Received by OCD: 5/10/2022 2:41:28 PM District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District II District III 1000 Rio Brazos Rd., Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals & Natural Resources

Page 1 of 27 Form C-104 Revised August 1, 2011

Submit one copy to appropriate District Office

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

AMENDED REPORT

	I.	REQ	QUE	ST FO	R ALL	OWABLE A	AND AUT	HOF	RIZATION	ΓΟ ΤΙ	RANSP	ORT	
				uring Res	me and A ources IV	LLC.				² OC	GRID Nun 372286	nber	
			F		rgy Court n NM 874				³ Reaso	³ Reason for Filing Code/ Effective Date RT			
	Numbe 5-3584	-				⁵ Pool N LYBROOK M			⁶ Pool Code 98157				
⁷ Prop	7 Property Code 8 Property Name 321259 W LYBROOK UNIT							⁹ Well Number #730H					
	II. ¹⁰ Surface Location												
Ul or lot no. C	l or lot no. Section Township Range Lot Idn Feet from the North/South Line						Feet from the 2446'		East/West line County West San Juar				
						¹¹ Bottom	Hole Loca	tion					
UL or lot no.	Section		-	Range	Lot Idn	Feet from the	North/South	line	Feet from the			County	
В	21	23	N	9W		163'	North		2134'	Ε	ast	San Juan	
¹² Lse Code F	¹³ Prod	ucing Met Code	hod	D	onnection ate /2022	¹⁵ C-129 Pern	nit Number	¹⁶ (C-129 Effective I	Date	¹⁷ C-12	29 Expiration Date	
						III. Oil and	Gas Trans	porte	ers				
¹⁸ Transpor OGRID						¹⁹ Transpor and Ad						²⁰ O/G/W	
248440					WESTI	ERN REFININ	G COMPANY	ł, LL	С			0	
373888					HAI	RVEST FOUR	CORNERS. I	LC			G		

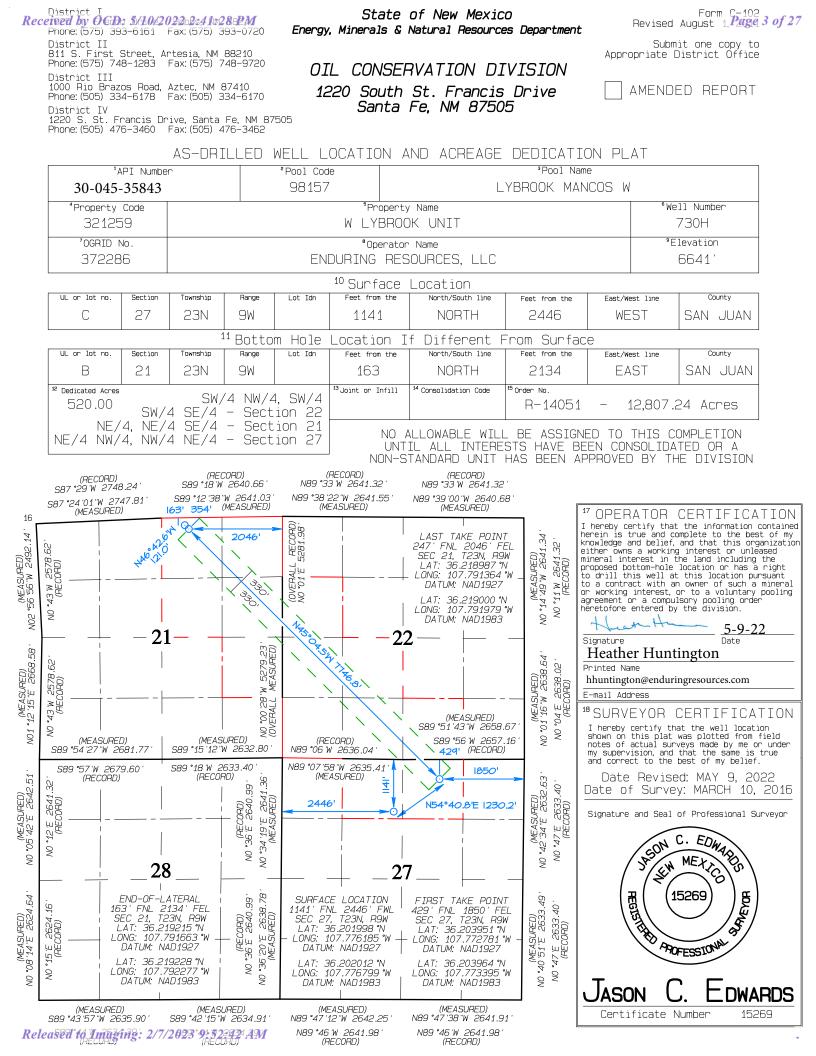
IV. Well Completion Data

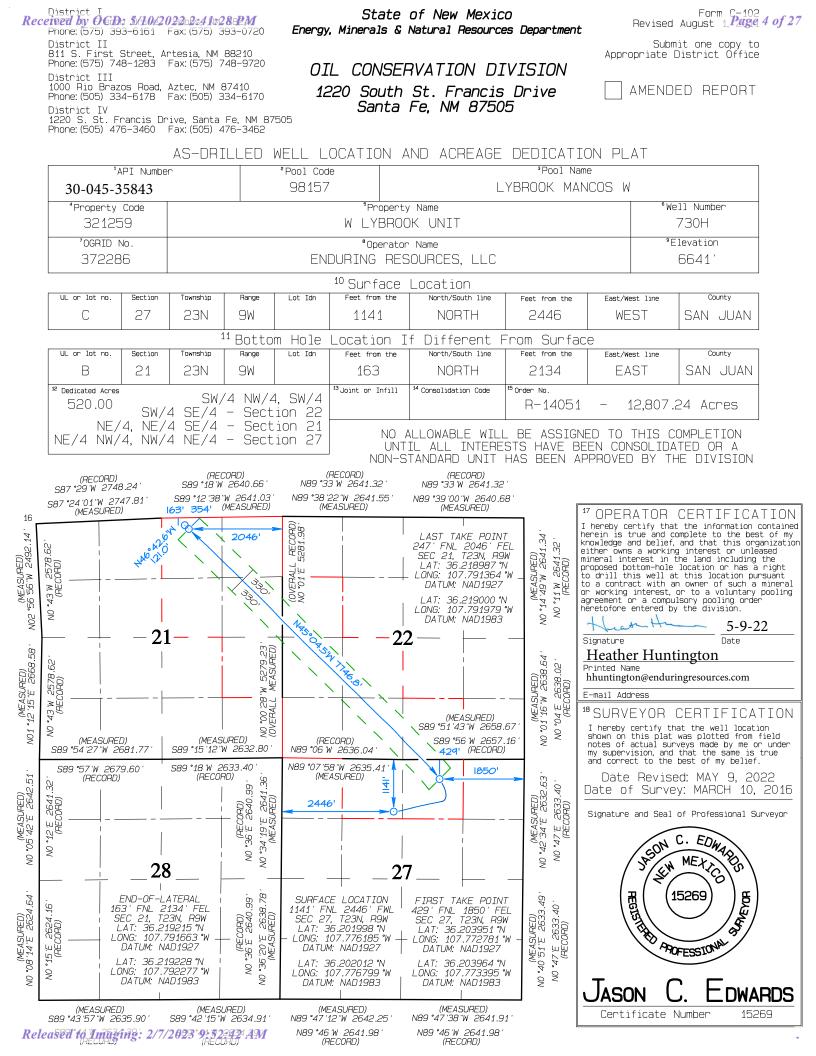
IV. Wen Completion Data									
²¹ Spud Date 2/3/2022	•		²³ TD 12834' MD 4591' TVD	²⁴ PBTD 12717.8' MD 4589' TVD	 ²⁵ Perforations ~ 4970' - 12718' MI ~ 4500'-4589' TVD 	²⁶ DHC, MC R-14051			
²⁷ Hole Siz	²⁷ Hole Size		& Tubing Size	²⁹ Depth Set	;	³⁰ Sacks Cement			
17-1/2"		13-3/8",54.5#, J-55		360' MD		350 sx - surface			
12-1/4"		9-5/8",36#, J-55		2566' MD		604 sx- surface			
8-1/2"		5-1/2",17#, P-110		12834' MD		1934 sx- surface			

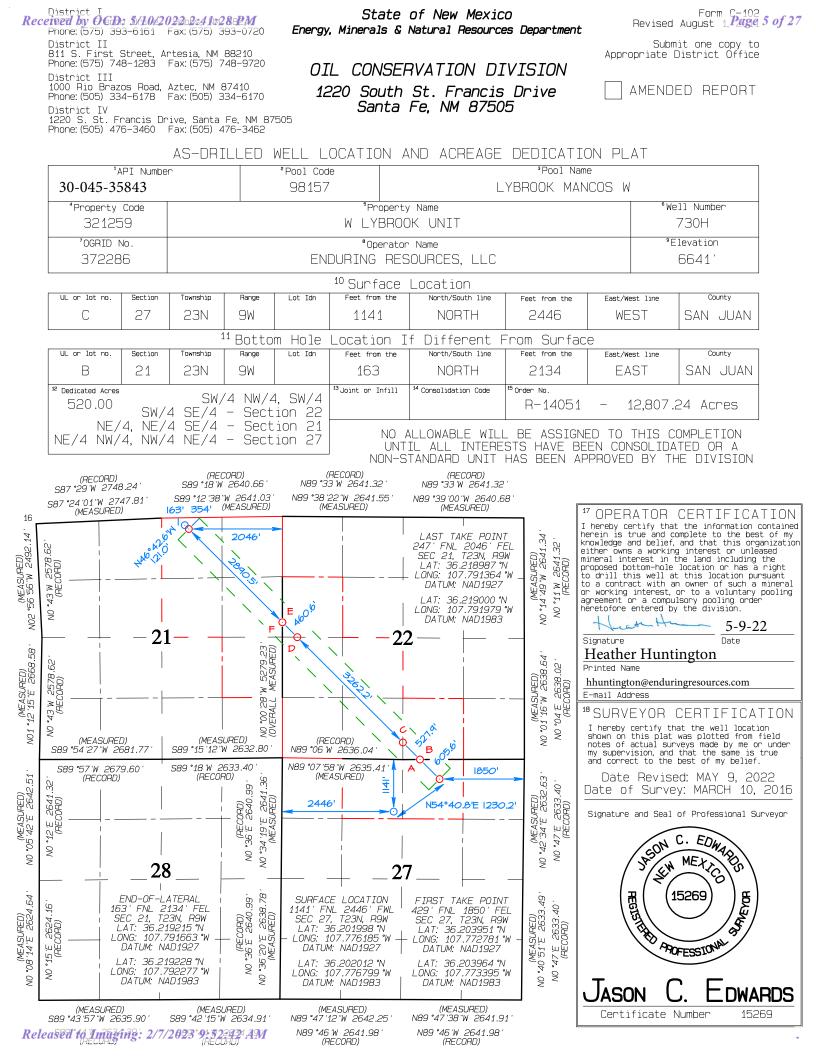
V. Well Test Data

³¹ Date New Oil	³² Gas Delivery Date	³³ Test Date	³⁴ Test Length	³⁵ Tbg. Pressure	³⁶ Csg. Pressure				
³⁷ Choke Size	³⁸ Oil	³⁹ Water	⁴⁰ Gas ⁴¹ Test						
been complied with a complete to the best	at the rules of the Oil Conser and that the information give of my knowledge and belief Kayh With	en above is true and	OIL CONSERVATION DIVISION Approved by:						
Printed name: Kayla White			Title: Petroleum Engineer						
Title: Associate Consultant	t, Environmental Engineer		Approval Date: 07/07/22	2					
E-mail Address: Kayla.N.White@wsp	p.com		COA: C-104 RT expires on 10/07/22						
Date: 5/10/2022	Phone: 720-768-3575								

ENDURING RESOURCES IV LLC


May 10, 2022


Re: W LYBROOK UNIT 730H-30-045-35843


Pursuant to NMOCD rule 19.15.7.16(C) request is herein made to keep all data and accompanying attachments contained in form C-105 confidential.

Sincerely,

Heather Huntington Permitting Technician Enduring Resources, LLC. <u>hhuntington@enduringresources.com</u>

(A) 0' FNL 2285' FEL SEC 27, T23N, R9W LAT: 36.205126 °N LONG: 107.774234 °W DATUM: NAD1927

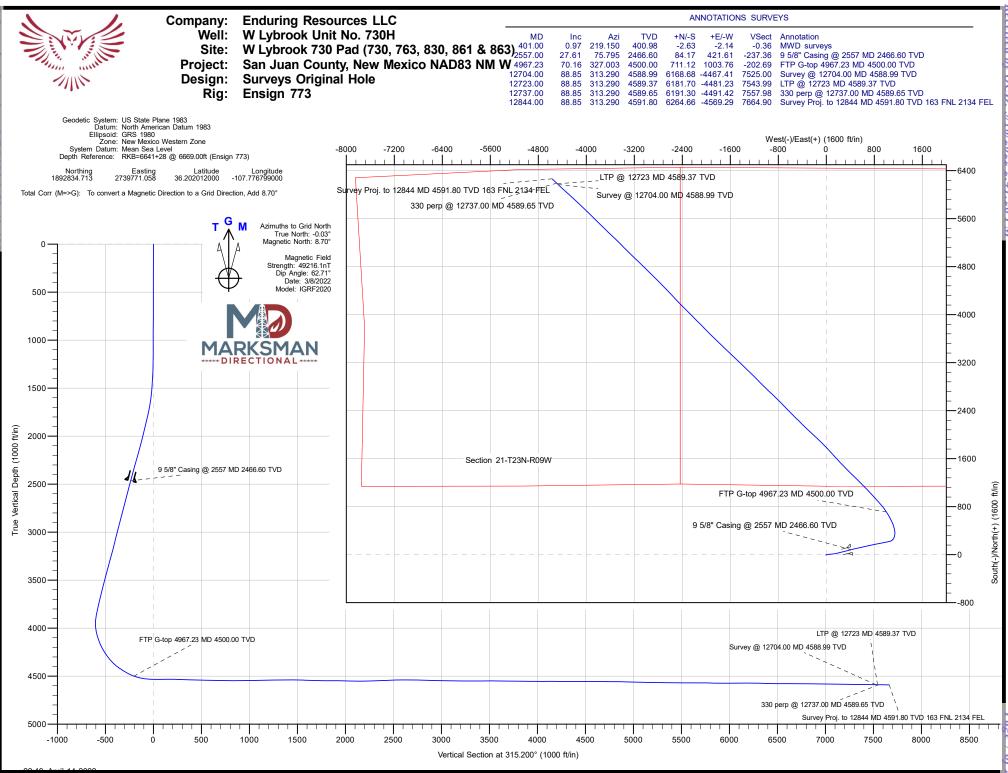
LAT: 36.205139 °N LONG: 107.774848 °W DATUM: NAD1983

(C) 374' FSL 2636' FWL SEC 22, T23N, R9W LAT: 36.206151 °N LONG: 107.775500 °W DATUM: NAD1927

LAT: 36.206164 °N LONG: 107.776114 °W DATUM: NAD1983

(E) 2316 ' FNL 0 ' FWL SEC 22, T23N, R9W LAT: 36.213377 °N LONG: 107.784430 °W DATUM: NAD1927

LAT: 36.213390 °N LONG: 107.785044 °W DATUM: NAD1983 (B) 0' FSL 2285' FEL SEC 22, T23N, R9W LAT: 36.205126 °N LONG: 107.774234 °W DATUM: NAD1927


