Form 3160-3 (June 2015)		FORM APPRO OMB No. 1004	-0137
UNITED STATES		Expires: January 2	31, 2018
DEPARTMENT OF THE INTE BUREAU OF LAND MANAGE	5. Lease Serial No.		
APPLICATION FOR PERMIT TO DRILL		6. If Indian, Allotee or Trib	e Name
		,	
		7. If Unit or CA Agreemen	t Name and No
1a. Type of work: DRILL REENT	ER		.,
1b. Type of Well: Oil Well Gas Well Other		8. Lease Name and Well N	0.
1c. Type of Completion: Hydraulic Fracturing Single 2	Zone Multiple Zone	0	
2. Name of Operator		9.7.PT Vell No. 30-043-23148	
3a. Address 3b. 1	Phone No. (include area code)	10. Field and Pool, or Expl	oratory
4. Location of Well (Report location clearly and in accordance with a	ny State requirements.*)	11. Sec., T. R. M. or Blk. a	nd Survey or Area
At surface			
At proposed prod. zone			
14. Distance in miles and direction from nearest town or post office*		12. County or Parish	13. State
15. Distance from proposed* 16. To be a construction to nearest property or lease line, ft. (Also to nearest drig, unit line, if any)	No of acres in lease 17. Spacin	ng Unit dedicated to this wel	1
18. Distance from proposed location* 19. 1 to nearest well, drilling, completed, applied for, on this lease, ft. 19. 1	Proposed Depth 20, BLM/	BIA Bond No. in file	
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22.	Approximate date work will start*	23. Estimated duration	
24	. Attachments		
The following, completed in accordance with the requirements of Onst (as applicable)	nore Oil and Gas Order No. 1, and the F	lydraulic Fracturing rule per	43 CFR 3162.3-3
 Well plat certified by a registered surveyor. A Drilling Plan. 	4. Bond to cover the operation Item 20 above).	s unless covered by an existing	ng bond on file (see
3. A Surface Use Plan (if the location is on National Forest System Lar SUPO must be filed with the appropriate Forest Service Office).	hds, the 5. Operator certification. 6. Such other site specific infor BLM.	mation and/or plans as may be	e requested by the
25. Signature	Name (Printed/Typed)	Date	
Title			
Approved by (Signature)	Name (Printed/Typed)	Date	
Title	Office		
Application approval does not warrant or certify that the applicant hold applicant to conduct operations thereon. Conditions of approval, if any, are attached.	Is legal or equitable title to those rights	in the subject lease which we	ould entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make is of the United States any false, fictitious or fraudulent statements or rep			artment or agency

(Continued on page 2)

.

Received by OCD: 12/20/2022 11:02:40 AM

District I .625 N. French Drive. Hobbs. NM 88240 Phone: (575) 393-6120 District II 811 S. First Street. Artesia. NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

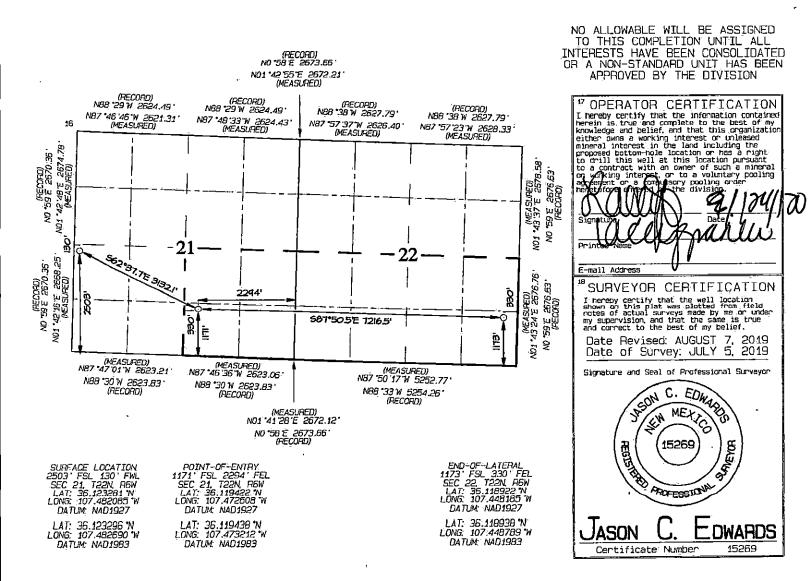
District IV 1220 S. St. Francis Drive, Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department

Submit one copy to Appropriate District Office

Revised August 1, 2011

Form C-102


AMENDED REPORT

OIL CONSERVATION DIVISION 1220 South St. Francis Drive Santa Fe, NM 87505

APT Number Pool Name Pool Code WC 22N6W22; GALLUP (O) 97 981 52860 RUSTY GALLUP OIL 30-045-23148 Well Number Property Code ⁵Property Name 333630 TERRA WASH COM 382H 'OGRID No. Elevation [°]Operator Name 372286 ENDURING RESOURCES, LLC 7126 ¹⁰ Surface Location North/South Line County UL or lot no. Section Townshin Lot Ida Feet from the Feet from the Fast/West line 21 WEST SANDOVAL 25N 6₩ 2503 SOUTH 130 Ŀ

WELL LOCATION AND ACREAGE DEDICATION PLAT

	¹¹ Bottom Hole Location If Different From Surface									
	UL an lat no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
	Р	22	22N	6W		1173	SOUTH	- 330	EAST	SANDOVAL
12	Dedicated Acres	SE S/		ection ction 2		¹⁹ Joint an Infill	³⁴ Consolidation Code	¹⁶ Orden No.		

Submit Electronically

Via E-permitting

Date: <u>12/20/2022</u>

State of New Mexico Energy, Minerals and Natural Resources Department

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

<u>Section 1 – Plan Description</u> <u>Effective May 25, 2021</u>

OGRID: <u>372286</u>

I. Operator: Enduring Resources IV, LLC

II. Type: \square Original \square Amendment due to \square 19.15.27.9.D(6)(a) NMAC \square 19.15.27.9.D(6)(b) NMAC \square Other.

If Other, please describe:

III. Well(s): Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	ULSTR	Footages	Anticipated	Anticipated	Anticipated
				Oil BBL/D	Gas MCF/D	Produced
						Water
Terra Wash Com 380H	pending	Sec. 21, T22N, R6W	UL:L SHL:2543' FSL & 175' FWL	650	1,700	1,200
Terra Wash Com 382H	pending	Sec. 21, T22N, R6W	UL:L SHL:2503' FSL & 130' FWL	650	1,700	1,200
S Escavada Unit 366H	pending	Sec. 21, T22N, R6W	UL:L SHL:2556' FSL & 190' FWL	650	1,700	1,200
S Escavada Unit 365H	30-043-21316	Sec. 21, T22N, R6W	UL:L SHL:2529' FSL & 160' FWL	650	1,700	1,200
S Escavada Unit 364H	30-043-21315	Sec. 21, T22N, R6W	UL:L SHL:2516' FSL & 145' FWL	650	1,700	1,200

IV. Central Delivery Point Name: <u>2-9 Gas Receipt & Trunk 1 Transfer Gas Receipt</u> [See 19.15.27.9(D)(1) NMAC]

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	Spud Date	TD Reached Date	Completion Commencement Date	Initial Flow Back Date	First Production Date
Terra Wash Com 380H	pending	6/1/2023	6/25/2023	7/20/2023	8/21/2023	8/24/2023
Terra Wash Com 382H	pending	6/3/2023	6/30/2023	7/20/2023	8/21/2023	8/24/2023
S Escavada Unit 366H	pending	6/5/2023	7/6/2023	7/20/2023	8/21/2023	8/24/2023
S Escavada Unit 365H	pending	6/7/2023	7/13/2023	7/20/2023	8/21/2023	8/24/2023
S Escavada Unit 364H	pending	6/9/2023	7/18/2023	7/20/2023	8/21/2023	8/24/2023

VI. Separation Equipment: 🛛 Attach a complete description of how Operator will size separation equipment to optimize gas capture.

VII. Operational Practices: \boxtimes Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

VIII. Best Management Practices: 🛛 Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Page 1 of 6

<u>Section 2 – Enhanced Plan</u> <u>EFFECTIVE APRIL 1, 2022</u>

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

 \boxtimes Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \Box Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \boxtimes will \square will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \boxtimes does \square does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

□ Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \Box Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \boxtimes Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \Box Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. \Box Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Khem Suthiwan
Printed Name: Khem Suthiwan
Title: Regulatory Manager
E-mail Address: ksuthiwan@enduringresources.com
Date: 12/20/2022
Phone: (303) 350-5721
OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

Attachments:

Separation Equipment: Below is a complete description of how Operator will size separation equipment to optimize gas capture.

Description of how separation equipment will be sized to optimize gas capture:

Well separation equipment is sized to have appropriate residence time and vapor space to remove gas particles on the micron scale per typical engineering calculations and/or operational experience. Furthermore, a sales scrubber downstream of the well separators is planned in order to capture any additional liquids if present. All gas is routed to end users or the sales pipeline under normal operating conditions.

Operational & Best Management Practices: Below is a complete description of the actions the Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC. Additionally, below is a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Drilling Operations:

Enduring Resources will minimize venting by:

- Gas will only be vented to the atmosphere to avoid risk of immediate or substantial adverse impact to employee safety, public health, and the environment.
- If utilized, flare stacks shall be located at a minimum of 100 feet from the nearest surface hole location

Completion Operations:

Enduring Resources will minimize venting by:

- Separator operation will commence as soon as technically feasible.
- Gas will route immediately to a collection system or applied to other beneficial use, such as a fuel source for onsite equipment.
- During initial flowback and if technically feasible, flaring shall occur rather than venting.
- If natural gas does not meet pipeline standards, gas will be vented or flared. A gas analysis will be performed twice weekly until standards are met (for up to 60 days). This is not anticipated to occur.
- If required, all venting and flaring of natural gas during flowback operations shall be performed in compliance with Subsections B, C and D of <u>19.15.27.8</u> NMAC.

Production Operations:

Enduring Resources will minimize venting by:

- Shutting in the wells if the pipeline is not available. No flaring of high pressure gas will occur.
- Utilizing gas for equipment fuel, heater fuel, and artificial lift when allowable.
- Capturing low pressure gas via a gas capture system when allowable.

In General:

- All venting and flaring from drilling, flowback and operation phases shall be reported in compliance with Subsection G of <u>19.15.27.8</u> NMAC.
- If utilized, flare stacks shall be located at a minimum of 100 feet from the nearest surface hole location and 100 ft from the permanent facility storage tanks.

Flowback Strategy

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on <u>Gas Transporter</u> system at that time. Based on current information, it is <u>Operator's</u> belief the system can take this gas upon completion of the well(s).

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and nonpipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

.

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - \circ Only a portion of gas is consumed operating the generator, remainder of gas will be flared
 - Compressed Natural Gas On lease
 - Gas flared would be minimal, but might be uneconomical to operate when gas volume declines
- NGL Removal On lease
 - o Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines
- Power generation for grid;
- Liquids removal on lease;
- Reinjection for underground storage;
- Reinjection for temporary storage;
- Reinjection for enhanced oil recovery;
- Fuel cell production; and
- Other alternative beneficial uses approved by the division.

DRILLING PLAN: Drill, complete, and equip single lateral in the Mancos-H formation

WELL INFORMATION:

Name:	TERRA WASH CA 382H			
API Number:	not yet assigned			
AFE Number:	not yet assigned			
ER Well Number:	not yet assigned			
State:	New Mexico			
County:	Sandoval			
Surface Elevation:	7,126 ft ASL (GL)	7,154 ft ASL (KB)		
Surface Location:	21-22N-06W Sec-Twn-Rng	2,503 ft FSL	130 ft FWL	
	36.123296 $^\circ$ N latitude	107.48269 $^\circ$ W longitude	(NAD 83)	
BH Location:	22-22N-06W Sec-Twn-Rng	1,173 ft FSL	330 ft FEL	
	36.118938 $^\circ$ N latitude	107.448789 $^\circ$ W longitude	(NAD 83)	
Driving Directions:	FROM THE INTERSECTION OF	US HWY 550 & US HWY 64 IN BL	OOMFIELD, NM: South on US Hwy 550	for 54.4 miles
	to MM 97.5; Right (South) on	Indian Service Route #46 for 3.5	miles to fork; Right (South) on ISR #36	for 1.1 miles to
	fork; Left (South) on ISR #46 f	or 0.2 miles to fork; Right (South) on ISR #46 for 2.6 miles; Right on acce	ss road into S

Escavada Unit 364H Pad (Wells: SEU 364H, SEU 365H, SEU 366H, TWCA 380H, TWCA 382H).

