0 0 21.159 20.572 -40.184 MWD+IFR1 0 8.78 0 0 21.877 21.276 -40.45 MWD+IFR1 0 8.974 0 0 22.595 21.981 -40.692 MWD+IFR1 0 9.171 0 0 22.954 22.334 -40.802 MWD+IFR1 0 9.778 0 0 23.673 23.041 -41.06 MWD+IFR1 0 9.986 0 24.032 23.394 -41.01 MWD+IFR1 0 10.407 0 24.321 23.748 -41.197 MWD+IFR1 0 10.625 0 0	0	7.497	0	0	19.362	18.813	-39.216 MWD+IFR1+ MS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	7.672	0	0	19.721	19.164	-39.412 MWD+IFR1+ MS
0 8.03 0 0 20.44 19.867 -39.881 MS 0 8.214 0 0 20.799 20.219 -39.921 MS 0 8.4 0 0 21.159 20.572 -40.184 MWD-IFR1 0 8.589 0 0 21.518 20.923 -40.209 MWD-IFR1 0 8.78 0 0 21.877 21.276 -40.45 MWD-IFR1 0 8.974 0 0 22.295 21.981 -40.692 MWD-IFR1 0 9.171 0 0 22.954 22.334 -40.802 MWD-IFR1 0 9.371 0 0 23.673 23.041 -41.009 MWD-IFR1 0 9.573 0 0 23.673 23.041 -41.019 MWD-IFR1 0 10.193 0 0 24.321 23.94 -41.01 MS 0 10.625 0 0	0	7.85	0	0	20.081	19.516	-39.717 MWD+IFR1+ MS
0 8.214 0 0 20.799 20.219 -39.921 MS 0 8.4 0 0 21.159 20.572 -40.184 MWD-IFR1 0 8.589 0 0 21.518 20.923 -40.209 MWD-IFR1 0 8.78 0 0 21.877 21.276 -40.45 MWD-IFR1 0 8.974 0 0 22.236 21.628 -40.47 MWD-IFR1 0 9.171 0 0 22.955 21.981 -40.692 MWD-IFR1 0 9.371 0 0 23.313 22.687 -40.811 MWD-IFR1 0 9.573 0 0 23.673 23.041 -41.009 MWD-IFR1 0 9.986 0 0 24.322 23.394 -41.01 MS 0 10.407 0 0 24.75 24.101 -41.93 MWD+IFR1 0 10.625 0	0	8.03	0	0	20.44	19.867	-39.881 MWD+IFR1+ MS
0 8.4 0 0 21.159 20.572 -40.184 MS 0 8.589 0 0 21.518 20.923 -40.209 MWDHFR1 0 8.78 0 0 21.877 21.276 -40.45 MWDHFR1 0 8.974 0 0 22.236 21.628 -40.47 MWDHFR1 0 9.171 0 0 22.955 21.981 -40.692 MWDHFR1 0 9.371 0 0 23.313 22.687 -40.811 MWDHFR1 0 9.573 0 0 23.673 23.041 -41.009 MWDHFR1 0 9.778 0 0 24.391 23.748 -41.107 MWDHFR1 0 10.407 0 0 24.391 23.748 -41.197 MWDHFR1 0 10.625 0 0 25.109 24.455 -41.365 MWDHFR1 0 10.625 0 <td< td=""><td>0</td><td>8.214</td><td>0</td><td>0</td><td>20.799</td><td>20.219</td><td>-39.921 MWD+IFR1+ MS</td></td<>	0	8.214	0	0	20.799	20.219	-39.921 MWD+IFR1+ MS
0 8.589 0 0 21.518 20.923 -40.209 MS 0 8.78 0 0 21.877 21.276 -40.45 MWD+IFR1 0 8.974 0 0 22.236 21.628 -40.47 MS 0 9.171 0 0 22.595 21.981 -40.692 MWD+IFR1 0 9.371 0 0 23.313 22.687 -40.811 MWD+IFR1 0 9.778 0 0 23.673 23.041 -41.09 MWD+IFR1 0 9.778 0 0 24.032 23.394 -41.01 MWD+IFR1 0 10.193 0 0 24.391 23.748 -41.197 MS 0 10.625 0 0 25.109 24.455 -41.463 MWD+IFR1 0 10.625 0 0 25.827 25.163 -41.444 MS 0 11.063 0 0 26.544 25.871 -41.663 MWD+IFR1 0 11.515 <t< td=""><td>0</td><td>8.4</td><td>0</td><td>0</td><td>21.159</td><td>20.572</td><td>-40.184 MWD+IFR1+ MS</td></t<>	0	8.4	0	0	21.159	20.572	-40.184 MWD+IFR1+ MS
0 8.78 0 0 21.877 21.276 -40.45 MS 0 8.974 0 0 22.236 21.628 -40.47 MWD+IFR1 0 9.171 0 0 22.595 21.981 -40.622 MWD+IFR1 0 9.371 0 0 22.954 22.334 -40.802 MWD+IFR1 0 9.573 0 0 23.673 23.041 -40.802 MWD+IFR1 0 9.778 0 0 23.673 23.041 -41.009 MWD+IFR1 0 9.986 0 0 24.391 23.748 -41.01 MWD+IFR1 MS 0 10.407 0 0 24.75 24.101 -41.193 MWD+IFR1 MS 0 10.625 0 25.109 24.455 -41.365 MS 0 10.625 0 25.109 24.455 -41.437 MS MWD+IFR1 0 11.063 0 0 25.827 25.163 -41.447 MWD+IFR1 MS <td>0</td> <td>8.589</td> <td>0</td> <td>0</td> <td>21.518</td> <td>20.923</td> <td>-40.209 MWD+IFR1+ MS</td>	0	8.589	0	0	21.518	20.923	-40.209 MWD+IFR1+ MS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	8.78	0	0	21.877	21.276	-40.45 MWD+IFR1+ MS
