Form 3160-3 FORM APPROVED OMB No. 1004-0137 (June 2015) Expires: January 31, 2018 **UNITED STATES** DEPARTMENT OF THE INTERIOR 5. Lease Serial No. BUREAU OF LAND MANAGEMENT APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. DRILL REENTER 1a. Type of work: 1b. Type of Well: Oil Well Gas Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing Single Zone Multiple Zone 2. Name of Operator 9. API Well No. 3a. Address 3b. Phone No. (include area code) 10. Field and Pool, or Exploratory 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. or Blk. and Survey or Area At surface At proposed prod. zone 14. Distance in miles and direction from nearest town or post office* 12. County or Parish 13. State 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see 2. A Drilling Plan. Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. SUPO must be filed with the appropriate Forest Service Office). 6. Such other site specific information and/or plans as may be requested by the 25. Signature Name (Printed/Typed) Date Title Approved by (Signature) Name (Printed/Typed) Date Title Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction

(Continued on page 2)

*(Instructions on page 2)

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

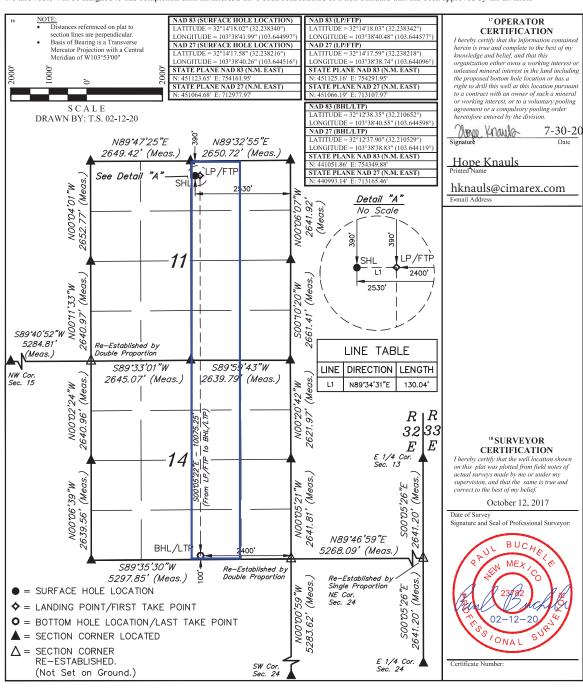
District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 Phone: (303) 334-0176 Fax: (303) 334-0170 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

■ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT


30-025 API Number	² Pool Code 98309	WC-025 G-08 S24321C;WOI	LFCAMP
4 Property Code		Property Name	⁶ Well Number
322999		11-14 FEDERAL COM	50H
⁷ OGRID No.		Operator Name	⁹ Elevation
215099		REX ENERGY CO.	3607.9'

[™]Surface Location

B	11	24S	32E	Lot Iuii	390	NORTH	2530	EAST	LEA
			11	Bottom H	ole Location I	f Different From	Surface		

	UL or lot no. O	Sect 14	ion 4	Township 24S	Range 32E	Lot Idn	Feet from the 100	North/South line SOUTH	Feet from the 2400	East/West line EAST	County LEA
ſ	12 Dedicated Acres 320		¹³ Jo	int or Infill	14 Conso	lidation Code	15 Order N				

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Dos Equis 11-14 Fed Com #11H Cimarex Energy Co. Sec. 11-24S-32E

Lease Plat

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: Cimarex LEASE NO.: NMNM001917

LOCATION: | Section 11, T.24 S., R.32 E., NMPM

COUNTY: Lea County, New Mexico

WELL NAME & NO.: Dos Equis 12-13 Fed Com 50H

SURFACE HOLE FOOTAGE: 390'/N & 2530'/E **BOTTOM HOLE FOOTAGE** 100'/S & 2400'/E

COA

H2S	Yes	O No	
Potash	None	© Secretary	© R-111-P
Cave/Karst Potential	• Low	© Medium	C High
Cave/Karst Potential	Critical		
Variance	O None	• Flex Hose	Other
Wellhead	Conventional	Multibowl	© Both
Other	☐ 4 String Area	☐ Capitan Reef	□WIPP
Other	Fluid Filled	☐ Cement Squeeze	☐ Pilot Hole
Special Requirements	☐ Water Disposal	▼ COM	□ Unit

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Delaware Group** formation. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- 1. The 10-3/4 inch surface casing shall be set at approximately 1235 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of 8

- **hours** or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept 1/3rd fluid filled to meet BLM minimum collapse requirement.

- 2. The minimum required fill of cement behind the **7-5/8** inch intermediate casing Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.
 - a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
 - b. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.
 - Wait on cement (WOC) time for a primary cement job is to include the tail cement slurry due to cave/karst.
- 3. The minimum required fill of cement behind the $5-1/2 \times 5$ inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **10,000** (**10M**) psi. Variance is approved to use a **5000** (**5M**) Annular which shall be tested to **5000** (**5M**) psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - ☑ Eddy CountyCall the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
 - Lea County
 Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575)

Page 3 of 7

393-3612

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24

- hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
 - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to

Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).

- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

ZS081121

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report

12/07/2021

APD ID: 10400060936

Submission Date: 09/08/2020

Highlighted data reflects the most recent changes

Operator Marrie

Operator Name: CIMAREX ENERGY COMPANY

Well Number: 50H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - General

Well Name: DOS EQUIS 11-14 FEDERAL COM

APD ID: 10400060936 Tie to previous NOS? Y

Submission Date: 09/08/2020

BLM Office: Carlsbad

User: HOPE KNAULS

Title: Regulatory Technician

Federal/Indian APD: FED

Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM02889

Lease Acres:

Surface access agreement in place?

Allotted?

Reservation:

Agreement in place? NO

Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? Y

Permitting Agent? NO

APD Operator: CIMAREX ENERGY COMPANY

Operator letter of designation:

Operator Info

Operator Organization Name: CIMAREX ENERGY COMPANY

Operator Address: 600 N MARIENFELD STREET ST SUITE 600

Operator PO Box:

Zip: 79701

On and the Bloom (400) 574 700

Operator Phone: (432)571-7800

Operator Internet Address:

Operator City: MIDLAND

Section 2 - Well Information

Well in Master Development Plan? NO Master Development Plan name:

State: TX

Well in Master SUPO? NO Master SUPO name:

Well in Master Drilling Plan? NO Master Drilling Plan name:

Well Name: DOS EQUIS 11-14 FEDERAL COM Well Number: 50H Well API Number:

Field/Pool or Exploratory? Field and Pool Field Name: WC-025 G-08 Pool Name: WC-025 G-08

S243213C; WOLFCAMP S243213C; WOLFCAMP

Is the proposed well in an area containing other mineral resources? USEABLE WATER, NATURAL GAS, OIL

Well Name: DOS EQUIS 11-14 FEDERAL COM Well Number: 50H

Is the proposed well in an area containing other mineral resources? USEABLE WATER, NATURAL GAS, OIL

Is the proposed well in a Helium production area? N Use Existing Well Pad? N New surface disturbance?

Type of Well Pad: MULTIPLE WELL Multiple Well Pad Name: Dos Number: W2E2

Well Class: HORIZONTAL Equis Fed Com
Number of Legs: 1

Well Work Type: Drill
Well Type: OIL WELL
Describe Well Type:
Well sub-Type: INFILL

Describe sub-type:

Distance to town: 28 Miles Distance to nearest well: 20 FT Distance to lease line: 390 FT

Reservoir well spacing assigned acres Measurement: 320 Acres

Well plat: Dos_Equis_11_14_Fed_Com_50H_C102_20200831134639.pdf

Dos_Equis_11_14_Fed_com_50H_Lease_Plat_20200831134654.pdf

Well work start Date: 02/29/2020 Duration: 30 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83 Vertical Datum: NAVD88

Survey number: Reference Datum: GROUND LEVEL

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
SHL Leg #1	390	FNL	253 0	FEL	24S	32E	11	Aliquot NWNE	32.23834	- 103.6449 97	LEA	NEW MEXI CO	\	F	NMNM 02889	360 7	0	0	N
KOP Leg #1	216	FNL	240 1	FEL	24S	32E	11	Aliquot NWNE	32.23883 3	- 103.6445 83	LEA	NEW MEXI CO	FIRS T PRIN	F	NMNM 02889	- 878 3	124 00	123 90	N

Well Name: DOS EQUIS 11-14 FEDERAL COM Well Number: 50H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
PPP	264	FNL	239	FEL	24S	32E	11	Aliquot	32.23215		LEA	1	FIRS T	F	NMNM	-	151	129	N
Leg #1-1	6		6					NWSE	3	103.6445 86		MEXI CO	PRIN		01917	929 3	06	00	
PPP	0	FNL	240	FEL	24S	32E	11	Aliquot	32.22489		LEA	1		F	NMNM	-	177	129	Υ
Leg			1					NWNE	2	103.6445		MEXI			033503	929	49	00	
#1-2										92		CO	PRIN			3			
EXIT	100	FSL	240	FEL	24S	32E	14	Aliquot	32.23834	-	LEA	NEW	FIRS	F	NMNM	-	229	129	Υ
Leg			0					SWSE	2	103.6445		MEXI	Т		033503	929	29	00	
#1										77		CO	PRIN			3			
BHL	100	FSL	240	FEL	24S	32E	14	Aliquot	32.23834		LEA	NEW	FIRS	F	NMNM	-	229	129	Υ
Leg			0					SWSE	2	103.6445		,	Т	6	033503	929	29	00	
#1										77		СО	PRIN			3			

APD ID: 10400060936

Well Type: OIL WELL

U.S. Department of the Interior

Drilling Plan Data Report

BUREAU OF LAND MANAGEMENT

Submission Date: 09/08/2020

Highlighted data reflects the most recent changes

Operator Name: CIMAREX ENERGY COMPANY

Well Number: 50H

Show Final Text

Well Name: DOS EQUIS 11-14 FEDERAL COM

Well Work Type: Drill

Section 1 - Geologic Formations

Formation ID	Formation Name	Florestion	True Vertical		Lithologico	Minoral Descurace	Producing
838242	RUSTLER	Elevation 3603	Depth 1166	Depth 1166	Lithologies LIMESTONE	Mineral Resources USEABLE WATER	Formation N
838243	SALADO	2213	1390	1390	ANHYDRITE	NONE	N
838244	BASE OF SALT	-1081	4684	4694	ANHYDRITE	NONE	N
838245	LAMAR	-1307	4910	4920	SANDSTONE	NONE	N
838246	BELL CANYON	-1362	4965	4975	SANDSTONE	NONE	N
838247	CHERRY CANYON	-2255	5858	5868	SANDSTONE	NONE	N
838248	BRUSHY CANYON	-3619	7222	7232	SANDSTONE	NATURAL GAS, OIL	N
838249	BONE SPRING	-5176	8779	8789	LIMESTONE	NATURAL GAS, OIL	N
838250	UPPER AVALON SHALE	-5616	9219	9229	SHALE	NATURAL GAS, OIL	N
838251	BONE SPRING 1ST	-6341	9944	9954	SANDSTONE	NATURAL GAS, OIL	N
838252	BONE SPRING 2ND	-6875	10478	10488	LIMESTONE	NATURAL GAS, OIL	N
838253	BONE SPRING 3RD	-8242	11845	11845	LIMESTONE	NATURAL GAS, OIL	N
838254	WOLFCAMP	-8625	12228	12228	SANDSTONE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Well Name: DOS EQUIS 11-14 FEDERAL COM Well Number: 50H

Pressure Rating (PSI): 10M Rating Depth: 22929

Equipment: A BOP consisting of three rams, including one blind ram and two pipe rams and one annular preventer. An accumulator that meets the requirements in Onshore Order #2 for the pressure rating of the BOP stack. A rotating head may be installed as needed. A Kelly clock will be installed and maintained in operable condition and a drill string safety valve in the open position will be available on the rig floor.

Requesting Variance? YES

Variance request: Co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. The hose is not required by the manufacturer to be anchored. In the event the specific hose is not available, one of equal or higher rating will be used. Variance to include Hammer Union connections on lines downstream of the buffer tank only. Cimarex requests a 5M annular variance for the 10M BOP system. See attached procedure

Testing Procedure: A multi-bowl wellhead system will be utilized. After running the 10-3/4" surface casing, a 13 5/8 BOP/BOPE system with a minimum working pressure of 10000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 10000 psi test. Annular will be tested to 50% of working pressure. The pressure test will be repeated at least every 30 days, as per Onshore Order No. 2. The multi-bowl wellhead will be installed by vendors representative. A copy of the installation instructions has been sent to the BLM field office. The wellhead will be installed by a third-party welder while being monitored by the wellhead vendor representative. All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type. A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 10000 psi. The surface casing string will be tested as per Onshore Order No. 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater. The casing string utilizing steel body pack-off will be tested to 70% of casing burst. If well conditions dictate conventional slips will be set and BOPE will be tested to appropriate pressures based on permitted pressure requirements.

Choke Diagram Attachment:

Dos_Equis_11_14_Fed_com_50H_Choke_10M_20200903134810.pdf

BOP Diagram Attachment:

Dos_Equis_11_14_Fed_Com_50H_BOP_10M_20200903134816.pdf

Pressure Rating (PSI): 5M Rating Depth: 1235

Equipment: A BOP consisting of three rams, including one blind ram and two pipe rams and one annular preventer. An accumulator that meets the requirements in Onshore Order #2 for the pressure rating of the BOP stack. A rotating head may be installed as needed. A Kelly clock will be installed and maintained in operable condition and a drill string safety valve in the open position will be available on the rig floor.

Requesting Variance? YES

Variance request: Co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. The hose is not required by the manufacturer to be anchored. In the event the specific hose is not available, one of equal or higher rating will be used. Variance to include Hammer Union connections on lines downstream of the buffer tank only. Cimarex requests a 5M annular variance for the 10M BOP system. See attached procedure.

Testing Procedure: A multi-bowl wellhead system will be utilized. After running the 10-3/4" surface casing, a 13 5/8 BOP/BOPE system with a minimum working pressure of 5000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 5000 psi test. Annular will be tested to 100% of working pressure. The pressure test will be repeated at least every 30 days, as per Onshore Order No. 2. The multi-bowl wellhead will be installed by vendors representative. A copy of the installation instructions has been sent to the BLM field office. The wellhead will be installed by a third-party welder while being monitored by the wellhead vendor representative. All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type. A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 5000 psi. The surface casing string will be tested as per Onshore Order No. 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater. The casing string utilizing steel body pack-off will be tested to 70% of casing burst. If well conditions dictate conventional slips will be set and BOPE will be tested to appropriate pressures based on permitted pressure requirements.