GEOLOGIC AND RESERVOIR INFORMATION:

Prognosis:	Formation Tops	TVD (ft ASL)	TVD (ft KB)	MD (ft KB)	O/G/W	Pressure
	Ojo Alamo	6,124	1,030	1,030	W	normal
	Kirtland	5,989	1,165	1,165	W	normal
	Fruitland	5,826	1,328	1,328	G <i>,</i> W	sub
	Pictured Cliffs	5,537	1,617	1,618	G <i>,</i> W	sub
	Lewis	5,399	1,755	1,757	G, W	normal
	Chacra	5,146	2,008	2,019	G, W	normal
	Cliff House	4,069	3,085	3,192	G, W	sub
	Menefee	4,020	3,134	3,246	G, W	normal
	Point Lookout	3,140	4,014	4,208	G, W	normal
	Mancos	3,018	4,136	4,341	0,G	sub (~0.38)
	Gallup (MNCS_A)	2,735	4,419	4,650	0,G	sub (~0.38)
	MNCS_B	2,625	4,529	4,770	0,G	sub (~0.38)
	MNCS_C	2,540	4,614	4,862	0,G	sub (~0.38)
	MNCS_Cms	2,503	4,651	4,902	0,G	sub (~0.38)
	MNCS_D	2,370	4,784	5,050	0,G	sub (~0.38)
	MNCS_E	2,225	4,929	5,230	0,G	sub (~0.38)
	MNCS_F	2,170	4,984	5,310	0,G	sub (~0.38)
	MNCS_G	2,105	5,049	5,422	0,G	sub (~0.38)
	MNCS_H	2,040	5,114	5,587	O,G	sub (~0.38)
	L.P. TARGET	2,009	5,145	5,814	0,G	sub (~0.38)
	P.O.E. TARGET	1,980	5,174	8,408	0,G	sub (~0.38)
	PROJECTED TD	1,900	5,254	15,625	0,G	sub (~0.38)

Surface: Nacimiento

Oil & Gas Zones: Several gas bearing zones will be encountered; target formation is the Gallup

Pressure: Normal (0.43 psi/ft) or sub-normal pressure gradients anticipated in all formations

Max. pressure gradient: 0.43 psi/ft Evacuated hole gradient: 0.22 psi/ft

Maximum anticipated BH pressure, assuming maximum pressure gradient:	2,260	psi
Maximum anticipated surface pressure, assuming partially evacuated hole:	1,110	psi
 Movimum opticipated DUT is 120° F or less		

Temperature: Maximum anticipated BHT is 130° F or less

H₂S INFORMATION:

- H₂S Zones: Encountering hydrogen-sulfide bearing zones is NOT anticipated.
 - Safety: Sensors and alarms will be placed in the substructure, on the rig floor, above the pits, and at the shakers.

LOGGING, CORING, AND TESTING:

Mud Logs: None planned; remote geo-steering from drill out of 9-5/8" casing to TD; gas detection from drillout of 13-3/8" casing to TD.

- MWD / LWD: Gamma Ray from drillout of 13-3/8" casing to TD
- Open Hole Logs: None planned
 - Testing: None planned
 - Coring: None planned
- Cased Hole Logs: CBL on 5-1/2" casing from deepest free-fall depth to surface

DRILLING RIG INFORMATION:

Contractor: Ensign

- Rig No.: 773
- Draw Works: Pacific Rim 1500AC

Mast: ADR 1500S Cantilever Triple (142 ft, 800,000 lbs, 12 lines)

Top Drive: Tesco 500-ESI-1350 (500 ton, 1,350 hp)

- Prime Movers: 3 CAT 3512 (1,475 hp)
 - Pumps: 3 Gardner-Denver PZ11 (7,500 psi)
 - BOPE 1: Cameron single gate ram (pipe) & double gate ram (pipe & blind) (13-5/8", 10,000 psi)
 - BOPE 2: Cameron annular (13-5/8", 5,000 psi)
 - *Choke* 3", 10,000 psi

KB-GL (ft): 28

NOTE: A different rig may be used to drill the well depending on rig availability

BOPE REQUIREMENTS:

See attached diagram for details regarding BOPE specifications and configuration.

- **1)** Rig will be equipped with upper and lower kelly cocks with handles available.
- 2) Inside BOP and TIW valves will be available to use on all sizes and threads of drill pipe used while drilling the well.
- 2) BOP accumulator will have enough capacity to open the HCR valve, close all rams and annular preventer, and retain minimum of 200 psi above precharge on the closing manifold without the use of closing pumps. The fluid reservoir capacity shall be at least double the usable fluid volume of the accumulator system capacity, and the fluid level shall be maintained at manufacturer's recommendation. There will be two additional sources of power for the closing pumps (electric and air). Sufficient nitrogen bottles will be available and will be recharged when pressure falls below manufacturer's recommended minimum.
- 3) BOP testing shall be conducted (a) when initially installed, (b) whenever any seal is broken or repaired, (c) if the time since the previous test exceeds 30 days. Tests will be conducted using a test plug. BOP ram preventers will be tested to 3,000 psig for 10 minutes, and the annular preventer will be tested to 1,500 psi for 10 minutes. Ram and annular preventers will be tested to 250 psi for 5 minutes. Additionally, BOP and casing strings will be tested to .22 psi/ft or 1,500 psi, whichever is greater but not exceeding 70% of yield strength of the casing, for 30 minutes, prior to drilling out 13-3/8" and 9-5/8" casing. Rams and hydraulically operated remote choke line valve will be function tested daily at a minimum.
- **4)** Remote valve for BOP rams, HCR, and choke shall be placed in a location that is readily available to the driller. The remote BOP valve shall be capable of closing and opening the rams.
- 5) Manual locking devices (hand wheels) shall be intalled on rams. A valve will be installed on the annular preventer's closing line as close as possible to the preventer to act as a locking device. The valve will be maintained in the open position and shall only be closed when the there is no power to the accumulator.

FLUIDS AND SOLIDS CONTROL PROGRAM:

Fluid Measurement:	Pumps shall be equipped with stroke counters with displays in the dog-house. Slow pump speed shall be recorded
	daily and after mudding up, at a minimum, on the drilling report. A Pit Volume Totalizer will be installed and the
	readout will be displayed in the dog-house. Gas-detecting equipment will be installed at the shakers, and readouts
Closed-Loop System:	will be available in the dog-house and the in the geologist's work-station (if geologist or mud-logger is on-site). A fully, closed-loop system will be utilized. The system will consist of above-ground piping and above-ground storage
	tanks and bins. The system will not entail any earthen pits, below-grade storage, or drying pads. All equipment will
	be disassembled and removed from the site when drilling operations cease. The system will be capable of storing all
	fluids and generated cuttings and of preventing uncontrolled releases of the same. The system will be operated in an
	efficient manner to allow the recycling and reuse of as much fluid as possible and to minimimize the amount of fluids
	and solids that require disposal.
Fluid Disposal :	Fluids that cannot be reused, recycled, or returned to the supplier will be hauled to and disposed of at an approved
	disposal site (Industrial Ecosystem, Inc. or Envirotech, Inc.).
Solids Disposal :	Drilling solids will be stored (until haul-off) on-site in separate containers with no other waste, debris, or garbage
	products. Waste solids will be hauled to and disposed of at an approved disposal site (Industrial Ecosystem, Inc. or
	Envirotech, Inc.).

Fluid Program: See "Detailed Drilling Plan" section for specifics.

DETAILED DRILLING PLAN:

SURFACE: Drill vertically to casing setting depth (plus necessary rathole), run casing, cement casing to surface. 0 ft (MD) to 350 ft (MD) Hole Section Length:

		ft (MD)	to		ft (MD)	Hole Section Length:		350 f
	0	ft (TVD)	to	350	ft (TVD)	Ca	sing Required:	350 f
	Note: Surface	hole may be di	rilled, cased, an	d cemented v	vith a smaller ri	g in advance (of the drilling ri	g.
Fluid:	Туре	MW (ppg)	FL (mL/30 min)	PV (cp)	YP (lb/100 sqft)	pН	Comr	nents
	Fresh Water	8.4	N/C	2 - 8	2 - 12	9.0	Spud	mud
Hole Size:	17-1/2"						•	
Bit / Motor:	Mill Tooth or F	DC, no motor						
MWD / Survey:	No MWD, devi	iation survey						
Logging:	None							
Casing Specs:		Wt (lb/ft)	Grade	Conn.	Collapse (psi)	Burst (psi)	Tens. Body (lbs)	Tens. Conn (lbs)
Specs	13.375	54.5	J-55	BTC	1,130	2,730	853,000	909,000
Loading					153	699	116,634	116,634
Min. S.F.					7.39	3.90	7.31	7.79
MU Torque (ft lbs):	Minumum:	Burst: maximu intermediate h Tension: buoye N/A	m anticipated s ole and 8.4 ppg	urface pressu equivalent ex ppg fluid with N/A	g equivalent ext re with 9.5 ppg j xternal pressure 1 100,000 lbs ov Maximum: 2.	fluid inside cas gradient	-	g
Casing Summary:								
• •	· · · · · ·				ottom 3 jts, 1 ce	entralizer per 2	2 its to surface	
		,,	Yield	Water	Hole Cap.		Planned TOC	Total Cmt
Cement:	Туре	Weight (ppg)	(cuft/sk)	(gal/sk)	(cuft/ft)	% Excess	(ft MD)	(sx)
	Class G	15.8	1.174	5.15	0.6946	100%	0	414
	Calculated cen	nent volumes a	ssume gauge ho	ole and the ex	cess noted in tal	ble		
	Halliburton HA	ALCEM surface of D & BLM if cem	cementing blend	d	ce. Cement mus) psi compressiv	ve strength