0 9.171 0 0 22.955 21.981 -40.692 MS 0 9.371 0 0 22.954 22.334 -40.802 MWD+IFR1 MS 0 9.573 0 0 23.313 22.687 -40.811 MS 0 9.778 0 0 23.673 23.041 -41.009 MWD+IFR1 MS 0 9.986 0 0 24.032 23.394 -41.01 MS 0 10.193 0 0 24.391 23.748 -41.97 MWD+IFR1 MS 0 10.407 0 0 24.75 24.101 -41.93 MWD+IFR1 MS 0 10.625 0 0 25.109 24.455 -41.365 MWD+IFR1 MS 0 10.644 0 0 25.827 25.163 -41.444 MWD+IFR1 MS 0 11.063 0 0 26.904 26.226 -41.663 MWD+IFR1 MS 0 11.747 0 0 26.904 26.226 -41.663 MWD+IFR1 MS 0 11.747 0 0 27.263 26.581 -41.663 MWD+IFR1 MS	0	8.974	0	0	22.236	21.628	-40.47 MWD+IFR1+ MS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	9.171	0	0	22.595	21.981	MS
0 9.573 0 0 23.313 22.687 -40.811 MS 0 9.778 0 0 23.673 23.041 -41.009 MWD+IFR1 0 9.986 0 0 24.032 23.394 -41.01 MWD+IFR1 0 10.193 0 0 24.391 23.748 -41.197 MWD+IFR1 0 10.407 0 0 24.75 24.101 -41.193 MWD+IFR1 0 10.625 0 0 25.109 24.455 -41.365 MWD+IFR1 0 10.625 0 0 25.827 25.163 -41.444 MVD+IFR1 0 11.063 0 0 26.186 25.517 -41.511 MVD+IFR1 0 11.515 0 0 26.904 26.226 -41.663 MVD+IFR1 0 11.747 0 0 26.904 26.226 -41.663 MVD+IFR1 0 11.979 0	0	9.371	0	0	22.954	22.334	MS
0 9.778 0 0 23.673 23.041 -41.00 MS 0 9.986 0 0 24.032 23.394 -41.01 MWD+IFR1 0 10.193 0 0 24.391 23.748 -41.197 MWD+IFR1 0 10.407 0 0 24.75 24.101 -41.193 MWD+IFR1 0 10.625 0 0 25.109 24.455 -41.365 MWD+IFR1 0 10.625 0 0 25.468 24.809 -41.444 MWD+IFR1 0 10.63 0 0 25.827 25.163 -41.437 MWD+IFR1 0 11.063 0 0 26.584 25.517 -41.511 MWD+IFR1 0 11.292 0 0 26.544 25.871 -41.663 MWD+IFR1 0 11.747 0 0 26.904 26.226 -41.653 MWD+IFR1 0 11.979 0 0 27.263 26.581	0	9.573	0	0	23.313	22.687	-40.811 MS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	9.778	0	0	23.673	23.041	MS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	9.986	0	0	24.032	23.394	MS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	10.193	0	0	24.391	23.748	MS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	10.407	0	0	24.75	24.101	-41.193 MS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	10.625	0	0	25.109	24.455	-41.365 MS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	10.844	0	0	25.468	24.809	-41.444 MS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	11.063	0	0	25.827	25.163	-41.437 MS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	11.292	0	0	26.186	25.517	-41.511 MS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	11.515	0	0	26.544	25.871	-41.663 MS
0 11.979 0 0 27.263 26.581 -41.718 MS 0 12.215 0 0 27.622 26.936 -41.857 MWD+IFR1 MS 0 12.454 0 0 27.981 27.29 -41.918 MWD+IFR1	0	11.747	0	0	26.904	26.226	-41.653 MS
0 12.215 0 0 27.622 26.936 -41.857 MS	0	11.979	0	0	27.263	26.581	MS
(1) (1) (2) (1)	0	12.215	0	0	27.622	26.936	-41.857 MS
	0	12.454	0	0	27.981	27.29	-41 918

