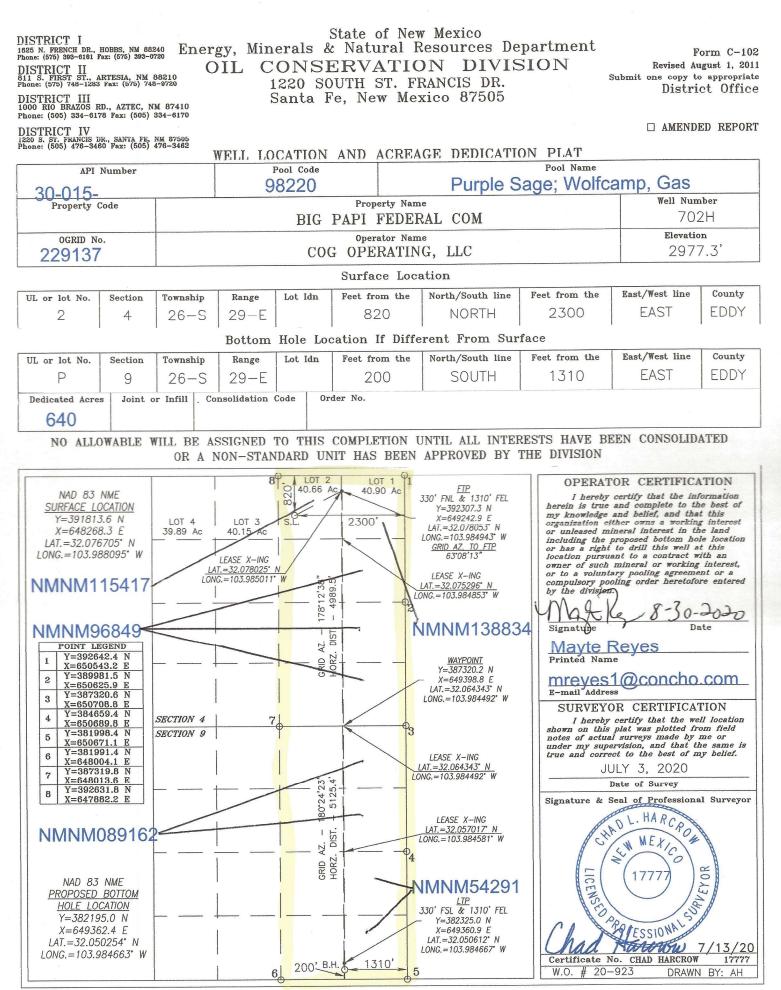

Form 3160-3 (June 2015)		FORM APP OMB No. 10 Expires: Januar	04-0137			
UNITED STATES DEPARTMENT OF THE INT BUREAU OF LAND MANAG		5. Lease Serial No.				
APPLICATION FOR PERMIT TO DR	ILL OR REENTER	6. If Indian, Allotee or T	ribe Name			
	NTER	7. If Unit or CA Agreement, Name and No.				
1b. Type of Well: Oil Well Gas Well Other 1c. Type of Completion: Hydraulic Fracturing Sing	er le Zone Multiple Zone	8. Lease Name and Well No.				
2. Name of Operator		9. API Well No. 30-015-49531				
3a. Address 31	b. Phone No. (include area code)	10. Field and Pool, or Ex	cploratory			
4. Location of Well (<i>Report location clearly and in accordance wit</i>	h any State requirements.*)	11. Sec., T. R. M. or Blk	. and Survey or Area			
At surface At proposed prod. zone						
14. Distance in miles and direction from nearest town or post office	*	12. County or Parish	13. State			
15. Distance from proposed* 1 location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	6. No of acres in lease 17. Spac	ing Unit dedicated to this w	vell			
	9. Proposed Depth 20, BLM	20. BLM/BIA Bond No. in file				
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22. Approximate date work will start*	23. Estimated duration				
	24. Attachments					
The following, completed in accordance with the requirements of C (as applicable)	Inshore Oil and Gas Order No. 1, and the	Hydraulic Fracturing rule p	per 43 CFR 3162.3-3			
 Well plat certified by a registered surveyor. A Drilling Plan. 	4. Bond to cover the operation Item 20 above).	ns unless covered by an exi	sting bond on file (see			
3. A Surface Use Plan (if the location is on National Forest System SUPO must be filed with the appropriate Forest Service Office).	Lands, the 5. Operator certification. 6. Such other site specific info BLM.	rmation and/or plans as may	be requested by the			
25. Signature	Name (Printed/Typed)	Dat	e			
Title						
Approved by (Signature)	Name (Printed/Typed)	Dat	e			
Title	Office					
Application approval does not warrant or certify that the applicant h applicant to conduct operations thereon. Conditions of approval, if any, are attached.	olds legal or equitable title to those rights	in the subject lease which	would entitle the			
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, mak of the United States any false, fictitious or fraudulent statements or			lepartment or agency			

*(Instructions on page 2)


.

(Continued on page 2)

Page 2 of 47

Released to Imaging: 5/13/2022 7:59:35 AM

Released to Imaging: 5/13/2022 7:59:35 AM

•

	State of New MexicoSubmit ElectronicallyEnergy, Minerals and Natural Resources DepartmentVia E-permittingOil Conservation DivisionVia E-permitting											
		1220 S	nservation Di South St. Franc ta Fe, NM 87:	cis Dr.								
NATURAL GAS MANAGEMENT PLAN												
This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.												
<u>Section 1 – Plan Description</u> <u>Effective May 25, 2021</u>												
I. Operator: COG O	perating LL	C OGRID: 2	29137	Date: _1	<u>10/12</u>	_ / 21						
II. Type: 🖾 Original	II. Type: ⊠ Original □ Amendment due to □ 19.15.27.9.D(6)(a) NMAC □ 19.15.27.9.D(6)(b) NMAC □ Other.											
If Other, please describe	If Other, please describe:											
	III. Well(s): Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.											
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D		cipated MCF/D	Anticipated Produced Water BBL/D					
Big Papi Federal Com 702H	30-015-	2-4-26S-29E	820' FNL & 2300' FEL	± 1400	± 50	000	± 5000					
IV. Central Delivery P	oint Name:			1		[See 19.15.	27.9(D)(1) NMAC]					
V. Anticipated Schedu proposed to be recomple						et of wells prop	osed to be drilled or					
Well Name	API	Spud Date	TD Reached Date	Completion Commencement		Initial Flow Back Date	First Production Date					
Big Papi Federal Com 702H	Pending	6/15/2023	± 25 days from spud	10/13/2023	3	10/23/2023	10/28/2023					
 VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture. VII. Operational Practices: Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC. VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance. 												

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

Deprator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \Box Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \Box will \Box will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \Box does \Box does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

 \Box Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \Box Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

<u>Section 3 - Certifications</u> <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \square Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \Box Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. \Box Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

VI. Separation Equipment

How Operator will size separation equipment to optimize gas capture:

All ConocoPhillips production facility equipment will be sized per industry standards (API 12J) with adequate retention time to effectively separate all phases of production. Each project will take into consideration the number of wells and type curves for each formation pool to ensure adequate facility capacity. Design considerations will also include review of all piping, tanks, VRU's and associated equipment to ensure optimized gas capture minimized risk of release.

VII. Operational Practices

Actions Operator will take to comply with the requirements below:

- B. Drilling Operations
 - During drilling, flare stacks will be located a minimum of 100 feet from the nearest surface hole location. All gas is captured or combusted. If an emergency or malfunction occurs, gas will be flared or vented for public health, safety, and the environment and be properly reported to the NMOCD pursuant to 19.15.27.8.G.
 - Measure or estimate the volume of natural gas that is vented, flared or beneficially used during drilling, completion and production operations, regardless of the reason or authorization for such venting or flaring.
- C. Completion Operations
 - During completion operations, operator does not produce oil or gas but maintains adequate well control through completion operations.
 - Individual well test separators will be set to properly separate gas and liquids. A temporary test separator will be utilized initially to process volumes. In addition, separators will be tied into flowback tanks which will be tied into the gas processing equipment for sales down a pipeline.
- D. Venting and flaring during production operations
 - During each phase of well life (drilling, completion and production) of a ConocoPhillips well, COP personnel will follow all necessary procedures to ensure both the operation and the equipment are within the NMAC 19.15.27.8 Subsection D guidelines.
 - During well operations that require unloading of the well to atmospheric pressure, all reasonable actions will be taken to minimize vented gas
 - Through the life of the well all flaring shall be measured, and venting events quantified using the data available and industry best practice.
- E. Performance standards for separation, storage tank and flare equipment
 - All storage tanks and separation equipment are designed minimize risk of liquid or vapor release and optimize gas capture. This includes automation for automatic gauging and pressure monitoring.

- All flare stacks are equipped with auto ignition devices and/or continuous pilots and are designed to operate at maximum combustion efficiency pursuant NMAC 19.15.27.8 Subsection E. Flares will follow COP spacing guidelines to ensure they are a safe distance from combustibles and operations equipment.
- COP personnel will conduct routine AVO inspections on a regular basis per NMAC 19.15.27.8 Subsection E guidelines.
- F. Measurement of vented and flared natural gas.
 - Measurement equipment will be installed to quantify gas flared during drilling, completion and production of the well.
 - All measurement devices installed will meet accuracy ratings per AGA and API standards.
 - Measurement devices will be installed without manifolds that allow diversion of gas around the metering element, except for the sole purpose of inspection of servicing the measurement device.

