<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Form C-101 August 1, 2011

Permit 308329

APPLICATION FOR PERMIT TO DRIL	., RE-ENTER, DEEPEN	I, PLUGBACK	, OR ADD A ZONE
--------------------------------	---------------------	-------------	-----------------

		•				
Operator Name and Address		2. OGRID Number				
XTO ENERGY, INC	XTO ENERGY, INC					
6401 Holiday Hill Road	3. API Number					
Midland, TX 79707		30-015-49290				
4. Property Code	5. Property Name	6. Well No.				
317790	REMUDA NORTH 25 STATE	706H				

7. Surface Location

UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County
E	30	23S	30E		2370	N	630	W	Eddy

8. Proposed Bottom Hole Location

UL - Lot		Section	Township	Range	Lot Idn	Feet From N/S Line F		Feet From E/W Line		County
	Α	24	23S	29E	Α	200	N	550	E	Eddv

9. Pool Information

FORTY NINER RIDGE BONE SPRING,WEST	96526

Additional Well Information

11. Work Type	12. Well Type	13. Cable/Rotary	14. Lease Type	15. Ground Level Elevation	
New Well	OIL		State	3112	
16. Multiple	17. Proposed Depth	18. Formation	19. Contractor	20. Spud Date	
N	17098	Bone Spring		4/7/2022	
Depth to Ground water		Distance from nearest fresh water well		Distance to nearest surface water	

We will be using a closed-loop system in lieu of lined pits

21. Proposed Casing and Cement Program

Type	e Hole Size Casing Size		Casing Weight/ft	Setting Depth	Sacks of Cement	Estimated TOC
Surf	17.5 13.375 54.5		54.5	379	490	0
Int1	12.25	9.625	53.5	3218	1030	0
Prod	8.5	5.5	20	17098	2450	2718

Casing/Cement Program: Additional Comments

XTO requests the option to utilize a spudder rig (Atlas Copco RD20 or Equivalent) to set and cement surface casing per this Sundry XTO requests the option to offline cement and remediate (if needed) surface, intermediate, and production casing strings where batch drilling is approved and if unplanned remediation is needed. XTO will ensure well is static with no pressure on the csg annulus, as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed when applicable per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops. Offline cement operations will then be conducted after the rig is moved off the current well to the next well in the batch sequence.

22. Proposed Blowout Prevention Program

Туре	Working Pressure	Test Pressure	Manufacturer		
Double Ram	2077	3000	Camron		

knowledge and l	pelief. have complied with 19.15.14.9 (A)	true and complete to the best of my NMAC ⊠ and/or 19.15.14.9 (B) NMAC		OIL CONSERVATION	NOIVISION	
Signature:						
Printed Name:	Electronically filed by Tiffany Yand	cey	Approved By:	Katherine Pickford		
Title:	Production Analyst		Title:	Geoscientist		
Email Address:	tiffany.yancey@exxonmobil.com		Approved Date:	2/21/2022	Expiration Date: 2/21/2024	
Date:	2/15/2022	Phone: 432-215-8939	Conditions of Approval Attached			

District I

1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410

811 S. First St., Artesia, NM 88210

Phone: (505) 334-6178 Fax: (505) 334-6170 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico

Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION

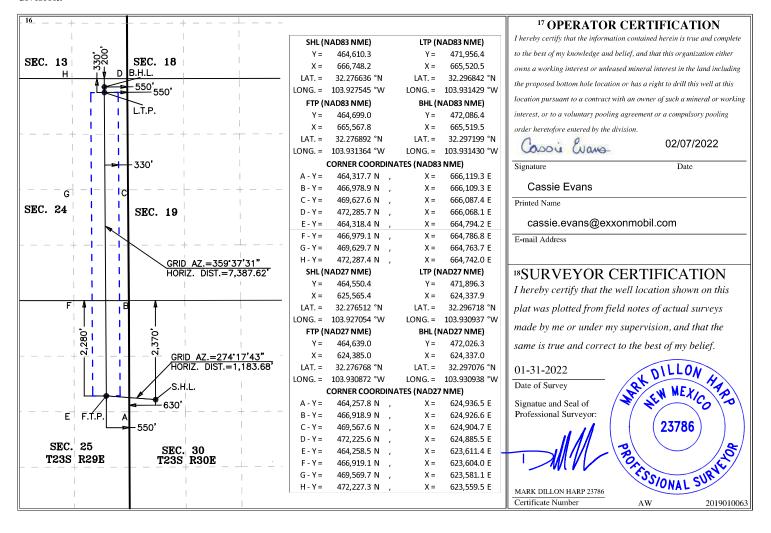
1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Number		² Pool Code	³ Pool Name	
³⁰⁻⁰¹⁵⁻ 49290		96526	Forty-Niner Ridge; Bone Spring West	
⁴ Property Code		5 Pt	operty Name	⁶ Well Number
317790		REMUDA	NORTH 25 STATE	706H
⁷ OGRID No.		8 O _l	perator Name	⁹ Elevation
005380		XTO I	ENERGY, INC.	3,112'


10 Surface Location

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County	
Е	30	23 S	30 E		2,370	NORTH	630	WEST	EDDY	

11 Bottom Hole Location If Different From Surface

	Bottom Hote Bottem Hom Surface								
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
A	24	23 S	29 E		200	NORTH	550	EAST	EDDY
12 Dedicated Acres 13 Joint or Infill 14 Consolidation Code					der No.				
240									

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Inten	t X	As Dril	led											
API#														
Operator Name: XTO ENERGY INC					_	perty N			1 25 5	STA	ΓΕ		Well Number 706H	
/iak (off Doint	(KOD)												
UL E	Section 30	Township 23S	Range 30E	Lot	Feet 2370		From North		Feet 630		Fron WE	n E/W ST	County	
Latitu					Longitu -103				1				NAD NAD8	3
irst T	Take Poin	nt (FTP)												
UL H	Section 25	Township 23S	Range 29E	Lot	Feet 2280					County EDDY				
	Latitude Longitude NAD N						NAD NAD8	3						
∟ast T	ake Poin	t (LTP)												
UL A	Section 24	Township 23S	Range 29E	Lot	Feet 330	Fro	m N/S rth	Feet 550		From East	E/W	Count		
Latitu 32.2	ide 296842	2			Longitu -103		429					NAD NA[D83	
s this	well the	defining v	vell for th	e Horiz	zontal Sp	pacinį	g Unit?		N]				
s this	well an i	infill well?		Υ										
	l is yes pl ng Unit.	lease prov	ide API if	availab	ole, Opei	rator	Name	and v	vell nu	umbei	r for I	Definir	ng well fo	r Horizontal
API#														
	rator Nar ENER	me: CGY INC	1			Proj	perty N	lame	:					Well Number

KZ 06/29/2018

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Form APD Comments

Permit 308329

PERMIT COMMENTS

Operator Name and Address:	API Number:
XTO ENERGY, INC [5380]	30-015-49290
6401 Holiday Hill Road	Well:
Midland, TX 79707	REMUDA NORTH 25 STATE #706H

Created By		Comment Date
cevans	A variance is requested to allow use of a flex hose as the choke line from the BOP to the Choke Manifold. If this hose is used, a copy of the manufacturer's certification and pressure test chart will be kept on the rig. Attached is an example of a certification and pressure test chart. The manufacturer does not require anchors. XTO requests a variance to be able to batch drill this well if necessary. In doing so, XTO will set casing and ensure that the well is cemented properly (unless approval is given for offline cementing) and the well is static. With floats holding, no pressure on the csg annulus, and the installation of a 10K TA cap as per Cactus recommendations, XTO will contact the NMOCD to skid the rig to drill the remaining wells on the pad. Once surface and both intermediate strings are all completed, XTO will begin drilling the production hole on each of the wells.	2/14/2022

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

drilling fluids and solids must be contained in a steel closed loop system

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Form APD Conditions

Permit 308329

PERMIT CONDITIONS OF APPROVAL

Operator N	lame and Address:	API Number:				
	XTO ENERGY, INC [5380]	30-015-49290				
	6401 Holiday Hill Road	Well:				
	Midland, TX 79707	REMUDA NORTH 25 STATE #706H				
OCD	Condition					
Reviewer						
kpickford	Notify OCD 24 hours prior to casing & cement					
kpickford	Will require a File As Drilled C-102 and a Directional Survey with the C-104					
kpickford	The Operator is to notify NMOCD by sundry (Form C-103) within ten (10) days of the well being spud					
kpickford	ord Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string					
kpickford	Cement is required to circulate on both surface and intermediate1 strings of casing					
kpickford	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from t	he oil or diesel. This includes synthetic oils. Oil based mud,				