-

0	12.696	0	0	28.34	27.645	-41.901 MWD+IFR1+ MS
0	12.942	0	0	28.699	28	-41.958 MWD+IFR1+ MS
0	13.187	0	0	29.057	28.354	-42.084 MWD+IFR1+ MS
0	13.439	0	0	29.417	28.71	-42.066 MWD+IFR1+ MS
0	13.689	0	0	29.775	29.065	-42.184 MWD+IFR1+ MS
0	13.946	0	0	30.135	29.421	-42.232 MWD+IFR1+ MS
0	14.156	0	0	30.42	29.707	-42.258 MWD+IFR1+ MS
0	14.206	0	0	30.488	29.776	-42.26 MWD+IFR1+ MS
0	14.484	0	0	31.225	30.229	124.061 MWD+IFR1+ MS
0	14.89	0	0	32.766	30.647	112.443 MWD+IFR1+ MS
0	15.502	0	0	34.161	30.997	109.512 MWD+IFR1+ MS
0	16.362	0	0	35.35	31.311	108.323 MWD+IFR1+ MS
0	17.487	0	0	36.33	31.608	107.777 MWD+IFR1+ MS
0	17.658	0	0	36.485	31.731	107.751 MWD+IFR1+ MS
0	17.849	0	0	36.629	31.895	107.92 MWD+IFR1+ MS
0	18.897	0	0	37.034	32.163	108.945 MWD+IFR1+ MS
0	20.618	0	0	37.451	32.395	110.065 MWD+IFR1+ MS
0	22.417	0	0	37.712	32.601	111.011 MWD+IFR1+ MS
0	24.23	0	0	37.862	32.779	111.8 MWD+IFR1+ MS
0	26.004	0	0	37.916	32.93	112.477 MWD+IFR1+ MS
0	26.054	0	0	37.919	32.957	112.581 MWD+IFR1+ MS
0	26.186	0	0	37.938	33.041	112.826 MWD+IFR1+ MS
0	26.359	0	0	37.951	33.147	113.259 MWD+IFR1+ MS
0	26.554	0	0	37.979	33.281	113.771 MWD+IFR1+ MS
0	26.769	0	0	38.009	33.412	114.315 MWD+IFR1+ MS
0	27.007	0	0	38.032	33.564	115.074 MWD+IFR1+ MS
0	27.267	0	0	38.069	33.716	115.813 MWD+IFR1+ MS
0	27.545	0	0	38.11	33.877	116.663 MWD+IFR1+ MS
0	27.842	0	0	38.156	34.045	117.646 MWD+IFR1+ MS

•

0	28.158	0	0	38.207	34.223	118.755 MWD+IFR1+ MS
0	28.494	0	0	38.265	34.406	120.026 MWD+IFR1+ MS
0	28.56	0	0	38.285	34.442	120.204 MWD+IFR1+ MS
0	28.839	0	0	38.336	34.588	121.277 MWD+IFR1+ MS
0	29.208	0	0	38.406	34.771	122.787 MWD+IFR1+ MS
0	29.592	0	0	38.49	34.965	124.592 MWD+IFR1+ MS
0	29.993	0	0	38.587	35.157	126.377 MWD+IFR1+ MS
0	30.409	0	0	38.69	35.343	128.47 MWD+IFR1+ MS
0	30.84	0	0	38.819	35.54	130.756 MWD+IFR1+ MS
0	31.283	0	0	38.952	35.718	133.219 MWD+IFR1+ MS
0	31.733	0	0	39.103	35.888	-44.406 MWD+IFR1+ MS
0	32.202	0	0	39.271	36.053	-41.684 MWD+IFR1+ MS
0	32.68	0	0	39.466	36.214	-39.021 MWD+IFR1+ MS
0	33.181	0	0	39.672	36.361	-36.452 MWD+IFR1+ MS
0	33.69	0	0	39.907	36.502	-33.817 MWD+IFR1+ MS
0	34.191	0	0	40.154	36.629	-31.367 MWD+IFR1+ MS
0	34.728	0	0	40.42	36.746	-29.029 MWD+IFR1+ MS
0	35.256	0	0	40.715	36.855	-26.764 MWD+IFR1+ MS
0	35.805	0	0	41.018	36.953	-24.727 MWD+IFR1+ MS
0	36.359	0	0	41.337	37.044	-22.849 MWD+IFR1+ MS
0	36.919	0	0	41.664	37.137	-21.25 MWD+IFR1+ MS
0	37.483	0	0	42.014	37.214	-19.683 MWD+IFR1+ MS
0	38.066	0	0	42.376	37.286	-18.248 MWD+IFR1+ MS
0	38.652	0	0	42.743	37.363	-17.033 MWD+IFR1+ MS
0	39.243	0	0	43.121	37.425	-15.889 MWD+IFR1+ MS
0	39.837	0	0	43.521	37.496	-14.848 MWD+IFR1+ MS
0	40.435	0	0	43.92	37.563	-13.926 MWD+IFR1+ MS
0	41.049	0	0	44.329	37.615	-13.059 MWD+IFR1+ MS
0	41.665	0	0	44.748	37.678	-12.289 MWD+IFR1+ MS

