<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III 1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170

Signature: Printed Name:

Email Address: Date:

Title:

Electronically filed by Kelly M Hardy

Phone: 432-695-6970

Land Manager

6/23/2022

khardy@tascosaep.com

<u>District IV</u> 1220 S. St Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Form C-101 August 1, 2011

Permit 319850

	ame and Address				•	•		·	2. OGRI	D Number	
	scosa Energy Par 1 W. Missouri Ave	tners, L.L.C							3. API N	329748	
	dland, TX 79701								J. AFTIN	30-015-4967	'1
1. Property Co		5	5. Property Nar						6. Well I		
33	1801		Cat	alina 25 30	State Com					301H	
					7. Surfa	ce Location					
JL - Lot	Section	Township	Range		Lot Idn F	eet From	N/S Line	Feet From		E/W Line	County
E	25	205	3	26E		1320	N		250	W	E
					8. Proposed Bo	ttom Hole Locatio	n				
JL - Lot	Section	Township	Range		Lot Idn	Feet From	N/S Line	Feet From		E/W Line	County
A	30	208	3	27E	Α	400	N		100	E	E
					9. Pool l	Information					
AVALON; BO	ONE SPRING								963	81	
					Additional V	Vell Information					
1. Work Type	•	12. Well Type		13. Cable/R		von milorination	14. Lease	туре	15. Grou	nd Level Elevation	n
New Well OIL							State		3332		
16. Multiple		17. Proposed Dep		18. Formati			19. Contr	actor	20. Spud		
					9/1/2022 to nearest surface	water					
Jepin to Grot	iliu watei			Distance no	ili liealest liesii watei	well			Distance	to nearest surface	water
We will be	using a closed-lo	op system in lieu	u of lined pit	s					I		
				2	1. Proposed Casin	a and Coment Pro	aram				
Туре	Hole Size	Casing	Size		ing Weight/ft	Setting De		Sacks of	Cement		Estimated TO
Surf	17.5	13.37	75		48	500		63	30		0
Int1	12.25	9.62			36	3000		11:			0
Prod	8.75	5.5	1		20	17742		35	29		0
				Cas	ing/Cement Progra	am: Additional Co	nments				
				2	2. Proposed Blowd	out Prevention Pro	gram				
	Туре		Worki	ng Pressure			Test Pressure			Manufa	acturer
	Annular			5000			5000			C.	TI
	Blind			5000			5000			C.	TI
	Pipe			5000			5000			C.	TI
3 I hereby	certify that the info	rmation given ab	ove is true a	nd complete	to the best of my	İ		OIL CONSER	VATION D	IVISION	

Katherine Pickford

Expiration Date: 6/30/2024

Geoscientist

6/30/2022

Conditions of Approval Attached

Approved By:

Approved Date:

Title:

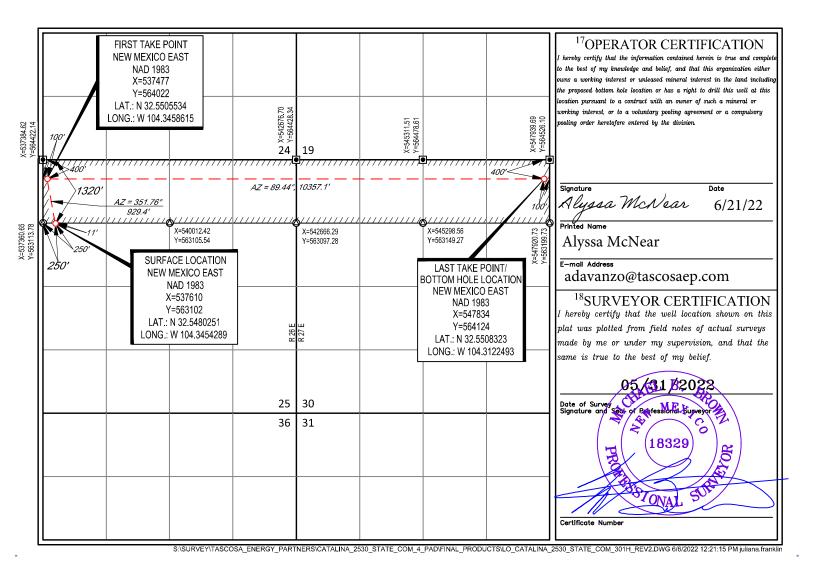
District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico
Energy, Minerals & Natural Resources
Department
OIL CONSERVATION DIVISION
1220 South St. Francis Dr.
Santa Fe, NM 87505

FORM C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT


WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Number	² Pool Code	³ Pool Name	
30-015-49671	96381		
⁴ Property Code	⁵ P1	roperty Name	⁶ Well Number
331801	CATALINA 2	530 STATE COM	301H
⁷ OGRID No.	⁸ O ₁	perator Name	⁹ Elevation
329748	TASCOSA ENER	GY PARTNERS, LLC.	3332'
	100	face Location	· ·

¹⁰Surface Location

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
E	25	20-S	26-E	_	1320'	NORTH	250'	WEST	EDDY
			11]	Bottom Ho	le Location If D	Different From Su	rface	-	
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
A	30	20-S	27-E	_	400'	NORTH	100'	EAST	EDDY
¹² Dedicated Acres 317.55	¹³ Joint or 1	Infill 14Co	nsolidation Co	de ¹⁵ Ord	er No.				

