Form 3160-3 FORM APPROVED OMB No. 1004-0137 (June 2015) Expires: January 31, 2018 **UNITED STATES** DEPARTMENT OF THE INTERIOR 5 Lease Serial No. NMNM017232 BUREAU OF LAND MANAGEMENT APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. **✓** DRILL REENTER 1a. Type of work: 1b. Type of Well: ✓ Oil Well Gas Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing ✓ Single Zone Multiple Zone ARMSTRONG 35/23 H3PH FED COM 2H 2. Name of Operator 9. API Well No. MEWBOURNE OIL COMPANY 30-015-53582 3a. Address 3b. Phone No. (include area code) 10. Field and Pool, or Exploratory P O BOX 5270, HOBBS, NM 88241 (575) 393-5905 Jennings/Bone Spring West 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. or Blk. and Survey or Area SEC 35/T25S/R31E/NMP At surface SESE / 230 FSL / 1310 FEL / LAT 32.0801251 / LONG -103.7444788 At proposed prod. zone SENE / 1418 FNL / 1310 FEL / LAT 32.1191469 / LONG -103.7443726 12. County or Parish 14. Distance in miles and direction from nearest town or post office* 13 State **EDDY** NM 10 miles 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well 210 feet location to nearest 640.0 property or lease line, ft. (Also to nearest drig. unit line, if any) 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, 330 feet 10824 feet / 24965 feet FED: NM 1693 applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 3295 feet 05/25/2022 60 days 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see 2. A Drilling Plan. Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. SUPO must be filed with the appropriate Forest Service Office). 6. Such other site specific information and/or plans as may be requested by the 25. Signature Name (Printed/Typed) Date BRADLEY BISHOP / Ph: (575) 393-5905 (Electronic Submission) 09/01/2022 Title Regulatory Approved by (Signature) Date Name (Printed/Typed) (Electronic Submission) CODY LAYTON / Ph: (575) 234-5959 03/10/2023 Title Office Assistant Field Manager Lands & Minerals Carlsbad Field Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction

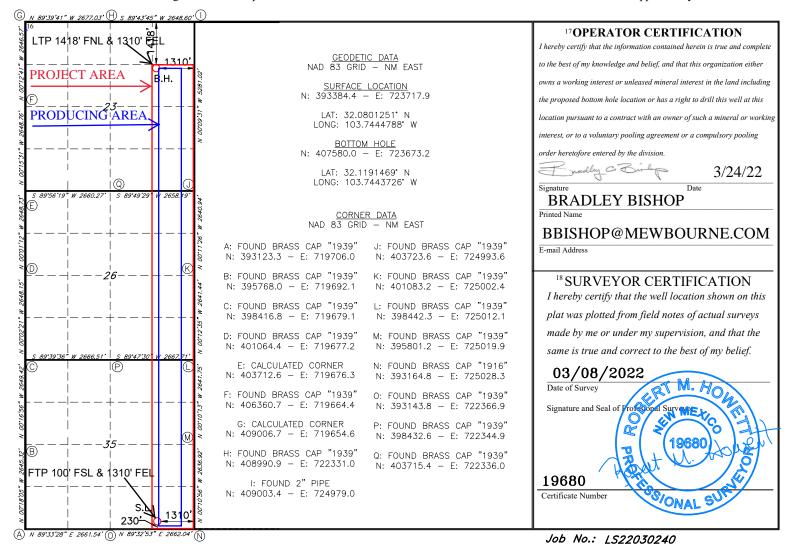
*(Instructions on page 2)

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720
District II
811 S. First St., Artesia, NM 88210
Phone: (575) 748-1283 Fax: (575) 748-9720
District III
1000 Rio Brazos Road, Aztec, NM 87410
Phone: (505) 334-6178 Fax: (505) 334-6170
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505
Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT


WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Number 30-015-53582		² Pool Code 97860 JENNINGS, BONE SPR		NG WEST	
⁴ Property Code 333855			perty Name /23 H3PH FED COM	⁶ Well Number 2H	
7 OGRID NO. 14744			erator Name E OIL COMPANY	⁹ Elevation 3295	

¹⁰ Surface Location

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet From the	East/West line	County
P	35	25S	31E		230	SOUTH	1310	EAST	EDDY
¹¹ Bottom Hole Location If Different From Surface									
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
Н	23	25S	31E		1418	NORTH	1310	EAST	EDDY
12 Dedicated Acres	13 Joint	or Infill 14	Consolidation	Code 15 (Order No.				
440									

No allowable will be assigned to this completion until all interest have been consolidated or a non-standard unit has been approved by the division.

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

			1 – Plan Do fective May 25,					
I. Operator: Me	wbourne (Oil Co.	OGRID:	14744		Date: _	3/2/	22
II. Type: X Original □ Amendment due to □ 19.15.27.9.D(6)(a) NMAC □ 19.15.27.9.D(6)(b) NMAC □ Other.								
If Other, please describe	e:							:
III. Well(s): Provide the be recompleted from a s	e following inf single well pad	formation for each or connected to a c	new or recomple central delivery p	ted well or set of voint.	wells pr	oposed to	be drill	ed or proposed to
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D		cipated MCF/D		Anticipated oduced Water BBL/D
Armstrong 35/23 H3PH Fed Com #2	2H	P 35 25S 31E	230' FSL x 1310' FE	1500	35	00		5000
IV. Central Delivery F V. Anticipated Schedu proposed to be recompl	ile: Provide the	Armstrong 35/23 following informagle well pad or con	tion for each nev	v or recompleted w	vell or se			.9(D)(1) NMAC] ed to be drilled or
Well Name	API	Spud Date	TD Reached Date	Completion Commencement		Initial F Back D		First Production Date
Armstrong 35/23 H3PH Fed Com #	2H	5/2/22	6/2/22	7/2/22		7/17/22	2	7/17/22
VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture. VII. Operational Practices: Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC. VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.								

Section	<u>2 – </u>	En	<u>han</u>	<u>ced</u>	<u>Plan</u>
EFFE	CTIV	EA	PRIL	1, 20	22

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

☑ Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in		

XI. Map. Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the
production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of
the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \square will \square will not have capacity to gather 100% of the anticipated natur	al gas
production volume from the well prior to the date of first production.	

XIII. Line Pressure. Operator \square does \square does not anticipate that its existing well(s) connected to the same segment, or p	ortion, o	of the
natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the	new wel	ll(s).

☐ Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information prov	ided in
Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific info	rmation
for which confidentiality is asserted and the basis for such assertion.	

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

🗷 Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system.

If Operator checks this box, Operator will select one of the following:

Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. ☐ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature:	Bradley Bishop
Printed Name:	BRADLEY BISHOP
Title:	REGULATORY MANAGER
E-mail Address:	BBISHOP@MEWBOURNE.COM
Date:	3/2/22
Phone:	575-393-5905
	OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)
Approved By:	
Title:	
Approval Date:	
Conditions of Ap	Approval:

Mewbourne Oil Company

Natural Gas Management Plan - Attachment

- VI. Separation equipment will be sized by construction engineering staff based on stated manufacturer daily throughput capacities and anticipated daily production rates to ensure adequate capacity. Closed vent system piping, compression needs, and VRUs will be sized utilizing ProMax modelling software to ensure adequate capacity for anticipated production volumes and conditions.
- VII. Mewbourne Oil Company (MOC) will take following actions to comply with the regulations listed in 19.15.27.8:
 - A. MOC will maximize the recovery of natural gas by minimizing the waste, as defined by 19.15.2 NMAC, of natural gas through venting and flaring. MOC will ensure that well(s) will be connected to a natural gas gathering system with sufficient capacity to transport natural gas. If there is no adequate takeaway for the gas, well(s) will be shut in until the natural gas gathering system is available.
 - B. All drilling operations will be equipped with a rig flare located at least 100 ft from the nearest surface hole. Rig flare will be utilized to combust any natural gas that is brought to surface during normal drilling operations. In the case of emergency venting or flaring the volumes will be estimated and reported appropriately.
 - C. During completion operations any natural gas brought to surface will be flared. Immediately following the finish of completion operations, all well flow will be directed to permanent separation equipment. Produced natural gas from separation equipment will be sent to sales. It is not anticipated that gas will not meet pipeline standards. However, if natural gas does not meet gathering pipeline quality specifications, MOC will flare the natural gas for 60 days or until the natural gas meets the pipeline quality specifications, whichever is sooner. MOC will ensure that the flare is sized properly and is equipped with automatic igniter or continuous pilot. The gas sample will analyzed twice per week and the gas will be routed into a gathering system as soon as pipeline specifications are met.
 - D. Natural gas will not be flared with the exceptions and provisions listed in the 19.15.27.8 D.(1) through (4). If there is no adequate takeaway for the separator gas, well(s) will be shut in until the natural gas gathering system is available with exception of emergency or malfunction situations. Venting and/or flaring volumes will be estimated and reported appropriately.
 - E. MOC will comply with the performance standards requirements and provisions listed in 19.15.27.8 E.(1) through (8). All equipment will be designed and sized to handle maximum anticipated pressures and throughputs in order to minimize the waste. Production storage tanks constructed after May 25, 2021 will be equipped with automatic gauging system. Flares constructed after May 25, 2021 will be equipped with automatic igniter or continuous pilot. Flares will be located at least 100' from the well and storage tanks unless otherwise approved by the division. MOC will conduct AVO inspections as described in 19.15.27.8 E (5) (a) with frequencies specified in 19.15.27.8 E (5) (b) and (c). All emergencies will be resolved as quickly and safely as feasible to minimize waste.
 - F. The volume of natural gas that is vented or flared as the result of malfunction or emergency during drilling and completions operations will be estimated. The volume of natural gas that is vented, flared or beneficially used during production operations, will be measured or estimated. MOC will install equipment to measure

the volume of natural gas flared from existing process piping or a flowline piped from equipment such as high pressure separators, heater treaters, or vapor recovery units associated with a well or facility associated with a well authorized by an APD issued after May 25, 2021 that has an average daily production greater than 60 Mcf/day. If metering is not practicable due to circumstances such as low flow rate or low pressure venting and flaring, MOC will estimate the volume of vented or flared natural gas. Measuring equipment will conform to industry standards and will not be designed or equipped with a manifold that allows the diversion of natural gas around the metering element except for the sole purpose of inspecting and servicing the measurement equipment.

VIII. For maintenance activities involving production equipment and compression, venting will be limited to the depressurization of the subject equipment to ensure safe working conditions. For maintenance of production and compression equipment the associated producing wells will be shut in to eliminate venting. For maintenance of VRUs all gas normally routed to the VRU will be routed to flare to eliminate venting.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

03/13/2023

APD ID: 10400084084

Submission Date: 09/01/2022

Highlighted data reflects the most recent changes

Operator Name: MEWBOURNE OIL COMPANY

Well Name: ARMSTRONG 35/23 H3PH FED COM

Well Number: 2H

Well Type: OIL WELL

Well Work Type: Drill

Show Final Text

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
8391125	UNKNOWN	3295	28	28	OTHER : Topsoil	NONE	N
8391126	RUSTLER	2377	918	918	ANHYDRITE, DOLOMITE	USEABLE WATER	N
8391136	TOP SALT	2023	1272	1272	SALT	NONE	N
8391137	BASE OF SALT	-725	4020	4020	SALT	NONE	N
8391139	LAMAR	-951	4246	4246	LIMESTONE	NATURAL GAS, OIL	N
8391140	BELL CANYON	-977	4272	4272	SANDSTONE	NATURAL GAS, OIL	N
8391141	CHERRY CANYON	-2115	5410	5410	SANDSTONE	NATURAL GAS, OIL	N
8391142	MANZANITA	-2187	5482	5482	LIMESTONE	NATURAL GAS, OIL	N
8391143	BRUSHY CANYON	-4646	7941	7941	SANDSTONE	NATURAL GAS, OIL	N
8391133	BONE SPRING	-4994	8289	8289	LIMESTONE, SANDSTONE, SHALE	NATURAL GAS, OIL	N
8391134	BONE SPRING 1ST	-5951	9246	9246	SANDSTONE	NATURAL GAS, OIL	N
8391135	BONE SPRING 2ND	-6554	9849	9849	SANDSTONE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M Rating Depth: 24965

Equipment: Annular Pipe Rams Blind Rams Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for hydrostatic test chart. Anchors are not required by manufacturer. A variance is requested to use a multi-bowl wellhead.

