

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Sundry Print Reports

Well Name: BIG EDDY UNIT BB HUX Well Location: T20S / R32E / SEC 22 / County or Parish/State:

SWSW /

Well Number: 200H Type of Well: OIL WELL Allottee or Tribe Name:

Lease Number: NMNM033955 Unit or CA Name: BIG EDDY Unit or CA Number:

NMNM68294X

US Well Number: Well Status: Approved Application for Operator: XTO PERMIAN

Permit to Drill

OPERATING LLC

Notice of Intent

Sundry ID: 2686813

Type of Submission: Notice of Intent

Type of Action: APD Change

Date Sundry Submitted: 08/11/2022 Time Sundry Submitted: 01:29

Date proposed operation will begin: 08/20/2022

Procedure Description: **Surface Location Move, Casing/Cement, Drilling Variance Changes XTO Permian Operating, LLC requests permission to make the following changes to the original APD: No Additional Surface Disturbance Change SHL fr/1350'FSL & 520'FWL to 290'FSL & 670'FWL. Well Moved Quarter-Quarter as Permitted But is Located on the Same Drill Island Well Moved into Slot Included on Original EA Well List: Originally permitted in Slot A1, Now in Slot O5 Total SHL Move: 1060' South & 150' East SHL change requested to optimize well pad layout, drilling efficiencies, and for safety purposes. Bottom Hole/Take Point Changes fr/1980'FNL & 50'FWL to 660'FSL & 50'FWL Casing/Cement design per the attached drilling program. Attachments: C102 Drilling Program Directional Plan Multibowl Diagram

NOI Attachments

Procedure Description

Hux_200H_Attachments_20220811132907.pdf

Page 1 of 2

eceived by OCD: 9/6/2022 11:46:35 AM. Well Location: T20S / R32E / SEC 22 / County or Parish/State: Page 2 of

SWSW /

Well Number: 200H Type of Well: OIL WELL Allottee or Tribe Name:

Lease Number: NMNM033955 Unit or CA Name: BIG EDDY Unit or CA Number:

NMNM68294X

US Well Number: Well Status: Approved Application for Operator: XTO PERMIAN

Permit to Drill OPERATING LLC

Conditions of Approval

Additional

 $Sec_22_20S_32E_NMP_268613_Big_Eddy_Unit_BB_Hux_200H_Eddy_NMNM33955_XTO_13_22_44804_Allison_Morency_20220831130520.pdf$

Sec_22_20S_32E_NMP_268613_Big_Eddy_Unit_BB_Hux_200H_Eddy_NMNM33955_XTO_COAs_20220831130520.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: STEPHANIE RABADUE Signed on: AUG 11, 2022 01:29 PM

Name: XTO PERMIAN OPERATING LLC

Title: Regulatory Coordinator

Street Address: 500 W. Illinois St, Ste 100

City: Midland State: TX

Phone: (432) 620-6714

Email address: STEPHANIE.RABADUE@EXXONMOBIL.COM

Field

Representative Name:

Street Address:

City: State: Zip:

Phone:

Email address:

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS

BLM POC Title: Petroleum Engineer

BLM POC Phone: 5752342234 BLM POC Email Address: cwalls@blm.gov

Disposition: Approved **Disposition Date:** 09/02/2022

Signature: Chris Walls

Page 2 of 2

District I

1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210

Phone: (575) 748-1283 Fax: (575) 748-9720 District III

1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV

1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462 State of New Mexico Energy, Minerals & Natural Resources Department

1220 South St. Francis Dr. Santa Fe, NM 87505

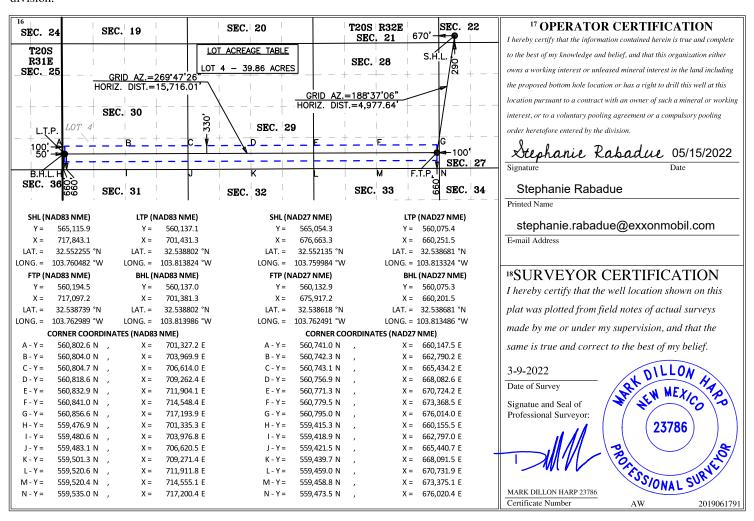
OIL CONSERVATION DIVISION

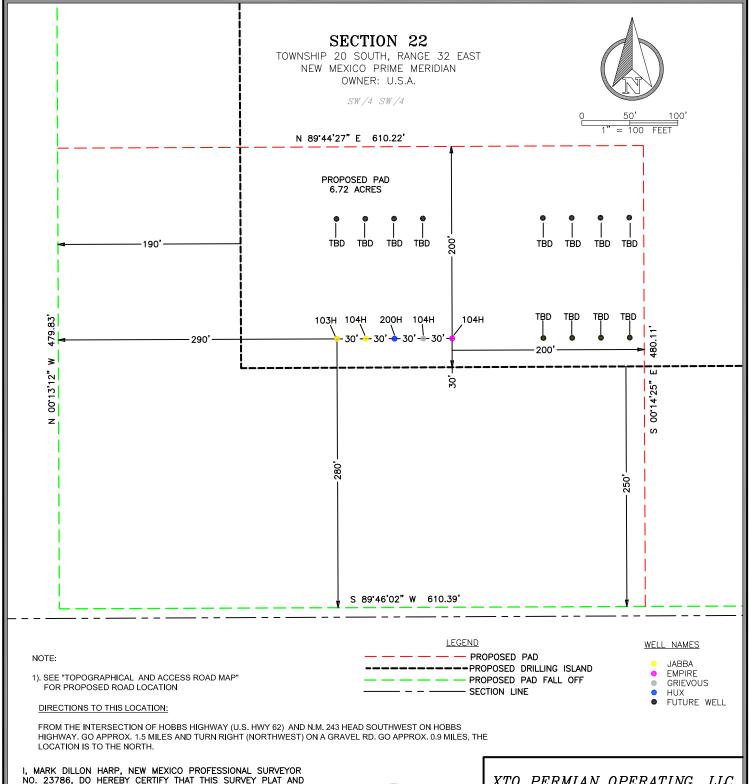
Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Numbe	er	² Pool Code						
30-025-5	50439	53560	53560 Salt Lake; Bone Spring					
⁴ Property Code		⁵ Pr	roperty Name	⁶ Well Number				
		Big Eddy Unit DI	BB Hux	200H				
⁷ OGRID No.		8 O _l	perator Name	⁹ Elevation				
373075		XTO PERMIA	N OPERATING, LLC.	3,529'				


¹⁰ Surface Location


UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County	ı
M	22	20 S	32 E		290	SOUTH	670	WEST	LEA	ì

11 Bottom Hole Location If Different From Surface

			DO	ttom Ho	e Document	Different 1 for	II Surface		
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
4	30	20 S	32 E		660	SOUTH	50	WEST	LEA
12 Dedicated Acres	¹³ Joint o	r Infill	Consolidation	Code 15 Or	der No.	1	,		
479.86									

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

I, MARK DILLON HARP, NEW MEXICO PROFESSIONAL SURVEYOR NO. 23786, DO HEREBY CERTIFY THAT THIS SURVEY PLAT AND THE ACTUAL SURVEY ON THE GROUND UPON WHICH IT IS BASED WERE PERFORMED BY ME OR UNDER MY DIRECT SUPERVISION; THAT I AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY MEETS THE MINIMUM STANDARDS FOR SURVEYING IN NEW MEXICO, AND THAT IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF

MARK DILLON HARP REGISTERED PROFESSIONAL LAND SURVEYOR STATE OF NEW MEXICO NO. 23786

VEYORS+ENGINEERS

550 Bailey Ave., 205 - Fort Worth, TX 76107 Ph: 817.349.9800 - Fax: 979.732.5271 TBPE Firm 17957 | TBPLS Firm 10193887 www.fscinc.net

© COPYRIGHT 2016 - ALL RIGHTS RESERVED

XTO PERMIAN OPERATING, LLC.

PAD LAYOUT

BIG EDDY UNIT BB PROPOSED PAD LOCATED 625 FEET FROM THE WEST LINE AND 250 FEET FROM THE SOUTH LINE OF SECTION 22, TOWNSHIP 20 SOUTH, RANGE 32 EAST, N.M.P.M. EDDY COUNTY, NEW MEXICO

DATE:	07-05-2022	PROJECT NO:	2017111944
DRAWN BY:	LM	SCALE:	1" = 100'
CHECKED BY:	DH	SHEET:	1 OF 1
FIELD CREW:	RE	REVISION:	0

DRILLING PLAN: BLM COMPLIANCE (Supplement to BLM 3160-3)

XTO Energy Inc.

Big Eddy Unit Blue Bird Hux 200H Projected TD: 27609' MD / 9805' TVD SHL: 290' FSL & 670' FWL , Section 22, T20S, R32E BHL: 660' FSL & 50' FWL , Section 30, T20S, R32E Lea County, NM

1. Geologic Name of Surface Formation

A. Quaternary

2. Estimated Tops of Geological Markers & Depths of Anticipated Fresh Water, Oil or Gas

Formation	Well Depth (TVD)	Water/Oil/Gas
Rustler	966'	Water
Top of Salt	1338'	Water
Base of Salt	2669'	Water
Capitan Reef	3003'	Water
Delaware	4985'	Water
Brushy Canyon	6126'	Water/Oil/Gas
Bone Spring	7732'	Water
1st Bone Spring Ss	8812'	Water/Oil/Gas
2nd Bone Spring Ss	9451'	Water/Oil/Gas
Target/Land Curve	9805'	Water/Oil/Gas

^{***} Hydrocarbons @ Brushy Canyon

No other formations are expected to yield oil, gas or fresh water in measurable volumes. The surface fresh water sands will be protected by setting 18.625 inch casing @ 1066' (272' above the salt) and circulating cement back to surface. The salt will be isolated by setting 13.375 inch casing at 2769' and circulating cement to surface. The second intermediate will isolate the Capitan Reef from the salt down to the next casing seat by setting 9.625 inch casing at 5035' and cemented to surface. A 8.5 inch curve and 8.5 inch lateral hole will be drilled to 27609 MD/TD and 5.5 inch production casing will be set at TD and cemented back up to 2nd intermediate (estimated TOC 2928 feet; >50' above the Capitan Reef) per Potash regulations.