GATES E & S NORTH AMERICA, INC

DU-TEX

134 44TH STREET

CORPUS CHRISTI, TEXAS 78405

PHONE: 361-887-9807

FAX: 361-887-0812

EMAIL: crpe&s@gates.com

WEB: www.gates.com

GRADE D PRESSURE TEST CERTIFICATE

Customer: Customer Ref. :

Invoice No.:

AUSTIN DISTRIBUTING

PENDING 201709

Test Date:

Hose Senal No.:

Created By:

6/8/2014

D-060814-1

NORMA

Product Description:

FD3.042.0R41/16.5KFLGE/E LE

End Filting 1:

Gates Part No. :

Working Pressure:

4 1/16 in.5K FLG 4774-6001

5,000 PSI

End Fitting 2:

Assembly Code:

Test Pressure :

4 1/16 in.5K FLG

L33090011513D-060814-1

7,500 PSI

Gates E & S North America, Inc. certifies that the following hose assembly has been tested to the Gates Oilfield Roughneck Agreement/Specification requirements and passed the 15 minute hydrostatic test per API Spec 7K/Q1, Fifth Edition, June 2010, Test pressure 9.6.7 and per Table 9 to 7,500 psi in accordance with this product number. Hose burst pressure 9.6.7.2 exceeds the minimum of 2.5 times the working pressure per Table 9.

Quality:

Date:

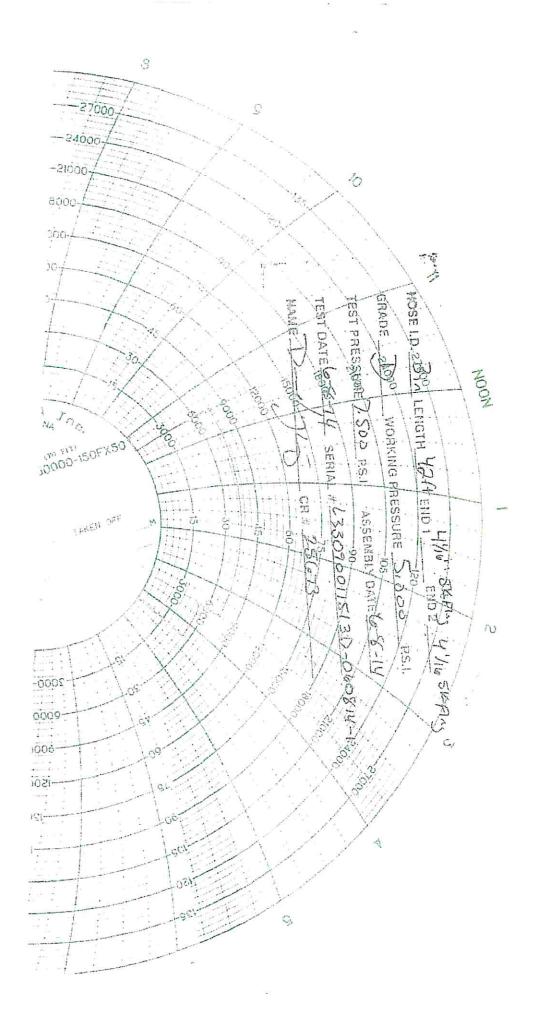
Signature:

QUALITY

6/8/2014

Technical Supervisor:

Date:


Signature:

PRODUCTION

6/8/2014

Form PTC - 01 Rev.0 2

Received by OCD: 2/21/2022 10:56:45 AM

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator:XTO Energy, Inc	_OGRID:	_05380	Date: 02/_18/2022_	
II. Type: □ Original ⊠ Amendment due to □ 19.15.27.9.D(6)(a	a) NMAC 🗆 19	9.15.27.9.D(6)(b) NM	IAC □ Other.	
If Other, please describe:				
III. Well(s): Provide the following information for each new or rebe recompleted from a single well pad or connected to a central de-	•	l or set of wells prop	osed to be drilled or proposed	l to

be recompleted from a single well pad or connected to a central delivery point.

Well Name API ULSTR Footages Anticipated Gas Anticipated Gas

Well Name	API	ULSTR	Footages	Anticipated	Anticipated Gas	Anticipated
				Oil BBL/D	MCF/D	Produced Water
						BBL/D
Remuda South 25 State 801H		K-25-23S-29E	2369'FSL & 1949'FWL	1500	2600	1000
Remuda North 25 State 701H		K-25-23S-29E	2369'FSL & 1949'FWL	1500	2600	1000
Remuda North 25 State 702H		K-25-23S-29E	2369'FSL & 2009'FWL	1500	2600	1000
Remuda North 25 State 703H		K-25-23S-29E	2370'FSL & 2090'FWL	1500	2600	1000
Remuda North 25 State 708H		K-25-23S-29E	2369'FSL & 1979' FWL	1500	2600	1000
Remuda North 25 State 705H		E-30-23S-29E	2370'FNL & 600'FWL	1500	2600	1000
Remuda North 25 State 706H		E-30-23S-29E	2370'FNL & 630'FWL	1500	2600	1000
Remuda North 25 State 707H		E-30-23S-29E	2370'FNL & 660'FWL	1500	2600	1000
Remuda North 25 State 708H		E-30-23S-29E	2370'FNL & 690'FWL	1500	2600	1000
Remuda North 25 State 704H		E-30-23S-29E	2370'FNL & 570'FWL	1500	2600	1000

IV. Central Delivery Point Name: Remuda 500 TB ______ [See 19.15.27.9(D)(1) NMAC]

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	Spud Date	TD	Completion	Initial Flow	First Production
		_	Reached	Commencement Date	Back Date	Date
			Date			
Remuda South 25 State 801H		04/09/2022	04/21/22	Not yet Scheduled	Not yet Scheduled	Not yet Scheduled
Remuda North 25 State 701H		04/08/2022	04/20/22	Not yet Scheduled	Not yet Scheduled	Not yet Scheduled
Remuda North 25 State 702H		04/11/2022	05/01/22	Not yet Scheduled	Not yet Scheduled	Not yet Scheduled
Remuda North 25 State 703H		04/12/2022	05/02/22	Not yet Scheduled	Not yet Scheduled	Not yet Scheduled
Remuda North 25 State 708H		04/08/2022	04/20/22	Not yet Scheduled	Not yet Scheduled	Not yet Scheduled
Remuda North 25 State 705H		04/05/2022	04/17/22	Not yet Scheduled	Not yet Scheduled	Not yet Scheduled
Remuda North 25 State 706H		04/06/2022	04/18/22	Not yet Scheduled	Not yet Scheduled	Not yet Scheduled
Remuda North 25 State 707H		04/07/2022	04/19/22	Not yet Scheduled	Not yet Scheduled	Not yet Scheduled
Remuda North 25 State 708H		04/08/2022	04/20/22	Not yet Scheduled	Not yet Scheduled	Not yet Scheduled
Remuda North 25 State 704H		04/04/2022	04/16/22	Not yet Scheduled	Not yet Scheduled	Not yet Scheduled

VI. Separation Equipment:

XTO Permian Operating, LLC. production tank batteries include separation equipment designed to efficiently separate gas from liquid phases to optimize gas capture based on projected and estimated volumes from the targeted pool in conjunction with the total number of wells planned to or existing within the facility. Separation equipment is upgraded prior to well being drilled or completed, if determined to be undersized or needed. The separation equipment is designed and built according to the relevant industry specifications (API Specification 12J and ASME Sec VIII Div I). Other recognized industry publications such as the Gas Processors Suppliers Association (GPSA) are referenced when designing separation equipment to optimize gas capture.

VII. Operational Practices:

1. Subsection B.

- During drilling, flare stacks will be located a minimum of 150 feet from the nearest surface hole location. All gas is captured or combusted. If an emergency or malfunction occurs, gas will be flared or vented for public health, safety and the environment and be properly reported to the NMOCD pursuant to 19.15.27.8.G.
- Measure or estimate the volume of natural gas that is vented, flared or beneficially used during drilling, completion and production operations, regardless of the reason or authorization for such venting or flaring.
- At any point in the well life (drilling, completion, production, inactive) an audio, visual and olfactory (AVO) inspection will be performed weekly (at minimum) to confirm that all production equipment is operating properly and there are no leaks or releases except as allowed in Subsection D of 19.15.27.8 NMAC.

2. Subsection C.

 During completion operations, operator does not produce oil or gas but maintains adequate well control through completion operations.