VIII. Best Management Practices

- Operator will curtail or shut in production, within reasonable limits, during upset conditions to minimize venting and flaring.
- When feasible, Operator will use equipment to capture gas that would otherwise be vented or flared.
- During completions and production operations Operator will minimize blowdowns to atmosphere
- When feasible, Operator will use electric or air actuated equipment to reduce bleed emissions

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Mayte Reyes
Printed Name: Mayte Reyes
Title: Sr. Regulatory Coodinator
E-mail Address: mayte.x.reyes@conocophillips.com
Date: 10/12/2021
Phone: 575-748-6945
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400060970

Operator Name: COG OPERATING LLC

Well Name: BIG PAPI FEDERAL COM

Well Type: OIL WELL

Submission Date: 08/30/2020

Well Number: 702H

Well Work Type: Drill

Highlighted data reflects the most recent changes

04/26/2022

Drilling Plan Data Report

Show Final Text

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
840176	QUATERNARY	2977	Ö	Ö	ALLUVIUM	NONE	N
840177	RUSTLER	2791	186	186	ALLUVIUM	NONE	N
840178	TOP SALT	2568	409	409	SALT	NONE	N
840179	BASE OF SALT	220	2757	2757	ANHYDRITE	NONE	N
840180	LAMAR	30	2947	2947	LIMESTONE	OTHER : Salt Water	N
840182	BELL CANYON	0	2977	2977	SANDSTONE	OTHER : Salt Water	N
840192	CHERRY CANYON	-867	3844	3844	SILTSTONE	NATURAL GAS, OIL	N
840193	BRUSHY CANYON	-2104	5081	5081	SANDSTONE	NATURAL GAS, OIL	N
840183	BONE SPRING LIME	-3725	6702	6702	LIMESTONE	NATURAL GAS, OIL	N
840194	UPPER AVALON SHALE	-3973	6950	6950	SANDSTONE	NATURAL GAS, OIL	N
840196		-4223	7200	7200	SANDSTONE	NATURAL GAS, OIL	N
840195	\cdots	-4223	7200	7200			N
840184	BONE SPRING 1ST	-4637	7614	7614	SANDSTONE	NATURAL GAS, OIL	N
840181	BONE SPRING 2ND	-5501	8478	8478	SANDSTONE	NATURAL GAS, OIL	N
840185	BONE SPRING 3RD	-6451	9428	9428	SANDSTONE	NATURAL GAS, OIL	N
840186	WOLFCAMP	-7074	10051	10051	SHALE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Received by OCD: 5/10/2022 7:29:54 AM

Operator Name: COG OPERATING LLC

Well Name: BIG PAPI FEDERAL COM

Well Number: 702H

Page 11 of 47

Pressure Rating (PSI): 3M

Rating Depth: 9500

Equipment: Annular, Blind Ram and Pipe Ram. Accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. **Reguesting Variance?** YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to the choke manifold. See attached for specs and hydrostatic test chart.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

Choke Diagram Attachment:

COG_Big_Papi_3M_Choke_20200827115249.pdf

BOP Diagram Attachment:

COG_Big_Papi_3M_BOP_20200827115314.pdf

COG_Big_Papi_Flex_Hose_Variance_20200827115332.pdf

Pressure Rating (PSI): 5M

Rating Depth: 10186

Equipment: Annular, Blind Ram, Pipe Ram. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to the choke manifold. See attached for specs and hydrostatic test chart.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

Choke Diagram Attachment:

COG_Big_Papi_5M_Choke_20200827115034.pdf

BOP Diagram Attachment:

COG_Big_Papi_5M_BOP_20200827115054.pdf

COG_Big_Papi_Flex_Hose_Variance_20200827115112.pdf

Operator Name: COG OPERATING LLC

Well Name: BIG PAPI FEDERAL COM

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	14.5	10.75	NEW	API	N	0	295	0	295	2977	2682	295	J-55	45.5	ST&C	15.8 4	31.2 1	DRY	36.7 3	DRY	36.7 3
2	INTERMED IATE	9.87 5	7.625	NEW	API	N	0	9500	0	9500	-6999	-6523	9500	HCL -80		OTHER - BTC	1.87	1.38	DRY	2.56	DRY	2.56
3	PRODUCTI ON	6.75	5.5	NEW	API	N	0	20065	0	10186	-6999	-7209	20065	P- 110		OTHER - SF Torq	2.29	2.72	DRY	2.8	DRY	2.8

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

COG_Big_Papi_702H_Casing_Prog_20200827121209.pdf

Well Name: BIG PAPI FEDERAL COM

Well Number: 702H

Casing Attachments

Casing ID: 2 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

COG_Big_Papi_702H_Casing_Prog_20200827121937.pdf

Casing ID: 3 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

COG_Big_Papi_702H_Casing_Prog_20200827122132.pdf

Occiton		men	•								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	295	160	1.75	13.5	280	100	Class C	4% Gel
SURFACE	Tail		0	295	100	1.34	14.8	134	100	Class C	2% CaCl2
INTERMEDIATE	Lead		0	9500	800	3.6	10.3	2880	50	Tunded Light Blend	As needed
INTERMEDIATE	Tail		0	9500	250	1.1	16.4	275	50	Tail: Class H	As needed
PRODUCTION	Lead		9000	2006 5	550	2.5	11.9	1375	35	50:50:10 H Blend	As needed

Section 4 - Cement

Well Name: BIG PAPI FEDERAL COM

Well Number: 702H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Tail		9000	2006 5	1200	1.24	14.4	1488	35	50:50:2 Class H Blend	As needed

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (Ibs/cu ft)	Gel Strength (lbs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
295	9500	OTHER : Brine Diesel Emulsion	8.6	9.4							Brine Diesel Emulsion
0	295	OTHER : FW Gel	8.4	8.6							FW Gel
9500	2006 5	OIL-BASED MUD	10.5	12							ОВМ

Received by OCD: 5/10/2022 7:29:54 AM

Operator Name: COG OPERATING LLC

Well Name: BIG PAPI FEDERAL COM

Well Number: 702H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

None planned

List of open and cased hole logs run in the well: COMPENSATED NEUTRON LOG, GAMMA RAY LOG,

Coring operation description for the well:

None planned

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 6360

Anticipated Surface Pressure: 4119

Anticipated Bottom Hole Temperature(F): 160

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

COG_Big_Papi_H2S_SUP_20200827122659.pdf COG_Big_Papi_702H_H2S_Schem_20200830113344.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

COG_Big_Papi_702H_AC_RPT_20200827124749.pdf COG_Big_Papi_702H_Directional_Plan_20200827124807.pdf COG_Big_Papi_702H_Plot_20200827124840.pdf

Other proposed operations facets description:

Drilling Plan Attached. GCP Attached. Cement plan attached.

Other proposed operations facets attachment:

COG_Big_Papi_702H_Drilling_Prog_20200827124953.pdf COG_Big_Papi_702H_Cement_Prog_20200827125018.pdf COG_Big_Papi_702H_GCP_20200827125057.pdf

Other Variance attachment:

DELAWARE BASIN WEST

ATLAS PROSPECT (NM-E) BIG PAPI FEDERAL PROJECT (ATLAS 2629) BIG PAPI FED COM #702H

OWB

Plan: PWP1

Standard Survey Report

03 August, 2020

Survey Report

Company:	DELAWARE E	BASIN WEST	-	Loca	I Co-ordinate R	eference:	Well BIG PAP	FED COM#	702H	
Project:	ATLAS PROS	PECT (NM-E	E)	TVD	Reference:		KB=30 @ 300	7.3usft (TBD)		
-	BIG PAPI FED		, IECT (ATLAS 2	2629) MD R	leference:		KB=30 @ 3007.3usft (TBD)			
	BIG PAPI FED		•	,	Reference:	Grid				
Wellbore:	OWB			Surve	ey Calculation N	lethod:	Minimum Curvature			
Design:	PWP1			Datab	base:		edm			
Puele et										
Project		ROSPECT (N								
Map System:		lane 1927 (E (NADCON C	Exact solution)	Sys	stem Datum:		Mean Sea Le	vel		
Geo Datum: Map Zone:		o East 3001	0103)							
Map Zone.		o Last 5001								
Well	BIG PAPI	FED COM #	702H							
Well Position	+N/-S	0.0	usft Northi	ng:	391,755	.70 usft	Latitude:		32° 4' 35.	.689 N
	+E/-W	0.0		•	607,083	.10 usft	Longitude:		103° 59' 15.4	401 V
Position Uncert	ainty	3.0 (usft Wellhe	ead Elevation:		usfl	Ground Level	:	2,977	'.3 ust
Wellbore	OWB									
Magnetics	Model	Name	Sample Da	te D	Declination (°)	D)ip Angle (°)	Field	d Strength (nT)	
	l	GRF2020	8/3/	2020	6.83	3	59.73	47,	,456.39254697	
Design	PWP1									
Audit Notes:										
Version:			Phase:	PLAN		Tie On Dep	oth:			0.0
Vertical Section	n:	Dept	h From (TVD)		N/-S	+E/-W	ſ	Direction		
			(usft)	(L 0.0	u sft) 0.0	(usft) 0.0		(°)	73.51	
				0.0	0.0	0.0		17	5.51	
Survey Tool Pro	ogram	Date 8/	/3/2020							
From	То									
(usft)	(usft)									
0	(usit)	Survey (V	Vellbore)		Tool Name		Description			
-	. ,	Survey (V 3.0 PWP1 (O ^v			Tool Name Standard Ke	eper 104	•	eline Keeper v	ver 1.0.4	
9,648	0.0 9,648		WB)			•	Standard Wir	eline Keeper + IFR1 + FDI		
	0.0 9,648 8.0 20,065	3.0 PWP1 (O	WB)		Standard Ke	•	Standard Wir			
9,648 Planned Survey	0.0 9,648 9.0 20,065	3.0 PWP1 (O	WB) WB)		Standard Ke	+FDIR	Standard Wir OWSG MWD	+ IFR1 + FDI	IR Correction	
9,648	0.0 9,648 0.0 20,065 d Inclinatio	3.0 PWP1 (O' 5.7 PWP1 (O' n Azimut	WB) WB) Vertical	+N/-S	Standard Ke MWD+IFR1 +E/-W	•	Standard Wir			
9,648 Planned Survey Measured Depth (usft)	0.0 9,648 9.0 20,065 7 d Inclinatio (°)	3.0 PWP1 (O' 5.7 PWP1 (O' n Azimut (°)	WB) WB) Vertical h Depth (usft)	+N/-S (usft)	Standard Ke MWD+IFR1 +E/-W (usft)	+FDIR Vertical Section (usft)	Standard Wir OWSG MWD Dogleg Rate (°/100usft)	+ IFR1 + FDI Build Rate (°/100usft)	IR Correction Turn Rate (°/100usft)	
9,648 Planned Survey Measured Depth (usft) 0	0.0 9,648 0.0 20,065 d Inclinatio (°)	3.0 PWP1 (O' 5.7 PWP1 (O' n Azimut (°) 00 0	WB) WB) •h Vertical •h Depth (usft)	+N/-S (usft) 0.0 0.	Standard Ke MWD+IFR1 +E/-W (usft) 0 0.0	+FDIR Vertical Section (usft) 0.0	Standard Wir OWSG MWD Dogleg Rate (°/100usft) 0.00	+ IFR1 + FDI Build Rate (°/100usft) 0.00	IR Correction Turn Rate (°/100usft) 0.00	
9,648 Planned Survey Measured Depth (usft)	0.0 9,648 0.0 20,065 0 0 0 0.0 0.0 0.0 0.0	3.0 PWP1 (O' 5.7 PWP1 (O' n Azimut (°) 00 0	WB) WB) Vertical h Depth (usft)	+N/-S (usft) 0.0 0. 0.0 0.	Standard Ke MWD+IFR1 +E/-W (usft) 0 0.0 0 0.0	+FDIR Vertical Section (usft)	Standard Wir OWSG MWD Dogleg Rate (°/100usft) 0.00 0.00	+ IFR1 + FDI Build Rate (°/100usft)	IR Correction Turn Rate (°/100usft)	
9,648 Planned Survey Measured Depth (usft) 0 100	0.0 9,648 0.0 20,065 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0	3.0 PWP1 (O' 5.7 PWP1 (O' 0.0 (°) 0.0 0 0.0 0 0.0 0	WB) WB) th Vertical Depth (usft) .00 (.00 100	+N/-S (usft) 0.0 0. 0.0 0. 0.0 0.	Standard Ke MWD+IFR1 (usft) 0 0.0 0 0.0 0 0.0	+FDIR Vertical Section (usft) 0.0 0.0	Standard Wir OWSG MWD Dogleg Rate (°/100usft) 0.00 0.00	+ IFR1 + FDI Build Rate (°/100usft) 0.00 0.00	IR Correction Turn Rate (°/100usft) 0.00 0.00	
9,648 Planned Survey Measured Depth (usft) 0 100 200	0.0 9,648 0.0 20,065 0 Inclinatio (°) 0.0 0. 0.0 0. 0.0 0.	3.0 PWP1 (O' 5.7 PWP1 (O' 0.0 0 00 0 00 0 00 0 00 0 00 0	WB) WB) th Vertical Depth (usft) .00 (0 .00 100 .00 200	+N/-S (usft) 0.0 0. 0.0 0. 0.0 0. 0.0 0.	Standard Ke MWD+IFR1 (usft) 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	+FDIR Vertical Section (usft) 0.0 0.0 0.0	Standard Wir OWSG MWD Dogleg Rate (°/100usft) 0.00 0.00 0.00 0.00	+ IFR1 + FDI Build Rate (°/100usft) 0.00 0.00 0.00	IR Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00	
9,648 Planned Survey Measured Depth (usft) 0 100 200 300 400	0.0 9,648 0.0 20,065 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	A.0 PWP1 (O') n Azimut (°) 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0	WB) WB) th Vertical Depth (usft) .00 (0 .00 100 .00 200 .00 300 .00 400	+N/-S (usft) 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0.	Standard Ke MWD+IFR1 (usft) 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	+FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0	Standard Wir OWSG MWD Rate (°/100usft) 0 0.00 0.00 0.00 0.00 0.00	+ IFR1 + FDI Build Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00	IR Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	
9,648 Planned Survey Measured Depth (usft) 0 100 200 300 400 500	0.0 9,648 20,065 d Inclination (°) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	B.0 PWP1 (O' n Azimut (°) 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0	WB) WB) th Vertical Depth (usft) .00 (0 .00 100 .00 200 .00 300 .00 400	+N/-S (usft) 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0.	Standard Ke MWD+IFR1 (usft) 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	+FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0	Standard Wir OWSG MWD Dogleg Rate (°/100usft) 0 0.00 0.00 0.00 0.00 0.00	+ IFR1 + FDI Build Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	IR Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	
9,648 Planned Survey Measured Depth (usft) 0 100 200 300 400 500 600	0.0 9,648 3.0 20,065 4 Inclination (°) 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0.	A.0 PWP1 (O') n Azimut (°) 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0	WB) WB) th Vertical Depth (usft) .00 100 .00 200 .00 300 .00 400 .00 500 .00 600	+N/-S (usft) 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0.	Standard Ke MWD+IFR1 (usft) 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	+FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Standard Wir OWSG MWD Rate (°/100usft) 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	+ IFR1 + FDI Build Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	IR Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	
9,648 Planned Survey Measured Depth (usft) 0 100 200 300 400 500	0.0 9,648 3.0 20,065 4 Inclination (°) 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0.	A.0 PWP1 (O) n Azimut (°) 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0	WB) WB) th Vertical Depth (usft) .00 (0 .00 100 .00 200 .00 300 .00 400	+N/-S (usft) 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0.	Standard Ke MWD+IFR1 (usft) 0 0.0 0 0.0	+FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0	Standard Wir OWSG MWD Rate (°/100usft) 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	+ IFR1 + FDI Build Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	IR Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1,000.0

1,100.0

1,200.0

1,300.0

1,400.0

1,000.0

1,100.0

1,200.0

1,300.0

1,400.0

8/3/2020 3:54:54PM

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.0

0.0

0.0

0.0

0.0

0.00

0.00

0.00

0.00

0.00

Survey Report

Company:	DELAWARE BASIN WEST	Local Co-ordinate Reference:	Well BIG PAPI FED COM #702H
Project:	ATLAS PROSPECT (NM-E)	TVD Reference:	KB=30 @ 3007.3usft (TBD)
Site:	BIG PAPI FEDERAL PROJECT (ATLAS 2629)	MD Reference:	KB=30 @ 3007.3usft (TBD)
Well:	BIG PAPI FED COM #702H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	edm

Planned Survey

Meas Dep (us	oth	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
1	500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
	600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
	700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
	800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
	900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,	0.000	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,	100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,	200.0	0.00	0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00
2,	300.0	0.00	0.00	2,300.0	0.0	0.0	0.0	0.00	0.00	0.00
2,	400.0	0.00	0.00	2,400.0	0.0	0.0	0.0	0.00	0.00	0.00
2,	500.0	0.00	0.00	2,500.0	0.0	0.0	0.0	0.00	0.00	0.00
2,	600.0	0.00	0.00	2,600.0	0.0	0.0	0.0	0.00	0.00	0.00
2,	700.0	0.00	0.00	2,700.0	0.0	0.0	0.0	0.00	0.00	0.00
	800.0	0.00	0.00	2,800.0	0.0	0.0	0.0	0.00	0.00	0.00
	t Build									
2,	900.0	2.00	60.00	2,900.0	0.9	1.5	-0.7	2.00	2.00	0.00
3,	0.000	4.00	60.00	2,999.8	3.5	6.0	-2.8	2.00	2.00	0.00
3,	100.0	6.00	60.00	3,099.5	7.8	13.6	-6.3	2.00	2.00	0.00
3,	150.0	7.00	60.00	3,149.1	10.7	18.5	-8.5	2.00	2.00	0.00
Star	t 6498.	0 hold at 3150	.0 MD							
	200.0	7.00	60.00	3,198.8	13.7	23.8	-10.9	0.00	0.00	0.00
3,	300.0	7.00	60.00	3,298.0	19.8	34.3	-15.8	0.00	0.00	0.00
3,	400.0	7.00	60.00	3,397.3	25.9	44.9	-20.7	0.00	0.00	0.00
3,	500.0	7.00	60.00	3,496.5	32.0	55.4	-25.5	0.00	0.00	0.00
3,	600.0	7.00	60.00	3,595.8	38.1	66.0	-30.4	0.00	0.00	0.00
3,	700.0	7.00	60.00	3,695.0	44.2	76.5	-35.3	0.00	0.00	0.00
3,	800.0	7.00	60.00	3,794.3	50.3	87.1	-40.1	0.00	0.00	0.00
3,	900.0	7.00	60.00	3,893.5	56.4	97.6	-45.0	0.00	0.00	0.00
4,	0.000	7.00	60.00	3,992.8	62.5	108.2	-49.8	0.00	0.00	0.00
4,	100.0	7.00	60.00	4,092.0	68.6	118.8	-54.7	0.00	0.00	0.00
4,	200.0	7.00	60.00	4,191.3	74.7	129.3	-59.6	0.00	0.00	0.00
4,	300.0	7.00	60.00	4,290.6	80.8	139.9	-64.4	0.00	0.00	0.00
4,	400.0	7.00	60.00	4,389.8	86.8	150.4	-69.3	0.00	0.00	0.00
4.	500.0	7.00	60.00	4,489.1	92.9	161.0	-74.2	0.00	0.00	0.00
	600.0	7.00	60.00	4,588.3	99.0	171.5	-79.0	0.00	0.00	0.00
	700.0	7.00	60.00	4,687.6	105.1	182.1	-83.9	0.00	0.00	0.00
	800.0	7.00	60.00	4,786.8	111.2	192.6	-88.7	0.00	0.00	0.00
4.	900.0	7.00	60.00	4,886.1	117.3	203.2	-93.6	0.00	0.00	0.00
	0.000	7.00	60.00	4,985.3	123.4	213.7	-98.5	0.00	0.00	0.00
	100.0	7.00	60.00	5,084.6	129.5	224.3	-103.3	0.00	0.00	0.00
	200.0	7.00	60.00	5,183.8	135.6	234.9	-108.2	0.00	0.00	0.00
	300.0	7.00	60.00	5,283.1	141.7	245.4	-113.1	0.00	0.00	0.00
5,	400.0	7.00	60.00	5,382.4	147.8	256.0	-117.9	0.00	0.00	0.00
9/2/2020 2.51					Dee				0040	100 E000 1E Duild 01