	Dilli us per ull	ectional plan t	o casing setting	g aeptn, run co	ising, cement ci	asing to surfac	се.					
	350	ft (MD)	to	3,355	ft (MD)	Hole Se	ection Length:	3,005 ft				
	350	350 ft (TVD) to 3,234 ft (TVD) Casing Require MW (ppg) FL (mL/30 min) PV (cp) (lb/100 sqft) pH Casing Require (Cl) 8.8 - 9.5 20 8 - 14 8 - 14 9.0 - 9.5 0.0 - 9.5 ud motor vey with inclination and azimuth survey (every 100' at a minimum), GR optional and test (as noted above); pressure test 13-3/8" casing to 1,500 psi for 30 r Wt (lb/ft) Grade Conn. Collapse (psi) Burst (psi) (lbs) 5 36.0 J-55 LTC 2,020 3,520 564,000 1,413 1,295 205,326 1.43 2.72 2.75 ons: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while dr hole and 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull 1,430 0.72 2.75 uum: 3,400 Optimum: 4,530 Maximum: 5,660 1,1 t casing, float collar, casing to surface zers per jt stop-banded 10' from each collar on bottom 3 jts, 1 centralizer per 2 jts to surface 2 jts to surface						3,355 ft				
Fluid:	: Type MW (ppg)			PV (cp)			Comm	nents				
	LSND (KCI)	8.8 - 9.5	20	8 - 14	8 - 14	9.0 - 9.5						
Hole Size:	12-1/4"											
Bit / Motor:	PDC w/mud m	otor										
MWD / Survey:	MWD Survey v	with inclination	and azimuth su	urvey (every 10	00' at a minimur	m), GR optiona	al					
Logging:												
Pressure Test:	NU BOPE and	test (as noted a	above); pressur	e test 13-3/8"	casing to	1,500	psi for 30 minu	tes.				
Casing Specs:		Wt (lb/ft)	Grade	Conn.	Collapse (psi)	Burst (psi)	Tens. Body (lbs)	Tens. Conn (lbs)				
Specs	9.625	36.0	J-55	LTC	2,020	3,520	564,000	453,000				
Loading	-				1,413	1,295	205,326	205,326				
Min. S.F.					1.43	2.72	2.75	2.21				
Casing Summary: Centralizers:	Float shoe, 1 ji 2 centralizers Type G:POZ Blend Class G 0.3627 0.3132 Calculated cent Halliburton EC	t casing, float c per jt stop-ban Weight (ppg) 12.3 15.8 cuft/ft cuft/ft nent volumes a ONOCEM & HA	ollar, casing to a ded 10' from ea Yield (cuft/sk) 1.987 1.148 9-5/8" casing > 9-5/8" casing > ssume gauge h LCEM cementii	surface ach collar on bo Water (gal/sk) 10.16 4.98 (13-3/8" casin (12-1/4" hole of ole and the exc ng blend	ottom 3 jts, 1 ce % Excess 70% 20% g annulus cannulus cess noted in tab	entralizer per 2 Planned TOC (ft MD) 0 2,855	Total Cmt (sx) 780 164	o strongth				
PRODUCTION:	Drill to TD foll 3,355	owing directio ft (MD)	nal plan, run ca to to	15,625	ft (MD)	Hole S						
		E,	timated KOD.	/ 720	ft (MD)	1 500	ft (T\/D\					
					· · · ·							
			-									
	Min. S.F. 1.43 2.72 2.75 2.21 Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling production hole and 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull ue (ft lbs): Minumum: 3,400 Optimum: 4,530 Maximum: 5,660 Summary: Float shoe, 1 jt casing, float collar, casing to surface Intralizers: 2 centralizers per jt stop-banded 10' from each collar on bottom 3 jts, 1 centralizer per 2 jts to surface Cement: Lead Type Weight (ppg) (cuft/sk) (gal/sk) % Excess (ft MD) (sx) r Capacity 0.3627 cuft/ft 9-5/8" casing x 13-3/8" casing annulus 0.3132 cuft/ft 9-5/8" casing x 12-1/4" hole annulus Calculated cement volumes assume gauge hole and the excess noted in table Halliburton ECONOCEM & HALCEM cementing blend Notify NMOCD & BLM if cement is not circulated to surface. Cement casing to surface. UCTION: Drill to TD following directional plan, run casing, cement casing to surface.											

Hole Size: 8-1/2"

Bit / Motor: PDC w/mud motor

MWD / Survey: MWD with GR, inclination, and azimuth (survey every joint from KOP to Landing Point and survey every 100' minimum before KOP and after Landing Point) Logging: GR MWD for entire section, no mud-log or cuttings sampling, no OH WL logs Pressure Test: NU BOPE and test (as noted above); pressure test 9-5/8" casing to 1,500 psi for 30 minutes. Tens. Body Tens. Conn Size (in) Wt (lb/ft) Collapse (psi) Burst (psi) (lbs) Casing Specs: Grade Conn. (lbs) 5.500 17.0 P-110 LTC 7,460 10,640 546.000 445,000 Specs Loading 2,595 8,992 329,210 329,210 2.87 1.18 1.66 1.35 Min. S.F. Assumptions: Collapse: fully evacuated casing with 9.5 ppg fluid in the annulus (floating casing during running) Burst: 8,500 psi maximum surface treating pressure with 10.2 ppg equivalent mud weight sand laden fluid with 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 9.0 ppg fluid with 100,000 lbs over-pull MU Torque (ft lbs): Minumum 3,470 Optimum: 4,620 Maximum: 5,780 Casing Summary: Float shoe, 1 jt casing, float collar, 1 jt casing, float collar, 1 jt casing, toe-intitiation sleeve, 20' marker joint, toeinitiation sleeve, casing to KOP with 20' marker joints spaced evenly in lateral every 2,000', floatation sub, casing to surface. The toe-initiation sleeves must be positioned INSIDE the 330' unit setback. Centralizers: Centralizer count and placement may be adjusted based on well conditions and as-drilled surveys. Lateral: 1 centralizer per joint Curve: 1 centralizer per joint from landing point to KOP KOP to surf: 1 centralizer per 2 joints Planned TOC **Total Cmt** Yield Water (cuft/sk) Cement: Type Weight (ppg) (gal/sk) % Excess (ft MD) (sx) 50% Lead G:POZ blend 12.4 1.907 9.981 0 944 Tail G:POZ blend 13.3 1.360 5.999 10% 4,650 2,033 cuft/ft 5-1/2" casing x 9-5/8" casing annulus Annular Capacity 0.2691 5-1/2" casing x 8-1/2" hole annulus 0.2291 cuft/ft Calculated cement volumes assume gauge hole and the excess noted in table Halliburton ECONOCEM & EXTENDACEM cementing blend Notify NMOCD & BLM if cement is not circulated to surface. Note: The lateral may be drilled outside the applicaple unit setback to maximize the length of the completed interval and to maximize resource recovery. If the well is drilled outside the setback, the toe initiation sleeve(s) and all perforations will be placed inside the setback. An unorthodox location application is not required because the completed interval will be entirely within the setback as defined and allowed by NMAC 19.15.16.7B(1), NMAC 19.15.16.14B(2), NMAC 19.15.16.15B(2).

FINISH WELL: ND BOP, cap well, RDMO.

COMPLETION AND PRODUCTION PLAN:

Frac: 40 plug-and-perf stages with 240,000 bbls slickwater fluid and 11,000,000 lbs of proppant (estimated)Flowback: Flow back through production tubing as pressures allow (ESP may be used for load recovery assitance)Production: Produce through production tubing via gas-lift into permanent production and storage facilities

ESTIMATED START DATES:

Drilling: TBD Completion: TBD Production: TBD

Prepared by: Alec Bridge 1/2/2020

Enduring Resources LLC

San Juan Basin - S Escavada Unit & Terra Wash CA 364H Pad 382H

Wellbore #1

Plan: Design #1

Standard Planning Report

30 December, 2019

Received by OCD: 12/20/2022 11:02:40 AM

Database: Company: Project: Site: Well: Wellbore: Design: Project	EDM Enduring Reso San Juan Basi Wash CA 364H Pad 382H Wellbore #1 Design #1	in - S Escavad	a Unit & Terra	Local Co-ord TVD Referend MD Referend North Refere Survey Calco	ce: e: nce:		Well 382H KB @ 7154.0usft (Orig KB @ 7154.0usft (Orig Grid Minimum Curvature	-
Map System: Geo Datum:	US State Plane 1 North American I New Mexico Cen	Datum 1983		System Datun	1:	N	lean Sea Level	
Site	364H Pad, San	doval Co., Ne	w Mexico					
Site Position: From: Position Uncertainty:	Lat/Long	0.0 usft	Northing: Easting: Slot Radius:	1,276,38	3.87 usft	Latitude: Longitude: Grid Conver	gence:	36.123331°N 107.482638°W -0.73 °
Well	382H							
Well Position Position Uncertainty	+N/-S +E/-W	-12.5 usft -15.5 usft 0.0 usft	Northing: Easting: Wellhead Elev	1,	866,453.66 (276,368.35 (usft Lo	titude: ngitude: ound Level:	36.123296°N 107.482690°W 7,126.0 usfi
Wellbore	Wellbore #1							
Magnetics	Model Nam	10	Sample Date	Declinatio (°)	n	-	Angle (°)	Field Strength (nT)
	IGRF2	00510	12/31/2009		9.86		63.03	50,586.44791104
Design	Design #1							
Audit Notes:								
Version:			Phase:	PROTOTYPE	Tie	On Depth:	0.0	
Vertical Section:		(u	rom (TVD) sft)).0	+N/-S (usft) 0.0	+E/ (us 0.	ift)	Direction (°) 99.70	
Plan Survey Tool Pro	gram	Date 12/30	/2019					
Depth From (usft)	Depth To	Survey (Wellbo		Tool Name		Remarks		
1 0.0	15,624.9 E	Design #1 (We	llbore #1)	MWD OWSG MWD - S	andard			

Database:	EDM	Local Co-ordinate Reference:	Well 382H
Company:	Enduring Resources LLC	TVD Reference:	KB @ 7154.0usft (Original Well Elev)
Project:	San Juan Basin - S Escavada Unit & Terra	MD Reference:	KB @ 7154.0usft (Original Well Elev)
	Wash CA		
Site:	364H Pad	North Reference:	Grid
Well:	382H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Plan Sections

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
350.0	0.00	0.00	350.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,192.5	23.77	202.25	2,169.9	-150.0	-61.4	3.00	3.00	0.00	202.25	
4,738.6	23.77	202.25	4,500.0	-1,100.0	-450.0	0.00	0.00	0.00	0.00	382H KOP
5,627.3	77.67	93.06	5,123.9	-1,335.1	4.9	9.70	6.06	-12.29	-112.38	
5,814.1	89.36	92.13	5,145.0	-1,343.5	190.0	6.28	6.26	-0.50	-4.61	382H LP
8,407.6	89.36	92.13	5,174.0	-1,439.8	2,781.6	0.00	0.00	0.00	0.00	382H POE
15,624.9	89.36	92.13	5,254.7	-1,707.9	9,993.5	0.00	0.00	0.00	0.00	382H BHL

Received by OCD: 12/20/2022 11:02:40 AM

Database:	EDM	Local Co-ordinate Reference:	Well 382H
Company:	Enduring Resources LLC	TVD Reference:	KB @ 7154.0usft (Original Well Elev)
Project:	San Juan Basin - S Escavada Unit & Terra	MD Reference:	KB @ 7154.0usft (Original Well Elev)
	Wash CA		
Site:	364H Pad	North Reference:	Grid
Well:	382H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planning Report

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0 350.0	0.00 0.00	0.00 0.00	300.0 350.0	0.0 0.0	0.0 0.0	0.0 0.0	0.00 0.00	0.00 0.00	0.00 0.00
13 3/8"	0.00	0.00	550.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,030.0	0.00	0.00	1,030.0	0.0	0.0	0.0	0.00	0.00	0.00
Ojo Alamo 1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,165.0	0.00	0.00	1,165.0	0.0	0.0	0.0	0.00	0.00	0.00
Kirtland			,						
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,328.0	0.00	0.00	1,328.0	0.0	0.0	0.0	0.00	0.00	0.00
Fruitland									
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	3.00	202.25	1,500.0	-2.4	-1.0	-0.6	3.00	3.00	0.00
1,600.0	6.00	202.25	1,599.6	-9.7	-4.0	-2.3	3.00	3.00	0.00
1,617.5	6.52	202.25	1,617.0	-11.4	-4.7	-2.7	3.00	3.00	0.00
Pictured Cliff		202.25	1 609 9	21.0	-8.9	E 1	3.00	3.00	0.00
1,700.0 1,757.1	9.00 10.71	202.25 202.25	1,698.8 1,755.0	-21.8 -30.8	-0.9 -12.6	-5.1 -7.2	3.00	3.00	0.00
Lewis	10.11	202.20	1,100.0	00.0	12.0	1.2	0.00	0.00	0.00
1,800.0	12.00	202.25	1,797.1	-38.6	-15.8	-9.1	3.00	3.00	0.00
1,900.0	15.00	202.25	1,894.3	-60.2	-24.6	-14.1	3.00	3.00	0.00
2,000.0	18.00	202.25	1,990.2	-86.5	-35.4	-20.3	3.00	3.00	0.00
2,018.8	18.56	202.25	2,008.0	-92.0	-37.6	-21.6	3.00	3.00	0.00
Chacra									
2,100.0	21.00	202.25	2,084.4	-117.4	-48.0	-27.6	3.00	3.00	0.00
2,192.5	23.77	202.25	2,169.9	-150.0	-61.4	-35.2	3.00	3.00	0.00
2,200.0	23.77	202.25	2,176.8	-152.8	-62.5	-35.9	0.00	0.00	0.00
2,300.0 2,400.0	23.77 23.77	202.25 202.25	2,268.3 2,359.8	-190.1 -227.4	-77.8 -93.0	-44.6 -53.4	0.00 0.00	0.00 0.00	0.00 0.00
2,400.0	23.77	202.25	2,359.8 2,451.4	-227.4 -264.7	-93.0 -108.3	-53.4 -62.2	0.00	0.00	0.00
2,600.0	23.77	202.25	2,542.9	-302.1	-123.6	-70.9	0.00	0.00	0.00
2,700.0	23.77	202.25	2,634.4	-339.4	-138.8	-79.7	0.00	0.00	0.00
2,800.0	23.77	202.25	2,725.9	-376.7	-154.1	-88.4	0.00	0.00	0.00
2,900.0	23.77	202.25	2,817.4	-414.0	-169.4	-97.2	0.00	0.00	0.00
3,000.0	23.77	202.25	2,908.9	-451.3	-184.6	-106.0	0.00	0.00	0.00
3,100.0	23.77	202.25	3,000.4	-488.6	-199.9	-114.7	0.00	0.00	0.00
3,192.4	23.77	202.25	3,085.0	-523.1	-214.0	-122.8	0.00	0.00	0.00
Cliff House	00 7 5	000.05	0.000.0	505.0	015.0	100 F	0.00	0.00	~ ~ ~
Cliff House 3,200.0 3,245.9	23.77 23.77	202.25 202.25	3,092.0 3,134.0	-525.9 -543.1	-215.2 -222.2	-123.5 -127.5	0.00 0.00	0.00 0.00	0.00 0.00