For emergencies, equipment malfunction, or if the operator decides to produce oil and gas during well completion:

- Flowlines will be routed for flowback fluids into a completion or storage tank and, if feasible under well conditions, flare rather than vent and commence operation of a separator as soon as it is technically feasible for a separator to function.
- Measure or estimate the volume of natural gas that is vented, flared or beneficially used during drilling, completion and production operations, regardless of the reason or authorization for such venting or flaring.
- At any point in the well life (drilling, completion, production, inactive) an audio, visual and olfactory (AVO) inspection will be performed weekly (at minimum) to confirm that all production equipment is operating properly and there are no leaks or releases except as allowed in Subsection D of 19.15.27.8 NMAC.

3. Subsection D.

- At any point in the well life (drilling, completion, production, inactive) an audio, visual and olfactory (AVO) inspection will be performed weekly (at minimum) to confirm that all production equipment is operating properly and there are no leaks or releases except as allowed in Subsection D of 19.15.27.8 NMAC.
- Monitor manual liquid unloading for wells on-site or in close proximity (<30 minutes' drive time), take reasonable actions to achieve a stabilized rate and pressure at the earliest practical time, and take reasonable actions to minimize venting to the maximum extent practicable.

 Measure or estimate the volume of natural gas that is vented, flared or beneficially used during drilling, completion and production operations, regardless of the reason or authorization for such venting or flaring.

4. Subsection E.

- All tanks and separation equipment are designed for maximum throughput and pressure to minimize waste.
- Flare stack was installed prior to May 25, 2021 but has been designed for proper size and combustion efficiency. Flare currently has a continuous pilot and is located more than 100 feet from any known well and storage tanks.
- At any point in the well life (drilling, completion, production, inactive) an audio, visual and olfactory (AVO) inspection will be performed weekly (at minimum) to confirm that all production equipment is operating properly and there are no leaks or releases except as allowed in Subsection D of 19.15.27.8 NMAC.

5. Subsection F.

- Measurement equipment is installed to measure the volume of natural gas flared from process piping or a flowline piped from the equipment associated with a well and facility associated with the approved application for permit to drill that has an average daily production greater than 60 mcf of natural gas.
- Measurement equipment installed is not designed or equipped with a manifold to allow diversion of natural gas around the metering equipment, except for the sole purpose of inspecting and servicing the measurement equipment, as noted in NMAC 19.15.27.8 Subsection G.

VIII. Best Management Practices:

- 1. During completion operations, operator does not produce oil or gas but maintains adequate well control through completion operations.
- 2. Operator does not flow well (well shut in) during initial production until all flowlines, tank batteries, and oil/gas takeaway are installed, tested, and determined operational.
- 3. Operator equips storage tanks with an automatic gauging system to reduce venting of natural gas.
- 4. Operator reduces the number of blowdowns by looking for opportunities to coordinate repair and maintenance activities.
- 5. Operator combusts natural gas that would otherwise be vented or flared, when feasible.
- 6. Operator has a flare stack designed in accordance with need and to handle sufficient volume to ensure proper combustion efficiency. Flare stacks are equipped with continuous pilots and securely anchored at least 100 feet (at minimum) from storage tanks and wells.
- 7. Operator minimizes venting (when feasible) through pump downs of vessels and reducing time required to purge equipment before returning equipment to service.
- 8. Operator will shut in wells (when feasible) in the event of a takeaway disruption, emergency situation, or other operations where venting or flaring may occur due to equipment failures.

VI. Separation Equipment: 🛛 Attach a co	mplete description of how O	perator will size separation	equipment to or	ptimize gas capture
---	-----------------------------	------------------------------	-----------------	---------------------

VII. Operational Practices: \boxtimes Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

VIII. Best Management Practices: ⊠ Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

		with its statewide natural ga	as capture requirement for the applicable
		tion because Operator is in c	compliance with its statewide natural gas
atural Gas Productio	n:		
/ell	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF
nthering System (NG	,		
System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in
ons to the existing or place ion of the natural gas gath from the well prior to be. Operator \(\sqrt{does} \) described 's plan to manage proceed ity: \(Does Operator asserted in Paragraph (2) of	lanned interconnect of t gathering system(s) to v hering system will the date of first produce does not anticipate the labove will continue to duction in response to the erts confidentiality pursions Subsection D of 19.15.	the natural gas gathering syste which the well(s) will be connumbered will not have capacity to gathering. The will not have capacity to gathering well(s) connected meet anticipated increases in the increased line pressure. Suant to Section 71-2-8 NMS .27.9 NMAC, and attaches a fine	em(s), and the maximum daily capacity of nected. ather 100% of the anticipated natural gas red to the same segment, or portion, of the a line pressure caused by the new well(s).
et a 7	sthat it is not require for the applicable repartural Gas Production Tell System System an accurate and legitation of the natural gas gath from the well prior to the existing or play. The natural gas gath from the well prior to the existing or play. The natural gas gath from the well prior to the existing or play. The natural gas gath from the well prior to the existing or play. The natural gas gath from the well prior to the existing or play. The natural gas gath from the well prior to the existing or play. The natural gas gath from the well prior to the existing or play. The natural gas gath from the well prior to the existing or play. The natural gas gath from the well prior to the existing or play. The natural gas gath from the well prior to the existing or play. The natural gas gath from the prior to the existing or play in the natural gas gath from the prior to the existing or play in the natural gas gath from the well prior to the existing or play in the natural gas gath from the prior to the existing or play in the natural gas gath from the prior to the existing or play in the natural gas gath from the prior to the existing or play in the natural gas gath from the prior to the existing or play in the natural gas gath from the prior to the existing or play in the natural gas gath from the prior to the existing or play in the natural gas gath from the prior to the existing or play in the natural gas gath from the prior to the natural gas gath from the natural gas gath	2022, an operator that is not in compliance complete this section. Set that it is not required to complete this sect for the applicable reporting area. Atural Gas Production: Tell API API API API API API API API	es that it is not required to complete this section because Operator is in cet for the applicable reporting area. Atural Gas Production: API Anticipated Average Natural Gas Rate MCF/D Atthering System (NGGS): System ULSTR of Tie-in Anticipated Gathering

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \Box Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

☑ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. ⊠ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. ⊠ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- **(b)** power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature:
Printed Name: Cassie Evans
Title: Regulatory Analyst
E-mail Address: cassie.evans@exxonmobil.com
Date: 02/18/2022
Phone:432-218-3671
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

Cement Variance Request

XTO requests to pump a two stage cement job on the 7-5/8" intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon (5832') and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. If cement is not visually confirmed to circulate to surface, the final cement top after the second stage job will be verified by Echo-meter. If necessary, a top out consisting of 1,500 sack of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (2.30 yld, 12.91 ppg) will be executed as a contingency. If cement is still unable to circulate to surface, another Echo-meter run will be performed for cement top verification.

XTO will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program.

XTO will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures.

XTO requests to pump an Optional Lead if well conditions dictate in an attempt to bring cement to surface on the first stage. If cement is brought to surface, the BLM will be notified and the second stage bradenhead squeeze and subsequent TOC verification will be negated.

In the event cement is not circulated to surface on the first stage, whether intentionally or unintentionally, XTO requests the option to conduct the bradenhead squeeze and TOC verification offline as per standard approval from BLM when unplanned remediation is needed and batch drilling is approved. In the event the bradenhead is conducted, we will ensure first stage cement job is cemented properly and the well is static with floats holding and no pressure on the csg annulus as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed per GE procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Well Plan Report - Remuda North 25 State 706H

Measured Depth:

17098.00 ft

TVD RKB:

9140.00 ft

Location

Cartographic Reference

New Mexico East -

System:

NAD 27

Northing:

464587.94 ft

Easting:

625575.56 ft

RKB:

3095.00 ft

Ground Level:

3065.00 ft

North Reference:

Grid

Convergence Angle:

0.22 Deg

Site:

North Pad 5

Slot:

3

Plan Sections

Remuda North 25 State 706H

Measured			TVD			Build	Turn
Depth	Inclination	Azimuth	RKB	Y Offset	X Offset	Rate	Rate
(ft)	(Deg)	(Deg)	(ft)	(ft)	(ft)	(Deg/100ft)	(Deg/100ft)
0	0	0	0	0	0	0	0
2500	0	0	2500	0	0	0	0
3384.68	17.69	235.62	3370.69	-76.52	-111.85	2	0
6280.28	17.69	235.62	6129.31	-573.47	-838.16	0	0
7164.96	0	0	7000	-650	-950	-2	0
8587.96	0	0	8423	-650	-950	0	0
9712.96	90	350	9139.2	55.32	-1074.37	8	0
10032.96	90	350	9139.2	370.46	-1129.94	0	0