Released to Imaging: 5/13/2022 7:59:35 AM

Survey Report

Company:	DELAWARE BASIN WEST	Local Co-ordinate Reference:	Well BIG PAPI FED COM #702H
Project:	ATLAS PROSPECT (NM-E)	TVD Reference:	KB=30 @ 3007.3usft (TBD)
Site:	BIG PAPI FEDERAL PROJECT (ATLAS 2629)	MD Reference:	KB=30 @ 3007.3usft (TBD)
Well:	BIG PAPI FED COM #702H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	edm

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,500.0	7.00	60.00	5,481.6	153.9	266.5	-122.8	0.00	0.00	0.00
5,600.0	7.00	60.00	5,580.9	160.0	277.1	-127.6	0.00	0.00	0.00
5,700.0	7.00	60.00	5,680.1	166.1	287.6	-132.5	0.00	0.00	0.00
5,800.0	7.00	60.00	5,779.4	172.2	298.2	-137.4	0.00	0.00	0.00
5,900.0	7.00	60.00	5,878.6	178.2	308.7	-142.2	0.00	0.00	0.00
6,000.0	7.00	60.00	5,977.9	184.3	319.3	-147.1	0.00	0.00	0.00
6,100.0	7.00	60.00	6,077.1	190.4	329.8	-151.9	0.00	0.00	0.00
6,200.0	7.00	60.00	6,176.4	196.5	340.4	-156.8	0.00	0.00	0.00
6,300.0	7.00	60.00	6,275.7	202.6	350.9	-161.7	0.00	0.00	0.00
6,400.0	7.00	60.00	6,374.9	208.7	361.5	-166.5	0.00	0.00	0.00
6,500.0	7.00	60.00	6,474.2	214.8	372.1	-171.4	0.00	0.00	0.00
6,600.0	7.00	60.00	6,573.4	220.9	382.6	-176.3	0.00	0.00	0.00
6,700.0	7.00	60.00	6,672.7	227.0	393.2	-181.1	0.00	0.00	0.00
6,800.0	7.00	60.00	6,771.9	233.1	403.7	-186.0	0.00	0.00	0.00
6,900.0	7.00	60.00	6,871.2	239.2	414.3	-190.8	0.00	0.00	0.00
7,000.0	7.00	60.00	6,970.4	245.3	424.8	-195.7	0.00	0.00	0.00
7,100.0	7.00	60.00	7,069.7	251.4	435.4	-200.6	0.00	0.00	0.00
7,200.0	7.00	60.00	7,168.9	257.5	445.9	-205.4	0.00	0.00	0.00
7,300.0	7.00	60.00	7,268.2	263.6	456.5	-210.3	0.00	0.00	0.00
7,400.0	7.00	60.00	7,367.5	269.6	467.0	-215.2	0.00	0.00	0.00
7,500.0	7.00	60.00	7,466.7	275.7	477.6	-220.0	0.00	0.00	0.00
7,600.0	7.00	60.00	7,566.0	281.8	488.2	-224.9	0.00	0.00	0.00
7,700.0	7.00	60.00	7,665.2	287.9	498.7	-229.7	0.00	0.00	0.00
7,800.0	7.00	60.00	7,764.5	294.0	509.3	-234.6	0.00	0.00	0.00
7,900.0	7.00	60.00	7,863.7	300.1	519.8	-239.5	0.00	0.00	0.00
8,000.0	7.00	60.00	7,963.0	306.2	530.4	-244.3	0.00	0.00	0.00
8,100.0	7.00	60.00	8,062.2	312.3	540.9	-249.2	0.00	0.00	0.00
8,200.0	7.00	60.00	8,161.5	318.4	551.5	-254.0	0.00	0.00	0.00
8,300.0	7.00	60.00	8,260.7	324.5	562.0	-258.9	0.00	0.00	0.00
8,400.0	7.00	60.00	8,360.0	330.6	572.6	-263.8	0.00	0.00	0.00
8,500.0	7.00	60.00	8,459.3	336.7	583.1	-268.6	0.00	0.00	0.00
8,600.0	7.00	60.00	8,558.5	342.8	593.7	-273.5	0.00	0.00	0.00
8,700.0	7.00	60.00	8,657.8	348.9	604.3	-278.4	0.00	0.00	0.00
8,800.0	7.00	60.00	8,757.0	355.0	614.8	-283.2	0.00	0.00	0.00
8,900.0	7.00	60.00	8,856.3	361.1	625.4	-288.1	0.00	0.00	0.00
9,000.0	7.00	60.00	8,955.5	367.1	635.9	-292.9	0.00	0.00	0.00
9,100.0	7.00	60.00	9,054.8	373.2	646.5	-297.8	0.00	0.00	0.00
9,200.0	7.00	60.00	9,154.0	379.3	657.0	-302.7	0.00	0.00	0.00
9,300.0	7.00	60.00	9,253.3	385.4	667.6	-307.5	0.00	0.00	0.00
9,400.0	7.00	60.00	9,352.5	391.5	678.1	-312.4	0.00	0.00	0.00
9,500.0	7.00	60.00	9,451.8	397.6	688.7	-317.3	0.00	0.00	0.00
9,600.0	7.00	60.00	9,551.1	403.7	699.2	-322.1	0.00	0.00	0.00
9,648.0	7.00	60.00	9,598.7	406.6	704.3	-324.4	0.00	0.00	0.00
Start DLS	10.00 TFO 105	5.22							

8/3/2020 3:54:54PM

Survey Report

Company:	DELAWARE BASIN WEST	Local Co-ordinate Reference:	Well BIG PAPI FED COM #702H
Project:	ATLAS PROSPECT (NM-E)	TVD Reference:	KB=30 @ 3007.3usft (TBD)
Site:	BIG PAPI FEDERAL PROJECT (ATLAS 2629)	MD Reference:	KB=30 @ 3007.3usft (TBD)
Well:	BIG PAPI FED COM #702H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	edm