Choke Diagram Attachment:

Well Name: DOS EQUIS 11-14 FEDERAL COM Well Number: 50H

Dos_Equis_11_14_Fed_Com_50H_Choke_5M_20200903134740.pdf

BOP Diagram Attachment:

 $Dos_Equis_11_14_Fed_Com_50H_BOP_5M_20200903134749.pdf$

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	14.7 5	10.75	NEW	API	N	0	1235	0	1235	3607	2372	1235	J-55	40.5	BUTT	2.95	5.85	BUOY	12.5 8	BUOY	12.5 8
	PRODUCTI ON	6.75	5.5	NEW	API	N	0	12401	0	12401	3603	-8794	12401	L-80	23	LT&C	1.38	1.23	BUOY	2.11	BUOY	2.11
	INTERMED IATE	9.87 5	7.625	NEW	API	N	0	13026	0	12851	3603	-9244	13026	L-80	29.7	BUTT	2.38	1.15	BUOY	1.74	BUOY	1.74
	PRODUCTI ON	6.75	5.0	NEW	API	N	12401	22929	12401	12900	-8794	-9293	10528	P- 110	18	BUTT	1.62	1.62	BUOY	64.5 7	BUOY	64.5 7

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Dos_Equis_11_14_Fed_Com_50H_Casing_Assumptions_20200903135001.pdf

Well Name: DOS EQUIS 11-14 FEDERAL COM Well Number: 50H

Casing Attachments

Casing ID: 2

String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Dos_Equis_11_14_Fed_Com_50H_Casing_Assumptions_20200903135711.pdf

Casing ID: 3

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Dos_Equis_11_14_Fed_Com_50H_Casing_Assumptions_20200903135119.pdf

Casing ID: 4

String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Dos_Equis_11_14_Fed_Com_50H_Casing_Assumptions_20200903135857.pdf

Section 4 - Cement

Well Name: DOS EQUIS 11-14 FEDERAL COM

Well Number: 50H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Lead		0	0	0	0	0	0	0	we have a tail only string for prod see below	0
PRODUCTION	Tail		0	2292 9	846	1.3	14.2	1099	25	Tail: 50:50 (PozC)	Salt, Bentonite, Fluid Loss, Dispersant, SMS
PRODUCTION	Lead		0	0	0	0	0	0	0	0	0

SURFACE	Lead	0	1235	480	1.72	13.5	824	50	Class C	Bentonite
SURFACE	Tail	0	1235	128	1.34	14.8	171	25	Class C	LCM
INTERMEDIATE	Lead	0	4900	782	1.88	12.9	1470	50	35:65 (POZ C)	Salt, Bentonite

INTERMEDIATE	Lead	4900	4900	1302 6	631	3.64	10.3	2296	50	Tuned Light	LCM
INTERMEDIATE	Tail		4900	1302 6	207	1.3	14.2	268	25	50:50 (POH)	salt, bentonite, fluid loss, dispersant,sms

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials will be kept on location at all times in order to combat lost circulation or unexpected kicks. In order to run DSTs, open hole logs, and casing, the viscosity and water loss may have to be adjusted in order to meet these needs

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

Circulating Medium Table

Well Name: DOS EQUIS 11-14 FEDERAL COM

Well Number: 50H

O Top Depth	Bottom Depth	Mud Type	8.7 Min Weight (lbs/gal)	ထ ကax Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
	1233	3P0D 100D	7.0	0.3							
1235	1302	OTHER: The Brine Emulsion is completely saturated brine fluid that ties diesel into itself to lower the weight of the fluid. The drilling fluid is completely salt saturated.	8.5	9							
1302 6	2292 9	OIL-BASED MUD	12	12.5							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

No DST Planned

List of open and cased hole logs run in the well:

GAMMA RAY LOG, COMPENSATED NEUTRON LOG, DIRECTIONAL SURVEY,

Coring operation description for the well:

N/A

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 8385 Anticipated Surface Pressure: 5546

Anticipated Bottom Hole Temperature(F): 196

Anticipated abnormal pressures, temperatures, or potential geologic hazards? YES

Describe:

Lost circulation may be encountered in the Delaware mountain group. Abnormal pressure as well as hole stability issues may be encountered in the Wolfcamp

Contingency Plans geoharzards description:

Lost circulation material will be available, as well as additional drilling fluid along with the fluid volume in the drilling rig pit system. Drilling fluid can be mixed on location or mixed in vendor mud plant and trucked to location if needed. Sufficient barite will be available to maintain appropriate mud weight for the Wolfcamp interval.

Contingency Plans geohazards attachment:

Well Name: DOS EQUIS 11-14 FEDERAL COM Well Number: 50H

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

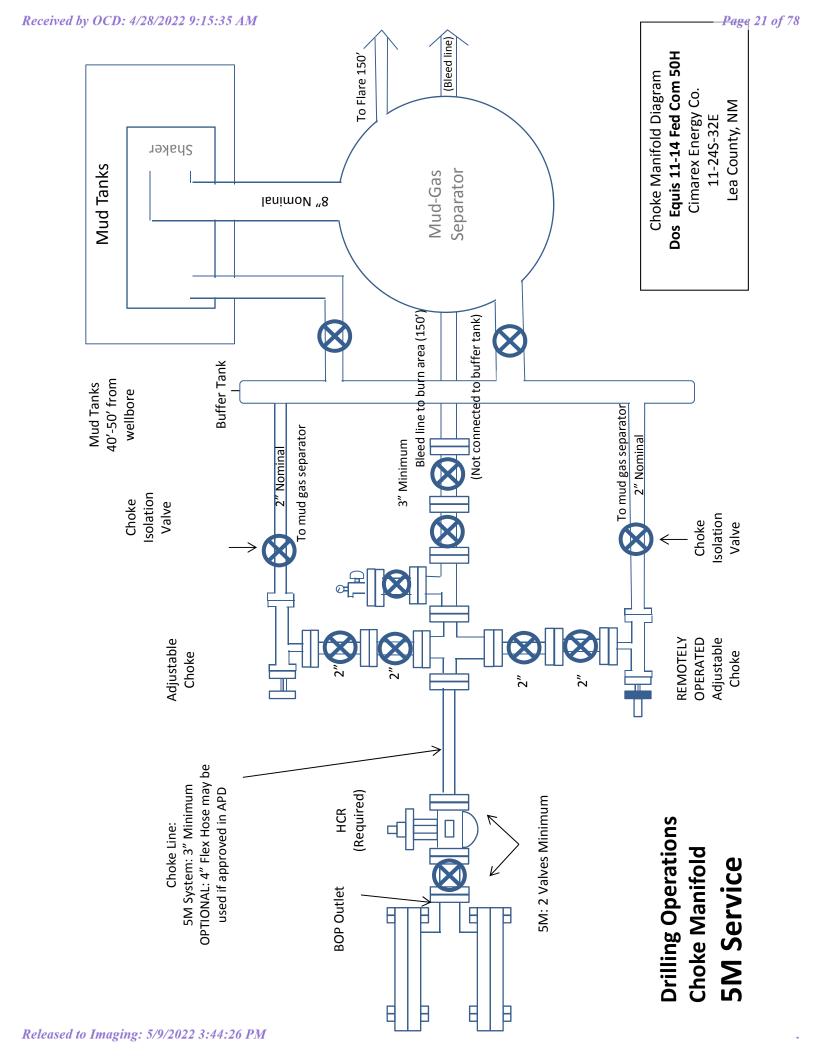
Dos_Equis_11_14_Fed_Com_50H_H2S_Plan_20200908120334.pdf

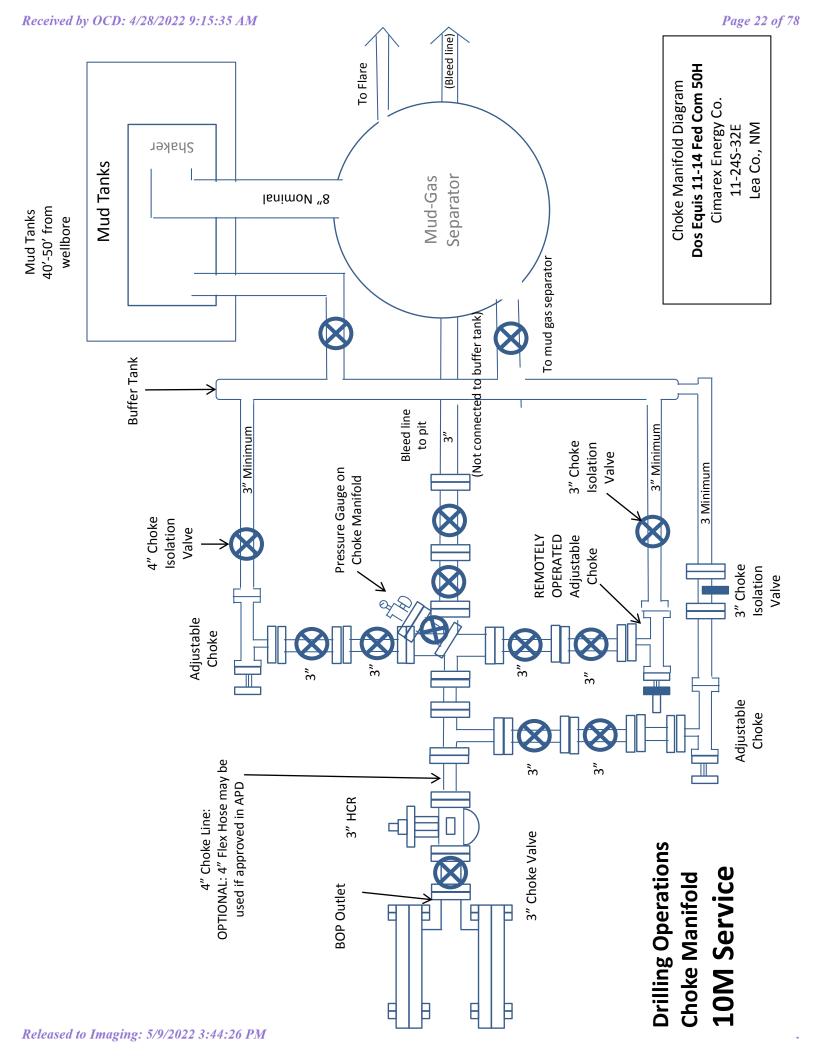
Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Dos_Equis_11_14_Fed_Com_50H_AC_Report_20200908120744.pdf
Dos_Equis_11_14_Fed_Com_50H_Directional_Plan_20200908122058.pdf

Other proposed operations facets description:

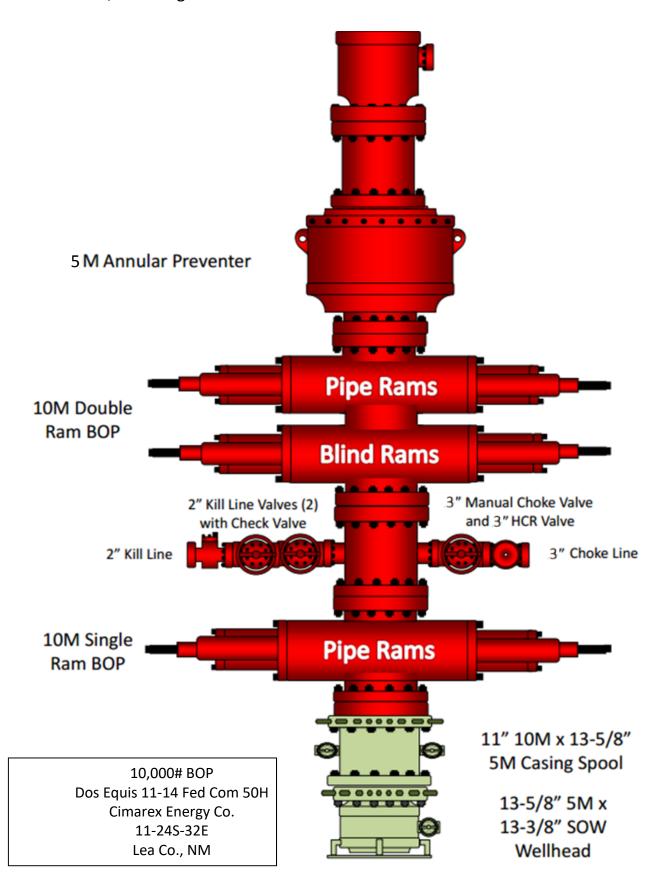

Cimarex requests a 5M annular variance for the 10M BOP system. See attached procedure


Other proposed operations facets attachment:

Dos_Equis_11_14_Fed_Com_50H_Flex_Hose_20200908122125.pdf
Dos_Equis_11_14_Fed_Com_50H_Gas_Capture_Plan_20200908122706.pdf
Dos_Equis_11_14_Fed_Com_50H_Drilling_Plan_20210304120034.pdf

Other Variance attachment:

Dos_Equis_11_14_Fed_Com_50H_Multibowl_Wellhead_20200908124302.pdf
Dos_Equis_11_14_Fed_Com_50H_10M_5M_Annular_Well_Control_20210304120102.pdf



13-5/8" 3000# psi x 13-3/8" SOW Casing Head

5-(X)-

Lea Co., NM

Drilling 6 3/4" Hole Below 7 5/8" Casing

Dos Equis 11-14 Fed Com 50H

Casing Assumptions

2. Casing Program

Hole Size	Casing Depth From		Setting Depth TVD	Casing Size	Weight (lb/ft)	Grade	Conn.	SF Collapse	SF Burst	SF Tension
14 3/4	0	1235	1235	10-3/4"	40.50	J-55	BT&C	2.95	5.85	12.58
9 7/8	0	13026	12851	7-5/8"	29.70	L-80	BT&C	2.38	1.15	1.74
6 3/4	0	12401	12401	5-1/2"	23.00	L-80	LT&C	1.38	1.23	2.11
6 3/4	12401	22929	12900	5"	18.00	P-110	BT&C	1.60	1.62	64.57
				-	BLM	Minimum S	afety Factor	1.125	1	1.6 Dry 1.8 Wet

TVD was used on all calculations.

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Dos Equis 11-14 Fed Com 50H

Casing Assumptions

2. Casing Program

Hole Size	Casing Depth From	Casing Depth To	Setting Depth TVD	Casing Size	Weight (lb/ft)	Grade	Conn.	SF Collapse	SF Burst	SF Tension
14 3/4	0	1235	1235	10-3/4"	40.50	J-55	BT&C	2.95	5.85	12.58
9 7/8	0	13026	12851	7-5/8"	29.70	L-80	BT&C	2.38	1.15	1.74
6 3/4	0	12401	12401	5-1/2"	23.00	L-80	LT&C	1.38	1.23	2.11
6 3/4	12401	22929	12900	5"	18.00	P-110	BT&C	1.60	1.62	64.57
					BLM	Minimum S	afety Factor	1.125	1	1.6 Dry 1.8 Wet

TVD was used on all calculations.

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Dos Equis 11-14 Fed Com 50H

Casing Assumptions

2. Casing Program

Hole Size	Casing Depth From	Casing Depth To	Setting Depth TVD	Casing Size	Weight (lb/ft)	Grade	Conn.	SF Collapse	SF Burst	SF Tension
14 3/4	0	1235	1235	10-3/4"	40.50	J-55	BT&C	2.95	5.85	12.58
9 7/8	0	13026	12851	7-5/8"	29.70	L-80	BT&C	2.38	1.15	1.74
6 3/4	0	12401	12401	5-1/2"	23.00	L-80	LT&C	1.38	1.23	2.11
6 3/4	12401	22929	12900	5"	18.00	P-110	BT&C	1.60	1.62	64.57
					BLM	Minimum S	afety Factor	1.125	1	1.6 Dry 1.8 Wet

TVD was used on all calculations.