12/30/2019 2:13:41PM

Received by OCD: 12/20/2022 11:02:40 AM

Database:	EDM	Local Co-ordinate Reference:	Well 382H
Company:	Enduring Resources LLC	TVD Reference:	KB @ 7154.0usft (Original Well Elev)
Project:	San Juan Basin - S Escavada Unit & Terra	MD Reference:	KB @ 7154.0usft (Original Well Elev)
	Wash CA		
Site:	364H Pad	North Reference:	Grid
Well:	382H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
3,300.0 3,355.2	23.77 23.77	202.25 202.25	3,183.5 3,234.0	-563.2 -583.8	-230.4 -238.8	-132.2 -137.1	0.00 0.00	0.00 0.00	0.00 0.00
9 5/8"									
3,400.0	23.77	202.25	3,275.0	-600.5	-245.7	-141.0	0.00	0.00	0.00
3,500.0	23.77	202.25	3,366.5	-637.9	-260.9	-149.8	0.00	0.00	0.00
3,600.0	23.77	202.25	3,458.0	-675.2	-276.2	-158.5	0.00	0.00	0.00
3,700.0	23.77	202.25	3,549.5	-712.5	-291.5	-167.3	0.00	0.00	0.00
3,800.0	23.77	202.25	3,641.0	-749.8	-306.7	-176.0	0.00	0.00	0.00
3,900.0	23.77	202.25	3,732.6	-787.1	-322.0	-184.8	0.00	0.00	0.00
4,000.0	23.77	202.25	3,824.1	-824.4	-337.3	-193.6	0.00	0.00	0.00
4,100.0	23.77	202.25	3,915.6	-861.7	-352.5	-202.3	0.00	0.00	0.00
4,200.0	23.77	202.25	4,007.1	-899.0	-367.8	-211.1	0.00	0.00	0.00
4,207.5	23.77	202.25	4,014.0	-901.9	-368.9	-211.7	0.00	0.00	0.00
Point Lookou	ıt								
4,300.0	23.77	202.25	4,098.6	-936.4	-383.1	-219.8	0.00	0.00	0.00
4,340.8	23.77	202.25	4,136.0	-951.6	-389.3	-223.4	0.00	0.00	0.00
Mancos									
4,400.0	23.77	202.25	4,190.1	-973.7	-398.3	-228.6	0.00	0.00	0.00
4,500.0	23.77	202.25	4,281.6	-1,011.0	-413.6	-237.4	0.00	0.00	0.00
4,600.0	23.77	202.25	4,373.2	-1,048.3	-428.8	-246.1	0.00	0.00	0.00
4,650.1	23.77	202.25	4,419.0	-1,067.0	-436.5	-250.5	0.00	0.00	0.00
Gallup (MNC	SA)								
4,700.0	23.77	202.25	4,464.7	-1,085.6	-444.1	-254.9	0.00	0.00	0.00
4,738.6	23.77	202.25	4,500.0	-1,100.0	-450.0	-258.3	0.00	0.00	0.00
4,770.2	22.77	194.92	4,529.0	-1,111.8	-454.0	-260.2	9.70	-3.17	-23.23
MNCS_B									
4,800.0	22.16	187.51	4,556.6	-1,123.0	-456.2	-260.5	9.70	-2.06	-24.83
4,861.9	22.02	171.50	4,614.0	-1,146.0	-456.0	-256.4	9.70	-0.23	-25.86
MNCS_C									
4,900.0	22.69	161.93	4,649.2	-1,160.1	-452.7	-250.8	9.70	1.77	-25.11
4,901.9	22.74	161.47	4,651.0	-1,160.8	-452.4	-250.4	9.70	2.53	-24.26
MNCS_Cms									
5,000.0	26.79	140.75	4,740.2	-1,196.0	-432.4	-224.8	9.70	4.13	-21.12
5,049.7	29.75	132.70	4,784.0	-1,213.0	-416.2	-206.0	9.70	5.95	-16.21
MNCS_D									
5,100.0	33.15	125.98	4,826.9	-1,229.5	-395.9	-183.1	9.70	6.77	-13.34
5,200.0	40.73	115.84	4,906.9	-1,259.9	-344.3	-127.2	9.70	7.58	-10.14
5,229.7	43.12	113.43	4,929.0	-1,268.2	-326.3	-108.0	9.70	8.05	-8.11
MNCS_E									
5,300.0	48.95	108.51	4,977.8	-1,286.2	-279.0	-58.4	9.70	8.29	-7.01
5,309.6	49.75	107.91	4,984.0	-1,288.4	-272.1	-51.2	9.70	8.45	-6.28
MNCS_F									
5,400.0	57.53	102.84	5,037.6	-1,307.5	-202.0	21.2	9.70	8.59	-5.60
5,421.8	59.43	101.75	5,049.0	-1,311.5	-183.8	39.7	9.70	8.72	-4.98
MNCS_G									
5,500.0	66.32	98.18	5,084.6	-1,323.5	-115.3	109.3	9.70	8.81	-4.58
5,586.6	74.03	94.63	5,114.0	-1,332.5	-34.4	190.5	9.70	8.91	-4.10
MNCS_H									
5,600.0	75.23	94.11	5,117.5	-1,333.5	-21.6	203.4	9.70	8.95	-3.89
5,627.3	77.67	93.06	5,123.9	-1,335.1	4.9	229.7	9.70	8.96	-3.83
5,700.0	82.22	92.69	5,136.6	-1,338.7	76.4	300.8	6.28	6.26	-0.51
5,800.0	88.48	92.20	5,144.7	-1,343.0	175.9	399.7	6.28	6.26	-0.50

12/30/2019 2:13:41PM

COMPASS 5000.15 Build 88

Planning Report

Database:	EDM	Local Co-ordinate Reference:	Well 382H
Company:	Enduring Resources LLC	TVD Reference:	KB @ 7154.0usft (Original Well Elev)
Project:	San Juan Basin - S Escavada Unit & Terra	MD Reference:	KB @ 7154.0usft (Original Well Elev)
	Wash CA		
Site:	364H Pad	North Reference:	Grid
Well:	382H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,814.1	89.36	92.13	5,145.0	-1,343.5	190.0	413.6	6.28	6.26	-0.49
5,900.0	89.36	92.13	5,146.0	-1,346.7	275.9	498.8	0.00	0.00	0.00
6,000.0	89.36	92.13	5,147.1	-1,350.4	375.8	597.9	0.00	0.00	0.00
6,100.0	89.36	92.13 92.13	5,147.1	-1,350.4	375.8 475.7	697.9	0.00	0.00	0.00
6,200.0	89.36	92.13	5,149.3	-1,357.8	575.6	796.1	0.00	0.00	0.00
6,300.0	89.36	92.13	5,150.4	-1,361.5	675.6	895.3	0.00	0.00	0.00
6,400.0	89.36	92.13	5,151.6	-1,365.3	775.5	994.4	0.00	0.00	0.00
6,500.0	89.36	92.13	5,152.7	-1,369.0	875.4	1,093.5	0.00	0.00	0.00
6,600.0	89.36	92.13	5,153.8	-1,372.7	975.3	1,192.6	0.00	0.00	0.00
6,700.0	89.36	92.13	5,154.9	-1,376.4	1,075.3	1,291.8	0.00	0.00	0.00
6,800.0	89.36	92.13	5,156.0	-1,380.1	1,175.2	1,390.9	0.00	0.00	0.00
6,900.0	89.36	92.13	5,157.1	-1,383.8	1,275.1	1,490.0	0.00	0.00	0.00
7,000.0	89.36	92.13	5,158.3	-1,387.5	1,375.0	1,589.1	0.00	0.00	0.00
7,100.0	89.36	92.13	5,159.4	-1,391.3	1,475.0	1,688.2	0.00	0.00	0.00
7,200.0	89.36	92.13	5,160.5	-1,395.0	1,574.9	1,787.4	0.00	0.00	0.00
7,300.0	89.36	92.13	5,161.6	-1,398.7	1,674.8	1,886.5	0.00	0.00	0.00
7,400.0	89.36	92.13	5,162.7	-1,402.4	1,774.7	1,985.6	0.00	0.00	0.00
7,500.0	89.36	92.13	5,163.9	-1,406.1	1,874.7	2,084.7	0.00	0.00	0.00
7,600.0	89.36	92.13	5,165.0	-1,409.8	1,974.6	2,183.9	0.00	0.00	0.00
7,700.0	89.36	92.13	5,166.1	-1,413.5	2,074.5	2,283.0	0.00	0.00	0.00
7,800.0	89.36	92.13	5,167.2	-1,417.3	2,174.4	2,382.1	0.00	0.00	0.00
7,900.0	89.36	92.13	5,168.3	-1,421.0	2,274.4	2,481.2	0.00	0.00	0.00
	80.26		E 160 4	1 404 7	0.074.0		0.00	0.00	0.00
8,000.0	89.36 89.36	92.13 92.13	5,169.4	-1,424.7 -1,428.4	2,374.3 2,474.2	2,580.3 2,679.5	0.00 0.00	0.00 0.00	0.00 0.00
8,100.0 8,200.0	89.36	92.13 92.13	5,170.6 5,171.7	-1,420.4 -1,432.1	2,474.2	2,679.5	0.00	0.00	0.00
8,200.0	89.36	92.13	5,172.8	-1,435.8	2,674.1	2,778.0	0.00	0.00	0.00
8,300.0	89.36	92.13	5,173.9	-1,439.5	2,774.0	2,976.8	0.00	0.00	0.00
8,407.6	89.36	92.13	5,174.0	-1,439.8	2,781.6	2,984.4	0.00	0.00	0.00
8,500.0	89.36	92.13	5,175.0	-1,443.2	2,873.9	3,076.0	0.00	0.00	0.00
8,600.0	89.36	92.13	5,176.2	-1,447.0	2,973.8	3,175.1	0.00	0.00	0.00
8,700.0	89.36	92.13	5,177.3	-1,450.7	3,073.8	3,274.2	0.00	0.00	0.00
8,800.0	89.36	92.13	5,178.4	-1,454.4	3,173.7	3,373.3	0.00	0.00	0.00
8,900.0	89.36	92.13	5,179.5	-1,458.1	3,273.6	3,472.4	0.00	0.00	0.00
9,000.0	89.36	92.13	5,180.6	-1,461.8	3,373.5	3,571.6	0.00	0.00	0.00
9,100.0	89.36	92.13	5,181.7	-1,465.5	3,473.5	3,670.7	0.00	0.00	0.00
9,200.0	89.36	92.13	5,182.9	-1,469.2	3,573.4	3,769.8	0.00	0.00	0.00
9,300.0	89.36	92.13	5,184.0	-1,473.0	3,673.3	3,868.9	0.00	0.00	0.00
9,400.0	89.36	92.13	5,185.1	-1,476.7	3,773.2	3,968.1	0.00	0.00	0.00
9,500.0	89.36	92.13	5,186.2	-1,480.4	3,873.2	4,067.2	0.00	0.00	0.00
9,600.0	89.36	92.13	5,187.3	-1,484.1	3,973.1	4,166.3	0.00	0.00	0.00
9,700.0	89.36	92.13	5,188.5	-1,487.8	4,073.0	4,265.4	0.00	0.00	0.00
9,800.0	89.36	92.13	5,189.6	-1,491.5	4,172.9	4,364.5	0.00	0.00	0.00
9,900.0	89.36	92.13	5,190.7	-1,495.2	4,272.9	4,463.7	0.00	0.00	0.00
10,000.0	89.36	92.13	5,191.8	-1,499.0	4,372.8	4,562.8	0.00	0.00	0.00
10,100.0	89.36	92.13	5,192.9	-1,502.7	4,472.7	4,661.9	0.00	0.00	0.00
10,200.0	89.36	92.13	5,194.0	-1,506.4	4,572.6	4,761.0	0.00	0.00	0.00
10,300.0	89.36	92.13	5,195.2	-1,510.1	4,672.6	4,860.2	0.00	0.00	0.00
10,400.0	89.36	92.13	5,196.3	-1,513.8	4,772.5	4,959.3	0.00	0.00	0.00
10,400.0	89.36 89.36	92.13 92.13	5,196.3 5,197.4	-1,513.8 -1,517.5	4,772.5 4,872.4	4,959.3 5,058.4	0.00	0.00	0.00
10,500.0	89.36	92.13	5,197.4	-1,521.2	4,872.4	5,058.4	0.00	0.00	0.00
10,000.0	89.36	92.13	5,199.6	-1,525.0	5,072.2	5,256.6	0.00	0.00	0.00
10,700.0	89.36	92.13	5,200.8	-1,528.7	5,172.2	5,355.8	0.00	0.00	0.00
10,900.0	89.36	92.13	5,201.9	-1,532.4	5,272.1	5,454.9	0.00	0.00	0.00