10507.96	90	359.5	9139.2	842.92	-1173.35	0	2
17098.02	90	359.5	9140	7432.76	-1228.04	0	0

Position Uncertainty

Remuda North 25 State 706H

Measured			TVD	Highside		Lateral	
Depth	Inclination	Azimuth	RKB	Error	Bias	Error	Bias
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(ft)
0	0	0	0	0	0	0	0
100	0	0	100	0.468	0	0.468	0
200	0	0	200	0.983	0	0.983	0
300	0	0	300	1.403	0	1.403	0
400	0	0	400	1.797	0	1.797	0
500	0	0	500	2.179	0	2.179	0
600	0	0	600	2.554	0	2.554	0
700	0	0	700	2.925	0	2.925	0
800	0	0	800	3.292	0	3.292	0
900	0	0	900	3.659	0	3.659	0
1000	0	0	1000	4.024	0	4.024	0
1100	0	0	1100	4.387	0	4.387	0
1200	0	0	1200	4.751	0	4.751	0
1300	0	0	1300	5.113	0	5.113	0
1400	0	0	1400	5.474	0	5.474	0
1500	0	0	1500	5.836	0	5.836	0
1600	0	0	1600	6.197	0	6.197	0
1700	0	0	1700	6.558	0	6.558	0
1800	0	0	1800	6.918	0	6.918	0
1900	0	0	1900	7.279	0	7.279	0
2000	0	0	2000	7.639	0	7.639	0

2100	0	0	2100	7.999	0	7.999	0
2200	0	0	2200	8.359	0	8.359	0
2300	0	0	2300	8.718	0	8.718	0
2400	0	0	2400	9.079	0	9.079	0
2500	0	0	2500	9.437	0	9.437	0
2600	1.999	235.6	2599.98	10.197	0	9.345	0
2700	4	235.6	2699.838	10.738	0	9.692	0
2800	6	235.6	2799.452	11.251	0	10.038	0
2900	7.999	235.6	2898.702	11.74	0	10.386	0
3000	10	235.6	2997.465	12.208	0	10.738	0
3100	11.99	235.6	3095.623	12.651	0	11.084	0
3200	14	235.6	3193.055	13.071	0	11.432	0
3300	15.99	235.6	3289.643	13.476	0	11.782	0
3384.6	17.69	235.6	3370.686	13.755	0	12.075	0
3400	17.69	235.6	3385.281	13.801	0	12.129	0
3500	17.69	235.6	3480.551	14.098	0	12.469	0
3600	17.69	235.6	3575.82	14.412	0	12.826	0
3700	17.69	235.6	3671.09	14.728	0	13.184	0
3800	17.69	235.6	3766.359	15.052	0	13.544	0
3900	17.69	235.6	3861.629	15.377	0	13.904	0
4000	17.69	235.6	3956.898	15.709	0	14.269	0
4100	17.69	235.6	4052.168	16.043	0	14.633	0
4200	17.69	235.6	4147.437	16.384	0	15.001	0
4300	17.69	235.6	4242.707	16.726	0	15.371	0
4400	17.69	235.6	4337.976	17.073	0	15.74	0
4500	17.69	235.6	4433.246	17.423	0	16.113	0
4600	17.69	235.6	4528.516	17.774	0	16.484	0
4700	17.69	235.6	4623.785	18.129	0	16.857	0
4800	17.69	235.6	4719.055	18.488	0	17.234	0

4900	17.69	235.6	4814.324	18.849	0	17.609	0
5000	17.69	235.6	4909.594	19.212	0	17.987	0
5100	17.69	235.6	5004.863	19.577	0	18.365	0
5200	17.69	235.6	5100.133	19.943	0	18.743	0
5300	17.69	235.6	5195.402	20.312	0	19.122	0
5400	17.69	235.6	5290.672	20.682	0	19.501	0
5500	17.69	235.6	5385.941	21.055	0	19.882	0
5600	17.69	235.6	5481.211	21.429	0	20.263	0
5700	17.69	235.6	5576.48	21.806	0	20.645	0
5800	17.69	235.6	5671.75	22.183	0	21.029	0
5900	17.69	235.6	5767.02	22.562	0	21.411	0
6000	17.69	235.6	5862.289	22.942	0	21.795	0
6100	17.69	235.6	5957.559	23.323	0	22.179	0
6200	17.69	235.6	6052.828	23.707	0	22.565	0
6280.2	17.69	235.6	6129.314	24.012	0	22.871	0
6300	17.29	235.6	6148.118	24.106	0	22.945	0
6400	15.29	235.6	6244.094	24.6	0	23.323	0
6500	13.29	235.6	6340.991	25.132	0	23.703	0
6600	11.29	235.6	6438.691	25.627	0	24.077	0
6700	9.298	235.6	6537.075	26.086	0	24.447	0
6800	7.299	235.6	6636.022	26.508	0	24.811	0
6900	5.299	235.6	6735.414	26.894	0	25.171	0
7000	3.299	235.6	6835.127	27.241	0	25.525	0
7100	1.299	235.6	6935.042	27.551	0	25.872	0
7164.9	0	0	7000	26.138	0	27.626	0
7200	0	0	7035.036	26.255	0	27.733	0
7300	0	0	7135.036	26.58	0	28.043	0
7400	0	0	7235.036	26.913	0	28.355	0
7500	0	0	7335.036	27.245	0	28.671	0

7600	0	0	7435.036	27.577	0	28.986	0
7700	0	0	7535.036	27.911	0	29.302	0
7800	0	0	7635.036	28.245	0	29.619	0
7900	0	0	7735.036	28.58	0	29.938	0
8000	0	0	7835.036	28.915	0	30.257	0
8100	0	0	7935.036	29.251	0	30.578	0
8200	0	0	8035.036	29.587	0	30.898	0
8300	0	0	8135.036	29.923	0	31.22	0
8400	0	0	8235.036	30.261	0	31.542	0
8500	0	0	8335.036	30.599	0	31.859	0
8587.9	0	0	8423	30.895	0	32.14	0
8600	0.963	350	8435.035	30.769	0	32.321	0
8700	8.962	350	8534.58	31.059	0	32.624	0
8800	16.96	350	8631.952	31.839	0	32.932	0
8900	24.96	350	8725.257	32.168	0	33.223	0
9000	32.96	350	8812.68	32.095	0	33.485	0
9100	40.96	350	8892.517	31.682	0	33.733	0
9200	48.96	350	8963.216	31.032	0	33.941	0
9300	56.96	350	9023.401	30.245	0	34.138	0
9400	64.95	350	9071.899	29.461	0	34.295	0
9500	72.95	350	9107.767	28.816	0	34.427	0
9600	80.95	350	9130.307	28.458	0	34.533	0
9700	88.95	350	9139.08	28.504	0	34.598	0
9712.9	90	350	9139.197	28.351	0	34.601	0
9800	90	350	9139.197	28.538	0	34.648	0
9900	90	350	9139.197	28.763	0	34.713	0
10000	90	350	9139.197	29.009	0	34.793	0
10032	90	350	9139.197	29.091	0	34.829	0
10100	90	351.3	9139.197	29.268	0	34.841	0

10200	90	353.3	9139.197	29.548	0	34.925	0
10300	90	355.3	9139.197	29.85	0	35.051	0
10400	90	357.3	9139.197	30.168	0	35.19	0
10507	90	359.5	9139.197	30.532	0	35.353	0
10600	90	359.5	9139.197	30.856	0	35.509	0
10700	90	359.5	9139.197	31.223	0	35.651	0
10800	90	359.5	9139.197	31.605	0	35.806	0
10900	90	359.5	9139.197	32	0	35.974	0
11000	90	359.5	9139.197	32.404	0	36.155	0
11100	90	359.5	9139.197	32.833	0	36.336	0
11200	90	359.5	9139.197	33.272	0	36.543	0
11300	90	359.5	9139.197	33.719	0	36.748	0
11400	90	359.5	9139.197	34.191	0	36.98	0
11500	90	359.5	9139.197	34.655	0	37.21	0
11600	90	359.5	9139.197	35.143	0	37.452	0
11700	90	359.5	9139.197	35.637	0	37.706	0
11800	90	359.5	9139.197	36.152	0	37.972	0
11900	90	359.5	9139.197	36.661	0	38.248	0
12000	90	359.5	9139.197	37.189	0	38.536	0
12100	90	359.5	9139.197	37.723	0	38.834	0
12200	90	359.5	9139.197	38.262	0	39.13	0
12300	90	359.5	9139.197	38.82	0	39.449	0
12400	90	359.5	9139.197	39.383	0	39.766	0
12500	90	359.5	9139.197	39.95	0	40.092	0
12600	90	359.5	9139.197	40.522	0	40.429	0
12700	90	359.5	9139.197	41.097	0	40.774	0
12800	90	359.5	9139.197	41.689	0	41.129	0
12900	90	359.5	9139.197	42.285	0	41.494	0
13000	90	359.5	9139.197	42.884	0	41.854	0