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,700.0	7.54	101.82	9,650.3	407.5	710.4	-324.6	10.00	1.03	80.42
9,800.0	14.94	138.98	9,748.4	396.4	725.3	-311.9	10.00	7.40	37.16
9,900.0	24.26	150.10	9,842.6	368.8	744.1	-282.4	10.00	9.32	11.12
10,000.0	33.95	155.20	9,929.9	325.6	766.1	-236.9	10.00	9.69	5.11
10,100.0	43.77	158.23	10,007.6	267.9	790.7	-176.9	10.00	9.82	3.03
10,200.0	53.65	160.33	10,073.5	197.7	817.1	-104.1	10.00	9.88	2.10
10,300.0	63.55	161.96	10,125.6	117.0	844.6	-20.8	10.00	9.90	1.62
10,400.0	73.47	163.32	10,162.2	28.3	872.3	70.4	10.00	9.92	1.36
10,500.0	83.40	164.55	10,182.2	-65.7	899.4	166.9	10.00	9.93	1.23
10,571.3	90.48	165.39	10,186.0	-134.4	917.8	237.3	10.00	9.93	1.18
	2.00 TFO 89.94		-,						
10,600.0	90.48	165.96	10,185.8	-162.2	924.9	265.7	2.00	0.00	2.00
10,700.0	90.48	167.96	10,184.9	-259.7	947.5	365.0	2.00	0.00	2.00
10,800.0	90.48	169.96	10,184.1	-357.8	966.6	464.7	2.00	0.00	2.00
10,900.0	90.48	171.96	10,183.2	-456.5	982.3	564.6	2.00	0.00	2.00
11,000.0	90.48	173.96	10,182.4	-555.8	994.5	664.6	2.00	0.00	2.00
11,100.0	90.48	175.96	10,181.5	-655.4	1,003.3	764.6	2.00	0.00	2.00
11,200.0	90.48	177.96	10,180.7	-755.2	1,008.6	864.4	2.00	0.00	2.00
11,209.0	90.48	178.14	10,180.6	-764.2	1,008.9	873.3	2.00	0.00	2.00
Start 3731	.1 hold at 1120	9.0 MD							
11,300.0	90.48	178.14	10,179.9	-855.2	1,011.9	964.0	0.00	0.00	0.00
11,400.0	90.48	178.14	10,179.0	-955.1	1,015.1	1,063.7	0.00	0.00	0.00
11,500.0	90.48	178.14	10,178.2	-1,055.1	1,018.3	1,163.4	0.00	0.00	0.00
11,600.0	90.48	178.14	10,177.3	-1,155.0	1,021.6	1,263.0	0.00	0.00	0.00
11,700.0	90.48	178.14	10,176.5	-1,255.0	1,024.8	1,362.7	0.00	0.00	0.00
11,800.0	90.48	178.14	10,175.7	-1,354.9	1,028.1	1,462.4	0.00	0.00	0.00
11,900.0	90.48	178.14	10,174.8	-1,454.8	1,031.3	1,562.1	0.00	0.00	0.00
12,000.0	90.48	178.14	10,174.0	-1,554.8	1,034.5	1,661.7	0.00	0.00	0.00
12,100.0	90.48	178.14	10,173.1	-1,654.7	1,037.8	1,761.4	0.00	0.00	0.00
12,200.0	90.48	178.14	10,172.3	-1,754.7	1,041.0	1,861.1	0.00	0.00	0.00
12,300.0	90.48	178.14	10,171.5	-1,854.6	1,044.3	1,960.7	0.00	0.00	0.00
12,400.0	90.48	178.14	10,170.6	-1,954.6	1,047.5	2,060.4	0.00	0.00	0.00
12,500.0	90.48	178.14	10,169.8	-2,054.5	1,050.7	2,160.1	0.00	0.00	0.00
12,600.0	90.48	178.14	10,168.9	-2,154.5	1,054.0	2,259.7	0.00	0.00	0.00
12,700.0	90.48	178.14	10,168.1	-2,254.4	1,057.2	2,359.4	0.00	0.00	0.00
12,800.0	90.48	178.14	10,167.3	-2,354.3	1,060.4	2,459.1	0.00	0.00	0.00
12,900.0	90.48	178.14	10,166.4	-2,454.3	1,063.7	2,558.8	0.00	0.00	0.00
13,000.0	90.48	178.14	10,165.6	-2,554.2	1,066.9	2,658.4	0.00	0.00	0.00
13,100.0	90.48	178.14	10,164.8	-2,654.2	1,070.2	2,758.1	0.00	0.00	0.00
13,200.0	90.48	178.14	10,163.9	-2,754.1	1,073.4	2,857.8	0.00	0.00	0.00
		178.14	10,163.9	-2,754.1	1,073.4	2,057.0	0.00	0.00	0.00
13,300.0	90.48	178.14		,	,				
13,400.0	90.48		10,162.2	-2,954.0	1,079.9	3,057.1	0.00	0.00	0.00
13,500.0	90.48	178.14	10,161.4	-3,054.0	1,083.1	3,156.8	0.00	0.00	0.00

8/3/2020 3:54:54PM

Survey Report

Company:	DELAWARE BASIN WEST	Local Co-ordinate Reference:	Well BIG PAPI FED COM #702H
Project:	ATLAS PROSPECT (NM-E)	TVD Reference:	KB=30 @ 3007.3usft (TBD)
Site:	BIG PAPI FEDERAL PROJECT (ATLAS 2629)	MD Reference:	KB=30 @ 3007.3usft (TBD)
Well:	BIG PAPI FED COM #702H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	edm

Planned Survey

	Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
	13,600.0	90.48	178.14	10,160.6	-3,153.9	1,086.3	3,256.4	0.00	0.00	0.00
	13,700.0	90.48	178.14	10,159.7	-3,253.8	1,089.6	3,356.1	0.00	0.00	0.00
	13,800.0	90.48	178.14	10,158.9	-3,353.8	1,092.8	3,455.8	0.00	0.00	0.00
	13,900.0	90.48	178.14	10,158.0	-3,453.7	1,096.1	3,555.5	0.00	0.00	0.00
	14,000.0	90.48	178.14	10,157.2	-3,553.7	1,099.3	3,655.1	0.00	0.00	0.00
	14,100.0	90.48	178.14	10,156.4	-3,653.6	1,102.5	3,754.8	0.00	0.00	0.00
	14,200.0	90.48	178.14	10,155.5	-3,753.6	1,105.8	3,854.5	0.00	0.00	0.00
	14,300.0	90.48	178.14	10,154.7	-3,853.5	1,109.0	3,954.1	0.00	0.00	0.00
	14,400.0	90.48	178.14	10,153.8	-3,953.4	1,112.3	4,053.8	0.00	0.00	0.00
	14,500.0	90.48	178.14	10,153.0	-4,053.4	1,115.5	4,153.5	0.00	0.00	0.00
	14,600.0	90.48	178.14	10,152.2	-4,153.3	1,118.7	4,253.1	0.00	0.00	0.00
	14,700.0	90.48	178.14	10,151.3	-4,253.3	1,122.0	4,352.8	0.00	0.00	0.00
	14,800.0	90.48	178.14	10,150.5	-4,353.2	1,125.2	4,452.5	0.00	0.00	0.00
	14,900.0	90.48	178.14	10,149.6	-4,453.2	1,128.4	4,552.2	0.00	0.00	0.00
	14,940.1	90.48	178.14	10,149.3	-4,493.3	1,129.7	4,592.1	0.00	0.00	0.00
	-	2.00 TFO 89.9 [,]		•						
	15,000.0	90.48	179.34	10,148.8	-4,553.1	1,131.1	4,651.8	2.00	0.00	2.00
	15,034.2	90.48	180.03	10,148.5	-4,587.3	1,131.2	4,685.7	2.00	0.00	2.00
	Start 2570.	9 hold at 1503	34.2 MD							
	15,100.0	90.48	180.03	10,148.0	-4,653.1	1,131.2	4,751.1	0.00	0.00	0.00
	15,200.0	90.48	180.03	10,147.1	-4,753.1	1,131.2	4,850.5	0.00	0.00	0.00
	15,300.0	90.48	180.03	10,146.3	-4,853.1	1,131.1	4,949.8	0.00	0.00	0.00
	15,400.0	90.48	180.03	10,145.4	-4,953.1	1,131.1	5,049.2	0.00	0.00	0.00
	15,500.0	90.48	180.03	10,144.6	-5,053.1	1,131.0	5,148.5	0.00	0.00	0.00
	15,600.0	90.48	180.03	10,143.7	-5,153.1	1,131.0	5,247.9	0.00	0.00	0.00
	15,700.0	90.48	180.03	10,142.9	-5,253.1	1,131.0	5,347.2	0.00	0.00	0.00
	15,800.0	90.48	180.03	10,142.0	-5,353.1	1,130.9	5,446.6	0.00	0.00	0.00
	15,900.0	90.48	180.03	10,141.2	-5,453.1	1,130.9	5,546.0	0.00	0.00	0.00
	16,000.0	90.48	180.03	10,140.4	-5,553.1	1,130.8	5,645.3	0.00	0.00	0.00
	16,100.0	90.48	180.03	10,139.5	-5,653.1	1,130.8	5,744.7	0.00	0.00	0.00
	16,200.0	90.48	180.03	10,138.7	-5,753.1	1,130.7	5,844.0	0.00	0.00	0.00
	16,300.0	90.48	180.03	10,137.8	-5,853.1	1,130.7	5,943.4	0.00	0.00	0.00
	16,400.0	90.48	180.03	10,137.0	-5,953.1	1,130.6	6,042.7	0.00	0.00	0.00
	16,500.0	90.48	180.03	10,136.1	-6,053.1	1,130.6	6,142.1	0.00	0.00	0.00
	16,600.0	90.48	180.03	10,135.3	-6,153.1	1,130.6	6,241.4	0.00	0.00	0.00
	16,700.0	90.48	180.03	10,134.4	-6,253.1	1,130.5	6,340.8	0.00	0.00	0.00
	16,800.0	90.48	180.03	10,133.6	-6,353.1	1,130.5	6,440.1	0.00	0.00	0.00
	16,900.0	90.48	180.03	10,132.8	-6,453.1	1,130.4	6,539.5	0.00	0.00	0.00
	17,000.0	90.48	180.03	10,131.9	-6,553.1	1,130.4	6,638.8	0.00	0.00	0.00
	17,100.0	90.48	180.03	10,131.1	-6,653.1	1,130.3	6,738.2	0.00	0.00	0.00
	17,200.0	90.48	180.03	10,130.2	-6,753.0	1,130.3	6,837.5	0.00	0.00	0.00
	17,300.0	90.48	180.03	10,129.4	-6,853.0	1,130.2	6,936.9	0.00	0.00	0.00
	17,400.0	90.48	180.03	10,128.5	-6,953.0	1,130.2	7,036.2	0.00	0.00	0.00
	17,500.0	90.48	180.03	10,127.7	-7,053.0	1,130.2	7,135.6	0.00	0.00	0.00
0/0/000	20 2.54.54DM									

8/3/2020 3:54:54PM

Page 6

COMPASS 5000.15 Build 91E

Survey Report

Company:	DELAWARE BASIN WEST	Local Co-ordinate Reference:	Well BIG PAPI FED COM #702H
Project:	ATLAS PROSPECT (NM-E)	TVD Reference:	KB=30 @ 3007.3usft (TBD)
Site:	BIG PAPI FEDERAL PROJECT (ATLAS 2629)	MD Reference:	KB=30 @ 3007.3usft (TBD)
Well:	BIG PAPI FED COM #702H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	edm

