

Sundry Print Report

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Well Name: STRANGER 34 FED COM Well Location: T25S / R34E / SEC 34 / County or Parish/State: LEA /

SESW / 32.0803035 / -103.4599743

Well Number: 10H Type of Well: OIL WELL Allottee or Tribe Name:

Lease Number: NMNM113898 Unit or CA Name: Unit or CA Number:

US Well Number: 3002546010 Well Status: Approved Application for Operator: DEVON ENERGY

Permit to Drill PRODUCTION COMPANY LP

Notice of Intent

Sundry ID: 2667781

Type of Submission: Notice of Intent

Type of Action: Casing

Date Sundry Submitted: 04/20/2022 Time Sundry Submitted: 09:59

Date proposed operation will begin: 04/20/2022

Procedure Description: Devon Energy Production Company, L.P. respectfully requests approval for surface casing/drilling plan of 10-3/4" surface casing inside of 13-1/2" surface hole. Devon Energy Production Company, L.P. will circulate class C cement to surface behind the 10-3/4" casing. Please see the attached updated drill plan and directional.

Surface Disturbance

Is any additional surface disturbance proposed?: No

NOI Attachments

Procedure Description

 $10.750_40.5 lb_H40_20220420095906.pdf$

 $Stranger_34_Fed_Com_10H_20220420095308.pdf$

Stranger_34_Fed_Com_10H_Directional_Plan_04_19_22_20220420095308.pdf

Well_Remark_On_Well_3222326_UsWellNumber_3302503037_By_RACHAEL_RAMSEY_Date_2016_03_02.t xt

xt

 $Well_Remark_On_Well_3222326_UsWellNumber_3302503037_By_RACHAEL_RAMSEY_Date_2016_03_02.txt$

Page 1 of 2

eived by OCD: 5/24/2022 6:43:02 AM Well Name: STRANGER:34 FED COM

Well Location: T25S / R34E / SEC 34 /

SESW / 32.0803035 / -103.4599743

County or Parish/State: LEA/

NM

Well Number: 10H

Type of Well: OIL WELL

Allottee or Tribe Name:

Lease Number: NMNM113898

Unit or CA Name:

Unit or CA Number:

US Well Number: 3002546010

Well Status: Approved Application for

Zip:

Operator: DEVON ENERGY

Permit to Drill

PRODUCTION COMPANY LP

Conditions of Approval

Specialist Review

34_25_34_N_Sundry_2667781_Stranger_34_Fed_Com_10H_Lea_NM113898_Devon_Energy_Production_Company_ LP_13_22c_6_16_2021_LV_20220422094718.pdf

Stranger_34_Fed_Com_10H_Dr_COA_Sundry_ID_2667781_20220422094718.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: CHELSEY GREEN Signed on: APR 20, 2022 09:59 AM

Name: DEVON ENERGY PRODUCTION COMPANY LP

Title: Regulatory Compliance Professional Street Address: 333 West Sheridan Avenue

City: Oklahoma City State: OK

Phone: (405) 228-8595

Email address: Chelsey.Green@dvn.com

Field

Representative Name:

Street Address:

State: City:

Phone:

Email address:

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS BLM POC Title: Petroleum Engineer

BLM POC Phone: 5752342234 BLM POC Email Address: cwalls@blm.gov

Disposition: Approved Disposition Date: 05/20/2022

Signature: Chris Walls

Page 2 of 2

U. S. Steel Tubular Products 10.750" 40.50lb/ft (0.350" Wall) H40

MECHANICAL PROPERTIES	Pipe	втс	LTC	STC		
Minimum Yield Strength	40,000				psi	
Maximum Yield Strength	80,000				psi	
Minimum Tensile Strength	60,000				psi	
DIMENSIONS	Pipe	втс	LTC	STC		
Outside Diameter	10.750	0.000	0.000	11.750	in.	
Wall Thickness	0.350				in.	
Inside Diameter	10.050			10.050	in.	
Standard Drift	9.894	9.894	9.894	9.894	in.	
Alternate Drift					in.	
Nominal Linear Weight, T&C	40.50				lb/ft	
Plain End Weight	38.91				lb/ft	
PERFORMANCE	Pipe	втс	LTC	STC		
Minimum Collapse Pressure	1,390	1,390	1,390	1,390	psi	
Minimum Internal Yield Pressure	2,280	2,280	2,280	2,280	psi	
Minimum Pipe Body Yield Strength	457				1,000 lbs	
Joint Strength				314	1,000 lbs	
Reference Length				5,164	ft	
MAKE-UP DATA	Pipe	втс	LTC	STC		
Make-Up Loss				3.50	in.	
Minimum Make-Up Torque				2,360	ft-lb	
Maximum Make-Up Torque				3,930	ft-lb	