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Dos Equis 11-14 Fed Com 50H

Casing Assumptions

2. Casing Program

Hole Size	Casing Depth From		Setting Depth TVD	Casing Size	Weight (lb/ft)	Grade	Conn.	SF Collapse	SF Burst	SF Tension
14 3/4	0	1235	1235	10-3/4"	40.50	J-55	BT&C	2.95	5.85	12.58
9 7/8	0	13026	12851	7-5/8"	29.70	L-80	BT&C	2.38	1.15	1.74
6 3/4	0	12401	12401	5-1/2"	23.00	L-80	LT&C	1.38	1.23	2.11
6 3/4	12401	22929	12900	5"	18.00	P-110	BT&C	1.60	1.62	64.57
				-	BLM	Minimum S	afety Factor	1.125	1	1.6 Dry 1.8 Wet

TVD was used on all calculations.

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Hydrogen Sulfide Drilling Operations Plan

Dos Equis 11-14 Fed Com 50H

Cimarex Energy Co. UL: B, Sec. 11, 24S, 32E Lea Co., NM

1 All Company and Contract personnel admitted on location must be trained by a qualified H2S safety instructor to the following:

- A. Characteristics of H₂S
- B. Physical effects and hazards
- C. Principal and operation of H2S detectors, warning system and briefing areas.
- D. Evacuation procedure, routes and first aid.
- E. Proper use of safety equipment & life support systems
- F. Essential personnel meeting Medical Evaluation criteria will receive additional training on the proper use of 30 minute pressure demand air packs.

H₂S Detection and Alarm Systems:

- A. H2S sensors/detectors to be located on the drilling rig floor, in the base of the sub structure/cellar area, on the mud pits in the shale shaker area. Additional H2S detectors may play placed as deemed necessary.
- B.

 An audio alarm system will be installed on the derrick floor and in the top doghouse.

3 Windsock and/or wind streamers:

- A. Windsock at mudpit area should be high enough to be visible.
- B.
- Windsock on the rig floor and / or top doghouse should be high enough to be visible.

4 Condition Flags and Signs

- A. Warning sign on access road to location.
- B. Flags to be displayed on sign at entrance to location. Green flag indicates normal safe condition. Yellow flag indicates potential pressure and danger. Red flag indicates danger (H₂S present in dangerous concentration). Only H2S trained and certified personnel admitted to location.

5 Well control equipment:

A. See exhibit "E-1"

6 <u>Communication:</u>

- A. While working under masks chalkboards will be used for communication.
- B. Hand signals will be used where chalk board is inappropriate.
- C. Two way radio will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at most drilling foreman's trailer or living quarters.

7 Drillstem Testing:

No DSTs r cores are planned at this time.

- 8 Drilling contractor supervisor will be required to be familiar with the effects H₂S has on tubular goods and other mechanical equipment.
- 9 If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary.

H₂S Contingency Plan
Dos Equis 11-14 Fed Com 50H
Cimarex Energy Co.
UL: B, Sec. 11, 24S, 32E Lea Co., NM

Emergency Procedures

In the event of a release of gas containing H₂S, the first responder(s) must:

- « Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- « Evacuate any public places encompassed by the 100 ppm ROE.
- « Be equipped with H₂S monitors and air packs in order to control the release.
- « Use the "buddy system" to ensure no injuries occur during the 432-620-1975
- « Take precautions to avoid personal injury during this operation.
- « Contact operator and/or local officials to aid in operation. See list of phone numbers attached.
- « Have received training in the:
 - Detection of H₂S, and
 - Measures for protection against the gas,
 - · Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO_2). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas.

Characteristics of H₂S and SO₂

Please see attached International Chemical Safety Cards.

Contacting Authorities

Cimarex Energy Co. of Colorado's personnel must liaise with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including directions to site. The following call list of essential and potential responders has been prepared for use during a release. Cimarex Energy Co. of Colorado's response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER).

H₂S Contingency Plan Emergency Contact s Dos Equis 11-14 Fed Com 50H Cimarex Energy Co. UL: B, Sec. 11, 24S, 32E Lea Co., NM

Cimarex Energy Co. of Colorado		800-969-4789		
Co. Office and After-Hours Menu				
Var. Davagement				
Key Personnel Name	Title	Office		Mobile
Larry Seigrist	Drilling Manager	432-620-1934		580-243-8485
Charlie Pritchard	Drilling Superintendent	432-620-1975		432-238-7084
Roy Shirley	Construction Superintendent	432 020 1373		432-634-2136
noy similey	construction supermeendent			132 03 1 2130
Artesia				
Ambulance		911		
State Police		575-746-2703		
City Police		575-746-2703		
Sheriff's Office		575-746-9888		
Fire Department		575-746-2701		
Local Emergency Planning Com	mittee	575-746-2122		
New Mexico Oil Conservation D		575-748-1283		
<u>Carlsbad</u>				
Ambulance		911		
State Police		575-885-3137		
City Police		575-885-2111		
Sheriff's Office		575-887-7551		
Fire Department		575-887-3798		
Local Emergency Planning Com		575-887-6544		
US Bureau of Land Managemer	t	575-887-6544		
Santa Fe				
New Mexico Emergency Respo	ase Commission (Santa Ee)	505-476-9600		
	nse Commission (Santa Fe) 24 Hrs	505-827-9126		
New Mexico State Emergency (505-476-9635		
New Mexico State Lineigency C	operations center	303-470-3033		
<u>National</u>				
National Emergency Response	Center (Washington, D.C.)	800-424-8802		
<u>Medical</u>				
Flight for Life - 4000 24th St.; Lu	ıbbock, TX	806-743-9911		
Aerocare - R3, Box 49F; Lubboc	k, TX	806-747-8923		
Med Flight Air Amb - 2301 Yale	Blvd S.E., #D3; Albuquerque, NM	505-842-4433		
SB Air Med Service - 2505 Clark	Carr Loop S.E.; Albuquerque, NM	505-842-4949		
Other				
Boots & Coots IWC		800-256-9688	or	281-931-8884
Cudd Pressure Control		432-699-0139	or	432-563-3356
Halliburton		575-746-2757		

Schlumberger

Cimarex Dos Equis 11-14 Federal Com 50H Rev0 RM 20Mar20 Proposal **Geodetic Report**

(Non-Def Plan)

Report Date: March 20, 2020 - 04:17 PM Client:

Cimarex Energy NM Lea County (NAD 83) Field:

Structure / Slot: Cimarex Dos Equis 11-14 Federal Com 50H / New Slot

Well: Dos Equis 11-14 Federal Com 50H Borehole: Dos Equis 11-14 Federal Com 50H

UWI / API#: Unknown / Unknown

Survey Name: Cimarex Dos Equis 11-14 Federal Com 50H Rev0 RM 20Mar20

Survey Date: March 20, 2020

Tort / AHD / DDI / ERD Ratio: 101.459 ° / 10473.804 ft / 6.276 / 0.812

Coordinate Reference System: NAD83 New Mexico State Plane, Eastern Zone, US Feet

Location Lat / Long: N 32° 14' 18.02427", W 103° 38' 41.98936" Location Grid N/E Y/X: N 451123.650 ftUS, E 754161.950 ftUS

CRS Grid Convergence Angle: 0.3672 ° **Grid Scale Factor:** 0.99996097 Version / Patch: 2.10.787.0

Survey / DLS Computation: Minimum Curvature / Lubinski **Vertical Section Azimuth:** 179.657 ° (Grid North) Vertical Section Origin: 0.000 ft, 0.000 ft

TVD Reference Datum: RKB

TVD Reference Elevation: 3633.900 ft above MSL 3607.900 ft above MSL Seabed / Ground Elevation:

Magnetic Declination: 6.603°

Total Gravity Field Strength: 998.4371mgn (9.80665 Based)

Gravity Model: GARM **Total Magnetic Field Strength:** 47836.580 nT

Magnetic Dip Angle: 59.893° **Declination Date:** March 20, 2020 HDGM 2020 Magnetic Declination Model:

North Reference: Grid North Grid Convergence Used: 0.3672° Total Corr Mag North->Grid 6.2361° North:

Local Coord Referenced To: Well Head

Comments	MD (ft)	Incl (°)	Azim Grid (°)	TVD (ft)	VSEC (ft)	NS (ft)	EW (ft)	DLS (°/100ft)	Northing (ftUS)	Easting (ftUS)	Latitude (N/S ° ' ")	Longitude (E/W ° ' ")
SHL [390' FNL, 2530' FEL]	0.00	0.00	178.93	0.00	0.00	0.00	0.00	N/A	451123.65	754161.95 N	32 14 18.02 W	103 38 41.99
	100.00	0.00	35.00	100.00	0.00	0.00	0.00	0.00	451123.65	754161.95 N	I 32 14 18.02 W	103 38 41.99
	200.00	0.00	35.00	200.00	0.00	0.00	0.00	0.00	451123.65	754161.95 N	I 32 14 18.02 W	103 38 41.99
	300.00	0.00	35.00	300.00	0.00	0.00	0.00	0.00	451123.65	754161.95 N	I 32 14 18.02 W	103 38 41.99
	400.00	0.00	35.00	400.00	0.00	0.00	0.00	0.00	451123.65	754161.95 N	I 32 14 18.02 W	103 38 41.99
	500.00	0.00	35.00	500.00	0.00	0.00	0.00	0.00	451123.65	754161.95 N	I 32 14 18.02 W	103 38 41.99
	600.00	0.00	35.00	600.00	0.00	0.00	0.00	0.00	451123.65	754161.95 N	I 32 14 18.02 W	103 38 41.99
	700.00	0.00	35.00	700.00	0.00	0.00	0.00	0.00	451123.65	754161.95 N	I 32 14 18.02 W	103 38 41.99
	800.00	0.00	35.00	800.00	0.00	0.00	0.00	0.00	451123.65	754161.95 N	I 32 14 18.02 W	103 38 41.99
	900.00	0.00	35.00	900.00	0.00	0.00	0.00	0.00	451123.65	754161.95 N	I 32 14 18.02 W	103 38 41.99
	1000.00	0.00	35.00	1000.00	0.00	0.00	0.00	0.00	451123.65	754161.95 N	I 32 14 18.02 W	103 38 41.99
	1100.00	0.00	35.00	1100.00	0.00	0.00	0.00	0.00	451123.65	754161.95 N	I 32 14 18.02 W	103 38 41.99
Rustler	1166.00	0.00	35.00	1166.00	0.00	0.00	0.00	0.00	451123.65	754161.95 N	32 14 18.02 W	103 38 41.99
	1200.00	0.00	35.00	1200.00	0.00	0.00	0.00	0.00	451123.65	754161.95 N	I 32 14 18.02 W	103 38 41.99
	1300.00	0.00	35.00	1300.00	0.00	0.00	0.00	0.00	451123.65	754161.95 N	I 32 14 18.02 W	103 38 41.99
Salado (Top Salt)	1390.00	0.00	35.00	1390.00	0.00	0.00	0.00	0.00	451123.65	754161.95 N	32 14 18.02 W	103 38 41.99
•	1400.00	0.00	35.00	1400.00	0.00	0.00	0.00	0.00	451123.65	754161.95 N	I 32 14 18.02 W	103 38 41.99
Nudge 2°/100' DLS	1500.00	0.00	35.00	1500.00	0.00	0.00	0.00	0.00	451123.65	754161.95 N	32 14 18.02 W	103 38 41.99
	1600.00	2.00	35.00	1599.98	-1.42	1.43	1.00	2.00	451125.08	754162.95 N	32 14 18.04 W	103 38 41.98
	1700.00	4.00	35.00	1699.84	-5.69	5.72	4.00	2.00	451129.37	754165.95 N	32 14 18.08 W	103 38 41.94
Hold Nudge	1786.48	5.73	35.00	1786.00	-11.67	11.72	8.21	2.00	451135.37	754170.16 N	32 14 18.14 W	103 38 41.89
· ·	1800.00	5.73	35.00	1799.46	-12.78	12.83	8.98	0.00	451136.48	754170.93 N	32 14 18.15 W	103 38 41.88
	1900.00	5.73	35.00	1898.96	-20.92	21.01	14.71	0.00	451144.66	754176.66 N	32 14 18.23 W	103 38 41.82
	2000.00	5.73	35.00	1998.46	-29.06	29.18	20.44	0.00	451152.83	754182.38 N	32 14 18.31 W	103 38 41.75
	2100.00	5.73	35.00	2097.96	-37.21	37.36	26.16	0.00	451161.01	754188.11 N	32 14 18.39 W	103 38 41.68
	2200.00	5.73	35.00	2197.46	-45.35	45.54	31.89	0.00	451169.19	754193.84 N	32 14 18.47 W	103 38 41.61