Well Name: ARMSTRONG 35/23 H3PH FED COM Well Number: 2H

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

Choke Diagram Attachment:

Armstrong_35_23_H3PH_Fed_Com_2H_Flex_Line_Specs_20220412092000.pdf

Armstrong_35_23_H3PH_Fed_Com_2H_5M_BOPE_Choke_Diagram_20220412092000.pdf

Armstrong_35_23_H3PH_Fed_Com_2H_Flex_Line_Specs_API_16C_20220412092000.pdf

BOP Diagram Attachment:

Armstrong_35_23_H3PH_Fed_Com_2H_5M_Mutli_Bowl_WH_20220412092019.pdf

Armstrong_35_23_H3PH_Fed_Com_2H_5M_BOPE_Schematic_20220412092019.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	995	0	995	3295	2300	995	H-40	48	ST&C	1.69	3.8	DRY	6.74	DRY	11.3 3
2	INTERMED IATE	12.2 5	10.75	NEW	API	N	0	2701	0	2701		594	2701	J-55		OTHER - BTC SC	1.13	2.23	DRY	3.97	DRY	3.57
3		12.2 5	10.75	NEW	API	N	2701	3573	2701	3573	594	-278	872	J-55		OTHER - BTC SC	1.13	1.93	DRY	11.9 1	DRY	10.7
4	INTERMED IATE	12.2 5	10.75	NEW	API	N	3573	4170	3573	4170	-278	-875	597	N-80		OTHER - BTC SC	1.14	2.4	DRY	40.3 6	DRY	38.2 6
	PRODUCTI ON	9.87 5	7.625	NEW	API	N	0	10158	0	10154		-6859	10158	HCP -110	29.7	LT&C	1.4	1.85	DRY	2.55	DRY	3.12
6	LINER	6.75	5.5	NEW	API	N	9958	24965	9895	10824	-6600	-7529	15007	P- 110		OTHER - USS-Talon HTQ	1.64	1.87	DRY	1.83	DRY	2.14

Casing Attachments

Well Name: ARMSTRONG 35/23 H3PH FED COM Well Number: 2H

Casing Attachments

Casing ID: 1

String

SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Armstrong_35_23_H3PH_Fed_Com_2H_Csg_Assumptions_20230119092158.pdf

5.5in_20__P110_USS_Talon_HTQ_20230119092847.pdf

10.75in_4550_SeAH80HC_wSC_20230119092847.pdf

Casing ID: 2

String

INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Armstrong_35_23_H3PH_Fed_Com_2H_Csg_Assumptions_20230119092501.pdf

5.5in_20__P110_USS_Talon_HTQ_20230119092902.pdf

10.75in_4550_SeAH80HC_wSC_20230119092902.pdf

Well Name: ARMSTRONG 35/23 H3PH FED COM Well Number: 2H

Casing Attachments

Casing ID: 3

String

INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Armstrong_35_23_H3PH_Fed_Com_2H_Csg_Assumptions_20230119092730.pdf

5.5in_20__P110_USS_Talon_HTQ_20230119092914.pdf

10.75in_4550_SeAH80HC_wSC_20230119092915.pdf

Casing ID: 4

String

INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Armstrong_35_23_H3PH_Fed_Com_2H_Csg_Assumptions_20230119092830.pdf

5.5in_20__P110_USS_Talon_HTQ_20230119092921.pdf

10.75in_4550_SeAH80HC_wSC_20230119092921.pdf

Well Name: ARMSTRONG 35/23 H3PH FED COM Well Number: 2H

Casing Attachments

Casing ID: 5

String

PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

 $Arm strong_35_23_H3PH_Fed_Com_2H_Csg_Assumptions_20230119092403.pdf$

 $5.5 in_20__P110_USS_Talon_HTQ_20230119092855.pdf$

10.75in_4550_SeAH80HC_wSC_20230119092855.pdf

Casing ID: 6

String

LINER

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Armstrong_35_23_H3PH_Fed_Com_2H_Csg_Assumptions_20230119092642.pdf

 $5.5 in_20_P110_USS_Talon_HTQ_20230119092908.pdf$

10.75in_4550_SeAH80HC_wSC_20230119092908.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Тор МD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	803	530	2.12	12.5	1124	100	Class C	Salt, Gel, Extender, LCM
SURFACE	Tail		803	995	200	1.34	14.8	268	100	Class C	Retarder

Well Name: ARMSTRONG 35/23 H3PH FED COM Well Number: 2H

String Type	Lead/Tail	Stage Tool Depth	Тор МD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
INTERMEDIATE	Lead		0	3064	350	2.12	12.5	742	25	Class C	Salt, Gel, Extender, LCM
INTERMEDIATE	Tail		3064	4170	200	1.34	14.8	268	25	Class C	Retarder
PRODUCTION	Lead		3970	8398	560	2.12	12.5	1187	25	Class C	Salt, Gel, Extender, Defoamer
PRODUCTION	Tail		8398	1015 8	400	1.18	15.6	472	25	Class H	Retarder
LINER	Lead		9958	2496 5	850	1.85	13.5	1573	25	Class H	Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti-settling Agent

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Lost circulation material, sweeps, mud scavengers

Describe the mud monitoring system utilized: Visual Monitoring

Circulating Medium Table

o Top Depth	Bottom Depth	Mud Type	% Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
		OI OD MOD	0.4	0.0							
995	4170	SALT SATURATED	10	10							

Well Name: ARMSTRONG 35/23 H3PH FED COM

Well Number: 2H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
4170	1015 8	WATER-BASED MUD	8.6	9.7							
1015 8	2496 5	OIL-BASED MUD	9	12							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Will run GR/CNL logs from KOP to surface in offset well: Armstrong 35/23 H3PH Fed Com #1H.

List of open and cased hole logs run in the well:

DIRECTIONAL SURVEY, MEASUREMENT WHILE DRILLING, MUD LOG/GEOLOGIC LITHOLOGY LOG,

Coring operation description for the well:

None

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 6754 Anticipated Surface Pressure: 4372

Anticipated Bottom Hole Temperature(F): 199

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations

Armstrong_35_23_H3PH_Fed_Com_2H_H2S_Plan_20220412093014.pdf

Well Name: ARMSTRONG 35/23 H3PH FED COM Well Number: 2H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Armstrong_35_23_H3PH_Fed_Com_2H_Dir_Plan_20220412093037.pdf

Armstrong_35_23_H3PH_Fed_Com_2H_Dir_Plot_20220412093038.pdf

Other proposed operations facets description:

Other proposed operations facets attachment:

 $Arm strong_35_23_H3PH_Fed_Com_2H_Add_Info_20220412093042.pdf$

Other Variance attachment:

GATES E & S NORTH AMERICA, INC. 134 44TH STREET CORPUS CHRISTI, TEXAS 78405 PHONE: 361-887-9807 FAX: 361-887-0812

EMAIL: Tim.Cantu@gates.com

WEB: www.gates.com

10K CEMENTING ASSEMBLY PRESSURE TEST CERTIFICATE

Customer : Customer Ref. :

Invoice No.:

AUSTIN DISTRIBUTING 4060578 500506 Test Date: Hose Serial No.: Created By: 4/30/2015 D-043015-7 JUSTIN CROPPER

Product Description:

10K3.548.0CK4.1/1610KFLGE/E LE

End Fitting 1 :

Gates Part No. : Working Pressure :

4 1/16 10K FLG 4773-6290 10,000 PSI

End Fitting 2 : Assembly Code :

Test Pressure :

4 1/16 10K FLG

L36554102914D-043015-7

15,000 PSI

Gates E & S North America, Inc. certifies that the following hose assembly has been tested to the Gates Oilfield Roughneck Agreement/Specification requirements and passed the 15 minute hydrostatic test per API Spec 7K/Q1, Fifth Edition, June 2010, Test pressure 9.6.7 and per Table 9 to 15,000 psi in accordance with this product number. Hose burst pressure 9.6.7.2 exceeds the minimum of 2.5 times the working pressure per Table 9.

Quality Manager:

Date:

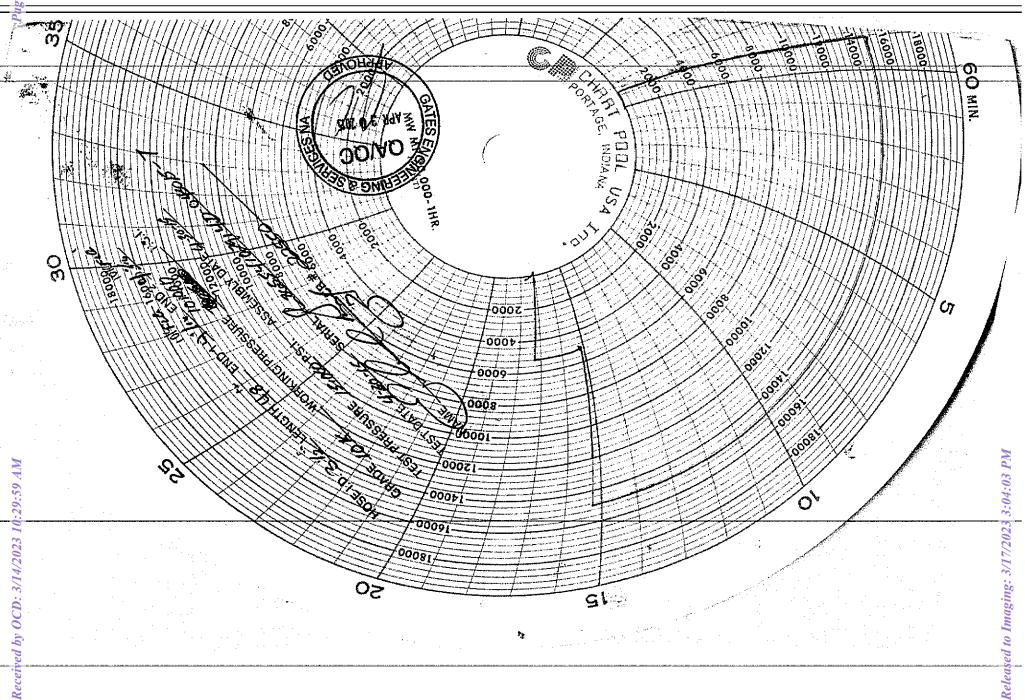
Signature:

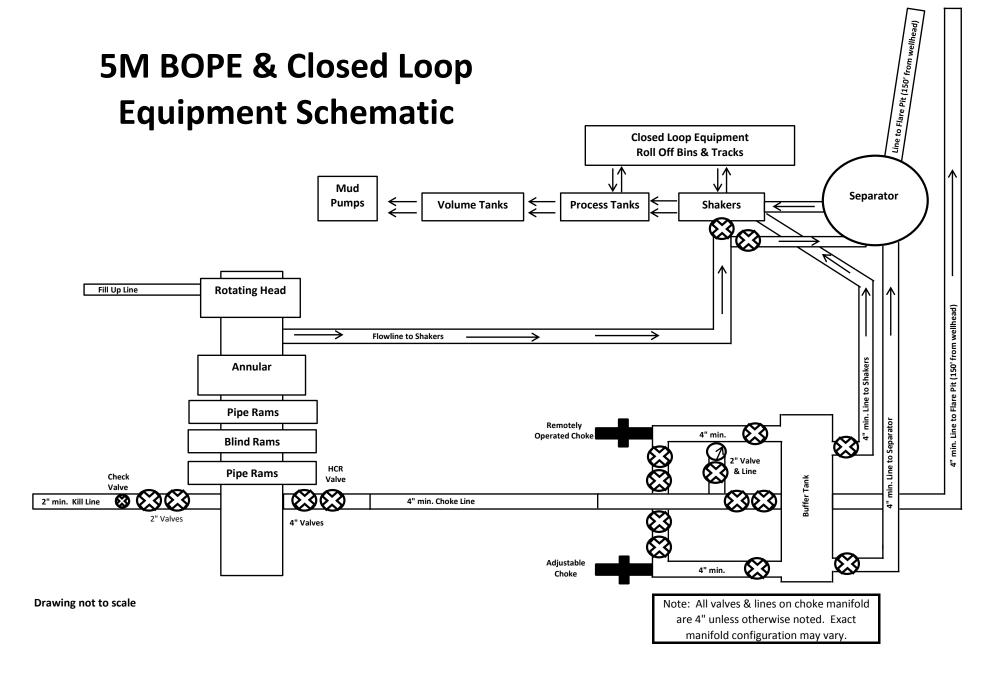
QUALITY

4/30/2015

Produciton:

Date:


Signature :


PRODUCTION

4/30/2015

Forn PTC - 01 Rev.0 2

GATES ENGINEERING & SERVICES NORTH AMERICA 7603 Prairie Oak Dr. Houston, TX 77086 PHONE: (281) 602 - 4119

FAX:

EMAIL: Troy.Schmidt@gates.com

WEB: www.gates.com

10K CHOKE & KILL ASSEMBLY PRESSURE TEST CERTIFICATE

Test Date: 8/20/2018 A-7 AUSTIN INC DBA AUSTIN HOSE Customer: Hose Serial No.: H-082018-10 Customer Ref .: 4101901 Created By: Moosa Nagvi Invoice No.: 511956 10KF3.035.0CK41/1610KFLGFXDxFLT_L/E Product Description: End Fitting 2: End Fitting 1: 4 1/16 in. Fixed Flange 4 1/16 in. Float Flange Assembly Code: L40695052218H-082018-10 Gates Part No.: 68503010-9721632 Test Pressure: 15,000 psi. Working Pressure: 10,000 psi.

Gates Engineering & Services North America certifies that the following hose assembly has successfully passed all pressure testing requirements set forth in Gates specifications: GTS-04-052 (for 5K assemblies) or GTS-04-053 (10K assemblies), which include reference to Specification API 16C (2nd Edition); sections 7.5.4, 7.5.9, and 10.8.7. A test graph will accompany this test certificate to illustrate conformity to test requirements.