13100	90	359.5	9139.197	43.486	0	42.236	0
13200	90	359.5	9139.197	44.102	0	42.614	0
13300	90	359.5	9139.197	44.721	0	43.012	0
13400	90	359.5	9139.197	45.343	0	43.406	0
13500	90	359.5	9139.197	45.967	0	43.809	0
13600	90	359.5	9139.197	46.605	0	44.219	0
13700	90	359.5	9139.197	47.244	0	44.636	0
13800	90	359.5	9139.197	47.885	0	45.06	0
13900	90	359.5	9139.197	48.528	0	45.481	0
14000	90	359.5	9139.197	49.173	0	45.92	0
14100	90	359.5	9139.197	49.83	0	46.354	0
14200	90	359.5	9139.197	50.488	0	46.806	0
14300	90	359.5	9139.197	51.147	0	47.253	0
14400	90	359.5	9139.197	51.807	0	47.707	0
14500	90	359.5	9139.197	52.479	0	48.166	0
14600	90	359.5	9139.197	53.151	0	48.632	0
14700	90	359.5	9139.197	53.824	0	49.104	0
14800	90	359.5	9139.197	54.498	0	49.571	0
14900	90	359.5	9139.197	55.182	0	50.053	0
15000	90	359.5	9139.197	55.866	0	50.531	0
15100	90	359.5	9139.197	56.551	0	51.024	0
15200	90	359.5	9139.197	57.236	0	51.513	0
15300	90	359.5	9139.197	57.922	0	52.006	0
15400	90	359.5	9139.197	58.617	0	52.505	0
15500	90	359.5	9139.197	59.313	0	53.008	0
15600	90	359.5	9139.197	60.008	0	53.515	0
15700	90	359.5	9139.197	60.704	0	54.018	0
15800	90	359.5	9139.197	61.408	0	54.535	0
15900	90	359.5	9139.197	62.113	0	55.047	0

16000	90	359.5	9139.197	62.817	0	55.572	0
16100	90	359.5	9139.197	63.522	0	56.092	0
16200	90	359.5	9139.197	64.234	0	56.616	0
16300	90	359.5	9139.197	64.946	0	57.144	0
16400	90	359.5	9139.197	65.658	0	57.676	0
16500	90	359.5	9139.197	66.37	0	58.212	0
16600	90	359.5	9139.197	67.089	0	58.743	0
16700	90	359.5	9139.197	67.801	0	59.286	0
16800	90	359.5	9139.197	68.52	0	59.824	0
16900	90	359.5	9139.197	69.239	0	60.374	0
17000	90	359.5	9139.197	69.964	0	60.918	0
17098	90	359.5	9140	70.668	0	61.458	0

Plan Targets	Remuda North 25 State 706H			
	Measured Depth	Grid Northing	Grid Easting	TVD MSL Target Shape
Target Name	(ft)	(ft)	(ft)	(ft)
FTP 11	9818.46	464635.38	624395.93	6045 CIRCLE
LTP 6	16968.22	471890.83	624348.62	6045 CIRCLE
BHL 11	17098.07	472020.7	624347.52	6045 CIRCLE

0

2 0 BHL 11

Vertical		Magnitude	Semi-major	Semi-minor	Semi-minor Too	ol
Error	Bias	of Bias	Error	Error	Azimuth Use	ed
(ft)	(ft)	(ft)	(ft)	(ft)	(°)	
2.297	0	0	0	0	⁰ MS	
2.299	0	0	0.556	0.358	135 MV MS	VD+IFR1+
2.307	0	0	1.191	0.717	135 MV MS	VD+IFR1+
2.321	0	0	1.668	1.075	135 MV MS	VD+IFR1+
2.34	0	0	2.099	1.434	135 MV MS	VD+IFR1+
2.364	0	0	2.507	1.792	135 MV MS	VD+IFR1+
2.393	0	0	2.902	2.151	135 MS	
2.428	0	0	3.288	2.509	135 MV MS	VD+IFR1+
2.467	0	0	3.669	2.867	135 MV MS	VD+IFR1+
2.511	0	0	4.046	3.226	135 MV MS	VD+IFR1+
2.559	0	0	4.42	3.584	135 MS	
2.613	0	0	4.791	3.943	135 MS	
2.67	0	0	5.161	4.302	135 MS	
2.731	0	0	5.529	4.66	135 MS	
2.797	0	0	5.896	5.018	135 MS	
2.866	0	0	6.262	5.377	135 MS	
2.939	0	0	6.627	5.735	135 MS	
3.015	0	0	6.992	6.094	135 MS	
3.095	0	0	7.355	6.452	135 MS	
3.178	0	0	7.719	6.811	135 MS	
3.265	0	0	8.081	7.169	135 MS	VD+IFR1+

					-
3.354	0	0	8.444	7.527	135 MWD+IFR1+ MS
3.447	0	0	8.806	7.886	135 MWD+IFR1+ MS
3.544	0	0	9.168	8.244	135 MWD+IFR1+ MS
3.643	0	0	9.53	8.603	135 MWD+IFR1+ MS
3.744	0	0	9.891	8.961	135 MWD+IFR1+ MS
3.848	0	0	10.226	9.319	-43.901 MWD+IFR1+ MS
3.956	0	0	10.764	9.687	-38.304 MWD+IFR1+ MS
4.068	0	0	11.298	10.038	-34.535 MWD+IFR1+ MS
4.186	0	0	11.823	10.383	-32.022 MWD+IFR1+ MS
4.31	0	0	12.341	10.728	-30.181 MWD+IFR1+ MS
4.444	0	0	12.843	11.066	-28.776 MWD+IFR1+ MS
4.587	0	0	13.332	11.404	-27.755 MWD+IFR1+ MS
4.741	0	0	13.813	11.744	-26.853 MWD+IFR1+ MS
4.869	0	0	14.166	12.031	-26.409 MWD+IFR1+ MS
4.886	0	0	14.212	12.084	-26.416 MWD+IFR1+ MS
5.02	0	0	14.496	12.425	-26.275 MWD+IFR1+ MS
5.161	0	0	14.799	12.778	-25.874 MWD+IFR1+ MS
5.308	0	0	15.103	13.133	-25.506 MWD+IFR1+ MS
5.457	0	0	15.415	13.49	-25.11 MWD+IFR1+ MS
5.612	0	0	15.727	13.848	-24.747 MWD+IFR1+ MS
5.769	0	0	16.046	14.21	-24.397 MWD+IFR1+ MS
5.93	0	0	16.368	14.571	-24.002 MWD+IFR1+ MS
6.096	0	0	16.695	14.935	-23.614 MWD+IFR1+ MS
6.264	0	0	17.024	15.304	-23.302 MWD+IFR1+ MS
6.436	0	0	17.357	15.67	-22.922 MWD+IFR1+ MS
6.611	0	0	17.692	16.04	-22.58 MWD+IFR1+ MS
6.789	0	0	18.03	16.408	-22.21 MWD+IFR1+ MS
6.971	0	0	18.37	16.779	-21.877 MWD+IFR1+ MS
7.155	0	0	18.715	17.153	-21.552 MWD+IFR1+ MS