Comments	MD	Incl	Azim Grid	TVD	VSEC	NS	EW	DLS	Northing	Easting	Latitude	Longitude
Comments	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	(ftUS)	(ftUS)	(N/S ° ' ")	(E/W ° ' ")
	2300.00	5.73	35.00	2296.96	-53.49	53.72	37.61	0.00	451177.37	754199.56 I		W 103 38 41.55
	2400.00	5.73	35.00	2396.46	-61.64	61.90	43.34	0.00	451185.54			W 103 38 41.48
	2500.00	5.73	35.00	2495.96	-69.78	70.07	49.07	0.00	451193.72			W 103 38 41.41
	2600.00	5.73	35.00	2595.46	-77.92	78.25	54.79	0.00	451201.90			W 103 38 41.35
	2700.00 2800.00	5.73	35.00	2694.96 2794.46	-86.07	86.43 94.61	60.52	0.00	451210.08 451218.25			W 103 38 41.28
		5.73	35.00		-94.21		66.24	0.00 0.00		754228.19 1 754233.92 1		W 103 38 41.21 W 103 38 41.14
	2900.00 3000.00	5.73 5.73	35.00 35.00	2893.96 2993.46	-102.35 -110.50	102.78 110.96	71.97 77.70	0.00	451226.43 451234.61			W 103 38 41.14 W 103 38 41.08
	3100.00	5.73	35.00	3092.96	-118.64	119.14	83.42	0.00	451234.61			W 103 38 41.00 W 103 38 41.01
	3200.00	5.73	35.00	3192.46	-126.78	127.32	89.15	0.00	451250.96			W 103 38 40.94
	3300.00	5.73	35.00	3291.96	-134.93	135.50	94.88	0.00	451259.14			W 103 38 40.87
	3400.00	5.73	35.00	3391.46	-143.07	143.67	100.60	0.00	451267.32			W 103 38 40.81
	3500.00	5.73	35.00	3490.96	-151.21	151.85	106.33	0.00	451275.50			W 103 38 40.74
	3600.00	5.73	35.00	3590.46	-159.36	160.03	112.05	0.00	451283.67			W 103 38 40.67
	3700.00	5.73	35.00	3689.96	-167.50	168.21	117.78	0.00	451291.85			W 103 38 40.61
Drop to Vertical 2°/100' DLS	3710.09	5.73	35.00	3700.00	-168.32	169.03	118.36	0.00	451292.67			W 103 38 40.60
_,,,,,	3800.00	3.93	35.00	3789.59	-174.50	175.23	122.70	2.00	451298.88	754284.64 I	N 32 14 19.75	W 103 38 40.55
	3900.00	1.93	35.00	3889.45	-178.67	179.42	125.63	2.00	451303.06	754287.58 I	N 32 14 19.79	W 103 38 40.51
Hold Vertical	3996.56	0.00	35.00	3986.00	-179.99	180.76	126.57	2.00	451304.40	754288.51 I	N 32 14 19.80	W 103 38 40.50
	4000.00	0.00	35.00	3989.44	-179.99	180.76	126.57	0.00	451304.40	754288.51 I	N 32 14 19.80	W 103 38 40.50
	4100.00	0.00	35.00	4089.44	-179.99	180.76	126.57	0.00	451304.40	754288.51 I	N 32 14 19.80	W 103 38 40.50
	4200.00	0.00	35.00	4189.44	-179.99	180.76	126.57	0.00	451304.40	754288.51 I	N 32 14 19.80	W 103 38 40.50
	4300.00	0.00	35.00	4289.44	-179.99	180.76	126.57	0.00	451304.40	754288.51 I	N 32 14 19.80	W 103 38 40.50
	4400.00	0.00	35.00	4389.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	4500.00	0.00	35.00	4489.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	4600.00	0.00	35.00	4589.44	-179.99	180.76	126.57	0.00	451304.40	754288.51 I		W 103 38 40.50
Base Salt	4694.56	0.00	35.00	4684.00	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	4700.00	0.00	35.00	4689.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	4800.00	0.00	35.00	4789.44 4889.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
Laman	4900.00 <i>4920.56</i>	0.00 <i>0.00</i>	35.00 35.00	4889.44 4910.00	-179.99 <i>-17</i> 9.99	180.76 180.76	126.57 126.57	0.00 <i>0.00</i>	451304.40 <i>451304.40</i>	754288.51 I		W 103 38 40.50 W 103 38 40.50
Lamar Bell Canyon	4920.56 4975.56	0.00	35.00 35.00	4910.00 4965.00	-179.99 -179.99	180.76 180.76	126.57 126.57	0.00	451304.40 451304.40			W 103 38 40.50 W 103 38 40.50
Bell CarlyOff	5000.00	0.00	35.00	4989.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	5100.00	0.00	35.00	5089.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	5200.00	0.00	35.00	5189.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	5300.00	0.00	35.00	5289.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	5400.00	0.00	35.00	5389.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	5500.00	0.00	35.00	5489.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	5600.00	0.00	35.00	5589.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	5700.00	0.00	35.00	5689.44	-179.99	180.76	126.57	0.00	451304.40	754288.51 I	N 32 14 19.80	W 103 38 40.50
	5800.00	0.00	35.00	5789.44	-179.99	180.76	126.57	0.00	451304.40	754288.51 I	N 32 14 19.80	W 103 38 40.50
Cherry Canyon	5868.56	0.00	35.00	5858.00	-179.99	180.76	126.57	0.00	451304.40	754288.51 I	V 32 14 19.80	W 103 38 40.50
	5900.00	0.00	35.00	5889.44	-179.99	180.76	126.57	0.00	451304.40	754288.51 I	N 32 14 19.80	W 103 38 40.50
	6000.00	0.00	35.00	5989.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	6100.00	0.00	35.00	6089.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	6200.00	0.00	35.00	6189.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	6300.00	0.00	35.00	6289.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	6400.00	0.00	35.00	6389.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	6500.00	0.00	35.00	6489.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	6600.00	0.00	35.00	6589.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	6700.00	0.00	35.00	6689.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	6800.00	0.00	35.00	6789.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	6900.00	0.00	35.00	6889.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	7000.00	0.00	35.00	6989.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	7100.00	0.00	35.00	7089.44	-179.99	180.76	126.57	0.00 0.00	451304.40			W 103 38 40.50
Prushy Convon	7200.00 7232.56	0.00 <i>0.00</i>	35.00 35.00	7189.44 <i>7</i> 222.00	-179.99 <i>-17</i> 9.99	180.76 <i>180.7</i> 6	126.57 126.57	0.00 0.00	451304.40 <i>451304.40</i>			W 103 38 40.50 W 103 38 40.50
Brushy Canyon	7300.00	0.00	35.00 35.00	7289.44	-179.99 -179.99	180.76	126.57	0.00	451304.40 451304.40			W 103 38 40.50
	7300.00	0.00	33.00	1209.44	-179.99	100.70	120.57	0.00	401304.40	134200.31	N 32 14 19.80	vv 103 36 40.50

Comments	MD	Incl	Azim Grid	TVD	VSEC	NS	EW	DLS	Northing	Easting	Latitude	Longitude
	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	(ftUS)	(ftUS)	(N/S ° ' ")	(E/W ° ' ")
	7400.00	0.00	35.00	7389.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	7500.00	0.00	35.00	7489.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	7600.00	0.00	35.00	7589.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	7700.00	0.00	35.00	7689.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	7800.00	0.00	35.00	7789.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	7900.00	0.00	35.00	7889.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	8000.00 8100.00	0.00 0.00	35.00 35.00	7989.44 8089.44	-179.99 -179.99	180.76 180.76	126.57 126.57	0.00 0.00	451304.40 451304.40			W 103 38 40.50 W 103 38 40.50
	8200.00	0.00	35.00	8189.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	8300.00	0.00	35.00	8289.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	8400.00	0.00	35.00	8389.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	8500.00	0.00	35.00	8489.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	8600.00	0.00	35.00	8589.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	8700.00	0.00	35.00	8689.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
Bone Spring	8789.56	0.00	35.00	8779.00	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
9	8800.00	0.00	35.00	8789.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	8900.00	0.00	35.00	8889.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
Leonard Shale	8902.56	0.00	35.00	8892.00	-179.99	180.76	126.57	0.00	451304.40	754288.51 I	N 32 14 19.80	W 103 38 40.50
	9000.00	0.00	35.00	8989.44	-179.99	180.76	126.57	0.00	451304.40	754288.51	N 32 14 19.80	W 103 38 40.50
	9100.00	0.00	35.00	9089.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	9200.00	0.00	35.00	9189.44	-179.99	180.76	126.57	0.00	451304.40	754288.51	N 32 14 19.80	W 103 38 40.50
Avalon Shale	9229.56	0.00	35.00	9219.00	-179.99	180.76	126.57	0.00	451304.40	754288.51	N 32 14 19.80	W 103 38 40.50
	9300.00	0.00	35.00	9289.44	-179.99	180.76	126.57	0.00	451304.40	754288.51	N 32 14 19.80	W 103 38 40.50
	9400.00	0.00	35.00	9389.44	-179.99	180.76	126.57	0.00	451304.40	754288.51	N 32 14 19.80	W 103 38 40.50
	9500.00	0.00	35.00	9489.44	-179.99	180.76	126.57	0.00	451304.40	754288.51	N 32 14 19.80	W 103 38 40.50
	9600.00	0.00	35.00	9589.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	9700.00	0.00	35.00	9689.44	-179.99	180.76	126.57	0.00	451304.40	754288.51	N 32 14 19.80	W 103 38 40.50
	9800.00	0.00	35.00	9789.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	9900.00	0.00	35.00	9889.44	-179.99	180.76	126.57	0.00	451304.40	754288.51	N 32 14 19.80	W 103 38 40.50
1st Bone Spring Sand	9954.56	0.00	35.00	9944.00	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	10000.00	0.00	35.00	9989.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	10100.00	0.00	35.00	10089.44	-179.99	180.76	126.57	0.00	451304.40	754288.51	N 32 14 19.80	W 103 38 40.50
2nd Bone Spring Carb	10118.56	0.00	35.00	10108.00	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	10200.00	0.00	35.00	10189.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	10300.00	0.00	35.00	10289.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	10400.00	0.00	35.00	10389.44	-179.99	180.76	126.57	0.00	451304.40	754288.51	N 32 14 19.80	W 103 38 40.50
2nd Bone Spring Sand	10488.56	0.00	35.00	10478.00	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	10500.00	0.00	35.00	10489.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	10600.00	0.00	35.00	10589.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	10700.00	0.00	35.00	10689.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	10800.00	0.00	35.00	10789.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	10900.00	0.00	35.00	10889.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
3rd Bone	11000.00	0.00	35.00	10989.44 11036.00	-179.99 <i>-17</i> 9.99	180.76	126.57 126.57	0.00 <i>0.00</i>	451304.40 451304.40			W 103 38 40.50
Spring Carb	<i>11046.56</i> 11100.00	0.00 0.00	35.00 35.00	11036.00	-179.99 -179.99	<i>180.76</i> 180.76	126.57	0.00	451304.40 451304.40			W 103 38 40.50 W 103 38 40.50
	11200.00	0.00	35.00	11189.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	11300.00	0.00	35.00	11289.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	11400.00	0.00	35.00	11389.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	11500.00	0.00	35.00	11489.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	11600.00	0.00	35.00	11589.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	11700.00	0.00	35.00	11689.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	11800.00	0.00	35.00	11789.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
3rd Bone Spring Sand	11855.56	0.00	35.00	11845.00	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
Spirity Saila	11900.00	0.00	35.00	11889.44	-179.99	180.76	126.57	0.00	451304.40	754288.51	N 32 14 19.80	W 103 38 40.50

Comments	MD (ft)	Incl (°)	Azim Grid (°)	TVD (ft)	VSEC (ft)	NS (ft)	EW (ft)	DLS (°/100ft)	Northing (ftUS)	Easting (ftUS)	Latitude (N/S ° ' ")	Longitude (E/W ° ' ")
	12000.00	0.00	35.00	11989.44	-179.99	180.76	126.57	0.00	451304.40			W 103 38 40.50
	12100.00	0.00	35.00	12089.44	-179.99	180.76	126.57	0.00	451304.40		N 32 14 19.80 V	
	12200.00	0.00	35.00	12189.44	-179.99	180.76	126.57	0.00	451304.40		N 32 14 19.80 V	
Wolfcamp	12238.56	0.00	35.00	12228.00	-179.99	180.76	126.57	0.00	451304.40		V 32 14 19.80 V	
	12300.00	0.00	35.00	12289.44	-179.99	180.76	126.57	0.00	451304.40	754288.51	N 32 14 19.80 V	W 103 38 40.50
Wolfcamp Y SS	12337.56	0.00	35.00	12327.00	-179.99	180.76	126.57	0.00	451304.40	754288.51 I	V 32 14 19.80 V	W 103 38 40.50
Wolfcamp Y SS Target	12350.56	0.00	35.00	12340.00	-179.99	180.76	126.57	0.00	451304.40	754288.51 I	V 32 14 19.80 V	W 103 38 40.50
Wolfcamp A1	12365.56	0.00	35.00	12355.00	-179.99	180.76	126.57	0.00	451304.40	754288.51 I	V 32 14 19.80 V	W 103 38 40.50
KOD Duild	12400.00	0.00	35.00	12389.44	-179.99	180.76	126.57	0.00	451304.40	754288.51 I	N 32 14 19.80 V	W 103 38 40.50
KOP - Build 12°/100' DLS	12400.56	0.00	35.00	12390.00	-179.99	180.76	126.57	0.00	451304.40	754288.51 I	N 32 14 19.80 V	W 103 38 40.50
	12500.00	11.93	179.66	12488.72	-169.68	170.44	126.63	12.00	451294.08	754288.57 I	N 32 14 19.70 V	W 103 38 40.50
	12600.00	23.93	179.66	12583.69	-138.94	139.70	126.81	12.00	451263.35	754288.76 I	N 32 14 19.40 V	W 103 38 40.50
	12700.00	35.93	179.66	12670.19	-89.14	89.90	127.11	12.00	451213.54	754289.05 I	N 32 14 18.91 V	W 103 38 40.50
	12800.00	47.93	179.66	12744.45	-22.43	23.20	127.51	12.00	451146.85	754289.45 I	N 32 14 18.25 V	W 103 38 40.50
	12900.00	59.93	179.66	12803.21	58.25	-57.49	127.99	12.00	451066.17	754289.94 I	N 32 14 17.45 V	W 103 38 40.50
D.::Id 48/400!	13000.00	71.93	179.66	12843.92	149.39	-148.63	128.54	12.00	450975.03	754290.48 I	N 32 14 16.55 V	W 103 38 40.50
Build 4°/100' DLS	13025.56	75.00	179.66	12851.19	173.89	-173.13	128.68	12.00	450950.53	754290.63 I	N 32 14 16.30 V	W 103 38 40.50
	13100.00	77.98	179.66	12868.58	246.26	-245.50	129.12	4.00	450878.16		N 32 14 15.59 V	
	13200.00	81.98	179.66	12885.98	344.72	-343.95	129.71	4.00	450779.72		N 32 14 14.61 N	
	13300.00	85.98	179.66	12896.47	444.15	-443.37	130.30	4.00	450680.29	754292.25 I	N 32 14 13.63 V	W 103 38 40.51
	13400.00	89.98	179.66	12900.00	544.06	-543.29	130.90	4.00	450580.38	754292.85 I	N 32 14 12.64 N	W 103 38 40.51
Landing Point	13400.56	90.00	179.66	12900.00	544.62	-543.85	130.90	4.00	450579.82	754292.85 I	N 32 14 12.63 V	W 103 38 40.51
	13500.00	90.00	179.66	12900.00	644.06	-643.29	131.50	0.00	450480.39	754293.44 I	N 32 14 11.65 V	W 103 38 40.51
	13600.00	90.00	179.66	12900.00	744.06	-743.29	132.10	0.00	450380.39	754294.04 I	N 32 14 10.66 V	W 103 38 40.51
	13700.00	90.00	179.66	12900.00	844.06	-843.28	132.70	0.00	450280.40	754294.64 I	N 32 14 9.67 V	W 103 38 40.51
	13800.00	90.00	179.66	12900.00	944.06	-943.28	133.29	0.00	450180.41	754295.24	N 32 14 8.68 V	W 103 38 40.51
	13900.00	90.00	179.66	12900.00	1044.06	-1043.28	133.89	0.00	450080.41	754295.84 I	N 32 14 7.69 V	W 103 38 40.51
	14000.00	90.00	179.66	12900.00	1144.06	-1143.28	134.49	0.00	449980.42	754296.44 I	N 32 14 6.70 V	W 103 38 40.51
	14100.00	90.00	179.66	12900.00	1244.06	-1243.28	135.09	0.00	449880.42	754297.03 I	N 32 14 5.71 V	W 103 38 40.51
	14200.00	90.00	179.66	12900.00	1344.06	-1343.28	135.69	0.00	449780.43	754297.63 I	N 32 14 4.72 V	W 103 38 40.51
	14300.00	90.00	179.66	12900.00	1444.06	-1443.27	136.29	0.00	449680.44		N 32 14 3.73 V	
	14400.00	90.00	179.66	12900.00	1544.06	-1543.27	136.89	0.00	449580.44		N 32 14 2.75	
	14500.00	90.00	179.66	12900.00	1644.06	-1643.27	137.48	0.00	449480.45		N 32 14 1.76 V	
	14600.00	90.00	179.66	12900.00	1744.06	-1743.27	138.08	0.00	449380.45		N 32 14 0.77	
	14700.00	90.00	179.66	12900.00	1844.06	-1843.27	138.68	0.00	449280.46		N 32 13 59.78 N	
	14800.00	90.00	179.66	12900.00	1944.06	-1943.26	139.28	0.00	449180.47		N 32 13 58.79 N	
	14900.00	90.00	179.66	12900.00	2044.06	-2043.26	139.88	0.00	449080.47		N 32 13 57.80 N	
	15000.00	90.00	179.66	12900.00	2144.06	-2143.26	140.48	0.00	448980.48		N 32 13 56.81 N	
	15100.00	90.00	179.66	12900.00	2244.06	-2243.26	141.08	0.00	448880.48		N 32 13 55.82 N	
NMNM0002889												
- NMNM0001917 Crossing	15106.70	90.00	179.66	12900.00	2250.76	-2249.96	141.12	0.00	448873.78	754303.06 I	V 32 13 55.75 I	W 103 38 40.51
- · · · · · · · · · · · · · · · · · · ·	15200.00	90.00	179.66	12900.00	2344.06	-2343.26	141.67	0.00	448780.49	754303.62 I	N 32 13 54.83 N	W 103 38 40.51
	15300.00	90.00	179.66	12900.00	2444.06	-2443.26	142.27	0.00	448680.49		N 32 13 53.84 N	
	15400.00	90.00	179.66	12900.00	2544.06	-2543.25	142.87	0.00	448580.50		N 32 13 52.85 N	
	15500.00	90.00	179.66	12900.00	2644.06	-2643.25	143.47	0.00	448480.51		N 32 13 51.86 V	
	15600.00	90.00	179.66	12900.00	2744.06	-2743.25	144.07	0.00	448380.51		N 32 13 50.87 N	
	15700.00	90.00	179.66	12900.00	2844.06	-2843.25	144.67	0.00	448280.52		N 32 13 49.88 N	
	15800.00	90.00	179.66	12900.00	2944.06	-2943.25	145.27	0.00	448180.52		N 32 13 48.89 N	
	15900.00	90.00	179.66	12900.00	3044.06	-3043.24	145.86	0.00	448080.53		N 32 13 47.90 N	
	16000.00	90.00	179.66	12900.00	3144.06	-3143.24	146.46	0.00	447980.54		N 32 13 46.91 N	
	16100.00	90.00	179.66	12900.00	3244.06	-3243.24	147.06	0.00	447880.54		N 32 13 45.92 N	
		90.00	179.66	12900.00	3344.06	-3343.24	147.66	0.00	447780.55		N 32 13 44.93 N	
	16200.00 16300.00	90.00	179.66	12900.00	3444.06	-3443.24 -3443.24	148.26	0.00	447680.55		N 32 13 44.93 N	
	10300.00	30.00	17 3.00	12300.00	3444.00	-0440.24	140.20	0.00	14 7000.00	104310.20	N JZ 13 43.94	vv 103 30 40.32