Quality:

Date :

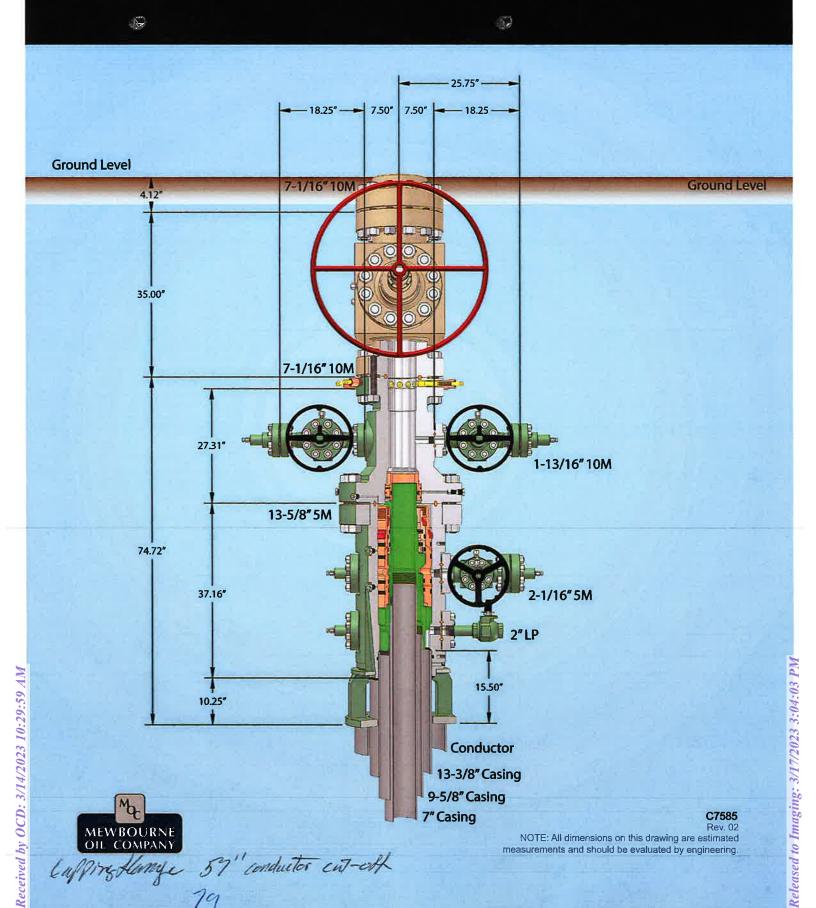
QUALITY

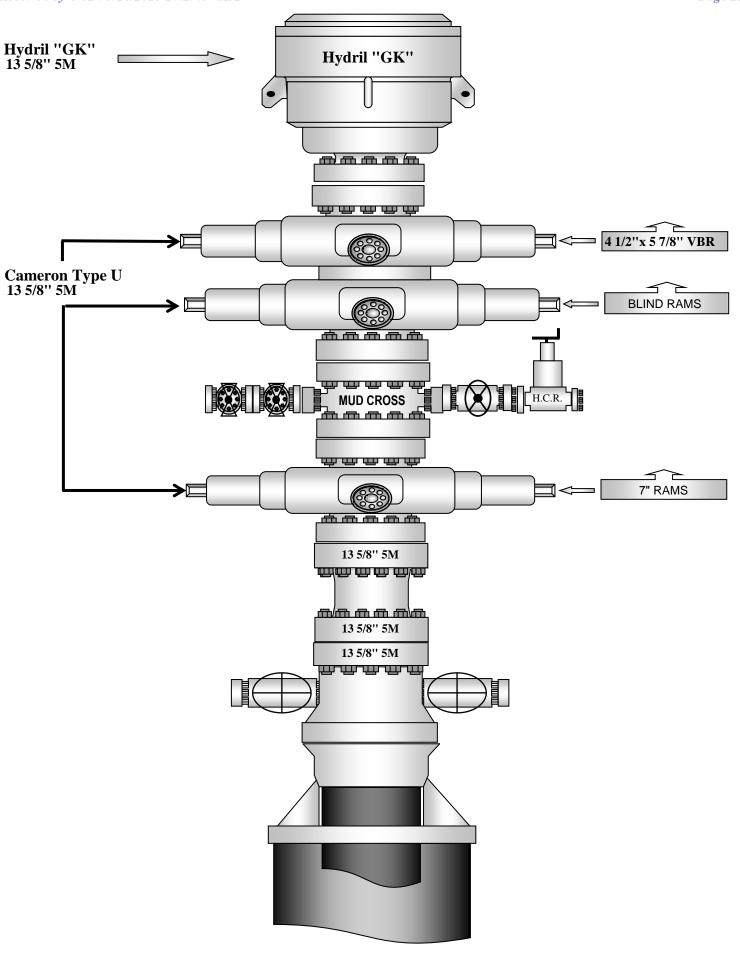
8/20/2018

Signature :

Production:

Date : Signature :


Form PTC - 01 Rev.0 2



MODUCTION

8/20/2018

13-5/8" MN-DS Wellhead System

Mewbourne Oil Company, Armstrong 35/23 H3PH Fed Com #2H Sec 35, T25S, R31E

SHL: 230' FSL & 1310' FEL (Sec 35) BHL: 1418' FNL & 1310' FEL (Sec 23)

Casing Program

Hole Size	From	om To Csg. Size		Weight	Grade	Conn.	SF	SF Burst	SF Jt	SF Body
Hole Size	From	10	Csg. Size	(lbs)	Grade	Comi.	Collapse	SF Duist	Tension	Tension
17.500	0'	995'	13.375	48.0	H40	STC	1.69	3.80	6.74	11.33
12.250	0'	2701'	10.750	40.5	J55	BTC SC	1.13	2.23	3.97	3.57
12.250	2701'	3573'	10.750	45.5	J55	BTC SC	1.13	1.93	11.91	10.70
12.250	3573'	4170'	10.750	45.5	N80	BTC SC	1.14	2.40	40.36	38.26
9.875	0'	10158'	7.625	29.7	HCP110	LTC	1.40	1.85	2.55	3.12
6.750	9958'	24965'	5.500	20.0	P110	USS-Talon HTQ	1.64	1.87	1.83	2.14
				DIM	Ainimum Sat	Faty Factor	1.125	1.0	1.6 Dry	1.6 Dry
				DLM P	viiiiiiiiiiiiiiiiiii Sa	iety ractor	1.123	1.0	1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h. Must have table for contingency casing

			Y or N
Is casing new? If used, attach certification as requi	red in Onshore Order #1		Y
Is casing API approved? If no, attach casing spec	rification sheet.		Y
Is premium or uncommon casing planned? If yes a	attach casing specification shee	t.	N
Does the above casing design meet or exceed BLM	M's minimum standards? If not	provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled t	o avoid approaching the collar	ose pressure rating of the casing?	Y
I III (I iii C ii D iii			
Is well located within Capitan Reef?	cso. 1 d D	, m	N
If yes, does production casing cement tie back	a minimum of 50° above the R	eei?	+
Is well within the designated 4 string boundary.			N
Is well located in SOPA but not in R-111-P?			N
If yes, are the first 2 strings cemented to surface	e and 3 rd string cement tied ba	ck 500' into previous casing?	
y,	<u> </u>		
Is well located in R-111-P and SOPA?			N
If yes, are the first three strings cemented to su	rface?		
Is 2 nd string set 100' to 600' below the base of	`salt?		
Is an open annulus used to satisfy R-111-Q? If yes			
Is an engineered weak point used to satisfy R-111-			
If yes, at what depth is the weak point planned	`		_
Is well located in high Cave/Karst?			Y
If yes, are there two strings cemented to surfac	e?		Y
(For 2 string wells) If yes, is there a contingence	y casing if lost circulation occu	urs?	
Is well located in critical Cave/Karst?			N
If yes, are there three strings cemented to surfa-	ce?		
Formation	Est. Top	Formation	Est. Top
Rustler	918'	Delaware (Lamar)	4246'
Salt Top	1272'	Bell Canyon	4272
Salt Base	4020'	Cherry Canyon	5410'
Yates		Manzanita Marker	5482'
Seven Rivers		Basal Brushy Canyon	7941'
Queen		Bone Spring	8289'
Capitan		1st Bone Spring Sand	9246'
Grayburg		2nd Bone Spring Sand	9849'
San Andres		3rd Bone Spring Sand	
Glorieta		Abo	
Yeso		Wolfcamp	

U. S. Steel Tubular Products 5.500" 20.00lb/ft (0.361" Wall) P110 HC USS-TALON HTQ™ RD

11/10/2021 11:39:24 AM

MECHANICAL PROPERTIES	Pipe	USS-TALON HTQ™ RD		[6
Minimum Yield Strength Maximum Yield Strength Minimum Tensile Strength	110,000 140,000 125,000	 - -	psi psi psi	
DIMENSIONS	Pipe	USS-TALON HTQ™ RD		
Outside Diameter Wall Thickness Inside Diameter Standard Drift Alternate Drift Nominal Linear Weight, T&C Plain End Weight	5.500 0.361 4.778 4.653 20.00 19.83	5.900 4.778 4.653 USS-TALON HTQ™ RD	in. in. in. in. in. Ib/ft	·
Critical Area Joint Efficiency	5.828	5.828 100.0	sq. in. %	[2
PERFORMANCE	Pipe	USS-TALON HTQ™ RD		
Minimum Collapse Pressure Minimum Internal Yield Pressure Minimum Pipe Body Yield Strength Joint Strength Compression Rating Reference Length Maximum Uniaxial Bend Rating	12,200 12,640 641,000 	12,200 12,640 — 641,000 641,000 21,370 91.7	psi psi lb lb ft deg/100 ft	 !!
MAKE-UP DATA	Plpe	USS-TALON HTQ™ RD		4-
Make-Up Loss Minimum Make-Up Torque Maximum Make-Up Torque	- -	5.58 17,000 20,000	în. ft-lb ft-lb	 [4

Notes

- 1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).
- 2. Joint efficiencies are calculated by dividing the connection critical area by the pipe body area.
- 3. Uniaxial bend rating shown is structural only.
- 4. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 5. Reference length is calculated by Joint Strength divided by Nominal Linear Weight, T&C with a 1.5 Safety factor.
- 6. Coupling must meet minimum mechanical properties of the pipe.

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use, U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

> U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380

1-877-893-9461 connections@uss.com www.usstubular.com

<u>10-3/4"</u> <u>45.50#</u> <u>.400"</u> <u>SeAH-80 High Collapse</u>

Dimensions (Nominal)

Outside Diame	eter	10.750	in.
Wall		0.400	in.
Inside Diamet	er	9.950	in.
Drift		9.875	in.
Weight, T&C		45.500	lbs/ft
Weight, PE		44.260	lbs/ft
<u>Performa</u>	nce Properties		
Collapse		3120	psi
Internal Yield	Pressure at Minimum Yield		
	PE	5210	psi
	STC	5210	psi
	ВТС	5210	psi
	BTC Special Clearance	4786	psi
Yield Strength	, Pipe Body	1040	1000 lbs
Joint Strength			
	STC	701	1000 lbs
	ВТС	1029	1000 lbs

BTC Special Clearance (11.25" OD Cplg)

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

1029

1000 lbs

Mewbourne Oil Company, Armstrong 35/23 H3PH Fed Com #2H Sec 35, T25S, R31E

SHL: 230' FSL & 1310' FEL (Sec 35) BHL: 1418' FNL & 1310' FEL (Sec 23)

Casing Program

II-1- 6:	F	Т-	C 6:	Weight	C 1-	C	SF SF Burs	CE D4	SF Jt	SF Body
Hole Size	From	То	Csg. Size	(lbs)	Grade	Conn.	Collapse	Sr Burst	Tension	Tension
17.500	0'	995'	13.375	48.0	H40	STC	1.69	3.80	6.74	11.33
12.250	0'	2701'	10.750	40.5	J55	BTC SC	1.13	2.23	3.97	3.57
12.250	2701'	3573'	10.750	45.5	J55	BTC SC	1.13	1.93	11.91	10.70
12.250	3573'	4170'	10.750	45.5	N80	BTC SC	1.14	2.40	40.36	38.26
9.875	0'	10158'	7.625	29.7	HCP110	LTC	1.40	1.85	2.55	3.12
6.750	9958'	24965'	5.500	20.0	P110	USS-Talon HTQ	1.64	1.87	1.83	2.14
				DIM	Jimimayan Cal	fatu Eastan	1.125	1.0	1.6 Dry	1.6 Dry
			DLM P	BLM Minimum Safety Factor			1.0	1.8 Wet	1.8 Wet	

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h. Must have table for contingency casing

			Y or N
Is casing new? If used, attach certification as requi	red in Onshore Order #1		Y
Is casing API approved? If no, attach casing spec	rification sheet.		Y
Is premium or uncommon casing planned? If yes a	attach casing specification shee	t.	N
Does the above casing design meet or exceed BLM	M's minimum standards? If not	provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled t	o avoid approaching the collar	ose pressure rating of the casing?	Y
I III (I iii C ii D iii			
Is well located within Capitan Reef?	cso. 1 d D	, m	N
If yes, does production casing cement tie back	a minimum of 50° above the R	eei?	+
Is well within the designated 4 string boundary.			N
Is well located in SOPA but not in R-111-P?			N
If yes, are the first 2 strings cemented to surface	e and 3 rd string cement tied ba	ck 500' into previous casing?	
y,	<u> </u>		
Is well located in R-111-P and SOPA?			N
If yes, are the first three strings cemented to su	rface?		
Is 2 nd string set 100' to 600' below the base of	`salt?		
Is an open annulus used to satisfy R-111-Q? If yes			
Is an engineered weak point used to satisfy R-111-			
If yes, at what depth is the weak point planned	`		_
Is well located in high Cave/Karst?			Y
If yes, are there two strings cemented to surfac	e?		Y
(For 2 string wells) If yes, is there a contingence	y casing if lost circulation occu	urs?	
Is well located in critical Cave/Karst?			N
If yes, are there three strings cemented to surfa-	ce?		
Formation	Est. Top	Formation	Est. Top
Rustler	918'	Delaware (Lamar)	4246'
Salt Top	1272'	Bell Canyon	4272
Salt Base	4020'	Cherry Canyon	5410'
Yates		Manzanita Marker	5482'
Seven Rivers		Basal Brushy Canyon	7941'
Queen		Bone Spring	8289'
Capitan		1st Bone Spring Sand	9246'
Grayburg		2nd Bone Spring Sand	9849'
San Andres		3rd Bone Spring Sand	
Glorieta		Abo	
Yeso		Wolfcamp	