UNCONTROLLED

Notes

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com 34-25-34-N Sundry 2667781 Stranger 34 Fed Com 10H Lea NM113898 Devon Energy Production Company LP 13-22c 6-16-2021 LV.xlsm

Stranger 34 Fed Com 10H

#/ft					Design I	actors			Surfac	-	
	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
40.50		h 40	btc	12.20	3.21	0.35	925	6	0.59	6.07	37,463
			btc				0				0
w/8.4#/g	mud, 30min Sfc Csg Test	psig: 1,192	Tail Cmt	does not	circ to sfc.	Totals:	925	_			37,463
Proposed to Mir	nimum Required Ceme	ent Volumes									
Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min Dist
Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
0.3637	340	490	336	46	9.00	3840	5M				1.38
ent(s) for Segme	nt(s) A, B = , b All > 0	.70, OK.									
	w/8.4#/g Proposed to Mir Annular Volume 0.3637	w/8.4#/g mud, 30min Sfc Csg Test Proposed to Minimum Required Ceme Annular 1 Stage Volume Cmt Sx 0.3637 340	w/8.4#/g mud, 30min Sfc Csg Test psig: 1,192 Proposed to Minimum Required Cement Volumes Annular 1 Stage 1 Stage Volume Cmt Sx CuFt Cmt	W/8.4#/g mud, 30min Sfc Csg Test psig: 1,192 Tail Cmt	No. No.	btc w/8.4#/g mud, 30min Sfc Csg Test psig: 1,192 Tail Cmt does not circ to sfc.	w/8.4#/g mud, 30min Sfc Csg Test psig: 1,192 Proposed to Minimum Required Cement Volumes Annular 1 Stage 1 Stage Min 1 Stage Drilling Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP 0.3637 340 490 336 46 9.00 3840	w/8.4#/g mud, 30min Sfc Csg Test psig: 1,192 Proposed to Minimum Required Cement Volumes Annular 1 Stage 1 Stage Min 1 Stage Drilling Calc Req'd Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP BOPE 0.3637 340 490 336 46 9.00 3840 5M	w/8.4#/g mud, 30min Sfc Csg Test psig: 1,192 Proposed to Minimum Required Cement Volumes Annular 1 Stage 1 Stage Min 1 Stage Drilling Calc Req'd Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP BOPE 0.3637 340 490 336 46 9.00 3840 5M	btc 0	w/8.4#/g mud, 30min Sfc Csg Test psig: 1,192 Tail Cmt does not circ to sfc. Totals: 925 Proposed to Minimum Required Cement Volumes Annular 1 Stage 1 Stage Min 1 Stage Drilling Calc Req'd Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP BOPE 0.3637 340 490 336 46 9.00 3840 5M

8 5/8	casi	ng inside the	10 3/4			Design	Factors -		-	Int 1		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	32.00		p 110	tlw	2.85	0.66	1.1	11,799	1	2.07	1.10	377,568
"B"								0				0
	w/8.4#,	g mud, 30min Sfc Csg Test ps	ig:				Totals:	11,799				377,568
		The cement vo	olume(s) are inten	ded to achieve a top of	0	ft from su	ırface or a	925				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
9 7/8	0.1261	629	1934	1506	28	10.50	4317	5M				0.44
Class 'H' tail cn	nt yld > 1.20											

5 1/2	casing	ginside the	8 5/8			Design Fa	ctors		•	Prod 1		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	17.00		p 110	btc	1.84	0.92	1.3	17,442	1	2.46	1.73	296,514
"B"								0				0
	w/8.4#/g	mud, 30min Sfc Csg Test p	osig: -163				Totals:	17,442				296,514
		The cement v	olume(s) are inter	ided to achieve a top of	11599	ft from su	ırface or a	200				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
7 7/8	0.1733	768	1170	1013	15	9.00						0.91
lass 'C' tail cm	t yld > 1.35											

#N/A									_			
0			5 1/2		Design Factors				<choose casing=""></choose>			
Segment	#/ft	Grade		Coupling	#N/A	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"				0.00				0	_			0
"B"				0.00				0				0
	w/8.4	#/g mud, 30min Sfc Csg Test psig	:				Totals:	0				0
i		Cmt vol calc	below includes t	his csg, TOC intended	#N/A	ft from su	ırface or a	#N/A				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
0		#N/A	#N/A	0	#N/A							
#N/A			Capitan Reef es	t top XXXX.								
j									_			