LAT: 36.205139 °N LONG: 107.774848 °W DATUM: NAD1983

(D) 2642' FSL 326' FWL SEC 22, T23N, R9W LAT: 36.212483 °N LONG: 107.783325 °W DATUM: NAD1927

LAT: 36.212496 °N LONG: 107.783939 °W DATUM: NAD1983

(F) 2316 ' FNL 0 ' FEL SEC 21, T23N, R9W LAT: 36.213377 °N LONG: 107.784430 °W DATUM: NAD1927

LAT: 36.213390 °N LONG: 107.785044 °W DATUM: NAD1983

Imagun

Survey Report

Wellbore	Original Hole							
Position Uncertai	-	0.00 ft 0.03 °	Wellhead Elev	ation:	ft	Ground Level:	6,641.00	
Well Well Position	W Lybrook Uni +N/-S +E/-W	it No. 730H 0.00 ft 0.00 ft	Northing: Easting:	, ,	834.713 usft 771.058 usft	Latitude: Longitude:	36.20201: -107.77679	
Site Position: From: Position Uncertai	Lat/Long nty:	0.00 ft	Northing: Easting: Slot Radius:	1,888,164.052 2,741,098.39 13-3/16	usft Longit		36.189179 -107.772310	
Map System: Geo Datum: Map Zone: Site	US State Plane North American New Mexico We	1983 Datum 1983 estern Zone	33, 830, 861 & 863)	System Datum:		Mean Sea Level		
Well: Wellbore: Design: Project	Original Hole Surveys Original H	ole	ico NAD83 NM W	North Reference: Survey Calculation Database:	Method:	Grid Minimum Curvatur DB_Feb2822	e	
Company: Project: Site: Well:	Enduring Resource San Juan County, I W Lybrook 730 Pao W Lybrook Unit No	New Mexico N d (730, 763, 83		Local Co-ordinate TVD Reference: MD Reference: North Reference:	Reference:	Well W Lybrook Unit No. 730H RKB=6641+28 @ 6669.00ft (Ensign 773) RKB=6641+28 @ 6669.00ft (Ensign 773) Grid		

Survey Program	Date 4/14/2022			
From (ft)	To (ft) Survey (Wellbore)	Tool Name	Description	
401.00	2,509.00 MWD surf (Original Hole)	MWD	OWSG MWD - Standard	
2,583.00	12,704.00 MWD (Original Hole)	MWD	OWSG MWD - Standard	
12,844.00	12,844.00 Projection (Original Hole)	MWD	OWSG MWD - Standard	

Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
0.00	0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00
401.00	0.97	219.150	400.98	-2.63	-2.14	-0.36	0.24	0.24	0.00
MWD survey	'S								
493.00	0.70	216.780	492.97	-3.69	-2.97	-0.52	0.30	-0.29	-2.58
584.00	0.70	230.490	583.96	-4.49	-3.73	-0.55	0.18	0.00	15.07
675.00	0.53	211.590	674.96	-5.20	-4.38	-0.60	0.29	-0.19	-20.77
766.00	0.44	214.230	765.96	-5.84	-4.80	-0.77	0.10	-0.10	2.90
857.00	0.40	206.050	856.95	-6.42	-5.14	-0.94	0.08	-0.04	-8.99

4/14/2022 10:36:34PM

.

Survey Report

(Company:	Enduring Resources LLC	Local Co-ordinate Reference:	Well W Lybrook Unit No. 730H
F	Project:	San Juan County, New Mexico NAD83 NM W	TVD Reference:	RKB=6641+28 @ 6669.00ft (Ensign 773)
\$	Site:	W Lybrook 730 Pad (730, 763, 830, 861 & 863)	MD Reference:	RKB=6641+28 @ 6669.00ft (Ensign 773)
١	Nell:	W Lybrook Unit No. 730H	North Reference:	Grid
١	Nellbore:	Original Hole	Survey Calculation Method:	Minimum Curvature
ſ	Design:	Surveys Original Hole	Database:	DB_Feb2822

Survey

	easured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
	948.00	0.44	201.480	947.95	-7.03	-5.40	-1.18	0.06	0.04	-5.02
	1,039.00	0.31	230.400	1,038.95	-7.51	-5.72	-1.30	0.25	-0.14	31.78
	1,132.00	1.23	49.870	1,131.94	-7.03	-5.15	-1.36	1.66	0.99	192.98
	1,226.00	2.50	70.180	1,225.89	-5.68	-2.45	-2.31	1.50	1.35	21.61
	1,320.00	4.53	70.620	1,319.71	-3.76	2.98	-4.77	2.16	2.16	0.47
	1,414.00	6.72	75.010	1,413.25	-1.10	11.80	-9.09	2.37	2.33	4.67
	1,508.00	8.75	76.940	1,506.39	1.94	24.07	-15.59	2.18	2.16	2.05
	1,603.00	11.87	81.430	1,599.85	5.03	40.78	-25.17	3.39	3.28	4.73
	1,697.00	15.95	84.410	1,691.07	7.73	63.20	-39.05	4.41	4.34	3.17
	1,791.00	19.51	84.850	1,780.60	10.39	91.70	-57.24	3.79	3.79	0.47
	1,886.00	21.75	83.710	1,869.50	13.75	125.00	-78.32	2.40	2.36	-1.20
	1,981.00	23.55	78.170	1,957.18	19.57	161.08	-99.62	2.94	1.89	-5.83
	2,075.00	26.32	76.060	2,042.41	28.44	199.69	-120.53	3.09	2.95	-2.24
	2,170.00	28.70	75.450	2,126.66	39.25	242.22	-142.83	2.52	2.51	-0.64
	2,264.00	29.14	76.150	2,208.94	50.39	286.28	-165.97	0.59	0.47	0.74
	2,358.00	28.78	76.150	2,291.19	61.29	330.48	-189.37	0.38	-0.38	0.00
	2,453.00	28.13	75.620	2,374.71	72.33	374.37	-212.48	0.73	-0.68	-0.56
	2,509.00	27.95	76.150	2,424.13	78.75	399.90	-225.91	0.55	-0.32	0.95
	2,557.00	27.61	75.795	2,466.60	84.17	421.61	-237.36	0.78	-0.70	-0.74
9 (5/8" Casing	g @ 2557 MD 24	66.60 TVD							
	2,583.00	27.43	75.600	2,489.66	87.14	433.25	-243.45	0.78	-0.70	-0.75
	2,677.00	25.95	74.530	2,573.64	98.01	474.05	-264.49	1.66	-1.57	-1.14
	2,772.00	25.95	78.590	2,659.07	107.66	514.46	-286.11	1.87	0.00	4.27
	2,867.00	26.65	78.320	2,744.24	116.09	555.69	-309.19	0.75	0.74	-0.28
	2,982.00	26.63	77.550	2,847.03	126.87	606.12	-337.07	0.30	-0.02	-0.67
	3,076.00	24.96	76.590	2,931.66	136.01	645.99	-358.68	1.83	-1.78	-1.02
	3,170.00	26.23	77.620	3,016.43	145.06	685.57	-380.14	1.43	1.35	1.10
	3,265.00	24.61	76.300	3,102.23	154.25	725.30	-401.62	1.81	-1.71	-1.39
	3,359.00	26.45	79.650	3,187.06	162.65	764.91	-423.57	2.49	1.96	3.56
	3,453.00	24.99	78.630	3,271.74	170.32	804.97	-446.36	1.62	-1.55	-1.09
	3,547.00	26.27	79.210	3,356.49	178.13	844.88	-468.93	1.39	1.36	0.62
	3,642.00	25.40	78.360	3,442.00	186.18	885.48	-491.84	1.00	-0.92	-0.89
	3,736.00	25.33	79.070	3,526.93	194.06	924.97	-514.07	0.33	-0.07	0.76
	3,830.00	24.90	78.890	3,612.05	201.69	964.13	-536.25	0.46	-0.46	-0.19
	3,924.00	23.29	77.690	3,697.85	209.46	1,001.71	-557.21	1.79	-1.71	-1.28
	4,019.00	23.26	76.620	3,785.12	217.81	1,038.31	-577.08	0.45	-0.03	-1.13
	4,050.00	22.32	75.900	3,813.70	220.66	1,049.97	-583.28	3.16	-3.03	-2.32
	4,082.00	23.33	75.960	3,843.20	223.67	1,062.01	-589.62	3.16	3.16	0.19
	4,113.00	23.63	72.140	3,871.63	227.07	1,073.88	-595.57	5.00	0.97	-12.32
	4,144.00	23.96	62.220	3,900.01	231.91	1,085.37	-600.23	12.94	1.06	-32.00
	4,176.00	24.67	52.160	3,929.18	239.04	1,096.40	-602.95	13.12	2.22	-31.44
	4,208.00	25.82	43.260	3,958.14	248.21	1,106.45	-603.52	12.38	3.59	-27.81
	4,239.00	27.71	35.400	3,985.82	259.01	1,115.26	-602.06	12.93	6.10	-25.35
	4,270.00	28.62	28.370	4,013.16	271.42	1,122.96	-598.69	11.09	2.94	-22.68

Survey Report

Company:	Enduring Resources LLC	Local Co-ordinate Reference:	Well W Lybrook Unit No. 730H
Project:	San Juan County, New Mexico NAD83 NM W	TVD Reference:	RKB=6641+28 @ 6669.00ft (Ensign 773)
Site:	W Lybrook 730 Pad (730, 763, 830, 861 & 863)	MD Reference:	RKB=6641+28 @ 6669.00ft (Ensign 773)
Well:	W Lybrook Unit No. 730H	North Reference:	Grid
Wellbore:	Original Hole	Survey Calculation Method:	Minimum Curvature
Design:	Surveys Original Hole	Database:	DB_Feb2822

Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
4,302.0		22.740	4,041.22	285.29	1,129.59	-593.51	8.50	0.81	-17.59
4,333.0		17.960	4,068.33	299.39	1,134.82	-587.19	7.55	1.00	-15.42
4,365.0		13.590	4,096.19	314.54	1,139.09	-579.46	6.95	1.78	-13.66
4,396.0	30.85	8.550	4,122.96	329.88	1,142.08	-570.68	8.92	3.52	-16.26
4,428.0	32.06	3.770	4,150.26	346.47	1,143.86	-560.16	8.66	3.78	-14.94
4,460.0	0 32.54	358.910	4,177.31	363.55	1,144.25	-548.32	8.25	1.50	-15.19
4,490.0	0 33.67	354.570	4,202.44	379.90	1,143.31	-536.05	8.75	3.77	-14.47
4,522.0	0 35.43	350.790	4,228.80	397.89	1,140.99	-521.65	8.67	5.50	-11.81
4,553.0	0 37.59	348.990	4,253.72	416.04	1,137.74	-506.48	7.78	6.97	-5.81
4,585.0		346.770	4,278.83	435.43	1,133.58	-489.79	6.16	4.41	-6.94
4,616.0	40.59	345.030	4,302.65	454.67	1,128.74	-472.73	6.26	5.13	-5.61
4,648.0		342.710	4,326.46	475.20	1,122.79	-453.97	9.62	8.31	-7.25
4,680.0		340.480	4,349.23	496.52	1,115.68	-433.83	10.00	8.72	-6.97
4,000.0		338.090	4,349.23	490.52 517.96	1,107.56	-433.83	12.16	10.74	-7.71
4,743.0	00 52.40	335.730	4,390.28	540.79	1,097.82	-389.83	11.06	9.47	-7.38
4,774.0	0 55.82	333.780	4,408.45	563.50	1,087.10	-366.17	12.15	11.03	-6.29
4,806.0	0 58.31	332.440	4,425.84	587.45	1,074.95	-340.61	8.54	7.78	-4.19
4,837.0	0 58.66	331.790	4,442.05	610.81	1,062.59	-315.33	2.11	1.13	-2.10
4,869.0		331.100	4,458.44	634.94	1,049.45	-288.94	3.74	3.25	-2.16
4,900.0		330.130	4,473.31	658.64	1,036.10	-262.72	10.90	10.55	-3.13
4,931.0		328.280	4,486.58	682.70	1,021.76	-235.54	12.16	10.90	-5.97
4,963.0		327.210	4,498.55	707.79	1,005.92	-206.58	10.95	10.50	-3.34
4,967.2	.3 70.16	327.003	4,500.00	711.12	1,003.76	-202.69	11.55	10.60	-4.89
FTP G-top	p 4967.23 MD 4500	.00 TVD							
4,994.0	0 73.00	325.720	4,508.46	732.27	989.69	-177.78	11.55	10.62	-4.79
5,026.0	76.46	324.020	4,516.89	757.51	971.93	-147.35	11.97	10.81	-5.31
5,057.0	0 79.60	322.640	4,523.32	781.82	953.82	-117.33	11.03	10.13	-4.45
5,088.0		320.930	4,527.96	805.90	934.86	-86.89	12.77	11.55	-5.52
5,151.0		318.310	4,532.49	853.74	894.17	-24.27	9.51	8.56	-4.16
5,246.0		318.120	4,533.61	924.57	830.87	70.59	1.59	1.58	-0.20
5,340.0		317.760	4,532.91	994.36	767.90	164.48	0.86	0.77	-0.38
		517.700	7,002.91	<i>33</i> 4 .30	101.30	104.40	0.00	0.77	-0.00
5,434.0	87.74	315.980	4,534.11	1,062.94	703.65	258.42	3.76	-3.24	-1.89
5,529.0	88.06	315.260	4,537.60	1,130.80	637.25	353.35	0.83	0.34	-0.76
5,624.0	88.66	315.020	4,540.31	1,198.11	570.27	448.31	0.68	0.63	-0.25
5,718.0	00 89.00	314.450	4,542.23	1,264.25	503.51	542.29	0.71	0.36	-0.61
5,812.0		313.920	4,544.38	1,329.75	436.12	636.25	0.87	-0.66	-0.56
5,907.0	0 89.11	315.500	4,546.46	1,396.57	368.63	731.22	1.83	0.77	1.66
6,002.0		315.060	4,548.15	1,464.06	301.79	826.20	0.53	-0.26	-0.46
6,097.0		317.470	4,547.82	1,532.69	236.13	921.17	3.79	2.81	2.54
			4,547.62						
6,192.0		317.270	,	1,602.56	171.81	1,016.06	0.31	0.23	-0.21
6,285.0	90.90	317.370	4,542.95	1,670.91	108.79	1,108.97	0.92	-0.91	0.11
6,380.0	90.97	317.740	4,541.40	1,741.00	44.68	1,203.88	0.40	0.07	0.39
6,474.0	0 89.95	314.720	4,540.65	1,808.87	-20.33	1,297.85	3.39	-1.09	-3.21
· · · · · ·									

Survey Report

Company:	Enduring Resources LLC	Local Co-ordinate Reference:	Well W Lybrook Unit No. 730H
Project:	San Juan County, New Mexico NAD83 NM W	TVD Reference:	RKB=6641+28 @ 6669.00ft (Ensign 773)
Site:	W Lybrook 730 Pad (730, 763, 830, 861 & 863)	MD Reference:	RKB=6641+28 @ 6669.00ft (Ensign 773)
Well:	W Lybrook Unit No. 730H	North Reference:	Grid
Wellbore:	Original Hole	Survey Calculation Method:	Minimum Curvature
Design:	Surveys Original Hole	Database:	DB_Feb2822

Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
6,569.00	90.13	314.650	4,540.58	1,875.67	-87.88	1,392.84	0.20	0.19	-0.07
6,663.00	89.72	313.690	4,540.71	1,941.17	-155.30	1,486.83	1.11	-0.44	-1.02
6,758.00	87.77	311.380	4,542.79	2,005.37	-225.28	1,581.69	3.18	-2.05	-2.43
6,852.00	88.73	314.300	4,545.66	2,069.25	-294.16	1,675.56	3.27	1.02	3.11
6,947.00	89.52	314.800	4,547.11	2,135.89	-361.85	1,770.54	0.98	0.83	0.53
7,041.00	90.43	315.140	4,547.15	2,202.32	-428.36	1,864.54	1.03	0.97	0.36
7,135.00	87.86	312.720	4,548.55	2,267.52	-496.04	1,958.49	3.76	-2.73	-2.57
7,230.00	88.80	315.910	4,551.32	2,333.85	-563.97	2,053.42	3.50	0.99	3.36
7 00 4 00	00.47	0.4.0.000	4 550 00	0 404 40		0 4 47 40	0.44	0.00	0.40
7,324.00	89.17	316.020	4,552.99	2,401.42	-629.30	2,147.40	0.41	0.39	0.12
7,418.00	92.35	316.310	4,551.74	2,469.21	-694.39	2,241.37	3.40	3.38	0.31
7,512.00	92.37	315.130	4,547.87	2,536.45	-759.96	2,335.28	1.25	0.02	-1.26
7,607.00	92.15	313.660	4,544.12	2,602.85	-827.78	2,430.19	1.56	-0.23	-1.55
7,701.00	92.29	313.730	4,540.48	2,667.74	-895.70	2,524.09	0.17	0.15	0.07
7,795.00	89.05	313.700	4,539.38	2,732.69	-963.63	2,618.04	3.45	-3.45	-0.03
7,889.00	89.89	314.030	4,540.25	2,797.83	-1,031.39	2,712.01	0.96	0.89	0.35
7,984.00	88.02	315.210	4,541.98	2,864.54	-1,099.00	2,806.98	2.33	-1.97	1.24
8,078.00	88.66	315.260	4,544.71	2,931.25	-1,165.16	2,900.94	0.68	0.68	0.05
8,172.00	88.33	314.410	4,547.18	2,997.50	-1,231.80	2,994.91	0.97	-0.35	-0.90
*			,	ŗ	,	,			
8,267.00	88.98	314.410	4,549.41	3,063.96	-1,299.64	3,089.87	0.68	0.68	0.00
8,361.00	89.33	314.080	4,550.79	3,129.54	-1,366.98	3,183.85	0.51	0.37	-0.35
8,456.00	90.31	314.560	4,551.09	3,195.92	-1,434.94	3,278.84	1.15	1.03	0.51
8,551.00	90.28	313.810	4,550.60	3,262.13	-1,503.06	3,373.82	0.79	-0.03	-0.79
8,645.00	90.71	313.690	4,549.79	3,327.13	-1,570.96	3,467.79	0.47	0.46	-0.13
8,740.00	88.37	311.790	4,550.55	3,391.59	-1,640.72	3,562.68	3.17	-2.46	-2.00
8,834.00	90.46	314.780	4,551.51	3,456.03	-1,709.14	3,656.61	3.88	2.40	3.18
8,928.00	90.40 88.74	312.960	4,552.17	3,521.16	-1,709.14	3,750.58	2.66	-1.83	-1.94
9,022.00	90.15	314.960	4,553.08	3,586.41	-1,844.55	3,844.54	2.60	-1.65	2.13
9,022.00	88.73	313.630	4,554.01	3,652.74	-1,912.54	3,939.52	2.00	-1.49	-1.40
9,117.00	00.75	313.030	4,554.01	3,052.74	-1,912.04	3,939.52	2.05	-1.49	-1.40
9,211.00	89.97	316.470	4,555.07	3,719.26	-1,978.94	4,033.50	3.30	1.32	3.02
9,306.00	90.25	315.740	4,554.89	3,787.71	-2,044.80	4,128.49	0.82	0.29	-0.77
9,400.00	88.91	313.960	4,555.58	3,854.00	-2,111.44	4,222.48	2.37	-1.43	-1.89
9,495.00	89.98	315.870	4,556.50	3,921.07	-2,178.71	4,317.47	2.30	1.13	2.01
9,589.00	90.00	315.600	4,556.52	3,988.39	-2,244.32	4,411.47	0.29	0.02	-0.29
9,683.00	90.19	315.050	4,556.36	4,055.23	-2,310.41	4,505.46	0.62	0.20	-0.59
9,777.00	89.66	313.740	4,556.48	4,120.99	-2,377.57	4,599.45	1.50	-0.56	-1.39
9,872.00	89.35	316.510	4,557.31	4,188.30	-2,444.59	4,694.44	2.93	-0.33	2.92
9,966.00	90.76	317.490	4,557.22	4,257.05	-2,508.70	4,788.39	1.83	1.50	1.04
10,060.00	87.88	316.170	4,558.33	4,325.59	-2,573.00	4,882.33	3.37	-3.06	-1.40
10,154.00	88.54	315.930	4,561.27	4,393.23	-2,638.20	4,976.28	0.75	0.70	-0.26
10,249.00	89.27	316.060	4,563.08	4,461.55	-2,704.19	5,071.25	0.78	0.77	0.14
10,344.00	88.37	315.380	4,565.04	4,529.55	-2,770.50	5,166.22	1.19	-0.95	-0.72
10,438.00	88.43	314.950	4,567.66	4,596.18	-2,836.75	5,260.19	0.46	0.06	-0.46
10,533.00	89.80	314.970	4,569.13	4,663.30	-2,903.96	5,355.17	1.44	1.44	0.02
	-			-		-			

Survey Report

Company:	Enduring Resources LLC	Local Co-ordinate Reference:	Well W Lybrook Unit No. 730H		
Project:	San Juan County, New Mexico NAD83 NM W	TVD Reference:	RKB=6641+28 @ 6669.00ft (Ensign 773)		
Site:	W Lybrook 730 Pad (730, 763, 830, 861 & 863)	MD Reference:	RKB=6641+28 @ 6669.00ft (Ensign 773)		
Well:	W Lybrook Unit No. 730H	North Reference:	Grid		
Wellbore:	Original Hole	Survey Calculation Method:	Minimum Curvature		
Design:	Surveys Original Hole	Database:	DB_Feb2822		

Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
10,627.00	89.72	314.610	4,569.52	4,729.52	-2,970.67	5,449.17	0.39	-0.09	-0.38
10,721.00	90.09	313.660	4,569.68	4,794.98	-3,038.13	5,543.15	1.08	0.39	-1.01
10,815.00	89.74	314.310	4,569.82	4,860.26	-3,105.77	5,637.13	0.79	-0.37	0.69
10,910.00	90.00	313.280	4,570.04	4,926.01	-3,174.34	5,732.10	1.12	0.27	-1.08
11,004.00	87.27	314.380	4,572.27	4,991.08	-3,242.13	5,826.04	3.13	-2.90	1.17
11,098.00	89.57	314.370	4,574.87	5,056.79	-3,309.28	5,919.98	2.45	2.45	-0.01
11,193.00	91.55	315.930	4,573.94	5,124.13	-3,376.28	6,014.97	2.65	2.08	1.64
11,287.00	90.70	315.410	4,572.09	5,191.36	-3,441.95	6,108.95	1.06	-0.90	-0.55
11,382.00	89.43	313.740	4,571.98	5,258.03	-3,509.62	6,203.94	2.21	-1.34	-1.76
11,477.00	87.63	312.220	4,574.42	5,322.77	-3,579.09	6,298.83	2.48	-1.89	-1.60
11,572.00	89.60	314.740	4,576.72	5,388.11	-3,647.99	6,393.75	3.37	2.07	2.65
11,666.00	88.82	313.990	4,578.01	5,453.83	-3,715.19	6,487.73	1.15	-0.83	-0.80
11,760.00	90.84	313.820	4,578.29	5,519.01	-3,782.91	6,581.70	2.16	2.15	-0.18
11,855.00	89.66	315.710	4,577.88	5,585.91	-3,850.35	6,676.69	2.35	-1.24	1.99
11,949.00	88.74	314.410	4,579.19	5,652.44	-3,916.74	6,770.67	1.69	-0.98	-1.38
12,043.00	89.57	314.360	4,580.58	5,718.18	-3,983.91	6,864.65	0.88	0.88	-0.05
12,137.00	89.53	313.970	4,581.32	5,783.67	-4,051.34	6,958.64	0.42	-0.04	-0.41
12,231.00	88.74	313.060	4,582.73	5,848.38	-4,119.50	7,052.58	1.28	-0.84	-0.97
12,326.00	89.09	312.740	4,584.53	5,913.04	-4,189.08	7,147.49	0.50	0.37	-0.34
12,420.00	89.64	312.090	4,585.58	5,976.44	-4,258.47	7,241.37	0.91	0.59	-0.69
12,515.00	88.81	310.860	4,586.86	6,039.35	-4,329.64	7,336.16	1.56	-0.87	-1.29
12,609.00	89.88	314.300	4,587.93	6,102.94	-4,398.84	7,430.04	3.83	1.14	3.66
12,704.00	88.85	313.290	4,588.99	6,168.68	-4,467.41	7,525.00	1.52	-1.08	-1.06
.0	2704.00 MD 4588								
12,723.00	88.85	313.290	4,589.37	6,181.70	-4,481.23	7,543.99	0.00	0.00	0.00
LTP @ 1272	3 MD 4589.37 TV								
12,737.00	88.85	313.290	4,589.65	6,191.30	-4,491.42	7,557.98	0.00	0.00	0.00
330 perp @	12737.00 MD 458	39.65 TVD							
12,844.00	88.85	313.290	4,591.80	6,264.66	-4,569.29	7,664.90	0.00	0.00	0.00
Survey Proj	to 12844 MD 45	91.80 TVD 163 F	NL 2134 FEL						

Casing Points						
	Measured Depth (ft)	Vertical Depth (ft)	Neuro	Casing Diameter	Hole Diameter	
	(14)	(14)	Name	()	()	
	2,557.00			9-5/8	12-1/4	

Survey Report

Company:	Enduring Resources LLC	Local Co-ordinate Reference:	Well W Lybrook Unit No. 730H
Project:	San Juan County, New Mexico NAD83 NM W	TVD Reference:	RKB=6641+28 @ 6669.00ft (Ensign 773)
Site:	W Lybrook 730 Pad (730, 763, 830, 861 & 863)	MD Reference:	RKB=6641+28 @ 6669.00ft (Ensign 773)
Well:	W Lybrook Unit No. 730H	North Reference:	Grid
Wellbore:	Original Hole	Survey Calculation Method:	Minimum Curvature
Design:	Surveys Original Hole	Database:	DB_Feb2822

Design Annotations

Measured	Vertical	Local Coordinates		
Depth (ft)	Depth (ft)	+N/-S (ft)	+E/-W (ft)	Comment
401.00	400.98	-2.63	-2.14	MWD surveys
2,557.00	2,466.60	84.17	421.61	9 5/8" Casing @ 2557 MD 2466.60 TVD
4,967.23	4,500.00	711.12	1,003.76	FTP G-top 4967.23 MD 4500.00 TVD
12,704.00	4,588.99	6,168.68	-4,467.41	Survey @ 12704.00 MD 4588.99 TVD
12,723.00	4,589.37	6,181.70	-4,481.23	LTP @ 12723 MD 4589.37 TVD
12,737.00	4,589.65	6,191.30	-4,491.42	330 perp @ 12737.00 MD 4589.65 TVD
12,844.00	4,591.80	6,264.66	-4,569.29	Survey Proj. to 12844 MD 4591.80 TVD 163 FNL 2134 FEL

Survey Report - Geographic

Company: Project:	Enduring Resource San Juan County, N		AD83 NM W	Local Co TVD Refe	-ordinate Refere	nce:	Well W Lybrook Unit No. 730H RKB=6641+28 @ 6669.00ft (Ensign 773)		
Site:	W Lybrook 730 Pac	d (730, 763, 8		MD Refer	ence:		RKB=6641+28 @ 6669.00ft (Ensign 773)		
Well:	W Lybrook Unit No.	. 730H		North Re			Grid		
Wellbore:	Original Hole			Survey Calculation Method:			Minimum Curvature		
Design:	Surveys Original Ho	SIE		Database	:		DB_Feb2822		
Project	San Juan Cou	nty, New Mex	kico NAD83 NM W						
Map System: Geo Datum: Map Zone:	US State Plane North American New Mexico We	Datum 1983		System	ı Datum:		Mean Sea Level		
Site	W Lybrook 730	0 Pad (730, 7 [,]	63, 830, 861 & 863)					
Site Position: From: Position Uncertai	Lat/Long	0.00 ft	Northing: Easting: Slot Radius:	,	38,164.052 usft 41,098.391 usft 13-3/16 "	Latitude Longitu Grid Co		-107.772	179000 310000 04°
Well	W Lybrook Uni	t No. 730H							
Well Position	+N/-S	0.00 ft	Northing:		1,892,834.71		Latitude:		2012000
	+E/-W	0.00 ft	Easting:		2,739,771.05		Longitude:	-107.776	
Position Uncertai	nty	0.00 ft	Wellhead El	evation:		ft	Ground Level:	6,641	.00 ft
Wellbore	Original Hole								
Magnetics	Model Na	me	Sample Date	Dec	clination (°)		Dip Angle (°)	Field Strength (nT)	
	IGF	RF2020	3/8/2022	2	8.74		62.71	49,216.10701673	
Design	Surveys Origin	nal Hole							
Audit Notes:									
Version:	1.0		Phase:	ACTUAL	т	ie On Dep	th:		0.00
Vertical Section:		Depth	From (TVD)	+N/-	S +	E/-W	Direc		
			(ft)	(ft)		(ft)	(°		
			0.00	(0.00	0.00		315.200	

ourroy rrogram	Dato			
From	То			
(ft)	(ft) Survey (Wellbore)	Tool Name	Description	
401.00	2,509.00 MWD surf (Original Hole)	MWD	OWSG MWD - Standard	
2,583.00	12,704.00 MWD (Original Hole)	MWD	OWSG MWD - Standard	
12,844.00	12,844.00 Projection (Original Hole)	MWD	OWSG MWD - Standard	

Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
0.00	0.00	0.000	0.00	0.00	0.00	1,892,834.713	2,739,771.058	36.202012000	-107.77679900
401.00	0.97	219.150	400.98	-2.63	-2.14	1,892,832.081	2,739,768.915	36.202004772	-107.7768062
MWD su	rveys								
493.00	0.70	216.780	492.97	-3.69	-2.97	1,892,831.027	2,739,768.087	36.202001878	-107.7768090
584.00	0.70	230.490	583.96	-4.49	-3.73	1,892,830.228	2,739,767.325	36.201999685	-107.7768116
675.00	0.53	211.590	674.96	-5.20	-4.38	1,892,829.516	2,739,766.676	36.201997729	-107.7768138
766.00	0.44	214.230	765.96	-5.84	-4.80	1,892,828.869	2,739,766.259	36.201995951	-107.7768152
857.00	0.40	206.050	856.95	-6.42	-5.14	1,892,828.294	2,739,765.923	36.201994374	-107.7768164
948.00	0.44	201.480	947.95	-7.03	-5.40	1,892,827.684	2,739,765.655	36.201992698	-107.7768173
1,039.00	0.31	230.400	1,038.95	-7.51	-5.72	1,892,827.202	2,739,765.338	36.201991374	-107.7768184