Planned Survey

17,600.0 17,605.1 Start DLS 2.0 17,646.4 Start 2419.3 h 17,700.0 17,800.0 17,900.0 18,000.0 18,100.0 18,200.0 18,300.0 18,300.0 18,400.0	90.48	180.85	10,126.8 10,126.8 10,126.5	-7,153.0 -7,158.1 -7,199.5	1,130.1 1,130.1	7,234.9 7,240.0	0.00 0.00	0.00 0.00	0.00 0.00
17,646.4 Start 2419.3 H 17,700.0 17,800.0 17,900.0 18,000.0 18,100.0 18,200.0 18,300.0	90.48 hold at 1764 90.48 90.48 90.48	180.85 6.4 MD 180.85	10,126.5	-7,199.5	1 100 -				
Start 2419.3 H 17,700.0 17,800.0 17,900.0 18,000.0 18,100.0 18,200.0 18,300.0	hold at 1764 90.48 90.48 90.48	6.4 MD 180.85	10,126.5	-7,199.5	1 100 -				
17,700.0 17,800.0 17,900.0 18,000.0 18,100.0 18,200.0 18,300.0	90.48 90.48 90.48	180.85			1,129.8	7,281.0	2.00	0.00	2.00
17,800.0 17,900.0 18,000.0 18,100.0 18,200.0 18,300.0	90.48 90.48								
17,800.0 17,900.0 18,000.0 18,100.0 18,200.0 18,300.0	90.48 90.48								
17,900.0 18,000.0 18,100.0 18,200.0 18,300.0	90.48	180 85	10,126.0	-7,253.0	1,129.0	7,334.1	0.00	0.00	0.00
18,000.0 18,100.0 18,200.0 18,300.0			10,125.2	-7,353.0	1,127.5	7,433.3	0.00	0.00	0.00
18,100.0 18,200.0 18,300.0	90.48	180.85	10,124.3	-7,453.0	1,126.0	7,532.5	0.00	0.00	0.00
18,200.0 18,300.0		180.85	10,123.5	-7,553.0	1,124.5	7,631.7	0.00	0.00	0.00
18,300.0	90.48	180.85	10,122.6	-7,653.0	1,123.0	7,730.8	0.00	0.00	0.00
	90.48	180.85	10,121.8	-7,753.0	1,121.6	7,830.0	0.00	0.00	0.00
18,400.0	90.48	180.85	10,120.9	-7,852.9	1,120.1	7,929.2	0.00	0.00	0.00
	90.48	180.85	10,120.1	-7,952.9	1,118.6	8,028.4	0.00	0.00	0.00
18,500.0	90.48	180.85	10,119.2	-8,052.9	1,117.1	8,127.6	0.00	0.00	0.00
18,600.0	90.48	180.85	10,118.4	-8,152.9	1,115.6	8,226.7	0.00	0.00	0.00
18,700.0	90.48	180.85	10,117.5	-8,252.9	1,114.1	8,325.9	0.00	0.00	0.00
18,800.0	90.48	180.85	10,116.7	-8,352.9	1,112.6	8,425.1	0.00	0.00	0.00
18,900.0	90.48	180.85	10,115.9	-8,452.8	1,111.1	8,524.3	0.00	0.00	0.00
19,000.0	90.48	180.85	10,115.0	-8,552.8	1,109.7	8,623.4	0.00	0.00	0.00
19,100.0	90.48	180.85	10,114.2	-8,652.8	1,108.2	8,722.6	0.00	0.00	0.00
19,200.0	90.48	180.85	10,113.3	-8,752.8	1,106.7	8,821.8	0.00	0.00	0.00
19,300.0	90.48	180.85	10,112.5	-8,852.8	1,105.2	8,921.0	0.00	0.00	0.00
19,400.0	90.48	180.85	10,111.6	-8,952.8	1,103.7	9,020.1	0.00	0.00	0.00
19,500.0	90.48	180.85	10,110.8	-9,052.8	1,102.2	9,119.3	0.00	0.00	0.00
19,600.0	90.48	180.85	10,109.9	-9,152.7	1,100.7	9,218.5	0.00	0.00	0.00
19,700.0	90.48	180.85	10,109.1	-9,252.7	1,099.2	9,317.7	0.00	0.00	0.00
19,800.0	90.48	180.85	10,108.2	-9,352.7	1,097.8	9,416.9	0.00	0.00	0.00
19,900.0	90.48	180.85	10,107.4	-9,452.7	1,096.3	9,516.0	0.00	0.00	0.00
20,000.0	90.48	180.85	10,106.6	-9,552.7	1,094.8	9,615.2	0.00	0.00	0.00
20,065.7	90.40		,	0,002.1	1,001.0	0,010.2	0.00	0.00	0.00
TD at 20065.7	90.48 90.48	180.85	10,106.0	-9,618.4	1,093.8	9,680.4	0.00	0.00	0.00

Released to Imaging: 5/13/2022 7:59:35 AM

Survey Report

Company:	DELAWARE BASIN WEST	Local Co-ordinate Reference:	Well BIG PAPI FED COM #702H
Project:	ATLAS PROSPECT (NM-E)	TVD Reference:	KB=30 @ 3007.3usft (TBD)
Site:	BIG PAPI FEDERAL PROJECT (ATLAS 2629)	MD Reference:	KB=30 @ 3007.3usft (TBD)
Well:	BIG PAPI FED COM #702H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	edm

Design Targets

Target Name - hit/miss target	Dip Angle	Dip Dir.	TVD	+N/-S	+E/-W	Northing	Easting		
- Shape	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude
LTP (BIG PAPI FED C - plan misses targ - Point			-,	-9,488.4 MD (10107.1	1,092.3 1 TVD, -9488	382,267.30 3.5 N, 1095.7 E)	608,175.40	32° 3' 1.753 N	103° 59' 3.062 W
PBHL (BIG PAPI FED - plan hits target c - Rectangle (sides	enter		.,	-9,618.4	1,093.8	382,137.30	608,176.90	32° 3' 0.466 N	103° 59' 3.050 W
T2 (BIG PAPI FED CC - plan hits target c - Rectangle (sides	enter		10,126.8 .0)	-7,158.1	1,130.1	384,597.57	608,213.21	32° 3' 24.813 N	103° 59' 2.535 W
T1 (BIG PAPI FED CC - plan hits target c - Rectangle (sides	enter		10,149.3 .0)	-4,493.3	1,129.7	387,262.45	608,212.85	32° 3' 51.186 N	103° 59' 2.439 W
FTP (BIG PAPI FED C - plan misses targ - Circle (radius 50	et center by		10,186.0 at 10107.7u	493.7 sft MD (1001	974.6 3.2 TVD, 26	392,249.40 3.0 N, 792.6 E)	608,057.70	32° 4' 40.544 N	103° 59' 4.055 W

- Circle (radius 50.0)

Plan Annotations

	easured Depth	Vertical Depth	Local Cool			
	(usft)	(usft)	+N/-S (usft)	+E/-W (usft)	Comment	
	2800	2800	0	0	Start Build 2.00	
	3150	3149	11	18	Start 6498.0 hold at 3150.0 MD	
	9648	9599	407	704	Start DLS 10.00 TFO 105.22	
	10,571	10,186	-134	918	Start DLS 2.00 TFO 89.94	
	11,209	10,181	-764	1009	Start 3731.1 hold at 11209.0 MD	
	14,940	10,149	-4493	1130	Start DLS 2.00 TFO 89.91	
	15,034	10,149	-4587	1131	Start 2570.9 hold at 15034.2 MD	
	17,605	10,127	-7158	1130	Start DLS 2.00 TFO 89.96	
	17,646	10,126	-7199	1130	Start 2419.3 hold at 17646.4 MD	
	20,066	10,106	-9618	1094	TD at 20065.7	
Checked By:			App	proved By:		Date:

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	COG Operating, LLC
LEASE NO.:	NMNM-115417
WELL NAME & NO.:	Big Papi Federal Com 702H
SURFACE HOLE FOOTAGE:	0820' FNL & 2300' FEL
BOTTOM HOLE FOOTAGE	0200' FSL & 1310' FEL Sec. 09, T.26 S., R.29 E.
LOCATION:	Section 04, T.26 S., R.29 E., NMPM
COUNTY:	Eddy County, New Mexico

COA

H2S	C Yes	🖸 No	
Potash	• None	C Secretary	© R-111-P
Cave/Karst Potential	C Low	Medium	C High
Cave/Karst Potential	Critical		
Variance	C None	• Flex Hose	C Other
Wellhead	Conventional	C Multibowl	C Both
Other	□4 String Area	Capitan Reef	□ WIPP
Other	Fluid Filled	Cement Squeeze	Pilot Hole
Special Requirements	Water Disposal	COM	🗖 Unit

Medium Cave/Karst Possible water flows in the Salado and Castile. Possible lost circulation in the Rustler, Red Beds, and Delaware.

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The **10-3/4** inch surface casing shall be set at approximately **335** feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of $\underline{8}$ <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the **7-5/8** inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst.
 - In <u>Medium Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **3000 (3M)** psi.
- 2. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the intermediate casing shoe shall be **5000** (**5M**) psi.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 4. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 5. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 6. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).

- c. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- d. The results of the test shall be reported to the appropriate BLM office.
- e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- g. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JAM 10302020

COG OPERATING LLC HYDROGEN SULFIDE DRILLING OPERATIONS PLAN

1. <u>HYDROGEN SULFIDE TRAINING</u>

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- a. The hazards and characteristics of hydrogen sulfide (H₂S).
- b. The proper use and maintenance of personal protective equipment and life support systems.
- c. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- d. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- a. The effects of H2S on metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- b. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- c. The contents and requirements of the H₂S Drilling Operations Plan and the Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H2S zone (within 3 days or 500 feet) and weekly H2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H2S Drilling Operations Plan and the Public Protection Plan. This plan shall be available at the well site. All personnel will be required to carry documentation that they have received the proper training.

