U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Sundry Print Report 01/20/2023
Well Name: WINKLER FEDERAL	Well Location: T15S / R30E / SEC 18 / LOT 4 /	County or Parish/State:
Well Number: 1H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM138841	Unit or CA Name:	Unit or CA Number:
US Well Number:	Well Status: Approved Application for Permit to Drill	Operator: MACK ENERGY CORPORATION

Notice of Intent

Sundry ID: 2711865

Type of Submission: Notice of Intent

Date Sundry Submitted: 01/20/2023

Date proposed operation will begin: 01/20/2023

Type of Action: APD Change Time Sundry Submitted: 09:59 5

Procedure Description: Mack Energy Corporation request an APD change to the Csg/Cmt. Add Intermediate Casing-Drill 12 1/4" hole to 1200'. RIH 9 5/8" 36# J-55 ST&C csg 0-1200'. Collapse SF3.237179, Burst SF 7.04, Joint SF 10.76785, Body SF 7.04 Lead Cmt - 355sx Class C + 4% PF20 + 1%PF1+.4pps PF45+.125pps PF29, density 13.5, yield 1.73 100% excess, Slurry top Surface Tail Cmt- 200sx Class C 1% PF 1, density 14.8, yield 1.34, 6.323, 100% excess, Slurry top 1,000 Cu/FT=376 Additives- 20bbls gelled water, 50sx of 11# Scavenger Cmt

NOI Attachments

Procedure Description

Intermediate_Csg_20230120095443.pdf

Cactus_Wellhead_installation_Procedure_20230120095302.pdf

Flex_Hose_Cert_20230120095244.pdf

Variance_request_20230120095220.pdf

Received by OCD: 1/23/2023 7:38:00 AM Well Name: WINKLER FEDERAL	Well Location: T15S / R30E / SEC 18 / LOT 4 /	County or Parish/State: Page 2 of 45
Well Number: 1H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM138841	Unit or CA Name:	Unit or CA Number:
US Well Number:	Well Status: Approved Application for Permit to Drill	Operator: MACK ENERGY CORPORATION

Conditions of Approval

Specialist Review

Conditions_of_Approval_20230120104426.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature	: DEANA WEAVER	Signed on: JAN 20, 2023 09:46 AM
Name: MACK ENERGY CORPO	ORATION	
Title: Production Clerk		
Street Address: 11344 Lovingt	on HWY	
City: Artesia	State: NM	
Phone: (575) 748-1288		
Email address: dweaver@mec	.com	
Field		
Field Representative Name:		
Representative Name:	State:	Zip:
Representative Name: Street Address:	State:	Zip:
Representative Name: Street Address: City:	State:	Zip:
Representative Name: Street Address: City: Phone:	State:	Zip:

BLM Point of Contact

BLM POC Name: JENNIFER SANCHEZ BLM POC Phone: 5756270237 Disposition: Approved Signature: Jennifer Sanchez

BLM POC Title: Petroleum Engineer BLM POC Email Address: j1sanchez@blm.gov

Disposition Date: 01/20/2023

PECOS DISTRICT DRILLING OPERATIONS CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Mack Energy Corporation
LEASE NO.:	NMNM-138841
WELL NAME & NO.:	Winkler Federal 1H
SURFACE HOLE FOOTAGE:	0606' FSL & 0030' FWL
BOTTOM HOLE FOOTAGE	0001' FSL & 0330' FWL Sec. 18, T. 15 S., R 30 E.
LOCATION:	Section 19, T. 15 S., R 30 E., NMPM
COUNTY:	Chaves County, New Mexico

The Gamma Ray and Neutron well logs must be run from total depth to surface and e-mailed to Aleksandr Knapowski at <u>cknapowski@blm.gov</u> or hard copy mailed to 2909 West Second Street Roswell, NM 88201 to his attention.

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Chaves and Roosevelt Counties

Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201. During office hours call (575) 627-0272. After hours cll (575) 627-0205.

A. Hydrogen Sulfide

- 1. Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.
- Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. If the drilling rig is removed without approval an Incident of Non-Compliance will be written and will be a "Major" violation.

- 3. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area.
- 4. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

B. CASING

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Centralizers required on surface casing per Onshore Order 2.III.B.1.f.

Wait on cement (WOC) for Water Basin:

After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.

Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

Possibility of water flows in the Rustler, Queen, Salado and Artesia Group. Possibility of lost circulation in the Rustler, Artesia Group, and San Andres.

- 1. The **13-3/8** inch surface casing shall be set at approximately **450** feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 feet above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - **b.** Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the **9-5/8** inch intermediate casing is:

Cement to surface. If cement does not circulate see B.1.a, c-d above.

Centralizers required on horizontal leg, must be type for horizontal service and a minimum of one every other joint.

3. The minimum required fill of cement behind the 7 X 5-1/2 inch production casing is:

Cement to surface. If cement does not circulate, contact the appropriate BLM office.

4. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

C. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API 53.
- 2. Variance approved to use flex line from BOP to choke manifold. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. If the BLM inspector questions the straightness of the hose, a BLM engineer will be contacted and will review in the field or via picture supplied by inspector to determine if changes are required (operator shall expect delays if this occurs).
- 3. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 3000 (3M) psi (testing to 2,000 psi).
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Operator shall perform the intermediate casing integrity test to 70% of the casing burst. This will test the multi-bowl seals.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

- 4. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. The tests shall be done by an independent service company utilizing a test plug **not a cup or J-packer**.
 - c. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - d. The results of the test shall be reported to the appropriate BLM office.
 - e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
 - f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.

D. DRILL STEM TEST

If drill stem tests are performed, Onshore Order 2.III.D shall be followed.

E. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JAM 01202023

Received by OCD: 1/23/2023 7:38:00 AM

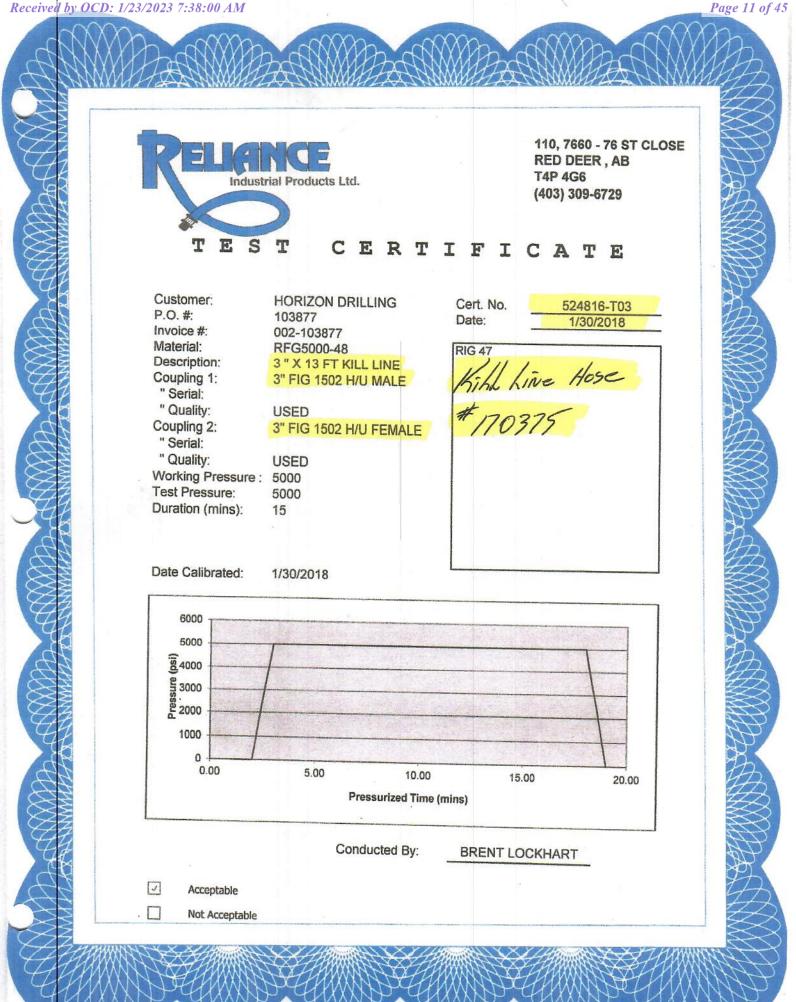
Casing Design	Well:	Winl	kler Fe	deral #1H							
String Size & Function	:		9 5/8	in	surface			i	ntermediate	X	
Total Depth:	1200	ft			TVD:			1200	<u>)</u> ft		
Pressure Gradient for	Calculation	ıs				(While drilling	g)			
Mud weight, <u>collapse</u> :			10	#/gal		Sa	ifety Factor C	Collapse	1.125		
Mud weight, <u>burst</u> :			10	#/gal		S	afety Factor	Burst:	1.25		
Mud weight for joint s	trength:		10	#/gal	Safe	ety F	actor Joint St	trength	1.8		
BHP @ TD for:	collapse:		624	psi	Bur	st:	624 ps	si, joir	nt strength:	624	psi
Partially evacuated he	ole?	Pres	sure gr	radient rer	naining:	-	10 #/	gal			
Max. Shut in surface	pressure:			50	0 psi						
1st segment	1200		to		0 ft		Make u			Total ft =	1200
O.D. 9.625 inches	Wei 36	ght #/ft		Grade J-55	Threads ST&C		opt. mi 3,940	in. 2,960	mx. 4,930		
Collapse Resistance 2,020 psi	Intern: 3,520	al Yie psi	ld		Strength 4 ,000 #		Body Yie 564 ,00		Drift 8.765		
•		•				1000					
2nd segment		ft	to		ft		Make u	p Torqu	e ft-Ibs	Total ft =	0
O.D. inches	Wei	ght #/ft		Grade	Threads	s o	pt. mi	in.	mx.		
Collapse Resistance	Intern	83	ld	Joint S	Strength		Body Yie	eld	Drift		
psi		psi			,000 #		,00	00 #			
0-1		64	4-		0.4		Malaa	. .	- 4-11	T-4-1 4 -	0
3rd segment O.D.	0 Wei	ft aht	to	Grade	0 ft Threads	5 0	Make up pt. mi		e ft-lbs mx.	Total ft =	0
inches		#/ft									
Collapse Resistance	Intern		ld	Joint S	Strength .000 #		Body Yie	eld 00 #	Drift		
psi		psi			,000 #		,01	00 #		_	
4th segment	0	ft	to		0 ft		Make u	p Torqu	e ft-Ibs	Total ft =	0
O.D. inches	Wei	ght #/ft		Grade	Threads	s o	opt. mi	in.	mx.		
Collapse Resistance	Intern	<u>8</u> 2	ld	Joint S	Strength		Body Yie	əld	Drift		
psi		psi			,000 #		,0(00 #			
5th segment	0	ft	to		0 ft		Make u	n Torqu	e ft-lbs	Total ft =	0
O.D.	Wei			Grade	Threads	s 0	ppt. mi		mx.		0
inches	Intern	#/ft	اما	laint C			Dedu Vie		Drift		
Collapse Resistance psi	mem	psi	iu	Joint C	Strength ,000 #		Body Yie ,00	90 00 #	Drift		
6th segment		ft	to		0 ft		Make u		e ft-lbs	Total ft =	0
O.D. inches	Wei	ght #/ft		Grade	Threads	s o	pt. mi	in.	mx.		
Collapse Resistance	Intern	al Yie	ld	Joint S	Strength		Body Yie		Drift		
psi		psi			,000 #		,01	00 #			
Select 1st segme	nt bottom				12	00		S.F.	Actual		Desire
4000 #		4		1		-		ollapse	3.237179	>=	1.125
1200 ft to 9.625 0	0 J-55	ft ST&	С					ırst-b ırst-t	7.04 7.04	>=	1.25
	Top of seg	ment				0		S.F.	Actual		Desire
Select 2nd segme	ent from bot	tom						ollapse urst-b	#DIV/0! 0	>= >=	1.125 1.25
				-			20	·	-		