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Form APD Conditions

Permit 319850

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

PERMIT CONDITIONS OF APPROVAL

Operator Name and Address:	API Number:
Tascosa Energy Partners, L.L.C [329748]	30-015-49671
901 W. Missouri Ave	Well:
Midland, TX 79701	Catalina 25 30 State Com #301H

OCD	Condition
Reviewer	
kpickford	Notify OCD 24 hours prior to casing & cement
kpickford	Will require a File As Drilled C-102 and a Directional Survey with the C-104
kpickford	The Operator is to notify NMOCD by sundry (Form C-103) within ten (10) days of the well being spud
	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string
kpickford	Cement is required to circulate on both surface and intermediate1 strings of casing
kpickford	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud,

SEC 25, T20S, R26E, Eddy County, New Mexico

This well and its anticipated facility are <u>not</u> expected to have hydrogen sulfide releases. However, there may be H2S production in the nearby area. There are no occupied dwellings in the area, but to comply with onshore order 6, if unexpected H2S is detected, Tascosa will implement the H2S plan shown below. Tascosa Energy Partners, LLC will have a company representative living on location throughout the drilling and completion of this well. If H2S is detected or suspected, monitoring equipment will be available for monitoring and/or testing. An un-manned H2S safety trailer and monitoring equipment will also be stationed on location during the drilling operations, below the surface casing depth of \pm 500 ft. to total drilling depth of \pm 11,243 ft. It will have detection probes placed in the substructure, at the shale shaker and on the drill floor.

SEC 25, T20S, R26E, Eddy County, New Mexico

EMERGENCY CALL LIST: (Start and continue until ONE of these people have been contacted)

	OFFICE	MOBILE	HOME
Tascosa Energy, LLC.	432 695-6970		
Jeff Birkelbach	432 695-6970	432 288-5874	
Alyssa McNear		720 244 4417	
Richard Wright	432 695 6970	432 556 7595	
Brian Kirkland		432 770-2325	
Kevin Herrmann	432 695-6970	432 254-9106	
EMERGENCY RESPONSE N	NUMBERS:		
State Police:	Eddy County		575 748 9718
State Police:	Lea County		575 392 5588
	•		
Sheriff	Eddy County		575 746 2701
Sheriff	Lea County		
Emergency Medical Ser	Eddy County		911 or 575 746 2701
(Ambulance)	Lea County	Eunice	911 or 575 394 3258
(7 milianarios)	-		
Emergency Response	Eddy County SERC		575 476 9620
Artesia Police Dept			575 746 5001
Artesia Fire Dept			575 746 5001
Carlsbad Police Dept			575 885 2111
Carlsbad Fire Dept			575 885 3125
Loco Hills Police Dept			575 677 2349
Jal Police Dept			575 395 2501
Jal Fire Dept			575 395 2221

SEC 25, T20S, R26E, Eddy County, New Mexico

Jal ambulance		575 395 2221
Eunice Police Dept Eunice Fire Dept Eunice Ambulance		575 394 0112 575 394 3258 575 394 3258
Hobbs Police Dept		
NMOCD	District 1 (Lea, Roosevelt, Curry) District 2 (Eddy Chavez)	575 393 6161 575 748 1283
BLM Carlsbad BLM Hobbs		575 234 5972 575 393 3612
Lea County Information		575 393 8203
Midland Safety	Lea/Eddy County	432 520 3838 888 262 4964
American Safety	Lea/Eddy County	575 746 1096 575 393 3093
Halliburton	Artesia Hobbs Midland	800 844 8451 800 844 8451 800 844 8451
Halliburton Services		800 844 8451
Wild Well Control	Midland	281 784 4700 281 443 4873

SEC 25, T20S, R26E, Eddy County, New Mexico

General H2S Emergency Actions:

- 1. All personnel will immediately evacuate to an up-wind and if possible,up-hill "safe area"
- 2. If for any reason a person must enter the hazardous area, they must wear a SCBA (Self Contained Breathing Apparatus)
- 3. Always use the "buddy system"
- 4. Isolate the well/problem if possible
- 5. Account for all personnel
- 6. Display the proper colors warning all unsuspecting personnel of the danger at hand.
- 7. Contact the Company personnel as soon as possible if not at the location. (use the enclosed call list as instructed

At this point the company representative will evaluate the situation and coordinate the necessary duties to bring the situation under control, and if necessary, the notification of the emergency response agencies and nearby residents.