Page	35	of	45

0	42.285	0	0	45.166	37.737	-11.609 MWD+IFR1+ MS
0	42.919	0	0	45.602	37.795	-10.958 MWD+IFR1+ MS
0	43.543	0	0	46.046	37.852	-10.359 MWD+IFR1+ MS
0	44.181	0	0	46.488	37.906	-9.828 MWD+IFR1+ MS
0	44.822	0	0	46.947	37.961	-9.317 MWD+IFR1+ MS
0	45.475	0	0	47.403	38.013	-8.856 MWD+IFR1+ MS
0	46.119	0	0	47.866	38.064	-8.434 MWD+IFR1+ MS
0	46.776	0	0	48.335	38.128	-8.045 MWD+IFR1+ MS
0	47.434	0	0	48.811	38.177	-7.679 MWD+IFR1+ MS
0	48.104	0	0	49.293	38.226	-7.332 MWD+IFR1+ MS
0	48.765	0	0	49.771	38.287	-7.028 MWD+IFR1+ MS
0	49.437	0	0	50.264	38.334	-6.724 MWD+IFR1+ MS
0	50.11	0	0	50.763	38.394	-6.45 MWD+IFR1+ MS
0	50.784	0	0	51.258	38.453	-6.193 MWD+IFR1+ MS
0	51.468	0	0	51.758	38.499	-5.946 MWD+IFR1+ MS
0	52.144	0	0	52.263	38.557	-5.723 MWD+IFR1+ MS
0	52.83	0	0	52.772	38.615	-5.507 MWD+IFR1+ MS
0	53.516	0	0	53.287	38.672	-5.304 MWD+IFR1+ MS
0	54.213	0	0	53.806	38.729	-5.115 MWD+IFR1+ MS
0	54.9	0	0	54.33	38.785	-4.933 MWD+IFR1+ MS
0	55.597	0	0	54.848	38.841	-4.763 MWD+IFR1+ MS
0	56.294	0	0	55.38	38.897	-4.599 MWD+IFR1+ MS
0	56.991	0	0	55.908	38.953	-4.446 MWD+IFR1+ MS
0	57.697	0	0	56.448	39.021	-4.3 MWD+IFR1+ MS
0	58.404	0	0	56.983	39.076	-4.162 MWD+IFR1+ MS
0	59.11	0	0	57.522	39.131	-4.026 MWD+IFR1+ MS
0	59.816	0	0	58.065	39.198	-3.903 MWD+IFR1+ MS
0	60.523	0	0	58.611	39.252	-3.782 MWD+IFR1+ MS
0	61.237	0	0	59.152	39.319	-3.668 MWD+IFR1+ MS

•

0	61.952	0	0	59.706	39.386	-3.558 MWD+IFR1+ MS
0	62.666	0	0	60.254	39.439	-3.454 MWD+IFR1+ MS
0	63.388	0	0	60.814	39.506	-3.353 MWD+IFR1+ MS
0	64.101	0	0	61.369	39.571	-3.257 MWD+IFR1+ MS
0	64.823	0	0	61.927	39.637	-3.165 MWD+IFR1+ MS
0	65.544	0	0	62.488	39.703	-3.074 MWD+IFR1+ MS
0	66.272	0	0	63.052	39.768	-2.99 MWD+IFR1+ MS
0	66.993	0	0	63.619	39.833	-2.906 MWD+IFR1+ MS
0	67.75	0	0	64.212	39.898	-2.825 MWD+IFR1+ MS