2. <u>H₂S SAFETY EQUIPMENT AND SYSTEMS</u>

Note: All H₂S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H2S. If H2S greater than 100 ppm is encountered in the gas stream we will shut in and install H2S equipment.

a. Well Control Equipment:

Flare line.

Choke manifold with remotely operated choke.

Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit.

Auxiliary equipment to include: annular preventer, mud-gas separator, rotating head.

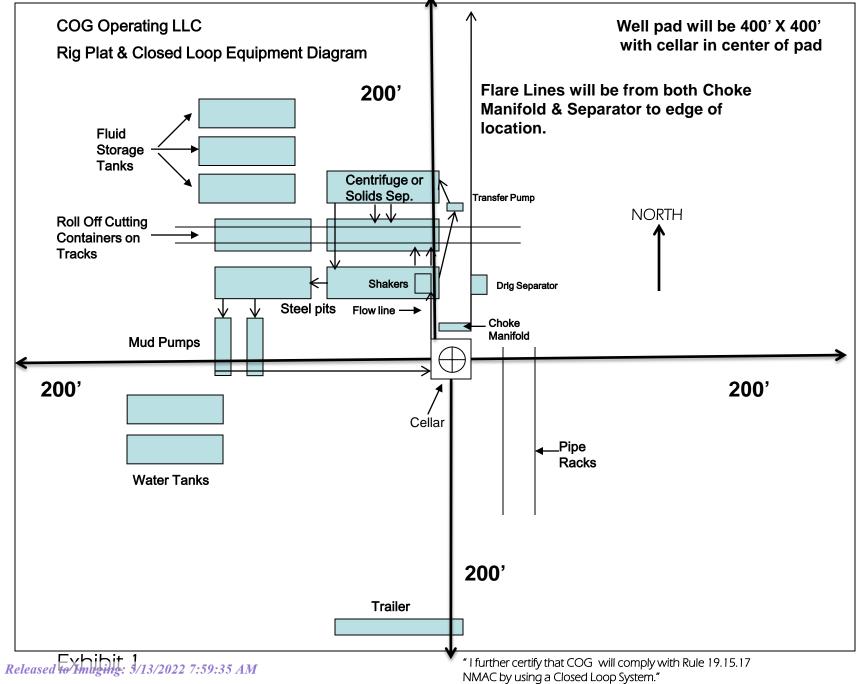
- b. Protective equipment for essential personnel: Mark II Surviveair 30-minute units located in the dog house and at briefing areas.
- c. H2S detection and monitoring equipment:
 - 2 portable H2S monitor positioned on location for best coverage and response. These units have warning lights and audible sirens when H2S levels of 20 ppm are reached.
- d. Visual warning systems: Caution/Danger signs shall be posted on roads providing direct access to location. Signs will be painted a high visibility yellow with black lettering of sufficient size to be readable at a reasonable distance from the immediate location. Bilingual signs will be used, when appropriate. See example attached.
- e. Mud Program: The mud program has been designed to minimize the volume of H2S circulated to the surface.
- f. Metallurgy:

All drill strings, casings, tubing, wellhead, blowout preventers, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.

g. Communication:

Company vehicles equipped with cellular telephone.

COG OPERATING LLC has conducted a review to determine if an H2S contingency plan is required for the above referenced well. We were able to conclude that any potential hazardous volume would be minimal. H2S concentrations of wells in this area from surface to TD are low enough; therefore, we do not believe that an H2S contingency plan is necessary.


.

EMERGENCY CALL LIST

	<u>OFFICE</u>	<u>MOBILE</u>
COG OPERATING LLC OFFICE	575-748-6940	
SETH WILD	432-683-7443	432-528-3633
WALTER ROYE	575-748-6940	432-934-1886

EMERGENCY RESPONSE NUMBERS

	<u>OFFICE</u>
STATE POLICE	575-748-9718
EDDY COUNTY SHERIFF	575-746-2701
EMERGENCY MEDICAL SERVICES (AMBULANCE)	911 or 575-746-2701
EDDY COUNTY EMERGENCY MANAGEMENT (HARRY BURGESS)	575-887-9511
STATE EMERGENCY RESPONSE CENTER (SERC)	575-476-9620
CARLSBAD POLICE DEPARTMENT	575-885-2111
CARLSBAD FIRE DEPARTMENT	575-885-3125
NEW MEXICO OIL CONSERVATION DIVISION	575-748-1283
INDIAN FIRE & SAFETY	800-530-8693
HALLIBURTON SERVICES	800-844-8451

1. Geologic Formations

TVD of target	10,186' EOL	Pilot hole depth	NA
MD at TD:	20,065'	Deepest expected fresh water:	50'
Formation	Depth (TVD) from KB	Water/Mineral Bearing/ Target Zone?	Hazards*
Quaternary Fill	Surface	Water	
Rustler	186	Water	
Top of Salt	409	Salt	
Base of Salt	2757	Salt	
Lamar	2947	Salt Water	
Bell Canyon	2977	Salt Water	
Cherry Canyon	3844	Oil/Gas	
Brushy Canyon	5081	Oil/Gas	
Bone Spring Lime	6702	Oil/Gas	
U. Avalon Shale	6950	Oil/Gas	
L. Avalon Shale	7200	Oil/Gas	
1st Bone Spring Sand	7614	Oil/Gas	
2nd Bone Spring Sand	8478	Oil/Gas	
3rd Bone Spring Sand	9428	Oil/Gas	
Wolfcamp	10051	Target Oil/Gas	

2. Casing Program

Hole Size	Casin	g Interval	CealSi	Csg. Size		Veight Crode	Grade Conn.		SF SF Burst		SF
Hole Size	From	То	Usy. Si			Grade Conn.		Collapse	SF Buist	Tension	
14.75	0	295	10.75	5	45.5	J55	STC	15.84	31.21	36.73	
9.875	0	9500	7.625	5	29.7	HCL80	BTC	1.87	1.38	2.56	
6.75	0	20,065	5.5"		23	P110	SF Torq	2.29	2.72	2.80	
				BLI	M Minimu	m Safet	y Factor	1.125	1	1.6 Dry 1.8 Wet	

Intermediate casing will be kept at least 1/3 full while running casing.to mitigate collapse. Intermediate burst based on 0.7 frac gradient at the shoe with Gas Gradient 0.1 psi/ft to surface. All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Received by OCD: 5/10/2022 7:205 Operating, LLC - Big Papi Federal Com #702H

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef? Is well within the designated 4 string boundary?	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	NI
	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program

Casing	# Sks	Wt. lb/ gal	YId ft3/ sack	H₂0 gal/sk	500# Comp. Strength (hours)	Slurry Description
Surf.	160	13.5	1.75	9	12	Lead: Class C + 4% Gel
Sull. 100 1		14.8	1.34	6.34	8	Tail: Class C + 2% CaCl2
Inter.	800	10.3	3.6	21.48 16 Lead: Tuned Light Blend		Lead: Tuned Light Blend
250 16.4 1.1		1.1	5	8	Tail: Class H	
5.5 Prod	550	11.9	2.5	19	72	Lead: 50:50:10 H Blend
J.J FIUU	1200	14.4	1.24	5.7	19	Tail: 50:50:2 Class H Blend

Volumes Subject to Observed Hole Conditions and/or Fluid Caliper Results Lab reports with the 500 psi compressive strength time for the cement will be onsite for review.

Casing String	TOC	% Excess
Surface	0'	100%
1 st Intermediate	0'	50%
Production	9,000'	35% OH in Lateral (KOP to EOL)

Received by OCD: 5/10/2022 7:205 Operating, LLC - Big Papi Federal Com #702H

4. Pressure Control Equipment

N	A variance is requested for the use of a diverter on the surface casing.
IN	See attached for schematic.

BOP installed and tested before drilling which hole?	Size?	Min. Required WP		ре	x	Tested to:			
			Ann	ular	х	2500 psi			
12-1/4"	13-5/8"	ЗM	Blind Ram						
			Pipe Ram		х	3M			
							Double	e Ram	Х
			Other*						
			5M Ar	nnular	Х	2500 psi			
	13-5/8"					Blind	Ram		
8 1/2"		5M	Pipe	Ram	Х	5M			
			Double	e Ram	Х	SIVI			
			Other*						

BOP and BOPE will be installed per Onshore Order #2 requirements prior to drilling below the surface casing and will be rated to the above pressure rating or greater, see attached diagrams. Required safety valves, with appropriate wrenches and subs for the drill string being utilized, will be in the open position and accessible on the rig floor. BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valves (inside BOP and full-opening valve) with appropriate wrenches and choke lines and choke manifold. See attached schematics.

	Formation integrity test will be performed per Onshore Order #2.
Y	On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.
Y	A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.
	N Are anchors required by manufacturer?
Y	A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

4

5. Mud Program

Depth		Туро	Weight	Viscosity	Water Loss	
From	То	Туре	(ppg)	VISCOSILY	Water LUSS	
0	Surf. Shoe	FW Gel	8.4 - 8.6	28-29	N/C	
Surf csg	Int shoe	Diesel Brine Emul	8.6 - 9.4	30-40	N/C	
Int shoe	Lateral TD	OBM	10.5 - 12	30-40	20	

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, Coring and Testing.	
Y	Will run GR/CNL from TD to surface (horizontal well – vertical portion of hole). Stated logs run will be in the Completion Report and submitted to the BLM.
N	Are Logs are planned based on well control or offset log information.
N	Drill stem test? If yes, explain.
N	Coring? If yes, explain.