3. Casing Design

Hole Size	Depth	OD Csg	Weight	Grade	Collar	New/Used	SF Burst	SF Collapse	SF Tension
24	0' – 1066'	18.625	87.5	J-55	BTC	New	2.71	1.31	14.25
17.5	0' – 2769'	13.375	54.5	J-55	BTC	New	2.19	1.34	5.65
12.25	0' – 2869'	9.625	40	HC P-110	BTC	New	2.94	3.15	6.26
12.25	2869' – 5035'	9.625	40	HC L-80	BTC	New	2.14	3.05	10.57
8.5	0' – 4935'	5.5	20	RY P-110	Semi-Premium	New	1.05	4.55	1.84
8.5	4935' - 27609'	5.5	20	RY P-110	Semi-Flush	New	1.05	2.29	2.01

[·] XTO requests the option to utilize a spudder rig (Atlas Copco RD20 or Equivalent) to set and cement surface and intermediate 1 casing per this Sundry

- · XTO requests to not utilize centralizers in the curve and lateral
- · 13.375 Collapse analyzed using 50% evacuation based on regional experience.
- · 9.625 Collapse analyzed using 50% evacuation based on regional experience.
- 5.5 Tension calculated using vertical hanging weight plus the lateral weight multiplied by a friction factor of 0.35
- · Test on 2M annular & Casing will be limited to 70% burst of the casing or 1500 psi, whichever is less
- · XTO requests the option to use 5" BTC Float equipment for the the production casing

Wellhead:

Permanent Wellhead - Multibowl System

- A. Starting Head: 13-5/8" 10M top flange x 18-5/8" bottom
- B. Tubing Head: 13-5/8" 10M bottom flange x 7-1/16" 15M top flange
 - Wellhead will be installed by manufacturer's representatives.
 - Manufacturer will monitor welding process to ensure appropriate temperature of seal.
 - Operator will test the 9-5/8" casing per BLM Onshore Order 2

^{***} Groundwater depth 40' (per NM State Engineers Office).

 \cdot Wellhead Manufacturer representative will not be present for BOP test plug installation

4. Cement Program

Surface Casing: 18.625, 87.5 New BTC, J-55 casing to be set at +/- 1066'

Lead: 1340 sxs Class C (mixed at 12.8 ppg, 1.95 ft3/sx, 10.93 gal/sx water)

Tail: 550 sxs Class C + 2% CaCl (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water)

Top of Cement: Surface

Compressives: 12-hr = 250 psi 24 hr = 500 psi

Due to the high probability of not getting cement to surface during conventional top-out jobs in the area, ~10-20 ppb gravel will be added on the backside of the 1" to get cement to surface, if required.

1st Intermediate Casing: 13.375, 54.5 New BTC, J-55 casing to be set at +/- 2769'

Lead: 1750 sxs Class C (mixed at 12.9 ppg, 1.95 ft3/sx, 10.93 gal/sx water)

Tail: 310 sxs Class C + 2% CaCl (mixed at 14.8 ppg, 1.33 ft3/sx, 6.39 gal/sx water)

Top of Cement: Surface

Compressives: 12-hr = 900 psi 24 hr = 1500 psi

2nd Intermediate Casing: 9.625, 40 New casing to be set at +/- 5035'

1st Stage

Optional Lead: 1250 sxs Class C (mixed at 10.5 ppg, 2.37 ft3/sx, 12.78 gal/sx water)

TOC: 0

Tail: 140 sxs Class C (mixed at 14.8 ppg, 1.33 ft3/sx, 6.39 gal/sx water)

TOC: 4735

Compressives: 12-hr = 900 psi 24 hr = 1150 psi

2nd Stage Bradenhead (if needed)

Optional Tail: 1220 sxs Class C (mixed at 14.8 ppg, 1.33 ft3/sx, 6.39 gal/sx water)

Top of Cement: 0

Compressives: 12-hr = 900 psi 24 hr = 1150 psi

XTO requests the option to pump a two stage cement job on the 9-5/8" intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Capitan Reef (3003') and the second stage performed as a bradenhead squeeze with planned cement from the Capitan Reef to surface. If cement is not visually confirmed to circulate to surface, the final cement top after the second stage job will be verified by Echo-meter. If necessary, a top out consisting of 1,500 sack of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (2.30 yld, 12.91 ppg) will be executed as a contingency. If cement is still unable to circulate to surface, another Echo-meter run will be performed for cement top verification.

XTO will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program.

XTO will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures.

XTO requests to pump an Optional Lead if well conditions dictate in an attempt to bring cement to surface. If cement reaches surface, the BLM will be notified and the second stage bradenhead squeeze and subsequent TOC verification will be negated.

XTO requests the option to conduct the bradenhead squeeze and TOC verification offline as per standard approval from BLM when unplanned remediation is needed and batch drilling is approved. In the event the bradenhead is conducted, we will ensure the first stage cement job is cemented properly and the well is static with floats holding and no pressure on the csg annulus as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Production Casing: 5.5, 20 New Semi-Flush, RY P-110 casing to be set at +/- 27609'

1st Stage

Lead: 470 sxs 50/50 POZ/Class C (mixed at 11.5 ppg, 2.6 ft3/sx, 14.84 gal/sx water) Top of Cement: 6126 feet
Tail: 2930 sxs 50/50 POZ/Class H (mixed at 13.2 ppg, 1.51 ft3/sx, 7.21 gal/sx water) Top of Cement: 10771 feet
Compressives: 12-hr = 1375 psi 24 hr = 2285 psi

2nd Stage Bradenhead (if needed)

Optional Tail: 1100 sxs Class C (mixed at 14.8 ppg, 1.33 ft3/sx, 6.39 gal/sx water)

Top of Cement: 2928

Compressives: 12-hr = 900 psi 24 hr = 1150 psi

XTO requests the option to pump a two stage cement job on the 5-1/2" production casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon (4985') and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to a depth dictated by the COA or current regulations.

A freshwater spacer will be pumped behind the cement to displace to the desired depth. A bradenhead squeeze will reduce channeling and allow for a more accurate placement of cement, while leaving an un-cemented portion of the annulus for pressure monitoring during completions operations.

XTO requests the ability to conduct the bradenhead squeeze offline.

XTO requests to pump an Optional Lead & Tail, if well conditions dictate, in an attempt to bring top of cement as dictated by the COA or current regulations. If cement reaches this depth, the BLM will be notified and the second stage bradenhead squeeze will be negated.

Lead: 1570 sxs 50/50 POZ/Class C (mixed at 11.5 ppg, 2.6 ft3/sx, 14.84 gal/sx water) Top of Cement: 2928 feet
Tail: 2930 sxs 50/50 POZ/Class H (mixed at 13.2 ppg, 1.51 ft3/sx, 7.21 gal/sx water) Top of Cement: 10771 feet
Compressives: 12-hr = 1375 psi 24 hr = 2285 psi

XTO requests the option to offline cement and remediate (if needed) surface and intermediate casing strings where batch drilling is approved and if unplanned remediation is needed. XTO will ensure well is static with no pressure on the csg annulus, as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed when applicable per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops. Offline cement operations will then be conducted after the rig is moved off the current well to the next well in the batch sequence.

5. Pressure Control Equipment

Once the permanent WH is installed on the 18.625 casing, the blow out preventer equipment (BOP) will consist of a 13-5/8" minimum 3M Hydril and a 13-5/8" minimum 3M Double Ram BOP. MASP should not exceed 0 psi. In any instance where 10M BOP is required by BLM, XTO requests a variance to utilize 5M annular with 10M ram preventers (a common BOP configuration, which allows use of 10M rams in unlikely event that pressures exceed 5M).

All BOP testing will be done by an independent service company. Annular pressure tests will be limited to 50% of the working pressure. When nippling up on the 18.625, 3M bradenhead and flange, the BOP test will be limited to 3000 psi. When nippling up on the 13.375, the BOP will be tested to a minimum of 3000 psi. All BOP tests will include a low pressure test as per BLM regulations. The 3M BOP diagrams are attached. Blind rams will be functioned tested each trip, pipe rams will be functioned tested each day.

A variance is requested to allow use of a flex hose as the choke line from the BOP to the Choke Manifold. If this hose is used, a copy of the manufacturer's certification and pressure test chart will be kept on the rig. Attached is an example of a certification and pressure test chart. The manufacturer does not require anchors.

XTO requests a variance to be able to batch drill this well if necessary. In doing so, XTO will set casing and ensure that the well is cemented properly (unless approval is given for offline cementing) and the well is static. With floats holding, no pressure on the csg annulus, and the installation of a 10K TA cap as per Cactus recommendations, XTO will contact the BLM to skid the rig to drill the remaining wells on the pad. Once surface and both intermediate strings are all completed, XTO will begin drilling the production hole on each of the wells.

A variance is requested to **ONLY** test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API standard 53 states, that for pad drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken. Based on discussions with the BLM on February 27th 2020, we will request permission to **ONLY** retest broken pressure seals if the following conditions are met: 1. After a full BOP test is conducted on the first well on the pad 2. When skidding to drill an intermediate section that does not penetrate into the Wolfcamp.

6. Proposed Mud Circulation System

INTERVAL	Hole Size	Mud Type	MW	Viscosity	Fluid Loss
INTERVAL	Hole Size	Mud Type	(ppg)	(sec/qt)	(cc)
0' - 1066'	24	FW/Native	8.7-9.2	35-40	NC
1066' - 2769'	17.5	Brine	10-10.5	30-32	NC
2769' to 5035'	12.25	FW / Cut Brine	9-9.5	30-32	NC
5035' to 27609'	8.5	ОВМ	9.5-10	50-60	NC - 20

The necessary mud products for weight addition and fluid loss control will be on location at all times.

Spud with fresh water/native mud. Drill out from under 18-5/8" surface casing with brine solution. A 10 ppg -10.5 ppg brine mud will be used while drilling through the salt formation. Use fibrous materials as needed to control seepage and lost circulation. Pump viscous sweeps as needed for hole cleaning. Pump speed will be recorded on a daily drilling report after mudding up. A Pason or Totco will be used to detect changes in loss or gain of mud volume. A mud test will be performed every 24 hours to determine: density, viscosity, strength, filtration and pH as necessary. Use available solids controls equipment to help keep mud weight down after mud up. Rig up solids control equipment to operate as a closed loop system.

7. Auxiliary Well Control and Monitoring Equipment

- A. A Kelly cock will be in the drill string at all times.
- B. A full opening drill pipe stabbing valve having appropriate connections will be on the rig floor at all times.
- C. H2S monitors will be on location when drilling below the 18.625 casing.

8. Logging, Coring and Testing Program

Mud Logger: Mud Logging Unit (2 man) below intermediate casing.

Open hole logging will not be done on this well.

9. Abnormal Pressures and Temperatures / Potential Hazards

None Anticipated. BHT of 165 to 185 F is anticipated. No H2S is expected but monitors will be in place to detect any H2S occurrences. Should these circumstances be encountered the operator and drilling contractor are prepared to take all necessary steps to ensure safety of all personnel and environment. Lost circulation could occur but is not expected to be a serious problem in this area and hole seepage will be compensated for by additions of small amounts of LCM in the drilling fluid. The maximum anticipated bottom hole pressure for this well is 4844 psi.

10. Anticipated Starting Date and Duration of Operations

Anticipated spud date will be after Remuda 25 State drilling is completed and BLM approval. Move in operations and drilling is expected to take 40 days.