U. S. Steel Tubular Products 5.500" 20.00lb/ft (0.361" Wall)

11/10/2021 11:39:24 AM

5.500" 20.00lb/ft (0.361" Wall) P110 HC USS-TALON HTQ™ RD

MECHANICAL PROPERTIES	Pipe	USS-TALON HTQ™ RD		[6]
Minimum Yield Strength	110,000		psi	=
Maximum Yield Strength	140,000	_	psi	572.
Minimum Tensile Strength	125,000	_	psi	-
DIMENSIONS	Pipe	USS-TALON HTQ™ RD		_ ~ -
Outside Diameter	5.500	5.900	in.	57
Wall Thickness	0.361	**:	in.	
Inside Diameter	4.778	4.778	in.	-
Standard Drift	4.653	4.653	in.	_
Alternate Drift	112 1	RE!	in.	=1
Nominal Linear Weight, T&C	20.00	**	lb/ft	=
Plain End Weight	19.83	¥2)	lb/ft	-
SECTION AREA	Pipe	USS-TALON HTQ™ RD		-
Critical Area	5.828	5.828	sq. in.	-
Joint Efficiency	<u></u>	100.0	%	[2]
PERFORMANCE	Pipe	USS-TALON HTQ™ RD		
Minimum Collapse Pressure	12,200	12,200	psi	:
Minimum Internal Yield Pressure	12,640	12,640	psi	
Minimum Pipe Body Yield Strength	641,000	<u>~</u> \	lb	-
Joint Strength		641,000	lb	=
Compression Rating		641,000	lb	=
Reference Length		21,370	ft	[5]
Maximum Uniaxial Bend Rating		91.7	deg/100 ft	[3]
MAKE-UP DATA	Plpe	USS-TALON HTQ™ RD		a-
Make-Up Loss	÷	5.58	in.	-
Minimum Make-Up Torque	-	17,000	ft-lb	[4]
Maximum Make-Up Torque	-	20,000	ft-lb	[4]
Maximum Operating Torque	5.00	39,500	ft-lb	[4]

Notes

- 1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).
- 2. Joint efficiencies are calculated by dividing the connection critical area by the pipe body area.
- 3. Uniaxial bend rating shown is structural only.
- 4. Torques have been calculated assuming a thread compound friction factor of 1,0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 5. Reference length is calculated by Joint Strength divided by Nominal Linear Weight, T&C with a 1.5 Safety factor.
- 6. Coupling must meet minimum mechanical properties of the pipe.

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com

<u>10-3/4"</u> <u>45.50#</u> <u>.400"</u> <u>SeAH-80 High Collapse</u>

Dimensions (Nominal)

Outside Diam	eter	10.750	in.
Wall		0.400	in.
Inside Diamet	er	9.950	in.
Drift		9.875	in.
Weight, T&C		45.500	lbs/ft
Weight, PE		44.260	lbs/ft
<u>Performa</u>	nce Properties		
Collapse		3120	psi
Internal Yield	Pressure at Minimum Yield		
	PE	5210	psi
	STC	5210	psi
	ВТС	5210	psi
	BTC Special Clearance	4786	psi
Yield Strength	ı, Pipe Body	1040	1000 lbs
Joint Strength	1		
	STC	701	1000 lbs
	ВТС	1029	1000 lbs

BTC Special Clearance (11.25" OD Cplg)

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

1029

1000 lbs

Mewbourne Oil Company, Armstrong 35/23 H3PH Fed Com #2H Sec 35, T25S, R31E

SHL: 230' FSL & 1310' FEL (Sec 35) BHL: 1418' FNL & 1310' FEL (Sec 23)

Casing Program

Hole Size From	F	From To	Tr-	To	То	То	C 6:	Weight	C	Conn.	SF	CE D4	SF Jt	SF Body
	r rom		Csg. Size	(lbs)	Grade	Coilli.	Collapse	SF Burst	Tension	Tension				
17.500	0'	995'	13.375	48.0	H40	STC	1.69	3.80	6.74	11.33				
12.250	0'	2701'	10.750	40.5	J55	BTC SC	1.13	2.23	3.97	3.57				
12.250	2701'	3573'	10.750	45.5	J55	BTC SC	1.13	1.93	11.91	10.70				
12.250	3573'	4170'	10.750	45.5	N80	BTC SC	1.14	2.40	40.36	38.26				
9.875	0'	10158'	7.625	29.7	HCP110	LTC	1.40	1.85	2.55	3.12				
6.750	9958'	24965'	5.500	20.0	P110	USS-Talon HTQ	1.64	1.87	1.83	2.14				
			DIM	1 M:-: C-6-4 E4		1 125	1.127	1.6 Dry	1.6 Dry					
				BLM Minimum Sa		fety Factor 1.125		1.0	1.8 Wet	1.8 Wet				

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h. Must have table for contingency casing

			Y or N				
Is casing new? If used, attach certification as requi	red in Onshore Order #1		Y				
Is casing API approved? If no, attach casing spec	ification sheet.		Y				
Is premium or uncommon casing planned? If yes a	ttach casing specification	sheet.	N				
Does the above casing design meet or exceed BLM	I's minimum standards? If	f not provide justification (loading assumptions, casing design criteria).	Y				
Will the pipe be kept at a minimum 1/3 fluid filled t	o avoid approaching the co	ollapse pressure rating of the casing?	Y				
Is well located within Capitan Reef?			N				
If yes, does production casing cement tie back	a minimum of 50' above t	he Reef?					
Is well within the designated 4 string boundary.			N				
Is well located in SOPA but not in R-111-P?			N				
If yes, are the first 2 strings cemented to surfac	a and 2 rd atring agreement ties	d healt 500' into pravious assing?	+				
If yes, are the first 2 strings cemented to surface	e and 3 string cement tied	d back 500 into previous casing?					
Is well located in R-111-P and SOPA?			N				
If yes, are the first three strings cemented to sur	face?						
Is 2 nd string set 100' to 600' below the base of	salt?						
Is an open annulus used to satisfy R-111-Q? If yes							
Is an engineered weak point used to satisfy R-111-	Q?						
If yes, at what depth is the weak point planned?			-				
Is well located in high Cave/Karst?			Y				
If yes, are there two strings cemented to surface	e?		Y				
(For 2 string wells) If yes, is there a contingenc	y casing if lost circulation	occurs?					
Is well located in critical Cave/Karst?			N				
If yes, are there three strings cemented to surface	ce?						
Formation	Est. Top	Formation	Est. Top				
Rustler	918'	Delaware (Lamar)	4246'				
Salt Top	1272'	Bell Canyon	4272				
Salt Base	4020'	Cherry Canyon	5410'				
Yates		Manzanita Marker	5482'				
Seven Rivers		Basal Brushy Canyon	7941'				
Queen		Bone Spring	8289'				
Capitan		1st Bone Spring Sand	9246'				
Grayburg		2nd Bone Spring Sand	9849'				
San Andres		3rd Bone Spring Sand					
Glorieta Abo							
Yeso		Wolfcamp					

U. S. Steel Tubular Products 5.500" 20.00lb/ft (0.361" Wall) P110 HC USS-TALON HTQ™ RD

11/10/2021 11:39:24 AM

Graph Control of the				
MECHANICAL PROPERTIES	Pipe	USS-TALON HTQ™ RD		
Minimum Yield Strength	110,000		psi	
Maximum Yield Strength	140,000	-	psi	
Minimum Tensile Strength	125,000	-	psi	
DIMENSIONS	Pipe	USS-TALON HTQ™ RD		
Outside Diameter	5.500	5.900	in.	
Wall Thickness	0.361	 :	in.	
Inside Diameter	4.778	4.778	in.	
Standard Drift	4.653	4.653	in.	
Alternate Drift	100 1	5E)	in.	
Nominal Linear Weight, T&C	20.00	***	lb/ft	
Plain End Weight	19.83	22	lb/ft	
ECTION AREA	Pipe	USS-TALON HTQ™ RD		
Critical Area	5.828	5.828	sq. in.	
Joint Efficiency	<u> </u>	100.0	%	
ERFORMANCE	Pipe	USS-TALON HTQ™ RD		
Minimum Collapse Pressure	12,200	12,200	psi	
Minimum Internal Yield Pressure	12,640	12,640	psi	
Minimum Pipe Body Yield Strength	641,000	- 	lb	
Joint Strength		641,000	lb	
Compression Rating		641,000	lb	
Reference Length		21,370	ft	
Maximum Uniaxial Bend Rating		91.7	deg/100 ft	
MAKE-UP DATA	Pipe	USS-TALON HTQ™ RD		
Make-Up Loss	300	5.58	in.	
Minimum Make-Up Torque	-	17,000	ft-lb	
Maximum Make-Up Torque	-	20,000	ft-lb	
Maximum Operating Torque	5.55	39,500	ft-lb	

Notes

- 1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).
- 2. Joint efficiencies are calculated by dividing the connection critical area by the pipe body area.
- 3. Uniaxial bend rating shown is structural only.
- 4. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 5. Reference length is calculated by Joint Strength divided by Nominal Linear Weight, T&C with a 1.5 Safety factor.
- 6. Coupling must meet minimum mechanical properties of the pipe.

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use, U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

> U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380

1-877-893-9461 connections@uss.com www.usstubular.com

<u>10-3/4"</u> <u>45.50#</u> <u>.400"</u> <u>SeAH-80 High Collapse</u>

Dimensions (Nominal)

Outside Diame	ter	10.750	in.
Wall		0.400	in.
Inside Diamete	r	9.950	in.
Drift		9.875	in.
Weight, T&C		45.500	lbs/ft
Weight, PE		44.260	lbs/ft
<u>Performan</u>	nce Properties		
Collapse		3120	psi
Internal Yield P	Pressure at Minimum Yield		
	PE	5210	psi
	STC	5210	psi
	втс	5210	psi
	BTC Special Clearance	4786	psi
Yield Strength,	Pipe Body	1040	1000 lbs
Joint Strength			
	STC	701	1000 lbs
	втс	1029	1000 lbs

BTC Special Clearance (11.25" OD Cplg)

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

1029

1000 lbs

Mewbourne Oil Company, Armstrong 35/23 H3PH Fed Com #2H Sec 35, T25S, R31E

SHL: 230' FSL & 1310' FEL (Sec 35) BHL: 1418' FNL & 1310' FEL (Sec 23)

Casing Program

Hole Size From	т.	То	Tr -	C 5:	Weight	Grade	Conn.	SF	SF Burst	SF Jt	SF Body
Hole Size	r rom		Csg. Size	(lbs)	Grade	Grade	Com.	Collapse	Sr Burst	Tension	Tension
17.500	0'	995'	13.375	48.0	H40	STC	1.69	3.80	6.74	11.33	
12.250	0'	2701'	10.750	40.5	J55	BTC SC	1.13	2.23	3.97	3.57	
12.250	2701'	3573'	10.750	45.5	J55	BTC SC	1.13	1.93	11.91	10.70	
12.250	3573'	4170'	10.750	45.5	N80	BTC SC	1.14	2.40	40.36	38.26	
9.875	0'	10158'	7.625	29.7	HCP110	LTC	1.40	1.85	2.55	3.12	
6.750	9958'	24965'	5.500	20.0	P110	USS-Talon HTQ	1.64	1.87	1.83	2.14	
				BLM Minimum Safety Factor			1.105	1.125	1.0	1.6 Dry	1.6 Dry
				DLM N	viiiiiiiiiiiiiiii Sai	lety ractor	1.125	1.0	1.8 Wet	1.8 Wet	

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h. Must have table for contingency casing

			Y or N					
Is casing new? If used, attach certification as required in Onshore Order #1								
Is casing API approved? If no, attach casing speci	fication sheet.		Y					
Is premium or uncommon casing planned? If yes at	tach casing specification s	heet.	N					
Does the above casing design meet or exceed BLM	's minimum standards? If	not provide justification (loading assumptions, casing design criteria).	Y					
Will the pipe be kept at a minimum 1/3 fluid filled to	avoid approaching the co	ollapse pressure rating of the casing?	Y					
Is well located within Capitan Reef?			N					
If yes, does production casing cement tie back a	a minimum of 50' above th	ne Reef?						
Is well within the designated 4 string boundary.			N					
Is well located in SOPA but not in R-111-P?			N					
If yes, are the first 2 strings cemented to surface	and 3 rd string cement tied	back 500' into previous casing?						
Is well located in R-111-P and SOPA?			N					
If yes, are the first three strings cemented to sur	C0		N					
Is 2 nd string set 100' to 600' below the base of								
Is an open annulus used to satisfy R-111-Q? If yes,								
Is an engineered weak point used to satisfy R-111-0	Σ?							
If yes, at what depth is the weak point planned?			-					
Is well located in high Cave/Karst?			Y					
If yes, are there two strings cemented to surface	າ		Y					
• •		0	Y					
(For 2 string wells) If yes, is there a contingency	casing if lost circulation of	occurs?						
Is well located in critical Cave/Karst?			N					
If yes, are there three strings cemented to surface	e?							
Formation	Est. Top	Formation	Est. Top					
Rustler	918'	Delaware (Lamar)	4246'					
Salt Top	1272'	Bell Canyon	4272					
Salt Base	4020'	Cherry Canyon	5410'					
Yates		Manzanita Marker	5482'					
Seven Rivers		Basal Brushy Canyon	7941'					
Queen		Bone Spring	8289'					
Capitan 1st Bone Spring Sand								
Grayburg		2nd Bone Spring Sand	9849'					
San Andres		3rd Bone Spring Sand						
Glorieta		Abo						
Yeso	Yeso Wolfcamp							