Survey Report - Geographic

Company:	Enduring Resources LLC	Local Co-ordinate Reference:	Well W Lybrook Unit No. 730H		
Project:	San Juan County, New Mexico NAD83 NM W	TVD Reference:	RKB=6641+28 @ 6669.00ft (Ensign 773)		
Site:	W Lybrook 730 Pad (730, 763, 830, 861 & 863)	MD Reference:	RKB=6641+28 @ 6669.00ft (Ensign 773)		
Well:	W Lybrook Unit No. 730H	North Reference:	Grid		
Wellbore:	Original Hole	Survey Calculation Method:	Minimum Curvature		
Design:	Surveys Original Hole	Database:	DB_Feb2822		

Survey

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
1,132.00	1.23	49.870	1,131.94	-7.03	-5.15	1,892,827.685	2,739,765.907	36.201992700	-107.776816473
1,226.00	2.50	70.180	1,225.89	-5.68	-2.45	1,892,829.030	2,739,768.607	36.201996392	-107.776807318
1,320.00	4.53	70.620	1,319.71	-3.76	2.98	1,892,830.957	2,739,774.038	36.202001677	-107.776788906
1,414.00	6.72	75.010	1,413.25	-1.10	11.80	1,892,833.612	2,739,782.854	36.202008955	-107.776759021
1,508.00	8.75	76.940	1,506.39	1.94	24.07	1,892,836.651	2,739,795.132	36.202017283	-107.776717396
1,603.00	11.87	81.430	1,599.85	5.03	40.78	1,892,839.740	2,739,811.837	36.202025743	-107.776660770
1,697.00	15.95	84.410	1,691.07	7.73	63.20	1,892,842.440	2,739,834.260	36.202033124	-107.776584762
1,791.00	19.51	84.850	1,780.60	10.39	91.70	1,892,845.108	2,739,862.757	36.202040408	-107.776488168
1,886.00	21.75	83.710	1,869.50	13.75	125.00	1,892,848.461	2,739,896.056	36.202049564	-107.776375294
1,981.00	23.55	78.170	1,957.18	19.57	161.08	1,892,854.281	2,739,932.134	36.202065495	-107.776252997
2,075.00	26.32	76.060	2,042.41	28.44	199.69	1,892,863.153	2,739,970.748	36.202089805	-107.776122100
2,170.00	28.70	75.450	2,126.66	39.25	242.22	1,892,873.959	2,740,013.274	36.202119421	-107.775977938
2,264.00	29.14	76.150	2,208.94	50.39	286.28	1,892,885.108	2,740,057.342	36.202149976	-107.775828549
2,358.00	28.78	76.150	2,291.19	61.29	330.48	1,892,896.003	2,740,101.533	36.202179835	-107.775678742
2,453.00	28.13	75.620	2,374.71	72.33	374.37	1,892,907.039	2,740,145.430	36.202210081	-107.775529929
2,509.00	27.95	76.150	2,424.13	78.75	399.90	1,892,913.460	2,740,170.960	36.202227675	-107.775443384
2,557.00	27.61	75.795	2,466.60	84.17	421.61	1,892,918.882	2,740,192.666	36.202242536	-107.775369803
9 5/8" Ca	sing @ 2557	MD 2466.60 1	IVD						
2,583.00	27.43	75.600	2,489.66	87.14	433.25	1,892,921.850	2,740,204.307	36.202250669	-107.775330338
2,677.00	25.95	74.530	2,573.64	98.01	474.05	1,892,932.721	2,740,245.102	36.202280466	-107.775192042
2,772.00	25.95	78.590	2,659.07	107.66	514.46	1,892,942.378	2,740,285.512	36.202306928	-107.775055053
2,867.00	26.65	78.320	2,744.24	116.09	555.69	1,892,950.803	2,740,326.752	36.202330004	-107.774915255
2,982.00	26.63	77.550	2,847.03	126.87	606.12	1,892,961.580	2,740,377.176	36.202359528	-107.774744322
3,076.00	24.96	76.590	2,931.66	136.01	645.99	1,892,970.723	2,740,417.042	36.202384576	-107.774609175
3,170.00	26.23	77.620	3,016.43	145.06	685.57	1,892,979.776	2,740,456.627	36.202409382	-107.774474987
3,265.00	24.61	76.300	3,102.23	154.25	725.30	1,892,988.963	2,740,496.353	36.202434551	-107.774340315
3,359.00	26.45	79.650	3,187.06	162.65	764.91	1,892,997.360	2,740,535.968	36.202457555	-107.774206022
3,453.00	24.99	78.630	3,271.74	170.32	804.97	1,893,005.036	2,740,576.031	36.202478574	-107.774070216
3,547.00	26.27	79.210	3,356.49	178.13	844.88	1,893,012.846	2,740,615.933	36.202499960	-107.773934952
3,642.00	25.40	78.360	3,442.00	186.18	885.48	1,893,020.892	2,740,656.541	36.202521997	-107.773797295
3,736.00	25.33	79.070	3,526.93	194.06	924.97	1,893,028.773	2,740,696.029	36.202543578	-107.773663432
3,830.00	24.90	78.890	3,612.05	201.69	964.13	1,893,036.398	2,740,735.191	36.202564461	-107.773530679
3,924.00	23.29	77.690	3,697.85	209.46	1,001.71	1,893,044.174	2,740,772.767	36.202585757	-107.773403298
4,019.00	23.26	76.620	3,785.12	217.81	1,038.31	1,893,052.519	2,740,809.365	36.202608619	-107.773279232
4,050.00	22.32	75.900	3,813.70	220.66	1,049.97	1,893,055.369	2,740,821.029	36.202616430	-107.773239690
4,082.00	23.33	75.960	3,843.20	223.67	1,062.01	1,893,058.387	2,740,833.070	36.202624699	-107.773198871
4,113.00	23.63	72.140	3,871.63	227.07	1,073.88	1,893,061.782	2,740,844.939	36.202634005	-107.773158633
4,144.00	23.96	62.220	3,900.01	231.91	1,085.37	1,893,066.623	2,740,856.426	36.202647284	-107.773119688
4,176.00	24.67	52.160	3,929.18	239.04	1,096.40	1,893,073.751	2,740,867.454	36.202666848	-107.773082295
4,208.00	25.82	43.260	3,958.14	248.21	1,106.45	1,893,082.927	2,740,877.508	36.202692037	-107.773048198
4,239.00	27.71	35.400	3,985.82	259.01	1,115.26	1,893,093.723	2,740,886.313	36.202721679	-107.773018330
4,270.00	28.62	28.370	4,013.16	271.42	1,122.96	1,893,106.134	2,740,894.018	36.202755761	-107.772992187
4,302.00	28.88	22.740	4,041.22	285.29	1,129.59	1,893,120.007	2,740,900.648	36.202793861	-107.772969685
4,333.00	29.19	17.960	4,068.33	299.39	1,134.82	1,893,134.104	2,740,905.874	36.202832578	-107.772951944
4,365.00	29.76	13.590	4,096.19	314.54	1,139.09	1,893,149.249	2,740,910.146	36.202874174	-107.772937429
4,396.00	30.85	8.550	4,122.96	329.88	1,142.08	1,893,164.590	2,740,913.137	36.202916313	-107.772927262
4,428.00	32.06	3.770	4,150.26	346.47	1,143.86	1,893,181.181	2,740,914.915	36.202961888	-107.772921198
4,460.00	32.54	358.910	4,177.31	363.55	1,144.25	1,893,198.263	2,740,915.310	36.203008813	-107.772919824
4,490.00	33.67	354.570	4,202.44	379.90	1,143.31	1,893,214.612	2,740,914.369	36.203053726	-107.772922978
4,522.00	35.43	350.790	4,228.80	397.89	1,140.99	1,893,232.602	2,740,912.045	36.203103150	-107.772930818
4,553.00	37.59	348.990	4,253.72	416.04	1,137.74	1,893,250.755	2,740,908.800	36.203153025	-107.772941777
4,585.00	39.00	346.770	4,278.83	435.43	1,133.58	1,893,270.140	2,740,904.632	36.203206282	-107.772955866
4,616.00	40.59	345.030	4,302.65	454.67	1,128.74	1,893,289.380	2,740,899.794	36.203259145	-107.772972224
4,648.00	43.25	342.710	4,326.46	475.20	1,122.79	1,893,309.909	2,740,893.845	36.203315551	-107.772992344
4,680.00	46.04	340.480	4,349.23	496.52	1,115.68	1,893,331.237	2,740,886.737	36.203374155	-107.773016394

Survey Report - Geographic

	Company:	Enduring Resources LLC	Local Co-ordinate Reference:	Well W Lybrook Unit No. 730H		
	Project:	San Juan County, New Mexico NAD83 NM W	TVD Reference:	RKB=6641+28 @ 6669.00ft (Ensign 773)		
	Site:	W Lybrook 730 Pad (730, 763, 830, 861 & 863)	MD Reference:	RKB=6641+28 @ 6669.00ft (Ensign 773)		
	Well:	W Lybrook Unit No. 730H	North Reference:	Grid		
	Wellbore:	Original Hole	Survey Calculation Method:	Minimum Curvature		
Design:		Surveys Original Hole	Database:	DB_Feb2822		

Survey

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
4,711.00	49.37	338.090	4,370.09	517.96	1,107.56	1,893,352.675	2,740,878.616	36.203433059	-107.773043873
4,743.00	52.40	335.730	4,390.28	540.79	1,097.82	1,893,375.504	2,740,868.871	36.203495790	-107.773076855
4,774.00	55.82	333.780	4,408.45	563.50	1,087.10	1,893,398.211	2,740,858.154	36.203558186	-107.773113133
4,806.00	58.31	332.440	4,425.84	587.45	1,074.95	1,893,422.159	2,740,846.005	36.203623996	-107.773154264
4,837.00	58.66	331.790	4,442.05	610.81	1,062.59	1,893,445.518	2,740,833.645	36.203688185	-107.773196110
4,869.00	59.70	331.100	4,458.44	634.94	1,049.45	1,893,469.655	2,740,820.508	36.203754515	-107.773240586
4,900.00	62.97	330.130	4,473.31	658.64	1,036.10	1,893,493.351	2,740,807.160	36.203819632	-107.773285779
4,931.00	66.35	328.280	4,486.58	682.70	1,021.76	1,893,517.409	2,740,792.814	36.203885748	-107.773334356
4,963.00 4,967.23	69.71 70.16	327.210 327.003	4,498.55 4,500.00	707.79 711.12	1,005.92 1,003.76	1,893,542.500 1,893,545.835	2,740,776.976 2,740,774.819	36.203954702 36.203963867	-107.773387988 -107.773395292
	op 4967.23 MD			/11.12	1,003.70	1,093,045.055	2,740,774.019	30.203903007	-107.773595292
4,994.00	73.00	325.720	4,508.46	732.27	989.69	1,893,566.978	2,740,760.749	36.204021971	-107.773442940
5,026.00	76.46	324.020	4,516.89	757.51	971.93	1,893,592.218	2,740,742.985	36.204091339	-107.773503097
5,057.00	79.60	322.640	4,523.32	781.82	953.82	1,893,616.537	2,740,724.876	36.204158176	-107.773564430
5,088.00	83.18	320.930	4,527.96	805.90	934.86	1,893,640.613	2,740,705.917	36.204224347	-107.773628642
5,151.00	88.57	318.310	4,532.49	853.74	894.17	1,893,688.454	2,740,665.223	36.204355842	-107.773766478
5,246.00	90.07	318.120	4,533.61	924.57	830.87	1,893,759.284	2,740,601.927	36.204550524	-107.773980876
5,340.00	90.79	317.760	4,532.91	994.36	767.90	1,893,829.071	2,740,538.958	36.204742342	-107.774194170
5,434.00	87.74	315.980	4,534.11	1,062.94	703.65	1,893,897.656	2,740,474.710	36.204930860	-107.774411802
5,529.00	88.06	315.260	4,537.60	1,130.80	637.25	1,893,965.508	2,740,408.311	36.205117366	-107.774636729
5,624.00	88.66	315.020	4,540.31	1,198.11	570.27	1,894,032.819	2,740,341.328	36.205302387	-107.774863637
5,718.00	89.00	314.450	4,542.23	1,264.25	503.51	1,894,098.965	2,740,274.568	36.205484206	-107.775089794
5,812.00	88.38	313.920	4,544.38	1,329.75	436.12	1,894,164.463	2,740,207.180	36.205664247	-107.775318082
5,907.00	89.11	315.500	4,546.46	1,396.57	368.63	1,894,231.278	2,740,139.685	36.205847907	-107.775546731
6,002.00	88.86	315.060	4,548.15	1,464.06	301.79	1,894,298.770	2,740,072.849	36.206033422	-107.775773142
6,097.00	91.53	317.470	4,547.82	1,532.69	236.13	1,894,367.400	2,740,007.185	36.206222062	-107.775995584
6,192.00	91.75	317.270	4,545.10	1,602.56	171.81	1,894,437.267	2,739,942.871	36.206414097	-107.776213445
6,285.00	90.90	317.370	4,542.95	1,670.91	108.79	1,894,505.617	2,739,879.844	36.206601963	-107.776426950
6,380.00	90.97	317.740	4,541.40	1,741.00	44.68	1,894,575.710	2,739,815.739	36.206794619	-107.776644106
6,474.00 6,569.00	89.95 90.13	314.720 314.650	4,540.65 4,540.58	1,808.87 1,875.67	-20.33 -87.88	1,894,643.578 1,894,710.383	2,739,750.724 2,739,683.180	36.206981165 36.207164791	-107.776864354 -107.777093173
6,663.00	90.13 89.72	313.690	4,540.58	1,941.17	-155.30	1,894,775.880	2,739,615.758	36.207344826	-107.777321587
6,758.00	87.77	311.380	4,542.79	2,005.37	-225.28	1,894,840.081	2,739,545.781	36.207521304	-107.777558662
6,852.00	88.73	314.300	4,545.66	2,069.25	-294.16	1,894,903.960	2,739,476.896	36.207696893	-107.777792038
6,947.00	89.52	314.800	4,547.11	2,135.89	-361.85	1,894,970.597	2,739,409.204	36.207880057	-107.778021365
7,041.00	90.43	315.140	4,547.15	2,202.32	-428.36	1,895,037.029	2,739,342.702	36.208062657	-107.778246660
7,135.00	87.86	312.720	4,548.55	2,267.52	-496.04	1,895,102.227	2,739,275.023	36.208241868	-107.778475948
7,230.00	88.80	315.910	4,551.32	2,333.85	-563.97	1,895,168.557	2,739,207.089	36.208424188	-107.778706102
7,324.00	89.17	316.020	4,552.99	2,401.42	-629.30	1,895,236.124	2,739,141.760	36.208609903	-107.778927421
7,418.00	92.35	316.310	4,551.74	2,469.21	-694.39	1,895,303.915	2,739,076.672	36.208796231	-107.779147927
7,512.00	92.37	315.130	4,547.87	2,536.45	-759.96	1,895,371.155	2,739,011.101	36.208981045	-107.779370069
7,607.00	92.15	313.660	4,544.12	2,602.85	-827.78	1,895,437.563	2,738,943.275	36.209163579	-107.779599859
7,701.00	92.29	313.730	4,540.48	2,667.74	-895.70	1,895,502.451	2,738,875.362	36.209341936	-107.779829949
7,795.00	89.05	313.700	4,539.38	2,732.69	-963.63	1,895,567.399	2,738,807.434	36.209520456	-107.780060090
7,889.00	89.89	314.030	4,540.25	2,797.83	-1,031.39	1,895,632.533	2,738,739.666	36.209699489	-107.780289688
7,984.00	88.02	315.210	4,541.98	2,864.54	-1,099.00	1,895,699.246	2,738,672.062	36.209882857	-107.780518729
8,078.00	88.66	315.260	4,544.71	2,931.25	-1,165.16	1,895,765.958	2,738,605.895	36.210066219	-107.780742898
8,172.00	88.33	314.410	4,547.18	2,997.50	-1,231.80	1,895,832.210	2,738,539.260	36.210248320	-107.780968658
8,267.00	88.98	314.410	4,549.41	3,063.96	-1,299.64	1,895,898.671	2,738,471.416	36.210430996	-107.781198517
8,361.00	89.33	314.080	4,550.79	3,129.54	-1,366.98	1,895,964.250	2,738,404.086	36.210611247	-107.781426637
8,456.00	90.31	314.560 313.810	4,551.09	3,195.92	-1,434.94	1,896,030.622	2,738,336.119	36.210793676	-107.781656912
8,551.00 8,645.00	90.28 90.71	313.810 313.690	4,550.60 4,549.79	3,262.13 3,327.13	-1,503.06 -1,570.96	1,896,096.833 1,896,161.833	2,738,267.997 2,738,200.098	36.210975665 36.211154323	-107.781887717 -107.782117770
8,740.00	88.37	313.090	4,549.79	3,391.59	-1,640.72	1,896,226.297	2,738,200.098	36.211331514	-107.782354137
8,834.00	90.46	314.780	4,551.51	3,456.03	-1,709.14	1,896,290.732	2,738,061.924	36.211508622	-107.782585930
5,001.00	00.10	0.1.700	.,	5, 100.00	.,. 55.17	.,000,200.102	_,,	00.2.1000022	