Well Plan Report - BEU BB HUX 200H

Measured

27609.00 ft

Depth:

TVD RKB: 9805.00 ft

Location

Cartographic New Mexico Reference East - NAD System: 27

Northing: 565055.42 ft

Easting: 676645.46 ft

RKB: 3543.00 ft Ground

Level:

3513.00 ft

North

Reference:

Convergenc 0.31 Deg e Angle:

Site:

BlueBird

Grid

BEU BB HUX Slot:

200H

Plan Sections	BEU BB HUX 200H								
Measured			TVD			Build	Turn	Dogleg	
Depth	Inclination	Azimuth	RKB	Y Offset	X Offset	Rate	Rate	Rate	
(ft)	(Deg)	(Deg)	(ft)	(ft)	(ft)	(Deg/100ft)	(Deg/100ft)	(Deg/100ft) Targe	t
0	0	0	0	0	0	0	0	0	

2750	0	0	2750	0	0	0	0	0
4712.51	39.25	180.38	4562.57	-646.3	-4.36	2	0	2
10770.79	39.25	180.38	9254.06	-4479.34	-30.18	0	0	0
11891.03	90	269.78	9805	-4932.15	-744.65	4.53	7.98	8 FTP 1
27609.12	90	269.78	9805	-4991.46	-16462.63	0	0	0 BHL 1

BEU BB Position Jabba Uncertainty 105/HUX 200H

Released to Imaging: 9/7/2022 9:43:30 AM

Measured			TVD	Highside		Lateral		Vertical		Magnitude	Semi-major	Semi-minor	Semi-minor Tool
Depth	Inclination	Azimuth	RKB	Error	Bias	Error	Bias	Error	Bias	of Bias	Error	Error	Azimuth Used
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(°)
0	0	0	0	0	0	0	0	2.297	0	0	0	0	XOM_R2OW O SG 0 MWD+IFR1+ MS
100	0	0	100	0.358	0	0.358	0	2.299	0	0	0.358	0.358	MS XOM_R2OW 0 SG MWD+IFR1+
200	0	0	200	0.717	0	0.717	0	2.307	0	0	0.717	0.717	MS XOM_R2OW 0 SG MWD+IFR1+ MS
300	0	0	300	1.075	0	1.075	0	2.321	0	0	1.075	1.075	XOM_R2OW 0 SG 0 MWD+IFR1+ MS
400	0	0	400	1.434	0	1.434	0	2.34	0	0	1.434	1.434	XOM_R2OW ORDER SG MWD+IFR1+ MS XOM_R2OW
500	0	0	500	1.792	0	1.792	0	2.364	0	0	1.792	1.792	o SG MWD+IFR1+ MS XOM_R2OW
600	0	0	600	2.151	0	2.151	0	2.393	0	0	2.151	2.151	o MWD+IFR1+ MS

700	0	0	700	2.509	0	2.509	0	2.428	0	0	2.509	2.509	XOM_R2OW 0 SG MWD+IFR1+ MS
800	0	0	800	2.868	0	2.868	0	2.467	0	0	2.868	2.868	XOM_R2OW ORDER MODELIFE STATE MS XOM_R2OW
900	0	0	900	3.225	0	3.225	0	2.511	0	0	3.225	3.225	0 SG MWD+IFR1+ MS XOM_R2OW
1000	0	0	1000	3.585	0	3.585	0	2.559	0	0	3.585	3.585	O MWD+IFR1+ MS XOM_R2OW
1100	0	0	1100	3.942	0	3.942	0	2.613	0	0	3.942	3.942	O SG MWD+IFR1+ MS XOM_R2OW
1200	0	0	1200	4.301	0	4.301	0	2.67	0	0	4.301	4.301	0 SG MWD+IFR1+ MS XOM_R2OW
1300	0	0	1300	4.659	0	4.659	0	2.731	0	0	4.659	4.659	O SG MWD+IFR1+ MS XOM_R2OW
1400	0	0	1400	5.018	0	5.018	0	2.797	0	0	5.018	5.018	0 SG MWD+IFR1+ MS XOM_R2OW
1500	0	0	1500	5.377	0	5.377	0	2.866	0	0	5.377	5.377	0 SG MWD+IFR1+ MS XOM_R2OW
1600	0	0	1600	5.735	0	5.735	0	2.939	0	0	5.735	5.735	0 SG MWD+IFR1+ MS XOM_R2OW
1700	0	0	1700	6.093	0	6.093	0	3.015	0	0	6.093	6.093	0 SG MWD+IFR1+ MS XOM_R2OW
1800	0	0	1800	6.452	0	6.452	0	3.095	0	0	6.452	6.452	0 SG MWD+IFR1+ MS

													XOM_R2OW
1900	0	0	1900	6.81	0	6.81	0	3.178	0	0	6.81	6.81	0 SG MWD+IFR1+
													MS XOM_R2OW
2000	0	0	2000	7.169	0	7.169	0	3.265	0	0	7.169	7.169	0 SG MWD+IFR1+
													MS XOM_R2OW
2100	0	0	2100	7.527	0	7.527	0	3.354	0	0	7.527	7.527	O SG MWD+IFR1+
													MS
2200	0	0	2200	7.886	0	7.886	0	3.447	0	0	7.886	7.886	XOM_R2OW 0 SG MWD+IFR1+
2200	U	U	2200	7.000	U	7.000	U	3.447	U	U	7.000	7.000	MWD+IFR1+ MS
													XOM_R2OW
2300	0	0	2300	8.244	0	8.244	0	3.544	0	0	8.244	8.244	0 SG MWD+IFR1+
													MS XOM_R2OW
2400	0	0	2400	8.603	0	8.603	0	3.643	0	0	8.603	8.603	0 SG MWD+IFR1+
													MS XOM_R2OW
2500	0	0	2500	8.962	0	8.962	0	3.744	0	0	8.962	8.962	0 SG MWD+IFR1+
													MS XOM_R2OW
2600	0	0	2600	9.32	0	9.32	0	3.848	0	0	9.32	9.32	O SG MWD+IFR1+
													MS
2700	0	0	2700	9.678	0	9.678	0	3.956	0	0	9.678	9.678	XOM_R2OW 0 SG MWD+IFR1+
2700	Ü	Ü	2700	3.070	Ü	3.070	· ·	3.330	Ü	Ü	3.070	3.070	MS
													XOM_R2OW SG
2750	0	0	2750	9.857	0	9.857	0	4.01	0	0	9.857	9.857	0 SG MWD+IFR1+ MS
													XOM_R2OW
2800	1	180.3	2799.997	10.024	0	10.025	0	4.066	0	0	10.025	10.025	0 SG MWD+IFR1+
													MS XOM_R2OW
2900	3	180.3	2899.931	10.337	0	10.349	0	4.177	0	0	10.349	10.349	0 SG MWD+IFR1+
													MS

3000	4.999	180.3	2999.683	10.638	0	10.672	0	4.291	0	0	10.672	10.672	XOM_R2OW SG MWD+IFR1+
3100	7	180.3	3099.13	10.932	0	11	0	4.406	0	0	11	11	MS XOM_R2OW SG 0 MWD+IFR1+
3200	9	180.3	3198.152	11.215	0	11.331	0	4.521	0	0	11.331	11.327	MS XOM_R2OW 0 SG 0 MWD+IFR1+
3300	11	180.3	3296.628	11.491	0	11.662	0	4.639	0	0	11.662	11.658	MS XOM_R2OW SG 0 MWD+IFR1+
													MS XOM_R2OW
3400	13	180.3	3394.437	11.752	0	11.992	0	4.758	0	0	11.992	11.983	0 SG MWD+IFR1+ MS XOM_R2OW
3500	15	180.3	3491.462	12.006	0	12.325	0	4.881	0	0	12.325	12.313	0.241 SG MWD+IFR1+ MS XOM_R2OW
3600	16.99	180.3	3587.583	12.246	0	12.661	0	5.007	0	0	12.661	12.637	0.213 SG MWD+IFR1+ MS XOM_R2OW
3700	19	180.3	3682.684	12.48	0	12.996	0	5.137	0	0	12.996	12.965	0.255 SG MWD+IFR1+ MS XOM_R2OW
3800	21	180.3	3776.649	12.704	0	13.334	0	5.272	0	0	13.334	13.293	0.279 SG MWD+IFR1+ MS
3900	22.99	180.3	3869.362	12.921	0	13.675	0	5.412	0	0	13.675	13.62	XOM_R2OW SG 0.292 MWD+IFR1+ MS
4000	25	180.3	3960.712	13.128	0	14.018	0	5.56	0	0	14.018	13.946	XOM_R2OW 0.303 SG MWD+IFR1+ MS
4100	27	180.3	4050.587	13.329	0	14.363	0	5.716	0	0	14.363	14.272	XOM_R2OW SG 0.314 MWD+IFR1+ MS

4200	28.99	180.3	4138.877	13.525	0	14.711	0	5.881	0	0	14.711	14.598	XOM_R2OW 0.326 SG MWD+IFR1+ MS
4300	30.99	180.3	4225.475	13.715	0	15.06	0	6.058	0	0	15.06	14.923	XOM_R2OW 0.34 SG MWD+IFR1+ MS
4400	33	180.3	4310.276	13.9	0	15.418	0	6.247	0	0	15.418	15.248	XOM_R2OW 0.342 SG MWD+IFR1+ MS
4500	35	180.3	4393.175	14.082	0	15.773	0	6.451	0	0	15.773	15.572	XOM_R2OW SG 0.356 MWD+IFR1+ MS XOM_R2OW
4600	37	180.3	4474.073	14.261	0	16.137	0	6.67	0	0	16.137	15.893	0.358 SG MWD+IFR1+ MS XOM_R2OW
4700	39	180.3	4552.87	14.438	0	16.502	0	6.907	0	0	16.502	16.211	0.364 SG MWD+IFR1+ MS XOM_R2OW
4712.5	39.25	180.3	4562.572	14.46	0	16.55	0	6.932	0	0	16.55	16.254	0.362 SG MWD+IFR1+ MS XOM_R2OW
4800	39.25	180.3	4630.326	14.828	0	16.873	0	7.163	0	0	16.873	16.529	SG 0.367 MWD+IFR1+ MS XOM_R2OW
4900	39.25	180.3	4707.766	15.258	0	17.251	0	7.44	0	0	17.251	16.849	0.37 SG MWD+IFR1+ MS XOM_R2OW
5000	39.25	180.3	4785.205	15.698	0	17.638	0	7.727	0	0	17.638	17.178	0.372 SG MWD+IFR1+ MS XOM_R2OW
5100	39.25	180.3	4862.644	16.145	0	18.028	0	8.022	0	0	18.028	17.51	0.373 SG MWD+IFR1+ MS XOM_R2OW
5200	39.25	180.3	4940.083	16.601	0	18.423	0	8.326	0	0	18.423	17.849	0.375 SG MWD+IFR1+ MS

5300	39.25	180.3	5017.522	17.063	0	18.823	0	8.638	0	0	18.823	18.193	XOM_R2OW SG MWD+IFR1+
5400	39.25	180.3	5094.961	17.532	0	19.228	0	8.956	0	0	19.228	18.542	MS XOM_R2OW SG 0.379 MWD+IFR1+
5500	39.25	180.3	5172.4	18.007	0	19.637	0	9.281	0	0	19.637	18.894	MS XOM_R2OW 0.38 SG MWD+IFR1+ MS
5600	39.25	180.3	5249.84	18.487	0	20.05	0	9.61	0	0	20.05	19.254	XOM_R2OW SG 0.381 MWD+IFR1+ MS
5700	39.25	180.3	5327.279	18.973	0	20.467	0	9.945	0	0	20.467	19.616	XOM_R2OW 0.383 SG MWD+IFR1+ MS
5800	39.25	180.3	5404.718	19.463	0	20.888	0	10.281	0	0	20.888	19.982	XOM_R2OW 0.384 SG MWD+IFR1+ MS
5900	39.25	180.3	5482.157	19.956	0	21.314	0	10.625	0	0	21.314	20.352	XOM_R2OW 0.383 SG MWD+IFR1+ MS
6000	39.25	180.3	5559.596	20.455	0	21.742	0	10.973	0	0	21.742	20.727	XOM_R2OW SG MWD+IFR1+ MS XOM_R2OW
6100	39.25	180.3	5637.035	20.959	0	22.172	0	11.327	0	0	22.172	21.104	0.385 SG MWD+IFR1+ MS XOM_R2OW
6200	39.25	180.3	5714.474	21.463	0	22.605	0	11.679	0	0	22.605	21.485	0.386 SG MWD+IFR1+ MS XOM_R2OW
6300	39.25	180.3	5791.914	21.973	0	23.041	0	12.037	0	0	23.041	21.87	0.387 SG MWD+IFR1+ MS XOM_R2OW
6400	39.25	180.3	5869.353	22.486	0	23.48	0	12.398	0	0	23.48	22.258	0.388 SG MWD+IFR1+ MS