DRILLING PLAN: NMOCD COMPLIANCE (Supplement to NMOCD 3160-3)

XTO Energy Inc. Remuda North 25 State 703H Projected TD: 16804' MD / 9000' TVD SHL: 2370' FSL & 2039' FWL , Section 25, T23S, R29E BHL: 200' FNL & 2090' FWL , Section 24, T23S, R29E Eddy County, NM

1. Geologic Name of Surface Formation

A. Quaternary

2. Estimated Tops of Geological Markers & Depths of Anticipated Fresh Water, Oil or Gas

Formation	Well Depth (TVD)	Water/Oil/Gas
Rustler	72'	Water
Top of Salt	420'	Water
Base of Salt	3078'	Water
Delaware	3288'	Water
Brushy Canyon	5733'	Water/Oil/Gas
Bone Spring	6995'	Water
1st Bone Spring Ss	8077'	Water/Oil/Gas
2nd Bone Spring Ss	8878'	Water/Oil/Gas
Target/Land Curve	9000'	Water/Oil/Gas

*** Hydrocarbons @ Brushy Canyon

*** Groundwater depth 40' (per NM State Engineers Office).

No other formations are expected to yield oil, gas or fresh water in measurable volumes. The surface fresh water sands will be protected by setting 11.75 inch casing @ 395' (25' above the salt) and circulating cement back to surface. The intermediate will isolate from the top of salt down to the next casing seat by setting 7.625 inch casing at 3178' and cementing to surface. A 6.75 inch curve and 6.75 inch lateral hole will be drilled to 16804 MD/TD and 5.5 inch production casing will be set at TD and cemented back up to the Brushy Canyon (estimated TOC 6233 feet) with a secondary bradenhead squeeze after frac operations are complete to 500' inside the intermediate casing shoe (estimated TOC 2678) feet.

3. Casing Design

Hole Size	Depth	OD Csg	Weight	Grade	Collar	New/Used	SF Burst	SF Collapse	SF Tension
14.75	0' – 395'	11.75	54	J-55	BTC	New	3.74	11.86	39.85
8.75	0' – 3178'	7.625	29.7	RY P-110	Flush Joint	New	4.63	3.24	5.91
6.75	0' – 3078'	5.5	20	RY P-110	Semi-Premium	New	1.05	8.06	2.67
6.75	3078' - 16804'	5.5	20	RY P-110	Semi-Flush	New	1.05	2.76	2.67

XTO requests the option to utilize a spudder rig (Atlas Copco RD20 or Equivalent) to set and cement surface casing per this Sundry

· XTO requests to not utilize centralizers in the curve and lateral

· 7.625 Collapse analyzed using 50% evacuation based on regional experience.

• 5.5 Tension calculated using vertical hanging weight plus the lateral weight multiplied by a friction factor of 0.35

• Test on Casing will be limited to 70% burst of the casing or 1500 psi, whichever is less

· XTO requests the option to use 5" BTC Float equipment for the the production casing

Wellhead:

Permanent Wellhead – Multibowl System

A. Starting Head: 13-5/8" 10M top flange x 11-3/4" bottom

B. Tubing Head: 13-5/8" 10M bottom flange x 7-1/16" 15M top flange

- · Wellhead will be installed by manufacturer's representatives.
 - Manufacturer will monitor welding process to ensure appropriate temperature of seal.
 - · Operator will test the 7-5/8" casing per NMOCD Onshore Order 2

· Wellhead Manufacturer representative will not be present for BOP test plug installation

4. Cement Program

Surface Casing: 11.75, 54 New BTC, J-55 casing to be set at +/- 395'

Tail: 320 sxs Class C + 2% CaCl (mixed at 14.8 ppg, 1.33 ft3/sx, 6.39 gal/sx water)Top of Cement:SurfaceCompressives:12-hr =900 psi24 hr = 1500 psi

Intermediate Casing: 7.625, 29.7 New Flush Joint, RY P-110 casing to be set at +/- 3178'

Lead: 320 sxs Class C (mixed at 12.9 ppg, 1.65 ft3/sx, 10.13 gal/sx water) Top of Cement: Surface

Compressives: 12-hr = 900 psi 24 hr = 1500 psi

Production Casing: 5.5, 20 New Semi-Flush, RY P-110 casing to be set at +/- 16804'

1st StageOptional Lead: 50 sxs Class C (mixed at 10.5 ppg, 2 ft3/sx, 15.59 gal/sx water)Top of Cement:7,281Tail: 650 sxs Class C (mixed at 14.8 ppg, 1.39 ft3/sx, 6.39 gal/sx water)TOC: Brushy Canyon @ 6233Compressives:12-hr =900 psi24 hr = 1150 psi