4/14/2022 10:36:53PM

COMPASS 5000.16 Build 96

Survey Report - Geographic

Company:	Enduring Resources LLC	Local Co-ordinate Reference:	Well W Lybrook Unit No. 730H
Project:	San Juan County, New Mexico NAD83 NM W	TVD Reference:	RKB=6641+28 @ 6669.00ft (Ensign 773)
Site:	W Lybrook 730 Pad (730, 763, 830, 861 & 863)	MD Reference:	RKB=6641+28 @ 6669.00ft (Ensign 773)
Well:	W Lybrook Unit No. 730H	North Reference:	Grid
Wellbore:	Original Hole	Survey Calculation Method:	Minimum Curvature
Design:	Surveys Original Hole	Database:	DB_Feb2822

Survey

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
8,928.00	88.74	312.960	4,552.17	3,521.16	-1,776.90	1,896,355.870	2,737,994.166	36.211687658	-107.782815509
9,022.00	90.15	314.960	4,553.08	3,586.41	-1,844.55	1,896,421.112	2,737,926.511	36.211866983	-107.783044737
9,117.00	88.73	313.630	4,554.01	3,652.74	-1,912.54	1,896,487.450	2,737,858.521	36.212049314	-107.783275099
9,211.00	89.97	316.470	4,555.07	3,719.26	-1,978.94	1,896,553.963	2,737,792.124	36.212232127	-107.783500064
9,306.00	90.25	315.740	4,554.89	3,787.71	-2,044.80	1,896,622.421	2,737,726.257	36.212420279	-107.783723226
9,400.00	88.91	313.960	4,555.58	3,854.00	-2,111.44	1,896,688.708	2,737,659.622	36.212602471	-107.783949001
9,495.00	89.98	315.870	4,556.50	3,921.07	-2,178.71	1,896,755.776	2,737,592.354	36.212786808	-107.784176917
9,589.00	90.00	315.600	4,556.52	3,988.39	-2,244.32	1,896,823.091	2,737,526.745	36.212971820	-107.784399215
9,683.00	90.19	315.050	4,556.36	4,055.23	-2,310.41	1,896,889.935	2,737,460.655	36.213155537	-107.784623141
9,777.00	89.66	313.740	4,556.48	4,120.99	-2,377.57	1,896,955.696	2,737,393.491	36.213336280	-107.784850713
9,872.00	89.35	316.510	4,557.31	4,188.30	-2,444.59	1,897,023.008	2,737,326.472	36.213521285	-107.785077792
9,966.00	90.76	317.490	4,557.22	4,257.05	-2,508.70	1,897,091.752	2,737,262.367	36.213710220	-107.785294991
10,060.00	87.88	316.170	4,558.33	4,325.59	-2,573.00	1,897,160.296	2,737,198.068	36.213898602	-107.785512847
10,154.00	88.54	315.930	4,561.27	4,393.23	-2,638.20	1,897,227.937	2,737,132.862	36.214084507	-107.785733783
10,249.00	89.27	316.060	4,563.08	4,461.55	-2,704.19	1,897,296.255	2,737,066.876	36.214272274	-107.785957362
10,344.00	88.37	315.380	4,565.04	4,529.55	-2,770.50	1,897,364.254	2,737,000.565	36.214459160	-107.786182042
10,438.00	88.43	314.950	4,567.66	4,596.18	-2,836.75	1,897,430.887	2,736,934.315	36.214642296	-107.786406521
10,533.00	89.80	314.970	4,569.13	4,663.30	-2,903.96	1,897,498.005	2,736,867.103	36.214826766	-107.786634262
10,627.00	89.72	314.610	4,569.52	4,729.52	-2,970.67	1,897,564.228	2,736,800.393	36.215008775	-107.786860304
10,721.00	90.09	313.660	4,569.68	4,794.98	-3,038.13	1,897,629.684	2,736,732.930	36.215188677	-107.787088900
10,815.00	89.74	314.310	4,569.82	4,860.26	-3,105.77	1,897,694.964	2,736,665.295	36.215368095	-107.787318078
10,910.00	90.00	313.280	4,570.04	4,926.01	-3,174.34	1,897,760.710	2,736,596.724	36.215548795	-107.787550434
11,004.00	87.27	314.380	4,572.27	4,991.08	-3,242.13	1,897,825.781	2,736,528.939	36.215727639	-107.787780125
11,098.00	89.57	314.370	4,574.87	5,056.79	-3,309.28	1,897,891.490	2,736,461.780	36.215908236	-107.788007694
11,193.00	91.55	315.930	4,573.94	5,124.13	-3,376.28	1,897,958.832	2,736,394.789	36.216093316	-107.788234690
11,287.00	90.70	315.410	4,572.09	5,191.36	-3,441.95	1,898,026.059	2,736,329.117	36.216278078	-107.788457220
11,382.00	89.43	313.740	4,571.98	5,258.03	-3,509.62	1,898,092.730	2,736,261.449	36.216461315	-107.788686515
11,477.00	87.63	312.220	4,574.42	5,322.77	-3,579.09	1,898,157.470	2,736,191.976	36.216639250	-107.788921934
11,572.00	89.60	314.740	4,576.72	5,388.11	-3,647.99	1,898,222.813	2,736,123.073	36.216818838	-107.789155424
11,666.00	88.82	313.990	4,578.01	5,453.83	-3,715.19	1,898,288.532	2,736,055.880	36.216999461	-107.789383114
11,760.00	90.84	313.820	4,578.29	5,519.01	-3,782.91	1,898,353.714	2,735,988.157	36.217178606	-107.789612601
11,855.00	89.66	315.710	4,577.88	5,585.91	-3,850.35	1,898,420.608	2,735,920.712	36.217362454	-107.789841145
11,949.00	88.74	314.410	4,579.19	5,652.44	-3,916.74	1,898,487.137	2,735,854.323	36.217545297	-107.790066114
12,043.00	89.57	314.360	4,580.58	5,718.18	-3,983.91	1,898,552.880	2,735,787.153	36.217725981	-107.790293730
12,137.00	89.53	313.970	4,581.32	5,783.67	-4,051.34	1,898,618.370	2,735,719.726	36.217905970	-107.790522220
12,231.00	88.74	313.060	4,582.73	5,848.38	-4,119.50	1,898,683.085	2,735,651.567	36.218083830	-107.790753194
12,326.00	89.09	312.740	4,584.53	5,913.04	-4,189.08	1,898,747.741	2,735,581.988	36.218261531	-107.790988981
12,420.00	89.64	312.090	4,585.58	5,976.44	-4,258.47	1,898,811.139	2,735,512.595	36.218435774	-107.791224143
12,515.00	88.81	310.860	4,586.86	6,039.35	-4,329.64	1,898,874.050	2,735,441.425	36.218608679	-107.791465328
12,609.00	89.88	314.300	4,587.93	6,102.94	-4,398.84	1,898,937.637	2,735,372.226	36.218783442	-107.791699834
12,704.00	88.85	313.290	4,588.99	6,168.68	-4,467.41	1,899,003.379	2,735,303.660	36.218964122	-107.791932193
		0 4588.99 TVD							
12,723.00	88.85	313.290	4,589.37	6,181.70	-4,481.23	1,899,016.405	2,735,289.832	36.218999920	-107.791979051
LTP @ 12	2723 MD 4589	.37 TVD							
12,737.00	88.85	313.290	4,589.65	6,191.30	-4,491.42	1,899,026.002	2,735,279.644	36.219026298	-107.792013578
	0	AD 4589.65 T\							
12,844.00	88.85	313.290	4,591.80	6,264.66	-4,569.29	1,899,099.356	2,735,201.775	36.219227899	-107.792277463
Survey P	roj. to 12844	MD 4591.80 T	VD 163 FNL 2 ⁴	134 FEL					

Survey Report - Geographic

Company:	Enduring Resources LLC	Local Co-ordinate Reference:	Well W Lybrook Unit No. 730H
Project:	San Juan County, New Mexico NAD83 NM W	TVD Reference:	RKB=6641+28 @ 6669.00ft (Ensign 773)
Site:	W Lybrook 730 Pad (730, 763, 830, 861 & 863)	MD Reference:	RKB=6641+28 @ 6669.00ft (Ensign 773)
Well:	W Lybrook Unit No. 730H	North Reference:	Grid
Wellbore:	Original Hole	Survey Calculation Method:	Minimum Curvature
Design:	Surveys Original Hole	Database:	DB_Feb2822

Casing Points

Measured Vertical		Casing Hole	
Depth Depth		Diameter Diameter	
(ft) (ft)	Name	(") (")	
2,557.00		9-5/8 12-1/4	4
	Depth Depth (ft) (ft)	Depth Depth (ft) (ft) Name	DepthDepthDiameterDiameter(ft)(ft)Name(")(")

Design Annotatio	ons				
N	/leasured Depth (ft)	Vertical Depth (ft)	Local Coor +N/-S (ft)	rdinates +E/-W (ft)	Comment
	401.00	400.98	-2.63	-2.14	MWD surveys
	2,557.00	2,466.60	84.17	421.61	9 5/8" Casing @ 2557 MD 2466.60 TVD
	4,967.23	4,500.00	711.12	1,003.76	FTP G-top 4967.23 MD 4500.00 TVD
	12,704.00	4,588.99	6,168.68	-4,467.41	Survey @ 12704.00 MD 4588.99 TVD
	12,723.00	4,589.37	6,181.70	-4,481.23	LTP @ 12723 MD 4589.37 TVD
	12,737.00	4,589.65	6,191.30	-4,491.42	330 perp @ 12737.00 MD 4589.65 TVD
	12,844.00	4,591.80	6,264.66	-4,569.29	Survey Proj. to 12844 MD 4591.80 TVD 163 FNL 2134 FEL

ENDURING RESOURCES IV, LLC 6300 S SYRACUSE WAY, SUITE 525 CENTENNIAL, COLORADO 80111

DRILLING PLAN:

Drill, complete, and equip single lateral in the Mancos-I formation

VELL INFORMATION:				
Name:	W LYBROOK UNIT 730H			
API Number:	30-045-35843			
AFE Number:	DV03066			
ER Well Number:	NM08074.01			
State:	New Mexico			
County:	San Juan			
Surface Elevation:	6,641 ft ASL (GL)	6,669 ft ASL (KB)		
Surface Location:	27-23N-09W Sec-Twn-Rng	1,141 ft FNL	2,446 ft FWL	
	36.202012 $^\circ$ N latitude	107.776799 $^\circ$ W longitude	(NAD 83)	
BH Location:	21-23N-09W Sec-Twn-Rng	232 ft FNL	1,992 ft FEL	
	36.219049 $^\circ$ N latitude	107.791796 $^\circ$ W longitude	(NAD 83)	
Driving Directions:	FROM THE INTERSECTION OF	US HWY 550 & US HWY 64 IN B	BLOOMFIELD, NM:	
	South on US Hwy 550 for 38.3	miles to MM 113.4, Right (Sout	hwest) on CR #7890 for 0.8 mi	les to fork, Left (South)
	remaining on CR #7890 for 1.3	miles to 4-way intersection, Le	eft (Southeast) remaining on Cl	R #7890 for 0.6 miles to
	fork, Right (Southwest) on CR #	#7890 for 0.5 miles to fork, Righ	nt (West) exiting CR #7890 onto	o access road for W
	Lybrook Unit 720H pad for 0.6	miles to fork, Left (West) onto	access road for W Lybrook Uni	t 726H pad for 0.7 miles

fork, Right (Southwest) on CR #7890 for 0.5 miles to fork, Right (West) exiting CR #7890 onto access road for W Lybrook Unit 720H pad for 0.6 miles to fork, Left (West) onto access road for W Lybrook Unit 726H pad for 0.7 miles to fork, Left (West) for 1.4 miles to fork. Left (Southest) for 0.6 miles to W Lybrook Unit 730H Pad (wells: 730H, 763H, 830H, 861H, 863H).

GEOLOGIC AND RESERVOIR INFORMATION:

Pre

Formation Tops	TVD (ft ASL)	TVD (ft KB)	MD (ft KB)	O/G/W	Pressure
Ojo Alamo	6,475	194	194	W	normal
Kirtland	6,370	299	299	W	normal
Fruitland	6,160	509	509	G, W	sub
Pictured Cliffs	5,763	906	906	G, W	sub
Lewis	5,650	1,019	1,019	G, W	normal
Chacra	5,405	1,264	1,264	G, W	normal
Cliff House	4,380	2,289	2,348	G, W	sub
Menefee	4,340	2,329	2,393	G, W	normal
Point Lookout	3,355	3,314	3,493	G, W	normal
Mancos	3,200	3,469	3,667	0,G	sub (~0.38
Gallup (MNCS_A)	2,875	3,794	4,030	0,G	sub (~0.38
MNCS_B	2,772	3,897	4,145	0,G	sub (~0.38
MNCS_C	2,682	3,987	4,243	0,G	sub (~0.38
MNCS_Cms	2,640	4,029	4,289	0,G	sub (~0.38
MNCS_D	2,502	4,167	4,443	0,G	sub (~0.38
MNCS_E	2,365	4,304	4,614	0,G	sub (~0.38
MNCS_F	2,307	4,362	4,698	O,G	sub (~0.38
MNCS_G	2,238	4,431	4,821	0,G	sub (~0.38
MNCS_H	2,190	4,479	4,920	0,G	sub (~0.38
MNCS_I	2,150	4,519	5,035	0,G	sub (~0.38
FTP (LP) TARGET	2,127	4,542	5,201	0,G	sub (~0.38
LTP (TD) TARGET	2,060	4,609	12,720	0,G	sub (~0.38

Surface: Nacimiento

Oil & Gas Zones: Several gas bearing zones will be encountered; target formation is the Gallup *Pressure:* Normal (0.43 psi/ft) or sub-normal pressure gradients anticipated in all formatio

ressure:	Normal (0.43 psi/ft) or sub-nor	mal pressu	re gradients a	anticipated in all formations			
	Max. pressure gradient:	0.43	psi/ft	Evacuated hole gradient:	0.22	psi/ft	
	Maximum anticipated BH pres	sure, assu	ming maximu	m pressure gradient:	1,990	psi	
	Maximum anticipated surface	pressure, a	assuming par	tially evacuated hole:	980	psi	
oratura	Maximum anticipated BHT is 1	25° E or lo					

Temperature: Maximum anticipated BHT is 125° F or less

H₂S INFORMATION:

H₂S Zones: Encountering hydrogen-sulfide bearing zones is **NOT** anticipated.