EMERGENCY PROCEDURES FOR AN UNCONTROLLABLE RELEASE OF H2S

- 1. All personnel will wear the self-contained breathing apparatus.
- 2. Remove all personnel to the "safe area". (Always use the buddy system).
- 3. Contact company personnel if not on location.
- 4. Set in motion the steps to protect and or remove the "general public" to an upwind "safe area". Maintain strict security & safety procedures while dealing with the source.
- 5. No entry to any unauthorized personnel.
- Notify the appropriate agencies: City Police-City Street (s)
 State Police- State Rd
 County Sheriff County Rd.
- 7. Call the BLM &/or NMOCD

SEC 25, T20S, R26E, Eddy County, New Mexico

PROTECTION OF THE GENERAL PUBLIC (Radius of Exposure):

- 100 ppm at any public area (any place not associated with this site)
- 500 ppm at any public road (any road which the "general public" may travel)
- 100 ppm radius of ¼ mile in New Mexico will be assumed if there is insufficient data to do
 the calculations, and there is a reasonable expectation that H2S could be present in
 concentrations greater than 100 ppm in the gas mixture

CALCULATIONS FOR THE 100 PPM (ROE) "Pasquill-Gifford equation"

X = [(1.589) (mole fraction) (Q- volume in std cu ft)] to the power of (0.6258)

CALCULATION FOR THE 500 PPM ROE:

X = [(.4546) (mole fraction) (Q - volume in std cu ft)] to the power of (0.6258)

Example:

If a well/facility has been determined to have 150 / 500 ppm H2S in the gas mixture and the well/facility is producing at a gas rate of 100 MCFPD then:

```
150 ppm X= [(1.589) (.00015) (100,000 \text{ cfd})] to the power of (.6258) X= 7 ft
```

500 ppm X=
$$[(.4546) (.0005) (100,000 \text{ cfd})]$$
 to the power of (.6258) $X = 3.3 \text{ ft}$.

(These calculations will be forwarded to the appropriate District NMOCD office when Applicable)

PUBLIC EVACUATION PLAN:

- 1. Notification of the emergency response agencies of the hazardous condition and implement evacuation procedures.
- A trained person in H2S safety, shall monitor with detection equipment the H2S concentration, wind and area exposure (ROE). This person will determine the outer perimeter of the hazardous area. The extent of the evacuation area will be determined from the data being collected. Monitoring shall continue until the situation has been resolved. (All monitoring equipment shall be UL approved, for use in class 1 groups A, B, C & D, Division 1, hazardous locations. All monitor will have a minimum capability of measuring H2S, oxygen, and flammable values).

SEC 25, T20S, R26E, Eddy County, New Mexico

- Law enforcement shall be notified to set up necessary barriers and maintain such for the duration of the situation as well as aid in the evacuation procedure.
- The company supervising personnel shall stay in communication with all agencies throughout the duration of the situation and inform such agencies when the situation has been contained and the affected area(s) is safe to enter.

PROCEDURE FOR IGNITING AN UNCONTROLABLE CONDITION:

- 1. Human life and/or property are in danger
- 2. There is no hope of bringing the situation under control with the prevailing conditions at the site.

INSTRUCTION FOR IGNITION:

- 1. Two people are required. They must be equipped with positive pressure, "self contained breathing apparatus" and a "D" ring style full body, OSHA approved safety harness. Nonflammable rope will be attached.
- 2. One of the people will be qualified safety person who will test the atmosphere for H2S, Oxygen & LFL. The other person will be the company supervisor; he is responsible for igniting the well.
- 3. Ignite up wind from a distance no closer than necessary. Make sure that where you ignite from has the maximum escape avenue available. A 25 mm flare gun shall be used, with a ± 500 ft. range to ignite the gas.
- 4. Prior to ignition, make a final check for combustible gases.
- 5. Following ignition, continue with the emergency actions & procedures as before.

A. All personnel shall receive proper H2S training in accordance with Onshore Order III.C.3.a.

- B. Briefing Area: two perpendicular areas will be designated by signs and readily accessible.
- C. Required Emergency Equipment:
 - Well control equipment

SEC 25, T20S, R26E, Eddy County, New Mexico

- a. Flare line 100' from wellhead to be ignited by flare gun or automatic striker.
- b. Choke manifold with a remotely operated choke.
- c. Mud/gas separator
- Protective equipment for essential personnel.

Breathing apparatus:

- a. Rescue Packs (SCBA) 1 unit shall be placed at each breathing area, 2 shall be stored in the safety trailer.
- b. Work/Escape packs —4 packs shall be stored on the rig floor the sufficient air hose not to restrict work activity.
- c. Emergency Escape Packs —4 packs shall be stored in the doghouse for emergency evacuation.

Auxiliary Rescue Equipment:

- a. Stretcher
- b. Two OSHA full body harness
- c. 100 ft 5/8 inch OSHA approved rope
- d. 1-20# class ABC fire extinguisher

■ H2S detection and monitoring equipment:

The stationary detector with three sensors will be placed in the upper dog house if equipped, set to visually alarm @ 10 ppm and audible @ 14 ppm. Calibrate a minimum of every 30 days or as needed. The sensors will be placed in the following places: Rig floor / Bell nipple / End of flow line or where well bore fluid is being discharged. (Gas sample tubes will be stored in the safety trailer)

■ Visual warning systems.

- a. One color code condition sign will be placed at the entrance to the site reflecting the possible conditions at the site.
- b. A colored condition flag will be on display, reflecting the current condition at the site at the time.
- c. Two wind socks will be placed in strategic locations, visible from all angles.