2nd Stage

Lead: 0 sxs Class C (mixed at 12.9 ppg, 2 ft3/sx, 9.61 gal/sx water) Tail: 170 sxs Class C (mixed at 14.8 ppg, 2 ft3/sx, 6.39 gal/sx water) Top of Cement: 2678 Compressives: 12-hr = 900 psi 24 hr = 1150 psi

XTO requests to pump a two stage cement job on the 5-1/2" production casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon (6233') and the second stage performed after frac operations are complete as a bradenhead squeeze with planned cement from the Brushy Canyon to 500' inside the previous casing shoe (2678').

XTO will report the volume of fluid (limited to 5 bbls) used to flush production casing valves following backside cementing procedures.

XTO requests the option to conduct the bradenhead squeeze offline as per standard approval when unplanned remediation is needed and batch drilling is approved. In the event the bradenhead is conducted, we will ensure the first stage cement job is cemented properly and the well is static with floats holding and no pressure on the csg annulus as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

XTO requests the option to offline cement and remediate (if needed) surface, intermediate, and production casing strings where batch drilling is approved and if unplanned remediation is needed. XTO will ensure well is static with no pressure on the csg annulus, as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed when applicable per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops. Offline cement operations will then be conducted after the rig is moved off the current well to the next well in the batch sequence.

5. Pressure Control Equipment

Once the permanent WH is installed on the 11.75 casing, the blow out preventer equipment (BOP) will consist of a 13-5/8" minimum 3M Hydril and a 13-5/8" minimum 3M Double Ram BOP. MASP should not exceed 2045 psi. In any instance where 10M BOP is required by NMOCD, XTO requests a variance to utilize 5M annular with 10M ram preventers (a common BOP configuration, which allows use of 10M rams in unlikely event that pressures exceed 5M).

All BOP testing will be done by an independent service company. Annular pressure tests will be limited to 50% of the working pressure. When nippling up on the 11.75, 3M bradenhead and flange, the BOP test will be limited to 3000 psi. When nippling up on the 7.625, the BOP will be tested to a minimum of 3000 psi. All BOP tests will include a low pressure test as per NMOCD regulations. The 3M BOP diagrams are attached. Blind rams will be functioned tested each trip, pipe rams will be functioned tested each day.

A variance is requested to allow use of a flex hose as the choke line from the BOP to the Choke Manifold. If this hose is used, a copy of the manufacturer's certification and pressure test chart will be kept on the rig. Attached is an example of a certification and pressure test chart. The manufacturer does not require anchors.

XTO requests a variance to be able to batch drill this well if necessary. In doing so, XTO will set casing and ensure that the well is cemented properly (unless approval is given for offline cementing) and the well is static. With floats holding, no pressure on the csg annulus, and the installation of a 10K TA cap as per Cactus recommendations, XTO will contact the NMOCD to skid the rig to drill the remaining wells on the pad. Once surface and both intermediate strings are all completed, XTO will begin drilling the production

hole on each of the wells.

A variance is requested to ONLY test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API standard 53 states, that for pad drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken. Based on discussions with the NMOCD on February 27th 2020, we will request permission to ONLY retest broken pressure seals if the following conditions are met: 1. After a full BOP test is conducted on the first well on the pad 2. When skidding to drill an intermediate section that does not penetrate into the Wolfcamp.

6. Proposed Mud Circulation System

INTERVAL	Holo Sizo	Hole Size Mud Type		Viscosity	Fluid Loss
INTERVAL	FIDE SIZE	мий туре	(ppg)	(sec/qt)	(cc)
0' - 395'	14.75	FW/Native	8.5-9	35-40	NC
395' - 3178'	8.75	Brine	10-10.5	30-32	NC
3178' - 16804'	6.75	OBM	8.6-9.6	50-60	NC - 20

The necessary mud products for weight addition and fluid loss control will be on location at all times.