Comments	MD	Incl	Azim Grid	TVD	VSEC	NS	EW	DLS	Northing	Easting	Latitude	Longitude
Comments	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	(ftUS)	(ftUS)	(N/S ° ' ")	(E/W ° ' ")
	16400.00	90.00	179.66	12900.00	3544.06	-3543.24	148.86	0.00	447580.56		N 32 13 42.95 V	
	16500.00	90.00	179.66	12900.00	3644.06	-3643.23	149.46	0.00	447480.57		N 32 13 41.97 V	
	16600.00	90.00	179.66	12900.00	3744.06	-3743.23	150.05	0.00	447380.57		N 32 13 40.98 V	
	16700.00	90.00	179.66	12900.00	3844.06	-3843.23	150.65	0.00	447280.58		N 32 13 39.99 V	
	16800.00	90.00	179.66	12900.00	3944.06	-3943.23	151.25	0.00	447180.58		N 32 13 39.00 V	
	16900.00	90.00	179.66	12900.00	4044.06	-4043.23	151.85	0.00	447080.59		N 32 13 38.01 V	
	17000.00	90.00	179.66	12900.00	4144.06	-4143.23	152.45	0.00 0.00	446980.59		N 32 13 37.02 V	
	17100.00	90.00	179.66	12900.00	4244.06	-4243.22	153.05		446880.60		N 32 13 36.03 V	
	17200.00 17300.00	90.00 90.00	179.66 179.66	12900.00 12900.00	4344.06 4444.06	-4343.22 -4443.22	153.65 154.24	0.00 0.00	446780.61 446680.61		N 32 13 35.04 V N 32 13 34.05 V	
	17400.00	90.00	179.66	12900.00	4544.06	-4543.22 -4543.22	154.84	0.00	446580.62		N 32 13 34.05 V N 32 13 33.06 V	
	17500.00	90.00	179.66	12900.00	4644.06	-4643.22	155.44	0.00	446480.62		N 32 13 33.00 V N 32 13 32.07 V	
	17600.00	90.00	179.66	12900.00	4744.06	-4743.21	156.04	0.00	446380.63		N 32 13 32.07 V	
	17700.00	90.00	179.66	12900.00	4844.06	-4843.21	156.64	0.00	446280.64		N 32 13 31.00 V	
NMNM0001917	17700.00	30.00	175.00	12300.00	4044.00	4040.21	100.04	0.00	440200.04	704010.00 1	V 02 10 00.00 V	V 100 00 40.00
-	17749.10	90.00	179.66	12900.00	4893.16	-4892.31	156.93	0.00	446231.54	754318.88 N	J 32 13 29.61 V	V 103 38 40.53
NMNM0033503												
	17800.00	90.00	179.66	12900.00	4944.06	-4943.21	157.24	0.00	446180.64		N 32 13 29.10 V	
	17900.00	90.00	179.66	12900.00	5044.06	-5043.21	157.84	0.00	446080.65		N 32 13 28.11 V	
	18000.00	90.00	179.66	12900.00	5144.06	-5143.21	158.43	0.00	445980.65		N 32 13 27.12 V	
	18100.00	90.00	179.66	12900.00	5244.06	-5243.21	159.03	0.00	445880.66		N 32 13 26.13 V	
	18200.00	90.00	179.66	12900.00	5344.06	-5343.20	159.63	0.00	445780.67		N 32 13 25.14 V	
	18300.00	90.00	179.66	12900.00	5444.06	-5443.20	160.23	0.00	445680.67		N 32 13 24.15 V	
	18400.00	90.00	179.66	12900.00	5544.06	-5543.20	160.83	0.00	445580.68		N 32 13 23.16 V	
	18500.00	90.00	179.66	12900.00	5644.06	-5643.20	161.43	0.00	445480.68		N 32 13 22.17 V	
	18600.00 18700.00	90.00 90.00	179.66 179.66	12900.00 12900.00	5744.06 5844.06	-5743.20 -5843.19	162.03 162.62	0.00 0.00	445380.69 445280.70		N 32 13 21.19 V N 32 13 20.20 V	
	18800.00	90.00	179.66	12900.00	5944.06	-5943.19	163.22	0.00	445280.70		N 32 13 20.20 V N 32 13 19.21 V	
	18900.00	90.00	179.66	12900.00	6044.06	-6043.19	163.82	0.00	445180.70		N 32 13 19.21 V N 32 13 18.22 V	
	19000.00	90.00	179.66	12900.00	6144.06	-6143.19	164.42	0.00	444980.71		N 32 13 16.22 V N 32 13 17.23 V	
	19100.00	90.00	179.66	12900.00	6244.06	-6243.19	165.02	0.00	444880.72		N 32 13 17.23 V	
	19200.00	90.00	179.66	12900.00	6344.06	-6343.19	165.62	0.00	444780.72		N 32 13 15.25 V	
	19300.00	90.00	179.66	12900.00	6444.06	-6443.18	166.22	0.00	444680.73		N 32 13 14.26 V	
	19400.00	90.00	179.66	12900.00	6544.06	-6543.18	166.81	0.00	444580.74		N 32 13 13.27 V	
	19500.00	90.00	179.66	12900.00	6644.06	-6643.18	167.41	0.00	444480.74		N 32 13 12.28 V	
	19600.00	90.00	179.66	12900.00	6744.06	-6743.18	168.01	0.00	444380.75		N 32 13 11.29 V	
	19700.00	90.00	179.66	12900.00	6844.06	-6843.18	168.61	0.00	444280.75		N 32 13 10.30 V	
	19800.00	90.00	179.66	12900.00	6944.06	-6943.18	169.21	0.00	444180.76	754331.15 N	N 32 13 9.31 V	V 103 38 40.54
	19900.00	90.00	179.66	12900.00	7044.06	-7043.17	169.81	0.00	444080.77	754331.75 N	N 32 13 8.32 V	V 103 38 40.54
	20000.00	90.00	179.66	12900.00	7144.06	-7143.17	170.41	0.00	443980.77	754332.35 N	N 32 13 7.33 V	V 103 38 40.54
	20100.00	90.00	179.66	12900.00	7244.06	-7243.17	171.00	0.00	443880.78	754332.95 N	N 32 13 6.34 V	V 103 38 40.54
	20200.00	90.00	179.66	12900.00	7344.06	-7343.17	171.60	0.00	443780.78	754333.55 N	N 32 13 5.35 V	V 103 38 40.54
	20300.00	90.00	179.66	12900.00	7444.06	-7443.17	172.20	0.00	443680.79		N 32 13 4.36 V	
	20400.00	90.00	179.66	12900.00	7544.06	-7543.16	172.80	0.00	443580.80		N 32 13 3.37 V	
	20500.00	90.00	179.66	12900.00	7644.06	-7643.16	173.40	0.00	443480.80		N 32 13 2.38 V	
	20600.00	90.00	179.66	12900.00	7744.06	-7743.16	174.00	0.00	443380.81		N 32 13 1.40 V	
	20700.00	90.00	179.66	12900.00	7844.06	-7843.16	174.60	0.00	443280.81		N 32 13 0.41 V	
	20800.00	90.00	179.66	12900.00	7944.06	-7943.16	175.19	0.00	443180.82		N 32 12 59.42 V	
	20900.00	90.00	179.66	12900.00	8044.06	-8043.16	175.79	0.00	443080.82		N 32 12 58.43 V	
	21000.00	90.00	179.66	12900.00	8144.06	-8143.15	176.39	0.00	442980.83		N 32 12 57.44 V	
	21100.00	90.00	179.66	12900.00	8244.06	-8243.15	176.99	0.00	442880.84		N 32 12 56.45 V	
	21200.00	90.00	179.66	12900.00	8344.06	-8343.15	177.59	0.00	442780.84		N 32 12 55.46 V	
	21300.00	90.00	179.66	12900.00	8444.06	-8443.15	178.19	0.00	442680.85		N 32 12 54.47 V	
	21400.00	90.00	179.66	12900.00	8544.06	-8543.15	178.79	0.00	442580.85		N 32 12 53.48 V	
	21500.00 21600.00	90.00	179.66	12900.00	8644.06	-8643.14	179.38	0.00	442480.86 442380.87		N 32 12 52.49 V	
	21600.00 21700.00	90.00 90.00	179.66 179.66	12900.00 12900.00	8744.06 8844.06	-8743.14 -8843.14	179.98 180.58	0.00 0.00	442380.87 442280.87		N 32 12 51.50 V	
	21800.00	90.00	179.66	12900.00	8944.06	-8943.14 -8943.14	181.18	0.00	442280.87		N 32 12 50.51 V N 32 12 49.52 V	
	21900.00	90.00	179.66	12900.00	9044.06	-8943.14 -9043.14	181.78	0.00	442180.88		N 32 12 49.52 V N 32 12 48.53 V	
	21300.00	90.00	17 3.00	12300.00	30 44 .00	-3043.14	101.70	0.00	11 2000.00	104040.12 1	N 52 12 40.55 V	v 103 30 40.33

Received by OCD: 4/28/2022 9:15:35 AM

Comments	MD	Incl	Azim Grid	TVD	VSEC	NS	EW	DLS	Northing	Easting	Latitude	Longitude
Oomments	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	(ftUS)	(ftUS)	(N/S ° ' ")	(E/W ° ' ")
	22000.00	90.00	179.66	12900.00	9144.06	-9143.14	182.38	0.00	441980.89	754344.32 N	32 12 47.54 V	N 103 38 40.55
	22100.00	90.00	179.66	12900.00	9244.06	-9243.13	182.98	0.00	441880.90	754344.92 N	32 12 46.55 V	N 103 38 40.55
	22200.00	90.00	179.66	12900.00	9344.06	-9343.13	183.57	0.00	441780.90	754345.52 N	32 12 45.56 V	V 103 38 40.55
	22300.00	90.00	179.66	12900.00	9444.06	-9443.13	184.17	0.00	441680.91	754346.11 N	32 12 44.57 V	N 103 38 40.55
	22400.00	90.00	179.66	12900.00	9544.06	-9543.13	184.77	0.00	441580.91	754346.71 N	32 12 43.58 V	V 103 38 40.55
	22500.00	90.00	179.66	12900.00	9644.06	-9643.13	185.37	0.00	441480.92	754347.31 N	32 12 42.59 V	V 103 38 40.55
	22600.00	90.00	179.66	12900.00	9744.06	-9743.12	185.97	0.00	441380.92	754347.91 N	32 12 41.60 V	V 103 38 40.55
	22700.00	90.00	179.66	12900.00	9844.06	-9843.12	186.57	0.00	441280.93	754348.51 N	32 12 40.62 V	V 103 38 40.55
	22800.00	90.00	179.66	12900.00	9944.06	-9943.12	187.17	0.00	441180.94	754349.11 N	32 12 39.63 V	V 103 38 40.55
	22900.00	90.00	179.66	12900.00	10044.06	-10043.12	187.76	0.00	441080.94	754349.71 N	32 12 38.64 V	N 103 38 40.55
Cimarex Dos												
Equis 11-14												
Federal Com 50H - PBHI [100'FSI	22929.08	90.00	179.66	12900.00	10073.15	-10072.20	187.94	0.00	441051.86	754349.88 N	32 12 38.35 V	V 103 38 40.55