■ Mud program: Only utilized if H2S has been detected

The mud program has been designed to minimize the volume of H2S circulated to surface. The operator will have the necessary mud products to minimize hazards while drilling in H2S bearing zones.

■ Metallurgy: Only utilized if H2S has been detected

- a. All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.
- b. All elastomers used for packing and seals shall be H2S trim.
- Communication: Only utilized if H2S has been detected

SEC 25, T20S, R26E, Eddy County, New Mexico

Communication will be via two way radio in emergency and company vehicles. Cell phones and land lines where available.

USING SELF CONTAINED BREATHING AIR EQUIPMENT (SCBA):

- (SCBA) SHOULD BE WORN WHEN ANY OF THE FOLLOWING ARE PERFORMED:
 Only utilized if H2S has been detected
 - Working near the top or on top of a tank
 - Disconnecting any line where H2S can reasonably be expected
 - > Sampling air in the area to determine if toxic concentrations of H2S exist.
 - Working in areas where over 10 ppm on H2S has been detected.
 - At any time there is a doubt as the level of H2S in the area.
- All personnel shall be trained in the use of SCBA prior to working in a potentially hazardous location.
- Facial hair and standard eyeglasses are not allowed with SCBA.
- Contact lenses are never allowed with SCBA.
- Air quality shall continuously be checked during the entire operation.
- After each use, the SCBA unit shall be cleaned, disinfected, serviced and inspected
- All SCBA shall be inspected monthly.

SEC 25, T20S, R26E, Eddy County, New Mexico

RESCUE AND FIRST AID FOR VICTIMS OF HYDROGEN SULFIDE (H2S) POISONING:

- Do not panic
- Remain Calm & think
- Get on the breathing apparatus
- Remove the victim to the safe breathing area as quickly as possible. Up wind an uphill from source or cross wind to achieve upwind.
- Notify emergency response personnel.
- Provide artificial respiration and or CPR, as necessary
- Remove all contaminated clothing to avoid further exposure.
- A minimum of two personnel on location shall be trained in CPR and First Aid.

Hydrogen Sulfide (H2S) Toxic Effects

H2S is extremely toxic. The acceptable ceiling for eight hours of exposure is 10 ppm, which is .001% by volume. H2S is approximately 20% heavier than air (Sp. Gr= 1.19)(Air = 1) and H2S is colorless. It forms an explosive mixture with air between 4.3% and 46%. By volume hydrogen sulfide is almost as toxic as hydrogen cyanide and 5-6 times more toxic than carbon monoxide.

Various Gases

	r	1	1	1	1		
COMMON CHEMICA NAME ABBREV				HAZARDOUS LIMITS	S LETHAL CONCENTRATIONS		
Hydrogen			10ppm 15				
Sulfide	H2S	1.19	ppm	100 ppm/hr	600 ppm		
Hydrogen							
Cyanide	HCN	0.94	10 ppm	150 ppm/hr	300 ppm		
Sulfur Dioxide	SO2	2.21	2 ppm	N/A	1000 ppm		
Chlorine	CL2	2.45	1 ppm	4 ppm/hr	1000 ppm		
Carbon							
Monoxide	CO	0.97	50 ppm	400 ppm/hr	1000 ppm		
Carbon							
Dioxide	CO2	1.52	5000 ppm	5%	10%		
				Combustible@			
Methane	CH4	0.55	90,000	5%	N/A		

Threshold Limit: Concentrations at which it is believed that all workers may be repeatedly exposed, day after day without adverse effects.

Hazardous Limit: Concentrations that may cause death.

Lethal Concentrations: Concentrations that will cause death with short term exposure.

Threshold Limit- 10 ppm: NIOSH guide to chemical hazards.

SEC 25, T20S, R26E, Eddy County, New Mexico

PHYSICAL EFFECTS OF HYDROGEN SULFIDE:

CONCEN	NTRATION	PHYSICAL EFFECTS
		Obvious and unpleasant odor. Safe for 8 hour
.001%	10 PPM	exposure
		Can cause some flu like symptoms and can
.005%	50 ppm	cause pneumonia
		Kills the sense of smell in 3-15 minutes. May
.01%	100 ppm	irritate the eyes
		and throat.
000/	000	Kills the sense of smell rapidly. Severely irritates
.02%	200 ppm	the eyes and
		throat. Severe flu like symptoms after 4 or more
		hours. May
		cause lung damage and or death.
		Loop of compaining on guidaly, doubte will account if
060/	600 nnm	Loss of consciousness quickly, death will result if
.06%	600 ppm	not rescued
		promptly.