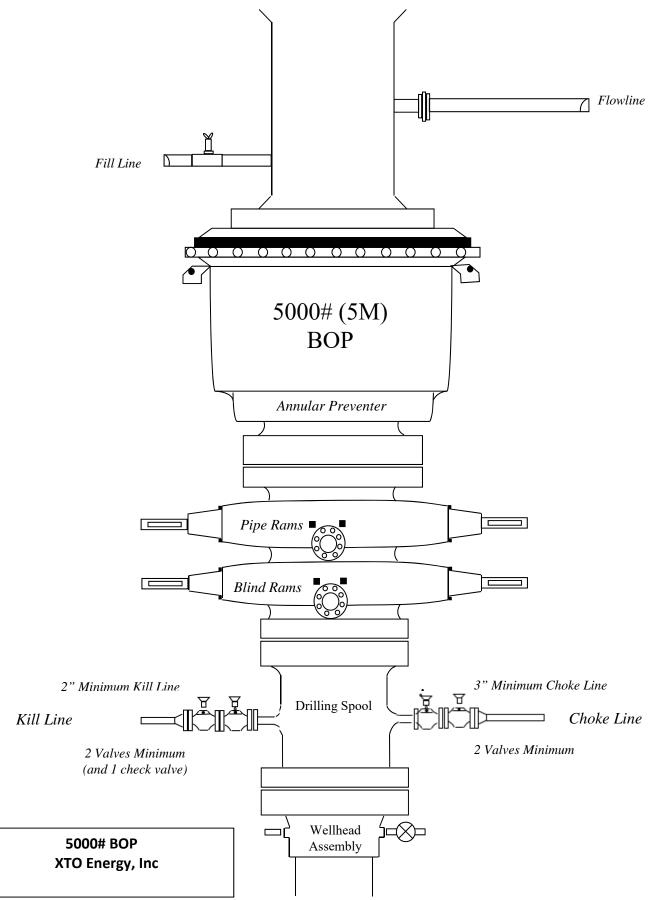
Spud with fresh water/native mud. Drill out from under 11-3/4" surface casing with brine solution. A 10.0 ppg - 10.5 ppg brine mud will be used while drilling through the salt formation. Use fibrous materials as needed to control seepage and lost circulation. Pump viscous sweeps as needed for hole cleaning. Pump speed will be recorded on a daily drilling report after mudding up. A Pason or Totco will be used to detect changes in loss or gain of mud volume. A mud test will be performed every 24 hours to determine: density, viscosity, strength, filtration and pH as necessary. Use available solids controls equipment to help keep mud weight down after mud up. Rig up solids control equipment to operate as a closed loop system.

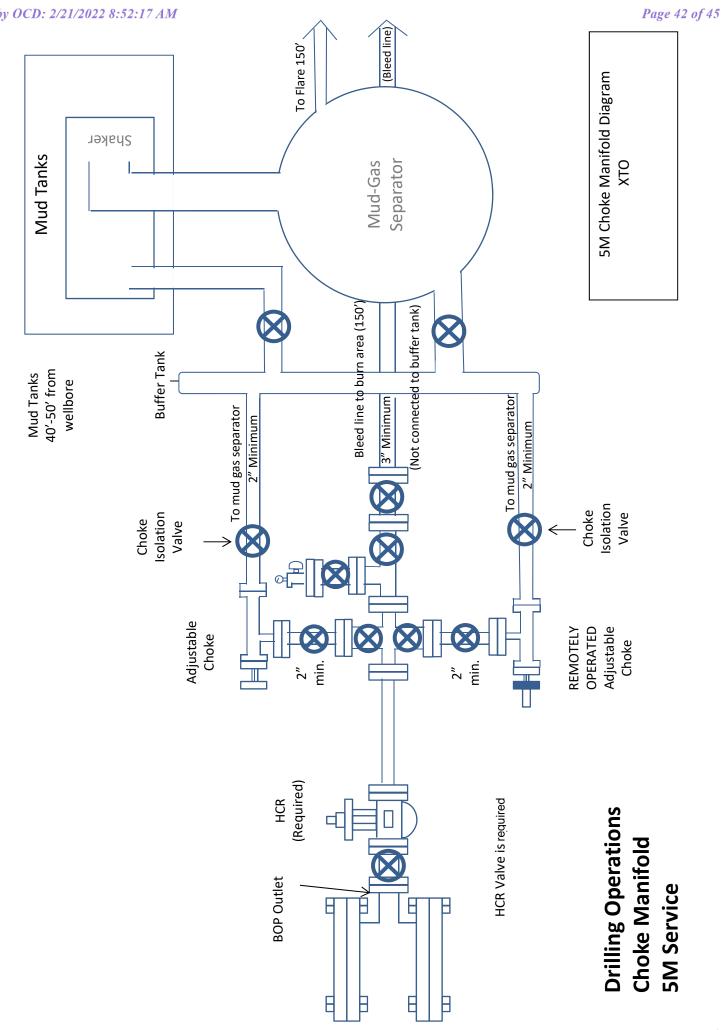
7. Auxiliary Well Control and Monitoring Equipment

- A. A Kelly cock will be in the drill string at all times.
- B. A full opening drill pipe stabbing valve having appropriate connections will be on the rig floor at all times.
- C. H2S monitors will be on location when drilling below the 11.75 casing.