12/30/2019 2:13:41PM

COMPASS 5000.15 Build 88

.

Planning Report

Database:	EDM	Local Co-ordinate Reference:	Well 382H
Company:	Enduring Resources LLC	TVD Reference:	KB @ 7154.0usft (Original Well Elev)
Project:	San Juan Basin - S Escavada Unit & Terra	MD Reference:	KB @ 7154.0usft (Original Well Elev)
	Wash CA		
Site:	364H Pad	North Reference:	Grid
Well:	382H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
11,000.0	89.36	92.13	5,203.0	-1,536.1	5,372.0	5,554.0	0.00	0.00	0.00
11,100.0	89.36	92.13	5,204.1	-1,539.8	5,471.9	5,653.1	0.00	0.00	0.00
11,200.0	89.36	92.13	5,205.2	-1,543.5	5,571.9	5,752.3	0.00	0.00	0.00
11,300.0	89.36	92.13	5,206.3	-1,547.2	5,671.8	5,851.4	0.00	0.00	0.00
11,400.0	89.36	92.13	5,207.5	-1,550.9	5,771.7	5,950.5	0.00	0.00	0.00
			,		,		0.00	0.00	
11,500.0	89.36	92.13	5,208.6	-1,554.7	5,871.6	6,049.6			0.00
11,600.0	89.36	92.13	5,209.7	-1,558.4	5,971.6	6,148.8	0.00	0.00	0.00
11,700.0	89.36	92.13	5,210.8	-1,562.1	6,071.5	6,247.9	0.00	0.00	0.00
11,800.0	89.36	92.13	5,211.9	-1,565.8	6,171.4	6,347.0	0.00	0.00	0.00
11,900.0	89.36	92.13	5,213.1	-1,569.5	6,271.3	6,446.1	0.00	0.00	0.00
12,000.0	89.36	92.13	5,214.2	-1,573.2	6,371.3	6,545.2	0.00	0.00	0.00
12,100.0	89.36	92.13	5,215.3	-1,576.9	6,471.2	6,644.4	0.00	0.00	0.00
12,200.0	89.36	92.13	5,216.4	-1,580.7	6,571.1	6,743.5	0.00	0.00	0.00
12,300.0	89.36	92.13	5,217.5	-1,584.4	6,671.0	6,842.6	0.00	0.00	0.00
12,400.0	89.36	92.13	5,218.6	-1,588.1	6,771.0	6,941.7 7,040.9	0.00 0.00	0.00	0.00
12,500.0	89.36	92.13	5,219.8	-1,591.8	6,870.9			0.00	0.00
12,600.0	89.36	92.13	5,220.9	-1,595.5	6,970.8	7,140.0	0.00	0.00	0.00
12,700.0	89.36	92.13	5,222.0	-1,599.2	7,070.7	7,239.1	0.00	0.00	0.00
12,800.0	89.36	92.13	5,223.1	-1,602.9	7,170.7	7,338.2	0.00	0.00	0.00
12,900.0	89.36	92.13	5,224.2	-1,606.7	7,270.6	7,437.3	0.00	0.00	0.00
13,000.0	89.36	92.13	5,225.4	-1,610.4	7,370.5	7,536.5	0.00	0.00	0.00
13,100.0	89.36	92.13	5,226.5	-1,614.1	7,470.4	7,635.6	0.00	0.00	0.00
13,200.0	89.36	92.13	5,227.6	-1,617.8	7,570.4	7,734.7	0.00	0.00	0.00
13,300.0	89.36	92.13	5,228.7	-1,621.5	7,670.3	7,833.8	0.00	0.00	0.00
13,400.0	89.36	92.13	5,229.8	-1,625.2	7.770.2	7,933.0	0.00	0.00	0.00
13,500.0	89.36	92.13	5,230.9	-1,628.9	7,870.1	8,032.1	0.00	0.00	0.00
13,600.0	89.36	92.13	5,232.1	-1,632.7	7,970.1	8,131.2	0.00	0.00	0.00
13,700.0		92.13	5,233.2	-1,636.4	8,070.0	8,230.3	0.00	0.00	0.00
13,800.0	89.36 89.36	92.13	5,233.2	-1,640.1		8,230.3	0.00	0.00	0.00
					8,169.9				
13,900.0	89.36	92.13	5,235.4	-1,643.8	8,269.8	8,428.6	0.00	0.00	0.00
14,000.0	89.36	92.13	5,236.5	-1,647.5	8,369.8	8,527.7	0.00	0.00	0.00
14,100.0	89.36	92.13	5,237.7	-1,651.2	8,469.7	8,626.8	0.00	0.00	0.00
14,200.0	89.36	92.13	5,238.8	-1,654.9	8,569.6	8,725.9	0.00	0.00	0.00
14,300.0	89.36	92.13	5,239.9	-1,658.6	8,669.5	8,825.1	0.00	0.00	0.00
14,400.0	89.36	92.13	5,241.0	-1,662.4	8,769.5	8,924.2	0.00	0.00	0.00
14,500.0	89.36	92.13	5,242.1	-1,666.1	8,869.4	9,023.3	0.00	0.00	0.00
14,600.0	89.36	92.13	5,243.2	-1,669.8	8,969.3	9,122.4	0.00	0.00	0.00
14,700.0	89.36	92.13	5,244.4	-1,673.5	9,069.2	9,221.5	0.00	0.00	0.00
14,800.0	89.36	92.13	5,245.5	-1,677.2	9,169.2	9,320.7	0.00	0.00	0.00
14.900.0		92.13	5.246.6	-1,680.9	9,269.1	9,419.8	0.00	0.00	0.00
,	89.36 89.36		-,	,	,	,	0.00	0.00	0.00
15,000.0		92.13	5,247.7	-1,684.6	9,369.0	9,518.9			
15,100.0	89.36	92.13	5,248.8	-1,688.4	9,468.9	9,618.0	0.00	0.00	0.00
15,200.0	89.36	92.13	5,250.0	-1,692.1	9,568.9	9,717.2	0.00	0.00	0.00
15,300.0	89.36	92.13	5,251.1	-1,695.8	9,668.8	9,816.3	0.00	0.00	0.00
15,400.0	89.36	92.13	5,252.2	-1,699.5	9,768.7	9,915.4	0.00	0.00	0.00
15,500.0	89.36	92.13	5,253.3	-1,703.2	9,868.6	10,014.5	0.00	0.00	0.00
15,600.0	89.36	92.13	5,254.4	-1,706.9	9,968.6	10,113.6	0.00	0.00	0.00
15,624.9	89.36	92.13	5,254.7	-1,707.9	9,993.5	10,138.4	0.00	0.00	0.00

Database:	EDM	Local Co-ordinate Reference:	Well 382H
Company:	Enduring Resources LLC	TVD Reference:	KB @ 7154.0usft (Original Well Elev)
Project:	San Juan Basin - S Escavada Unit & Terra Wash CA	MD Reference:	KB @ 7154.0usft (Original Well Elev)
Site:	364H Pad	North Reference:	Grid
Well:	382H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Design	Targets
Design	Targets

Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
382H KOP - plan hits target cer - Point	0.0	360.00	4,500.0	-1,100.0	-450.0	1,865,353.66	1,275,918.35	36.120259°N	107.484166°W
382H LP - plan hits target cer - Point	0.0	360.00	5,145.0	-1,343.5	190.0	1,865,110.16	1,276,558.35	36.119613°N	107.481989°W
382H POE - plan hits target cer - Point	0.0	0.00	5,174.0	-1,439.8	2,781.6	1,865,013.84	1,279,149.92	36.119438°N	107.473212°W
382H BHL - plan misses target - Point	0.0 center by 4.		5,254.0 .4usft MD (5	-1,711.7 254.7 TVD, -1	9,992.8 707.8 N, 9992	1,864,741.94 2.9 E)	1,286,361.16	36.118938°N	107.448789°W

Casing Points							
	Measured Depth (usft)	Vertical Depth (usft)		Name	Casing Diameter (")	Hole Diameter (")	
	350.0 3,355.2	350.0 3,234.0	13 3/8" 9 5/8"		13-3/8 9-5/8	17-1/2 12-1/4	

Formations

Measured Depth (usft)	Vertical Depth (usft)	Name	Lithology	Dip (°)	Dip Direction (°)
1,030.0	1,030.0	Ojo Alamo		0.00	
1,165.0	1,165.0	Kirtland		0.00	
1,328.0	1,328.0	Fruitland		0.00	
1,617.5	1,617.0	Pictured Cliffs		0.00	
1,757.1	1,755.0	Lewis		0.00	
2,018.8	2,008.0	Chacra		0.00	
3,192.4	3,085.0	Cliff House		0.00	
3,245.9	3,134.0	Menefee		0.00	
4,207.5	4,014.0	Point Lookout		0.00	
4,340.8	4,136.0	Mancos		0.00	
4,650.1	4,419.0	Gallup (MNCS A)		0.00	
4,770.2	4,529.0	MNCS_B		0.00	
4,861.9	4,614.0	MNCS_C		0.00	
4,901.9	4,651.0	MNCS_Cms		0.00	
5,049.7	4,784.0	MNCS_D		0.00	
5,229.7	4,929.0	MNCS_E		0.00	
5,309.6	4,984.0	MNCS_F		0.00	
5,421.8	5,049.0	MNCS_G		0.00	
5,586.6	5,114.0	MNCS_H		0.00	

DRILLING PLAN: Drill, complete, and equip single lateral in the Mancos-H formation

WELL INFORMATION:

	TERRA WASH CA 382H			
API Number:	not yet assigned			
AFE Number:	not yet assigned			
ER Well Number:	not yet assigned			
State:	New Mexico			
County:	Sandoval			
Surface Elevation:	7,126 ft ASL (GL)	7,154 ft ASL (KB)		
Surface Location:	21-22N-06W Sec-Twn-Rng	2,503 ft FSL	130 ft FWL	
	36.123296 $^\circ$ N latitude	107.48269 ° W longitude	(NAD 83)	
BH Location:	22-22N-06W Sec-Twn-Rng	1,173 ft FSL	330 ft FEL	
	36.118938 $^\circ$ N latitude	107.448789 [°] W longitude	(NAD 83)	
Driving Directions:	FROM THE INTERSECTION OF	US HWY 550 & US HWY 64 IN BL	OOMFIELD, NM: South on US Hwy 550 for	54.4 miles
	to MM 97.5; Right (South) on	Indian Service Route #46 for 3.5	miles to fork; Right (South) on ISR #36 for	1.1 miles to
	fork; Left (South) on ISR #46 f	or 0.2 miles to fork; Right (South) on ISR #46 for 2.6 miles; Right on access i	oad into S

Escavada Unit 364H Pad (Wells: SEU 364H, SEU 365H, SEU 366H, TWCA 380H, TWCA 382H).