6500	39.25	180.3	5946.792	23.001	0	23.923	0	12.759	0	0	23.923	22.647	XOM_R2OW SG 0.388 MWD+IFR1+ MS
6600	39.25	180.3	6024.231	23.518	0	24.366	0	13.126	0	0	24.366	23.039	XOM_R2OW SG 0.388 MWD+IFR1+ MS
6700	39.25	180.3	6101.67	24.038	0	24.811	0	13.494	0	0	24.811	23.435	XOM_R2OW 0.389 SG MWD+IFR1+ MS
6800	39.25	180.3	6179.109	24.561	0	25.259	0	13.864	0	0	25.259	23.833	XOM_R2OW SG MWD+IFR1+ MS
6900	39.25	180.3	6256.548	25.086	0	25.708	0	14.237	0	0	25.708	24.234	XOM_R2OW 0.391 SG MWD+IFR1+ MS
7000	39.25	180.3	6333.987	25.613	0	26.159	0	14.612	0	0	26.159	24.637	XOM_R2OW SG 0.391 MWD+IFR1+ MS
7100	39.25	180.3	6411.427	26.142	0	26.614	0	14.987	0	0	26.614	25.042	XOM_R2OW 0.391 SG MWD+IFR1+ MS
7200	39.25	180.3	6488.866	26.673	0	27.069	0	15.366	0	0	27.069	25.45	XOM_R2OW SG 0.392 MWD+IFR1+ MS
7300	39.25	180.3	6566.305	27.205	0	27.525	0	15.745	0	0	27.525	25.859	XOM_R2OW SG 0.392 MWD+IFR1+ MS
7400	39.25	180.3	6643.744	27.738	0	27.982	0	16.128	0	0	27.982	26.27	XOM_R2OW SG 0.393 MWD+IFR1+ MS
7500	39.25	180.3	6721.183	28.274	0	28.441	0	16.511	0	0	28.441	26.683	XOM_R2OW SG 0.393 MWD+IFR1+ MS
7600	39.25	180.3	6798.622	28.812	0	28.903	0	16.894	0	0	28.903	27.1	XOM_R2OW SG 0.394 MWD+IFR1+ MS

7700	39.25	180.3	6876.061	29.349	0	29.365	0	17.28	0	0	29.365	27.515	XOM_R2OW SG MWD+IFR1+ MS
7800	39.25	180.3	6953.501	29.89	0	29.828	0	17.669	0	0	29.828	27.936	XOM_R2OW 0.395 SG MWD+IFR1+ MS
7900	39.25	180.3	7030.94	30.43	0	30.292	0	18.058	0	0	30.292	28.355	XOM_R2OW 0.395 SG MWD+IFR1+ MS
8000	39.25	180.3	7108.379	30.972	0	30.757	0	18.447	0	0	30.757	28.777	XOM_R2OW 0.395 SG MWD+IFR1+ MS
8100	39.25	180.3	7185.818	31.515	0	31.225	0	18.839	0	0	31.225	29.201	XOM_R2OW 0.395 SG MWD+IFR1+ MS
8200	39.25	180.3	7263.257	32.059	0	31.686	0	19.233	0	0	31.686	29.626	XOM_R2OW SG 0.397 MWD+IFR1+ MS XOM_R2OW
8300	39.25	180.3	7340.696	32.604	0	32.156	0	19.627	0	0	32.156	30.053	0.397 SG MWD+IFR1+ MS XOM_R2OW
8400	39.25	180.3	7418.135	33.148	0	32.619	0	20.02	0	0	32.619	30.481	0.399 SG MWD+IFR1+ MS XOM_R2OW
8500	39.25	180.3	7495.575	33.696	0	33.091	0	20.418	0	0	33.091	30.911	0.399 SG MWD+IFR1+ MS XOM_R2OW
8600	39.25	180.3	7573.014	34.244	0	33.571	0	20.816	0	0	33.571	31.342	0.398 SG MWD+IFR1+ MS XOM_R2OW
8700	39.25	180.3	7650.453	34.787	0	34.044	0	21.213	0	0	34.044	31.765	0.396 SG MWD+IFR1+ MS XOM_R2OW
8800	39.25	180.3	7727.892	35.338	0	34.511	0	21.612	0	0	34.511	32.202	0.398 SG MWD+IFR1+ MS

	_
Ç	agı
	e 20
	0
	.57

8900	39.25	180.3	7805.331	35.886	0	34.986	0	22.014	0	0	34.986	32.634	XOM_R2OW 0.398 SG MWD+IFR1+ MS
9000	39.25	180.3	7882.77	36.44	0	35.454	0	22.417	0	0	35.454	33.076	XOM_R2OW 0.4 SG 0.4 MWD+IFR1+ MS
9100	39.25	180.3	7960.209	36.991	0	35.931	0	22.819	0	0	35.931	33.511	XOM_R2OW 0.4 SG MWD+IFR1+ MS
9200	39.25	180.3	8037.648	37.537	0	36.414	0	23.223	0	0	36.414	33.941	XOM_R2OW 0.397 SG MWD+IFR1+ MS
9300	39.25	180.3	8115.088	38.089	0	36.892	0	23.628	0	0	36.892	34.38	XOM_R2OW 0.398 SG MWD+IFR1+ MS
9400	39.25	180.3	8192.527	38.647	0	37.363	0	24.033	0	0	37.363	34.828	XOM_R2OW 0.4 SG MWD+IFR1+ MS
9500	39.25	180.3	8269.966	39.202	0	37.842	0	24.442	0	0	37.842	35.27	XOM_R2OW 0.4 SG MWD+IFR1+ MS
9600	39.25	180.3	8347.405	39.752	0	38.315	0	24.85	0	0	38.315	35.707	XOM_R2OW 0.4 SG MWD+IFR1+ MS
9700	39.25	180.3	8424.844	40.308	0	38.794	0	25.259	0	0	38.794	36.152	XOM_R2OW 0.4 SG MWD+IFR1+ MS
9800	39.25	180.3	8502.283	40.867	0	39.281	0	25.669	0	0	39.281	36.606	XOM_R2OW SG MWD+IFR1+ MS
9900	39.25	180.3	8579.722	41.424	0	39.762	0	26.081	0	0	39.762	37.054	XOM_R2OW 0.401 SG MWD+IFR1+ MS
10000	39.25	180.3	8657.162	41.978	0	40.237	0	26.492	0	0	40.237	37.497	XOM_R2OW SG MWD+IFR1+ MS

10100	39.25	180.3	8734.601	42.536	0	40.719	0	26.905	0	0	40.719	37.947	XOM_R2OW SG 0.402 MANAGE UEDA 4
													MWD+IFR1+ MS XOM_R2OW
10200	39.25	180.3	8812.04	43.09	0	41.207	0	27.318	0	0	41.207	38.393	0.401 SG MWD+IFR1+ MS
10300	39.25	180.3	8889.479	43.651	0	41.677	0	27.734	0	0	41.677	38.846	XOM_R2OW SG MWD+IFR1+ MS
10400	39.25	180.3	8966.918	44.206	0	42.166	0	28.15	0	0	42.166	39.294	XOM_R2OW SG 0.402 MWD+IFR1+
10500	39.25	180.3	9044.357	44.767	0	42.65	0	28.567	0	0	42.65	39.749	MS XOM_R2OW SG 0.403 MWD+IFR1+
10600	39.25	180.3	9121.796	45.324	0	43.128	0	28.984	0	0	43.128	40.199	MS XOM_R2OW SG 0.404 MWD+IFR1+
10700	39.25	180.3	9199.235	45.878	0	43.612	0	29.404	0	0	43.612	40.645	MS XOM_R2OW
10700	33.23	100.5	3133.233	43.870	Ü	43.012	Ü	23.404	Ü	Ū	43.012	40.043	MWD+IFR1+ MS XOM_R2OW
10770	39.25	180.3	9254.059	46.278	0	43.955	0	29.7	0	0	43.955	40.975	0.404 SG MWD+IFR1+ MS
10800	39.32	184	9276.665	46.426	0	44.091	0	29.823	0	0	44.102	41.109	XOM_R2OW SG 0.396 MWD+IFR1+ MS
10900	40.45	196.4	9353.512	46.675	0	44.356	0	30.247	0	0	44.576	41.557	XOM_R2OW SG 0.479 MWD+IFR1+
11000	42.82	207.9	9428.351	46.497	0	44.424	0	30.679	0	0	45.045	41.988	MS XOM_R2OW SG 0.719
													MWD+IFR1+ MS XOM_R2OW
11100	46.23	218.2	9499.726	45.841	0	44.382	0	31.127	0	0	45.477	42.39	1.176 MWD+IFR1+ MS

11200	50.46	227.3	9566.248	44.71	0	44.328	0	31.596	0	0	45.884	42.763	XOM_R2OW SG MWD+IFR1+ MS
11300	55.32	235.3	9626.621	43.157	0	44.29	0	32.078	0	0	46.235	43.096	XOM_R2OW SG MWD+IFR1+ MS XOM_R2OW
11400	60.63	242.4	9679.672	41.336	0	44.28	0	32.604	0	0	46.546	43.376	4.22 SG MWD+IFR1+ MS
11500	66.28	248.7	9724.366	39.43	0	44.292	0	33.151	0	0	46.82	43.599	XOM_R2OW SG 5.915 MWD+IFR1+ MS
11600	72.17	254.5	9759.834	37.644	0	44.311	0	33.719	0	0	47.03	43.774	XOM_R2OW SG MWD+IFR1+ MS
11700	78.22	259.9	9785.387	36.244	0	44.323	0	34.307	0	0	47.215	43.895	XOM_R2OW 10.607 SG MWD+IFR1+ MS
11800	84.36	265.1	9800.526	35.473	0	44.307	0	34.914	0	0	47.371	43.955	XOM_R2OW 13.499 SG MWD+IFR1+ MS
11891	90	269.7	9805	35.468	0	44.271	0	35.468	0	0	47.486	43.967	XOM_R2OW 16.479 SG MWD+IFR1+ MS
11900	90	269.7	9805	35.525	0	44.271	0	35.525	0	0	47.506	43.956	XOM_R2OW 16.712 SG MWD+IFR1+ MS
12000	90	269.7	9805	36.125	0	44.398	0	36.125	0	0	47.636	43.941	XOM_R2OW 19.898 SG MWD+IFR1+ MS
12100	90	269.7	9805	36.742	0	44.523	0	36.742	0	0	47.795	43.905	XOM_R2OW 22.75 SG MWD+IFR1+ MS
12200	90	269.7	9805	37.363	0	44.671	0	37.363	0	0	47.973	43.87	XOM_R2OW SG 25.418 MWD+IFR1+ MS

12300	90	269.7	9805	38	0	44.841	0	38	0	0	48.171	43.836	XOM_R2OW SG 27.916
12000	30	2031,	3003		Č		ŭ		ŭ		.0.17.1	.0.000	MWD+IFR1+ MS XOM_R2OW
12400	90	269.7	9805	38.626	0	45.01	0	38.626	0	0	48.389	43.789	30.079 SG MWD+IFR1+ MS
12500	90	269.7	9805	39.268	0	45.201	0	39.268	0	0	48.617	43.742	XOM_R2OW SG 32.167 MWD+IFR1+
													MS XOM_R2OW
12600	90	269.7	9805	39.912	0	45.402	0	39.912	0	0	48.857	43.692	34.068 SG MWD+IFR1+ MS
12700	90	269.7	9805	40.571	0	45.624	0	40.571	0	0	49.112	43.646	XOM_R2OW SG MWD+IFR1+
													MS XOM_R2OW
12800	90	269.7	9805	41.219	0	45.855	0	41.219	0	0	49.386	43.601	37.457 MWD+IFR1+ MS XOM_R2OW
12900	90	269.7	9805	41.881	0	46.097	0	41.881	0	0	49.663	43.55	38.972 SG MWD+IFR1+
13000	90	269.7	9805	42.544	0	46.359	0	42.544	0	0	49.96	43.508	MS XOM_R2OW SG 40.372 MWD+IFR1+
													MS XOM_R2OW
13100	90	269.7	9805	43.22	0	46.63	0	43.22	0	0	50.26	43.462	41.711 SG MWD+IFR1+ MS
13200	90	269.7	9805	43.886	0	46.91	0	43.886	0	0	50.576	43.418	XOM_R2OW SG 42.912 MWD+IFR1+
													MS XOM_R2OW SG
13300	90	269.7	9805	44.565	0	47.209	0	44.565	0	0	50.904	43.38	44.071 MWD+IFR1+ MS XOM_R2OW
13400	90	269.7	9805	45.244	0	47.517	0	45.244	0	0	51.239	43.343	SG 45.153 MWD+IFR1+ MS
													IVIO