U. S. Steel Tubular Products 5.500" 20.00lb/ft (0.361" Wall)

11/10/2021 11:39:24 AM

5.500" 20.00lb/ft (0.361" Wall) P110 HC USS-TALON HTQ™ RD

MECHANICAL PROPERTIES	Pipe	USS-TALON HTQ™ RD		[6]
Minimum Yield Strength	110,000		psi	-
Maximum Yield Strength	140,000	-	psi	7
Minimum Tensile Strength	125,000	_	psi	-
DIMENSIONS	Pipe	USS-TALON HTQ™ RD		- / -
Outside Diameter	5.500	5.900	in.	=
Wall Thickness	0.361	**:	in.	-
Inside Diameter	4.778	4.778	in.	-
Standard Drift	4.653	4.653	in.	=
Alternate Drift	100	5E)	in.	=
Nominal Linear Weight, T&C	20.00	**	lb/ft	-
Plain End Weight	19.83	¥ē:	lb/ft	-
SECTION AREA	Pipe	USS-TALON HTQ™ RD		_
Critical Area	5.828	5.828	sq. in.	-
Joint Efficiency	922	100.0	%	[2]
PERFORMANCE	Pipe	USS-TALON HTQ™ RD		
Minimum Collapse Pressure	12,200	12,200	psi	-
Minimum Internal Yield Pressure	12,640	12,640	psi	-
Minimum Pipe Body Yield Strength	641,000	· *** *\	lb	-
Joint Strength		641,000	lb	=
Compression Rating		641,000	lb	==
Reference Length		21,370	ft	[5]
Maximum Uniaxial Bend Rating		91.7	deg/100 ft	[3]
MAKE-UP DATA	Pipe	USS-TALON HTQ™ RD		a-
Make-Up Loss	; 	5.58	in.	-
Minimum Make-Up Torque		17,000	ft-lb	[4]
Maximum Make-Up Torque		20,000	ft-lb	[4]
Maximum Operating Torque	S##	39,500	ft-lb	[4]

Notes

- 1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).
- 2. Joint efficiencies are calculated by dividing the connection critical area by the pipe body area.
- 3. Uniaxial bend rating shown is structural only.
- 4. Torques have been calculated assuming a thread compound friction factor of 1,0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 5. Reference length is calculated by Joint Strength divided by Nominal Linear Weight, T&C with a 1.5 Safety factor.
- 6. Coupling must meet minimum mechanical properties of the pipe.

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com

<u>10-3/4"</u> <u>45.50#</u> <u>.400"</u> <u>SeAH-80 High Collapse</u>

Dimensions (Nominal)

Outside Diamete	er	10.750	in.
Wall		0.400	in.
Inside Diameter		9.950	in.
Drift		9.875	in.
Weight, T&C		45.500	lbs/ft
Weight, PE		44.260	lbs/ft
Performand	ce Properties		
Collapse		3120	psi
Internal Yield Pro	essure at Minimum Yield		
	PE	5210	psi
	STC	5210	psi
	BTC	5210	psi
	BTC Special Clearance	4786	psi
Yield Strength, P	ipe Body	1040	1000 lbs
Joint Strength			
	STC	701	1000 lbs

BTC Special Clearance (11.25" OD Cplg)

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

1000 lbs

1000 lbs

1029

1029

BTC

Mewbourne Oil Company, Armstrong 35/23 H3PH Fed Com #2H Sec 35, T25S, R31E

SHL: 230' FSL & 1310' FEL (Sec 35) BHL: 1418' FNL & 1310' FEL (Sec 23)

Casing Program

Holo Simo	Hole Size From To	То	Γο Csg. Size	Weight Grade	ide Conn.	SF	SF Burst	SF Jt	SF Body	
noie Size	From	10	Csg. Size	(lbs)	Grade	Com.	Collapse	Sr Duist	Tension	Tension
17.500	0'	995'	13.375	48.0	H40	STC	1.69	3.80	6.74	11.33
12.250	0'	2701'	10.750	40.5	J55	BTC SC	1.13	2.23	3.97	3.57
12.250	2701'	3573'	10.750	45.5	J55	BTC SC	1.13	1.93	11.91	10.70
12.250	3573'	4170'	10.750	45.5	N80	BTC SC	1.14	2.40	40.36	38.26
9.875	0'	10158'	7.625	29.7	HCP110	LTC	1.40	1.85	2.55	3.12
6.750	9958'	24965'	5.500	20.0	P110	USS-Talon HTQ	1.64	1.87	1.83	2.14
				BLM Minimum Safety Factor			1.125	1.0	1.6 Dry	1.6 Dry
							1.123	1.0	1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h. Must have table for contingency casing

			Y or N
Is casing new? If used, attach certification as requi	red in Onshore Order #1		Y
Is casing API approved? If no, attach casing spec	rification sheet.		Y
Is premium or uncommon casing planned? If yes a	attach casing specification shee	t.	N
Does the above casing design meet or exceed BLM	M's minimum standards? If not	provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled t	o avoid approaching the collar	ose pressure rating of the casing?	Y
I III (I iii C ii D iii			
Is well located within Capitan Reef?	cso. 1 d D	, m	N
If yes, does production casing cement tie back	a minimum of 50° above the R	eei?	+
Is well within the designated 4 string boundary.			N
Is well located in SOPA but not in R-111-P?			N
If yes, are the first 2 strings cemented to surface	e and 3 rd string cement tied ba	ck 500' into previous casing?	
y,	<u> </u>		
Is well located in R-111-P and SOPA?			N
If yes, are the first three strings cemented to su	rface?		
Is 2 nd string set 100' to 600' below the base of	`salt?		
Is an open annulus used to satisfy R-111-Q? If yes			
Is an engineered weak point used to satisfy R-111-			
If yes, at what depth is the weak point planned	`		_
Is well located in high Cave/Karst?			Y
If yes, are there two strings cemented to surfac	e?		Y
(For 2 string wells) If yes, is there a contingence	y casing if lost circulation occu	urs?	
Is well located in critical Cave/Karst?			N
If yes, are there three strings cemented to surfa-	ce?		
Formation	Est. Top	Formation	Est. Top
Rustler	918'	Delaware (Lamar)	4246'
Salt Top	1272'	Bell Canyon	4272
Salt Base	4020'	Cherry Canyon	5410'
Yates		Manzanita Marker	5482'
Seven Rivers		Basal Brushy Canyon	7941'
Queen		Bone Spring	8289'
Capitan		1st Bone Spring Sand	9246'
Grayburg		2nd Bone Spring Sand	9849'
San Andres		3rd Bone Spring Sand	
Glorieta		Abo	
Yeso		Wolfcamp	

U. S. Steel Tubular Products 5.500" 20.00lb/ft (0.361" Wall) P110 HC USS-TALON HTQ™ RD

11/10/2021 11:39:24 AM

MECHANICAL PROPERTIES	Pipe	USS-TALON HTQ™ RD		[6]
Minimum Yield Strength	110,000		psi	=
Maximum Yield Strength	140,000	_	psi	572
Minimum Tensile Strength	125,000	_	psi	-
DIMENSIONS	Pipe	USS-TALON HTQ™ RD		_ ~ -
Outside Diameter	5.500	5.900	in.	57
Wall Thickness	0.361	**:	in.	
Inside Diameter	4.778	4.778	in.	-
Standard Drift	4.653	4.653	in.	_
Alternate Drift	112 1	RE!	in.	=1
Nominal Linear Weight, T&C	20.00	**	lb/ft	=
Plain End Weight	19.83	¥2)	lb/ft	-
SECTION AREA	Pipe	USS-TALON HTQ™ RD		-
Critical Area	5.828	5.828	sq. in.	-
Joint Efficiency	<u></u>	100.0	%	[2]
PERFORMANCE	Pipe	USS-TALON HTQ™ RD		
Minimum Collapse Pressure	12,200	12,200	psi	:
Minimum Internal Yield Pressure	12,640	12,640	psi	
Minimum Pipe Body Yield Strength	641,000	<u>~</u> \	lb	-
Joint Strength		641,000	lb	=
Compression Rating		641,000	lb	=
Reference Length		21,370	ft	[5]
Maximum Uniaxial Bend Rating		91.7	deg/100 ft	[3]
MAKE-UP DATA	Plpe	USS-TALON HTQ™ RD		a-
Make-Up Loss	÷	5.58	in.	-
Minimum Make-Up Torque	-	17,000	ft-lb	[4]
Maximum Make-Up Torque	-	20,000	ft-lb	[4]
Maximum Operating Torque	5.00	39,500	ft-lb	[4]

Notes

- 1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).
- 2. Joint efficiencies are calculated by dividing the connection critical area by the pipe body area.
- 3. Uniaxial bend rating shown is structural only.
- 4. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 5. Reference length is calculated by Joint Strength divided by Nominal Linear Weight, T&C with a 1.5 Safety factor.
- 6. Coupling must meet minimum mechanical properties of the pipe.

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use, U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

> U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380

1-877-893-9461 connections@uss.com www.usstubular.com

<u>10-3/4"</u> <u>45.50#</u> <u>.400"</u> <u>SeAH-80 High Collapse</u>

Dimensions (Nominal)

Outside Diamete	er	10.750	in.
Wall		0.400	in.
Inside Diameter		9.950	in.
Drift		9.875	in.
Weight, T&C		45.500	lbs/ft
Weight, PE		44.260	lbs/ft
<u>Performano</u>	ce Properties		
Collapse		3120	psi
Internal Yield Pro	essure at Minimum Yield		
	PE	5210	psi
	STC	5210	psi
	BTC	5210	psi
	BTC Special Clearance	4786	psi
Yield Strength, P	ipe Body	1040	1000 lbs
Joint Strength			
	STC	701	1000 lbs
	BTC	1029	1000 lbs

BTC Special Clearance (11.25" OD Cplg)

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

1029

1000 lbs

Mewbourne Oil Company, Armstrong 35/23 H3PH Fed Com #2H Sec 35, T25S, R31E

SHL: 230' FSL & 1310' FEL (Sec 35) BHL: 1418' FNL & 1310' FEL (Sec 23)

Casing Program

Hole Size	From	To	C 5:	Weight	C d-	C	SF	SF Burst	SF Jt	SF Body
Hole Size	r rom	10	Csg. Size	(lbs)	lbs) Grade Conn.		Collapse	Sr Burst	Tension	Tension
17.500	0'	995'	13.375	48.0	H40	STC	1.69	3.80	6.74	11.33
12.250	0'	2701'	10.750	40.5	J55	BTC SC	1.13	2.23	3.97	3.57
12.250	2701'	3573'	10.750	45.5	J55	BTC SC	1.13	1.93	11.91	10.70
12.250	3573'	4170'	10.750	45.5	N80	BTC SC	1.14	2.40	40.36	38.26
9.875	0'	10158'	7.625	29.7	HCP110	LTC	1.40	1.85	2.55	3.12
6.750	9958'	24965'	5.500	20.0	P110	USS-Talon HTQ	1.64	1.87	1.83	2.14
				DIM	Ainimum Sat	Fatry Eastern	1.125	1.0	1.6 Dry	1.6 Dry
				DLM N	viiiiiiiiiiiiiiii Sai	lety ractor	1.125	1.0	1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h. Must have table for contingency casing

			Y or N
Is casing new? If used, attach certification as requir	ed in Onshore Order #1		Y
Is casing API approved? If no, attach casing speci	fication sheet.		Y
Is premium or uncommon casing planned? If yes at	tach casing specification s	heet.	N
Does the above casing design meet or exceed BLM	's minimum standards? If	not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to	avoid approaching the co	ollapse pressure rating of the casing?	Y
Is well located within Capitan Reef?			N
If yes, does production casing cement tie back a	a minimum of 50' above th	ne Reef?	
Is well within the designated 4 string boundary.			N
Is well located in SOPA but not in R-111-P?			N
If yes, are the first 2 strings cemented to surface	and 3 rd string cement tied	back 500' into previous casing?	
Is well located in R-111-P and SOPA?			N
If yes, are the first three strings cemented to sur	C0		N
Is 2 nd string set 100' to 600' below the base of			
Is an open annulus used to satisfy R-111-Q? If yes,			
Is an engineered weak point used to satisfy R-111-0	Σ?		
If yes, at what depth is the weak point planned?			-
Is well located in high Cave/Karst?			Y
If yes, are there two strings cemented to surface	າ		Y
• •		0	Y
(For 2 string wells) If yes, is there a contingency	casing if lost circulation of	occurs?	
Is well located in critical Cave/Karst?			N
If yes, are there three strings cemented to surface	e?		
Formation	Est. Top	Formation	Est. Top
Rustler	918'	Delaware (Lamar)	4246'
Salt Top	1272'	Bell Canyon	4272
Salt Base	4020'	Cherry Canyon	5410'
Yates		Manzanita Marker	5482'
Seven Rivers		Basal Brushy Canyon	7941'
Queen		Bone Spring	8289'
Capitan		1st Bone Spring Sand	9246'
Grayburg		2nd Bone Spring Sand	9849'
San Andres		3rd Bone Spring Sand	
Glorieta		Abo	
Yeso		Wolfcamp	

U. S. Steel Tubular Products 5.500" 20.00lb/ft (0.361" Wall)

11/10/2021 11:39:24 AM

5.500" 20.00lb/ft (0.361" Wall) P110 HC USS-TALON HTQ™ RD

MECHANICAL PROPERTIES	Pipe	USS-TALON HTQ™ RD		[6]
Minimum Yield Strength	110,000		psi	-
Maximum Yield Strength	140,000	-	psi	=
Minimum Tensile Strength	125,000	_	psi	-
DIMENSIONS	Pipe	USS-TALON HTQ™ RD		- / -
Outside Diameter	5.500	5.900	in.	=
Wall Thickness	0.361	**:	in.	-
Inside Diameter	4.778	4.778	in.	-
Standard Drift	4.653	4.653	in.	=
Alternate Drift	100	5E)	in.	=
Nominal Linear Weight, T&C	20.00	**	lb/ft	-
Plain End Weight	19.83	¥ē:	lb/ft	-
SECTION AREA	Pipe	USS-TALON HTQ™ RD		_
Critical Area	5.828	5.828	sq. in.	-
Joint Efficiency	922	100.0	%	[2]
PERFORMANCE	Pipe	USS-TALON HTQ™ RD		
Minimum Collapse Pressure	12,200	12,200	psi	-
Minimum Internal Yield Pressure	12,640	12,640	psi	-
Minimum Pipe Body Yield Strength	641,000	· *** *\	lb	-
Joint Strength		641,000	lb	=
Compression Rating		641,000	lb	==
Reference Length		21,370	ft	[5]
Maximum Uniaxial Bend Rating		91.7	deg/100 ft	[3]
MAKE-UP DATA	Pipe	USS-TALON HTQ™ RD		a-
Make-Up Loss	; 	5.58	in.	-
Minimum Make-Up Torque		17,000	ft-lb	[4]
Maximum Make-Up Torque		20,000	ft-lb	[4]
Maximum Operating Torque	S##	39,500	ft-lb	[4]

Notes

- 1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).
- 2. Joint efficiencies are calculated by dividing the connection critical area by the pipe body area.
- Uniaxial bend rating shown is structural only.
- 4. Torques have been calculated assuming a thread compound friction factor of 1,0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 5. Reference length is calculated by Joint Strength divided by Nominal Linear Weight, T&C with a 1.5 Safety factor.
- 6. Coupling must meet minimum mechanical properties of the pipe.