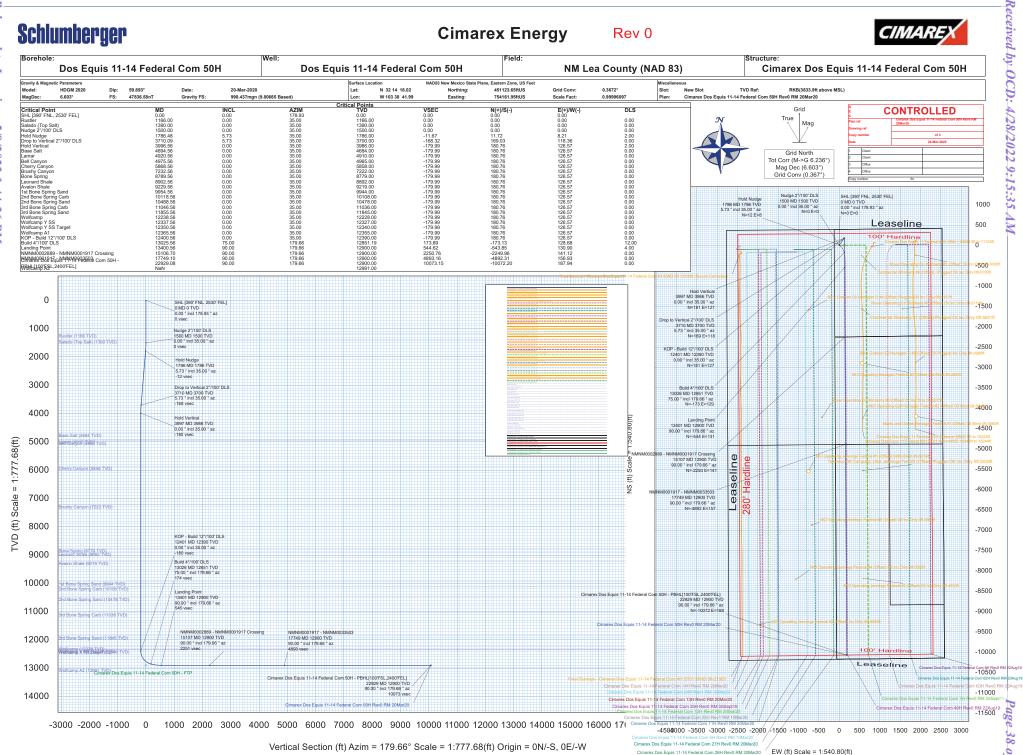
Survey Type:

2400'FEL1

Non-Def Plan

Survey Error Model:

ISCWSA Rev 0 *** 3-D 95.000% Confidence 2.7955 sigma


Survey Program:

 Description	Part	MD From (ft)	MD To (ft)	EOU Freq (ft)	Hole Size (in)	Casing Diameter (in)	Expected Max Inclination (deg)	Survey Tool Type	Borehole / Survey
	1	0.000	26.000	1/100.000	17.500	13.375		NAL_MWD_IFR1+MS-Depth Only	·
	1	26.000	22929.084	1/100.000	17.500	13.375		NAL_MWD_IFR1+MS	Federal Com 50H Rev0 RM Dos Equis 11-14 Federal Com 50H / Cimarex Dos Equis 11-14

Schlumberger

Cimarex Energy Rev₀

Received by OCD: 4/28/2022 9:15:35 AM

Page 39 of 78

Co-Flex Hose

Dos Equis 11-14 Fed Com 50H

Cimarex Energy Co. 11-24S-32E Lea County, NM

Co-Flex Hose Hydrostatic Test

Dos Equis 11-14 Fed Com 50H

Cimarex Energy Co.

11-24S-32E

Lea County, NM

Midwest Hose & Specialty, Inc.

INTERNAL HYDROSTATIC TEST REPORT										
Customer: P.O. Number:										
COS MANUACINAMINATION AND MANUAL MANU	derco Inc		odyd-2							
	delete into		0.17							
	HOSE SPECIFICATIONS									
Type: Stainless	Steel Armor									
Choke & M	(ill Hose	Î	Hose Length:	45'ft.						
I.D. 4	INCHES	O.D.	9	INCHES						
WORKING PRESSURE	TEST PRESSUR	2001000	BURST PRESSUR	CALCADOOM ACADOMA						
10,000 <i>PSI</i>	15,000	PSI	0	<i>PSI</i>						
	COU	PLINGS								
Stem Part No.		Ferrule No.								
OKC			окс							
ОКС		4	окс							
Type of Coupling:										
Swage-	It									
	PROC	EDURE								
Hose assembl	/ pressure tested wi	th water at amhient	temnerature							
	TEST PRESSURE	T:	URST PRESSURE:							
## 10.00 miles # 10 miles # 10.00 miles # 10		9 succession (1997 - 19								
15			0	PSI						
Hose Assembly Seri	al Number:	Hose Serial N	lumber:							
79793 OKC										
Comments:										
Date:	Tested:	0	Approved:							
3/8/2011	0.0	Joins Some.	Seriel	d						

Co-Flex Hose Hydrostatic Test Dos Equis 11-14 Fed Com 50H

Cimarex Energy Co. 11-24S-32E Lea County, NM

March 3, 2011

Internal Hydrostatic Test Graph

Customer: Houston

Pick Ticket #: 94260

Burst Pressure O.D. 6.09" Hose Specifications

I.D

Midwest Hose & Specialty, Inc.

Type of Fitting 41/1610k Die Size 6.38"

Standard Safety Multiplier Applies.

Hose Assembly Serial # 79793

Hose Serial # 5544

Coupling Method Final O.D.

Verification

Pressure Test

Working Pressure 10000 PSI 18000

14000 PSI 8000 16000 12000 10000 6000

4000 2000

Tested By: Zoc Mcconnell

Actual Burst Pressure

Time Held at Test Pressure

Minutes

Peak Pressure 15483 PSI

W. Cr.

4:30 PM

Mosti-

No St. S

Se Contraction of the Contractio

No Spino

S. A. S. W.

S. S. P. P.

Time in Minutes

Approved By: Kim Thomas

Comments: Hose assembly pressure tested with water at ambient temperature.

Test Pressure 15000 PSI

Co-Flex Hose **Dos Equis 11-14 Fed Com 50H**

Cimarex Energy Co. 11-24S-32E Lea County, NM

Midwest Hose & Specialty, Inc.

	1 //
Cer	tificate of Conformity
Customer:	M ODYD-271
	SPECIFICATIONS
Sales Order 79793	Dated: 3/8/2011
for the reference according to the	Road
comments:	
oproved:	Date:
James Harcia	3/8/2011

Co-Flex Hose Dos Equis 11-14 Fed Com 50H Cimarex Energy Co. 11-24S-32F Lea County, NM

Specification Sheet Choke & Kill Hose

The Midwest Hose & Specialty Choke & Kill hose is manufactured with only premium componets. The reinforcement cables, inner liner and cover are made of the highest quality material to handle the tough drilling applications of today's industry. The end connections are available with API flanges, API male threads, hubs, harnmer unions or other special fittings upon request. Hose assembly is manufactured to API 7K. This assembly is wrapped with fire resistant vermculite coated fiberglass insulation, rated at 2000 degrees with stainless steel armor cover.

Working Pressure:

5,000 or 10,000 psi working pressure

Test Pressure:

10,000 or 15,000 psi test pressure

Reinforcement:

Multiple steel cables

Cover:

Stainless Steel Armor

Inner Tube:

Petroleum resistant, Abrasion resistant

End Fitting:

API flanges, API male threads, threaded or butt weld hammer

unions, unibolt and other special connections

Maximum Length:

110 Feet

ID:

2-1/2", 3", 3-1/2", 4"

Operating Temperature: -22 deg F to +180 deg F (-30 deg C to +82 deg C)

P.O. Box 96558 - 1421 S.E. 29th St. Oklahoma City, OK 73143 * (405) 670-6718 * Fax: (405) 670-6816

1. Geological Formations

TVD of target 12,900 $\,$ Pilot Hole TD N/A $\,$

MD at TD 22,929 Deepest expected fresh water

Formation	Depth (TVD) from KB	Water/Mineral Bearing/Target Zone	Hazards
Rustler	1166	Useable Water	
Salado	1390	N/A	
Base of Salt	4684	N/A	
Lamar	4910	N/A	
Bell Canyon	4965	N/A	
Cherry Canyon	5858	N/A	
Brushy Canyon	7222	Hydrocarbons	
Bone Spring	8779	Hydrocarbons	
Upper Avalon Shale	9219	Hydrocarbons	
1st Bone Spring	9944	Hydrocarbons	
2nd Bone Spring	10478	Hydrocarbons	
3rd Bone Spring	11845	Hydrocarbons	
Wolfcamp	12228	Hydrocarbons	

2. Casing Program

Hole Size	•	Casing Depth To	Setting Depth TVD	Casing Size	Weight (lb/ft)	Grade	Conn.	SF Collapse	SF Burst	SF Tension
14 3/4	0	1235	1235	10-3/4"	40.50	J-55	BT&C	2.95	5.85	12.58
9 7/8	0	13026	12851	7-5/8"	29.70	L-80	BT&C	2.38	1.15	1.74
6 3/4	0	12401	12401	5-1/2"	23.00	L-80	LT&C	1.38	1.23	2.11
6 3/4	12401	22929	12900	5"	18.00	P-110	BT&C	1.60	1.62	64.57
					BLM	Minimum Sa	afety Factor	1.125	1	1.6 Dry 1.8 Wet

TVD was used on all calculations.

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Request Variance for 5-1/2" x 7-5/8" annular clearance. The portion that does not meet clearance will not be cemented

Cimarex Energy Co., Dos Equis 11-14 Federal Com 50H

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Υ
Does casing meet API specifications? If no, attach casing specification sheet.	Υ
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Υ
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Υ
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Υ
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	N
Is well within the designated 4 string boundary.	N
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3rd string cement tied back 500' into previous casing?	N
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	N
Is 2nd string set 100' to 600' below the base of salt?	N
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	N
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	N
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	N
Is AC Report included?	Y

3. Cementing Program

Casing		Wt. lb/gal	Yld ft3/sack	H2O gal/sk	500# Comp. Strength (hours)	Slurry Description
Surface	480	13.50	1.72	9.15	15.5	Lead: Class C + Bentonite
	128	14.80	1.34	6.32	9.5	Tail: Class C + LCM
Intermediate Stage 1	631	10.30	3.64	22.18		Lead: Tuned Light + LCM
	207	14.20	1.30	5.86	14:30	Tail: 50:50 (Poz:H) + Salt + Bentonite + Fluid Loss + Dispersant + SMS
Intermediate Stage 2	782	12.90	1.88	9.65	12	Lead: 35:65 (Poz:C) + Salt + Bentonite
Production	846	14.20	1.30	5.86	14:30	Tail: 50:50 (Poz:H) + Salt + Bentonite + Fluid Loss + Dispersant + SMS

DV tool with possible annular casing packer as needed is proposed at a depth of +/- 4,900'.

Casing String	тос	% Excess
Surface	0	45
Intermediate Stage 1	4900	47
Intermediate Stage 2	0	37
Production	12826	25

Cimarex request the ability to perform casing integrity tests after plug bump of cement job.

4. Pressure Control Equipment

A variance is requested for the use of a diverter on the surface casing. See attached for schematic.

BOP installed and tested before drilling which hole?	Size	Min Required WP	Туре		Tested To
9 7/8	13 5/8	5M	Annular	Х	
			Blind Ram		
			Pipe Ram	Х	5M
			Double Ram	Х	
			Other		
6 3/4	13 5/8	10M	Annular	Х	50% of working pressure
			Blind Ram		
			Pipe Ram	Х	10M
			Double Ram	Х	
			Other		

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Х	X Formation integrity test will be performed per Onshore Order #2. On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.						
Х	X A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.						
	N	Are anchors required by manufacturer?					

5. Mud Program

Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0' to 1235'	Fresh Water	7.83 - 8.33	28	N/C
1235' to 13026'	Brine Diesel Emulsion	8.50 - 9.00	30-35	N/C
13026' to 22929'	ОВМ	12.00 - 12.50	50-70	N/C

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

The Brine Emulsion is completely saturated brine fluid that ties diesel into itself to lower the weight of the fluid. The drilling fluid is completely salt saturated.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logg	Logging, Coring and Testing					
	Will run GR/CNL fromTD to surface (horizontal well – vertical portion of hole). Stated logs run will be in the Completion Report and submitted to the BLM.					
Х	No logs are planned based on well control or offset log information.					
	Drill stem test?					
	Coring?					

Additional Logs Planned	Interval
ruantional Logo rianica	

7. Drilling Conditions

Condition	
BH Pressure at deepest TVD	8385 psi
Abnormal Temperature	No

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

H2S is present

H2S plan is attached

8. Other Facets of Operation

9. Wellhead

A multi-bowl wellhead system will be utilized.

After running the 10-3/4" surface casing, a 13 5/8" BOP/BOPE system with a minimum working pressure of 10000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 10000 psi test. Annular will be tested to 50% of working pressure. The pressure test will be repeated at least every 30 days, as per Onshore Order No. 2.

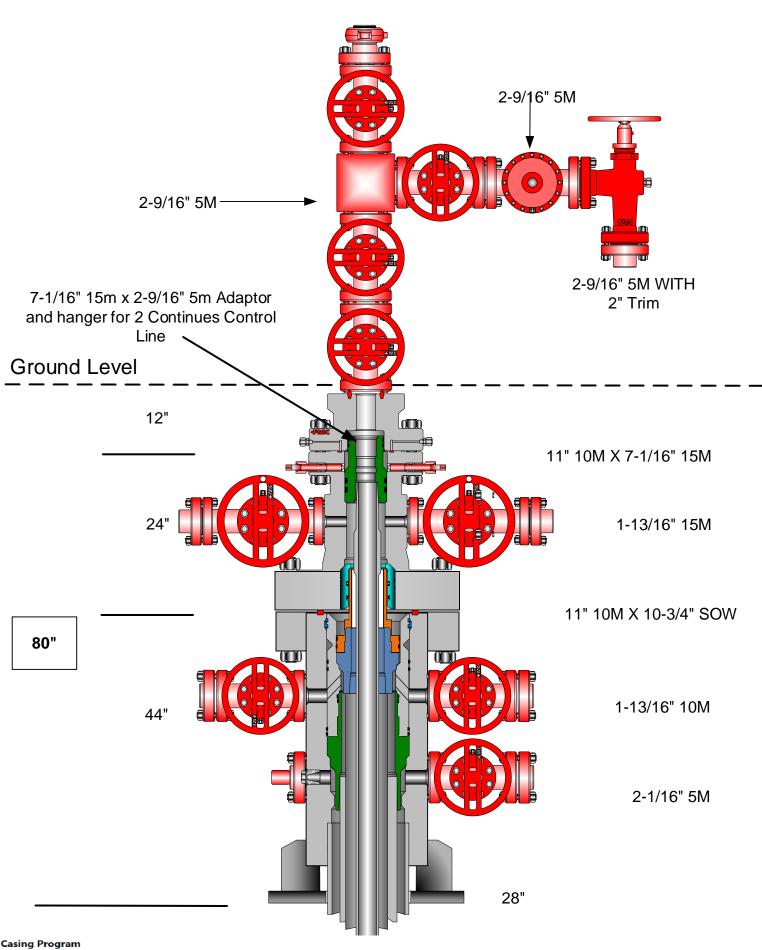
The multi-bowl wellhead will be installed by vendor's representative. A copy of the installation instructions has been sent to the BLM field office.

The wellhead will be installed by a third-party welder while being monitored by the wellhead vendor representative.

All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type.

A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 10000 psi.

All casing strings will be tested as per Onshore Order No.2 to atleast 0.22 psi/ft or 1,500 whichever is greater and not to exceed 70% of casing burst.


If well conditions dictate conventional slips will be set and BOPE will be tested to appropriate pressures based on permitted pressure requirements.