GEOLOGIC AND RESERVOIR INFORMATION:

rognosis:	Formation Tops	TVD (ft ASL)	TVD (ft KB)	MD (ft KB)	0/G/W	Pressure
	Ojo Alamo	6,124	1,030	1,030	W	normal
	Kirtland	5,989	1,165	1,165	W	normal
	Fruitland	5,826	1,328	1,328	G, W	sub
	Pictured Cliffs	5,537	1,617	1,618	G, W	sub
	Lewis	5,399	1,755	1,757	G, W	normal
	Chacra	5,146	2,008	2,019	G, W	normal
	Cliff House	4,069	3,085	3,192	G, W	sub
	Menefee	4,020	3,134	3,246	G, W	normal
	Point Lookout	3,140	4,014	4,208	G, W	normal
	Mancos	3,018	4,136	4,341	0,G	sub (~0.38
	Gallup (MNCS_A)	2,735	4,419	4,650	0,G	sub (~0.38
	MNCS_B	2,625	4,529	4,770	0,G	sub (~0.38
	MNCS_C	2,540	4,614	4,862	0,G	sub (~0.38
	MNCS_Cms	2,503	4,651	4,902	0,G	sub (~0.38
	MNCS_D	2,370	4,784	5,050	0,G	sub (~0.38
	MNCS_E	2,225	4,929	5,230	0,G	sub (~0.38
	MNCS_F	2,170	4,984	5,310	0,G	sub (~0.38
	MNCS_G	2,105	5,049	5,422	0,G	sub (~0.38
	MNCS_H	2,040	5,114	5,587	0,G	sub (~0.38
	L.P. TARGET	2,009	5,145	5,814	0,G	sub (~0.38
	P.O.E. TARGET	1,980	5,174	8,408	O,G	sub (~0.38
	PROJECTED TD	1,900	5,254	15,625	O,G	sub (~0.38

Surface: Nacimiento

Oil & Gas Zones: Several gas bearing zones will be encountered; target formation is the Gallup

Pressure: Normal (0.43 psi/ft) or sub-normal pressure gradients anticipated in all formations

Max. pressure gradient: 0.43 psi/ft Evacuated hole gradient: 0.22 psi/ft

Maximum anticipated BH pressure, assuming maximum pressure gradient:	2,260	psi
Maximum anticipated surface pressure, assuming partially evacuated hole:	1,110	psi
 Movimum opticipated DUT is 120° F or loss		

Temperature: Maximum anticipated BHT is 130° F or less

H₂S INFORMATION:

- H₂S Zones: Encountering hydrogen-sulfide bearing zones is NOT anticipated.
 - Safety: Sensors and alarms will be placed in the substructure, on the rig floor, above the pits, and at the shakers.

LOGGING, CORING, AND TESTING:

Mud Logs: None planned; remote geo-steering from drill out of 9-5/8" casing to TD; gas detection from drillout of 13-3/8" casing to TD.

- MWD / LWD: Gamma Ray from drillout of 13-3/8" casing to TD
- Open Hole Logs: None planned
 - Testing: None planned
 - Coring: None planned
- Cased Hole Logs: CBL on 5-1/2" casing from deepest free-fall depth to surface

DRILLING RIG INFORMATION:

Contractor: Ensign

- Rig No.: 773
- Draw Works: Pacific Rim 1500AC

Mast: ADR 1500S Cantilever Triple (142 ft, 800,000 lbs, 12 lines)

Top Drive: Tesco 500-ESI-1350 (500 ton, 1,350 hp)

- Prime Movers: 3 CAT 3512 (1,475 hp)
 - Pumps: 3 Gardner-Denver PZ11 (7,500 psi)
 - BOPE 1: Cameron single gate ram (pipe) & double gate ram (pipe & blind) (13-5/8", 10,000 psi)
 - BOPE 2: Cameron annular (13-5/8", 5,000 psi)
 - *Choke* 3", 10,000 psi

KB-GL (ft): 28

NOTE: A different rig may be used to drill the well depending on rig availability

BOPE REQUIREMENTS:

See attached diagram for details regarding BOPE specifications and configuration.

- **1)** Rig will be equipped with upper and lower kelly cocks with handles available.
- 2) Inside BOP and TIW valves will be available to use on all sizes and threads of drill pipe used while drilling the well.
- 2) BOP accumulator will have enough capacity to open the HCR valve, close all rams and annular preventer, and retain minimum of 200 psi above precharge on the closing manifold without the use of closing pumps. The fluid reservoir capacity shall be at least double the usable fluid volume of the accumulator system capacity, and the fluid level shall be maintained at manufacturer's recommendation. There will be two additional sources of power for the closing pumps (electric and air). Sufficient nitrogen bottles will be available and will be recharged when pressure falls below manufacturer's recommended minimum.
- 3) BOP testing shall be conducted (a) when initially installed, (b) whenever any seal is broken or repaired, (c) if the time since the previous test exceeds 30 days. Tests will be conducted using a test plug. BOP ram preventers will be tested to 3,000 psig for 10 minutes, and the annular preventer will be tested to 1,500 psi for 10 minutes. Ram and annular preventers will be tested to 250 psi for 5 minutes. Additionally, BOP and casing strings will be tested to .22 psi/ft or 1,500 psi, whichever is greater but not exceeding 70% of yield strength of the casing, for 30 minutes, prior to drilling out 13-3/8" and 9-5/8" casing. Rams and hydraulically operated remote choke line valve will be function tested daily at a minimum.
- **4)** Remote valve for BOP rams, HCR, and choke shall be placed in a location that is readily available to the driller. The remote BOP valve shall be capable of closing and opening the rams.
- 5) Manual locking devices (hand wheels) shall be intalled on rams. A valve will be installed on the annular preventer's closing line as close as possible to the preventer to act as a locking device. The valve will be maintained in the open position and shall only be closed when the there is no power to the accumulator.

FLUIDS AND SOLIDS CONTROL PROGRAM:

Fluid Measurement:	Pumps shall be equipped with stroke counters with displays in the dog-house. Slow pump speed shall be recorded
	daily and after mudding up, at a minimum, on the drilling report. A Pit Volume Totalizer will be installed and the
	readout will be displayed in the dog-house. Gas-detecting equipment will be installed at the shakers, and readouts
Closed-Loop System:	will be available in the dog-house and the in the geologist's work-station (if geologist or mud-logger is on-site). A fully, closed-loop system will be utilized. The system will consist of above-ground piping and above-ground storage
	tanks and bins. The system will not entail any earthen pits, below-grade storage, or drying pads. All equipment will
	be disassembled and removed from the site when drilling operations cease. The system will be capable of storing all
	fluids and generated cuttings and of preventing uncontrolled releases of the same. The system will be operated in an
	efficient manner to allow the recycling and reuse of as much fluid as possible and to minimimize the amount of fluids
	and solids that require disposal.
Fluid Disposal :	Fluids that cannot be reused, recycled, or returned to the supplier will be hauled to and disposed of at an approved
	disposal site (Industrial Ecosystem, Inc. or Envirotech, Inc.).
Solids Disposal :	Drilling solids will be stored (until haul-off) on-site in separate containers with no other waste, debris, or garbage
	products. Waste solids will be hauled to and disposed of at an approved disposal site (Industrial Ecosystem, Inc. or
	Envirotech, Inc.).

Fluid Program: See "Detailed Drilling Plan" section for specifics.

DETAILED DRILLING PLAN:

SURFACE: Drill vertically to casing setting depth (plus necessary rathole), run casing, cement casing to surface. 0 ft (MD) to 350 ft (MD) Hole Section Length:

	0	ft (MD)	to	350	ft (MD)	Hole S	ection Length:	350 f
	0	ft (TVD)	to	350	ft (TVD)	Ca	sing Required:	350 f
	Note: Surface	hole may be di	rilled, cased, an	d cemented v	vith a smaller ri	g in advance o	of the drilling ri	g.
Fluid:	Туре	MW (ppg)	FL (mL/30 min)	PV (cp)	YP (lb/100 sqft)	рН	Comn	nents
	Fresh Water	8.4	N/C	2 - 8	2 - 12	9.0	Spud	mud
Hole Size:	17-1/2"							
Bit / Motor:	Mill Tooth or F	PDC, no motor						
MWD / Survey:	No MWD, devi	iation survey						
Logging:	None							
Casing Specs:		Wt (lb/ft)	Grade	Conn.	Collapse (psi)	Burst (psi)	Tens. Body (lbs)	Tens. Conn (lbs)
Specs	13.375	54.5	J-55	BTC	1,130	2,730	853,000	909,000
Loading					153	699	116,634	116,634
Min. S.F.					7.39	3.90	7.31	7.79
MU Torque (ft lbs):	Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling intermediate hole and 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull MU Torque (ft lbs): Minumum: N/A Optimum: N/A Maximum: N/A							
			Connection runr		2.			
Casing Summary:	· · · · · ·							
Centralizers:	2 centralizers	per jt stop-ban			ottom 3 jts, 1 ce	entralizer per 2		Tatal Cast
a .	_		Yield	Water	Hole Cap.	o/ =	Planned TOC	Total Cmt
Cement:	Туре	Weight (ppg)	(cuft/sk)	(gal/sk)	(cuft/ft)	% Excess	(ft MD)	(sx)
	Class G	15.8	1.174	5.15	0.6946	100%	0	414
	Halliburton HA	ALCEM surface of & BLM if cem	cementing blend	d	cess noted in tai) psi compressiv	ve strength