7.342	0	0	19.062	17.526	-21.194 MWD+IFR1+ MS
7.531	0	0	19.41	17.901	-20.88 MWD+IFR1+ MS
7.724	0	0	19.76	18.277	-20.567 MWD+IFR1+ MS
7.92	0	0	20.112	18.652	-20.263 MWD+IFR1+ MS
8.117	0	0	20.467	19.029	-19.929 MWD+IFR1+ MS
8.318	0	0	20.821	19.405	-19.628 MWD+IFR1+ MS
8.521	0	0	21.179	19.785	-19.346 MWD+IFR1+ MS
8.726	0	0	21.539	20.164	-19.065 MWD+IFR1+ MS
8.935	0	0	21.901	20.544	-18.755 MWD+IFR1+ MS
9.145	0	0	22.263	20.925	-18.516 MWD+IFR1+ MS
9.358	0	0	22.627	21.305	-18.228 MWD+IFR1+ MS
9.574	0	0	22.992	21.688	-17.971 MWD+IFR1+ MS
9.792	0	0	23.359	22.07	-17.724 MWD+IFR1+ MS
10.01	0	0	23.728	22.454	-17.488 MWD+IFR1+ MS
10.188	0	0	24.02	22.76	-17.384 MWD+IFR1+ MS
10.232	0	0	24.091	22.835	-17.384 MWD+IFR1+ MS
10.464	0	0	24.487	23.212	-17.496 MWD+IFR1+ MS
10.7	0	0	24.951	23.587	-17.727 MWD+IFR1+ MS
10.932	0	0	25.41	23.957	-17.908 MWD+IFR1+ MS
11.153	0	0	25.864	24.322	-18.081 MWD+IFR1+ MS
11.371	0	0	26.31	24.681	-18.242 MWD+IFR1+ MS
11.584	0	0	26.751	25.036	-18.358 MWD+IFR1+ MS
11.794	0	0	27.181	25.385	-18.486 MWD+IFR1+ MS
12	0	0	27.603	25.727	-18.543 MWD+IFR1+ MS
12.133	0	0	27.806	25.947	-18.403 MWD+IFR1+ MS
12.207	0	0	27.912	26.064	-18.428 MWD+IFR1+ MS
12.414	0	0	28.22	26.392	-18.406 MWD+IFR1+ MS
12.621	0	0	28.532	26.725	-18.528 MWD+IFR1+ MS
12.837	0	0	28.848	27.057	-18.615 MWD+IFR1+ MS

13.0	54	0	0	29.164	27.39	-18.701	MWD+IFR1+ MS
13.2	74	0	0	29.479	27.723	-18.804	MWD+IFR1+ MS
13.4	94	0	0	29.797	28.058	-18.908	MWD+IFR1+ MS
13.7	22	0	0	30.116	28.392	-18.993	MWD+IFR1+ MS
13.9	53	0	0	30.435	28.728	-19.095	MWD+IFR1+ MS
14.1	84	0	0	30.756	29.063	-19.18	MWD+IFR1+ MS
14.4	22	0	0	31.077	29.4	-19.281	MWD+IFR1+ MS
14.6	63	0	0	31.399	29.736	-19.365	MWD+IFR1+ MS
14.9	06	0	0	31.721	30.073	-19.466	MWD+IFR1+ MS
15.1	53	0	0	32.039	30.411	-19.638	MWD+IFR1+ MS
15.3	72	0	0	32.32	30.707	-19.713	MWD+IFR1+ MS
15.4	01	0	0	32.365	30.749	-19.615	MWD+IFR1+ MS
15.6	65	0	0	32.693	31.467	-23.804	MWD+IFR1+ MS
16.0	44	0	0	33.37	32.656	118.256	MWD+IFR1+ MS
16.	61	0	0	34.587	33.102	96.415	MWD+IFR1+ MS
17.4	18	0	0	35.723	33.39	91.446	MWD+IFR1+ MS
18.4	93	0	0	36.647	33.645	89.663	MWD+IFR1+ MS
19.8	12	0	0	37.378	33.851	88.969	MWD+IFR1+ MS
21.3	38	0	0	37.896	34.042	88.824	MWD+IFR1+ MS
23.0	13	0	0	38.237	34.189	89.05	MWD+IFR1+ MS
24.7	75	0	0	38.432	34.307	89.555	MWD+IFR1+ MS
26.5	63	0	0	38.523	34.395	90.267	MWD+IFR1+ MS
28.	32	0	0	38.563	34.437	91.085	MWD+IFR1+ MS
28.3	51	0	0	38.576	34.436	91.182	MWD+IFR1+ MS
28.5	38	0	0	38.592	34.463	91.901	MWD+IFR1+ MS
28.7	63	0	0	38.623	34.501	92.761	MWD+IFR1+ MS
29.0	09	0	0	38.655	34.551	93.664	MWD+IFR1+ MS
29.0	91	0	0	38.671	34.577	93.968	MWD+IFR1+ MS
29.2	68	0	0	38.69	34.613	94.617	MWD+IFR1+ MS

29.548	0	0	38.729	34.728	95.768 MWD+IFR1+ MS
29.85	0	0	38.76	34.881	97.066 MWD+IFR1+ MS
30.168	0	0	38.806	35.044	98.393 MWD+IFR1+ MS
30.532	0	0	38.845	35.228	99.924 MWD+IFR1+ MS
30.856	0	0	38.87	35.357	101.223 MWD+IFR1+ MS
31.223	0	0	38.911	35.467	102.55 MWD+IFR1+ MS
31.605	0	0	38.957	35.586	103.976 MWD+IFR1+ MS
32	0	0	39.008	35.712	105.516 MWD+IFR1+ MS
32.404	0	0	39.065	35.846	107.184 MWD+IFR1+ MS
32.833	0	0	39.127	35.974	108.92 MWD+IFR1+ MS
33.272	0	0	39.198	36.118	110.88 MWD+IFR1+ MS
33.719	0	0	39.276	36.255	112.914 MWD+IFR1+ MS
34.191	0	0	39.376	36.408	115.102 MWD+IFR1+ MS
34.655	0	0	39.475	36.547	117.448 MWD+IFR1+ MS
35.143	0	0	39.596	36.69	119.829 MWD+IFR1+ MS
35.637	0	0	39.721	36.827	122.446 MWD+IFR1+ MS
36.152	0	0	39.869	36.965	125.044 MWD+IFR1+ MS
36.661	0	0	40.025	37.094	127.828 MWD+IFR1+ MS
37.189	0	0	40.207	37.221	130.521 MWD+IFR1+ MS
37.723	0	0	40.405	37.343	133.194 MWD+IFR1+ MS
38.262	0	0	40.608	37.443	-44.188 MWD+IFR1+ MS
38.82	0	0	40.842	37.549	-41.663 MWD+IFR1+ MS
39.383	0	0	41.085	37.643	-39.362 MWD+IFR1+ MS
39.95	0	0	41.344	37.732	-37.179 MWD+IFR1+ MS
40.522	0	0	41.618	37.814	-35.135 MWD+IFR1+ MS
41.097	0	0	41.907	37.891	-33.229 MWD+IFR1+ MS
41.689	0	0	42.211	37.964	-31.462 MWD+IFR1+ MS
42.285	0	0	42.532	38.04	-29.904 MWD+IFR1+ MS
42.884	0	0	42.852	38.101	-28.452 MWD+IFR1+ MS

						ı
43.486	0	0	43.193	38.162	-27.052	MWD+IFR1+ MS
44.102	0	0	43.54	38.226	-25.874	MWD+IFR1+ MS
44.721	0	0	43.904	38.281	-24.676	MWD+IFR1+ MS
45.343	0	0	44.27	38.342	-23.659	MWD+IFR1+ MS
45.967	0	0	44.647	38.401	-22.719	MWD+IFR1+ MS
46.605	0	0	45.032	38.447	-21.807	MWD+IFR1+ MS
47.244	0	0	45.426	38.503	-20.986	MWD+IFR1+ MS
47.885	0	0	45.83	38.557	-20.227	MWD+IFR1+ MS
48.528	0	0	46.232	38.609	-19.544	MWD+IFR1+ MS
49.173	0	0	46.651	38.661	-18.877	MWD+IFR1+ MS
49.83	0	0	47.069	38.71	-18.275	MWD+IFR1+ MS
50.488	0	0	47.504	38.761	-17.686	MWD+IFR1+ MS
51.147	0	0	47.936	38.809	-17.152	MWD+IFR1+ MS
51.807	0	0	48.376	38.856	-16.654	MWD+IFR1+ MS
52.479	0	0	48.821	38.903	-16.177	MWD+IFR1+ MS
53.151	0	0	49.274	38.962	-15.741	MWD+IFR1+ MS
53.824	0	0	49.733	39.007	-15.317	MWD+IFR1+ MS
54.498	0	0	50.189	39.064	-14.938	MWD+IFR1+ MS
55.182	0	0	50.66	39.109	-14.553	MWD+IFR1+ MS
55.866	0	0	51.128	39.165	-14.208	MWD+IFR1+ MS
56.551	0	0	51.61	39.21	-13.858	MWD+IFR1+ MS
57.236	0	0	52.089	39.265	-13.547	MWD+IFR1+ MS
57.922	0	0	52.573	39.32	-13.249	MWD+IFR1+ MS
58.617	0	0	53.063	39.374	-12.963	MWD+IFR1+ MS
59.313	0	0	53.557	39.429	-12.688	MWD+IFR1+ MS
60.008	0	0	54.056	39.483	-12.423	MWD+IFR1+ MS
60.704	0	0	54.551	39.537	-12.178	MWD+IFR1+ MS
61.408	0	0	55.06	39.59	-11.933	MWD+IFR1+ MS
62.113	0	0	55.565	39.643	-11.708	MWD+IFR1+ MS