Well name: Catalina 2530 State Com # 301H

Operator: Tascosa Energy Partners, LLC

String type: Surface Casing (500)

Location: Eddy County, New Mexico. 1320 FNL & 250 FWL, Sec 25, T20S, R26E

BHL Planned: 400 FNL & 100 FEL, Sec 30, T20S, R27E

Design parameters:			Minimum design factors:			Environment:			
Collapse			Collapse:			H2S considered?	No	No	
Mud weight:		9.00	ppg	DF	1.125	Surface temperature:	75.00) °F	
Design is based on evacuated pi	pe.					BHTemp	79	9°F	
						Temp gradient:	0.80	°F/100ft	
						Minimum sec length:	500) ft	
				Burst:		Minimum Drift:	12.25	5 in	
				DF	1.10	Cement top:	Surface		
<u>Burst</u>									
Max anticipated surface									
pressure	=	250.00	psi						
Internal gradient:	=	0.12	psi/ft	Tension:		Non-directional string.			
Calculated BHP	=	310.00	psi	8 Rd STC:	1.80	(J)			
				8 Rd LTC:	1.80	(J)			
No backup mud specified.				Buttress:	1.60	(J)			
				Premium:	1.50	(J)			
				Body yield:	1.50	(B) Re subseq	uent strings:	:	
						Next setting depth:	3,000.00	ft	
			Tension is	based on buoy	ed wgt.	Next mud weight:	10.00	ppg	
			Neutral pt:	453.00	ft	Next setting BHP:	1,482.00	psi	
Maximum Lift using 14.8 ppg cmt to surface with 8.5			ppg mud fille	ed csg=		Fracture mud wt:	11.00	ppg	
23,014 lbs lift. String wgt = 24,600	lbs. C	hain down	casing prior t	o cmt job		Safety Factor Injection	1.00	ppg	
for Safety.						Fracture depth:	500.00	ft	
						Injection pressure	312.00	psi	

Run	Segment		Nominal		End	True Vert	Measured	Drift	Internal	Internal
Seq	Length	Size	Weight	Grade	Finish	Depth	Depth	Diameter	Capacity	Capacity
	(ft)	(in)	(lbs/ft)			(ft)	(ft)	(in)	(ft³)	(bbls)
1	45	13.375	48.00	H-40	ST&C	500	500	12.59	440.9	78.54
Run	Collapse	Collapse	Collapse	Burst	Burst	Burst	Tension	Tension	Tension	
Seq	Load	Strength	Design	Load	Strength	Design	Load	Strength	Design	
	(psi)	(psi)	Factor	(psi)	(psi)	Factor	(Kips)	(Kips)	Factor	
1	234	740	3.16	312	1730	5.54	24	322	13.417	

Prepared Phone: (432) 695 6970 Date: 01/30/22
by: Richard Wright FAX: (432) 695 6973 Midland, Texas

Remarks:

Collapse is based on a vertical depth of 500 ft, a mud weight of 9.0 ppg The casing is considered to be evacuated for collapse purposes. Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

Burst strength is not adjusted for tension.

Well name: Catalina 2530 State Com # 301H

Operator: Tascosa Energy Partners, LLC
String type: Intermediate Casing (3,000)

Location: Eddy County, New Mexico. 1320 FNL & 250 FWL, Sec 25, T20S, R26E

BHL Planned: 400 FNL & 100 FEL, Sec 30, T20S, R27E

Design par	rameters:		Minimum	design fac	tors:	Environme			
<u>Collapse</u>				<u>Collapse:</u>		H2S conside		No	
Mud weight:		9.50	ppg	DF	1.125	Surface tem	perature:	75.00	°F
Design is ba	sed on evacuated	d pipe.				BH Temp		99	°F
						Temp Gradie		0.80	°F/100ft
						Minimum Se	Ū	1500	ft
				Burst:		Minimum Dr	ift:	8.75	in
				DF	1.15	Cement top:		Surface	
<u>Burst</u>									
Max anticipa	ted surface								
pressure:		1,902.00	psi						
Internal grad	lient:	0.12	psi/ft	Tension:		Non-directio	nal string.		
Calculated E	BHP	2,262.00	psi	8 Rd STC:	1.80	(J)			
				8 Rd LTC:	1.80	(J)			
No backup n	nud specified.			Buttress:	1.60	(J)			
				Premium:	1.50	(J)			
				Body yield:	1.50	(B)	Re subsequ	uent strings	:
						Next setting	depth:	12,818	ft MD
			Tension is	based on buc	yed wgt.	Next setting	depth:	7,880	ft TVD
			Neutral pt:	± 2578	ft	Next mud we	eight:	9.5	ppg
			·			Next setting	BHP:	3,893	psi
						Fracture mu	d wt:	13.5	ppq
						Safety Facto	r-Injection		ppg
						Fracture dep	•	3000	
						Injection pre		2,262	psi
Run	Segment	Nominal		End	True Vert	Measured	Drift	ID	Internal
Seq	Length	Size Weight	Grade	Finish	Depth	Depth	Diameter	Diameter	Capacity