Multi-bowl Wellhead Diagram

CACTUS FOR SERVICE WEARBUSHING IN CASING HEAD & **CASING SPOOL**

Dos Equis 11-14 Fed Com 50H Lea Co.,NM

2. Casing Program

Hole Size	Casing Depth From	Casing Depth To	Setting Depth TVD	Casing Size	Weight (lb/ft)	Grade	Conn.	SF Collapse	SF Burst	SF Tension
14 3/4	0	1235	1235	10-3/4"	40.50	J-55	BT&C	2.95	5.85	12.58
9 7/8	0	13026	12851	7-5/8"	29.70	L-80	BT&C	2.38	1.15	1.74
6 3/4	0	12401	12401	5-1/2"	23.00	L-80	LT&C	1.38	1.23	2.11
6 3/4	12401	22929	12900	5"	18.00	P-110	BT&C	1.60	1.62	64.57
Rela	eased to Im	aging: 5/9	0/2022 3.4	4.26 P		Minimum	Safety Factor	1.125	1	1.6 Dry 1.8 Wet

Cimarex 10M Well Control Plan

Version 1.0

BOPE Preventer Utilization

The table below displays all BHA components, drill pipe, casing, or open hole that could be present during a required shut in and the associated preventer component that would provide a barrier to flow. It is specific to the hole section that requires a 10M system. The mud system being utilized in the hole will always assumed to be the first barrier to flow. The below table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill String Element	OD	Preventer	RWP
4" Drillpipe	4"	Lower Ram 3 1/2" - 5 ½" VBR* Upper Ram 3 1/2" - 5 ½" VBR*	10M
4.5" Drillpipe	4.5"	Lower Ram 3 1/2" - 5 ½" VBR* Upper Ram 3 1/2" - 5 ½" VBR*	10M
4" HWDP Drillpipe	4"	Lower Ram 3 1/2" - 5 ½" VBR* Upper Ram 3 1/2" - 5 ½" VBR*	10M
4.5" HWDP Drillpipe	4.5"	Lower Ram 3 1/2" - 5 ½" VBR* Upper Ram 3 1/2" - 5 ½" VBR*	10M
Drill Collars (including non- magnetic)	4.75- 5.25"	Lower Ram 3 1/2" - 5 ½" VBR* Upper Ram 3 1/2" - 5 ½" VBR*	10M
Production Casing	5.5"	Lower Ram 3 1/2" - 5 ½" VBR* Upper Ram 3 1/2" - 5 ½" VBR*	10M
Production Casing	5"	Lower Ram 3 1/2" - 5 ½" VBR* Upper Ram 3 1/2" - 5 ½" VBR*	10M
Production Casing	4.5"	Lower Ram 3 1/2" - 5 ½" VBR* Upper Ram 3 1/2" - 5 ½" VBR*	10M
ALL	0-13 5/8"	Annular	5M
Open Hole		Blind Rams	10M

*VBR - Variable Bore Ram

Well Control Procedures

Proper well control response is highly specific to current well conditions and must be adapted based on environment as needed. The procedures below are given in "common" operating conditions to cover the basic and most necessary operations required during the wellbore construction. These include drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole. In some of the procedures below, there will be a switch of control from the lesser RWP annular to the appropriate 10M RWP ram. The pressure at which this is done is variable based on overall well conditions that must be evaluated situationally. The pressure that control is switched may be equal to or less than the RWP but at no time will the pressure on the annular preventer exceed the RWP of the annular. The annular will be tested to 5,000 psi. This will be the RWP of the annular preventer.

Shutting In While Drilling

- 1. Sound alarm to alert crew
- 2. Space out drill string
- 3. Shut down pumps
- 4. Shut in uppermost BOPE preventer (typically the annular preventer) and open HCR.
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

9. If pressure is anticipated to climb to the RWP of the annular preventer during kill procedure, swap control of the well to the upper pipe ram

Shutting In While Tripping

- 1. Sound alarm and alert crew
- 2. Install open, full open safety valve and close valve
- 3. Shut in uppermost BOPE preventer (typically the annular preventer) and open HCR.
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure
- 8. If pressure is anticipated to climb to the RWP of the annular preventer during kill procedure, swap control of the well to the upper pipe ram

Shutting In While Running Casing

- Sound alarm and alert crew
- 2. Install circulating swedge. Close high pressure, low torque valves.
- 3. Shut in uppermost BOPE preventer (typically the annular preventer) and open HCR.
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold Pre-job safety meeting and discuss kill procedure
- 8. If pressure is anticipated to climb to the RWP of the annular preventer during kill procedure, swap control of the well to the upper pipe ram

Shutting in while out of hole

- 1. Sound alarm
- 2. Shut-in well: close blind rams
- 3. Verify well is shut-in and monitor pressures
- Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

Shutting in prior to pulling BHA through stack

- 1. Prior to pulling last joint of drill pipe thru the stack space out and check flow. If flowing see steps below.
- 2. Sound alarm and alert crew
- 3. Install open, full open safety valve and close valve
- 4. Shut in upper pipe ram and open HCR.

- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- Sound alarm and alert crew
- 2. Stab Crossover and install open, full open safety valve and close valve
- 3. Space out drill string with upset just beneath the compatible pipe ram.
- 4. Shut in upper compatible pipe ram and open HCR.
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm and alert crew
- 2. If possible pick up high enough, to pull string clear and follow "Open Hole" scenario
- 3. If not possible to pick up high enough:
 - 1. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve and close valve
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR.
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

SUPO Data Report

APD ID: 10400060936

Submission Date: 09/08/2020

Highlighted data reflects the most recent changes

Operator Hame:

Operator Name: CIMAREX ENERGY COMPANY

Well Number: 50H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Existing Roads

Well Name: DOS EQUIS 11-14 FEDERAL COM

Will existing roads be used? YES

Existing Road Map:

Dos_Equis_11_14___12_13_Fed_Com_Existing_Road_20200908124552.pdf

Existing Road Purpose: ACCESS Row(s) Exist? YES

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

Dos_Equis_11_14_Fed_Com_New_Road_Route_20200908124717.pdf

New road type: COLLECTOR

Length: 5039 Feet

Width (ft.): 30

Max slope (%): 2

Max grade (%): 6

Army Corp of Engineers (ACOE) permit required? N

ACOE Permit Number(s):

New road travel width: 18

New road access erosion control: Water will be diverted where necessary to avoid ponding, prevent erosion, maintain good drainage, and to be consistent with local drainage patterns.

New road access plan or profile prepared? N

New road access plan attachment:

Access road engineering design? N

Access road engineering design attachment:

Well Name: DOS EQUIS 11-14 FEDERAL COM Well Number: 50H

Turnout? N

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: Push off and stockpile alongside the location.

Access other construction information: The operator will prevent and abate fugitive dust as needed created by vehicular

traffic, equipment operations or other events. Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: CULVERT,LOW WATER,OTHER

Drainage Control comments: To control and prevent potentially contaminated precipitation from leaving the pad site, a perimeter berm and settlement pond will be installed. Contaminated water will be removed from pond, stored in waste tanks, and disposed of at a state approved facility. Standing water or puddles will not be allowed. Drainage ditches would be established and maintained on the pad and along access roads to divert water away from operations. Natural drainage areas disturbed during construction would be re-contoured to near original condition prior to construction. Erosion Control Best Management Practices would be used where necessary and consist of seeding, fiber rolls, water bars, silt fences, and temporary diversion dikes. Areas disturbed during construction that are no longer needed for operations would be obliterated, re-contoured to near original condition prior to construction. Erosion Control Best Management Practices would be used where necessary and consist of seeding, fiber rolls, water bars, silt fences, and temporary diversion dikes. Areas disturbed during construction that are no longer needed for operations would be obliterated, re-contoured, and reclaimed to near original condition to re-establish natural drainage.

Road Drainage Control Structures (DCS) description: N/A

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

Dos_Equis_11_14_Fed_Com_W2E2_One_Mile_Radius_20200908124812.pdf

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: If upon completion the well is a producer, a production facility battery will be constructed and production equipment installed at the wellsite. 2 450 x 400 pads were staked and previously approved with the BLM for

Page 2 of 12

Well Name: DOS EQUIS 11-14 FEDERAL COM Well Number: 50H

construction and use as central tank batteries (CTB), please see Exhibit F. Previously approved Road: New and existing Roads will be used to access the W2E2 well pad and CTBs. New road was previously approved in the Dos Equis 11-14 Federal Com 4H & 5H APDs. Exhibit D for 5039 new road. Bulk Lines: 1748' of 8- 12" buried steel bulk lines. Bulk Lines will be constructed along the proposed road buried in the same 60 trench. Please see Attachment M for route.

Production Facilities map:

Dos_Equis_11_14_Fed_Com_East_Zone_1_CTB_Battery_Layout_20200908124854.pdf
Dos_Equis_11_14_Fed_Com_East_Zone_2_CTB_Battery_Layout_20200908124854.pdf
Dos_Equis_11_14_Fed_Com_50H_Flowline_Bulkline_Route_20210304115033.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Water source type: MUNICIPAL

Water source use type: SURFACE CASING

INTERMEDIATE/PRODUCTION

CASING

Source latitude: Source longitude:

Source datum:

Water source permit type: WATER RIGHT

Permit Number:

Water source transport method: PIPELINE

TRUCKING

Source land ownership: STATE

Source transportation land ownership: STATE

Water source volume (barrels): 5000 Source volume (acre-feet): 0.64446548

Source volume (gal): 210000

Water source and transportation map:

 $Dos_Equis_11_14_Fed_Com__Drilling_Water_Source_Route_20210304115255.pdf$

Water source comments:

New water well? N

New Water Well Info

Well latitude: Well Longitude: Well datum:

Well target aquifer:

Well Name: DOS EQUIS 11-14 FEDERAL COM Well Number: 50H

Est. depth to top of aquifer(ft): Est thickness of aquifer:

Aquifer comments:

Aguifer documentation:

Well depth (ft): Well casing type:

Well casing outside diameter (in.): Well casing inside diameter (in.):

New water well casing?

Used casing source:

Drilling method: Drill material:

Grout material: Grout depth:

Casing length (ft.): Casing top depth (ft.):

Well Production type: Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Using any construction materials: YES

Construction Materials description: Caliche will be obtained from the actual well site if available. If not available onsite

caliche will be obtained for a pit located in SWNE Sec 7 24S 33E or NENE Sec 20 23S 33E

Construction Materials source location attachment:

Section 7 - Methods for Handling Waste

Waste type: SEWAGE

Waste content description: Human Waste

Amount of waste: 300 gallons

Waste disposal frequency: Weekly

Safe containment description: Waste will be properly contained and disposed of properly at a state approved disposal

facility.

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

FACILITY

Disposal type description:

Disposal location description: A licensed 3rd party contractor will be used to haul and dispose human waste

Waste type: GARBAGE

Waste content description: Garbage and trash produced during drilling and completion operations

Amount of waste:

Waste disposal frequency: Weekly Safe containment description: N/A

Well Name: DOS EQUIS 11-14 FEDERAL COM Well Number: 50H

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: Windmill Spraying Service hauls trash to Lea County Landfill

Waste type: DRILLING

Waste content description: Drilling Fluids, drill cuttings, water and other waste produced from the well during drilling

operations.

Amount of waste: 15000 barrels

Waste disposal frequency: Weekly

Safe containment description: N/A

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: Haul to R360 commercial Disposal

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? N

Description of cuttings location

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Well Name: DOS EQUIS 11-14 FEDERAL COM Well Number: 50H

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: N

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

Dos_Equis_11_14_Fed_Com_50H_Wellsite_Layout_20200908130406.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance Multiple Well Pad Name: Dos Equis Fed Com

Multiple Well Pad Number: W2E2

Recontouring attachment:

Dos_Equis_11_14_Fed_Com_W2E2_Interim_reclaim_20200908130448.pdf

Drainage/Erosion control construction: To control and prevent potentially contaminated precipitation from leaving the pad site, a perimeter berm and settlement pond will be installed. Contaminated water will be removed from pond, stored in waste tanks, and disposed of at a state approved facility. Standing water or puddles will not be allowed. Drainage ditches would be established and maintained on the pad and along access roads to divert water away from operations. Natural drainage areas disturbed during construction would be re-contoured to near original condition prior to construction. Erosion Control Best Management Practices would be used where necessary and consist of seeding, fiber rolls, water bars, silt fences, and temporary diversion dikes. Areas disturbed during construction that are no longer needed for operations would be used where necessary and consist of seeding, fiber rolls, water bars, silt fences, and temporary diversion dikes. Areas disturbed during construction that are no longer needed for operations would be obliterated, re-contoured, and reclaimed to near original condition to re-establish natural drainage.

Drainage/Erosion control reclamation: All disturbed and re-contoured areas would be reseeded according to specifications. Approved seed mixtures would be certified weed free and consist of grasses, forbs, or shrubs similar to the surrounding area. Compacted soil areas may need to be obliterated and reclaimed to near natural conditions by recontouring all slopes to facilitate and re-establish natural drainage.

Well Name: DOS EQUIS 11-14 FEDERAL COM Well Number: 50H

Well pad proposed disturbance

(acres): 6.95

Road proposed disturbance (acres):

3 47

Powerline proposed disturbance

(acres): 0

Pipeline proposed disturbance

(acres): 2.407

Other proposed disturbance (acres):

9.921

Total proposed disturbance:

22.74799999999998

Well pad interim reclamation (acres):

3.69

Road interim reclamation (acres): 0

Powerline interim reclamation (acres):

Λ

Pipeline interim reclamation (acres): 0

Other interim reclamation (acres): 0

Total interim reclamation: 3.69

Well pad long term disturbance

(acres): 3.26

Road long term disturbance (acres):

3.47

Powerline long term disturbance

(acres): 0

Pipeline long term disturbance

(acres): 0

Other long term disturbance (acres): 0

Total long term disturbance: 6.73

Disturbance Comments: Well Pad- 7.258 acres. Bulk lines= 2.758 acres- 1747'. East Zone 1 CTB= 4.946 acres. East Zone 2 CTB=4.975. Previously Approved new road= 5039'. We have been working on engineering solutions to reduce our footprint in the section to lower cost, disturbance, and our economic hurdle for other marginal benches within the section to increase our total mineral recovery. It turns out that simply changing our flowline / well approach and moving our separation to our drilling pads significantly reduces our foot print and cost. By placing our separation on our drill pads we can use 6-12 Group lines to gather the separated oil gas and water from the entire section instead of using up to 90 flowlines to move production to the tank batteries for separation. The Group line ability to gather the entire section helps us eliminate 2 batteries per section by simply utilizing the group line approach.

Reconstruction method: After well plugging, all disturbed areas would be returned to the original contour or a contour that blends with the surrounding landform including roads unless the surface owner requests that they be left intact. In consultation with the surface owners it will be determined if any gravel or similar materials used to reinforce an area are to be removed, buried, or left in place during final reclamation. Salvaged topsoil, if any, would be re-spread evenly over the surfaces to be re-vegetated. As necessary, the soil surface would be prepared to provide a seedbed for re-establishment of desirable vegetation. Site preparation may include gouging, scarifying, dozer track-walking, mulching, or fertilizing. Reclamation, Re-vegetation, and Drainage: All disturbed and re-contoured areas would be reseeded using techniques outlined under Phase I and II of this plan or as specified by the land owner. Approved seed mixtures would be certified weed free and consist of grasses, forbs, or shrubs similar to the surrounding area. Compacted soil areas may need to be obliterated and reclaimed to near natural conditions by re-contouring all slopes to facilitate and re-establish natural drainage. Topsoil redistribution: Salvaged topsoil, if any, would be re-spread evenly over the surfaces to be re-vegetated.