burst-t 0 jnt strngth 10.76785

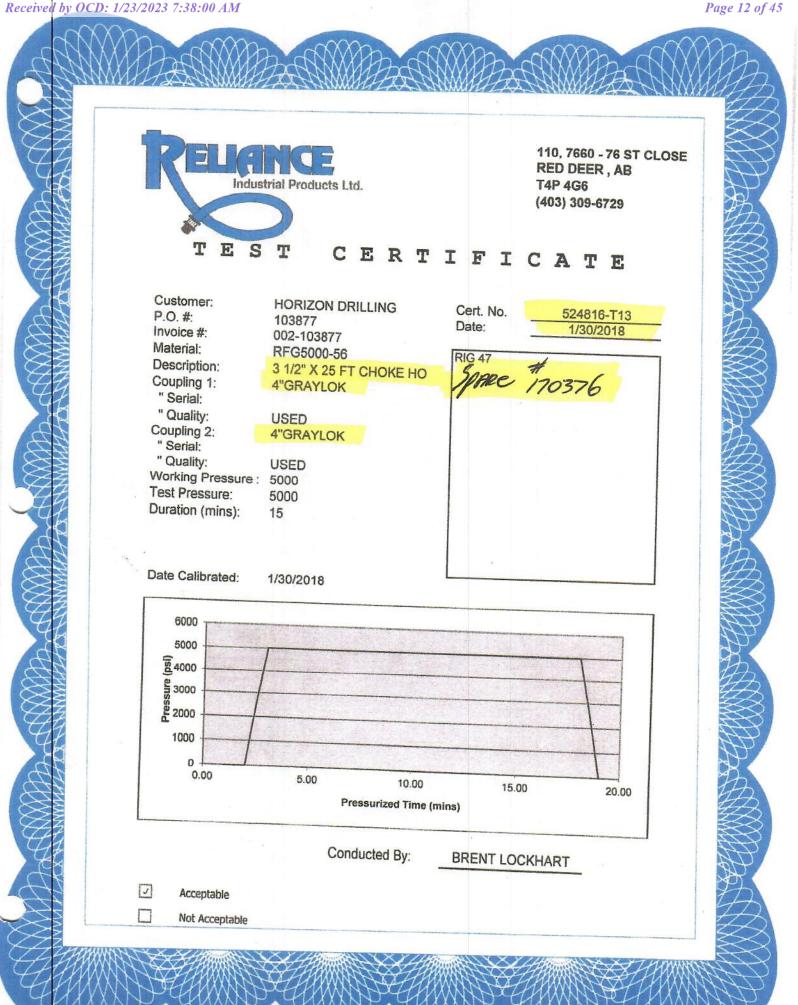
>=

1.8

0


0 ft to 0 0 ft 0

0


.

Variance request: A variance is requested to use a Multi Bowl System and Flex Hose as the choke line from the BOP to the Choke Manifold. If this hose is used, a copy of the manufacturer's certification and pressure test will be kept on the rig.

Received by OCD: 1/23/2023 7:38:00 AM

Received by OCD: 1/23/2023 7:38:00 AM

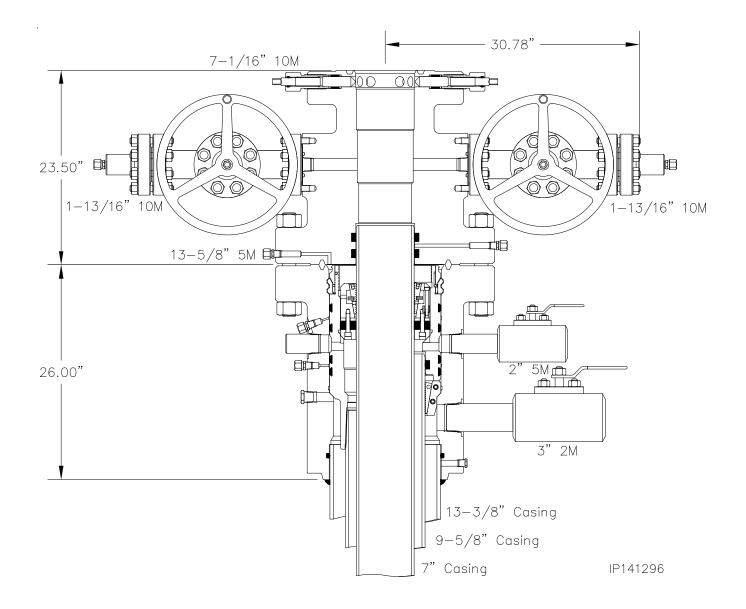
Installation Procedure Prepared For:

Mack Energy Corporation 13-3/8" x 9-5/8" x 7" 10M

13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

Publication # IP0228

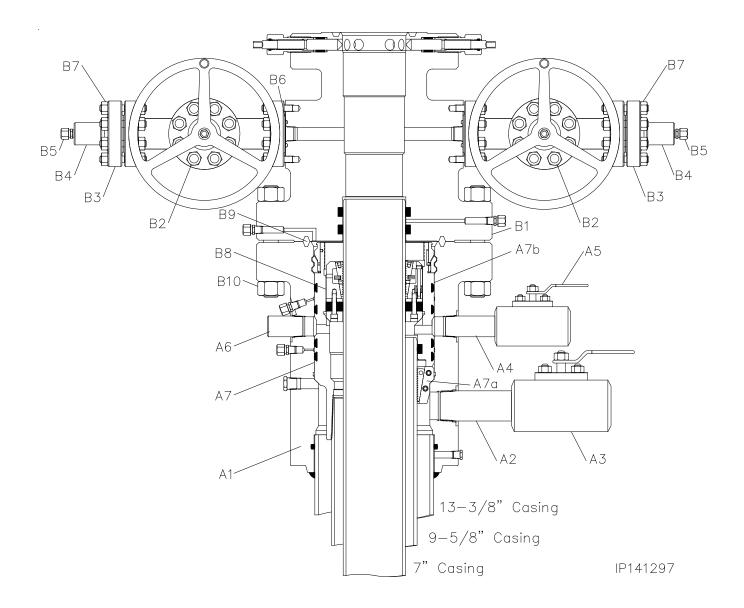
May, 2014


INFORMATION CONTAINED HEREIN IS THE PROPERTY OF CACTUS WELLHEAD, LLC. REPRODUCTION, DISCLOSURE, OR USE THEREOF IS PERMISSIBLE ONLY AS PROVIDED BY CONTRACT OR AS EXPRESSLY AUTHORIZED BY CACTUS WELLHEAD, LLC .

Released to Imaging: 1/24/2023 7:36:20 AM

Table of Contents

	System Drawing	1
	Bill of Materials	2
Stage 1 —	Install the MBU-LR Wellhead Housing	4
Stage 2 —	Test the BOP Stack	
Stage 3 —	Run the Lower Wear Bushing	6
0	Run the Wear Bushing Before Drilling	6
	Retrieve the Wear Bushing After Drilling	
Stage 4 —	Hang Off the 9-5/8" Casing	
	Running the 13-5/8" Wash Tool	
	Seal Test	
	Engaging the Lockring Retrieving The Casing Hanger	
Charles 4.4		
Stage 4A —	Hang Off the 9-5/8" Casing (Emergency)	
Stage 4B —	Install the 9-5/8" MBU-LR Emergency Packoff	17
	Landing the Packoff	
	Seal Test Engaging the Lockring	
	Retrieving the Packoff	
Stage 5 —	Test the BOP Stack	
Stage 6 —	Run the Upper Wear Bushing	23
0190 0	Run the Wear Bushing Before Drilling	23
	Retrieve the Wear Bushing After Drilling	23
Stage 7 —	Hang Off the 7" Casing	
Stage 8 —	Install the Tubing Head	26
0	Seal Test	27
	Flange Test	28
	Recommended Procedure for Field Welding Pipe to	
	Wellhead Parts for Pressure Seal	29


System Drawing

Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

Bill of Materials

Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

Released to Imaging: 1/24/2023 7:36:20 AM

IP 0228

MBU-LR HOUSING ASSEMBLY					
ltem	Qty	Description			
A1	1	Housing, CW, MBU-LR, 13-5/8" 5M x 13-3/8" SOW, with two 2" line pipe upper outlets and one 3" line pipe lower outlet, one piece, 6A-PU-AA-1-1 Part # 102513			
A2	1	Nipple, 3" line pipe x 12" long, XH Part # 101610			
A3	1	Ball Valve, KF, AH, 3 RP 2M LP, DI: Body, CS: Trim, nylon seats, HNBR: seals, with handle standard non-nace service Part # 100535			
A4	1	Nipple, 2" line pipe x 6" long, XH Part # NP6A			
A5	1	Ball Valve, 2" RP, 5M LP x 2" LP, WCB body, 304SS ball, CR13 stem, RPTFE seats, API 596 Part # 103877			
A6	1	Bull Plug, 2" line pipe solid, 4130 60K Part # BP2P			
A7	1	Casing Hanger, CW, MBU-LR, 13-5/8" x 9-5/8" LC box bottom x 11.250" 4 Stub Acme 2G LH box top, mandrel, 6A-U-AA-1-1 Part # 100482			

Г

EMERGENCY EQUIPMENT				
Item Qty	Description			
A7a 1	Casing Hanger, CW, MBU, 13-5/8" x 9-5/8" 6A-PU-DD-3-1 Part # 100569			
A7b 1	Packoff, CW, MBU-LR Emergency, 13-5/8" x 11" x 9-5/8" with 11.250" 4 Stub Acme 2G LH top, slotted for CL outlets, 6A-PU-AA-1-1 Part # 100538			