13500	90	269.7	9805	45.924	0	47.834	0	45.924	0	0	51.582	43.304	XOM_R2OW SG 46.167 MWD+IFR1+
13600	90	269.7	9805	46.605	0	48.17	0	46.605	0	0	51.938	43.272	MS XOM_R2OW SG 47.155 MWD+IFR1+
13700	90	269.7	9805	47.297	0	48.513	0	47.297	0	0	52.301	43.239	MS XOM_R2OW 48.083 SG MWD+IFR1+
13800	90	269.7	9805	47.99	0	48.864	0	47.99	0	0	52.671	43.206	MS XOM_R2OW SG MWD+IFR1+
13900	90	269.7	9805	48.683	0	49.233	0	48.683	0	0	53.053	43.179	MS XOM_R2OW 49.816 SG MWD+IFR1+ MS
14000	90	269.7	9805	49.376	0	49.609	0	49.376	0	0	53.441	43.151	XOM_R2OW SG MWD+IFR1+ MS
14100	90	269.7	9805	50.08	0	49.993	0	50.08	0	0	53.839	43.131	XOM_R2OW SG MWD+IFR1+ MS
14200	90	269.7	9805	50.784	0	50.393	0	50.784	0	0	54.246	43.109	XOM_R2OW SG 52.128 MWD+IFR1+ MS
14300	90	269.7	9805	51.488	0	50.801	0	51.488	0	0	54.658	43.087	XOM_R2OW SG 52.849 MWD+IFR1+ MS
14400	90	269.7	9805	52.192	0	51.214	0	52.192	0	0	55.079	43.073	XOM_R2OW SG 53.512 MWD+IFR1+ MS
14500	90	269.7	9805	52.906	0	51.644	0	52.906	0	0	55.512	43.063	XOM_R2OW SG 54.167 MWD+IFR1+ MS
14600	90	269.7	9805	53.61	0	52.08	0	53.61	0	0	55.946	43.046	XOM_R2OW SG 54.815 MWD+IFR1+ MS

14700	90	269.7	9805	54.323	0	52.521	0	54.323	0	0	56.39	43.036	XOM_R2OW SG 55.412 MWD+IFR1+ MS
14800	90	269.7	9805	55.045	0	52.969	0	55.045	0	0	56.838	43.028	XOM_R2OW SG 55.986 MWD+IFR1+ MS
14900	90	269.7	9805	55.758	0	53.431	0	55.758	0	0	57.297	43.024	XOM_R2OW SG SG MWD+IFR1+ MS
15000	90	269.7	9805	56.48	0	53.908	0	56.48	0	0	57.767	43.022	XOM_R2OW SG 57.117 MWD+IFR1+ MS
15100	90	269.7	9805	57.201	0	54.381	0	57.201	0	0	58.236	43.019	XOM_R2OW SG 57.641 MWD+IFR1+ MS
15200	90	269.7	9805	57.922	0	54.868	0	57.922	0	0	58.715	43.018	XOM_R2OW SG MWD+IFR1+ MS XOM_R2OW
15300	90	269.7	9805	58.643	0	55.369	0	58.643	0	0	59.205	43.02	58.673 SG MWD+IFR1+ MS
15400	90	269.7	9805	59.372	0	55.865	0	59.372	0	0	59.692	43.021	XOM_R2OW SG 59.154 MWD+IFR1+ MS XOM_R2OW
15500	90	269.7	9805	60.1	0	56.374	0	60.1	0	0	60.191	43.024	59.629 SG MWD+IFR1+ MS XOM_R2OW
15600	90	269.7	9805	60.828	0	56.897	0	60.828	0	0	60.701	43.039	60.088 SG MWD+IFR1+ MS XOM_R2OW
15700	90	269.7	9805	61.555	0	57.415	0	61.555	0	0	61.207	43.042	60.53 MWD+IFR1+ MS XOM_R2OW
15800	90	269.7	9805	62.29	0	57.945	0	62.29	0	0	61.725	43.059	60.958 SG MWD+IFR1+ MS

15900	90	269.7	9805	63.016	0	58.488	0	63.016	0	0	62.25	43.068	XOM_R2OW SG 61.394 MWD+IFR1+ MS
16000	90	269.7	9805	63.75	0	59.026	0	63.75	0	0	62.775	43.084	XOM_R2OW SG 61.791 MWD+IFR1+ MS
16100	90	269.7	9805	64.49	0	59.576	0	64.49	0	0	63.31	43.103	XOM_R2OW 62.186 SG MWD+IFR1+ MS
16200	90	269.7	9805	65.223	0	60.137	0	65.223	0	0	63.852	43.115	XOM_R2OW SG 62.59 MWD+IFR1+ MS
16300	90	269.7	9805	65.962	0	60.693	0	65.962	0	0	64.393	43.134	XOM_R2OW SG 62.96 MWD+IFR1+ MS XOM_R2OW
16400	90	269.7	9805	66.701	0	61.261	0	66.701	0	0	64.943	43.156	63.327 SG MWD+IFR1+ MS XOM_R2OW
16500	90	269.7	9805	67.439	0	61.831	0	67.439	0	0	65.496	43.177	63.682 SG MWD+IFR1+ MS XOM_R2OW
16600	90	269.7	9805	68.176	0	62.412	0	68.176	0	0	66.058	43.201	64.036 SG MWD+IFR1+ MS XOM_R2OW
16700	90	269.7	9805	68.92	0	62.996	0	68.92	0	0	66.622	43.226	64.38 SG MWD+IFR1+ MS XOM_R2OW
16800	90	269.7	9805	69.663	0	63.582	0	69.663	0	0	67.19	43.261	64.706 SG MWD+IFR1+ MS XOM_R2OW
16900	90	269.7	9805	70.406	0	64.178	0	70.406	0	0	67.765	43.288	65.038 SG MWD+IFR1+ MS XOM_R2OW
17000	90	269.7	9805	71.148	0	64.777	0	71.148	0	0	68.343	43.316	65.36 SG MWD+IFR1+ MS

17100	90	269.7	9805	71.896	0	65.378	0	71.896	0	0	68.924	43.353	XOM_R2OW SG 65.664
													MWD+IFR1+ MS XOM_R2OW
17200	90	269.7	9805	72.636	0	65.988	0	72.636	0	0	69.513	43.382	65.975 SG MWD+IFR1+ MS
17300	90	269.7	9805	73.383	0	66.601	0	73.383	0	0	70.11	43.413	XOM_R2OW SG MWD+IFR1+ MS
17400	90	269.7	9805	74.135	0	67.215	0	74.135	0	0	70.702	43.442	XOM_R2OW SG MWD+IFR1+
17500	90	269.7	9805	74.88	0	67.838	0	74.88	0	0	71.304	43.483	MS XOM_R2OW SG 66.834 MWD+IFR1+
17600	90	269.7	9805	75.631	0	68.463	0	75.631	0	0	71.907	43.524	MS XOM_R2OW SG 67.11 MWD+IFR1+
17700	90	269.7	9805	76.381	0	69.09	0	76.381	0	0	72.513	43.565	MS XOM_R2OW
17700	30	203.7	3003	70.301	Ç	03.03	· ·	70.301	Ü	Ü	72.313	13.303	MWD+IFR1+ MS XOM_R2OW
17800	90	269.7	9805	77.13	0	69.725	0	77.13	0	0	73.126	43.607	67.647 SG MWD+IFR1+ MS
17900	90	269.7	9805	77.878	0	70.362	0	77.878	0	0	73.745	43.642	XOM_R2OW SG 67.896 MWD+IFR1+ MS
18000	90	269.7	9805	78.632	0	71	0	78.632	0	0	74.362	43.685	XOM_R2OW SG MWD+IFR1+
18100	90	269.7	9805	79.385	0	71.647	0	79.385	0	0	74.985	43.729	MS XOM_R2OW 68.401 ^{SG}
10100	50	203.1	3003	, , , , , , ,	Ü	, 1.047	Ū	, 5.303	J	J	, 4.303	73.723	MWD+IFR1+ MS XOM_R2OW
18200	90	269.7	9805	80.137	0	72.294	0	80.137	0	0	75.611	43.773	68.646 SG MWD+IFR1+ MS

														XOM_R2OW
183	00 9	90	269.7	9805	80.889	0	72.943	0	80.889	0	0	76.237	43.817	68.885 SG MWD+IFR1+ MS XOM_R2OW
184	00 9	90	269.7	9805	81.646	0	73.599	0	81.646	0	0	76.875	43.854	69.112 SG MWD+IFR1+ MS XOM_R2OW
185	00 9	90	269.7	9805	82.395	0	74.256	0	82.395	0	0	77.511	43.909	69.338 SG MWD+IFR1+ MS
186	00 9	90	269.7	9805	83.156	0	74.915	0	83.156	0	0	78.147	43.955	XOM_R2OW SG MWD+IFR1+ MS
187	00 9	90	269.7	9805	83.911	0	75.581	0	83.911	0	0	78.791	44.011	XOM_R2OW SG 69.784 MWD+IFR1+ MS
188	00 9	90	269.7	9805	84.664	0	76.247	0	84.664	0	0	79.435	44.057	XOM_R2OW XOM_R2OW SG MWD+IFR1+ MS
189	00 9	90	269.7	9805	85.422	0	76.914	0	85.422	0	0	80.085	44.106	XOM_R2OW 70.201 SG MWD+IFR1+ MS
190	00 9	90	269.7	9805	86.18	0	77.589	0	86.18	0	0	80.738	44.164	XOM_R2OW SG 70.41 MWD+IFR1+
191	00 9	90	269.7	9805	86.937	0	78.264	0	86.937	0	0	81.391	44.221	MS XOM_R2OW SG 70.613 MWD+IFR1+
192	00 9	90	269.7	9805	87.698	0	78.939	0	87.698	0	0	82.045	44.278	MS XOM_R2OW 70.811 SG MWD+IFR1+
193	00 9	90	269.7	9805	88.453	0	79.622	0	88.453	0	0	82.71	44.33	MS XOM_R2OW 70.999 MWD+IFR1+
194	00 9	90	269.7	9805	89.213	0	80.304	0	89.213	0	0	83.371	44.388	MS XOM_R2OW SG 71.191 MWD+IFR1+ MS