Carlsbad Field Office 4/22/2022

Stranger 34 Fed Com 10H

1. Geologic Formations

TVD of target	12450	Pilot hole depth	N/A
MD at TD:	17442	Deepest expected fresh water	

Basin

Dasin			
	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	810		
Salt	1200		
Base of Salt	5325		
Cherry Canyon	6325		
Brushy Canyon	8050		
1st Bone Spring Lime	9350		
Bone Spring 1st	10450		
Bone Spring 2nd	11025		
3rd Bone Spring Lime	11450		
Bone Spring 3rd	12020		

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program (Primary Design)

		Wt			Casing	Interval	Casing Interval		
Hole Size	Csg. Size	(PPF)	Grade	Conn	From (MD)	To (MD)	From (TVD)	To (TVD)	
13 1/2	10 3/4	40 1/2	H40	ВТС	0	835	0	835	
9 7/8	8 5/8	32	P110	TLW	0	11799	0	11799	
7 7/8	5 1/2	17	P110	ВТС	0	17442	0	12450	

[•] All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for contingency casing.

Casing	# Sks	TOC	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	340	Surf	13.2	1.44	Lead: Class C Cement + additives
Total	562	Surf	9	3.27	Lead: Class C Cement + additives
Int 1	67	4000' above	13.2	1.44	Tail: Class H / C + additives
Int 1	As Needed	Surf	13.2	1.44	Squeeze Lead: Class C Cement + additives
Intermediate	562	Surf	9	3.27	Lead: Class C Cement + additives
Squeeze	67	4000' above	13.2	1.44	Tail: Class H / C + additives
Production	35	11299	9	3.27	Lead: Class H /C + additives
Floduction	733	11900	13.2	1.44	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Intermediate 1 (Two Stage)	25%
Prod	10%

4. Pressure Control Equipment (Three String Design)

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Ty	ype	✓	Tested to:
				nular	X	50% of rated working pressure
Int 1	13-5/8"	5M	Blind Ram		X	
IIIt I	13-3/6	JIVI	Pipe	Ram		5M
			Doub	le Ram	X	JIVI
			Other*			
			Annular (5M)		X	100% of rated working pressure
D 1 4	10 5/0"	101/	Blind Ram		X	
Production	13-5/8"	10M	Pipe	Ram		101/4
			Doub	le Ram	X	10M
			Other*			
			Annul	ar (5M)		
			Bline	l Ram		
			Pipe	Ram		1
			Doub	le Ram		1
			Other*			
N A variance is requested for	the use of a	diverter or	the surface	casing. See a	attached for s	chematic.
Y A variance is requested to 1	run a 5 M aı	nnular on a	10M system			

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)		
Surface	FW Gel	8.5-9		
Intermediate	DBE / Cut Brine	10-10.5		
Production	OBM	8.5-9		

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, (Coring and Testing								
Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in									
X Completion Report and shumitted to the BLM.									
	No logs are planned based on well control or offset log information.								
	Drill stem test? If yes, explain.								
	Coring? If yes, explain.								

Additional	logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
X	CBL	Production casing
X	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	5827
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered measured values and formations will be provided to the RLM

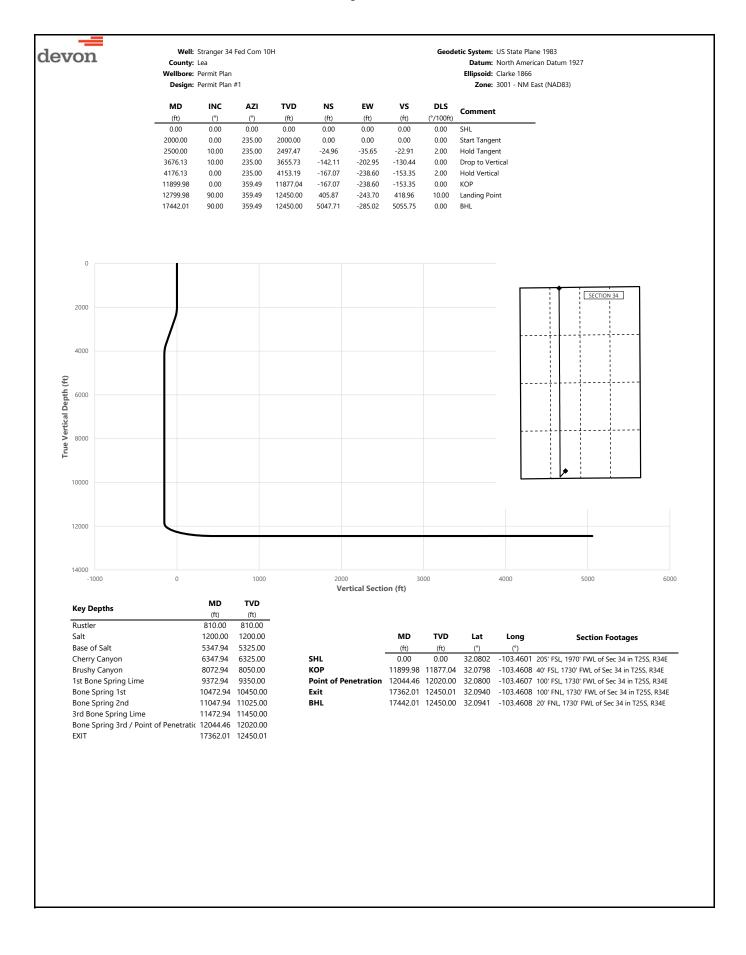
encountered measured values and formations will be provided to the BLM.								
N	H2S is present							
Y	H2S plan attached.							