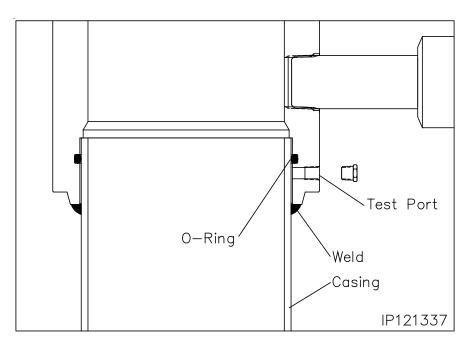
TUBING HEAD ASSEMBLY					
tem Qty	Description				
B1 1	Tubing Head, CW, CTH-DBLHPS, 7, 13-5/8" 5M x 7-1/16" 10M, with two 1-13/16" 10M studded outlets 6A-PU-EE- 0,5-2-1 Part #				
B2 2	Gate Valve, DSG-22, 1-13/16" 10M, flanged end, EE-0,5 trim, (6A-PU-EE-0,5-3-1) Part # 102284				
B3 2	Companion Flange, 1-13/16" 10M x 2" line pipe (5,000 psi max WP), (6A-PU-EE-NL-1) Part # 200010				
B4 2	Bull Plug, 2" line pipe x 1/2" line pipe, API 6A-DD-NL Part # BP2T				
B5 2	Fitting, Grease, Vented Cap, 1/2" NPT, Alloy Non-Nace Part # FTG1				
B6 4	Ring Gasket, 151, 1-13/16" 10M Part # BX151				
B7 16	Studs, all thread with two nuts, black, 3/4" x 5-1/2" long, B7/2H Part # 780080				
B8 1	Casing Hanger, C22, 11" x 7" Part # 50020				
B9 1	Ring Gasket, 160, 13-5/8" 5M Part # BX160				
310 16	Studs, all thread with two nuts, black, 1-5/8" x 12-3/4" long, B7/2H Part # 780087				

Item	Qty	Description
ST1	1	Test Plug/Retrieving Tool, CW, 13-5/8" x 4-1/2" IF, 1-1/4" LP bypass and spring loaded lift dogs Part # 800002
ST2	1	Wear Bushing, CW, MBU-LR-LWR, 13-5/8" x 12.38" ID x 20.31" long Part # 100546
ST3	1	Casing Hanger Running Tool, CW, MBU-LR, 13-5/8" x 9-5/8" long casing box top x 11.250" 4 Stub Acme LH pin bottom, 4140 110K Part # 102304
ST4	1	Packoff Running Tool, CW, MBU-LR, 13-5/8" x 4-1/2" IF box bottom and top, with 11.250" 4 Stub Acme 2G LH pin bottom Part # 100556
ST5	1	Test Plug/Retrieving Tool, CW, 11" x 4-1/2" IF, 1-1/4" LP bypass and spring loaded lift dogs Part # 800001
ST6	1	Wear Bushing, MBU-LR-UPR, 13-5/8" x 11" x 9.00" l.D. x 16.0" long Part # 102789
ST7	1	Wash Tool, CW, Casing Hanger, MBU-LR/MBS2, fluted, 13-5/8" x 4-1/2" IF box top threads, fabricated Part # 102787

	TA CAP ASSEMBLY					
Item	Qty	Description				
C1	1	Flange, Blind, 7-1/16" 10M X 1/2 LP ,With Two 3/4" Part # 101464				
C2	1	Needle Valve, MFA, 1/2" Line Pipe, 10M Part # NVA				
C3	12	Studs, All Thread With Two Nuts, Black, 1-1/2" X 11-3/4' Long, B7/H2 Part # 780082				

Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

Stage 1 — Install the MBU-LR Wellhead Housing


- 1. Run the conductor and 13-3/8" surface casing to the required depth and cement as required.
- 2. Determine the correct elevation for the MBU-LR Wellhead Assembly.
- Cut the 13-3/8" at 53.5" below the cellar to accommodate the wellhead. Grind stub level with the horizon and place an 1/8" x 1/8" bevel on the OD of the stub.

Note: The slip on and weld preparation is 4.25" in depth.

- Examine the 13-5/8" 5M x 13-3/8" SOW MBU-LR Wellhead Assembly (Item A1). Verify the following:
 - bore is clean and undamaged
 - weld socket is clean and free of grease and debris and o-ring is in place and in good condition
 - all seal areas are clean and undamaged
 - valves are intact and in good condition
- 5. Align and level the Wellhead Assembly over the casing stub, orienting the outlets so they will be compatible with the drilling equipment.
- 6. Remove the pipe plug from the port on the bottom of the Head.
- Slowly and carefully lower the assembly over the casing stub, weld and test the MBU-LR housing to the surface casing.
- 8. Replace the pipe plug in the port on the bottom of the housing.

Note: The weld should be a fillet-type weld with legs no less than the wall thickness of the casing. Legs of 1/2" to 5/8" are adequate for most jobs.

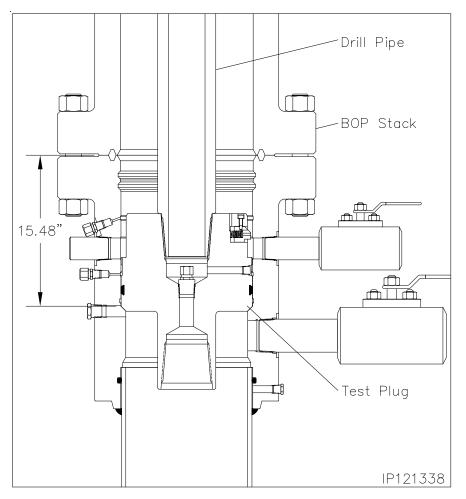
Refer to the back of this publication for the **Recommended Procedure for Field Welding Pipe to Wellhead Parts for Pressure Seal** and for field testing of the weld connection. MBU-LR Wellhead Housing 13-5/8" 5M x 13-3/8" SOW BX-160 26.00" 4.25" C-Ring IP121336

Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

IP 0228

Stage 2 — Test the BOP Stack

Immediately after making up the BOP stack and periodically during the drilling of the well for the next casing string the BOP stack (connections and rams) must be tested.


- Examine the 13-5/8" Nominal x 4-1/2" IF CW Test Plug/ Retrieving Tool (Item ST1). Verify the following:
 - 1-1/4" VR plug and weep hole plug are in place and tightened securely
 - elastomer seal is in place and in good condition
 - retractable lift lugs are in place, clean, and free to move
 - drill pipe threads are clean and in good condition

Note: Prior to installing the BOP it is recommended to attain an accurate RKB dimension for future use for accurately landing test plugs and casing hangers. This dimension is attained by dropping a tape measure from the rig floor to the top of the wellhead flange. Pull tape taut and record the dimension from the wellhead to the top of the rig floor or kelly bushings. Ensure this dimension is placed on the BOP board in the dog house and on the drillers daily report sheet.

2. Position the test plug with the elastomer seal down and the lift lugs up and make up the tool to a joint of drill pipe.

WARNING: Ensure that the lift lugs are up and the elastomer seal is down

- Remove the 1/2" NPT pipe plug from the weep hole if pressure is to be supplied through the drill pipe.
- 4. Open the housing side outlet valve.
- 5. Lightly lubricate the test plug seal with oil or light grease.

- Carefully lower the test plug through the BOP and land it on the load shoulder in the housing, 15.48" below the top of the housing.
- 7. Close the BOP rams on the pipe and test the BOP to 5,000 psi.

Note: Any leakage past the test plug will be clearly visible at the open side outlet valve.

8. After a satisfactory test is achieved, release the pressure and open the rams.

 Remove as much fluid as possible from the BOP stack and the retrieve the test plug with a straight vertical lift.

Note: When performing the BOP blind ram test it is highly recommended to suspend a stand of drill pipe below the test plug to ensure the plug stays in place while disconnecting from it with the drill pipe.

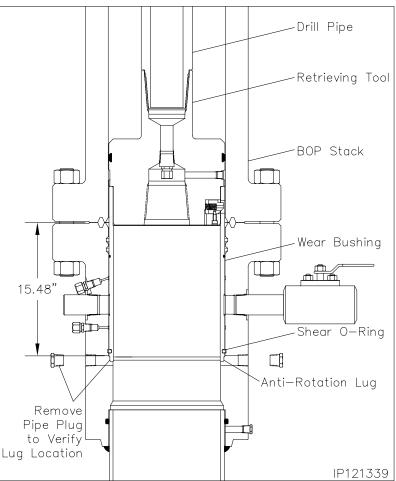
10. Repeat this procedure as required during the drilling of the hole section.

Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

Stage 3 — Run the Lower Wear Bushing

Note: Always use a Wear Bushing while drilling to protect the load shoulders from damage by the drill bit or rotating drill pipe. The Wear Bushing **must be retrieved** prior to running the casing.

- 1. Examine the **13-5/8" Nominal MBU-LR-LWR Wear Bushing (Item ST2).** Verify the following
 - internal bore is clean and in good condition
 - o-ring is in place and in good condition
 - shear o-ring cord is in place and in good condition
 - paint anti-rotation lugs white and allow paint to dry


Run the Wear Bushing Before Drilling

- Orient the 13-5/8" Nominal x 4-1/2" IF CW Test Plug/Retrieving Tool (Item ST1) with drill pipe connection up.
- 3. Attach the Retrieving Tool to a joint of drill pipe.
- 4. Align the retractable lift lugs of the tool with the retrieval holes of the bushing and the carefully lower the tool into the Wear Bushing until the lugs snap into place.

Note: If the lugs did not align with the holes, rotate the tool in either direction until they snap into place.

- 5. Apply a heavy coat of grease, not dope, to the OD of the bushing.
- 6. Slowly lower the Tool/Bushing Assembly through the BOP stack and land it on the load shoulder in the housing, 15.48" below the top of the housing.
- 7. Rotate the drill pipe clockwise (right) to locate the stop lugs in their mating notches in the head. When properly aligned the bushing will drop an additional 1/2".
- 8. Remove one of the 1" sight port pipe plugs from the OD of the housing and look through the hole to verify the lug has engaged the slot. The painted lug will be clearly visible through the port. Reistall the pipe plug and tighten securely.

Note: The Shear O-Ring on bottom of the bushing will locate in a groove above the load shoulder in the head to act as a retaining device for the bushing.

- Remove the Tool from the Wear Bushing by rotating the drill pipe counter clockwise (left) 1/4 turn and lifting straight up.
- 10. Once set is highly recommended to inject a minimum of two full tubes of grease through the housing test ports To keep trash from accumulating behind the bushing.
- 11. Drill as required.

Note: It is highly recommended to retrieve, clean, inspect, grease, and reset the wear bushing each time the hole is tripped during the drilling of the hole section.

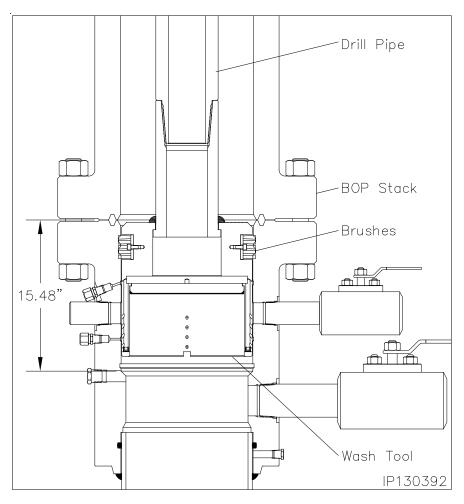
Retrieve the Wear Bushing After Drilling

- 12. Make up the Retrieving Tool to the drill pipe .
- 13. Slowly lower the Tool into the Wear Bushing.
- 14. Pick up and balance the riser weight.
- 15. Rotate the Retrieving Tool clockwise until a positive stop is felt. This indicates the lugs have snapped into the holes in the bushing.
- 16. Retrieve the Wear Bushing, and remove it and the Retrieving Tool from the drill string.

Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

IP 0228

Stage 4 — Hang Off the 9-5/8" Casing

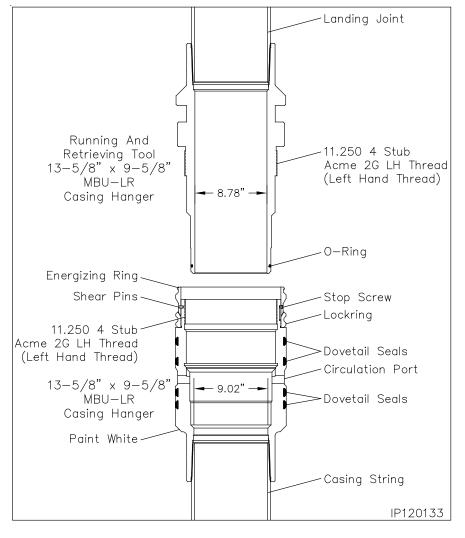

Due to the possible build up of debris in the bore and lockring groove of the MBU-LR wellhead it is recommended to run the 13-5/8" Wash Tool prior to running the 9-5/8 casing.

Running the 13-5/8" Wash Tool

- Examine the 13-5/8" x 4-1/2" IF Wash Tool (Item ST7). Verify the following:
 - drill pipe threads and bore are clean and in good condition
 - all ports are open and free of debris
 - brushes are securely attached and in good condition
- 2. Orient the Wash Tool with drill pipe box up. Make up a joint of drill pipe to the tool.
- Carefully lower the Wash Tool through the BOP and land it on top of the 9-5/8" casing hanger, 15.48" below the top flange of the housing.
- 4. Place a paint mark on the drill pipe level with the rig floor and then pick up on the tool approximately 1".
- 5. Attach a high pressure water line to the end of the drill pipe and pump water through the tool and up the Diverter stack.
- While flushing, raise and lower the tool the full length of the wellhead and BOP stack. The drill pipe should be slowly rotate while raising and lowering to wash the inside of the housing and BOP stack to remove all caked on debris.
- 7. Once washing is complete, shut down pumps and then open the housing lower outlet valve and drain the BOP stack.

Note: If returns are not clean, continue flushing until they are.

8. Once the returns are clean and free of debris, retrieve the tool to the rig floor.



Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

Stage 4 — Hang Off the 9-5/8" Casing

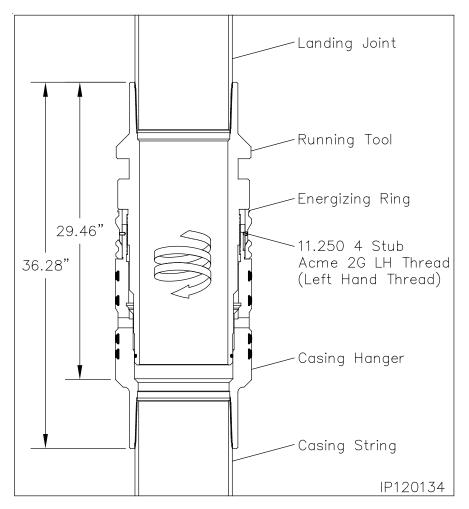
The 9-5/8" MBU-LR casing hanger and running and retrieving tool should be shipped to location pre assembled as a full joint. If not, follow steps 1 through for assembling on the pipe rack.

- 1. Examine the 13-5/8" x 9-5/8" LC MBU-LR Casing Hanger (Item A7). Verify the following:
 - bore and internal Acme threads are clean and in good condition
 - lockring is in place and free to rotate
 - energizing ring is in its upper most position and secured with shear pins
 - dovetail seals are clean and in good condition
 - pup joint is in good condition and properly made up. Thoroughly clean, inspect, and lubricate pin threads
 - paint the 45° load shoulder white as indicated
- Examine the 13-5/8" x 9-5/8" LC MBU-LR Casing Hanger Running and Retrieving Tool (Item ST3). Verify the following:
 - bore is clean and free of debris
 - O.D. Acme threads are clean and in good condition
 - o-ring is in place and in good condition
 - proper length landing joint is made up in top of the tool with thread lock compound

IP 0228

Stage 4 — Hang Off the 9-5/8" Casing

- 3. Thoroughly clean and lightly lubricate the mating Acme threads and seal surfaces of the hanger and running tool.
- 4. Carefully slide the running tool into the hanger and then rotate the tool clockwise (Right) to locate the thread start and then counter clockwise (Left) approximately 8 turns or until the tool makes contact with the top of the energizing ring.

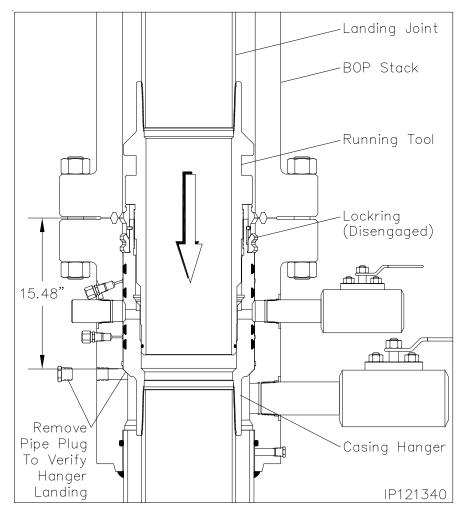

WARNING: Do Not apply torque to the Hanger/Tool connection.

5. Run the 9-5/8" casing as required and space out appropriately for the mandrel casing hanger.

Note: If the 9-5/8" casing becomes stuck and the mandrel casing hanger can not be landed, Refer to **Stage 4A** for the emergency procedure.

- 6. Set the last joint of casing run in the floor slips.
- 7. Pick up the casing hanger/running tool assembly and make it up in the casing string. Torque connection to thread manufacturer's optimum make up torque.
- 8. <u>Using chain tongs only</u>, back off the running tool with clockwise rotation (Right) one full turn to verify ease of operation and then re make the connection with counter clockwise rotation (Left) just until contact with the energizing ring is.

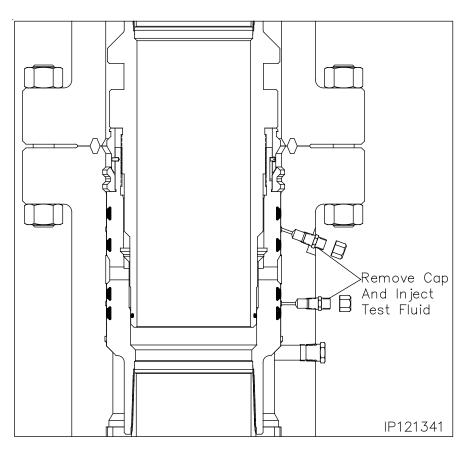
WARNING: Do Not apply torque to the Hanger/Tool connection.



Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

Stage 4 — Hang Off the 9-5/8" Casing

- 9. Calculate the total landing dimension by adding the previously attained RKB dimension and 15.48", the depth of the wellhead.
- 10. Drain the BOP stack and wellhead through the 3" ball valve.
- Starting at the top of the 45° angle load shoulder of the casing hanger measure up 5 feet and place a horizontal paint mark on the landing joint and write 5 next to the mark.
- 12. Using the 5 foot stick, slowly and carefully lower the Hanger through the BOP, marking the landing joint at five foot increments until you come to the calculated total landing dimension. Place a paint mark on the landing joint at that dimension and write the landing dimension next to the mark. Place an additional mark on the landing joint 1-1/2" above the first mark and write engaged.
- 13. Continue carefully lowering the hanger through the BOP stack and land it on the load shoulder in the housing, 15.48" below the top of the MBU-LR housing and slack off all weight and verify that the landing dimension paint mark has aligned with the rig floor.
- 14. Locate the 1" LP sight port on the lower O.D. of the housing and remove the pipe plug.
- 15. Look through the port to verify the hanger is properly landed. The white painted load shoulder will be clearly visible in the open port.
- 16. Reinstall the 1" pipe plug and tighten securely.



IP 0228

Stage 4 — Hang Off the 9-5/8" Casing

Seal Test

- 17. Locate the upper and lower seal test fittings on the O.D. of the housing and remove the dust caps from both fittings.
- 18. Attach a test pump to one of the open fittings and pump clean test fluid between the seals until a stable test pressure of 5,000 psi is attained.
- 19. If a leak develops, bleed off test pressure, remove the hanger from the wellhead and replace the leaking seals.
- 20. Repeat steps 17 through 19 for the remaining seal test.
- 21. After satisfactory test are achieved, bleed off all test pressure, remove test pump and reinstall the dust caps on the open fittings

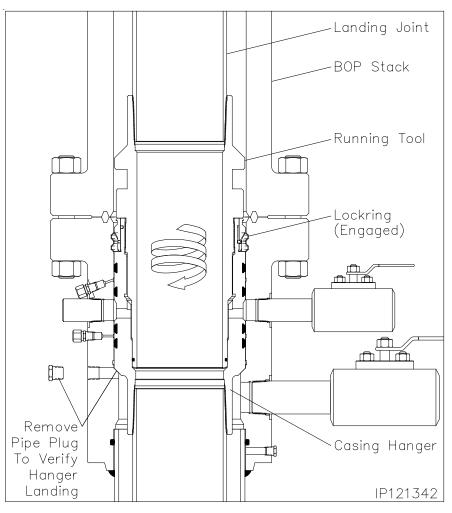
Stage 4 — Hang Off the 9-5/8" Casing

Engaging the Lockring

22. Using Chain Tongs Only located <u>180° apart</u>, rotate the landing joint approximately 6 turns counter clockwise (Left) to engage the casing hanger lockring in its mating groove in the bore of the MBU-LR housing.

Note: Approximately 800 to 900 ft. lbs. of torque will be required to break over the shear pins in the hanger. The torque will drop off and then increase slightly when the energizing ring pushes the lockring out. A positive stop will be encountered when the lockring is fully engaged.

Note: When properly engaged the second paint mark on the landing joint will align with the rig floor.


WARNING: It is imperative that the landing joint remain concentric with the well bore when rotating to engage the lockring. This can be accomplished with the use of the air hoist.

WARNING: If the required turns to engage the lockring or not met or excessive torque is encountered, remove the casing hanger and call Houston Engineering.

- 23. Back off the landing joint/running tool approximately three turns clockwise (Right). Using the elevators, exert a 30,000 lbs. over string weight pull on the landing joint to confirm positive lockring engagement.
- 24. Slack off all weight and place a vertical paint mark on the landing joint to verify if the casing string rotates during the cementing process.

Note: It is not necessary to remake the casing hanger running tool connection after the over pull. If desired two counter clockwise rotations may be made but full make up is not required.