8. Logging, Coring and Testing Program

Mud Logger: Mud Logging Unit (2 man) below intermediate casing.


Open hole logging will not be done on this well.


9. Abnormal Pressures and Temperatures / Potential Hazards

None Anticipated. BHT of 155 to 175 F is anticipated. No H2S is expected but monitors will be in place to detect any H2S occurrences. Should these circumstances be encountered the operator and drilling contractor are prepared to take all necessary steps to ensure safety of all personnel and environment. Lost circulation could occur but is not expected to be a serious problem in this area and hole seepage will be compensated for by additions of small amounts of LCM in the drilling fluid. The maximum anticipated bottom hole pressure for this well is 4025 psi.

10. Anticipated Starting Date and Duration of Operations

Anticipated spud date will be after NMOCD approval. Move in operations and drilling is expected to take 40 days.

XTO respectfully requests approval to utilize a spudder rig to pre-set surface casing.

Description of Operations:

- 1. Spudder rig will move in to drill the surface hole and pre-set surface casing on the well.
 - a. After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
 - b. The spudder rig will utilize fresh water-based mud to drill the surface hole to TD. Solids control will be handled entirely on a closed loop basis. No earth pits will be used.
- 2. The wellhead will be installed and tested as soon as the surface casing is cut off and WOC time has been reached.
- 3. A blind flange at the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wing valves.
 - a. A means for intervention will be maintained while the drilling rig is not over the well.
- 4. Spudder rig operations are expected to take 2-3 days per well on the pad.
- 5. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 6. Drilling Operations will begin with a larger rig and a BOP stack equal to or greater than the pressure rating that was permitted will be nippled up and tested on the wellhead before drilling operations resume on each well.
 - a. The larger rig will move back onto the location within 180 days from the point at which the wells are secured and the spudder rig is moved off location.
 - b. The BLM will be notified 24 hours before the larger rig moves back on the pre-set locations
- 7. XTO will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations.
- 8. Once the rig is removed, XTO will secure the wellhead area by placing a guard rail around the cellar area.

HYDROGEN SULFIDE (H2S) CONTINGENCY PLAN

Assumed 100 ppm ROE = 3000'

100 ppm H2S concentration shall trigger activation of this plan.

Emergency Procedures

In the event of a release of gas containing H₂S, the first responder(s) must

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response
- Take precautions to avoid personal injury during this operation.
- Contact operator and/or local officials to aid in operation. See list of phone numbers attached.
 - Have received training in the
 - o Detection of H_2S , and
 - o Measures for protection against the gas,
 - o Equipment used for protection and emergency response.

Ignition of Gas source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever this is an ignition of the gas.

Characteristics of H₂S and SO₂

Common Name	Chemical Formula	Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration
Hydrogen Sulfide	H ₂ S	1.189 Air = I	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO ₂	2.21 Air = I	2 ppm	N/A	1000 ppm

Contacting Authorities

All XTO location personnel must liaison with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including directions to site. The following call list of essential and potential responders has been prepared for use during a release. (Operator Name)'s response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER).

-

•

CARLSBAD OFFICE – EDDY & LEA COUNTIES

3104 E. Greene St., Carlsbad, NM 88220 Carlsbad, NM	575-887-7329
XTO PERSONNEL: Kendall Decker, Drilling Manager Milton Turman, Drilling Superintendent Jeff Raines, Construction Foreman Toady Sanders, EH & S Manager Wes McSpadden, Production Foreman	903-521-6477 817-524-5107 432-557-3159 903-520-1601 575-441-1147
SHERIFF DEPARTMENTS: Eddy County Lea County	575-887-7551 575-396-3611
NEW MEXICO STATE POLICE:	575-392-5588
FIRE DEPARTMENTS: Carlsbad Eunice Hobbs Jal Lovington	911 575-885-2111 575-394-2111 575-397-9308 575-395-2221 575-396-2359
HOSPITALS: Carlsbad Medical Emergency Eunice Medical Emergency Hobbs Medical Emergency Jal Medical Emergency Lovington Medical Emergency	911 575-885-2111 575-394-2112 575-397-9308 575-395-2221 575-396-2359
AGENT NOTIFICATIONS: For Lea County: Bureau of Land Management – Hobbs New Mexico Oil Conservation Division – Hobbs	575-393-3612 575-393-6161
For Eddy County : Bureau of Land Management - Carlsbad New Mexico Oil Conservation Division - Artesia	575-234-5972 575-748-1283