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed


Stranger 34 Fed Com 10H

from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

X	Directional Plan
	Other, describe

Well: Stranger 34 Fed Com 10H

County: Lea
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927

Ellipsoid: Clarke 1866

	Design:	Permit Plan	#1				Zone: 3001 - NM East (NAD83)				
MD	INC	AZI	TVD	NS	EW	VS	DLS	Comment			
(ft) 0.00	(°) 0.00	(°) 0.00	(ft) 0.00	(ft) 0.00	(ft) 0.00	(ft) 0.00	(°/100ft) 0.00	SHL			
100.00	0.00	235.00	100.00	0.00	0.00	0.00	0.00	SHE			
200.00	0.00	235.00	200.00	0.00	0.00	0.00	0.00				
300.00	0.00	235.00	300.00	0.00	0.00	0.00	0.00				
400.00	0.00	235.00	400.00	0.00	0.00	0.00	0.00				
500.00	0.00	235.00	500.00	0.00	0.00	0.00	0.00				
600.00	0.00	235.00	600.00	0.00	0.00	0.00	0.00				
700.00	0.00	235.00	700.00	0.00	0.00	0.00	0.00				
800.00	0.00	235.00	800.00	0.00	0.00	0.00	0.00	D. other			
810.00 900.00	0.00	235.00 235.00	810.00 900.00	0.00	0.00	0.00	0.00	Rustler			
1000.00	0.00	235.00	1000.00	0.00	0.00	0.00	0.00				
1100.00	0.00	235.00	1100.00	0.00	0.00	0.00	0.00				
1200.00	0.00	235.00	1200.00	0.00	0.00	0.00	0.00	Salt,			
1300.00	0.00	235.00	1300.00	0.00	0.00	0.00	0.00				
1400.00	0.00	235.00	1400.00	0.00	0.00	0.00	0.00				
1500.00	0.00	235.00	1500.00	0.00	0.00	0.00	0.00				
1600.00	0.00	235.00	1600.00	0.00	0.00	0.00	0.00				
1700.00	0.00	235.00	1700.00	0.00	0.00	0.00	0.00				
1800.00	0.00	235.00	1800.00	0.00	0.00	0.00	0.00				
1900.00 2000.00	0.00	235.00 235.00	1900.00 2000.00	0.00	0.00	0.00 0.00	0.00	Start Tangent			
2100.00	2.00	235.00	2099.98	-1.00	-1.43	-0.92	2.00	Start rangent			
2200.00	4.00	235.00	2199.84	-4.00	-5.72	-3.67	2.00				
2300.00	6.00	235.00	2299.45	-9.00	-12.86	-8.26	2.00				
2400.00	8.00	235.00	2398.70	-15.99	-22.84	-14.68	2.00				
2500.00	10.00	235.00	2497.47	-24.96	-35.65	-22.91	2.00	Hold Tangent			
2600.00	10.00	235.00	2595.95	-34.92	-49.88	-32.06	0.00				
2700.00	10.00	235.00	2694.43	-44.88	-64.10	-41.20	0.00				
2800.00	10.00	235.00	2792.91	-54.84	-78.32	-50.34	0.00				
2900.00 3000.00	10.00 10.00	235.00 235.00	2891.39 2989.87	-64.80 -74.76	-92.55 -106.77	-59.48 -68.63	0.00				
3100.00	10.00	235.00	3088.35	-74.76	-106.77	-06.63 -77.77	0.00				
3200.00	10.00	235.00	3186.83	-94.68	-135.22	-86.91	0.00				
3300.00	10.00	235.00	3285.31	-104.64	-149.45	-96.05	0.00				