25. Cement the casing as required, taking returns through the lower 3" outlet.

- 26. With cement in place, bleed off cement pressure and remove cementing equipment.
- If well condition permit, remove the 1" sight port pipe plug to observe if the hanger rotates during the removal of the running tool.
- 28. Using Chain Tongs Only located <u>180° apart</u>, retrieve the Running Tool and landing joint by rotating the landing joint clockwise (Right) an additional 11 turns or until the tool comes free of the hanger. Retrieve the tool with a straight vertical lift.
- 29. Reinstall the 1" pipe plug and tighten securely.

IP 0228 Page 12

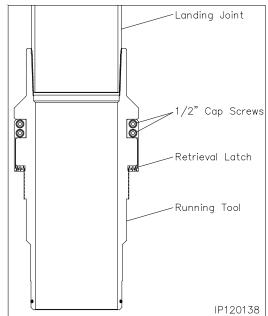
Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

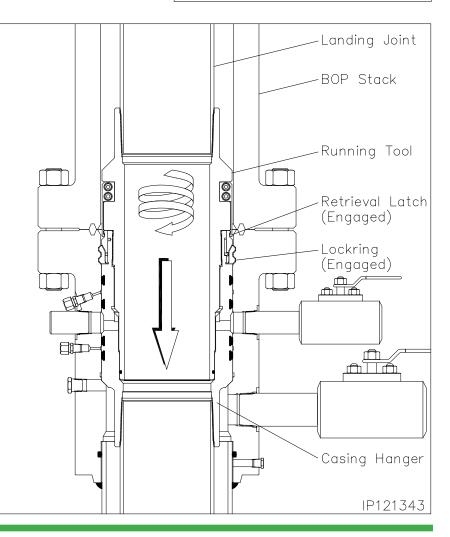
Stage 4 — Hang Off the 9-5/8" Casing

Retrieving The Casing Hanger

In the event that the casing hanger needs to be remove the 13-5/8" x 9-5/8" MBU-LR Casing Hanger Running and retrieving tool can be fitted with a retrieval latch that will lift the casing hanger energizing ring and allow the lockring to disengage.

- 1. Examine the **13-5/8**" x **9-5/8**" LC MBU-LR Casing Hanger Running and Retrieving Tool (Item ST3). Verify the following:
 - bore is clean and free of debris
 - O.D. Acme threads are clean and in good condition
 - o-ring is in place and in good condition
 - proper length landing joint is made up in top of the tool with thread lock compound
 - retrieval latch is available and in good condition
- 2. Thoroughly clean and lightly the latch groove of the tool with oil or light grease.
- 3. Remove the (4) 1/2" cap screws retaining the two halves of the retrieval latch.
- Install the retrieval latch around the Retrieving Tool body as indicated and reinstall the 1/2" cap screws. Tighten screws securely.


WARNING: Ensure the latch rotates freely on the tool. If not remove and check the latch and tool for burrs or imperfections in the groove.

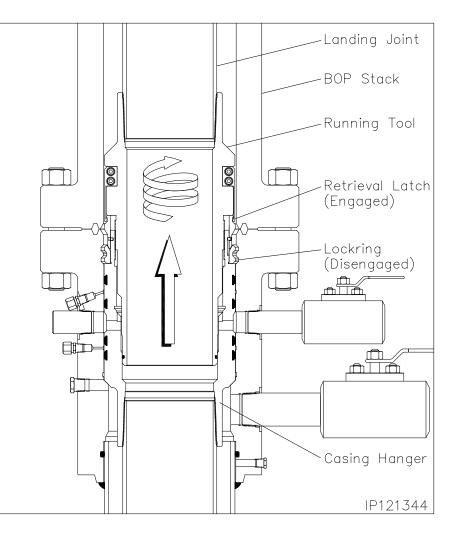

- 5. Thoroughly clean and lightly lubricate the seal surfaces and Acme threads of the tool with oil or a light grease.
- 6. Using the casing elevators, carefully lower the tool through the BOP stack and into the casing hanger bore until the tool contacts the top of the hanger Acme threads

Note: Contact should be made at previously attained RKB dimension.

7. Using chain tongs only located 180° apart, rotate the landing joint clockwise (Right) to locate the thread start then counter clockwise (Left) approximately 13 turns.

WARNING: Slowly make the last two revolutions. The torque will increase slightly as the latch passes over the top of the energizing ring and snaps into position under the lip of the ring.

Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

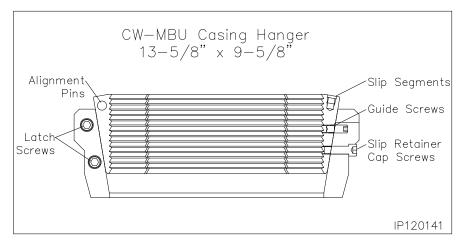

Stage 4 — Hang Off the 9-5/8" Casing

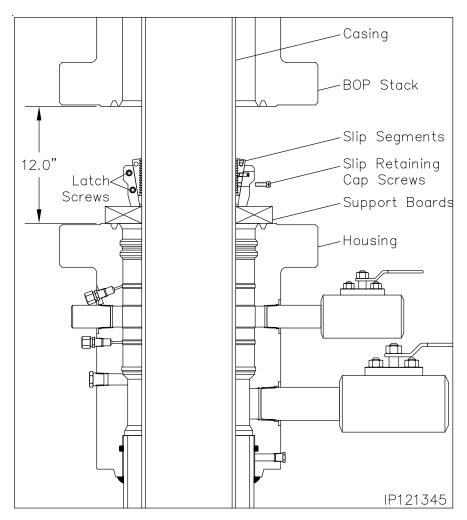
WARNING: The landing joint must remain concentric with the well bore when screwing into the hanger.

 With positive engagement attained, reposition the tongs for clockwise (Right) rotation and then rotate the landing joint approximately 6 turns to lift the energizing ring and release the lockring.

Note: The landing joint should rise approximately 1-1/2" and come to a positive stop against the stop screws.

- 9. Halt rotation and remove the chain tongs.
- 10. Using the drill pipe elevators, slowly pick up on the casing hanger and retrieve it from the wellhead.
- 11. With the tool and hanger at the rig floor, set the casing in the floor slips and slack off.
- 12. Rotate the landing joint counter clockwise (Left) one turn.
- 13. Remove the (4) 1/2" cap screws from the retrieval latch and remove the latch assembly from the tool.
- 14. Remove the casing hanger and running tool from the casing string.




IP 0228

Stage 4A — Hang Off the 9-5/8" Casing (Emergency)

Note: The following procedure should be followed **ONLY** if the 9-5/8" casing should become stuck in the hole. If the casing did not get stuck and is hung off with the Mandrel Casing Hanger, skip this stage.

- 1. Cement the hole as required.
- 2. Drain the BOP stack through the housing side outlet valve.
- 3. Separate the connection between the BOP and the MBU-LR housing.
- 4. Pick up on the BOP stack a minimum of 12" and secure with safety slings.
- 5. Washout as required.
- Examine the 13-5/8" x 9-5/8" MBU Slip Casing Hanger (Item A7a). Verify the following:
 - slips and internal bore are clean and in good condition
 - all screws are in place
- There are two latch screws located in the top of the casing hanger. Using a 5/16" Allen wrench, remove the two latch screws located 180° apart and separate the hanger into two halves.
- 8. Place two boards on the housing flange against the casing to support the Hanger.
- 9. Pick up one half of the hanger and place it around the casing and on top of the boards.
- 10. Pick up the second hanger half and place it around the casing adjacent the first half.
- 11. Slide the two hanger halves together ensuring the slip alignment pins properly engage the opposing hanger half.
- 12. Reinstall the latch screws and tighten securely.

Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

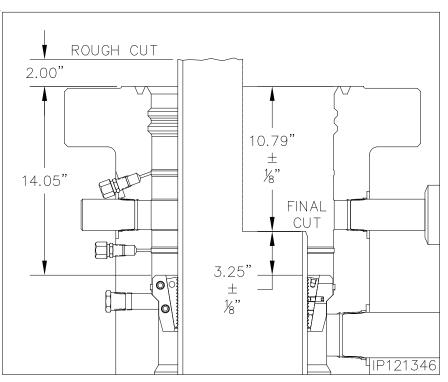
Received by OCD: 1/23/2023 7:38:00 AM OR USE THEREOF IS PERMISSIBLE ONLY AS PROVIDED BY CONTRACT OR AS EXPRESSLY AUTHORIZED BY CACTUS WELLHEAD, LLC.

Stage 4A — Hang Off the 9-5/8" Casing (Emergency)

13. Prepare to lower the Hanger into the housing bowl.

WARNING: Do Not Drop the Casing Hanger!

- 14. Grease the Casing Hanger's body and remove the slip retaining screws.
- 15. Remove the boards and allow the Hanger to slide into the housing bowl. When properly positioned the top of the hanger will be approximately 14.05" below the top of the housing.
- 16. Pull tension on the casing to the desired hanging weight and then slack off.


Note: A sharp decrease on the weight indicator will signify that the Hanger has taken weight and at what point, If this does not occur, pull tension again and slack off once more.

WARNING: Because of the potential fire hazard and the risk of loss of life and property, It is highly recommended to check the casing annulus and pipe bore for gas with an approved sensing device prior to cutting off the casing. If gas is present, do not use an open flame torch to cut the casing. It will be necessary to use a air driven mechanical cutter which is spark free.

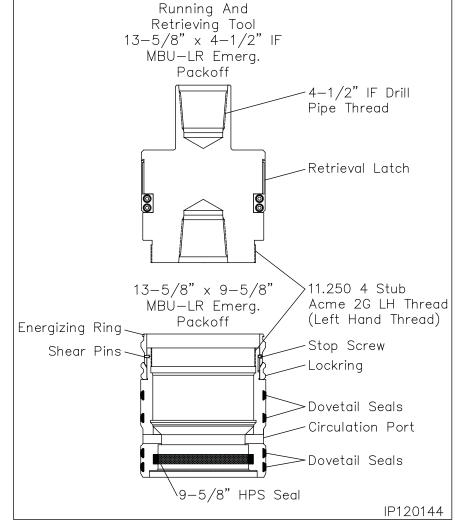
 Rough cut the casing approximately
2" above the top flange and move the excess casing out of the way.

WARNING: Install the long wear bushing in the housing to ensure the housing bore is not damaged with the torch or cutting debris.

- 18. Final cut the casing at $10.79" \pm 1/8"$ below the housing flange or $3.25" \pm 1/8"$ above the hanger body.
- Grind the casing stub level and then place a 3/16" x 3/8" bevel on the O.D. and a I.D. chamfer to match the minimum bore of the packoff to be installed.

Note: There must not be any rough edges on the casing or the seals of the Packoff will be damaged.