19500	90	269.7	9805	89.972	0	80.988	0	89.972	0	0	84.033	44.446	XOM_R2OW 71.379 SG MWD+IFR1+ MS
19600	90	269.7	9805	90.73	0	81.677	0	90.73	0	0	84.701	44.505	XOM_R2OW 71.566 SG MWD+IFR1+ MS
19700	90	269.7	9805	91.493	0	82.368	0	91.493	0	0	85.374	44.557	XOM_R2OW SG 71.74 MWD+IFR1+ MS
19800	90	269.7	9805	92.255	0	83.058	0	92.255	0	0	86.043	44.616	XOM_R2OW SG 71.919 MWD+IFR1+ MS
19900	90	269.7	9805	93.016	0	83.754	0	93.016	0	0	86.719	44.686	XOM_R2OW 72.093 SG MWD+IFR1+ MS
20000	90	269.7	9805	93.776	0	84.451	0	93.776	0	0	87.398	44.739	XOM_R2OW SG 72.258 MWD+IFR1+ MS
20100	90	269.7	9805	94.541	0	85.148	0	94.541	0	0	88.075	44.809	XOM_R2OW 72.425 SG MWD+IFR1+ MS
20200	90	269.7	9805	95.3	0	85.851	0	95.3	0	0	88.757	44.869	XOM_R2OW SG 72.594 MWD+IFR1+ MS
20300	90	269.7	9805	96.062	0	86.554	0	96.062	0	0	89.44	44.939	XOM_R2OW 72.756 SG MWD+IFR1+ MS
20400	90	269.7	9805	96.83	0	87.257	0	96.83	0	0	90.126	45.003	XOM_R2OW SG MWD+IFR1+ MS
20500	90	269.7	9805	97.591	0	87.966	0	97.591	0	0	90.815	45.064	XOM_R2OW SG MWD+IFR1+ MS
20600	90	269.7	9805	98.356	0	88.675	0	98.356	0	0	91.504	45.134	XOM_R2OW SG 73.223 MWD+IFR1+ MS

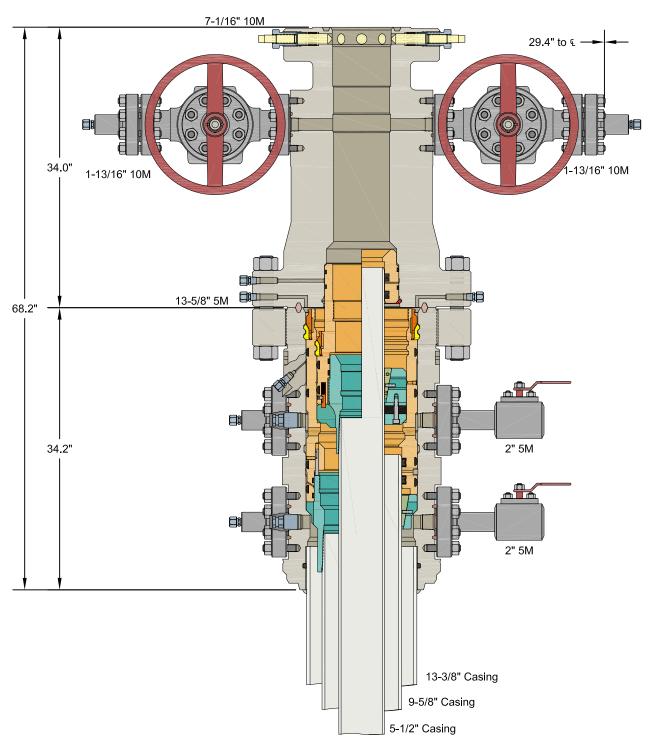
XOM_R2OW

													XOM_R2OW
20700	90	269.7	9805	99.116	0	89.383	0	99.116	0	0	92.196	45.199	73.367 SG MWD+IFR1+ MS
20800	90	269.7	9805	99.885	0	90.098	0	99.885	0	0	92.89	45.27	XOM_R2OW SG MWD+IFR1+ MS
20900	90	269.7	9805	100.648	0	90.812	0	100.648	0	0	93.585	45.341	XOM_R2OW 73.665 SG MWD+IFR1+
21000	90	269.7	9805	101.39	0	91.526	0	101.39	0	0	94.283	45.406	MS XOM_R2OW SG 73.802 MWD+IFR1+
21100	90	269.7	9805	102.176	0	92.245	0	102.176	0	0	94.984	45.488	MS XOM_R2OW SG 73.944 MWD+IFR1+
21200	00	260.7	0005	103.000	0	02.064	0	102.000	0	0	05 604	45 550	MS XOM_R2OW
21200	90	269.7	9805	102.908	0	92.964	0	102.908	0	0	95.684	45.559	74.084 MWD+IFR1+ MS XOM_R2OW
21300	90	269.7	9805	103.682	0	93.683	0	103.682	0	0	96.387	45.624	74.216 SG MWD+IFR1+ MS XOM_R2OW
21400	90	269.7	9805	104.451	0	94.408	0	104.451	0	0	97.092	45.706	74.351 SG MWD+IFR1+ MS
21500	90	269.7	9805	105.214	0	95.131	0	105.214	0	0	97.798	45.778	XOM_R2OW SG MWD+IFR1+ MS
21600	90	269.7	9805	105.972	0	95.855	0	105.972	0	0	98.506	45.854	XOM_R2OW SG 74.609 MWD+IFR1+
21700	90	269.7	9805	106.771	0	96.584	0	106.771	0	0	99.216	45.926	MS XOM_R2OW SG 74.74 MWD+IFR1+
21800	90	269.7	9805	107.517	0	97.312	0	107.517	0	0	99.926	46.008	MS XOM_R2OW 5G 74.867 MWD+IFR1+ MS
													-

21900	90	269.7	9805	108.305	0	98.04	0	108.305	0	0	100.639	46.084	XOM_R2OW 74.985 SG MWD+IFR1+
22000	90	269.7	9805	109.041	0	98.772	0	109.041	0	0	101.354	46.166	MS XOM_R2OW 5G 75.108 MWD+IFR1+ MS
22100	90	269.7	9805	109.818	0	99.505	0	109.818	0	0	102.072	46.243	XOM_R2OW 75.224 MWD+IFR1+ MS
22200	90	269.7	9805	110.589	0	100.207	0	110.589	0	0	102.759	46.31	XOM_R2OW SG 75.334 MWD+IFR1+ MS
22300	90	269.7	9805	111.355	0	100.953	0	111.355	0	0	103.488	46.404	XOM_R2OW SG 75.455 MWD+IFR1+ MS
22400	90	269.7	9805	112.116	0	101.695	0	112.116	0	0	104.214	46.481	XOM_R2OW SG 75.567 MWD+IFR1+ MS
22500	90	269.7	9805	112.916	0	102.43	0	112.916	0	0	104.933	46.563	XOM_R2OW 75.681 SG MWD+IFR1+ MS
22600	90	269.7	9805	113.666	0	103.161	0	113.666	0	0	105.649	46.639	XOM_R2OW SG 75.786 MWD+IFR1+ MS
22700	90	269.7	9805	114.455	0	103.886	0	114.455	0	0	106.359	46.719	XOM_R2OW SG 75.894 MWD+IFR1+ MS
22800	90	269.7	9805	115.195	0	104.655	0	115.195	0	0	107.109	46.815	XOM_R2OW SG 76.011 MWD+IFR1+ MS
22900	90	269.7	9805	115.974	0	105.37	0	115.974	0	0	107.812	46.888	XOM_R2OW SG 76.106 MWD+IFR1+ MS
23000	90	269.7	9805	116.748	0	106.127	0	116.748	0	0	108.553	46.982	XOM_R2OW SG 76.216 MWD+IFR1+ MS

23100	90	269.7	9805	117.516	0	106.879	0	117.516	0	0	109.29	47.06	XOM_R2OW 76.318 SG MWD+IFR1+
													MS XOM_R2OW
23200	90	269.7	9805	118.279	0	107.626	0	118.279	0	0	110.021	47.153	76.422 MWD+IFR1+ MS XOM_R2OW
23300	90	269.7	9805	119.08	0	108.368	0	119.08	0	0	110.75	47.239	76.517 SG MWD+IFR1+ MS
23400	90	269.7	9805	119.833	0	109.104	0	119.833	0	0	111.472	47.33	XOM_R2OW SG 76.614 MWD+IFR1+
													MS XOM_R2OW
23500	90	269.7	9805	120.582	0	109.882	0	120.582	0	0	112.231	47.425	76.721 MWD+IFR1+ MS XOM_R2OW
23600	90	269.7	9805	121.367	0	110.608	0	121.367	0	0	112.946	47.499	76.809 SG MWD+IFR1+ MS
23700	90	269.7	9805	122.147	0	111.375	0	122.147	0	0	113.697	47.593	XOM_R2OW 76.91 SG MWD+IFR1+
23800	90	269.7	9805	122.923	0	112.092	0	122.923	0	0	114.403	47.686	MS XOM_R2OW SG 76.99
23800	30	203.7	3803	122.923	Ü	112.032	Ü	122.923	Ü	U	114.403	47.080	MS XOM_R2OW
23900	90	269.7	9805	123.693	0	112.848	0	123.693	0	0	115.145	47.778	77.085 SG MWD+IFR1+ MS
24000	90	269.7	9805	124.459	0	113.6	0	124.459	0	0	115.883	47.865	XOM_R2OW 5G 77.173 MWD+IFR1+
24100	90	269.7	9805	125.22	0	114.39	0	125.22	0	0	116.657	47.96	MS XOM_R2OW SG 77.274
													MWD+IFR1+ MS XOM_R2OW
24200	90	269.7	9805	126.016	0	115.132	0	126.016	0	0	117.387	48.056	77.355 SG MWD+IFR1+ MS

l													XOM_R2OW
24300	90	269.7	9805	126.768	0	115.869	0	126.768	0	0	118.11	48.145	77.44 SG MWD+IFR1+ MS
24400	90	269.7	9805	127.554	0	116.644	0	127.554	0	0	118.872	48.244	XOM_R2OW SG 77.527 MWD+IFR1+
24500	90	269.7	9805	128.335	0	117.414	0	128.335	0	0	119.627	48.336	MS XOM_R2OW 77.617 SG MWD+IFR1+
24600	90	269.7	9805	129.112	0	118.136	0	129.112	0	0	120.34	48.429	MS XOM_R2OW SG 77.69
24000	30	203.7	3803	123.112	Ü	110.150	O .	123.112	U	Ü	120.54	40.423	MWD+IFR1+ MS XOM_R2OW
24700	90	269.7	9805	129.885	0	118.896	0	129.885	0	0	121.086	48.53	77.774 SG MWD+IFR1+ MS
24800	90	269.7	9805	130.652	0	119.694	0	130.652	0	0	121.869	48.62	XOM_R2OW 77.863 SG MWD+IFR1+ MS
24900	90	269.7	9805	131.415	0	120.444	0	131.415	0	0	122.607	48.72	XOM_R2OW SG 77.942 MWD+IFR1+
25000	90	269.7	9805	132.174	0	121.19	0	132.174	0	0	123.342	48.814	MS XOM_R2OW SG 78.016
23000	30	203.7	3003	132.174	Ů	121.13	· ·	132.174	Ü	Ü	123.3 12	10.011	MWD+IFR1+ MS XOM_R2OW
25100	90	269.7	9805	132.966	0	121.972	0	132.966	0	0	124.109	48.917	78.101 SG MWD+IFR1+ MS XOM_R2OW
25200	90	269.7	9805	133.716	0	122.708	0	133.716	0	0	124.836	49.01	78.17 MWD+IFR1+
25300	90	269.7	9805	134.499	0	123.481	0	134.499	0	0	125.595	49.111	XOM_R2OW SG 78.25 MWD+IFR1+
25400	90	269.7	9805	135.277	0	124.249	0	135.277	0	0	126.351	49.217	MS XOM_R2OW SG 78.324
25400	30	203.7	5005	155.277	v	12 1.273	J	133.277	J	Ü	120.331	13.217	MWD+IFR1+ MS