3400.00	10.00	235.00	3383.79	-114.60	-163.67	-105.19	0.00				
3500.00	10.00	235.00	3482.27	-124.56	-177.90	-114.34	0.00				
3600.00	10.00	235.00	3580.75	-134.52	-192.12	-123.48	0.00				
3676.13	10.00	235.00	3655.73	-142.11	-202.95	-130.44	0.00	Drop to Vertical			
3700.00	9.52	235.00	3679.25	-144.43	-206.26	-132.57	2.00				
3800.00 3900.00	7.52 5.52	235.00 235.00	3778.14 3877.49	-152.93 -159.44	-218.40 -227.71	-140.37 -146.35	2.00 2.00				
4000.00	3.52	235.00	3977.17	-163.97	-234.17	-150.50	2.00				
4100.00	1.52	235.00	4077.07	-166.49	-237.77	-152.82	2.00				
4176.13	0.00	235.00	4153.19	-167.07	-238.60	-153.35	2.00	Hold Vertical			
4200.00	0.00	359.49	4177.06	-167.07	-238.60	-153.35	0.00				
4300.00	0.00	359.49	4277.06	-167.07	-238.60	-153.35	0.00				
4400.00	0.00	359.49	4377.06	-167.07	-238.60	-153.35	0.00				
4500.00	0.00	359.49	4477.06	-167.07	-238.60	-153.35	0.00				
4600.00	0.00	359.49	4577.06	-167.07	-238.60	-153.35	0.00				
4700.00 4800.00	0.00	359.49 359.49	4677.06 4777.06	-167.07 -167.07	-238.60 -238.60	-153.35 -153.35	0.00				
4900.00	0.00	359.49	4877.06	-167.07	-238.60	-153.35	0.00				
5000.00	0.00	359.49	4977.06	-167.07	-238.60	-153.35	0.00				
5100.00	0.00	359.49	5077.06	-167.07	-238.60	-153.35	0.00				
5200.00	0.00	359.49	5177.06	-167.07	-238.60	-153.35	0.00				
5300.00	0.00	359.49	5277.06	-167.07	-238.60	-153.35	0.00				
5347.94	0.00	359.49	5325.00	-167.07	-238.60	-153.35	0.00	Base of Salt			
5400.00	0.00	359.49	5377.06	-167.07	-238.60	-153.35	0.00				
5500.00	0.00	359.49	5477.06	-167.07	-238.60	-153.35	0.00				
5600.00 5700.00	0.00	359.49 359.49	5577.06 5677.06	-167.07 -167.07	-238.60 -238.60	-153.35 -153.35	0.00				
5800.00	0.00	359.49 359.49	5677.06	-167.07 -167.07	-238.60 -238.60	-153.35 -153.35	0.00				
5900.00	0.00	359.49	5877.06	-167.07	-238.60	-153.35	0.00				
6000.00	0.00	359.49	5977.06	-167.07	-238.60	-153.35	0.00				
6100.00	0.00	359.49	6077.06	-167.07	-238.60	-153.35	0.00				
6200.00	0.00	359.49	6177.06	-167.07	-238.60	-153.35	0.00				
6300.00	0.00	359.49	6277.06	-167.07	-238.60	-153.35	0.00				
6347.94	0.00	359.49	6325.00	-167.07	-238.60	-153.35	0.00	Cherry Canyon			
6400.00	0.00	359.49	6377.06	-167.07	-238.60	-153.35	0.00				

Well: Stranger 34 Fed Com 10H

County: Lea
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927 **Ellipsoid:** Clarke 1866

Zone: 3001 - NM East (NAD83)