20. Remove the wear bushing and then thoroughly clean the housing bowl, removing all cement and cutting debris.

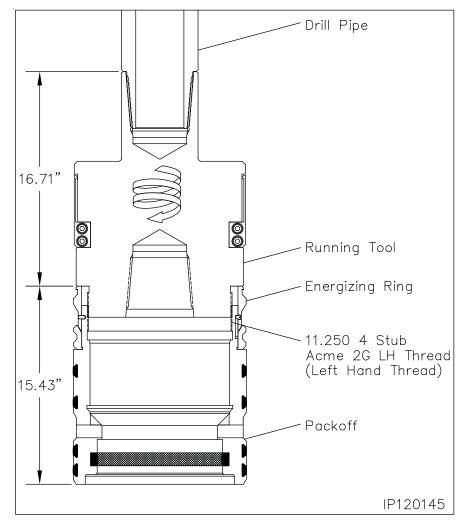


IP 0228

Stage 4B — Install the 9-5/8" MBU-LR Emergency Packoff

The following steps detail the installation of the CW MBU-LR Packoff Assembly for the emergency casing hanger.

- 1. Examine the 13-5/8" Nominal x 9-5/8" x 11.250" 4 Stub Acme 2G LH box top MBU-LR Packoff Assembly (Item A7b). Verify the following:
 - all elastomer seals are in place and undamaged
 - internal bore, and ports, are clean and in good condition
 - lockring is fully retracted
 - energizer ring is in its upper most position and retained with shear pins
 - anti-rotation plunger is in place, free to move
- Lubricate the ID of the 'HPS' seal and the OD of the dovetail seals liberally with a light oil or grease.
- 3. Examine the 13-5/8" Nominal x 4-1/2" IF x 11.250" 4 Stub Acme 2G LH box top MBU-LR Packoff Running Tool (Item ST4). Verify the following:
 - Acme threads are clean and in good condition
 - actuation sleeve is clean, in good condition and rotates freely
 - retrieval latch is removed and stored is safe place



Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

Stage 4B — Install the 9-5/8" MBU-LR Emergency Packoff

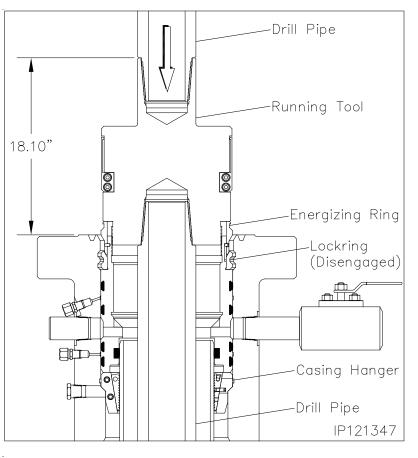
- 4. Make up a 4-1/2" IF drill collar to the top of the Running Tool and tighten connection to thread manufacturer's maximum make up torque.
- 5. Run in the hole with two stands of drill pipe and set in floor slips.
- Thoroughly clean and lightly lubricate the mating Acme threads of the running tool and packoff with oil or light grease.
- 7. Pick up the packoff and carefully pass it over the drill pipe and set it on top of the floor slips.
- 8. Pick up the Running Tool with landing joint and make it up to the drill pipe in the floor slips.
- Pick up the packoff and thread it onto the running tool with clockwise (Right) rotation until the Energizing Ring makes contact with the bottom shoulder of the tool. Approximately 4 turns.
- 10. Thoroughly clean and lightly lubricate the packoff ID 'HPS' seal and the OD dovetail seals with oil or light grease.

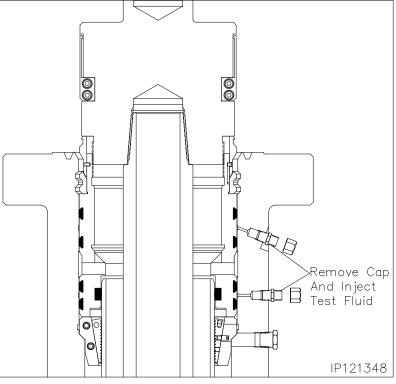
Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

IP 0228

Received by OCD: 1/37/2023 7:38:00 AM OR USE THEREOF IS PERMISSIBLE ONLY AS PROVIDED BY CONTRACT OR AS EXPRESSLY AUTHORIZED BY CACTUS WELLHEAD, LLC.

Stage 4B — Install the 9-5/8" MBU-LR Emergency Packoff


Landing the Packoff


- 1. Pick up the drill string and remove the floor slips.
- 2. Carefully lower the packoff through the rig floor and into the housing until it lands on top of the slip hanger.

Note: When properly positioned the top of the running tool will be approximately 18.10" above the top of the MBU-LR Housing

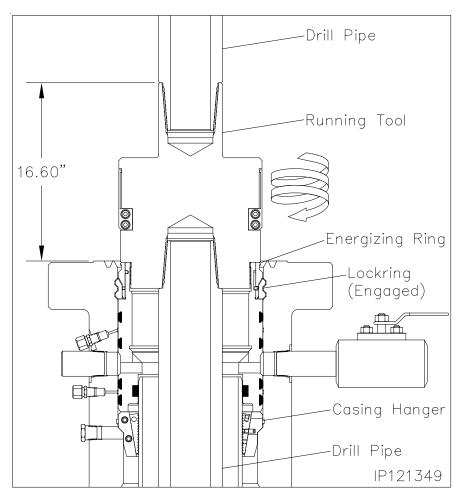
Seal Test

- 3. Locate the upper and lower seal test fittings on the O.D. of the housing and remove the dust caps from both fittings.
- 4. Attach a test pump to one of the open fittings and pump clean test fluid between the seals until a stable test pressure of 5,000 psi is attained.
- 5. If a leak develops, bleed off test pressure, remove the hanger from the wellhead and replace the leaking seals.
- 6. Repeat steps 3 through 5 for the remaining seal test.
- After satisfactory test are achieved, bleed off all test pressure, remove test pump and reinstall the dust caps on the open fittings

Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

Stage 4B — Install the 9-5/8" MBU-LR Emergency Packoff

Engaging the Lockring


 Using only chain tongs, rotate the landing joint approximately 6 turns counter clockwise (Left) to engage the packoff lockring in its mating groove in the bore of the MBU-LR housing.

Note: Approximately 800 to 900 ft. lbs. of torque will be required to break over the shear pins in the packoff. The torque will drop off and then increase slightly when the energizing ring pushes the lockring out. A positive stop will be encountered when the lockring is fully engaged.

WARNING: It is imperative that the drill pipe landing joint remain concentric with the well bore when rotating to engage the lockring. This can be accomplished with the use of the air hoist.

WARNING: If the required turns to engage the lockring or not met or excessive torque is encountered, remove the packoff and call Houston Engineering.

- Back off the landing joint/running tool approximately three turns. Using the drill pipe elevators, exert a 20,000 lbs. pull on the landing joint.
- 10. Using only chain tongs, rotate the landing joint clockwise until the tool comes free of the packoff (approximately 9 turns) and then retrieve the tool with a straight vertical lift.

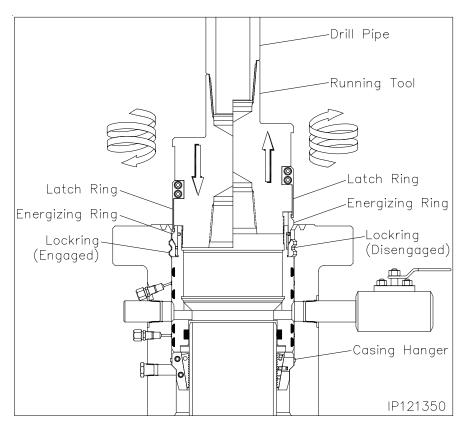
Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

IP 0228

Stage 4B — Install the 9-5/8" MBU-LR Emergency Packoff

In the event the packoff is required to be removed after the lockring is engaged the following procedure is to be followed.

Retrieving the Packoff


- 1. Locate the retrieval latch assembly with (4) 1/2" cap screws
- 2. Install the retrieval latch onto the running tool with the latch fingers facing down and install the cap screws and tighten them securely.
- 3. Ensure the retrieval latch freely rotates on the running tool actuation sleeve.
- 4. Carefully lower the running tool into the packoff.
- Rotate the drill pipe clockwise (Right)to locate the thread start and then counter clockwise (Left) (approximately 10 turns) to a positive stop.

Note: At this point the retrieval latches will have passed over the energizing ring and snapped into place.

 Rotate the drill pipe clockwise (approximately 6-1/2 turns) to a positive stop. The drill pipe should rise approximately 1-1/2".

Warning: Do not exceed the 6-1/2 turns or the packoff may be seriously damaged.

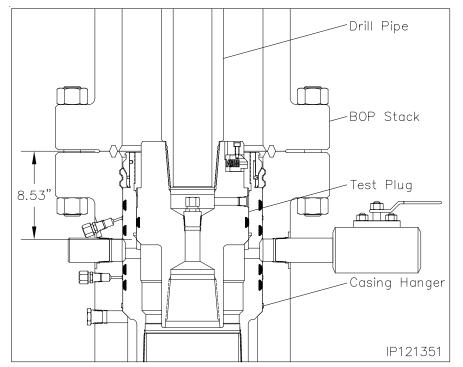
- 7. Carefully pick up on the drill pipe and remove the packoff from the MBU-LR wellhead with a straight vertical lift.
- 8. Redress the Packoff and reset as previously outlined.

Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

Received by OCD: 1/23/2023 7:38:00 AM OR USE THEREOF IS PERMISSIBLE ONLY AS PROVIDED BY CONTRACT OR AS EXPRESSLY AUTHORIZED BY CACTUS WELLHEAD, LLC.

Stage 5 — Test the BOP Stack

Immediately after making up the BOP stack and periodically during the drilling of the well for the next casing string the BOP stack (connections and rams) must be tested.


- Examine the 11" Nominal x 4-1/2" IF CW Test Plug/Retrieving Tool (Item ST5). Verify the following:
 - 1-1/4" VR plug and weep hole plug are in place and tightened securely
 - elastomer seal is in place and in good condition
 - retractable lift lugs are in place, clean, and free to move
 - drill pipe threads are clean and in good condition

Note: Prior to installing the BOP it is recommended to attain an accurate RKB dimension for future use for accurately landing test plugs and casing hangers. This dimension is attained by dropping a tape measure from the rig floor to the top of the wellhead flange. Pull tape taut and record the dimension from the wellhead to the top of the rig floor or kelly bushings. Ensure this dimension is placed on the BOP board in the dog house and on the drillers daily report sheet.

2. Position the test plug with the elastomer seal down and the lift lugs up and make up the tool to a joint of drill pipe.

WARNING: Ensure that the lift lugs are up and the elastomer seal is down

 Remove the 1/2" NPT pipe plug from the weep hole if pressure is to be supplied through the drill pipe.

- 4. Open the housing upper side outlet valve.
- 5. Lightly lubricate the test plug seal with oil or light grease.
- 6. Carefully lower the test plug through the BOP and land it on the load shoulder in the packoff, 8.53" below the top of the housing.
- 7. Close the BOP rams on the pipe and test the BOP to 5,000 psi.

Note: Any leakage past the test plug will be clearly visible at the open side outlet valve.