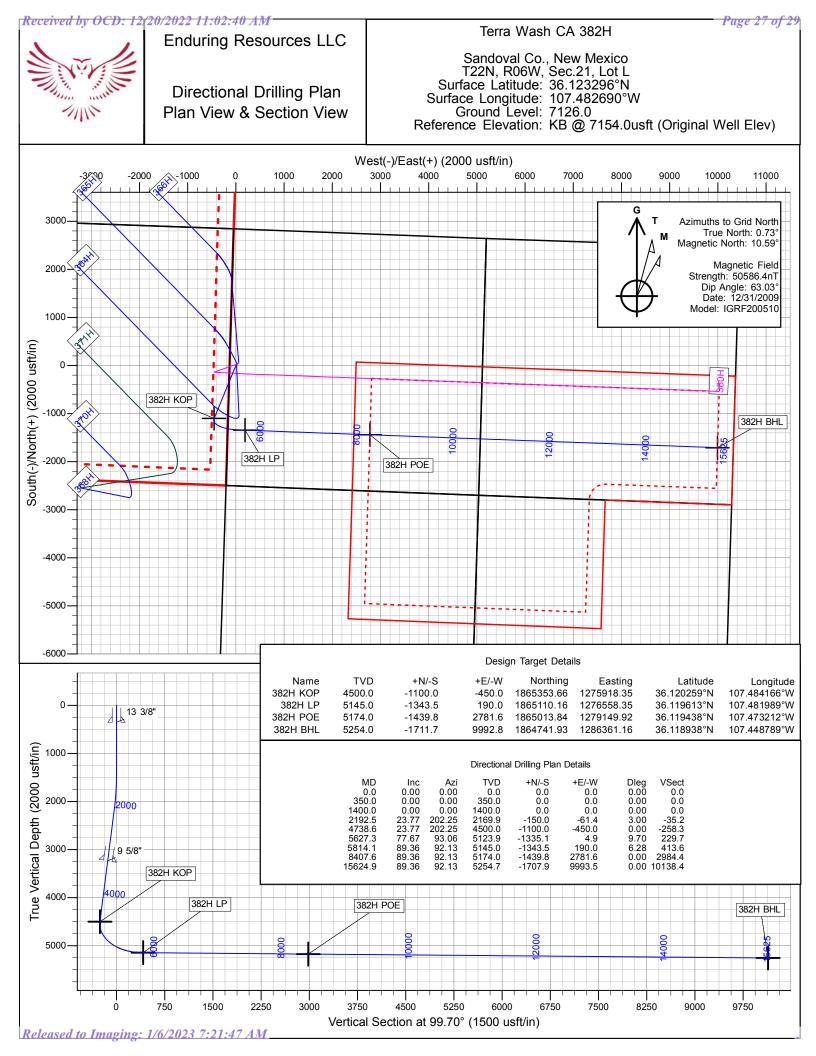
350 ft (MD) to 3,355 ft (MD) Hole Section Length: 350 ft (TVD) 350 ft (TVD) to 3,234 ft (TVD) Casing Required: Fluid: Type MW (ppg) FL YP (p) (b/J00 sqft) pH Comm Hole Size: 12-1/4" Bit / Moto: PDC w/mud motor MVD / Survey with inclination and azimuth survey (every 100' at a minimum), GR optional Logging: None Pressure Test: NUB BOPE and test (as noted above); pressure test 13-3/8" casing to 1,500 psi for 30 minu Casing Specs: 9.625 36.0 1-55 LTC 2,020 3,520 564,000 Min S.F. Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst (main: a da 0 Deptimin: 4,530 Mainum: 5,660 Cosing Summary: Float shoe, 1 (t casing, float collar, casing to surface Vield Water with 9.4 ppg full wide 100,000 lbs over-pull MU Torque (ft lbs): Minumm: 3,400 Optimum: 4,530 Minumi: 5,660 Casing Summary: Float shoe, 1 (t casing, float collar, casing to surface Minut mater Sectore	INTERMEDIATE:	Drill as per dir	ectional plan t	o casing setting	g depth, run co	asing, cement c	asing to surfac	ce.		
Filinit: YP Conn Collapse first prime Conn MUD / Survey with inclination and azimuth survey (every 100' at a minimum), GR optional Logging: None Pressure Test: NUB BOPE and test (as noted above); pressure test 13-3/8" casing to 1,500 Tens. Body (lbs) Specs: 9,625 36.0 1-55 LTC 2,020 3,520 564,000 Looding Mit (lb/ft) Grade conn. Collapse: fully evacuated cosing with 8.4 pg equivalent external pressure gradient Burst fusion: buoyed weight in 8.4 pg fului with 100,000 bs over-pull <td <="" colspan="2" td=""><td></td><td colspan="3">350 ft (MD) to</td><td>3,355</td><td>ft (MD)</td><td>Hole S</td><td>3,005 ft</td></td>	<td></td> <td colspan="3">350 ft (MD) to</td> <td>3,355</td> <td>ft (MD)</td> <td>Hole S</td> <td>3,005 ft</td>			350 ft (MD) to			3,355	ft (MD)	Hole S	3,005 ft
Fluid: Type MW (ppg) (ml/30 min) PV (cp) (lb/100 sqft) pH Comm Hole Size: 12-1/4* 8.1.4 81.4 81.4 9.0.9.5		350	ft (TVD)	to	3,234	ft (TVD)	t (TVD) Casing Required:			
Hole Size: 12:ND (KCI) 8.8 - 9.5 20 8 - 14 8 - 14 9.0 - 9.5 Bit / Motor: PDC w/mud motor MWD / Survey: WWD Survey with inclination and azimuth survey (every 100' at a minimum), GR optional Logging: None Pressure Test: NU BOPE and test (as noted above); pressure test 13-3/8" casing to 1,500 psi for 30 minu Casing Specs: 9.625 36.0 J-55 LTC 2,020 3,520 564,000 Loading 1.413 2.72 2.75 Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling hole and 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg equivalent external pressure ex 13.560 Casing Summary: Float shoe, 1 jt casing, float collar, casing to surface Cement: Type Weight (ppg) (cuft/sk) (gal/sk) % Excess Planned TOC Total Cmt Load GroZ Biend 12.3 1.987 10.16 To% 0<	Fluid	Turpo	MM (ppg)		D\/ (cp)		5 4	Comm	onto	
Hole Size: 12-1/4" Bit / Motor: PDC v/mud motor MWD / Survey: MMD Survey with inclination and azimuth survey (every 100° at a minimum), GR optional Logging: None Pressure Test: NU BOPE and test (as noted above); pressure test 13-3/8" casing to 1,500 psi for 30 minu Casing Specs: 9.625 36.0 J-55 LTC Collapse (psi) Burst (psi) (bs) Mut (lb/ft) Grade Conn. Collapse (psi) Burst (psi) (bs) Min. S.F. Assumptions: Collapse: fully evacuated casing with 8.4 pp equivalent external pressure gradient Burst: moximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling hole and 8.4 ppg equivalent external pressure gradient Tension: Supper veing in 8.4 ppg fluid with 10.000 bls over-pull MU Torque (ft lbs): Minumum: 3,400 Optimum: 4,530 Maximum: 5,660 Centralizers per jt stop-banded 10' from each collar on bottom 3 jts, 1 centralizer per 2 jts to surface Centralizers per jt stop-banded 10' from each collar on bottom 3 jts, 1 centralizer per 2 jts to surface Centralizers per jt stop-banded 10' from each collar on bottom 3 jts, 1 centralizer per 2 jts to surface 12.3 <	riulu:							Comm	ients	
Bit / Motor: PDC w/mud motor MWD / Survey: MWD Survey: MWD Survey: NUB OPE and test (as noted above); pressure test 13-3/8" casing to 1,500 psi for 30 minu Casing Specs: 9.625 36.0 J-55 LTC 2,020 3,520 564,000 Loading 1,413 1,295 205,326 1.43 2,72 2,75 Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling hole and 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling hole and 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull MU Torque (ft lbs): Minumum: 3,400 Optimum: 4,530 Maximum: 5,660 Casing Summary: Float shoe, 11 t casing, float collar, casing to surface Cement: Type Vield Weight (ppg) Curt/tks) (glu/sk) % Excess If thm) (sk) Annular Capacity 0.3132 cutht 9-5/8" casing x 12-1/4" hole annulus 0.3132 cutht 9-5/8" casing			8.8 - 9.5	20	8 - 14	8 - 14	9.0 - 9.5			
MWD / Survey: MWD Survey with inclination and azimuth survey (every 100' at a minimum), GR optional Logging: None Pressure Test: NU BOPE and test (as noted above); pressure test 13-3/8" casing to 1,500 psi for 30 minu Casing Specs: 9.625 36.0 J-55 LTC 2,020 3,520 564,000 Min. S.F. 1.413 1,295 205,326 1.413 1,295 205,326 Min. S.F. Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure gradient Burst: maximum anticipated surface pressure gradient MU Torque (ft lbs): Minumm: 3,400 Optimum: 4,530 Maximum: 5,660 Casing Summary: Float shoe, 1 jt casing, float collar, casing to surface Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull MU Torque (ft lbs): Minumar: 3,400 Optimum: 4,530 Maximum: 5,660 Casing Summary: Float shoe, 1 jt casing, float collar, casing to surface Centralizers per jt stop-banded 10' from each collar on bottom 3 jts, 1 centralizer per 2 jts to surface Casing Summary: 0.312 cutrlift 9-5/8" casing x 13-3/8" casing annulus 0.3132 cutrlift			otor							
Logging: None Pressure Test: NU BOPE and test (as noted above); pressure test 13-3/8" casing to 1,500 psi for 30 minu Casing Specs: Specs 9.625 36.0 1-55 LTC 2,020 3,520 564,000 Loading Min. S.F. Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling hole and 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling hole and 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling hole and 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling hole and 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling hole and 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling hole and 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling hole and 8.4 ppg equivalent external pressure gradient Cement: Ceme	-			and azimuth s	urvov (ovorv 10	0' at a minimu	m) CP ontions	1		
Pressure Test: NU BOPE and test (as noted above); pressure test 13-3/8" casing to 1,500 psi for 30 minu Casing Specs: 9,625 36.0 J-55 LTC 2,020 3,520 564,000 Loading 1,413 1,272 2,75 Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fuld inside casing while drilling hole and 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg fuld with 100,000 lbs over-pull MU Torque (ft lbs): Min.S.F. Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Tensin: buoyed weight in 8.4 ppg fuld with 100,000 lbs over-pull MU Torque (ft lbs): Min.S.F. Assumptions: Collapse: fully evacuated casing while drilling hole casing vib 100,000 lbs over-pull MU Torque (ft lbs): Min.S.F. Calend 10' from each collar on bottom 3 jts, 1 centralizer per 2 jts to surface Centralizers p	=	-					ing, div optiona	11		
Casing Specs: Wt (lb/ft) Grade Conn. Collapse (psi) Burst (psi) Tens. Body (lbs) Specs 9.625 36.0 1-55 LTC 2,020 3,520 564,000 Loading 1.413 1.295 205,326 1.43 2.72 2.75 Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure gradient Tension: buoyed weight in 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg equivalent external pressure gradient MU Torque (ft lbs): Minumum: 3,400 Optimum: 4,530 Maximum: 5,660 Casing Summary: Float shoe, 1 it casing, float collar, casing to surface Centralizers per jt stop-banded 10' from each collar on bottom 3 jts, 1 centralizer per 2 jts to surface Cement: Type Weight (ppg) (cuft/sk) (gal/sk) % Excess [ft MD] (sx) Annular Capacity 0.3627 cuft 9-5/8" casing x 13-3/8" casing annulus 0.3627 cuft/ft 9-5/8" casing x 12-1/4" hole annulus Calculated cement volumes assume gauge hole and the excess noted in table Halliburton ECONOCEM & HALCEM cementing blend Notify NMOCD & BLMI f cement is not circulated to surface. Cement is			test (as noted a	hove), pressur	e test 13-3/8"	casing to	1 500	nsi for 30 minu	ites	
Casing Specs: SpecsWt (lb/ft)GradeConn.Collapse (psi)Burst (psi)(lbs)Specs9.62536.0J-55LTC2,0203,520564,000Loading Min. S.F.1,4131,295205,326Assumptions:Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling hole and 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pullMU Torque (ft lbs):Minumum:3,400Optimum:4,530Maximum:5,660Casing Summary:Float shoe, 1 jt casing, float collar, casing to surfaceCentralizers:2 centralizers per jt stop-banded 10' from each collar on bottom 3 jts, 1 centralizer per 2 jts to surfaceCement:TypeWeight (ppg) (cuft/sk)(gal/sk)% Excess(ft MD) (sx)LeadG:POZ Blend12.31.98710.1670%0780TailClass G15.81.1484.9820%2,855164Annular Capacity0.3122cuff(t9-5/8" casing x 13-3/8" casing annulus 0.31320.3132cuff(t9-5/8" casing x 13-3/8" casing annulusCalculated cement volumes assume gauge hole and the excess noted in table Halliburton ECONOCEM & HALCEM cementing blend Notify NMOCD & & BLM if cement is not circulated to surface.PRODUCTION:Drill to TD following directional plan, run casing, cement casing to surface.3,235 [ft (MD)to15,625 ft (MD)Hole Section Length	Flessure lest.	NO BOPE and		bovej, pressu	e lest 13-3/8		1,500	psi for 50 mine	ites.	
Specs 9.625 36.0 J-55 LTC 2,020 3,520 564,000 Loading Min. S.F. 1,413 1,295 205,326 Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling hole and 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull MU Torque (ft lbs): Minumum: 3,400 Optimum: 4,530 Maximum: 5,660 Casing Summary: Float shoe, 1 jt casing, float collar, casing to surface Total Cmt Total Cmt Cement: Type Weight (ppg) (cuft/sk) (gal/sk) % Excess (ft MD) (sx) G:POZ Blend 12.3 1.987 10.16 70% 0 780 Annular Capacity 0.3627 cuft/ft 9-5/8" casing x 12-1/4" hole annulus Calculated cement volumes assume gauge hole and the excess noted in table Holibutron ECONOCEM & HALCEM cementing blend Notify NMOCD & BLM if cement is not circulated to surface. Estimated KOP: 4,739 ft (MD) 4,500 planet ft (TVD) S.234 ft (TVD) to 5,254 ft (MD) 5,174 ft (TVD)	Casing Specs:		Wt (lb/ft)	Grade	Conn.	Collapse (psi)	Burst (psi)	-	Tens. Conn (lbs)	
Loading Min. S.F. 1,413 1,295 205,326 Assumptions: Collapse: fully evacuated cosing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside cosing while drilling hole and 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull MU Torque (ft lbs): Minumum: 3,400 Optimum: 4,530 Maximum: 5,660 Casing Summary: Float shoe, 1 jt casing, float collar, casing to surface Centralizers: 2 centralizers per jt stop-banded 10' from each collar on bottom 3 jts, 1 centralizer per 2 jts to surface Cement: Type Vield Water Planned TOC Total Cmt Icit G:POZ Blend 12.3 1.987 10.16 70% 0 780 Totil Class G 15.8 1.148 4.98 20% 2,855 164 Annular Capacity 0.3627 cuft/ft 9-5/8" casing x 12-1/4" hole annulus Calculated cement volumes assume gauge hole and the excess noted in table Halliburton ECONOCEM & HALCEM cementing blend Notify NMOCD & BLM if cement is not circulated to surface. Cement: 3,355 ft (MD) to 15,625 ft (MD) Hole Section Length: 3,234 ft (TV		9.625							453,000	
Min. S.F. 1.43 2.72 2.75 Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure gradient Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull MU Torque (ft lbs): Minumum: 3,400 Optimum: 4,530 Maximum: 5,660 Casing Summary: Float shoe, 1 jt casing, float collar, casing to surface Maximum: 5,660 Centralizers: 2 centralizers per jt stop-banded 10' from each collar on bottom 3 jts, 1 centralizer per 2 jts to surface Cement: Type Weight (ppg) (cuft/sk) (gal/sk) % Excess (ft MD) (sx) I.ead G:POZ Blend 12.3 1.987 10.16 70% 0 780 Tail Class G 15.8 1.148 4.98 20% 2,855 164 Annular Capacity 0.3627 cuft 9-5/8" casing x 12-1/4" hole annulus Calculated cement volumes assume gauge hole and the excess noted in table Halliburton ECONOCEM & HALCEM cementing blend Notify NMOCD & BLM if cement is not circulated to surface. Cement: 3,355 ft (MD) to 15,625 ft (MD) Hole Section Length: 3,234 ft (TVD) Casing Requi									205,326	
Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling hole and 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull MU Torque (ft lbs): Minumum: 3,400 Optimum: 4,530 Maximum: 5,660 Casing Summary: Float shoe, 1 jt casing, float collar, casing to surface Centralizers: 2 centralizers per jt stop-banded 10' from each collar on bottom 3 jts, 1 centralizer per 2 jts to surface Cement: Type Weight (ppg) (cuft/sk) (gal/sk) % Excess (ft MD) (sx) Lead G:POZ Blend 12.3 1.987 10.16 70% 0 780 Annular Capacity 0.3627 cuft/ft 9-5/8" casing x 13-3/8" casing annulus 0.3132 cuft/ft 9-5/8" casing x 12-1/4" hole annulus Calculated cement volumes assume gauge hole and the excess noted in table Halliburton ECONOCEM & HALCEM cementing blend Notify NMOCD & BLM if cement is not circulated to surface. PRODUCTION: Drill to TD following directional plan, run casing, cement casing to surface. 3,355 ft (MD) to 15,625 ft (MD) Hole Section Length: 3,234 ft (TVD) to 5,254 ft (TVD) Casing Required: Estimated Landing Point: 5,814 ft (MD) 5,174 ft (TVD)	-								2.21	
Estimated KOP: 4,739 ft (MD) 4,500 ft (TVD) Estimated Landing Point: 5,814 ft (MD) 5,145 ft (TVD) Estimated Landing Point: 5,814 ft (MD) 5,174 ft (TVD) Estimated Landing Point: 5,814 ft (MD) 5,174 ft (TVD) Estimated Lateral Length: 7,217 ft (MD)	Casing Summary: Centralizers: Cement: Lead Tail	Float shoe, 1 ji 2 centralizers Type G:POZ Blend Class G 0.3627 0.3132 Calculated cent Halliburton EC	3,400 t casing, float c per jt stop-ban Weight (ppg) 12.3 15.8 cuft/ft cuft/ft nent volumes a ONOCEM & HA	Optimum: ollar, casing to ded 10' from ea Yield (cuft/sk) 1.987 1.148 9-5/8" casing > 9-5/8" casing > ssume gauge h LCEM cementii	4,530 surface ach collar on bo Water (gal/sk) 10.16 4.98 x 13-3/8" casin x 12-1/4" hole of ole and the exo ng blend	Maximum: bttom 3 jts, 1 ce % Excess 70% 20% g annulus annulus bess noted in tak	5,660 entralizer per 2 Planned TOC (ft MD) 0 2,855	Total Cmt (sx) 780 164		
Estimated Landing Point: 5,814 ft (MD) 5,145 ft (TVD) Estimated Point of Entry: 8,408 ft (MD) 5,174 ft (TVD) Estimated Lateral Length: 7,217 ft (MD) 5,174 ft (TVD)	PRODUCTION:	Drill to TD foll 3,355	owing direction ft (MD)	to	15,625 5,254	ft (MD) ft (TVD)	Hole So Cas	sing Required:	12,270 ft 15,625 ft	
Estimated Point of Entry: 8,408 ft (MD) 5,174 ft (TVD) Estimated Lateral Length: 7,217 ft (MD) YP										
Estimated Lateral Length: 7,217 ft (MD) YP YP										
YP							5,174	ft (TVD)		
			Estimated L	ateral Length:	7,217	ft (MD)				
Fluid: Type MW (ppg) FL (mL/30') PV (cp) (lb/100 sqft) pH Comm						YP				
	Fluid:			FL (mL/30')				Comn	nents	
LSND (FW) 8.8 - 9.5 20 8 - 14 8 - 14 9.0 - 9.5 OBM as co		LSND (FW)	8.8 - 9.5	20	8 - 14	8 - 14	9.0 - 9.5	OBM as co	ntingency	