	Design.							
MD	INC	AZI	TVD	NS	EW	vs	DLS	Comment
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
6500.00	0.00	359.49	6477.06	-167.07	-238.60	-153.35	0.00	
6600.00	0.00	359.49	6577.06	-167.07	-238.60	-153.35	0.00	
6700.00	0.00	359.49	6677.06	-167.07	-238.60	-153.35	0.00	
6800.00	0.00	359.49	6777.06	-167.07	-238.60	-153.35	0.00	
6900.00	0.00	359.49	6877.06	-167.07	-238.60	-153.35	0.00	
7000.00	0.00	359.49	6977.06	-167.07	-238.60	-153.35	0.00	
7100.00	0.00	359.49	7077.06	-167.07	-238.60	-153.35	0.00	
7200.00	0.00	359.49	7177.06	-167.07	-238.60	-153.35	0.00	
7300.00		359.49		-167.07				
	0.00		7277.06		-238.60	-153.35	0.00	
7400.00	0.00	359.49	7377.06	-167.07	-238.60	-153.35	0.00	
7500.00	0.00	359.49	7477.06	-167.07	-238.60	-153.35	0.00	
7600.00	0.00	359.49	7577.06	-167.07	-238.60	-153.35	0.00	
7700.00	0.00	359.49	7677.06	-167.07	-238.60	-153.35	0.00	
7800.00	0.00	359.49	7777.06	-167.07	-238.60	-153.35	0.00	
7900.00	0.00	359.49	7877.06	-167.07	-238.60	-153.35	0.00	
8000.00	0.00	359.49	7977.06	-167.07	-238.60	-153.35	0.00	
8072.94	0.00	359.49	8050.00	-167.07	-238.60	-153.35	0.00	Brushy Canyon
8100.00	0.00	359.49	8077.06	-167.07	-238.60	-153.35	0.00	
8200.00	0.00	359.49	8177.06	-167.07	-238.60	-153.35	0.00	
8300.00	0.00	359.49	8277.06	-167.07	-238.60	-153.35	0.00	
8400.00	0.00	359.49	8377.06	-167.07	-238.60	-153.35	0.00	
8500.00	0.00	359.49	8477.06	-167.07	-238.60	-153.35	0.00	
8600.00	0.00	359.49	8577.06	-167.07	-238.60	-153.35	0.00	
8700.00	0.00	359.49	8677.06	-167.07	-238.60	-153.35	0.00	
8800.00	0.00	359.49	8777.06	-167.07	-238.60	-153.35	0.00	
8900.00	0.00	359.49	8877.06	-167.07	-238.60	-153.35	0.00	
9000.00	0.00	359.49	8977.06	-167.07	-238.60	-153.35	0.00	
9100.00	0.00	359.49	9077.06	-167.07		-153.35	0.00	
					-238.60			
9200.00	0.00	359.49	9177.06	-167.07	-238.60	-153.35	0.00	
9300.00	0.00	359.49	9277.06	-167.07	-238.60	-153.35	0.00	1st Barra Carina Lines
9372.94	0.00	359.49	9350.00	-167.07	-238.60	-153.35	0.00	1st Bone Spring Lime
9400.00	0.00	359.49	9377.06	-167.07	-238.60	-153.35	0.00	
9500.00	0.00	359.49	9477.06	-167.07	-238.60	-153.35	0.00	
9600.00	0.00	359.49	9577.06	-167.07	-238.60	-153.35	0.00	
9700.00	0.00	359.49	9677.06	-167.07	-238.60	-153.35	0.00	
9800.00	0.00	359.49	9777.06	-167.07	-238.60	-153.35	0.00	
9900.00	0.00	359.49	9877.06	-167.07	-238.60	-153.35	0.00	
10000.00	0.00	359.49	9977.06	-167.07	-238.60	-153.35	0.00	
10100.00	0.00	359.49	10077.06	-167.07	-238.60	-153.35	0.00	
10200.00	0.00	359.49	10177.06	-167.07	-238.60	-153.35	0.00	
10300.00	0.00	359.49	10277.06	-167.07	-238.60	-153.35	0.00	
10400.00	0.00	359.49	10377.06	-167.07	-238.60	-153.35	0.00	
10472.94	0.00	359.49	10450.00	-167.07	-238.60	-153.35	0.00	Bone Spring 1st
10500.00	0.00	359.49	10477.06	-167.07	-238.60	-153.35	0.00	
10600.00	0.00	359.49	10477.06	-167.07	-238.60	-153.35	0.00	
10700.00		359.49	10577.06					
	0.00			-167.07	-238.60	-153.35	0.00	
10800.00	0.00	359.49	10777.06	-167.07	-238.60	-153.35	0.00	
10900.00	0.00	359.49	10877.06	-167.07	-238.60	-153.35	0.00	
11000.00	0.00	359.49	10977.06	-167.07	-238.60	-153.35	0.00	Bara Carina 2nd
11047.94	0.00	359.49	11025.00	-167.07	-238.60	-153.35	0.00	Bone Spring 2nd
11100.00	0.00	359.49	11077.06	-167.07	-238.60	-153.35	0.00	
11200.00	0.00	359.49	11177.06	-167.07	-238.60	-153.35	0.00	
11300.00	0.00	359.49	11277.06	-167.07	-238.60	-153.35	0.00	
11400.00	0.00	359.49	11377.06	-167.07	-238.60	-153.35	0.00	
11472.94	0.00	359.49	11450.00	-167.07	-238.60	-153.35	0.00	3rd Bone Spring Lime
11500.00	0.00	359.49	11477.06	-167.07	-238.60	-153.35	0.00	
11600.00	0.00	359.49	11577.06	-167.07	-238.60	-153.35	0.00	
11700.00	0.00	359.49	11677.06	-167.07	-238.60	-153.35	0.00	
11800.00	0.00	359.49	11777.06	-167.07	-238.60	-153.35	0.00	
11899.98	0.00	359.49	11877.04	-167.07	-238.60	-153.35	0.00	KOP,
12000.00	10.00	359.49	11976.56	-158.36	-238.68	-144.65	10.00	•
12044.46	14.45	359.49	12020.00	-148.95	-238.76	-135.25	10.00	Bone Spring 3rd / Point of Penetration
12100.00	20.00	359.49	12073.02	-132.51	-238.91	-133.23	10.00	Some Spring Sta / Forme of Ferrenation
12200.00	30.00		12163.54	-90.30	-239.28	-76.67	10.00	
		359.49						
12300.00	40.00	359.49	12245.35	-33.02	-239.80	-19.44	10.00	
12400.00	50.00	359.49	12315.97	37.60	-240.42	51.10	10.00	
12500.00	60.00	359.49	12373.25	119.42	-241.15	132.82	10.00	
12600.00	70.00	359.49	12415.45	209.93	-241.96	223.24	10.00	
		359.49	12441.30	306.40	-242.82	319.60	10.00	
12700.00 12799.98	80.00 90.00	359.49	12450.00	405.87	-243.70	418.96	10.00	Landing Point,