25500	90	269.7	9805	136.051	0	125.012	0	136.051	0	0	127.103	49.313	XOM_R2OW 78.396 SG MWD+IFR1+ MS
25600	90	269.7	9805	136.821	0	125.77	0	136.821	0	0	127.849	49.412	XOM_R2OW SG 78.47 MWD+IFR1+ MS
25700	90	269.7	9805	137.586	0	126.524	0	137.586	0	0	128.593	49.516	XOM_R2OW 78.538 SG MWD+IFR1+ MS
25800	90	269.7	9805	138.384	0	127.313	0	138.384	0	0	129.368	49.618	XOM_R2OW 78.616
25900	90	269.7	9805	139.14	0	128.058	0	139.14	0	0	130.103	49.72	78.68 MWD+IFR1+ MS XOM_R2OW
26000	90	269.7	9805	139.929	0	128.837	0	139.929	0	0	130.87	49.821	78.755 SG MWD+IFR1+ MS XOM_R2OW
26100	90	269.7	9805	140.712	0	129.612	0	140.712	0	0	131.634	49.926	78.823 SG MWD+IFR1+ MS XOM_R2OW
26200	90	269.7	9805	141.492	0	130.382	0	141.492	0	0	132.392	50.035	78.893 SG MWD+IFR1+ MS XOM_R2OW
26300	90	269.7	9805	142.267	0	131.147	0	142.267	0	0	133.147	50.139	78.958 SG MWD+IFR1+ MS XOM R2OW
26400	90	269.7	9805	143.038	0	131.908	0	143.038	0	0	133.898	50.233	79.022 SG MWD+IFR1+ MS XOM_R2OW
26500	90	269.7	9805	143.805	0	132.703	0	143.805	0	0	134.68	50.343	79.094 SG MWD+IFR1+ MS XOM_R2OW
26600	90	269.7	9805	144.568	0	133.455	0	144.568	0	0	135.423	50.445	79.154 SG MWD+IFR1+ MS

26700	90	269.7	9805	145.362	0	134.24	0	145.362	0	0	136.196	50.564	XOM_R2OW SG 79.222 MWD+IFR1+ MS
26800	90	269.7	9805	146.116	0	135.021	0	146.116	0	0	136.966	50.668	XOM_R2OW 79.285
26900	90	269.7	9805	146.901	0	135.76	0	146.901	0	0	137.697	50.769	79.341 SG MWD+IFR1+ MS XOM_R2OW
27000	90	269.7	9805	147.682	0	136.569	0	147.682	0	0	138.493	50.879	79.411 MS XOM_R2OW
27100	90	269.7	9805	148.459	0	137.336	0	148.459	0	0	139.251	50.992	79.469 SG MWD+IFR1+ MS
27200	90	269.7	9805	149.231	0	138.099	0	149.231	0	0	140.005	51.094	XOM_R2OW SG 79.527 MWD+IFR1+ MS
27300	90	269.7	9805	150	0	138.858	0	150	0	0	140.754	51.209	XOM_R2OW 79.586 SG MWD+IFR1+ MS
27400	90	269.7	9805	150.798	0	139.649	0	150.798	0	0	141.534	51.313	XOM_R2OW SG 79.647 MWD+IFR1+ MS
27500	90	269.7	9805	151.559	0	140.435	0	151.559	0	0	142.309	51.43	XOM_R2OW SG MWD+IFR1+ MS
27609	90	269.7	9805	152.414	0	141.288	0	152.414	0	0	143.152	51.551	XOM_R2OW SG 79.77 MWD+IFR1+ MS

BEU BB Plan Targets Jabba 105/HUX 200H

I				
	Measured Depth	Grid Northing	Grid Easting	TVD MSL Target Shape
Target Name	(ft)	(ft)	(ft)	(ft)
FTP 1	11890.97	560123.27	675900.81	6262 CIRCLE
LTP 1	27559.17	560064.03	660232.78	6262 CIRCLE
BHL 1	27609.12	560063.96	660182.83	6262 CIRCLE

ALL DIMENSIONS ARE APPROXIMATE

This drawing is the property of GE Oil & Gas Pressure Control LP and is considered confidential. Unless otherwise approved in writing, neither it nor its contents may be used, copied, transmitted or reproduced except for the sole purpose of GE Oil & Gas Pressure Control LP.

XTO ENERGY, INC.

13-3/8" x 9-5/8" x 5-1/2" 10M RSH-2 Wellhead Assembly, With T-EBS-F Tubing Head

16FEB17 **VJK** DRAWN **APPRV** 16FEB17 ΚN

FOR REFERENCE ONLY DRAWING NO.

10012842

Subject: Request for a Variance Allowing break Testing of the Blowout Preventer Equipment (BOPE)

XTO Energy requests a variance to ONLY test broken pressure seals on the BOPE and function test BOP when skidding a drilling rig between multiple wells on a pad.

Background

Onshore Oil and Gas Order (OOGO) No. 2, Drilling Operations, Sections III.A.2.i.iv.B states that the BOP test must be performed whenever any seal subject to test pressure is broken. The current interpretation of the Bureau of Land Management (BLM) requires a complete BOP test and not just a test of the affected component. OOGO No. 2, Section I.D.2 states, "Some situation may exist either on a well-by-well basis or field-wide basis whereby it is commonly accepted practice to vary a particular minimum standard(s) established in this order. This situation can be resolved by requesting a variance...". XTO Energy feels the break testing the BOPE is such a situation. Therefore, as per OOGO No. 2, Section IV., XTO Energy submits this request for the variance.

Supporting Documentation

OOGO No. 2 became effective on December 19, 1988 and has remained the standard for regulating BLM onshore drilling operations for over 30 years. During this time there have been significant changes in drilling technology. BLM continues to use the variance request process to allow for the use of modern technology and acceptable engineering practices that have arisen since OOGO No. 2 was originally released. The XTO Energy drilling rig fleet has many modern upgrades that allow the intact BOP stack to be moved between well slots on a multi-well pad, as well as, wellhead designs that incorporate quick connects facilitating release of the BOP from the wellhead without breaking any BOP stack components apart. These technologies have been used extensively offshore, and other regulators, API, and many operators around the world have endorsed break testing as safe and reliable.

Figure 1: Winch System attached to BOP Stack

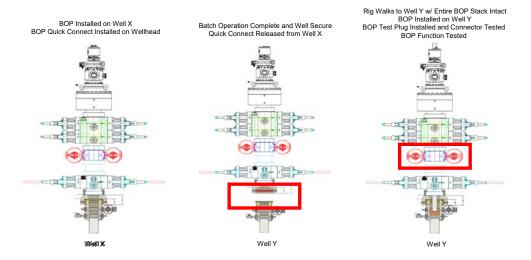
Figure 2: BOP Winch System

American Petroleum Institute (API) standards, specification and recommended practices are considered the industry standard and are consistently utilized and referenced by the industry. OOGO No. 2 recognizes API recommended Practices (RP) 53 in its original development. API Standard 53, *Well Control Equipment Systems for Drilling Wells* (Fifth Edition, December 2018, Annex C, Table C.4) recognizes break testing as an acceptable practice. Specifically, API Standard 53, Section 5.3.7.1 states "A pressure test of the pressure containing component shall be performed following the disconnection or repair, limited to the affected component." See Table C.4 below for reference.

Pressure Test—High Pressure							
Component to be Pressure Tested	Pressure Test—Low Pressure ^{ac} psig (MPa)	Change Out of Component, Elastomer, or Ring Gasket	No Change Out of Component, Elastomer, or Ring Gasket				
Annular preventer ^b	250 to 350 (1.72 to 2.41)	RWP of annular preventer	MASP or 70% annular RWP, whichever is lower.				
ixed pipe, variable bore, lind, and BSR preventers ^{bd}	250 to 350 (1.72 to 2.41)	RWP of ram preventer or wellhead system, whichever is lower	ITP				
Choke and kill line and BOP ide outlet valves below ram reventers (both sides)	250 to 350 (1.72 to 2.41)	RWP of side outlet valve or wellhead system, whichever is lower	ITP				
Choke manifold—upstream of hokes ^e	250 to 350 (1.72 to 2.41)	RWP of ram preventers or wellhead system, whichever is lower	ITP				
Choke manifold—downstream of chokese	250 to 350 (1.72 to 2.41)	RWP of valve(s), line(s), or M whichever is lower	MASP for the well program,				
Kelly, kelly valves, drill pipe afety valves, IBOPs	250 to 350 (1.72 to 2.41)	MASP for the well program					
No visible leaks. The pressure shall remain stabl	75 No. 10	pressure shall not decrease below the	•				

The Bureau of Safety and Environmental Enforcement (BSEE), Department of Interior, has also utilized the API standards, specification and best practices in the development of its offshore oil and gas regulations and incorporates them by reference within its regulations.

Break testing has been approved by the BLM in the past with other operators based on the detailed information provided in this document.

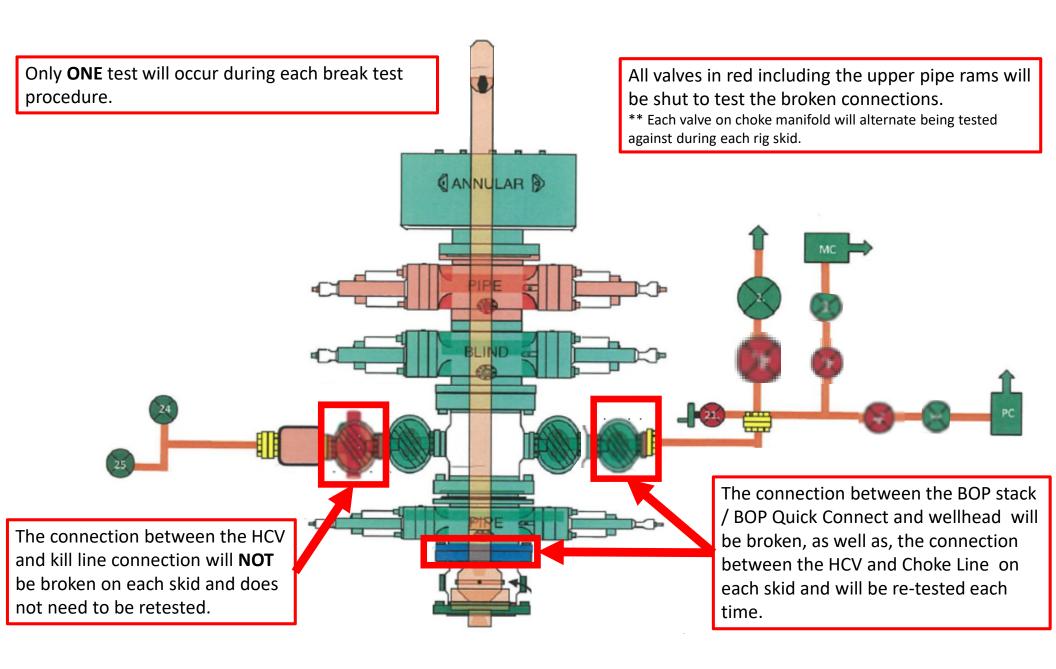

XTO Energy feels break testing and our current procedures meet the intent of OOGO No. 2 and often exceed it. There has been no evidence that break testing results in more components failing than seen on full BOP tests. XTO Energy's internal standards requires complete BOPE tests more often than that of OOGO No. 2 (Every 21 days). In addition to function testing the annular, pipe rams and blind rams after each BOP nipple up, XTO Energy performs a choke drill with the rig crew prior to drilling out every casing shoe. This is additional training for the rig crew that exceeds the requirements of the OOGO No. 2.

Procedures

- XTO Energy will use this document for our break testing plan for New Mexico Delaware basin.
 The summary below will be referenced in the APD or Sundry Notice and receive approval prior to implementing this variance.
- 2. XTO Energy will perform BOP break testing on multi-wells pads where multiple intermediate sections can be drilled and cased within the 21-day BOP test window.
 - a. A full BOP test will be conducted on the first well on the pad.
 - b. The first intermediate hole section drilled on the pad will be the deepest. All of the remaining hole sections will be the same depth or shallower.
 - i. Our Lower WC targets set the intermediate casing shoe no deeper than the Wolfcamp B.
 - ii. Our Upper WC targets set the intermediate casing shoe shallower than the Wolfcamp B.
 - c. A Full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.
 - d. A full BOP test will be required prior to drilling any production hole.
- 3. After performing a complete BOP test on the first well, the intermediate hole section will be drilled and cased, two breaks would be made on the BOP equipment.
 - a. Between the HCV valve and choke line connection
 - b. Between the BOP quick connect and the wellhead
- 4. The BOP is then lifted and removed from the wellhead by a hydraulic system.
- 5. After skidding to the next well, the BOP is moved to the wellhead by the same hydraulic system and installed.
- 6. The connections mentioned in 3a and 3b will then be reconnected.
- 7. Install test plug into the wellhead using test joint or drill pipe.
- 8. A shell test is performed against the upper pipe rams testing the two breaks.
- 9. The shell test will consist of a 250 psi low test and a high test to the value submitted in the APD or Sundry (e.g. 5,000 psi or 10,000psi).
- 10. Function test will be performed on the following components: lower pipe rams, blind rams, and annular.