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com

<u>10-3/4"</u> <u>45.50#</u> <u>.400"</u> <u>SeAH-80 High Collapse</u>

Dimensions (Nominal)

Outside Diamete	er	10.750	in.
Wall		0.400	in.
Inside Diameter		9.950	in.
Drift		9.875	in.
Weight, T&C		45.500	lbs/ft
Weight, PE		44.260	lbs/ft
<u>Performanc</u>	ce Properties		
Collapse		3120	psi
Internal Yield Pr	essure at Minimum Yield		
	PE	5210	psi
	STC	5210	psi
	BTC	5210	psi
	BTC Special Clearance	4786	psi
Yield Strength, P	Pipe Body	1040	1000 lbs
Joint Strength			
	STC	701	1000 lbs
	ВТС	1029	1000 lbs

BTC Special Clearance (11.25" OD Cplg)

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

1029

1000 lbs

Mewbourne Oil Company

Eddy County, New Mexico NAD 83 Armstrong 35/23 H3PH Fed Com #2H Sec 35, T25S, R31E 230' FSL & 1310' FEL (Sec 35) BHL: 1418' FNL & 1310' FEL (Sec 35)

Plan: Design #1

Standard Planning Report

12 April, 2022

Database: Hobbs

Company: Mewbourne Oil Company

Project: Eddy County, New Mexico NAD 83
Site: Armstrong 35/23 H3PH Fed Com #2H

Well: Sec 35, T25S, R31E

Wellbore: BHL: 1418' FNL & 1310' FEL (Sec 35)

Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Armstrong 35/23 H3PH Fed Com #2H WELL @ 3319.0usft (Original Well Elev) WELL @ 3319.0usft (Original Well Elev)

Grid

Minimum Curvature

Project Eddy County, New Mexico NAD 83

Map System: US State Plane 1983
Geo Datum: North American Datum 1983

Geo Datum: North American Datum 1983
Map Zone: New Mexico Eastern Zone

System Datum:

Ground Level

Site Armstrong 35/23 H3PH Fed Com #2H

 Site Position:
 Northing:
 393,383.00 usft
 Latitude:
 32.0801212

 From:
 Map
 Easting:
 723,717.00 usft
 Longitude:
 -103.7444816

Position Uncertainty: 0.0 usft Slot Radius: 13-3/16 "

Well Sec 35, T25S, R31E

32.0801212 **Well Position** +N/-S 0.0 usft Northing: 393,383.00 usft Latitude: +E/-W 0.0 usft Easting: 723,717.00 usft Longitude: -103.7444816 **Position Uncertainty** 0.0 usft Wellhead Elevation: 3,291.0 usft **Ground Level:** 3,319.0 usft

Grid Convergence: 0.31 °

Wellbore BHL: 1418' FNL & 1310' FEL (Sec 35)

 Magnetics
 Model Name
 Sample Date
 Declination (°)
 Dip Angle (°)
 Field Strength (nT)

 IGRF2010
 12/31/2014
 7.22
 59.94
 48,132.71070779

Design Design #1

Audit Notes:

Version: Phase: PROTOTYPE Tie On Depth: 0.0

 Vertical Section:
 Depth From (TVD) (usft)
 +N/-S +E/-W (usft)
 Direction (vsft)

 0.0
 0.0
 0.0
 359.82

Plan Survey Tool Program Date 4/12/2022

Depth From Depth To

(usft) (usft) Survey (Wellbore) Tool Name Remarks

1 0.0 24,965.2 Design #1 (BHL: 1418' FNL & 131

Plan Sections Measured Vertical Dogleg Build Turn Depth Inclination Azimuth Depth +N/-S +E/-W Rate Rate Rate TFO (usft) (°) (°) (usft) (usft) (usft) (°/100usft) (°/100usft) (°/100usft) (°) Target 0.0 0.00 0.00 0.0 0.0 0.0 0.00 0.00 0.00 0.00 4,175.0 0.00 0.00 4,175.0 0.0 0.0 0.00 0.00 0.00 0.00 4,281.1 2.12 180.00 4,281.1 -2.0 0.0 2.00 2.00 0.00 180.00 10,117.0 2.12 180.00 10,112.9 -218.0 0.0 0.00 0.00 0.00 0.00 10,219.0 10,223.0 0.00 0.00 -220.0 0.0 2.00 -2.00 0.00 180.00 KOP: 10' FSL & 1310' 10,792.0 351.7 11,121.8 89.87 359.82 -1.8 10.00 10.00 0.00 -0.1824,965.2 89.87 359.82 10,824.0 14,195.0 -45.0 0.00 0.00 0.00 0.00 BHL: 1418' FNL & 13'

Database: Hobbs

Company: Mewbourne Oil Company

Project: Eddy County, New Mexico NAD 83
Site: Armstrong 35/23 H3PH Fed Com #2H

Well: Sec 35, T25S, R31E

Wellbore: BHL: 1418' FNL & 1310' FEL (Sec 35)

Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Armstrong 35/23 H3PH Fed Com #2H WELL @ 3319.0usft (Original Well Elev) WELL @ 3319.0usft (Original Well Elev)

Grid

ed Survey									
Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
	FSL & 1310' FEL (•							
100.0		0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0		0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0		0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0		0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0		0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0		0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0		0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0		0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0		0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1.500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0		0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0		0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0		0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0		0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,200.0		0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00
2,300.0		0.00	2,300.0	0.0	0.0	0.0	0.00	0.00	0.00
2,400.0		0.00	2,400.0	0.0	0.0	0.0	0.00	0.00	0.00
2,500.0	0.00	0.00	2,500.0	0.0	0.0	0.0	0.00	0.00	0.00
2,600.0		0.00	2,600.0	0.0	0.0	0.0	0.00	0.00	0.00
2,700.0		0.00	2,700.0	0.0	0.0	0.0	0.00	0.00	0.00
2,800.0		0.00	2,800.0	0.0	0.0	0.0	0.00	0.00	0.00
2,900.0		0.00	2,900.0	0.0	0.0	0.0	0.00	0.00	0.00
3,000.0	0.00	0.00	3,000.0	0.0	0.0	0.0	0.00	0.00	0.00
3,100.0		0.00	3,100.0	0.0	0.0	0.0	0.00	0.00	0.00
3,200.0		0.00	3,200.0	0.0	0.0	0.0	0.00	0.00	0.00
3,300.0		0.00	3,300.0	0.0	0.0	0.0	0.00	0.00	0.00
3,400.0	0.00	0.00	3,400.0	0.0	0.0	0.0	0.00	0.00	0.00
3,500.0	0.00	0.00	3.500.0	0.0	0.0	0.0	0.00	0.00	0.00
3,600.0		0.00	3,600.0	0.0	0.0	0.0	0.00	0.00	0.00
3,700.0		0.00	3,700.0	0.0	0.0	0.0	0.00	0.00	0.00
3,800.0		0.00	3,800.0	0.0	0.0	0.0	0.00	0.00	0.00
3,900.0		0.00	3,900.0	0.0	0.0	0.0	0.00	0.00	0.00
4,000.0	0.00	0.00	4,000.0	0.0	0.0	0.0	0.00	0.00	0.00
4,100.0		0.00	4,100.0	0.0	0.0	0.0	0.00	0.00	0.00
4,175.0		0.00	4,175.0	0.0	0.0	0.0	0.00	0.00	0.00
4,200.0		180.00	4,200.0	-0.1	0.0	-0.1	2.00	2.00	0.00
4,281.1		180.00	4,281.1	-2.0	0.0	-2.0	2.00	2.00	0.00
4,300.0	2.12	180.00	4,300.0	-2.7	0.0	-2.7	0.00	0.00	0.00
4,400.0		180.00	4,399.9	-6.4	0.0	-6.4	0.00	0.00	0.00
4,500.0		180.00	4,499.8	-10.1	0.0	-10.1	0.00	0.00	0.00
4,600.0		180.00	4,599.8	-13.8	0.0	-13.8	0.00	0.00	0.00
4,700.0		180.00	4,699.7	-17.5	0.0	-17.5	0.00	0.00	0.00
4,800.0		180.00	4,799.6	-21.2	0.0	-21.2	0.00	0.00	0.00
4,900.0		180.00	4,899.6	-21.2 -24.9	0.0	-21.2 -24.9	0.00	0.00	0.00
5,000.0		180.00	4,999.5	-28.6	0.0	-28.6	0.00	0.00	0.00

Hobbs Database: Company:

Project:

Wellbore:

Mewbourne Oil Company

Eddy County, New Mexico NAD 83 Armstrong 35/23 H3PH Fed Com #2H

Site: Well: Sec 35, T25S, R31E

BHL: 1418' FNL & 1310' FEL (Sec 35)

Design: Design #1 Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Armstrong 35/23 H3PH Fed Com #2H WELL @ 3319.0usft (Original Well Elev) WELL @ 3319.0usft (Original Well Elev)

lanned Survey									
Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
5.100.0		180.00	5,099.4	20.2	0.0	20.2	0.00	0.00	0.00
5,100.0	2.12 2.12	180.00	5,099.4	-32.3 -36.0	0.0 0.0	-32.3 -36.0	0.00	0.00	0.00
5,200.0	2.12	160.00	5, 199.5	-30.0	0.0	-30.0	0.00	0.00	0.00
5,300.0	2.12	180.00	5,299.3	-39.7	0.0	-39.7	0.00	0.00	0.00
5,400.0	2.12	180.00	5,399.2	-43.4	0.0	-43.4	0.00	0.00	0.00
5,500.0	2.12	180.00	5,499.1	-47.1	0.0	-47.1	0.00	0.00	0.00
5,600.0	2.12	180.00	5,599.1	-50.8	0.0	-50.8	0.00	0.00	0.00
5,700.0	2.12	180.00	5,699.0	-54.5	0.0	-54.5	0.00	0.00	0.00
5.800.0	2.12	180.00	5.798.9	-58.2	0.0	-58.2	0.00	0.00	0.00
5,900.0	2.12	180.00	5,898.9	-61.9	0.0	-61.9	0.00	0.00	0.00
6,000.0	2.12	180.00	5,998.8	-65.6	0.0	-65.6	0.00	0.00	0.00
6,100.0	2.12	180.00	6,098.7	-69.3	0.0	-69.3	0.00	0.00	0.00
6,200.0	2.12	180.00	6,198.7	-73.0	0.0	-73.0	0.00	0.00	0.00
6,300.0	2.12	180.00	6,298.6	-76.7	0.0	-76.7	0.00	0.00	0.00
6,400.0	2.12	180.00	6,398.5	-80.4	0.0	-80.4	0.00	0.00	0.00
6,500.0	2.12	180.00	6,498.5	-84.1	0.0	-84.1	0.00	0.00	0.00
6,600.0	2.12	180.00	6,598.4	-87.8	0.0	-87.8	0.00	0.00	0.00
6,700.0	2.12	180.00	6,698.3	-91.5	0.0	-91.5	0.00	0.00	0.00
6,800.0	2.12	180.00	6.798.2	-95.2	0.0	-95.2	0.00	0.00	0.00
6,900.0	2.12	180.00	6,796.2	-95.2 -98.9	0.0	-95.2 -98.9	0.00	0.00	0.00
7,000.0	2.12	180.00	6,898.2	-98.9 -102.6	0.0	-98.9 -102.6	0.00	0.00	0.00
7,100.0	2.12	180.00	7,098.0	-106.3	0.0	-106.3	0.00	0.00 0.00	0.00
7,200.0	2.12	180.00	7,198.0	-110.0	0.0	-110.0	0.00	0.00	0.00
7,300.0	2.12	180.00	7,297.9	-113.7	0.0	-113.7	0.00	0.00	0.00
7,400.0	2.12	180.00	7,397.8	-117.4	0.0	-117.4	0.00	0.00	0.00
7,500.0	2.12	180.00	7,497.8	-121.1	0.0	-121.1	0.00	0.00	0.00
7,600.0	2.12	180.00	7,597.7	-124.8	0.0	-124.8	0.00	0.00	0.00
7,700.0	2.12	180.00	7,697.6	-128.5	0.0	-128.5	0.00	0.00	0.00
7,000,0	0.40	400.00	7 707 0	400.0	0.0	400.0	0.00	0.00	0.00
7,800.0	2.12	180.00	7,797.6	-132.3	0.0	-132.3	0.00	0.00	0.00
7,900.0	2.12	180.00	7,897.5	-136.0	0.0	-136.0	0.00	0.00	0.00
8,000.0	2.12	180.00	7,997.4	-139.7	0.0	-139.7	0.00	0.00	0.00
8,100.0	2.12	180.00	8,097.4	-143.4	0.0	-143.4	0.00	0.00	0.00
8,200.0	2.12	180.00	8,197.3	-147.1	0.0	-147.1	0.00	0.00	0.00
8,300.0	2.12	180.00	8,297.2	-150.8	0.0	-150.8	0.00	0.00	0.00
8,400.0	2.12	180.00	8,397.2	-154.5	0.0	-154.5	0.00	0.00	0.00
8,500.0	2.12	180.00	8,497.1	-158.2	0.0	-158.2	0.00	0.00	0.00
8,600.0	2.12	180.00	8,597.0	-161.9	0.0	-161.9	0.00	0.00	0.00
8,700.0	2.12	180.00	8,696.9	-165.6	0.0	-165.6	0.00	0.00	0.00
8,800.0	2.12	180.00	8,796.9	-169.3	0.0	-169.3	0.00	0.00	0.00
8,900.0	2.12	180.00	8,896.8	-173.0	0.0	-173.0	0.00	0.00	0.00
9,000.0	2.12	180.00	8,996.7	-176.7	0.0	-176.7	0.00	0.00	0.00
9,100.0	2.12	180.00	9,096.7	-180.4	0.0	-180.4	0.00	0.00	0.00
9,200.0	2.12	180.00	9,196.6	-184.1	0.0	-184.1	0.00	0.00	0.00
9,300.0	2.12	180.00	9,296.5	-187.8	0.0	-187.8	0.00	0.00	0.00
9,400.0	2.12	180.00	9,396.5	-191.5	0.0	-191.5	0.00	0.00	0.00
9,500.0	2.12	180.00	9,496.4	-195.2	0.0	-195.2	0.00	0.00	0.00
9,600.0	2.12	180.00	9,596.3	-198.9	0.0	-198.9	0.00	0.00	0.00
9,700.0	2.12	180.00	9,696.3	-202.6	0.0	-202.6	0.00	0.00	0.00
9,800.0	2.12	180.00	9,796.2	-206.3	0.0	-206.3	0.00	0.00	0.00
9,900.0	2.12	180.00	9,896.1	-210.0	0.0	-210.0	0.00	0.00	0.00
10,000.0	2.12	180.00	9,996.1	-213.7	0.0	-213.7	0.00	0.00	0.00
10,100.0	2.12	180.00	10,096.0	-217.4	0.0	-217.4	0.00	0.00	0.00
10,117.0	2.12	180.00	10,112.9	-218.0	0.0	-218.0	0.00	0.00	0.00
10,200.0	0.46	180.00	10,196.0	-219.9	0.0	-219.9	2.00	-2.00	0.00
10,223.0	0.00	0.00	10,219.0	-220.0	0.0	-220.0	2.00	-2.00	0.00