Soil treatment: As necessary, the soil surface would be prepared to provide a seedbed for re-establishment of desirable vegetation. Site preparation may include gouging, scarifying, dozer track-walking, mulching or fertilizing.

Existing Vegetation at the well pad: N/A

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: N/A

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline: N/A

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances: N/A

Existing Vegetation Community at other disturbances attachment:

Non native seed used? N

Non native seed description:

Well Name: DOS EQUIS 11-14 FEDERAL COM Well Number: 50H

Seedling transplant description:

Will seedlings be transplanted for this project? N

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation?

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table

Seed Summary

Total pounds/Acre:

Seed Type

Pounds/Acre

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name: Amity Last Name: Crawford

Phone: (432)620-1909 Email: acrawford@cimarex.com

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? N

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: N/A

Weed treatment plan attachment:

Monitoring plan description: N/A

Monitoring plan attachment:

Success standards: N/A

Pit closure description: N/A

Pit closure attachment:

Well Name: DOS EQUIS 11-14 FEDERAL COM Well Number: 50H

Section 11 - Surface Ownership

Disturbance type: PIPELINE
Describe:
Surface Owner: BUREAU OF LAND MANAGEMENT
Other surface owner description:
BIA Local Office:
BOR Local Office:
COE Local Office:
DOD Local Office:
NPS Local Office:
State Local Office:
Military Local Office:
USFWS Local Office:
Other Local Office:
USFS Region:
USFS Forest/Grassland:
Disturbance type: WELL PAD
Disturbance type: WELL PAD Describe:
• •
Describe:
Describe: Surface Owner: BUREAU OF LAND MANAGEMENT
Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description:
Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office:
Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: BOR Local Office:
Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office:
Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office:
Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office:
Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office:

USFS Ranger District:

USFS Region:

Received by OCD: 4/28/2022 9:15:35 AM **Operator Name: CIMAREX ENERGY COMPANY** Well Name: DOS EQUIS 11-14 FEDERAL COM Well Number: 50H **USFS Forest/Grassland: USFS** Ranger District: Disturbance type: NEW ACCESS ROAD Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: **BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: Military Local Office: USFWS Local Office:** Other Local Office: **USFS** Region: **USFS Forest/Grassland: USFS Ranger District:** Disturbance type: OTHER Describe: CTB Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: **BIA Local Office: BOR Local Office: COE Local Office:**

DOD Local Office: NPS Local Office:

State Local Office:

Military Local Office:

Well Name: DOS EQUIS 11-14 FEDERAL COM Well Number: 50H

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Section 12 - Other Information

Right of Way needed? Y

Use APD as ROW? Y

ROW Type(s): 281001 ROW - ROADS,288100 ROW - O&G Pipeline,288101 ROW - O&G Facility Sites,289001 ROW-O&G Well Pad

ROW Applications

SUPO Additional Information:

Use a previously conducted onsite? Y

Previous Onsite information: V-Door West. Top soil North. Interim reclamation: All sides. Access road at NW corner, north, to lease road. Pad size = 500' (E/W) x 560' (N/S).

Other SUPO Attachment

Dos_Equis_11_14_Fed_Com_W2E2_Road_Description_20200908132434.pdf

Dos_Equis_11_14_Fed_Com_W2E2_Public_Road_Access_Map__20200908132446.pdf

Dos Equis 11 14 Fed Com 50H SUPO 20200908132457.pdf

Dos_Equis_11_14_W2E2_Pad_All_Wells_20200908133654.docx

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

PWD Data Report

PWD disturbance (acres):

APD ID: 10400060936 Submission Date: 09/08/2020

Operator Name: CIMAREX ENERGY COMPANY

Well Name: DOS EQUIS 11-14 FEDERAL COM Well Number: 50H

Well Type: OIL WELL Well Work Type: Drill

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Well Name: DOS EQUIS 11-14 FEDERAL COM Well Number: 50H

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD disturbance (acres): PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Well Name: DOS EQUIS 11-14 FEDERAL COM Well Number: 50H

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

Injection well number: Injection well name:

Assigned injection well API number? Injection well API number:

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Other PWD discharge volume (bbl/day):

Well Name: DOS EQUIS 11-14 FEDERAL COM Well Number: 50H

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Info Data Report

12/07/2021

APD ID: 10400060936

Operator Name: CIMAREX ENERGY COMPANY

Well Name: DOS EQUIS 11-14 FEDERAL COM

Well Type: OIL WELL

Submission Date: 09/08/2020

Highlighted data reflects the most recent changes

Show Final Text

Well Number: 50H
Well Work Type: Drill

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001188

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description <u>Effective May 25, 2021</u>

I. Operator: Cimarex El	nergy Company		_ OGRID: _2	15099		Date: _ <u>4</u>	
II.Type* ☑ Original ☐	Amendment	due to □ 19.15.27.9.	D(6)(a) NMAC	C □ 19.15.27.9.D(6)(b) NM	IAC □ Other	r.
If Other, please describe	::						
III. Well(s): Provide the be recompleted from a s					wells pro	oposed to be	drilled or proposed to
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D		cipated MCF/D	Anticipated Produced Water BBL/D
Dos Equis 11-14 Federal Com 5	юн	B, Sec 11, T24E, R32E	390 FNL/ 2530 I	FEL 2000	580	00	4200
3(-025-50019						
	V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point. Well Name API Spud Date TD Reached Completion Commencement Date Back Date Date						
Dos Equis 11-14 Federal Com		11/1/2023	4/1/2024	6/1/2024		8/1/2024	8/1/2024
30-	025-50019						
VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture. VII. Operational Practices: Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC. VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.							

Section 2 – Enhanced Plan

			E APRIL 1, 2022		
Beginning April 1, 2 reporting area must c			with its statewide natural g	as capture requirement for the applical	ole
Operator certifies capture requirement	-	-	tion because Operator is in	compliance with its statewide natural g	gas
IX. Anticipated Nat	ural Gas Producti	on:			
We	:11	API	Anticipated Average Natural Gas Rate MCF/E	Anticipated Volume of Natural Gas for the First Year MCF	
X. Natural Gas Gat	hering System (NC	GGS):			
Operator			Available Maximum Daily Capacity of System Segment Tie-in		
production operation the segment or portion XII. Line Capacity.	s to the existing or point of the natural gas. The natural gas ga	planned interconnect of the gathering system(s) to v	he natural gas gathering systewhich the well(s) will be conditionally will not have capacity to g	aticipated pipeline route(s) connecting tem(s), and the maximum daily capacity nected. ather 100% of the anticipated natural §	of
				ted to the same segment, or portion, of the line pressure caused by the new well(s	
☐ Attach Operator's	plan to manage pro	oduction in response to the	ne increased line pressure.		
Section 2 as provided	l in Paragraph (2) o		27.9 NMAC, and attaches a f	SA 1978 for the information provided full description of the specific information	

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after	r reasonable inquiry and based on the available information at the time of submittal:
one hundred percent of the	connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport anticipated volume of natural gas produced from the well(s) commencing on the date of first production, rent and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering
hundred percent of the anti into account the current and	le to connect to a natural gas gathering system in the general area with sufficient capacity to transport one cipated volume of natural gas produced from the well(s) commencing on the date of first production, taking d anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. x, Operator will select one of the following:
Well Shut-In. ☐ Operator D of 19.15.27.9 NMAC; or	will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection
alternative beneficial uses to (a)	. □ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential for the natural gas until a natural gas gathering system is available, including: power generation on lease; power generation for grid;

- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- **(f)** reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

From State of New Mexico, Natural Gas Management Plan

VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture.

XEC Standard Response

Standard facility gas process flow begins at the inlet separator. These vessels are designed based off of forecasted rates and residence times in accordance with, and often greater than, API 12J. The separated gas is then routed to an additional separation vessel (ie sales scrubber) in order to extract liquids that may have carried over or developed due to the decrease in pressure. The sales scrubber is sized based on API 521. From the sales scrubber, the gas leaves the facility and enters the gas midstream gathering network.

Cimarex

VII. Operational Practices

Cimarex values the sustainable development of New Mexico's natural resources. Venting and flaring of natural gas is a source of waste in the industry, and Cimarex will ensure that its values are aligned with those of NMOCD. As such, Cimarex plans to take pointed steps to ensure compliance with Subsection A through F of 19.15.27.8 NMAC.

Specifically, below are the steps Cimarex will plan to follow under routine well commissioning and operations.

- 1. Capture or combust natural gas during drilling operations where technically feasible, using the best industry practices and control technologies.
 - a. All flares during these operations will be a minimum of 100ft away from the nearest surface-hole location.
- 2. All gas present during post-completion drill-out and flow back will be routed through separation equipment, and, if technically feasible, flare unsellable vapors rather than vent. Lastly, formal sales separator commissioning to process well-stream fluids and send gas to a gas flow line/collection system or use the gas for on-site fuel or beneficial usage, gas as soon as is safe and technically feasible.
- 3. Cimarex will ensure the flare or combustion equipment is properly sized to handle expected flow rates, ensure this equipment is equipped with an automatic or continuous ignition source, and ensure this equipment is designed for proper combustion efficiency.
- 4. If Cimarex must flare because gas is not meeting pipeline specifications, Cimarex will limit flaring to <60 days, analyze gas composition at least twice per week, and route gas into a gathering pipeline as soon as pipeline specifications are met.
- 5. Under routine production operations, Cimarex will not flare/vent unless:
 - a. Venting or flaring occurs due to an emergency or equipment malfunction.
 - b. Venting or flaring occurs as a result of unloading practices, and an operator is onsite (or within 30 minutes of drive time and posts contact information at the wellsite) until the end of unloading practice.
 - c. The venting or flaring occurs during automated plungerlift operations, in which case the Cimarex operator will work to optimize the plungerlift system to minimize venting/flaring.
 - d. The venting or flaring occurs during downhole well maintenance, in which case Cimarex will work to minimize venting or flaring operations to the extent that it does not pose a risk to safe operations.
 - e. The well is an exploratory well, the division has approved the well as an exploratory well, venting or flaring is limited to 12 months, as approved by the division, and venting/flaring does not cause Cimarex to breach its State-wide 98% gas capture requirement.
 - f. Venting or flaring occurs because the stock tanks or other low-pressure vessels are being gauged, sampled, or liquids are being loaded out.
 - g. The venting or flaring occurs because pressurized vessels are being maintained and are being blown-down or depressurized.
 - h. Venting or flaring occurs as a result of normal dehydration unit operations.

- i. Venting or flaring occurs as a result of bradenhead testing.
- j. Venting or flaring occurs as a result of normal compressor operations, including general compressor operations, compressor engines and turbines.
- k. Venting or flaring occurs as a result of a packer leakage test.
- l. Venting or flaring occurs as a result of a production test lasting less than 24 hours unless otherwise approved by the division.
- m. Venting or flaring occurs as a result of new equipment commissioning and is necessary to purge impurities from the pipeline or production equipment.
- 6. Cimarex will maintain its equipment in accordance with its Operations and Maintenance Program, to ensure venting or flaring events are minimized and that equipment is properly functioning.
- 7. Cimarex will install automatic tank gauging equipment on all production facilities constructed after May 25, 2021, to ensure minimal emissions from tank gauging practices.
- 8. By November 25, 2022, all Cimarex facilities equipped with flares or combustors will be equipped with continuous pilots or automatic igniters, and technology to ensure proper function, i.e. thermocouple, fire-eye, etc...
- 9. Cimarex will perform AVO (audio, visual, olfactory) facility inspections in accordance with NMOCD requirements. Specifically, Cimarex will:
 - a. Perform weekly inspections during the first year of production, and so long as production is greater than 60 MCFD.
 - b. If production is less than 60 MCFD, Cimarex will perform weekly AVO inspections when an operator is present on location, and inspections at least once per calendar month with at least 20 calendar days between inspections.
- 10. Cimarex will measure or estimate the volume of vented, flared or beneficially used natural gas, regardless of the reason or authorization for such venting or flaring.
- 11. On all facilities constructed after May 25, 2021, Cimarex will install metering where feasible and in accordance with available technology and best engineering practices, in an effort to measure how much gas could have been vented or flared.
 - a. In areas where metering is not technically feasible, such as low-pressure/low volume venting or flaring applications, engineering estimates will be used such that the methodology could be independently verified.
- 12. Cimarex will fulfill the division's requirements for reporting and filing of venting or flaring that exceeds 50 MCF in volume or last eight hours or more cumulatively within any 24-hour period.

VIII. Best Management Practices to minimize venting during active and planned maintenance

Cimarex strives to ensure minimal venting occurs during active and planned maintenance activities. Below is a description of common maintenance practices, and the steps Cimarex takes to limit venting exposure.

• Workovers:

- o Always strive to kill well when performing downhole maintenance.
- o If vapors or trapped pressure is present and must be relieved then:
 - Initial blowdown to production facility:
 - Route vapors to LP flare if possible/applicable
 - Blowdown to portable gas buster tank:
 - Vent to existing or portable flare if applicable.

• Stock tank servicing:

- o Minimize time spent with thief hatches open.
- When cleaning or servicing via manway, suck tank bottoms to ensure minimal volatiles exposed to atmosphere.
 - Connect vacuum truck to low pressure flare while cleaning bottoms to limit venting.
- o Isolate the vent lines and overflows on the tank being serviced from other tanks.

• Pressure vessel/compressor servicing and associated blowdowns:

- o Route to flare where possible.
- o Blow vessel down to minimum available pressure via pipeline, prior to venting vessel.
- Preemptively changing anodes to reduce failures and extended corrosion related servicing.
- When cleaning or servicing via manway, suck vessel bottoms to ensure minimal volatiles exposed to atmosphere.

• Flare/combustor maintenance:

- Minimize downtime by coordinating with vendor and Cimarex staff travel logistics.
- Utilizing preventative and predictive maintenance programs to replace high wear components before failure.
- Because the flare/combustor is the primary equipment used to limit venting practices, ensure flare/combustor is properly maintained and fully operational at all times via routine maintenance, temperature telemetry, onsite visual inspections.

The Cimarex expectation is to limit all venting exposure. Equipment that may not be listed on this document is still expected to be maintained and associated venting during such maintenance minimized.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 102350

CONDITIONS

Operator:	OGRID:
CIMAREX ENERGY CO.	215099
600 N. Marienfeld Street	Action Number:
Midland, TX 79701	102350
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
pkautz	Will require a File As Drilled C-102 and a Directional Survey with the C-104	5/9/2022
pkautz	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string	5/9/2022
pkautz	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system	5/9/2022
pkautz	Cement is required to circulate on both surface and intermediate1 strings of casing	5/9/2022