Segment		Nominal		End	True Vert	Measured	Drift	ID	Internal
Length (ft)	Size (in)	Weight (lbs/ft)	Grade	Finish	Depth (ft)	Depth (ft)	Diameter (in)	Diameter (in)	Capacity (bbls)
3000	9.625	36	J-55	LT&C	3000	3000	8.796	8.921	232
Collapse	Collapse	Collapse	Burst	Burst	Burst	Tension	Tension	Tension	
Load	Strength	Design	Load	Strength	Design	Load	Strength	Design	
(psi)	(psi)	Factor	(psi)	(psi)	Factor	(Kips)	(Kips)	Factor	
1482	2020	1.36	1902	3520	1.85	108	453	4.19 J	
	Length (ft) 3000 Collapse Load (psi)	Length Size (ft) (in) 3000 9.625 Collapse Collapse Load Strength (psi) (psi)	Length Size Weight (ft) (in) (lbs/ft) 3000 9.625 36 Collapse Collapse Collapse Load Strength Design (psi) (psi) Factor	Length Size Weight Grade (ft) (in) (lbs/ft) 3000 9.625 36 J-55 Collapse Collapse Collapse Burst Load Strength Design Load (psi) (psi) Factor (psi)	Length (ft)Size (in)Weight (lbs/ft)GradeFinish30009.62536J-55LT&CCollapseCollapseBurstBurstLoadStrength (psi)Design (psi)Load (psi)Strength (psi)	Length (ft)Size (in)Weight (lbs/ft)GradeFinish (ft)Depth (ft)30009.62536J-55LT&C3000CollapseCollapseCollapseBurstBurstBurstLoadStrengthDesignLoadStrengthDesign(psi)(psi)Factor(psi)(psi)Factor	Length (ft)Size (in)Weight (lbs/ft)Grade (rade)Finish (ft)Depth (ft)Depth (ft)30009.62536J-55LT&C30003000CollapseCollapseBurstBurstBurstBurstTensionLoadStrength (psi)DesignLoadStrength (psi)DesignLoad(psi)(psi)Factor(psi)(psi)Factor(Kips)	Length (ft)Size (in)Weight (lbs/ft)Grade (rade)Finish (ft)Depth (ft)Depth (ft)Diameter (ft)30009.62536J-55LT&C300030008.796CollapseCollapseCollapseBurstBurstBurstBurstTensionTensionLoadStrengthDesignLoadStrengthDesignLoadStrength(psi)(psi)Factor(psi)Factor(Kips)(Kips)	Length (ft)Size (in)Weight (lbs/ft)Grade (lbs/ft)Finish (ft)Depth (ft)Depth (ft)Diameter (in)Diameter (in)30009.62536J-55LT&C300030008.7968.921CollapseCollapseCollapseBurstBurstBurstTensionTensionTensionLoadStrengthDesignLoadStrengthDesignLoadStrengthDesign(psi)(psi)Factor(psi)Factor(Kips)(Kips)Factor

Prepared Phone: (432) 695 6970 Date: 01/30/22 by: Richard Wright FAX: (432) 695 6973 Midland, Texas

Remarks:

Collapse is based on a vertical depth of 3,000 ft, a mud weight of 9.5 ppg. The casing is considered to be evacuated for collapse purposes. Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

Burst strength is not adjusted for tension.

Well name: Catalina 2530 State Com # 301H

Operator: Tascosa Energy Partners, LLC

String type: Production Casing (± 17,742 ft MD) "FRAC"

Location: Eddy County, New Mexico. 1320 FNL & 250 FWL, Sec 25, T20S, R26E

BHL Planned 400 FNL & 100 FEL, Sec 30, T20S, R27E

Design parameters:			Minimum design factors:			Environment:		
Collapse				Collapse	<u>e:</u>	H2S considered?	No	
Mud weight:		(9.50 ppg	D	F 1.125	Surface temperature:	75.00 °F	
Design is based on evacuated p	ipe.					Bottom hole temp:	138 °F	
						Temperature gradient:	0.80 °F/100ft	
						Minimum section lgth:	1,500 ft	
				Burs	<u>t:</u>	Minimum Drift:	4.653 in	
				D	F 1.12	Cement top:	Surface ft	
<u>Burst</u>								
Max anticipated surface								
pressure FRAC @ RATE:	10,000.00	psi						
Internal gradient:	0.434	psi/ft	Tension:			Directional Info - Build & I	Hold	
Calculated BHP	13,368.00	psi	8 Rd STC:	1.80	(J)	KOP #1 ±	1,500 ft	
backup mud specified.	0.434	psi/ft	8 Rd LTC:	1.80	(J)	KOP #2 ±	6,986 ft	
Net Injection Pressure Surface	10,000.00	psi	Buttress:	1.60	(J)	Departure at shoe:	10,250 ft	
Net Injection Pressure TVD	4,956.00	psi	Premium:	1.50	(J)	Maximum dogleg:	10 °/100ft	
Annular surface PSI	0	psi	Body yield:	1.50	(B)	Inclination at shoe:	88.7 °	
Frac Gradient	12.50	ppg						
Frac Gradient	0.65	psi/ft	Tension is ba	sed on bu	uoyed weigh	nt. (.85474 factor)		
			Neutral pt: ±	6,622 ft	assumes n	o friction		

Run Seq	Segment Length (ft)	Size (in)	Nominal Weight (lbs/ft)	Grade	End Finish	True Vert Depth (ft)	Measured Depth (ft)	Drift Diameter (in)	ID Diameter (in)	Internal Capacity (bbls)
1	17,742	5.5	20	CYP-110	TCBC-HT	7,760	17,742	4.653	4.778	394.0
Run	Collapse	Collapse	Collapse	Burst	Burst	Burst	Tension	Tension	Tension	
Seq	Load (psi)	Strength (psi)	Design Factor	Load (psi)	Strength (psi)	Design Factor	Load (Kips)	Strength (Kips)	Design Factor	
								80% jt str	gth over pull	
1	3,833	12200	3.18	10000	12360	1.236	454.8	667	1.5J	
	Prepare b	ed y: Richard Wri	ght		Phone: (432)	,	Date:	01/30/22 Midland, Te	xas	

Remarks

Collapse is based on a vertical depth of 7,760 ft, a mud weight of 9.5 ppg. The casing is considered to be evacuated for collapse purposes. Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

Burst strength is not adjusted for tension.