Database: Hobbs

Company: Mewbourne Oil Company

Project: Eddy County, New Mexico NAD 83
Site: Armstrong 35/23 H3PH Fed Com #2H

Well: Sec 35, T25S, R31E

Wellbore: BHL: 1418' FNL & 1310' FEL (Sec 35)

Design: Design #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Site Armstrong 35/23 H3PH Fed Com #2H WELL @ 3319.0usft (Original Well Elev) WELL @ 3319.0usft (Original Well Elev)

Grid

oigii.		J								
anned	Survey									
	•									
ı	Measured			Vertical			Vertical	Dogleg	Build	Turn
	Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
	(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
	(4011)	()	()	(uoit)	(usit)	(usit)	(doit)	(/ 1000011)	(/ 1000011)	(71000011)
	KOP: 10' FSL	. & 1310' FEL (S	ec 35)							
	10,250.0	2.69	359.82	10,245.9	-219.4	0.0	-219.4	10.00	10.00	0.00
	10,300.0	7.69	359.82	10,295.7	-214.8	0.0	-214.8	10.00	10.00	0.00
	10,350.0	12.69	359.82	10,344.9	-206.0	0.0	-206.0	10.00	10.00	0.00
	10,400.0	17.69	359.82	10,393.2	-192.9	-0.1	-192.9	10.00	10.00	0.00
	10,450.0	22.69	359.82	10,440.1	-175.6	-0.1	-175.6	10.00	10.00	0.00
	10,500.0	27.69	359.82	10,485.3	-154.4	-0.2	-154.4	10.00	10.00	0.00
	10,548.6	32.55	359.82	10,527.3	-130.0	-0.3	-130.0	10.00	10.00	0.00
		L & 1310' FEL (S	•							
	10,550.0	32.69	359.82	10,528.5	-129.2	-0.3	-129.2	10.00	10.00	0.00
	10,600.0	37.69	359.82	10,569.3	-100.4	-0.4	-100.4	10.00	10.00	0.00
	10,650.0	42.69	359.82	10,607.5	-68.2	-0.5	-68.2	10.00	10.00	0.00
	10,700.0	47.69	359.82	10,642.8	-32.7	-0.6	-32.7	10.00	10.00	0.00
	10,750.0	52.69	359.82	10,674.8	5.7	-0.7	5.7	10.00	10.00	0.00
	10,800.0	57.69	359.82	10,703.3	46.7	-0.8	46.7	10.00	10.00	0.00
	10,850.0	62.69	359.82	10,728.1	90.1	-1.0	90.1	10.00	10.00	0.00
	10,900.0	67.69	359.82	10,749.1	135.5	-1.1	135.5	10.00	10.00	0.00
	10,950.0	72.69	359.82	10,766.0	182.5	-1.3	182.5	10.00	10.00	0.00
	11,000.0	77.69	359.82	10,778.8	230.8	-1.4	230.8	10.00	10.00	0.00
	11,050.0	82.69	359.82	10,787.3	280.1	-1.6	280.1	10.00	10.00	0.00
	11,100.0	87.69	359.82	10,791.5	329.9	-1.7	329.9	10.00	10.00	0.00
	11,121.8	89.87	359.82	10,791.5	351.7	-1.8	351.7	10.00	10.00	0.00
	11,121.0	89.87	359.82	10,792.0	353.0	-1.8	353.0	0.00	0.00	0.00
		& 1310' FEL (Se		10,702.0	300.0	-1.0	300.0	0.00	0.00	0.00
	11,200.0	89.87	359.82	10,792.2	429.9	-2.0	429.9	0.00	0.00	0.00
	11,200.0	89.87 89.87	359.82 359.82	10,792.2	429.9 529.9	-2.0 -2.3	429.9 529.9	0.00	0.00	0.00
	11,300.0					-2.3	529.9	0.00		
	11,400.0	89.87	359.82	10,792.6	629.9	-2.7	629.9	0.00	0.00	0.00
	11,500.0	89.87	359.82	10,792.9	729.9	-3.0	729.9	0.00	0.00	0.00
	11,600.0	89.87	359.82	10,793.1	829.9	-3.3	829.9	0.00	0.00	0.00
	11,700.0	89.87	359.82	10,793.3	929.9	-3.6	929.9	0.00	0.00	0.00
	11,800.0	89.87	359.82	10,793.6	1,029.9	-3.9	1,029.9	0.00	0.00	0.00
								0.00	0.00	0.00
	11,900.0	89.87	359.82	10,793.8	1,129.9	-4.2	1,129.9	0.00	0.00	0.00
	12,000.0	89.87	359.82	10,794.0	1,229.9	-4.5	1,229.9	0.00	0.00	0.00
	12,100.0	89.87	359.82	10,794.3	1,329.9	-4.8	1,329.9	0.00	0.00	0.00
	12,200.0	89.87	359.82	10,794.5	1,429.9	-5.2	1,429.9	0.00	0.00	0.00
	12,300.0	89.87	359.82	10,794.7	1,529.9	-5.5	1,529.9	0.00	0.00	0.00
	12,400.0	89.87	359.82	10,795.0	1,629.9	-5.8	1,629.9	0.00	0.00	0.00
	12,500.0	89.87	359.82	10,795.2	1,729.9	-6.1	1,729.9	0.00	0.00	0.00
	12,600.0	89.87	359.82	10,795.4	1,829.9	-6.4	1,829.9	0.00	0.00	0.00
	12,700.0	89.87	359.82	10,795.6	1,929.9	-6.7	1,929.9	0.00	0.00	0.00
	12,700.0	89.87	359.82	10,795.9	2,029.9	-0.7 -7.0	2,029.9	0.00	0.00	0.00
	12,900.0	89.87	359.82	10,796.1	2,129.9	-7.3	2,129.9	0.00	0.00	0.00
	13,000.0	89.87	359.82	10,796.3	2,229.9	-7.6	2,229.9	0.00	0.00	0.00
	13,100.0	89.87	359.82	10,796.6	2,329.9	-8.0	2,329.9	0.00	0.00	0.00
	13,179.1	89.87	359.82	10,796.8	2,409.0	-8.2	2,409.0	0.00	0.00	0.00
	PPP2: 2639' I	FSL & 1310' FEL	_ (Sec 35)							
	13,200.0	89.87	359.82	10,796.8	2,429.9	-8.3	2,429.9	0.00	0.00	0.00
	13,300.0	89.87	359.82	10,797.0	2,529.9	-8.6	2,529.9	0.00	0.00	0.00
	13,400.0	89.87	359.82	10,797.3	2,629.9	-8.9	2,629.9	0.00	0.00	0.00
	13,500.0	89.87	359.82	10,797.5	2,729.9	-9.2	2,729.9	0.00	0.00	0.00
		13,600.0 89.87 359.82 10,797.7		2,829.9	-9.5	2,829.9	0.00	0.00	0.00	
	13,600.0 13,700.0	89.87 89.87	359.82	10,798.0	2,929.9	-9.8	2,929.9	0.00	0.00	0.00

Database: Hobbs

Company: Mewbourne Oil Company

Project: Eddy County, New Mexico NAD 83
Site: Armstrong 35/23 H3PH Fed Com #2H

Well: Sec 35, T25S, R31E

Wellbore: BHL: 1418' FNL & 1310' FEL (Sec 35)

Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Armstrong 35/23 H3PH Fed Com #2H WELL @ 3319.0usft (Original Well Elev) WELL @ 3319.0usft (Original Well Elev)