- 11. For a multi-well pad the same two breaks on the BOP would be made and on the next wells and steps 4 through 10 would be repeated.
- 12. A second break test would only be done if the intermediate hole section being drilled could not be completed within the 21 day BOP test window.

Note: Picture below highlights BOP components that will be tested during batch operations


Summary

A variance is requested to **ONLY** test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API Standard 53 states, that for pad drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken.

The BOP will be secured by a hydraulic carrier or cradle. The BLM will be contacted if a Well Control event occurs prior to the commencement of a BOPE Break Testing operation.

Based on discussions with the BLM on February 27th 2020 and the supporting documentation submitted to the BLM, we will request permission to ONLY retest broken pressure seals if the following conditions are met:

- 1. After a full BOP test is conducted on the first well on the pad.
- 2. The first intermediate hole section drilled on the pad will be the deepest. All of the remaining hole sections will be the same depth or shallower.
- 3. Full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.
- 4. Full BOP test will be required prior to drilling the production hole.

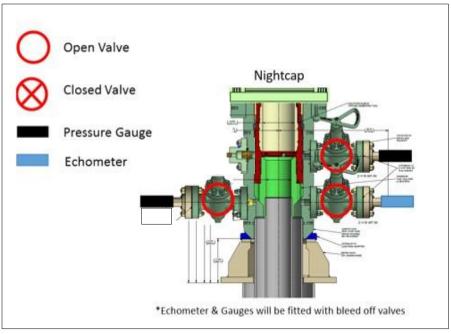
XTO Permian Operating, LLC Offline Cementing Variance Request

XTO requests the option to cement the surface and intermediate casing strings offline as a prudent batch drilling efficiency of acreage development.

1. Cement Program

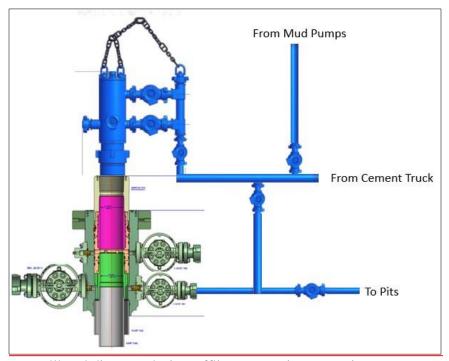
No changes to the cement program will take place for offline cementing.

2. Offline Cementing Procedure


The operational sequence will be as follows. If a well control event occurs, the BLM will be contacted for approval prior to conducting offline cementing operations.

- 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment (float collar and shoe)
- 2. Land casing with mandrel
- 3. Fill pipe with kill weight fluid, do not circulate through floats and confirm well is static
- 4. Set annular packoff shown below and pressure test to confirm integrity of the seal. Pressure ratings of wellhead components and valves is 5,000 psi.
- 5. After confirmation of both annular barriers and internal barriers, nipple down BOP and install cap flange.
 - a. If any barrier fails to test, the BOP stack will not be nippled down until after the cement job is completed with cement 500ft above the highest formation capable of flow with kill weight mud above or after it has achieved 50-psi compressive strength if kill weight fluid cannot be verified.

Annular packoff with both external and internal seals


XTO Permian Operating, LLC Offline Cementing Variance Request

Wellhead diagram during skidding operations

- 6. Skid rig to next well on pad.
- 7. Confirm well is static before removing cap flange, flange will not be removed and offline cementing operations will not commence until well is under control. If well is not static, casing outlet valves will provide access to both the casing ID and annulus. Rig or third party pump truck will kill well prior to cementing or nippling up for further remediation.
 - a. Well Control Plan
 - i. The Drillers Method will be the primary well control method to regain control of the wellbore prior to cementing, if wellbore conditions do not permit the drillers method other methods of well control may be used
 - ii. Rig pumps or a 3rd party pump will be tied into the upper casing valve to pump down the casing ID
 - iii. A high pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - iv. Once influx is circulated out of the hole, kill weight mud will be circulated
 - v. Well will be confirmed static
 - vi. Once confirmed static, cap flange will be removed to allow for offline cementing operations to commence
- 8. Install offline cement tool
- 9. Rig up cement equipment

XTO Permian Operating, LLC Offline Cementing Variance Request

Wellhead diagram during offline cementing operations

- 10. Circulate bottoms up with cement truck
 - a. If gas is present on bottoms up, well will be shut in and returns rerouted through gas buster to handle entrained gas
 - b. Max anticipated time before circulating with cement truck is 6 hrs
- 11. Perform cement job taking returns from the annulus wellhead valve
- 12. Confirm well is static and floats are holding after cement job
- 13. Remove cement equipment, offline cement tools and install night cap with pressure gauge for monitoring.

XTO respectfully requests approval to utilize a spudder rig to pre-set surface casing.

Description of Operations:

- 1. Spudder rig will move in to drill the surface hole and pre-set surface casing on the well.
 - a. After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
 - b. The spudder rig will utilize fresh water-based mud to drill the surface hole to TD. Solids control will be handled entirely on a closed loop basis. No earth pits will be used.
- 2. The wellhead will be installed and tested as soon as the surface casing is cut off and WOC time has been reached.
- 3. A blind flange at the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wing valves.
 - a. A means for intervention will be maintained while the drilling rig is not over the well.
- 4. Spudder rig operations are expected to take 2-3 days per well on the pad.
- 5. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 6. Drilling Operations will begin with a larger rig and a BOP stack equal to or greater than the pressure rating that was permitted will be nippled up and tested on the wellhead before drilling operations resume on each well.
 - a. The larger rig will move back onto the location within 180 days from the point at which the wells are secured and the spudder rig is moved off location.
 - b. The BLM will be notified 24 hours before the larger rig moves back on the pre-set locations
- 7. XTO will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations.
- 8. Once the rig is removed, XTO will secure the wellhead area by placing a guard rail around the cellar area.

Big Eddy Unit BB Hux 200H

18 5/8	surface (csg in a	24	inch hole.		<u>Design</u> l	Factors -			Surfa	ice	
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	87.50	J	55	BTC	14.25	1.24	1.49	1,066	5	2.50	2.29	93,275
"B"				BTC				0				0
w/8.4	#/g mud, 30min Sf	c Csg Test psig:	1,110	Tail Cmt	does not	circ to sfc.	Totals:	1,066				93,275
Comparison	of Proposed to	Minimum R	equired Ceme	nt Volumes								
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
24	1.2496	1890	3356	1332	152	9.20	901	2M				12.00
1												

13 3/8	casing in	side the	18 5/8			<u>Design</u>	Factors -		4	Int 1		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	54.50	J	55	BTC	5.65	0.75	1.93	2,769	2	3.48	1.25	150,911
"B"								0				0
w/8.4#	‡/g mud, 30min Sf	c Csg Test psig:					Totals:	2,769	_			150,911
The cement volume(s) are intended to achieve a top of					0	ft from su	ırface or a	1066				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
17 1/2	0.6946	2060	3825	1976	94	10.50	785	2M				1.56
Class 'H' tail c	Class 'H' tail cmt yld > 1.20											
1												

9 5/8	casing ins	ide the	13 3/8			Design Fa	<u>ctors</u>		4	Int 2	4	
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	40.00	HCP	110	BTC	10.98	2.99	3.08	2,869	6	5.35	5.39	114,760
"B"	40.00	HCL	80	BTC	∞	2.99	2.24	2,166	4	3.89	5.39	86,640
w/8.4#	t/g mud, 30min Sf	Csg Test psig:	1,500				Totals:	5,035				201,400
ĺ	The cement vo	olume(s) are	intended to a	chieve a top of	2200	ft from su	ırface or a	569				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
12 1/4	0.3132	1390	3149	916	244	9.50	1478	2M				0.81
Class 'C' tail cr	Class 'C' tail cmt yld > 1.35											

5 1/2	casing ins	side the	9 5/8			Design	Factors -		4	Prod 1		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	20.00	RY P	110	3emi-Premiur	6.49	4.33	4.93	4,935	5	8.55	7.51	98,700
"B"	20.00	RY P	110	Semi-Flush	∞	4.33	4.93	22,674	5	8.55	7.51	453,480
w/8.4#	/g mud, 30min Sf	c Csg Test psig:	1,500				Totals:	27,609				552,180
1	The cement vo	olume(s) are	intended to a	chieve a top of	4700	ft from su	ırface or a	335				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
8 1/2	0.2291	3400	5646	5258	7	10.00						1.30
Class 'C' tail cr	Class 'C' tail cmt yld > 1.35 Capitan Reef est top XXXX.											
ļ !												

Carlsbad Field Office 8/31/2022

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: XTO Permian Operating
WELL NAME & NO.: Big Eddy Unit BB Hux 200H
LOCATION: Sec 22-20S-32E-NMP
COUNTY: Eddy County, New Mexico

Updated COAs per Sundry 2686813 approved through engineering on 08/31/2022.

COA

H2S	O Yes	• No	
Potash	O None	C Secretary	⊙ R-111-P
Cave/Karst Potential	• Low	C Medium	C High
Cave/Karst Potential	Critical		
Variance	O None	• Flex Hose	Other Other
Wellhead	Conventional	Multibowl	C Both
Other	✓ 4 String Area		□WIPP
Other	Fluid Filled	☐ Cement Squeeze	☐ Pilot Hole
Special Requirements	☐ Water Disposal	□ СОМ	✓ Unit

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The **18 5/8** inch surface casing shall be set at approximately 1200 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run

- to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of **24 hours in the Potash Area** or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 2. The minimum required fill of cement behind the 13-3/8 inch intermediate casing (set at 2800 ft) is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
 - ❖ In <u>R111 Potash Areas</u> if cement does not circulate to surface on the first two salt protection casing strings, the cement on the 3rd casing string must come to surface.
 - ❖ In <u>Capitan Reef Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
 - Special Capitan Reef requirements. If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following:
 (Use this for 3 string wells in the Capitan Reef, if 4 string well ensure FW based mud used across the capitan interval)
 - Switch to fresh water mud to protect the Capitan Reef and use fresh water mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
 - Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by

0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.

3. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, potash or capitan reef.
- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- c. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- d. Second stage above DV tool:
 - Cement to should tie-back at least 50 feet on top of Capitan Reef top or 200 feet into the previous casing, whichever is greater. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, potash or capitan reef.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **3000** (**3M**) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Unit Wells

The well sign for a unit well shall include the unit number in addition to the surface and bottom hole lease numbers. This also applies to participating area numbers. If a participating area has not been established, the operator can use the general unit designation, but will replace the unit number with the participating area number when the sign is replaced.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

- Eddy County
 Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.
- A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
 - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
 - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - e. The results of the test shall be reported to the appropriate BLM office.
 - f. All tests are required to be recorded on a calibrated test chart. A copy of the

BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.

- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 140775

CONDITIONS

Operator:	OGRID:		
XTO PERMIAN OPERATING LLC.	373075		
6401 HOLIDAY HILL ROAD	Action Number:		
MIDLAND, TX 79707	140775		
	Action Type:		
	[C-103] NOI Change of Plans (C-103A)		

CONDITIONS

Created By	Condition	Condition Date
pkautz	None	9/7/2022