Well: Stranger 34 Fed Com 10H

County: Lea
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927 **Ellipsoid:** Clarke 1866

Zone: 3001 - NM East (NAD83)

MD	INC	AZI	TVD	NS	EW	vs	DLS	Comment
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
12900.00	90.00	359.49	12450.00	505.88	-244.59	518.87	0.00	
13000.00	90.00	359.49	12450.00	605.88	-245.48	618.75	0.00	
13100.00	90.00	359.49	12450.00	705.87	-246.37	718.64	0.00	
13200.00	90.00	359.49	12450.00	805.87	-247.26	818.53	0.00	
13300.00	90.00	359.49	12450.00	905.87	-248.15	918.42	0.00	
13400.00	90.00	359.49	12450.00	1005.86	-249.05	1018.30	0.00	
13500.00	90.00	359.49	12450.00	1105.86	-249.94	1118.19	0.00	
13600.00	90.00	359.49	12450.00	1205.85	-250.83	1218.08	0.00	
13700.00	90.00	359.49	12450.00	1305.85	-251.72	1317.96	0.00	
13800.00	90.00	359.49	12450.00	1405.85	-252.61	1417.85	0.00	
13900.00	90.00	359.49	12450.00	1505.84	-253.50	1517.74	0.00	
14000.00	90.00	359.49	12450.00	1605.84	-254.39	1617.63	0.00	
14100.00	90.00	359.49	12450.00	1705.83	-255.28	1717.51	0.00	
14200.00	90.00	359.49	12450.00	1805.83	-256.17	1817.40	0.00	
14300.00	90.00	359.49	12450.00	1905.83	-257.06	1917.29	0.00	
14400.00	90.00	359.49	12450.00	2005.82	-257.95	2017.17	0.00	
14500.00	90.00	359.49	12450.00	2105.82	-258.84	2117.06	0.00	
14600.00	90.00	359.49	12450.00	2205.81	-259.73	2216.95	0.00	
14700.00	90.00	359.49	12450.00	2305.81	-260.62	2316.84	0.00	
14800.00	90.00	359.49	12450.00	2405.81	-261.51	2416.72	0.00	
14900.00	90.00	359.49	12450.00	2505.80	-262.40	2516.61	0.00	
15000.00	90.00	359.49	12450.00	2605.80	-263.30	2616.50	0.00	
15100.00	90.00	359.49	12450.00	2705.79	-264.19	2716.39	0.00	
15200.00	90.00	359.49	12450.00	2805.79	-265.08	2816.27	0.00	
15300.00	90.00	359.49	12450.00	2905.79	-265.97	2916.16	0.00	
15400.00	90.00	359.49	12450.00	3005.78	-266.86	3016.05	0.00	
15500.00	90.00	359.49	12450.00	3105.78	-267.75	3115.93	0.00	
15600.00	90.00	359.49	12450.00	3205.77	-268.64	3215.82	0.00	
15700.00	90.00	359.49	12450.00	3305.77	-269.53	3315.71	0.00	
15800.00	90.00	359.49	12450.00	3405.77	-270.42	3415.60	0.00	
15900.00	90.00	359.49	12450.00	3505.76	-271.31	3515.48	0.00	
16000.00	90.00	359.49	12450.00	3605.76	-272.20	3615.37	0.00	
16100.00	90.00	359.49	12450.00	3705.75	-273.09	3715.26	0.00	
16200.00	90.00	359.49	12450.00	3805.75	-273.98	3815.14	0.00	
16300.00	90.00	359.49	12450.00	3905.75	-274.87	3915.03	0.00	
16400.00	90.00	359.49	12450.00	4005.74	-275.76	4014.92	0.00	
16500.00	90.00	359.49	12450.00	4105.74	-276.65	4114.81	0.00	
16600.00	90.00	359.49	12450.00	4205.74	-277.55	4214.69	0.00	
16700.00	90.00	359.49	12450.01	4305.73	-278.44	4314.58	0.00	
16800.00	90.00	359.49	12450.01	4405.73	-279.33	4414.47	0.00	
16900.00	90.00	359.49	12450.01	4505.72	-280.22	4514.35	0.00	
17000.00	90.00	359.49	12450.01	4605.72	-281.11	4614.24	0.00	
17100.00	90.00	359.49	12450.01	4705.72	-282.00	4714.13	0.00	
17200.00	90.00	359.49	12450.01	4805.71	-282.89	4814.02	0.00	
17300.00	90.00	359.49	12450.01	4905.71	-283.78	4913.90	0.00	
17362.01	90.00	359.49	12450.01	4967.71	-284.33	4975.84	0.00	EXIT
17400.00	90.00	359.49	12450.01	5005.70	-284.67	5013.79	0.00	
17442.01	90.00	359.49	12450.00	5047.71	-285.02	5055.75	0.00	BHL