62.817	0	0	56.082	39.697	-11.48 MWD+IFR1+ MS
63.522	0	0	56.595	39.749	-11.271 MWD+IFR1+ MS
64.234	0	0	57.112	39.814	-11.072 MWD+IFR1+ MS
64.946	0	0	57.634	39.866	-10.876 MWD+IFR1+ MS
65.658	0	0	58.159	39.931	-10.689 MWD+IFR1+ MS
66.37	0	0	58.689	39.983	-10.506 MWD+IFR1+ MS
67.089	0	0	59.214	40.047	-10.339 MWD+IFR1+ MS
67.801	0	0	59.751	40.098	-10.166 MWD+IFR1+ MS
68.52	0	0	60.283	40.162	-10.008 MWD+IFR1+ MS
69.239	0	0	60.827	40.225	-9.85 MWD+IFR1+ MS
69.964	0	0	61.366	40.288	-9.701 MWD+IFR1+ MS
70.668	0	0	61.901	40.352	-9.558 MWD+IFR1+ MS

DRILLING PLAN: NMOCD COMPLIANCE (Supplement to NMOCD 3160-3)

XTO Energy Inc.
Remuda North 25 State 706H
Projected TD: 17098' MD / 9140' TVD
SHL: 2370' FNL & 630' FWL , Section 30, T23S, R30E
BHL: 200' FNL & 550' FEL , Section 24, T23S, R29E
Eddy County, NM

1. Geologic Name of Surface Formation

A. Quaternary

2. Estimated Tops of Geological Markers & Depths of Anticipated Fresh Water, Oil or Gas

Formation	Well Depth (TVD)	Water/Oil/Gas
Rustler	115'	Water
Top of Salt	404'	Water
Base of Salt	3118'	Water
Delaware	3331'	Water
Brushy Canyon	5832'	Water/Oil/Gas
Bone Spring	7073'	Water
1st Bone Spring Ss	8133'	Water/Oil/Gas
2nd Bone Spring Ss	8952'	Water/Oil/Gas
Target/Land Curve	9140'	Water/Oil/Gas

^{***} Hydrocarbons @ Brushy Canyon

No other formations are expected to yield oil, gas or fresh water in measurable volumes. The surface fresh water sands will be protected by setting 13.375 inch casing @ 379' (25' above the salt) and circulating cement back to surface. The intermediate will isolate from the top of salt down to the next casing seat by setting 9.625 inch casing at 3218' and cementing to surface. An 8.5 inch curve and 8.5 inch lateral hole will be drilled to 17098 MD/TD and 5.5 inch production casing will be set at TD and cemented back up to the Brushy Canyon (estimated TOC 6332 feet) with a secondary bradenhead squeeze after frac operations are complete to 500' inside the intermediate casing shoe (estimated TOC 2718) feet.

3. Casing Design

Hole Size	Depth	OD Csg	Weight	Grade	Collar	New/Used	SF Burst	SF Collapse	SF Tension
17.5	0' – 379'	13.375	54.5	J-55	втс	New	2.84	6.75	41.30
12.25	0' – 3218'	9.625	53.5	HC P-110	BTC	New	5.25	5.49	9.98
8.5	0' – 3118'	5.5	20	RY P-110	Semi-Premium	New	1.05	7.96	2.61
8.5	3118' - 17098'	5.5	20	RY P-110	Semi-Premium	New	1.05	2.72	2.61

- · XTO requests the option to utilize a spudder rig (Atlas Copco RD20 or Equivalent) to set and cement surface casing per this Sundry
- · XTO requests to not utilize centralizers in the curve and lateral
- 9.625 Collapse analyzed using 50% evacuation based on regional experience.
- · 5.5 Tension calculated using vertical hanging weight plus the lateral weight multiplied by a friction factor of 0.35
- · Test on Casing will be limited to 70% burst of the casing or 1500 psi, whichever is less
- \cdot XTO requests the option to use 5" BTC Float equipment for the the production casing

Wellhead:

Permanent Wellhead - Multibowl System

A. Starting Head: 13-5/8" 10M top flange x 13-3/8" bottom

- B. Tubing Head: 13-5/8" 10M bottom flange x 7-1/16" 15M top flange
 - · Wellhead will be installed by manufacturer's representatives.
 - · Manufacturer will monitor welding process to ensure appropriate temperature of seal.
 - · Operator will test the 9-5/8" casing per NMOCD Onshore Order 2
 - $\cdot \ \text{Wellhead Manufacturer representative will not be present for BOP test plug installation}$

^{***} Groundwater depth 40' (per NM State Engineers Office).

4. Cement Program

Surface Casing: 13.375, 54.5 New BTC, J-55 casing to be set at +/- 379'

Tail: 490 sxs Class C + 2% CaCl (mixed at 14.8 ppg, 1.33 ft3/sx, 6.39 gal/sx water)

Top of Cement: Surface

Compressives: 12-hr = 900 psi 24 hr = 1500 psi

Intermediate Casing: 9.625, 53.5 New BTC, HC P-110 casing to be set at +/- 3218'

Lead: 1030 sxs Class C (mixed at 12.9 ppg, 1.65 ft3/sx, 10.13 gal/sx water)

Top of Cement: Surface

Compressives: 12-hr = 900 psi 24 hr = 1500 psi

Production Casing: 5.5, 20 New Semi-Premium, RY P-110 casing to be set at +/- 17098'

<u>1st Stage</u>

Optional Lead: 170 sxs Class C (mixed at 10.5 ppg, 2 ft3/sx, 15.59 gal/sx water)

Top of Cement: Brushy Canyon @ 6332

Tail: 1800 sxs Class C (mixed at 14.8 ppg, 1.39 ft3/sx, 6.39 gal/sx water)

Top of Cement: 7,588

Compressives: 12-hr = 900 psi 24 hr = 1150 psi

2nd Stage

Lead: 0 sxs Class C (mixed at 12.9 ppg, 2 ft3/sx, 9.61 gal/sx water) Tail: 480 sxs Class C (mixed at 14.8 ppg, 2 ft3/sx, 6.39 gal/sx water)

Top of Cement: 2718

Compressives: 12-hr = 900 psi 24 hr = 1150 psi

XTO requests to pump a two stage cement job on the 5-1/2" production casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon (6332') and the second stage performed after frac operations are complete as a bradenhead squeeze with planned cement from the Brushy Canyon to 500' inside the previous casing shoe (2718').

XTO will report the volume of fluid (limited to 5 bbls) used to flush production casing valves following backside cementing procedures.

XTO requests the option to conduct the bradenhead squeeze offline as per standard approval when unplanned remediation is needed and batch drilling is approved. In the event the bradenhead is conducted, we will ensure the first stage cement job is cemented properly and the well is static with floats holding and no pressure on the csg annulus as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

XTO requests the option to offline cement and remediate (if needed) surface, intermediate, and production casing strings where batch drilling is approved and if unplanned remediation is needed. XTO will ensure well is static with no pressure on the csg annulus, as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed when applicable per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops. Offline cement operations will then be conducted after the rig is moved off the current well to the next well in the batch sequence.

5. Pressure Control Equipment

Once the permanent WH is installed on the 13.375 casing, the blow out preventer equipment (BOP) will consist of a 13-5/8" minimum 3M Hydril and a 13-5/8" minimum 3M Double Ram BOP. MASP should not exceed 2077 psi. In any instance where 10M BOP is required by NMOCD, XTO requests a variance to utilize 5M annular with 10M ram preventers (a common BOP configuration, which allows use of 10M rams in unlikely event that pressures exceed 5M).

All BOP testing will be done by an independent service company. Annular pressure tests will be limited to 50% of the working pressure. When nippling up on the 13.375, 3M bradenhead and flange, the BOP test will be limited to 3000 psi. When nippling up on the 9.625, the BOP will be tested to a minimum of 3000 psi. All BOP tests will include a low pressure test as per NMOCD regulations. The 3M BOP diagrams are attached. Blind rams will be functioned tested each trip, pipe rams will be functioned tested each day.

A variance is requested to allow use of a flex hose as the choke line from the BOP to the Choke Manifold. If this hose is used, a copy of the manufacturer's certification and pressure test chart will be kept on the rig. Attached is an example of a certification and pressure test chart. The manufacturer does not require anchors.