8. After a satisfactory test is achieved, release the pressure and open the rams.

9. Remove as much fluid as possible from the BOP stack and the retrieve the test plug with a straight vertical lift.

Note: When performing the BOP blind ram test it is highly recommended to suspend a stand of drill pipe below the test plug to ensure the plug stays in place while disconnecting from it with the drill pipe.

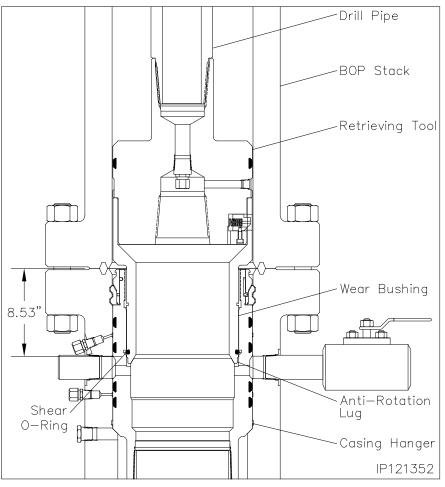
10. Repeat this procedure as required during the drilling of the hole section.

IP 0228 Page 22 Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

Received by OCD: 1/23/2023 7:38:00 AM OR USE THEREOF IS PERMISSIBLE ONLY AS PROVIDED BY CONTRACT OR AS EXPRESSLY AUTHORIZED BY CACTUS WELLHEAD, LLC.

Stage 6 — Run the Upper Wear Bushing

Note: Always use a Wear Bushing while drilling to protect the load shoulders from damage by the drill bit or rotating drill pipe. The Wear Bushing **must be retrieved** prior to running the casing.


- 1. Examine the **13-5/8**"x **11**"x **9.00**"ID MBU-LR-UPR Wear Bushing(Item ST6). Verify the following
 - internal bore is clean and in good condition
 - o-ring is in place and in good condition
 - shear o-ring cord is in place and in good condition
 - paint anti-rotation lugs white and allow paint to dry

Run the Wear Bushing Before Drilling

- Orient the 13-5/8" Nominal x 4-1/2" IF CW Test Plug/Retrieving Tool (Item ST1) with drill pipe connection up.
- 3. Attach the Retrieving Tool to a joint of drill pipe.
- 4. Align the retractable lift lugs of the tool with the retrieval holes of the bushing and the carefully lower the tool into the Wear Bushing until the lugs snap into place.

Note: If the lugs did not align with the holes, rotate the tool in either direction until they snap into place.

- 5. Apply a heavy coat of grease, not dope, to the OD of the bushing.
- Slowly lower the Tool/Bushing Assembly through the BOP stack and land it on the load shoulder in the packoff, 8.53" below the top of the housing.
- Rotate the drill pipe clockwise (right) to locate the stop lugs in their mating notches in the packoff. When properly aligned the bushing will drop an additional 1/2".

Note: The Shear O-Ring on bottom of the bushing will locate in a groove above the load shoulder in the head to act as a retaining device for the bushing.

- 8. Remove the Tool from the Wear Bushing by rotating the drill pipe counter clockwise (left) 1/4 turn and lifting straight up
- 9. Drill as required.

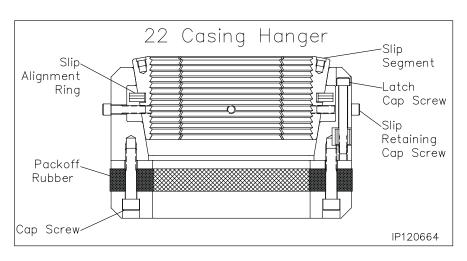
Note: It is highly recommended to retrieve, clean, inspect, grease, and reset the wear bushing each time the hole is tripped during the drilling of the hole section.

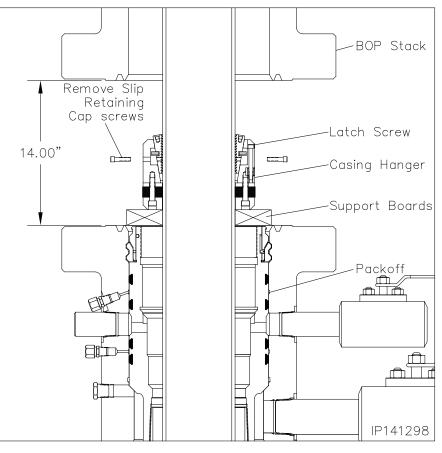
Retrieve the Wear Bushing After Drilling

- 10. Make up the Retrieving Tool to the drill pipe .
- 11. Slowly lower the Tool into the Wear Bushing.
- 12. Pick up and balance the riser weight.
- 13. Rotate the Retrieving Tool clockwise until a positive stop is felt. This indicates the lugs have snapped into the holes in the bushing.
- 14. Retrieve the Wear Bushing, and remove it and the Retrieving Tool from the drill string.

Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

Stage 7 — Hang Off the 7" Casing


- 1. Run the 7" casing string as required and cement in place.
- 2. Drain the housing bowl through the upper side outlet.
- 3. Separate the BOP from the MBU-LR housing and lift the BOP approximately 14" above the housing and secure BOP with safety slings.
- 4. Using a fresh water hose, thoroughly wash out the packoff bowl.


Note: Casing Head side outlet valve to remain open while setting the casing hanger.

- 5. Examine the 11" X 7" C22 Casing Hanger (Item B9). Verify the following:
 - slips and internal bore are clean and in good condition
 - all screws are in place
 - seal element is in good condition

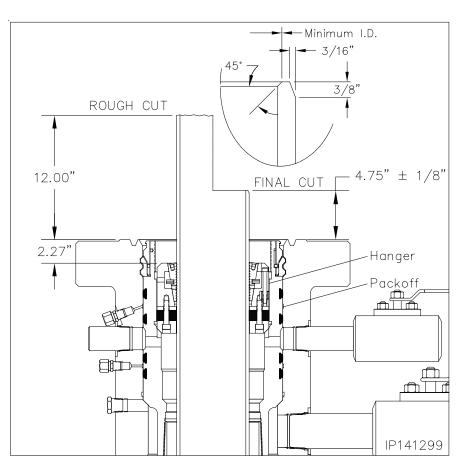
Note: Ensure that the packoff rubber does not protrude beyond the O.D. of the casing hanger body. If it is, loosen the compression cap screws in the top of the hanger.

- 6. Remove the latch screw to open the Hanger.
- Place two boards on the Casing Head flange against the casing to support the Hanger.
- 8. Wrap the Hanger around the casing and replace the latch screw.
- 9. Prepare to lower the Hanger into the Casing Head bowl.
- 10. Grease the Casing Hanger's body and remove the slip retaining cap screws.

Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

IP 0228

Stage 7 — Hang Off the 7" Casing


11. Remove the boards and allow the Hanger to slide into the packoff bowl. When the Hanger is down, the top of the hanger body will be approximately 2.27" below the top of the housing, pull tension on the casing to the desired hanging weight and then slack off..

Note: A sharp decrease on the weight indicator will signify that the Hanger has taken weight and at what point, If this does not occur, pull tension again and slack off once more.

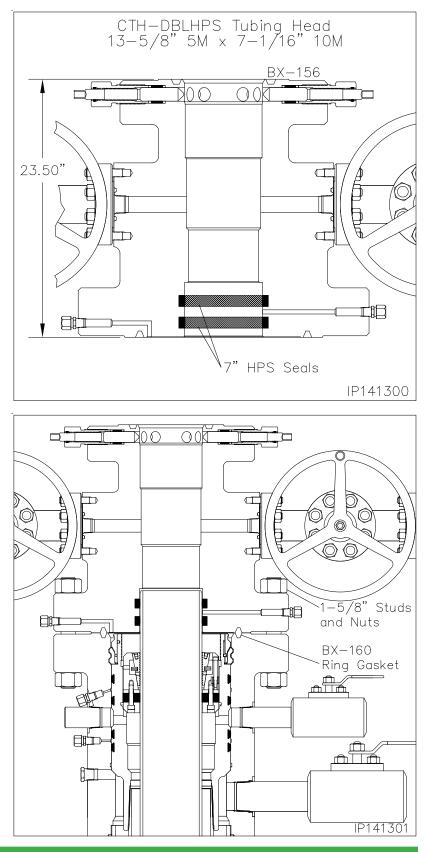
WARNING: Because of the potential fire hazard and the risk of loss of life and property, It is highly recommended to check the casing annulus and pipe bore for gas with an approved sensing device prior to cutting off the casing. If gas is present, do not use an open flame torch to cut the casing. It will be necessary to use a air driven mechanical cutter which is spark free.

- 12. Rough cut the casing approximately 12" above the top flange and move the excess casing and BOP out of the way.
- 13. Final cut the casing at $4.75" \pm 1/8"$ above the top flange of the housing.
- Grind the casing stub level and then place a 3/16" x 3/8" bevel on the O.D. and a I.D. chamfer to match the minimum bore of the tubing head to be installed.
- 15. Using a high pressure water hose thoroughly clean the top of the casing hanger and void area above the hanger. Ensure all cutting debris are removed .
- 16. Fill the void above the hanger with clean test fluid to the top of the flange.

WARNING: Do Not over fill the void with test fluid - trapped fluid under the ring gasket may prevent a good seal from forming

Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

Stage 8 — Install the Tubing Head


- Examine the 13-5/8" 5M x 7-1/16" 10M CW, CTH-DBLHPS Tubing Head (Item B1). Verify the following:
 - seal area and bore are clean and in good condition
 - *HPS Secondary Seals* are in place and in good condition
 - all peripheral equipment is intact and undamaged
- 2. Clean the mating ring grooves of the MBU-LR and Tubing Head.
- 3. Lightly lubricate the ID of the Tubing Head HPS Seals, and the casing stub with a light grease.

Note: Excessive grease may prevent a good seal from forming!

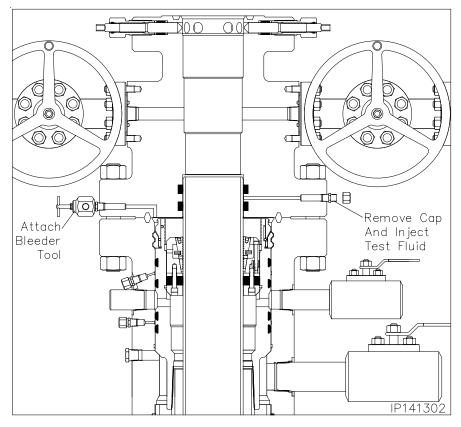
- Install a new *BX-160 Ring Gasket (Item B14)* in the ring groove of the MBU-LR Housing.
- Pick up the Tubing Head and suspend it above the MBU-LR Housing and casing stub.
- 6. Orient the Tubing Head so the outlets are in the proper position and then carefully lower the head and DSPA over the casing stub and land it on the ring gasket.

Warning: Do Not damage the HPS Seal or their sealing ability will be impaired!