devon

Well: Stranger 34 Fed Com 10H

County: Lea Wellbore: Permit Plan

Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927

Ellipsoid: Clarke 1866

Zone: 3001 - NM East (NAD83)

INC TVD MD AZI NS EW ٧S DLS Comment (ft) (°) (°) (ft) (ft) (ft) (ft) (°/100ft)

Well: Stranger 34 Fed Com 10H Geodetic System: US State Plane 1983 County: Lea Datum: North American Datum 1927 Wellbore: Permit Plan Ellipsoid: Clarke 1866 Design: Permit Plan #1 **Zone:** 3001 - NM East (NAD83) INC TVD EW MD AZI NS ٧S DLS Comment (ft) (°) (°) (ft) (ft) (ft) (ft) (°/100ft)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: Devon Energy Production Company LP

LEASE NO.: NMNM113898

WELL NAME & NO.: | Stranger 34 Fed Com 10H

SURFACE HOLE FOOTAGE: 205'/S & 1970'/W **BOTTOM HOLE FOOTAGE** 20'/N & 1730'/W

LOCATION: | Section 34, T.25 S., R.34 E., NMPM

COUNTY: Lea County, New Mexico

Sundry ID: | 2667781

COA

H2S	Yes	© No	
Potash	None	☐ Secretary	□ R-111-P
Cave/Karst Potential	• Low	Medium	High
Cave/Karst Potential	Critical		
Variance	None	Flex Hose	Other
Wellhead	Conventional	☐ Multibowl	© Both
Other	☐4 String Area	☐ Capitan Reef	□WIPP
Other	▼ Fluid Filled		☐ Pilot Hole
Special Requirements	☐ Water Disposal	☑ COM	☐ Unit

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The 10-3/4 inch surface casing shall be set at approximately 925 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after

- completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 2. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Cement excess is less than 25%, more cement might be required.

Operator has proposed to pump down 13-3/8" X 8-5/8" annulus. Operator must run a CBL from TD of the 8-5/8" casing to surface. Submit results to BLM.

Production casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string.
 Operator shall provide method of verification.
 Cement excess is less than 25%, more cement might be required.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the intermediate casing

shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.

Option 2:

- 1. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County
 Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as

well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the

plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 109673

CONDITIONS

0	perator:	OGRID:
	DEVON ENERGY PRODUCTION COMPANY, LP	6137
	333 West Sheridan Ave.	Action Number:
	Oklahoma City, OK 73102	109673
		Action Type:
		[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By	Condition	Condition Date
pkautz	previous COA's apply	6/1/2022