XTO requests a variance to be able to batch drill this well if necessary. In doing so, XTO will set casing and ensure that the well is cemented properly (unless approval is given for offline cementing) and the well is static. With floats holding, no pressure on the csg annulus, and the installation of a 10K TA cap as per Cactus recommendations, XTO will contact the NMOCD to skid the rig to drill the remaining wells on the pad. Once surface and both intermediate strings are all completed, XTO will begin drilling the production

hole on each of the wells.

A variance is requested to ONLY test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API standard 53 states, that for pad drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken. Based on discussions with the NMOCD on February 27th 2020, we will request permission to ONLY retest broken pressure seals if the following conditions are met: 1. After a full BOP test is conducted on the first well on the pad 2. When skidding to drill an intermediate section that does not penetrate into the Wolfcamp.

6. Proposed Mud Circulation System

INTERVAL	Hole Size	Mud Type	MW	Viscosity	Fluid Loss
INTERVAL	Fiole Size	Mud Type	(ppg) (sec/qt)		(cc)
0' - 379'	17.5	FW/Native	8.5-9	35-40	NC
379' - 3218'	12.25	Brine	10-10.5	30-32	NC
3218' - 17098'	8.5	ОВМ	8.6-9.6	50-60	NC - 20

The necessary mud products for weight addition and fluid loss control will be on location at all times.

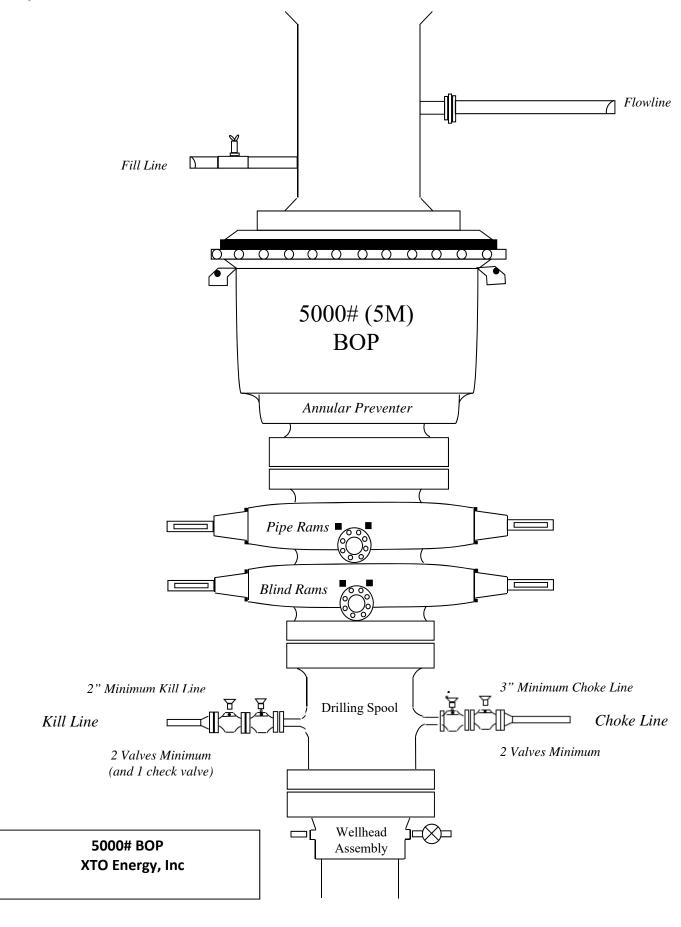
Spud with fresh water/native mud. Drill out from under 13-3/8" surface casing with brine solution. A 10.0 ppg - 10.5 ppg brine mud will be used while drilling through the salt formation. Use fibrous materials as needed to control seepage and lost circulation. Pump viscous sweeps as needed for hole cleaning. Pump speed will be recorded on a daily drilling report after mudding up. A Pason or Totco will be used to detect changes in loss or gain of mud volume. A mud test will be performed every 24 hours to determine: density, viscosity, strength, filtration and pH as necessary. Use available solids controls equipment to help keep mud weight down after mud up. Rig up solids control equipment to operate as a closed loop system.

7. Auxiliary Well Control and Monitoring Equipment

- A. A Kelly cock will be in the drill string at all times.
- B. A full opening drill pipe stabbing valve having appropriate connections will be on the rig floor at all times.
- C. H2S monitors will be on location when drilling below the 13.375 casing.

8. Logging, Coring and Testing Program

Mud Logger: Mud Logging Unit (2 man) below intermediate casing.


Open hole logging will not be done on this well.

9. Abnormal Pressures and Temperatures / Potential Hazards

None Anticipated. BHT of 155 to 175 F is anticipated. No H2S is expected but monitors will be in place to detect any H2S occurrences. Should these circumstances be encountered the operator and drilling contractor are prepared to take all necessary steps to ensure safety of all personnel and environment. Lost circulation could occur but is not expected to be a serious problem in this area and hole seepage will be compensated for by additions of small amounts of LCM in the drilling fluid. The maximum anticipated bottom hole pressure for this well is 4087 psi.

10. Anticipated Starting Date and Duration of Operations

Anticipated spud date will be after NMOCD approval. Move in operations and drilling is expected to take 40 days.

HYDROGEN SULFIDE (H2S) CONTINGENCY PLAN

Assumed 100 ppm ROE = 3000'

100 ppm H2S concentration shall trigger activation of this plan.

Emergency Procedures

In the event of a release of gas containing H₂S, the first responder(s) must

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response
- Take precautions to avoid personal injury during this operation.
- Contact operator and/or local officials to aid in operation. See list of phone numbers attached.
- Have received training in the
 - o Detection of H₂S, and
 - o Measures for protection against the gas,
 - o Equipment used for protection and emergency response.

Ignition of Gas source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO_2). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever this is an ignition of the gas.

Characteristics of H₂S and SO₂

Common Name	Chemical Formula	Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration
Hydrogen Sulfide	H ₂ S	1.189 Air = I	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO ₂	2.21 Air = I	2 ppm	N/A	1000 ppm

Contacting Authorities

All XTO location personnel must liaison with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including directions to site. The following call list of essential and potential responders has been prepared for use during a release. (Operator Name)'s response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER).

CARLSBAD OFFICE – EDDY & LEA COUNTIES

3104 E. Greene St., Carlsbad, NM 88220 Carlsbad, NM	575-887-7329
XTO PERSONNEL: Kendall Decker, Drilling Manager Milton Turman, Drilling Superintendent Jeff Raines, Construction Foreman Toady Sanders, EH & S Manager Wes McSpadden, Production Foreman	903-521-6477 817-524-5107 432-557-3159 903-520-1601 575-441-1147
SHERIFF DEPARTMENTS: Eddy County Lea County	575-887-7551 575-396-3611
NEW MEXICO STATE POLICE:	575-392-5588
FIRE DEPARTMENTS: Carlsbad Eunice Hobbs Jal Lovington	911 575-885-2111 575-394-2111 575-397-9308 575-395-2221 575-396-2359
HOSPITALS: Carlsbad Medical Emergency Eunice Medical Emergency Hobbs Medical Emergency Jal Medical Emergency Lovington Medical Emergency	911 575-885-2111 575-394-2112 575-397-9308 575-395-2221 575-396-2359
AGENT NOTIFICATIONS: For Lea County: Bureau of Land Management – Hobbs New Mexico Oil Conservation Division – Hobbs	575-393-3612 575-393-6161
For Eddy County: Bureau of Land Management - Carlsbad New Mexico Oil Conservation Division - Artesia	575-234-5972 575-748-1283

XTO respectfully requests approval to utilize a spudder rig to pre-set surface casing.

Description of Operations:

- 1. Spudder rig will move in to drill the surface hole and pre-set surface casing on the well.
 - a. After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
 - b. The spudder rig will utilize fresh water-based mud to drill the surface hole to TD. Solids control will be handled entirely on a closed loop basis. No earth pits will be used.
- 2. The wellhead will be installed and tested as soon as the surface casing is cut off and WOC time has been reached.
- 3. A blind flange at the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wing valves.
 - a. A means for intervention will be maintained while the drilling rig is not over the well.
- 4. Spudder rig operations are expected to take 2-3 days per well on the pad.
- 5. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 6. Drilling Operations will begin with a larger rig and a BOP stack equal to or greater than the pressure rating that was permitted will be nippled up and tested on the wellhead before drilling operations resume on each well.
 - a. The larger rig will move back onto the location within 180 days from the point at which the wells are secured and the spudder rig is moved off location.
 - b. The BLM will be notified 24 hours before the larger rig moves back on the pre-set locations
- 7. XTO will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations.
- 8. Once the rig is removed, XTO will secure the wellhead area by placing a guard rail around the cellar area.