Additional logs planned		Interval	
Ν	Resistivity	Pilot Hole TD to ICP	
Ν	Density	Pilot Hole TD to ICP	
Y	CBL	Production casing (If cement not circulated to surface)	
Υ	Mud log	Intermediate shoe to TD	
Ν	PEX		

7. Drilling Conditions

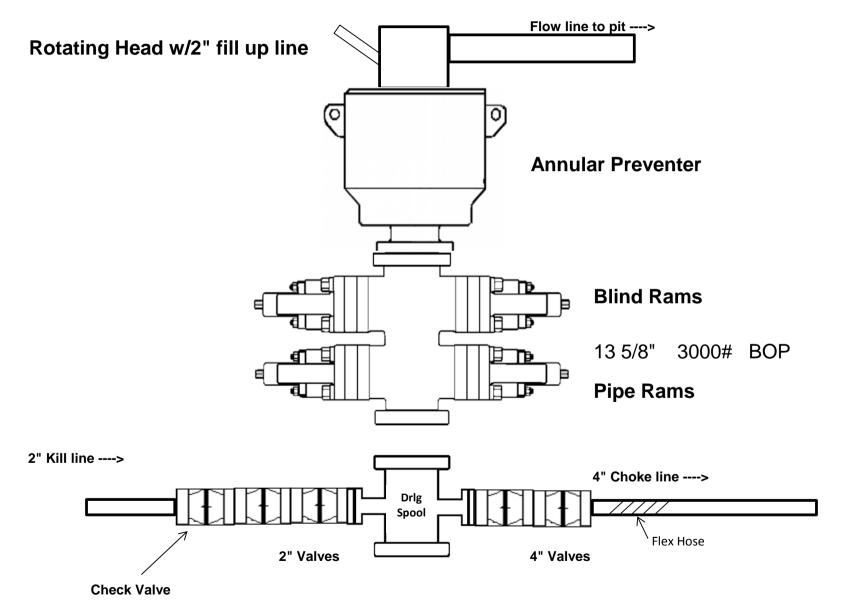
Condition	Specify what type and where?		
BH Pressure at deepest TVD	6360 psi at 10186' TVD		
Abnormal Temperature	NO 160 Deg. F.		

No abnormal pressure or temperature conditions are anticipated. Sufficient mud materials to maintain mud properties and weight increase requirements will be kept on location at all times.

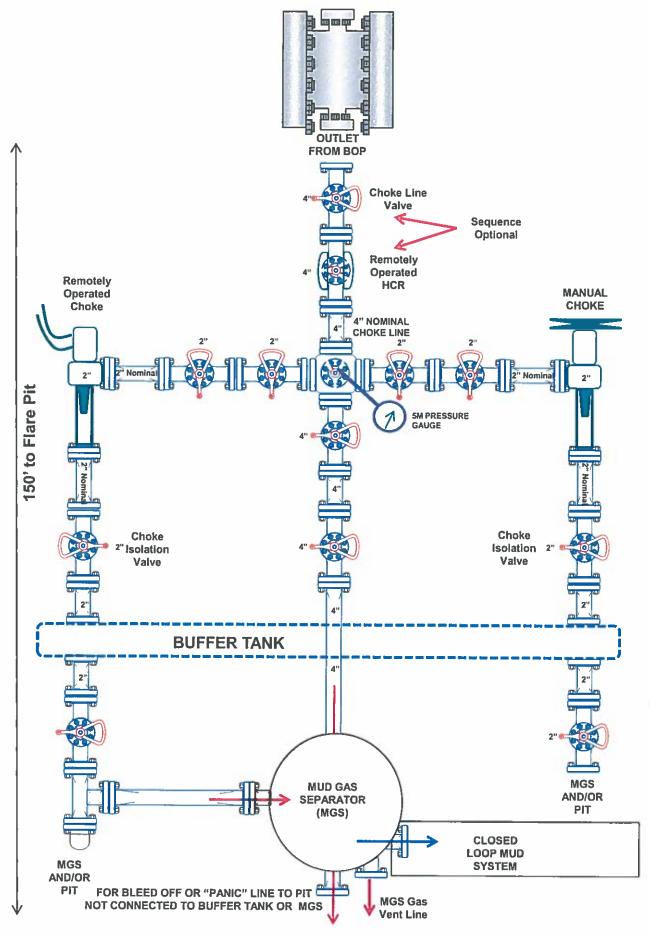
Sufficient supplies of Paper/LCM for periodic sweeps to control seepage and losses will be maintained on location.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

H2S is presentH2S Plan attached

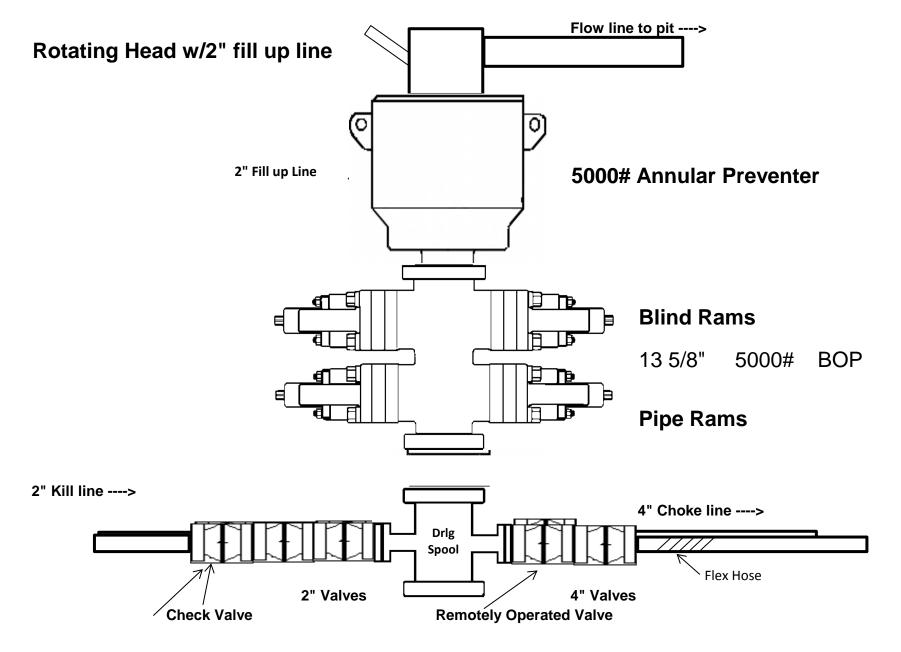

8. Other Facets of Operation

Y	Is it a walking operation?
Y	Is casing pre-set?

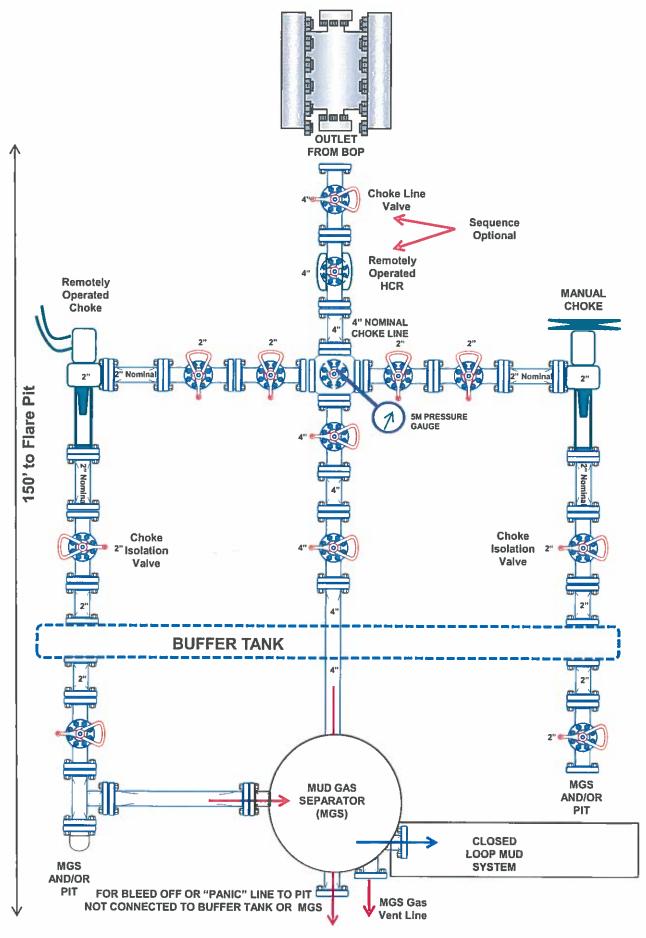

x	H2S Plan.
x	BOP & Choke Schematics.
x	Directional Plan
x	5M Annular Variance

6

3,000 psi BOP Schematic



3M Choke Manifold Equipment (WITH MGS + CLOSED LOOP)



Page 44 of 47

5,000 psi BOP Schematic

5M Choke Manifold Equipment (WITH MGS + CLOSED LOOP)

Page 46 of 47

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	105534
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

CONDITION	5	
Created By	Condition	Condition Date
kpickford	Notify OCD 24 hours prior to casing & cement	5/13/2022
kpickford	Will require a File As Drilled C-102 and a Directional Survey with the C-104	5/13/2022
kpickford	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string	5/13/2022
kpickford	Cement is required to circulate on both surface and intermediate1 strings of casing	5/13/2022
kpickford	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system	5/13/2022

CONDITIONS

Action 105534