Hole Size: 8-1/2"

Bit / Motor: PDC w/mud motor

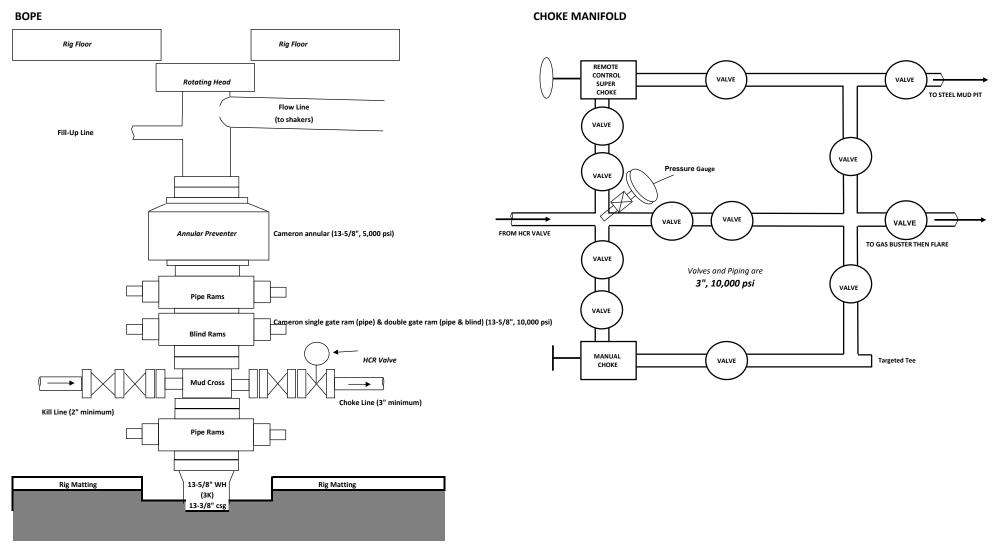
MWD / Survey: MWD with GR, inclination, and azimuth (survey every joint from KOP to Landing Point and survey every 100' minimum before KOP and after Landing Point) Logging: GR MWD for entire section, no mud-log or cuttings sampling, no OH WL logs Pressure Test: NU BOPE and test (as noted above); pressure test 9-5/8" casing to 1,500 psi for 30 minutes. Tens. Body Tens. Conn Size (in) Wt (lb/ft) Collapse (psi) Burst (psi) (lbs) Casing Specs: Grade Conn. (lbs) 5.500 17.0 P-110 LTC 7,460 10,640 546.000 445,000 Specs Loading 2,595 8,992 329,210 329,210 2.87 1.18 1.66 1.35 Min. S.F. Assumptions: Collapse: fully evacuated casing with 9.5 ppg fluid in the annulus (floating casing during running) Burst: 8,500 psi maximum surface treating pressure with 10.2 ppg equivalent mud weight sand laden fluid with 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 9.0 ppg fluid with 100,000 lbs over-pull MU Torque (ft lbs): Minumum 3,470 Optimum: 4,620 Maximum: 5,780 Casing Summary: Float shoe, 1 jt casing, float collar, 1 jt casing, float collar, 1 jt casing, toe-intitiation sleeve, 20' marker joint, toeinitiation sleeve, casing to KOP with 20' marker joints spaced evenly in lateral every 2,000', floatation sub, casing to surface. The toe-initiation sleeves must be positioned INSIDE the 330' unit setback. Centralizers: Centralizer count and placement may be adjusted based on well conditions and as-drilled surveys. Lateral: 1 centralizer per joint Curve: 1 centralizer per joint from landing point to KOP KOP to surf: 1 centralizer per 2 joints Planned TOC **Total Cmt** Yield Water (cuft/sk) Cement: Type Weight (ppg) (gal/sk) % Excess (ft MD) (sx) 50% Lead G:POZ blend 12.4 1.907 9.981 0 944 Tail G:POZ blend 13.3 1.360 5.999 10% 4,650 2,033 cuft/ft 5-1/2" casing x 9-5/8" casing annulus Annular Capacity 0.2691 5-1/2" casing x 8-1/2" hole annulus 0.2291 cuft/ft Calculated cement volumes assume gauge hole and the excess noted in table Halliburton ECONOCEM & EXTENDACEM cementing blend Notify NMOCD & BLM if cement is not circulated to surface. Note: The lateral may be drilled outside the applicaple unit setback to maximize the length of the completed interval and to maximize resource recovery. If the well is drilled outside the setback, the toe initiation sleeve(s) and all perforations will be placed inside the setback. An unorthodox location application is not required because the completed interval will be entirely within the setback as defined and allowed by NMAC 19.15.16.7B(1), NMAC 19.15.16.14B(2), NMAC 19.15.16.15B(2).

FINISH WELL: ND BOP, cap well, RDMO.


COMPLETION AND PRODUCTION PLAN:

Frac: 40 plug-and-perf stages with 240,000 bbls slickwater fluid and 11,000,000 lbs of proppant (estimated)Flowback: Flow back through production tubing as pressures allow (ESP may be used for load recovery assitance)Production: Produce through production tubing via gas-lift into permanent production and storage facilities

ESTIMATED START DATES:


Drilling: TBD Completion: TBD Production: TBD

Prepared by:Alec Bridge1/2/2020

BOPE & CHOKE MANIFOLD DIAGRAMS

NOTE: EXACT BOPE AND CHOKE CONFIRGURATION AND COMPONENTS MAY DIFFER FROM WHAT IS DEPICTED IN THE DIGRAMS BELOW DEPENDING ON THE RIG AND ITS ASSOCIATED EQUIPMENT. RAM PREVENTERS, ANNULAR PREVENTERS, AND CHOKE MANIFOLD AND COMPONENTS WILL BE RATED TO 3,000 PSI MINIMUM.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
ENDURING RESOURCES, LLC	372286
6300 S Syracuse Way, Suite 525	Action Number:
Centennial, CO 80111	168869
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
kpickford	Notify OCD 24 hours prior to casing & cement	12/23/2022
kpickford	Will require a File As Drilled C-102 and a Directional Survey with the C-104	12/23/2022
kpickford	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string	12/23/2022
kpickford	Cement is required to circulate on both surface and intermediate1 strings of casing	12/23/2022
kpickford	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system	12/23/2022

CONDITIONS

Action 168869