Collapse strength is (biaxially) derated for doglegs in directional wells by multiplying the tensile stress by the cross section area to calculate a tensile load which is added to the axial load

33

76

88.73

86.756

STATION B

LONG'S METHOD OF SURVEY COMPUTATION

OBLIQUE CIRCULAR ARC INTERPOLATION

DISTANCE TABLE

STATION A

	MD OF INTERPOLATION DEPTH,(feet)
#N/A	TVD COORDINATE OF THE DEPTH (feet)
#N/A	N/S COORDINATE OF DEPTH (feet)
#N/A	E/W COORDINATE OF DEPTH (feet)

	#N/A	N/S COC	ORDINATE	OF DEPTH (fee				
	#N/A	E/W CO	ORDINATE	OF DEPTH (fee	et)			
ļ				3 D DISTANCE E	SETWEEN STATION	I A AND STATION B	0.00	ft
TABI	LE OF SURVI	EY STAT	Calculator =					
STA	ΔMD	INCL	AZIM	MD	TVD	N+/S-	E+/W-	DLS
#	ft	deg	deg	ft	ft	ft	ft	deg/100FT
1	TIE POINT =>	0	0	1500.00	1500.00	0.00	0.00	-
2	100	3	328.78	1600.00	1599.95	2.24	-1.36	3.00
3	100	5.28	328.78	1700.00	1699.69	8.41	-5.10	2.28
4	100	5.28	328.78	1800.00	1799.26	16.28	-9.87	0.00
5	100	5.28	328.78	1900.00	1898.84	24.15	-14.64	0.00
6	100	5.28	328.78	2000.00	1998.41	32.02	-19.41	0.00
7	100	5.28	328.78	2100.00	2097.99	39.89	-24.18	0.00
8	100	5.28	328.78	2200.00	2197.57	47.76	-28.95	0.00
9	100	5.28	328.78	2300.00	2297.14	55.63	-33.72	0.00
10	100	5.28	328.78	2400.00	2396.72	63.50	-38.49	0.00
11	2686	5.28	328.78	5086.00	5071.32	274.88	-166.60	0.00
12	100	5.28	328.78	5186.00	5170.90	282.75	-171.37	0.00
13	100	5.28	328.78	5286.00	5270.47	290.62	-176.14	0.00
14	100	5.28	328.78	5386.00	5370.05	298.49	-180.91	0.00
15	100	5.28	328.78	5486.00	5469.62	306.36	-185.68	0.00
16	100	5.28	328.78	5586.00	5569.20	314.23	-190.45	0.00
17	100	5.28	328.78	5686.00	5668.77	322.10	-195.22	0.00
18	100	3	328.78	5786.00	5768.51	328.27	-198.96	2.28
19	100	0	0	5886.00	5868.46	330.51	-200.32	3.00
20	100	0	0	5986.00	5968.46	330.51	-200.32	0.00
21	1000	0	0	6986.00	6968.46	330.51	-200.32	0.00
22	100	10	86.756	7086.00	7067.95	331.00	-191.63	10.00
23	100	20	86.756	7186.00	7164.42	332.46	-165.82	10.00
24	100	30	86.756	7286.00	7254.94	334.85	-123.68	10.00
25	100	40	86.756	7386.00	7336.75	338.09	-66.49	10.00
26	100	50	86.756	7486.00	7407.37	342.09	4.02	10.00
27	100	60	86.756	7586.00	7464.66	346.72	85.70	10.00
28	100	70	86.756	7686.00	7506.86	351.84	176.07	10.00
29	100	80	86.756	7786.00	7532.71	357.30	272.39	10.00
30	80	88.73	86.756	7866.00	7540.56	361.80	351.79	10.91
31	100	88.73	86.756	7966.00	7542.78	367.46	451.61	0.00
32	9700	88.73	86.756	17666.00	7757.77	916.23	10133.69	0.00

7759.45

920.53

10209.55

0.00

17742.00

Intent		As Dril	led											
API#														
Ope	rator Nar	me:				Property Name:								Well Number
Kick C	off Point	(KOP)												
UL	Section	Township	Range	Lot	Feet	F	From N	N/S	Feet		From E/W		County	
Latitu	de				Longitu	ıde							NAD	
First T	ake Poin	nt (FTP)												
UL	Section	Township	Range	Lot	Feet	et From N/S Feet			Fron	n E/W	County			
Latitu	de				Longitu	ıde			<u> </u>				NAD	
Last T	ake Poin	t (LTP)												
UL	Section	Township	Range	Lot	Feet	From	N/S	Feet		From	E/W	Count	У	
Latitude			Longitu	Longitude NAD										
Is this If infil	well an i	defining vinfill well?						_	vell n] umber	for I	Definir	ng well fo	r Horizontal
Ope	rator Nar	me:				Property Name:							Well Number	
Estim	ated Fori	mation Top	os											
Form	ation:				Тор:		For	matio	n:					Тор:

Catalina 25 30 State Com #301H – Natural Gas Management Plan

VI. Separation Equipment:

Tascosa has sized a FWKO and a high pressure, 3-phase separator to allow for complete separation at our anticipated rates, with adequate retention times. Tank vapors will also be captured through a vapor recovery unit and sent to the Enterprise sales line through a compressor on location.