Safety: Sensors and alarms will be placed in the substructure, on the rig floor, above the pits, and at the shakers.

LOGGING, CORING, AND TESTING:

Mud Logs: None planned; remote geo-steering from drill out of 9-5/8" casing to TD; gas detection from drillout of 13-3/8" casing to TD.

 MWD / LWD:
 Gamma Ray from drillout of 13-3/8" casing to TD

 Open Hole Logs:
 None planned

 Testing:
 None planned

 Coring:
 None planned

 Cased Hole Logs:
 CBL on 5-1/2" casing from deepest free-fall depth to surface

DRILLING RIG INFORMATION:

Contractor:	Ensign
Rig No.:	773
Draw Works:	Pacific Rim 1500AC
Mast:	ADR 1500S Cantilever Triple (142 ft, 800,000 lbs, 12 lines)
Top Drive:	Tesco 500-ESI-1350 (500 ton, 1,350 hp)
Prime Movers:	3 - CAT 3512 (1,475 hp)
Pumps:	3 - Gardner-Denver PZ11 (7,500 psi)
BOPE 1:	Cameron single gate ram (pipe) & double gate ram (pipe & blind) (13-5/8", 10,000 psi)
BOPE 2:	Cameron annular (13-5/8", 5,000 psi)
Choke	3", 10,000 psi
KB-GL (ft):	28
NOTE:	A different rig may be used to drill the well depending on rig availability

BOPE REQUIREMENTS:

- See attached diagram for details regarding BOPE specifications and configuration.
- 1) Rig will be equipped with upper and lower kelly cocks with handles available.
- 2) Inside BOP and TIW valves will be available to use on all sizes and threads of drill pipe used while drilling the well.
- 3) BOP accumulator will have enough capacity to open the HCR valve, close all rams and annular preventer, and retain minimum of 200 psi above precharge on the closing manifold without the use of closing pumps. The fluid reservoir capacity shall be at least double the usable fluid volume of the accumulator system capacity, and the fluid level shall be maintained at manufacturer's recommendation. There will be two additional sources of power for the closing pumps (electric and air). Sufficient nitrogen bottles will be available and will be recharged when pressure falls below manufacturer's recommended minimum.
- 4) BOP testing shall be conducted (a) when initially installed, (b) whenever any seal is broken or repaired, (c) if the time since the previous test exceeds 30 days. Tests will be conducted using a test plug. BOP ram preventers will be tested to 3,000 psig for 10 minutes, and the annular preventer will be tested to 1,500 psi for 10 minutes. Ram and annular preventers will be tested to 250 psi for 5 minutes. Additionally, BOP and casing strings will be tested to .22 psi/ft or 1,500 psi, whichever is greater but not exceeding 70% of yield strength of the casing, for 30 minutes, prior to drilling out 13-3/8" and 9-5/8" casing. Rams and hydraulically operated remote choke line valve will be function tested daily at a minimum.
- 5) Remote valve for BOP rams, HCR, and choke shall be placed in a location that is readily available to the driller. The remote BOP valve shall be capable of closing and opening the rams.
- 6) Manual locking devices (hand wheels) shall be intalled on rams. A valve will be installed on the annular preventer's closing line as close as possible to the preventer to act as a locking device. The valve will be maintained in the open position and shall only be closed when the there is no power to the accumulator.

FLUIDS AND SOLIDS CONTROL PROGRAM:

- Fluid Measurement:
 Pumps shall be equipped with stroke counters with displays in the dog-house. Slow pump speed shall be recorded daily and after mudding up, at a minimum, on the drilling report. A Pit Volume Totalizer will be installed and the readout will be displayed in the dog-house. Gas-detecting equipment will be installed at the shakers, and readouts will be available in the dog-house and the in the geologist's work-station (if geologist or mud-logger is on-site).
- Closed-Loop System: A fully, closed-loop system will be utilized. The system will consist of above-ground piping and above-ground storage tanks and bins. The system will not entail any earthen pits, below-grade storage, or drying pads. All equipment will be disassembled and removed from the site when drilling operations cease. The system will be capable of storing all fluids and generated cuttings and of preventing uncontrolled releases of the same. The system will be operated in an efficient manner to allow the recycling and reuse of as much fluid as possible and to minimimize the amount of fluids and solids that require disposal.
 - *Fluid Disposal* : Fluids that cannot be reused, recycled, or returned to the supplier will be hauled to and disposed of at an approved disposal site (Industrial Ecosystem, Inc. or Envirotech, Inc.).
 - Solids Disposal : Drilling solids will be stored (until haul-off) on-site in separate containers with no other waste, debris, or garbage products. Waste solids will be hauled to and disposed of at an approved disposal site (Industrial Ecosystem, Inc. or Envirotech, Inc.).

Fluid Program: See "Detailed Drilling Plan" section for specifics and fluid program from Newpark. Sufficient weighting agent will be on location to weight up mud system to balance the maximum expected pressure gradient.

DETAILED DRILLING PLAN:

	0	ft (MD)	to	350	ft (MD)	Hole S	Section Length:	350 f
		ft (TVD)	to		ft (TVD)		sing Required:	350 f
		1 1			ith a smaller rig			
						, uu s u co o,	,	
			FL		YP			
Fluid:	Туре	MW (ppg)	(mL/30 min)	PV (cp)	(lb/100 sqft)	pН	Comr	nents
	Fresh Water	8.4	N/C	2 - 8	2 - 12	9.0	Spud	mud
Hole Size:								
	Mill Tooth or P	,						
MWD / Survey:		lation survey						
Logging: Procedure:		$a 12_{-}/4"$ hit and	d_{open} to $17_{-1}/$	2" if unable to	drill with 17-1/	2" hit Run incl	ination survey i	in 100'
	stations from 1	TD to surface. C	Condition hole a	ind fluid for ca	sing running as note cement vo	required. TOO	H. Run casing. I	Pump cement
Cardina Cara		\A/A (IL /64)	Crede	Cana		Durat (mai)	Tens. Body	Tens. Conn
Casing Specs:	12 275	Wt (lb/ft)	Grade	Conn.	Collapse (psi)	Burst (psi)	(lbs)	(lbs)
Specs Loading	13.375	54.5	J-55	BTC	1,130 153	2,730 541	853,000 116,634	909,000 116,634
Min. S.F.					7.39	5.05	7.31	7.79
	Assumptions:	Collapse: fully	evacuated casi	ng with 8.4 pp	g equivalent ext			
			-		re with 9.5 ppg aternal pressure		ing while drillin	g
					100,000 lbs ov	-		
1U Torque (ft lbs):	Minumum:	N/A	Optimum:	N/A	Maximum:	N/A		
io ioique (jeios).		-	Connection runi			,		
Casing Summary:								
					ottom 3 jts, 1 ce	ntralizer per 2	jts to surface	
			Yield	Water	Hole Cap.		Planned TOC	Total Cmt
Cement:					noie capi		Flaimeu TOC	Total Cilit
cement.	Туре	Weight (ppg)	(cuft/sk)	(gal/sk)	(cuft/ft)	% Excess	(ft MD)	(sx)
cement.	Type III Calculated cen	14.6 nent volumes a	1.39 ssume gauge h	6.686 ole and the exe	-	100%		
INTERMEDIATE:	Type III Calculated cen Drake Energy S Notify NMOCE before drilling	14.6 nent volumes a Services surface 0 & BLM if cem out.	1.39 ssume gauge he e cementing ble ent is not circu	6.686 ole and the ex nd lated to surfac	(cuft/ft) 0.6946 cess noted in tak ce. Cement mus	100% ble it achieve 500 ((ft MD) 0	(sx) 350
	Type III Calculated cen Drake Energy S Notify NMOCE before drilling Drill as per dir	14.6 nent volumes a Services surface 0 & BLM if cem out.	1.39 ssume gauge he e cementing ble ent is not circu	6.686 ole and the exi nd lated to surfac g depth, run co	(cuft/ft) 0.6946 cess noted in tak ce. Cement mus	100% ble It achieve 500 asing to surfac	(ft MD) 0	(sx) 350
	Type III Calculated cen Drake Energy S Notify NMOCC before drilling Drill as per dir 350 350	14.6 nent volumes a Services surface D & BLM if cem out. ectional plan to ft (MD) ft (TVD)	1.39 ssume gauge he e cementing ble ent is not circul o casing setting to to	6.686 ole and the exi nd lated to surfac g depth, run cc 2,504 2,479	(cuft/ft) 0.6946 cess noted in take ces. Cement mus using, cement co ft (MD) ft (TVD)*	100% ble it achieve 500 p asing to surfac Hole S	(ft MD) 0 psi compressive e.	(sx) 350 e strength
	Type III Calculated cen Drake Energy S Notify NMOCC before drilling Drill as per dir 350 350	14.6 nent volumes a Services surface D & BLM if cem out. ectional plan to ft (MD) ft (TVD)	1.39 ssume gauge he e cementing ble ent is not circul o casing setting to	6.686 ole and the exi nd lated to surfac g depth, run cc 2,504 2,479	(cuft/ft) 0.6946 cess noted in take ces. Cement mus using, cement co ft (MD) ft (TVD)*	100% ble it achieve 500 p asing to surfac Hole S	(ft MD) 0 psi compressive e. Section Length:	(sx) 350 e strength 2,154 f
	Type III Calculated cen Drake Energy S Notify NMOCC before drilling Drill as per dir 350 350	14.6 nent volumes a Services surface D & BLM if cem out. ectional plan to ft (MD) ft (TVD)	1.39 ssume gauge h e cementing ble ent is not circul o casing setting to to 5 150' TVD BELC	6.686 ole and the exi nd lated to surfac g depth, run cc 2,504 2,479	(cuft/ft) 0.6946 cess noted in taken te. Cement mus asing, cement co ft (MD) ft (TVD)* TOP	100% ble it achieve 500 p asing to surfac Hole S	(ft MD) 0 psi compressive e. Section Length:	(sx) 350 e strength 2,154 f
INTERMEDIATE:	Type III Calculated cen Drake Energy S Notify NMOCC before drilling Drill as per dir 350 350 *TARGET CSG	14.6 nent volumes a Services surface D & BLM if cem out. ectional plan to ft (MD) ft (TVD) SHOE DEPTH IS	1.39 ssume gauge h e cementing ble ent is not circul o casing setting to to 5 150' TVD BELC FL	6.686 ole and the ex nd lated to surfac g depth, run cc 2,504 2,479 DW MENEFEE	(cuft/ft) 0.6946 cess noted in taken te. Cement mus asing, cement co ft (MD) ft (TVD)* TOP YP	100% ble at achieve 500 p asing to surfac Hole S Ca	(ft MD) 0 psi compressive e. Section Length: sing Required:	(sx) 350 e strength 2,154 f 2,504 f
	Type III Calculated cen Drake Energy S Notify NMOCE before drilling Drill as per dir 350 350 *TARGET CSG Type	14.6 nent volumes a Services surface D & BLM if cem out. ectional plan to ft (MD) ft (TVD) SHOE DEPTH IS MW (ppg)	1.39 ssume gauge h e cementing ble ent is not circul o casing setting to to 5 150' TVD BELC FL (mL/30 min)	6.686 ole and the ex nd lated to surfac g depth, run cc 2,504 2,479 DW MENEFEE PV (cp)	(cuft/ft) 0.6946 cess noted in taken te. Cement mus tsing, cement co ft (MD) ft (TVD)* TOP YP (Ib/100 sqft)	100% ble asing to surfac Hole S Ca pH	(ft MD) 0 psi compressive e. Section Length: sing Required:	(sx) 350 e strength 2,154 f
INTERMEDIATE: Fluid:	Type III Calculated cen Drake Energy S Notify NMOCE before drilling Drill as per dir 350 350 *TARGET CSG Type LSND (KCI)	14.6 nent volumes a Services surface D & BLM if cem out. ectional plan to ft (MD) ft (TVD) SHOE DEPTH IS	1.39 ssume gauge h e cementing ble ent is not circul o casing setting to to 5 150' TVD BELC FL	6.686 ole and the ex nd lated to surfac g depth, run cc 2,504 2,479 DW MENEFEE	(cuft/ft) 0.6946 cess noted in taken te. Cement mus asing, cement co ft (MD) ft (TVD)* TOP YP	100% ble at achieve 500 p asing to surfac Hole S Ca	(ft MD) 0 psi compressive e. Section Length: sing Required:	(sx) 350 e strength 2,154 f 2,504 f
INTERMEDIATE: Fluid: Hole Size:	Type III Calculated cen Drake Energy S Notify NMOCE before drilling Drill as per dir 350 350 *TARGET CSG Type LSND (KCI)	14.6 nent volumes a Services surface D & BLM if cem out. ectional plan to ft (MD) ft (TVD) SHOE DEPTH IS MW (ppg) 8.8 - 9.5	1.39 ssume gauge h e cementing ble ent is not circul o casing setting to to 5 150' TVD BELC FL (mL/30 min)	6.686 ole and the ex nd lated to surfac g depth, run cc 2,504 2,479 DW MENEFEE PV (cp)	(cuft/ft) 0.6946 cess noted in taken te. Cement mus tsing, cement co ft (MD) ft (TVD)* TOP YP (Ib/100 sqft)	100% ble asing to surfac Hole S Ca pH	(ft MD) 0 psi compressive e. Section Length: sing Required:	(sx) 350 e strength 2,154 f 2,504 f
INTERMEDIATE: Fluid: Hole Size: Bit / Motor:	Type III Calculated cen Drake Energy S Notify NMOCE before drilling Drill as per dir 350 350 *TARGET CSG Type LSND (KCI) 12-1/4" PDC w/mud m	14.6 nent volumes a Services surface D & BLM if cem out. ectional plan to ft (MD) ft (TVD) SHOE DEPTH IS MW (ppg) 8.8 - 9.5 otor	1.39 ssume gauge h e cementing ble ent is not circul o casing setting to to 5 150' TVD BELC FL (mL/30 min) 20	6.686 ole and the ex nd lated to surfac 2,504 2,479 DW MENEFEE PV (cp) 8 - 14	(cuft/ft) 0.6946 cess noted in taken te. Cement mus tsing, cement co ft (MD) ft (TVD)* TOP YP (Ib/100 sqft) 8 - 14	100% ble asing to surfac Hole S Ca pH 9.0 - 9.5	(ft MD) 0 psi compressive e. Section Length: sing Required:	(sx) 350 e strength 2,154 f 2,504 f
INTERMEDIATE: Fluid: Hole Size: Bit / Motor:	Type III Calculated cen Drake Energy S Notify NMOCE before drilling Drill as per dir 350 350 *TARGET CSG Type LSND (KCI) 12-1/4" PDC w/mud m MOTOR: NOV	14.6 nent volumes a Services surface D & BLM if cem out. ectional plan to ft (MD) ft (TVD) SHOE DEPTH IS MW (ppg) 8.8 - 9.5 otor 087840 - 7/8,4	1.39 ssume gauge h e cementing ble ent is not circul o casing setting to to 5 150' TVD BELC FL (mL/30 min) 20	6.686 ole and the ex nd lated to surfac 2,504 2,479 DW MENEFEE PV (cp) 8 - 14 rev/gal, 1.83 E	(cuft/ft) 0.6946 cess noted in taken te. Cement mus tsing, cement co ft (MD) ft (TVD)* TOP YP (Ib/100 sqft) 8 - 14	100% ble asing to surfac Hole S Ca pH 9.0 - 9.5	(ft MD) 0 psi compressive e. Section Length: sing Required: Comr	(sx) 350 e strength 2,154 f 2,504 f
INTERMEDIATE: Fluid: Hole Size: Bit / Motor:	Type III Calculated cen Drake Energy S Notify NMOCE before drilling Drill as per dir 350 *TARGET CSG *TARGET CSG Type LSND (KCI) 12-1/4" PDC w/mud m MOTOR: NOV BIT: 5- or 6-BL	14.6 nent volumes a Services surface D & BLM if cem out. ectional plan to ft (MD) ft (TVD) SHOE DEPTH IS MW (ppg) 8.8 - 9.5 otor 087840 - 7/8,4 ADE PDC w/16	1.39 ssume gauge h e cementing ble ent is not circul o casing setting to to 5 150' TVD BELC FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm o	6.686 ole and the exa nd lated to surfac 2,504 2,479 DW MENEFEE PV (cp) 8 - 14 rev/gal, 1.83 E cutters, target	(cuft/ft) 0.6946 cess noted in taken te. Cement mus tsing, cement co ft (MD) ft (TVD)* TOP (Ib/100 sqft) 8 - 14 DEG, 900 GPM, S TFA 0.65 - 1.0 m	100% ble asing to surfac Hole S Ca pH 9.0 - 9.5 950 DIFF PSIG nax); 6 - 14s = 0	(ft MD) 0 psi compressive e. Section Length: sing Required: Comr	(sx) 350 e strength 2,154 f 2,504 f
INTERMEDIATE: Fluid: Hole Size: Bit / Motor: * / Motor (Detail):	Type III Calculated cen Drake Energy S Notify NMOCE before drilling Drill as per dir 350 350 *TARGET CSG Type LSND (KCI) 12-1/4" PDC w/mud m MOTOR: NOV BIT: 5- or 6-BL MWD Survey v	14.6 nent volumes a Services surface D & BLM if cem out. ectional plan to ft (MD) ft (TVD) SHOE DEPTH IS MW (ppg) 8.8 - 9.5 otor 087840 - 7/8,4 ADE PDC w/16	1.39 ssume gauge h e cementing ble ent is not circul o casing setting to to 5 150' TVD BELC FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm o	6.686 ole and the exa nd lated to surfac 2,504 2,479 DW MENEFEE PV (cp) 8 - 14 rev/gal, 1.83 E cutters, target	(cuft/ft) 0.6946 cess noted in taken te. Cement mus tsing, cement co ft (MD) ft (TVD)* TOP (Ib/100 sqft) 8 - 14 DEG, 900 GPM, S TFA 0.65 - 1.0 m	100% ble asing to surfac Hole S Ca pH 9.0 - 9.5 950 DIFF PSIG hax); 6 - 14s = 0	(ft MD) 0 psi compressive e. Section Length: sing Required: Comr	(sx) 350 e strength 2,154 f 2,504 f
INTERMEDIATE: Fluid: Hole Size: Bit / Motor: t / Motor (Detail): MWD / Survey: Logging: Pressure Test:	Type III Calculated cen Drake Energy S Notify NMOCE before drilling Drill as per dir 350 *TARGET CSG *TARGET CSG Type LSND (KCI) 12-1/4" PDC w/mud m MOTOR: NOV BIT: 5- or 6-BL MWD Survey v None NU BOPE and 1	14.6 nent volumes a Services surface D & BLM if cem out. ectional plan to ft (MD) ft (TVD) SHOE DEPTH IS MW (ppg) 8.8 - 9.5 otor 087840 - 7/8,4 ADE PDC w/16 with inclination test (as noted a	1.39 ssume gauge h e cementing ble ent is not circul o casing setting to to 5 150' TVD BELC FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm of and azimuth su	6.686 ole and the exa nd lated to surfac 2,504 2,479 DW MENEFEE PV (cp) 8 - 14 rev/gal, 1.83 E cutters, target irvey (every 10 e test 13-3/8" of	(cuft/ft) 0.6946 cess noted in taken te. Cement mus tsing, cement co ft (MD) ft (TVD)* TOP (Ib/100 sqft) 8 - 14 DEG, 900 GPM, S TFA 0.65 - 1.0 m D0' at a minimum casing to	100% ble asing to surfac Hole S Ca pH 9.0 - 9.5 950 DIFF PSIG hax); 6 - 14s = C n), GR optiona 1,500	(ft MD) 0 psi compressive e. Section Length: sing Required: Comr	(sx) 350 e strength 2,154 f 2,504 f
INTERMEDIATE: Fluid: Hole Size: Bit / Motor: t / Motor (Detail): MWD / Survey: Logging: Pressure Test:	Type III Calculated cen Drake Energy S Notify NMOCE before drilling Drill as per dir 350 *TARGET CSG *TARGET CSG Type LSND (KCI) 12-1/4" PDC w/mud m MOTOR: NOV BIT: 5- or 6-BL MWD Survey v None NU BOPE and 1 Drill to TD follo	14.6 nent volumes a Services surface D & BLM if cem out. ectional plan to ft (MD) ft (TVD) SHOE DEPTH IS MW (ppg) 8.8 - 9.5 otor 087840 - 7/8,4 ADE PDC w/16 with inclination test (as noted a pwing direction	1.39 ssume gauge h e cementing ble ent is not circul o casing setting to to 5 150' TVD BELC FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm of and azimuth subove); pressure al plan (20' rat-	6.686 ole and the exa nd lated to surfac 2,504 2,479 DW MENEFEE PV (cp) 8 - 14 rev/gal, 1.83 E cutters, target irvey (every 10 e test 13-3/8" (chole (MAX) p:	(cuft/ft) 0.6946 cess noted in taken te. Cement mus using, cement co ft (MD) ft (TVD)* TOP (Ib/100 sqft) 8 - 14 DEG, 900 GPM, S TFA 0.65 - 1.0 m D0' at a minimum casing to ast casing setting	100% ble asing to surfac Hole S Ca pH 9.0 - 9.5 950 DIFF PSIG hax); 6 - 14s = C n), GR optiona 1,500 ng depth). Stee	(ft MD) 0 psi compressive e. Section Length: sing Required: Comr 0.902 sq-in TFA	(sx) 350 e strength 2,154 f 2,504 f nents
INTERMEDIATE: Fluid: Hole Size: Bit / Motor: it / Motor (Detail): MWD / Survey: Logging: Pressure Test:	Type III Calculated cen Drake Energy S Notify NMOCE before drilling Drill as per dir 350 *TARGET CSG *TARGET CSG Type LSND (KCI) 12-1/4" PDC w/mud m MOTOR: NOV BIT: 5- or 6-BL MWD Survey v None NU BOPE and 1 Drill to TD follo plan. Keep DLS	14.6 nent volumes a Services surface 0 & BLM if cem out. ectional plan to ft (MD) ft (TVD) SHOE DEPTH IS MW (ppg) 8.8 - 9.5 otor 087840 - 7/8,4 ADE PDC w/16 with inclination test (as noted a pwing direction 5 < 3 deg/100' a	1.39 ssume gauge hi e cementing ble ent is not circul o casing setting to to 5 150' TVD BELC FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm of and azimuth subove); pressure al plan (20' rat- ind keep slide le	6.686 ole and the exa nd lated to surface 2,504 2,479 DW MENEFEE PV (cp) 8 - 14 rev/gal, 1.83 E cutters, target irvey (every 10 e test 13-3/8" (chole (MAX) property 10 ength < 10', wh	(cuft/ft) 0.6946 cess noted in tak te. Cement mus tsing, cement co ft (MD) ft (TVD)* TOP (Ib/100 sqft) 8 - 14 DEG, 900 GPM, S TFA 0.65 - 1.0 m D0' at a minimum casing to ast casing settiment possible. Tak	100% ble tt achieve 500 p tt achieve 500 p Hole S Ca pH 9.0 - 9.5 950 DIFF PSIG hax); 6 - 14s = C n), GR optiona 1,500 ng depth). Stee ke surveys eve	(ft MD) 0 psi compressive e. Section Length: sing Required: Comr 0.902 sq-in TFA	(sx) 350 e strength 2,154 f 2,504 f nents
INTERMEDIATE: Fluid: Hole Size: Bit / Motor: it / Motor (Detail): MWD / Survey: Logging: Pressure Test:	Type III Calculated cen Drake Energy S Notify NMOCE before drilling Drill as per dir 350 *TARGET CSG *TARGET CSG Type LSND (KCI) 12-1/4" PDC w/mud m MOTOR: NOV BIT: 5- or 6-BL MWD Survey v None NU BOPE and 1 Drill to TD folko plan. Keep DLS Target flow-rat	14.6 nent volumes a Services surface 0 & BLM if cem out. ectional plan to ft (MD) ft (TVD) SHOE DEPTH IS MW (ppg) 8.8 - 9.5 otor 087840 - 7/8,4 ADE PDC w/16 with inclination test (as noted a pwing direction 5 < 3 deg/100' a tes of 750 GPM	1.39 ssume gauge hi e cementing ble ent is not circul o casing setting to to 5 150' TVD BELC FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm of and azimuth subove); pressure al plan (20' rat- ind keep slide le I (higher if able	6.686 ole and the exa nd lated to surface g depth, run cc 2,504 2,479 DW MENEFEE PV (cp) 8 - 14 rev/gal, 1.83 E cutters, target irvey (every 10 e test 13-3/8" (chole (MAX) pr ength < 10', wh to control returned	(cuft/ft) 0.6946 cess noted in tak te. Cement mus tsing, cement co ft (MD) ft (TVD)* TOP (Ib/100 sqft) 8 - 14 DEG, 900 GPM, S TFA 0.65 - 1.0 m D0' at a minimum casing to ast casing settim then possible. Tak urn rates). Minim	100% ble tt achieve 500 p tt achieve 500 p Hole S Ca pH 9.0 - 9.5 950 DIFF PSIG hax); 6 - 14s = C m), GR optiona 1,500 ng depth). Stee ke surveys even num desired fl	(ft MD) 0 psi compressive e. Section Length: sing Required: Comr 0.902 sq-in TFA l psi for 30 minuter as needed to stry stand, at a mow-rate is 650 for	(sx) 350 e strength 2,154 f 2,504 f 2,504 f seep well on inimum. GPM. At TD,
INTERMEDIATE: Fluid: Hole Size: Bit / Motor: t / Motor (Detail): MWD / Survey: Logging: Pressure Test:	Type III Calculated cen Drake Energy S Notify NMOCE before drilling Drill as per dir 350 *TARGET CSG *TARGET CSG Type LSND (KCI) 12-1/4" PDC w/mud m MOTOR: NOV BIT: 5- or 6-BL MWD Survey v None NU BOPE and 1 Drill to TD folk plan. Keep DLS Target flow-rat condition hole	14.6 nent volumes a Services surface 0 & BLM if cem out. ectional plan to ft (MD) ft (TVD) SHOE DEPTH IS MW (ppg) 8.8 - 9.5 otor 087840 - 7/8,4 ADE PDC w/16 with inclination test (as noted a pwing direction 5 < 3 deg/100' a tes of 750 GPM and fluid for ca	1.39 ssume gauge here ecementing ble ent is not circul o casing setting to to to 5150' TVD BELC FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm or and azimuth su bove); pressure al plan (20' rational keep slide lege I (higher if able asing running. T	6.686 ole and the exand nd lated to surface 2,504 2,479 DW MENEFEE PV (cp) 8 - 14 rev/gal, 1.83 E cutters, target irvey (every 10 e test 13-3/8" of chole (MAX) present ength < 10', wh to control retu "OOH. Run cas	(cuft/ft) 0.6946 cess noted in tak te. Cement mus tsing, cement co ft (MD) ft (TVD)* TOP (Ib/100 sqft) 8 - 14 DEG, 900 GPM, S TFA 0.65 - 1.0 m D0' at a minimum casing to ast casing settin then possible. Tak urn rates). Minin ing using a CRT	100% ble asing to surfac Hole S Ca pH 9.0 - 9.5 050 DIFF PSIG hax); 6 - 14s = 0 m), GR optiona 1,500 ng depth). Stee ke surveys eve num desired fl and washing /	(ft MD) 0 psi compressive e. Section Length: sing Required: Comr 0.902 sq-in TFA psi for 30 minuter as needed to stry stand, at a mow-rate is 650 (circulating as reference)	(sx) 350 e strength 2,154 f 2,504 f 2,
INTERMEDIATE: Fluid: Hole Size: Bit / Motor: t / Motor (Detail): MWD / Survey: Logging: Pressure Test:	Type III Calculated cen Drake Energy S Notify NMOCE before drilling Drill as per dir 350 *TARGET CSG *TARGET CSG Type LSND (KCI) 12-1/4" PDC w/mud m MOTOR: NOV BIT: 5- or 6-BL MWD Survey v None NU BOPE and 1 Drill to TD folk plan. Keep DLS Target flow-rat condition hole casing. ND BOI	14.6 nent volumes a Services surface 0 & BLM if cem out. ectional plan to ft (MD) ft (TVD) SHOE DEPTH IS MW (ppg) 8.8 - 9.5 otor 087840 - 7/8,4 ADE PDC w/16 with inclination test (as noted a pwing direction 5 < 3 deg/100' a tes of 750 GPM and fluid for ce PE. Walk rig to	1.39 ssume gauge here ecementing ble ent is not circul o casing setting to to to 5150' TVD BELC FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm c and azimuth su bove); pressure al plan (20' rational keep slide le I (higher if able asing running. T next well. Performance	6.686 ole and the exand nd lated to surface 2,504 2,479 DW MENEFEE PV (cp) 8 - 14 rev/gal, 1.83 E cutters, target irvey (every 10 e test 13-3/8" of chole (MAX) present ength < 10', while to control retu "OOH. Run cas rum off-line cent	(cuft/ft) 0.6946 cess noted in taken te. Cement mus asing, cement co ft (MD) ft (TVD)* TOP (Ib/100 sqft) 8 - 14 DEG, 900 GPM, S TFA 0.65 - 1.0 m D0' at a minimum casing to ast casing settiment possible. Taken possible. Taken the possible. Taken	100% ble asing to surfac Hole S Ca pH 9.0 - 9.5 050 DIFF PSIG hax); 6 - 14s = 0 m), GR optiona 1,500 ng depth). Stee ke surveys eve num desired fl and washing /	(ft MD) 0 psi compressive e. Section Length: sing Required: Comr 0.902 sq-in TFA psi for 30 minuter as needed to stry stand, at a mow-rate is 650 (circulating as reference)	(sx) 350 e strength 2,154 f 2,504 f 2,
INTERMEDIATE: Fluid: Hole Size: Bit / Motor: t / Motor (Detail): MWD / Survey: Logging: Pressure Test:	Type III Calculated cen Drake Energy S Notify NMOCE before drilling Drill as per dir 350 *TARGET CSG *TARGET CSG Type LSND (KCI) 12-1/4" PDC w/mud m MOTOR: NOV BIT: 5- or 6-BL MWD Survey v None NU BOPE and 1 Drill to TD folk plan. Keep DLS Target flow-rat condition hole casing. ND BOI	14.6 nent volumes a Services surface 0 & BLM if cem out. ectional plan to ft (MD) ft (TVD) SHOE DEPTH IS MW (ppg) 8.8 - 9.5 otor 087840 - 7/8,4 ADE PDC w/16 with inclination test (as noted a pwing direction 5 < 3 deg/100' a tes of 750 GPM and fluid for ce PE. Walk rig to	1.39 ssume gauge here ecementing ble ent is not circul o casing setting to to to 5150' TVD BELC FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm or and azimuth su bove); pressure al plan (20' rational keep slide lege I (higher if able asing running. T	6.686 ole and the exand nd lated to surface 2,504 2,479 DW MENEFEE PV (cp) 8 - 14 rev/gal, 1.83 E cutters, target irvey (every 10 e test 13-3/8" of chole (MAX) present ength < 10', while to control retu "OOH. Run cas rum off-line cent	(cuft/ft) 0.6946 cess noted in taken te. Cement mus asing, cement co ft (MD) ft (TVD)* TOP (Ib/100 sqft) 8 - 14 DEG, 900 GPM, S TFA 0.65 - 1.0 m D0' at a minimum casing to ast casing settiment possible. Taken possible. Taken the possible. Taken	100% ble asing to surfac Hole S Ca pH 9.0 - 9.5 050 DIFF PSIG hax); 6 - 14s = 0 m), GR optiona 1,500 ng depth). Stee ke surveys eve num desired fl and washing /	(ft MD) 0 psi compressive e. Section Length: sing Required: Comr 0.902 sq-in TFA psi for 30 minuter as needed to stry stand, at a mow-rate is 650 (circulating as reference)	(sx) 350 e strength 2,154 f 2,504 f 2,
INTERMEDIATE: Fluid: Hole Size: Bit / Motor: t / Motor (Detail): MWD / Survey: Logging: Pressure Test:	Type III Calculated cen Drake Energy S Notify NMOCE before drilling Drill as per dir 350 *TARGET CSG *TARGET CSG Type LSND (KCI) 12-1/4" PDC w/mud m MOTOR: NOV BIT: 5- or 6-BL MWD Survey v None NU BOPE and 1 Drill to TD folk plan. Keep DLS Target flow-rat condition hole casing. ND BOI	14.6 nent volumes a Services surface 0 & BLM if cem out. ectional plan to ft (MD) ft (TVD) SHOE DEPTH IS MW (ppg) 8.8 - 9.5 otor 087840 - 7/8,4 ADE PDC w/16 with inclination test (as noted a pwing direction 5 < 3 deg/100' a tes of 750 GPM and fluid for ce PE. Walk rig to	1.39 ssume gauge here ecementing ble ent is not circul o casing setting to to to 5150' TVD BELC FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm c and azimuth su bove); pressure al plan (20' rational keep slide le I (higher if able asing running. T next well. Performance	6.686 ole and the exand nd lated to surface 2,504 2,479 DW MENEFEE PV (cp) 8 - 14 rev/gal, 1.83 E cutters, target irvey (every 10 e test 13-3/8" of chole (MAX) present ength < 10', while to control retu "OOH. Run cas rum off-line cent	(cuft/ft) 0.6946 cess noted in taken te. Cement mus asing, cement co ft (MD) ft (TVD)* TOP (Ib/100 sqft) 8 - 14 DEG, 900 GPM, S TFA 0.65 - 1.0 m D0' at a minimum casing to ast casing settiment possible. Taken possible. Taken the possible. Taken	100% ble asing to surfac Hole S Ca pH 9.0 - 9.5 050 DIFF PSIG hax); 6 - 14s = 0 m), GR optiona 1,500 ng depth). Stee ke surveys eve num desired fl and washing /	(ft MD) 0 psi compressive e. Section Length: sing Required: Comr 0.902 sq-in TFA psi for 30 minuter as needed to stry stand, at a mow-rate is 650 (circulating as reference)	(sx) 350 e strength 2,154 f 2,504 f 2,