7. Make up the flange connection using the DSPA studs and nuts, tightening them in an alternating cross pattern.

Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

IP 0228


Page 26

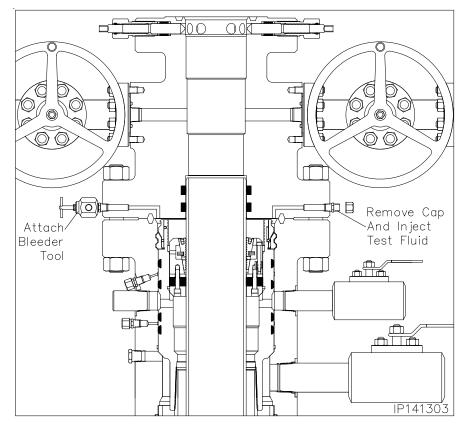
.

Stage 8 — Install the Tubing Head

Seal Test

- 1. Locate the "SEAL TEST" fitting and one of the "FLG TEST" fittings on the Tubing Head and remove the dust cap from both fittings.
- Attach a Bleeder Tool to the open "FLG TEST" fitting and open the Tool.
- 3. Attach a Hydraulic Test Pump to the "SEAL TEST" fitting and pump clean test fluid between the HPS Seals until a test pressure of **10,000** *psi.* or **80% of casing collapse** *whichever is less*
- Hold the test pressure for fifteen (15) minutes or as desired by the drilling supervisor.
- 5. If pressure drops a leak has developed. Take the appropriate action in the table below.
- 6. Repeat steps 1 5 until a satisfactory test is achieved.
- 7. When a satisfactory test is achieved, remove Test Pump, drain test fluid, and reinstall the dust cap on the open "SEAL TEST" fitting.

Seal	Test
Leak Location	Appropriate Action
Open bleeder tool - Lower HPS seal leaking	replace leaking seals. Re
Into the Tubing Head bore- Upper HPS Seal is Leaking	land and retest seals


Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

Received by OCD: 1/37/2023 7:38:00 AM OR USE THEREOF IS PERMISSIBLE ONLY AS PROVIDED BY CONTRACT OR AS EXPRESSLY AUTHORIZED BY CACTUS WELLHEAD, LLC .

Stage 8 — Install the Tubing Head

Flange Test

- 1. Locate the remaining "FLG TEST" fitting on the Tubing Head and remove the dust cap from the fitting.
- Attach a test pump to the open "FLG TEST" fitting and pump clean test fluid into the flange connection until a continuous stream flows from the open "FLG TEST" bleeder tool.
- 3. Close the bleeder tool and continue pumping test fluid to 5,000 psi. or 80% of casing collapse whichever is less.
- Hold the test pressure for fifteen (15) minutes or as desired by the drilling supervisor.
- 5. If pressure drops a leak has developed. Take the appropriate action from the adjacent chart.
- 6. Repeat steps 1 through 6 until a satisfactory test is achieved.
- Once a satisfactory test is achieved, remove the test pump and "FLG TEST" bleeder tool, drain test fluid, and reinstall the dust caps on the open fittings.

Flange Test		
Leak Location	Appropriate Action	
Into casing annulus - casing hanger seal element is leaking	u	
Flange connection - Ring gasket is leaking	Further tighten the flange connection	

IP 0228 Page 28 Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

Recommended Procedure for Field Welding Pipe to Wellhead Parts for Pressure Seal

 Introduction and Scope. The following recommended procedure has been prepared with particular regard to attaining pressure-tight weld when attaching casing heads, flanges, etc., to casing. Although most of the high strength casing used (such as N-80) is not normally considered field weldable, some success may be obtained by using the following or similar procedures.

<u>Caution:</u> In some wellheads, the seal weld is also a structural weld and can be subjected to high tensile stresses. Consideration must therefore be given by competent authority to the mechanical properties of the weld and its heat affected zone.

- **a.** The steels used in wellhead parts and in casing are high strength steels that are susceptible to cracking when welded. It is imperative that the finished weld and adjacent metal be free from cracks. The heat from welding also affects the mechanical properties. This is especially serious if the weld is subjected to service tension stresses.
- b. This procedure is offered only as a recommendation. The responsibility for welding lies with the user and results are largely governed by the welder's skill. Weldability of the several makes and grades of casing varies widely, thus placing added responsibility on the welder. Transporting a qualified welder to the job, rather than using a less-skilled man who may be at hand, will, in most cases, prove economical. The responsible operating representative should ascertain the welder's qualifications and, if necessary, assure himself by instruction or demonstration, that the welder is able to perform the work satisfactorily.
- 2. Welding Conditions. Unfavorable welding conditions must be avoided or minimized in every way possible, as even the most skilled welder cannot successfully weld steels that are susceptible to cracking under adverse working conditions, or when the work is rushed. Work above the welder on the drilling floor should be avoided. The weld should be protected from dripping mud, water, and oil and from wind, rain, or other adverse weather conditions. The drilling mud, water, or other fluids must be lowered in the casing and kept at a low level until the weld has properly cooled. It is the responsibility of the user to provide supervision that will assure favorable working conditions, adequate time, and the necessary cooperation of the rig personnel.

- **3.** Welding. The welding should be done by the shielded metal-arc or other approved process.
- 4. Filler Metal. Filler Metals. For root pass, it's recommended to use E6010, E6011 (AC), E6019 or equivalent electrodes. The E7018 or E7018-A1 electrodes may also be used for root pass operations but has the tendency to trap slag in tight grooves. The E6010, E6011 and E6019 offer good penetration and weld deposit ductility with relatively high intrinsic hydrogen content. Since the E7018 and E7018-A1 are less susceptible to hydrogen induced cracking, it is recommended for use as the filler metal for completion of the weld groove after the root pass is completed. The E6010, E6011 (AC), E6019, E7018 and E7018-A1 are classified under one of the following codes AWS A5.1 (latest edition): Mild Steel covered electrodes or the AWS A5.5 (latest edition): Low Alloy Steel Covered Arc-Welding Electrodes. The low hydrogen electrodes, E7018 and E7018-A1, should not be exposed to the atmosphere until ready for use. It's recommended that hydrogen electrodes remain in their sealed containers. When a job arises, the container shall be opened and all unused remaining electrodes to be stored in heat electrode storage ovens. Low hydrogen electrodes exposed to the atmosphere, except water, for more than two hours should be dried 1 to 2 hours at 600°F to 700 °F (316°C to 371 °C) just before use. It's recommended for any low hydrogen electrode containing water on the surface should be scrapped.
- 5. Preparation of Base Metal. The area to be welded should be dry and free of any paint, grease/oil and dirt. All rust and heat-treat surface scale shall be ground to bright metal before welding.

Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

Received by OCD: 1/23/2023 7:38:00 AM OR USE THEREOF IS PERMISSIBLE ONLY AS PROVIDED BY CONTRACT OR AS EXPRESSLY AUTHORIZED BY CACTUS WELLHEAD, LLC.

Recommended Procedure for Field Welding Pipe to Wellhead Parts for Pressure Seal

- Preheating. Prior to any heating, the wellhead member 6. shall be inspected for the presence of any o-rings or other polymeric seals. If any o-rings or seals are identified then preheating requires close monitoring as noted in paragraph 6a. Before applying preheat, the fluid should be bailed out of the casing to a point several inches (>6" or 150 mm) below the weld joint/location. Preheat both the casing and wellhead member for a minimum distance of three (3) inches on each side of the weld joint using a suitable preheating torch in accordance with the temperatures shown below in a and b. The preheat temperature should be checked by the use of heat sensitive crayons. Special attention must be given to preheating the thick sections of wellhead parts to be welded, to insure uniform heating and expansion with respect to the relatively thin casing.
 - a. Wellhead members containing o-rings and other polymeric seals have tight limits on the preheat and interpass temperatures. Those temperatures must be controlled at 200°F to 325°F or 93 °C to 160°C and closely monitored to prevent damage to the o-ring or seals.
 - b. Wellhead members not containing o-rings and other polymeric seals should be maintained at a preheat and interpass temperature of 400°F to 600°F or 200°C to 300°C.
- 7. Welding Technique. Use a 1/8 or 5/32-inch (3.2 or 4.0 mm) E6010 or E7018 electrode and step weld the first bead (root pass); that, weld approximately 2 to 4 inches (50 to 100 mm) and then move diametrically opposite this point and weld 2 to 4 inches (50 to 100 mm) halfway between the first two welds, move diametrically opposite this weld, and so on until the first pass is completed. This second pass should be made with a 5/32-inch (4.0 mm) low hydrogen electrode of the proper strength and may be continuous. The balance of the welding groove may then be filled with continuous passes without back stepping or lacing, using a 3/16-inch (4.8 mm) low hydrogen electrode. All beads should be no undercutting and weld shall be workmanlike in appearance.
 - **a.** Test ports should be open when welding is performed to prevent pressure buildup within the test cavity.
 - b. During welding the temperature of the base metal on either side of the weld should be maintained at 200 to 300°F (93 to 149°C).
 - c. Care should be taken to insure that the welding cable is properly grounded to the casing, but ground wire should not be welded to the casing or the wellhead. Ground wire should be firmly clamped to the casing, the wellhead, or fixed in position between pipe slips. Bad contact may cause sparking, with resultant hard spots beneath which incipient cracks may develop. The welding cable should not be grounded to the steel derrick, nor to the rotary-table base.

- 8. Cleaning. All slag or flux remaining on any welding bead should be removed before laying the next bead. This also applies to the completed weld.
- **9. Defects.** Any cracks or blow holes that appear on any bead should be removed to sound metal by chipping or grinding before depositing the next bead.
- **10. Postheating.** Post-heating should be performed at the temperatures shown below and held at that temperature for no less than one hour followed by a slow cooling. The post-heating temperature should be in accordance with the following paragraphs.
 - a. Wellhead members containing o-rings and other polymeric seals have tight limits on the post-heating temperatures. Those temperatures must be controlled at 250°F to 300°F or 120 °C to 150°C and closely monitored to prevent damage to the o-ring or seals.
 - **b.** Wellhead members not containing o-rings and other polymeric seals should be post-heated at a temperature of 400°F to 600°F or 200°C to 300°C.
- **11. Cooling.** *Rapid cooling must be avoided.* To assure slow cooling, welds should be protected from extreme weather conditions (cold, rain, high winds, etc.) by the use of suitable insulating material. (Specially designed insulating blankets are available at many welding supply stores.) Particular attention should be given to maintaining uniform cooling of the thick sections of the wellhead parts and the relatively thin casing, as the relatively thin casing will pull away from the head or hanger if allowed to cool more rapidly. The welds should cool in air to less than 200°F (93°C) (measured with a heat sensitive crayon) prior to permitting the mud to rise in the casing.
- **12. Test the Weld.** After cooling, test the weld. The weld must be cool otherwise the test media will crack the weld. The test pressure should be no more than 80% of the casing collapse pressure.

IP 0228 Page 30 Mack Energy Corporation. 13-3/8" x 9-5/8" x 7" 10M MBU-LR Wellhead System With CTH-DBLHPS Tubing Head

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
MACK ENERGY CORP	13837
P.O. Box 960	Action Number:
Artesia, NM 882110960	178312
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By		Condition Date
pkautz	None	1/24/2023

Page 45 of 45

Action 178312