VII. Operational Practices:

- a. Drilling Operations Tascosa will ensure that a flare stack is set at least 100' from the wellbore during drilling operations. This flare stack will be properly sized to handle the maximum expected release, ensuring that all natural gas produced during drilling operations can be flared (unless there is an equipment malfunction or if venting is necessary for safety reasons).
- b. Completion Operations Prior to flowback, Tascosa will ensure that the well is connected to a gathering system that can handle the expected gas volumes. During flowback, natural gas will be separated and flared until it is within the specs of the contracted gathering system (Enterprise).
- c. Production Operations Tascosa will conduct weekly AVO inspections and tackle equipment failures with haste. The emergency flare on location will be equipped with an auto-ignition, capable of handling the maximum expected release. Sight glasses will be installed on all tanks to eliminate gas releases due to gauging through thief hatches. A VRU will also be installed to capture tank vapors and reduce waste. In preparation of a VRU failure or planned maintenance, a backup combustor will be placed at the facility.
- d. Performance Standards
 - a. Tascosa will design completion and production equipment for maximum expected output and pressure to eliminate venting.
 - b. A properly sized flare stack will be placed at the facility with an automatic ignitor.
 - c. AVO inspections will be conducted at least once a week to prevent releases due to equipment failure. These inspections will be recorded for future review.
 - d. Tascosa is obligated to eliminate waste and will repair equipment failures as soon as possible.
- e. Measurement and Estimation A meter will be placed on the combustor and the flare stack to ensure combusted gas readings are accurate during a release event. If for any reason a meter reading is unavailable, released volumes will be estimated and reported.

VIII. Best Management Practices:

Tascosa will aim to conduct surface maintenance without venting or flaring as much as possible. If planned maintenance is prolonged due to wait times for labor and equipment, Tascosa will shut in the producing well to prevent excess emissions. Tascosa will also minimized venting during downhole operations.

I. Operator:

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Date: 06/21 /2022

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

Tascosa Energy Partners, LLC. OGRID: 329748

II. Type: ☒ Original ☐ If Other, please describe III. Well(s): Provide the be recompleted from a s	:	ormation for each r	new or recomple	ted well or set of v			lled or proposed to	
Well Name	API	ULSTR	Footages					
Catalina 25 30 St Com #301H		E-25-20S-26E	1320 FNL,250 FWL	1400	5700		2000	
Catalina 25 30 St Com #202H		E-25-20S-26E	1350 FNL,250 FWL	1200	4900		1600	
							. , , , ,	
Catalina 25 30 St Com #301H		9/1/2022	9/30/22	11/15/2022		1/2022	12/1/2022	
Catalina 25 30 St Com #202H		9/2/2022	10/31/22	11/15/2022	12/	1/2022	12/1/2022	
VI. Separation Equipment: ☑ Attach a complete description of how Operator will size separation equipment to optimize gas capture. VII. Operational Practices: ☑ Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC. VIII. Best Management Practices: ☑ Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.								

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

🗵 Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in
				-

XI. Map. \square Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the
production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of
the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural	gas gathering system 🗆 v	vill □ will not have	capacity to gather	100% of the anticipated	natural gas
production volume from the well p	prior to the date of first pro	oduction.			

XIII. Line Pressure. Operator \square does \square does not anticipate that its existing well(s) connected to the same segment, or portion, of	f the
natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well	(s).

\neg	A 44 1 4	· ,	1	4	1 4	•	4 41	1 1'	
	Апаси (Operator	s pian	to manage	production	in response	to the increa	sed line pressi	ıre

XIV. Confidentiality: Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided	1 in
Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information of the	tion
for which confidentiality is asserted and the basis for such assertion.	

(i)

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal: \(\times \) Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system: or ☐ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. If Operator checks this box, Operator will select one of the following: Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or Venting and Flaring Plan.

Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including: power generation on lease; (a) **(b)** power generation for grid; compression on lease; (c) (d) liquids removal on lease; reinjection for underground storage; (e) **(f)** reinjection for temporary storage; **(g)** reinjection for enhanced oil recovery; fuel cell production; and (h)

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

other alternative beneficial uses approved by the division.

- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Alyssa McNear Printed Name: Alyssa McNear				
Printed Name: Alyssa McNear				
Title: Engineering Manger				
E-mail Address: adavanzo@tascosaep.com				
Date: 06/21/2022				
Phone: 720-244-4417				
OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)				
Approved By:				
Title:				
Approval Date:				
Conditions of Approval:				