Tens. Conr (lbs) 453,000 178,610 2.54 g production 1 centralizer P'N'SLIDE 9-
453,000 178,610 2.54 g production 1 centralizer P'N'SLIDE 9-
178,610 2.54 g production 1 centralizer P'N'SLIDE 9-
2.54 g production 1 centralizer P'N'SLIDE 9-
g production 1 centralizer P'N'SLIDE 9-
1 centralizer P'N'SLIDE 9-
1 centralizer P'N'SLIDE 9-
P'N'SLIDE 9-
P'N'SLIDE 9-
P'N'SLIDE 9-
P'N'SLIDE 9-
P'N'SLIDE 9-
strength
2 strenoth
strength
strength
strength
a strength
strength
strength
strength
strength
strength
. su chgui
10,216
12,720
1
l
_
l
l
l
l
rig (2nd set)
and products
ar); on
100'
-00
utes.
utes.
utes. <mark>is 700 - 1,00</mark> 0
utes. is 700 - 1,000 slide length <
utes. is 700 - 1,000 slide length < 3UR for curve
utes. is 700 - 1,000 slide length < 3UR for curve t. Take surve
utes. is 700 - 1,000 slide length < 3UR for curve t. Take surve on plan and
utes. is 700 - 1,000 slide length < 3UR for curve t. Take surve on plan and ery stand, at
utes. is 700 - 1,000 slide length < 3UR for curve t. Take surve l on plan and ery stand, at ure is 700 -
utes. is 700 - 1,000 slide length < 3UR for curve t. Take surve on plan and ery stand, at ure is 700 - an-up cycle to
utes. is 700 - 1,000 slide length < 3UR for curve t. Take surve l on plan and ery stand, at ure is 700 -
utes. is 700 - 1,000 slide length < 3UR for curve t. Take surve on plan and ery stand, at ure is 700 - an-up cycle to
utes. is 700 - 1,000 slide length < 3UR for curve t. Take surve l on plan and ery stand, at ure is 700 - an-up cycle to equired with
utes. is 700 - 1,000 slide length < 3UR for curve t. Take surve l on plan and ery stand, at ure is 700 - an-up cycle to equired with be required
utes. is 700 - 1,000 slide length < 3UR for curve t. Take surve on plan and ery stand, at ure is 700 - an-up cycle to equired with be required e to LTP as e down BOPE
utes. is 700 - 1,000 slide length < 3UR for curve t. Take surve l on plan and ery stand, at ure is 700 - an-up cycle to equired with be required e to LTP as
and s. ar); (

.

							Tone Rody	Tong Conn	
Casing Specs:	Size (in)	Wt (lb/ft)	Grade	Conn.	Collapse (psi)	Burst (psi)	Tens. Body (lbs)	Tens. Conn (lbs)	
Specs	5.500	17.0	P-110	LTC	7,460	10,640	546,000	445,000	
Loading	0.000	1/10			2,277	8,931	336,596	336,596	
Min. S.F.					3.28	1.19	1.62	1.32	
	Assumptions: Collapse: fully evacuated casing with 9.5 ppg fluid in the annulus (floating casing during runnin						unning)		
				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ressure with 10).2 ppg equival	ent mud weigh	t sand laden	
	fluid with 8.4 ppg equivalent external pressure gradient								
	• **	Tension: buoyed weight in 9.0 ppg fluid with 150,000 lbs over-pull							
MU Torque (ft lbs): Casing Summary:	Minumum:	3,470	Optimum:	4,620	Maximum:	5,780	inmont) 20' m	arkar joint	
cusing summary.	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			1	h 20' marker jo				
				-	surface. The to				
					h of the well or				
					of the toe sleeve				
	the LTP as req	uired for neces	sary rat-hole a	nd shoe-track	- length to place	the toe sleeve	as close to (bu	t not past)	
	the planned L	TP as possible.							
Centralizers:	Centralizer cou	int and placem	ent may be adj	usted based on	well condition	s and as-drilled	surveys (ARSE	NAL	
	Lateral: 1 cent	ralizer per join	t						
		shoe: 1 central							
	9-5/8" shoe to	surface: 1 cen							
6	Turne	M(-:	Yield	Water	0/ 5	Planned TOC	Total Cmt		
Cement: Lead	Type Type III	Weight (ppg) 12.4	(cuft/sk) 2.360	(gal/sk) 13.40	% Excess 65%	(ft MD) 0	(sx) 472		
Tail	G:POZ blend	13.3	1.560	7.70	10%	3,667	1,462		
Annular Capacity	0.2691	cuft/ft		< 9-5/8" casing		0,007	2) 102		
. ,	0.2291	cuft/ft		< 8-1/2" hole ai					
	Calculated cen	nent volumes a	ssume gauge h	ole and the exc	ess noted in ta	ble			
	American Cem	enting Liner &	Production Blei	nd					
		0 & BLM if cem							
Note:					n as definted b				
					the completed				
					ll or 330' measu 19.15.16.7.B, a				
					respectively. In		1	1.1.1	
	,			,	will be the top		,		
					the unit bound	1			
	of the well or	330' measured	perpendicular	to the azimuth	of the well.	-			
FINISH WELL:	ND BOP, cap v	vell, RDMO.							
Procedure:	ND BOP. Walk	rig to next well	. Cement off-li	ne. Cap well.					
COMPLETION AND PR			240.000111		142 622 677				
		•			and 13,000,000 SP may be used				
			• •		ient production				
		0		perman		and storage it			

ESTIMATED START DATES:

Drilling: 3/11/2022

Completion: Production:	4/30/2022 6/19/2022		
Prepared by: Updated by: Updated by:	Alec Bridge Alec Bridge Alec Bridge Alec Bridge	1/20/2022 3/11/2022	 updated BHL and directional plan for combination unit (LL increase 1,889') updated drilling prog & AFE information for 2022 drilling program updated tops & directional plan to final geo-prog; updated 9-5/8" casing point; updated mud system; updated cement volumes

.

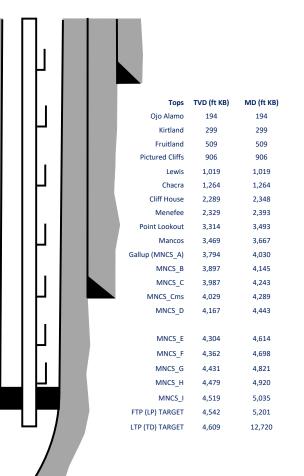
WELL NAME: W LYBROOK UNIT 730H

OBJECTIVE:	Drill, comple	te, and equip	single latera	al in the Manc	os-I formatio	on	
API Number:	30-045-35843						Sur
AFE Number:	DV03066						Int
ER Well Number:	NM08074.01						
State:	New Mexico						k
County:	San Juan						Tar
Surface Elev.:	6,641	ft ASL (GL)	6,669	ft ASL (KB)			C
Surface Location:	27-23N-09W	Sec-Twn- Rng	1,141	ft FNL	2,446	ft FWL	P
BH Location:	21-23N-09W	Sec-Twn- Rng	232	ft FNL	1992	ft FEL	
Driving Directions:	FROM THE INT	ERSECTION OF U	S HWY 550 8	US HWY 64 IN E	BLOOMFIELD, I	NM:	L

QUI	QUICK REFERENCE					
Sur TD (MD)	350 ft					
Int TD (MD)	2,504 ft					
KOP (MD)	4,104 ft					
KOP (TVD)	3,860 ft					
Target (TVD)	4,542 ft					
Curve BUR	10 °/100 ft					
POE (MD)	5,201 ft					
TD (MD)	12,720 ft					
Lat Len (ft)	7,519 ft					

South on US Hwy 550 for 38.3 miles to MM 113.4, Right (Southwest) on CR #7890 for 0.8 miles to fork, Left (South) remaining on CR #7890 for 1.3 miles to 4-way intersection, Left (Southeast) remaining on CR #7890 for 0.6 miles to fork, Right (Southwest) on CR #7890 for 0.5 miles to fork, Right (West) exiting CR #7890 onto access road for W Lybrook Unit 720H pad for 0.6 miles to fork, Left (West) onto access road for W Lybrook Unit 720H pad for 0.6 miles to fork, Left (West) onto access road for W Lybrook Unit 726H pad for 0.7 miles to fork, Left (West) for 1.4 miles to fork. Left (Southeast) to 0.6 miles to W Lybrook Unit 730H Pad (wells: 730H, 763H, 830H, 861H, 863H).

WELL CONSTRUCTION SUMMARY:


	Hole (in)	TD MD (ft)	Csg (in)	Csg (lb/ft)	Csg (grade)	Csg (conn)	Csg Top (ft)	Csg Bot (ft)
Surface	17.500	350	13.375	54.5	J-55	BTC	0	350
Intermediate	12.250	2,504	9.625	36.0	J-55	LTC	0	2,504
Production	8.500	12,720	5.500	17.0	P-110	LTC	0	12,720

CEMENT PROPERTIES SUMMARY:

					Hole Cap.		тос	
	Туре	Wt (ppg)	Yd (cuft/sk)	Wtr (gal/sk)	(cuft/ft)	% Excess	(ft MD)	Total (sx)
Surface	Type III	14.6	1.39	6.686	0.6946	100%	0	350
Inter. (Lead)	III:POZ Blend	12.5	2.14	12.05	0.3627	70%	0	471
Inter. (Tail)	Type III	14.6	1.38	6.64	0.3132	20%	2,004	136
Prod. (Lead)	Type III	12.4	2.360	13.4	0.2691	65%	0	472
Prod. (Tail)	G:POZ blend	13.3	1.560	7.7	0.2291	10%	3,667	1,462

COMPLETION / PRODUCTION SUMMARY:

Frac: 30 plug-and-perf stages with 210,000 bbls slickwater fluid and 13,000,000 lbs of proppant (estimated) *Flowback:* Flow back through production tubing as pressures allow (ESP may be used for load recovery assitance) *Production:* Produce through production tubing via gas-lift into permanent production and storage facilities

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

ACKNOWLEDGMENTS

Operator:	OGRID:						
ENDURING RESOURCES, LLC	372286						
6300 S Syracuse Way, Suite 525	Action Number:						
Centennial, CO 80111	105738						
	Action Type:						
	[C-104] Tight Hole Completion Packet (C-104CT)						
CKNOWLEDGMENTS							

N	I hereby certify that the required Water Use Report has been, or will be, submitted for this wells completion.
M	I hereby certify that the required FracFocus disclosure has been, or will be, submitted for this wells completion.

Action 105738

Page 25 of 27

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

COMMENTS

OGRID:
372286
Action Number:
105738
Action Type:
[C-104] Tight Hole Completion Packet (C-104CT)

COMMENTS

Created By		Comment Date
llowe	Approved COA: C-104 RT expires on 10/07/22	7/7/2022

.

COMMENTS

Action 105738

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
ENDURING RESOURCES, LLC	372286
6300 S Syracuse Way, Suite 525	Action Number:
Centennial, CO 80111	105738
	Action Type:
	[C-104] Tight Hole Completion Packet (C-104CT)
CONDITIONS	

Created By	Condition	Condition Date		
plmartinez	RT EXPIRES 10/7/2022.	2/7/2023		

Page 27 of 27

Action 105738