Grid

lanned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,900.0	89.87	359.82	10,798.4	3,129.9	-10.5	3,129.9	0.00	0.00	0.00
14,000.0	89.87	359.82	10,798.7	3,229.9	-10.8	3,229.9	0.00	0.00	0.00
14,100.0	89.87	359.82	10,798.9	3,329.9	-11.1	3,329.9	0.00	0.00	0.00
14,200.0	89.87	359.82	10,799.1	3,429.9	-11.4	3,429.9	0.00	0.00	0.00
14 200 0	89.87	359.82	10,799.3	3,529.9	-11.7	3,529.9	0.00	0.00	0.00
14,300.0									
14,400.0	89.87	359.82	10,799.6	3,629.9	-12.0	3,629.9	0.00	0.00	0.00
14,500.0	89.87	359.82	10,799.8	3,729.9	-12.3	3,729.9	0.00	0.00	0.00
14,501.1	89.87	359.82	10,799.8	3,731.0	-12.3	3,731.0	0.00	0.00	0.00
,	FNL & 1310' FEI		,	-,		-,			
14,600.0	89.87	359.82	10,800.0	3,829.9	-12.6	3,829.9	0.00	0.00	0.00
14,700.0	89.87	359.82	10,800.3	3,929.9	-13.0	3,929.9	0.00	0.00	0.00
14,800.0	89.87	359.82	10,800.5	4,029.9	-13.3	4,029.9	0.00	0.00	0.00
14,900.0	89.87	359.82	10,800.7	4,129.9	-13.6	4,129.9	0.00	0.00	0.00
15,000.0	89.87	359.82	10,801.0	4,229.9	-13.9	4,229.9	0.00	0.00	0.00
15,100.0	89.87	359.82	10,801.2	4,329.9	-14.2	4,329.9	0.00	0.00	0.00
15,200.0	89.87	359.82	10,801.4	4,429.8	-14.5	4,429.9	0.00	0.00	0.00
15,300.0	89.87	359.82	10,801.7	4,529.8	-14.8	4,529.9	0.00	0.00	0.00
15,400.0	89.87	359.82	10,801.9	4,629.8	-15.1	4,629.9	0.00	0.00	0.00
15,500.0	89.87	359.82	10,802.1	4,729.8	-15.5	4,729.9	0.00	0.00	0.00
15,600.0	89.87	359.82	10,802.4	4,829.8	-15.8	4,829.9	0.00	0.00	0.00
15,700.0	89.87	359.82	10,802.6	4,929.8	-16.1	4,929.9	0.00	0.00	0.00
15,800.0	89.87	359.82	10,802.8	5,029.8	-16.4	5,029.9	0.00	0.00	0.00
15,900.0	89.87	359.82	10,803.0	5,129.8	-16.7	5,129.9	0.00	0.00	0.00
16,000.0	89.87	359.82	10,803.3	5,229.8	-17.0	5,229.9	0.00	0.00	0.00
16,100.0	89.87	359.82	10,803.5	5,329.8	-17.3	5,329.9	0.00	0.00	0.00
16,200.0	89.87	359.82	10,803.7	5,429.8	-17.6	5,429.9	0.00	0.00	0.00
16,300.0	89.87	359.82	10,804.0	5,529.8	-17.9	5,529.9	0.00	0.00	0.00
16,400.0	89.87	359.82	10,804.2	5,629.8	-18.3	5,629.9	0.00	0.00	0.00
16,500.0	89.87	359.82	10,804.4	5,729.8	-18.6	5,729.9	0.00	0.00	0.00
16,600.0	89.87	359.82	10,804.7	5,829.8	-18.9	5,829.9	0.00	0.00	0.00
16,700.0	89.87	359.82	10,804.9	5,929.8	-19.2	5,929.9	0.00	0.00	0.00
16,800.0	89.87	359.82	10,805.1	6,029.8	-19.5	6,029.9	0.00	0.00	0.00
16,900.0	89.87	359.82	10,805.4	6,129.8	-19.8	6,129.9	0.00	0.00	0.00
17,000.0	89.87	359.82	10,805.6	6,229.8	-20.1	6,229.9	0.00	0.00	0.00
17,100.0	89.87	359.82	10,805.8	6,329.8	-20.4	6,329.9	0.00	0.00	0.00
17,200.0	89.87	359.82	10,806.1	6,429.8	-20.8	6,429.9	0.00	0.00	0.00
	89.87						0.00	0.00	
17,300.0		359.82	10,806.3	6,529.8	-21.1	6,529.9			0.00
17,400.0	89.87	359.82	10,806.5	6,629.8	-21.4	6,629.9	0.00	0.00	0.00
17,500.0	89.87	359.82	10,806.7	6,729.8	-21.7	6,729.9	0.00	0.00	0.00
17,600.0	89.87	359.82	10,807.0	6,829.8	-22.0	6,829.9	0.00	0.00	0.00
17,700.0	89.87	359.82	10,807.2	6,929.8	-22.3	6,929.9	0.00	0.00	0.00
17,800.0	89.87	359.82	10,807.4	7,029.8	-22.6	7,029.9	0.00	0.00	0.00
17,900.0	89.87	359.82	10,807.7	7,129.8	-22.9	7,129.9	0.00	0.00	0.00
18,000.0	89.87	359.82	10,807.9	7,229.8	-23.3	7,229.9	0.00	0.00	0.00
18,100.0	89.87	359.82	10,808.1	7,329.8	-23.6	7,329.9	0.00	0.00	0.00
18,200.0	89.87	359.82	10,808.4	7,429.8	-23.9	7,429.9	0.00	0.00	0.00
				,					
18,300.0	89.87	359.82	10,808.6	7,529.8	-24.2	7,529.9	0.00	0.00	0.00
18,400.0	89.87	359.82	10,808.8	7,629.8	-24.5	7,629.9	0.00	0.00	0.00
18,465.2	89.87	359.82	10,809.0	7,695.0	-24.7	7,695.0	0.00	0.00	0.00
PPP4: 2641'	FSL & 1310' FEI	L (Sec 26)							
18,500.0	89.87	359.82	10,809.1	7,729.8	-24.8	7,729.9	0.00	0.00	0.00
18,600.0	89.87	359.82	10,809.3	7,829.8	-25.1	7,829.9	0.00	0.00	0.00
18,700.0	89.87	359.82	10,809.5	7,929.8	-25.4	7,929.9	0.00	0.00	0.00
10,700.0		359.82 359.82	10,809.5	7,929.8 8,029.8	-25.4 -25.8				
18,800.0	89.87				25.0	8,029.9	0.00	0.00	0.00

Hobbs Database: Company:

Mewbourne Oil Company

Eddy County, New Mexico NAD 83 Project: Armstrong 35/23 H3PH Fed Com #2H Site:

Well: Sec 35, T25S, R31E

BHL: 1418' FNL & 1310' FEL (Sec 35) Wellbore:

Design: Design #1 Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Armstrong 35/23 H3PH Fed Com #2H WELL @ 3319.0usft (Original Well Elev) WELL @ 3319.0usft (Original Well Elev)

anned Comme									
anned Survey									
Measured			Vertical		. =	Vertical Section	Dogleg	Build Rate	Turn Rate
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	(usft)	Rate (°/100usft)	(°/100usft)	(°/100usft)
18,900.0	89.87	359.82	10,810.0	8,129.8	-26.1	8,129.9	0.00	0.00	0.00
19,000.0	89.87	359.82	10,810.2	8,229.8	-26.4	8,229.9	0.00	0.00	0.00
19,100.0	89.87	359.82	10,810.4	8,329.8	-26.7	8,329.9	0.00	0.00	0.00
19,200.0	89.87	359.82	10,810.7	8,429.8	-27.0	8,429.9	0.00	0.00	0.00
19,300.0	89.87	359.82	10,810.9	8,529.8	-27.3	8,529.9	0.00	0.00	0.00
19,400.0	89.87	359.82	10,811.1	8,629.8	-27.6	8,629.9	0.00	0.00	0.00
19,500.0	89.87	359.82	10,811.4	8,729.8	-27.9	8,729.9	0.00	0.00	0.00
19,600.0	89.87	359.82	10,811.6	8,829.8	-28.3	8.829.9	0.00	0.00	0.00
19,700.0	89.87	359.82	10,811.8	8,929.8	-28.6	8,929.9	0.00	0.00	0.00
19,800.0	89.87	359.82	10,812.1	9,029.8	-28.9	9,029.9	0.00	0.00	0.00
19,900.0	89.87	359.82	10,812.3	9,129.8	-29.2	9,129.9	0.00	0.00	0.00
20,000.0	89.87	359.82	10,812.5	9,229.8	-29.5	9,229.9	0.00	0.00	0.00
20,100.0	89.87	359.82	10,812.8	9,329.8	-29.8	9,329.9	0.00	0.00	0.00
20,200.0	89.87	359.82	10,812.0	9,429.8	-30.1	9,429.9	0.00	0.00	0.00
20,300.0	89.87	359.82	10,813.2	9,529.8	-30.4	9,529.9	0.00	0.00	0.00
20,400.0	89.87	359.82	10,813.4	9,629.8	-30.7	9,629.9	0.00	0.00	0.00
20,500.0	89.87	359.82	10,813.7	9,729.8	-31.1	9,729.9	0.00	0.00	0.00
20,600.0	89.87	359.82	10,813.9	9,829.8	-31.4	9,829.9	0.00	0.00	0.00
20,700.0	89.87	359.82	10,613.9	9,029.0	-31.4 -31.7	9,029.9	0.00	0.00	0.00
20,800.0	89.87	359.82	10,814.1	10,029.8	-32.0	10,029.9	0.00	0.00	0.00
20,900.0	89.87	359.82	10,814.6	10,129.8	-32.3	10,029.9	0.00	0.00	0.00
21,000.0	89.87	359.82	10,814.8	10,229.8	-32.6	10,229.9	0.00	0.00	0.00
21,100.0	89.87	359.82	10,815.1	10,329.8	-32.9	10,329.9	0.00	0.00	0.00
21,200.0 21,300.0	89.87 89.87	359.82 359.82	10,815.3 10,815.5	10,429.8 10,529.8	-33.2 -33.6	10,429.9 10,529.9	0.00 0.00	0.00 0.00	0.00 0.00
21,400.0	89.87	359.82	10,815.8	10,629.8	-33.9	10,529.9	0.00	0.00	0.00
21,500.0	89.87	359.82	10,816.0	10,729.8	-34.2	10,729.9	0.00	0.00	0.00
21,600.0	89.87	359.82	10,816.2	10,829.8	-34.5	10,829.9	0.00	0.00	0.00
21,700.0	89.87 89.87	359.82 359.82	10,816.5 10,816.7	10,929.8	-34.8	10,929.9	0.00 0.00	0.00 0.00	0.00
21,800.0 21,900.0	89.87	359.82	10,816.7	11,029.8 11,129.8	-35.1 -35.4	11,029.9 11,129.9	0.00	0.00	0.00 0.00
22,000.0	89.87	359.82	10,817.1	11,229.8	-35.4	11,129.9	0.00	0.00	0.00
22,100.0	89.87	359.82	10,817.4	11,329.8	-36.1	11,329.9	0.00	0.00	0.00
22,200.0	89.87	359.82	10,817.6	11,429.8	-36.4	11,429.9	0.00	0.00	0.00
22,300.0	89.87	359.82	10,817.8	11,529.8	-36.7	11,529.9	0.00	0.00 0.00	0.00 0.00
22,400.0 22,500.0	89.87 89.87	359.82 359.82	10,818.1 10,818.3	11,629.8 11,729.8	-37.0 -37.3	11,629.9 11,729.9	0.00 0.00	0.00	0.00
,									
22,600.0	89.87	359.82	10,818.5	11,829.8	-37.6	11,829.9	0.00	0.00	0.00
22,700.0	89.87	359.82	10,818.8	11,929.8	-37.9	11,929.9	0.00	0.00	0.00
22,800.0	89.87	359.82	10,819.0	12,029.8	-38.2	12,029.9	0.00	0.00	0.00
22,900.0 23,000.0	89.87 89.87	359.82 359.82	10,819.2 10,819.5	12,129.8 12,229.8	-38.6 -38.9	12,129.9 12,229.9	0.00 0.00	0.00 0.00	0.00 0.00
23,100.0	89.87	359.82	10,819.7	12,329.8	-39.2	12,329.9	0.00	0.00	0.00
23,200.0	89.87	359.82	10,819.9	12,429.8	-39.5	12,429.9	0.00	0.00	0.00
23,300.0	89.87	359.82	10,820.2	12,529.8	-39.8	12,529.9	0.00	0.00	0.00
23,400.0	89.87	359.82	10,820.4	12,629.8	-40.1	12,629.9	0.00	0.00	0.00
23,500.0	89.87	359.82	10,820.6	12,729.8	-40.4	12,729.9	0.00	0.00	0.00
23,600.0	89.87	359.82	10,820.8	12,829.8	-40.7	12,829.9	0.00	0.00	0.00
23,700.0	89.87	359.82	10,821.1	12,929.8	-41.1	12,929.9	0.00	0.00	0.00
23,749.2	89.87	359.82	10,821.2	12,979.0	-41.2	12,979.1	0.00	0.00	0.00
	FNL & 1310' FE	•							
23,800.0	89.87	359.82	10,821.3	13,029.8	-41.4	13,029.8	0.00	0.00	0.00
23,900.0	89.87	359.82	10,821.5	13,129.8	-41.7	13,129.8	0.00	0.00	0.00

Database: Hobbs

Company: Mewbourne Oil Company

Project: Eddy County, New Mexico NAD 83
Site: Armstrong 35/23 H3PH Fed Com #2H

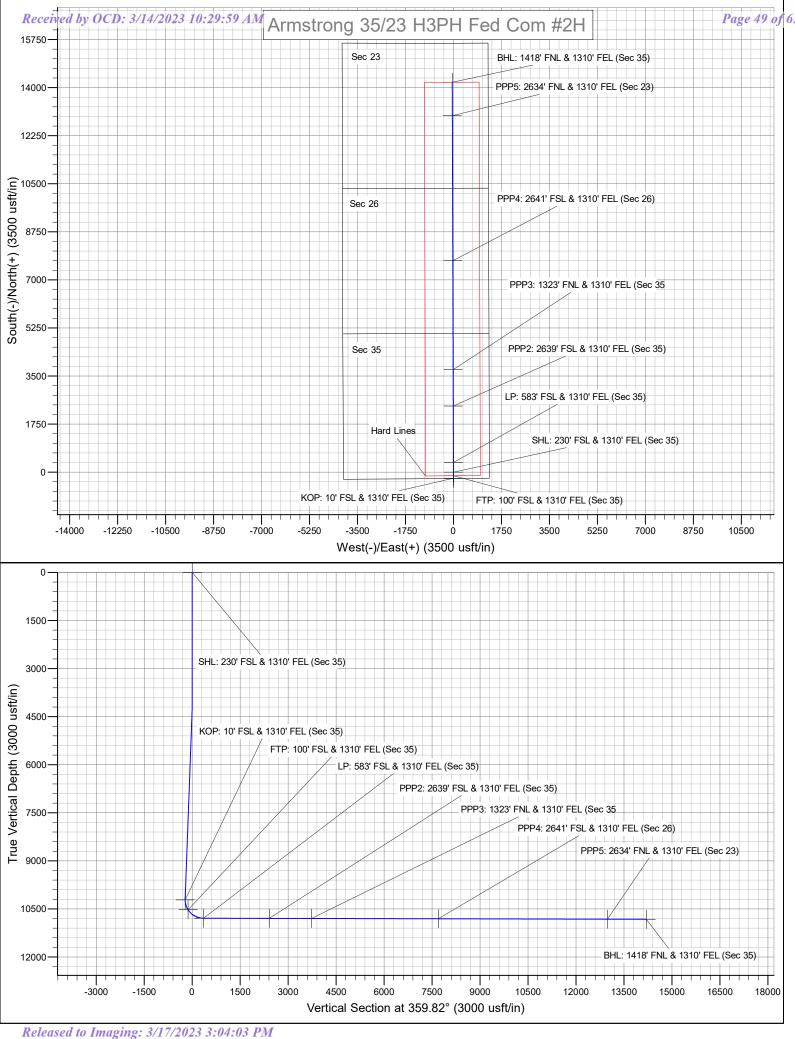
Well: Sec 35, T25S, R31E

Wellbore: BHL: 1418' FNL & 1310' FEL (Sec 35)

Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:


Survey Calculation Method:

Site Armstrong 35/23 H3PH Fed Com #2H WELL @ 3319.0usft (Original Well Elev) WELL @ 3319.0usft (Original Well Elev)

Grid

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
24,000.0	89.87	359.82	10,821.8	13,229.8	-42.0	13,229.8	0.00	0.00	0.00
24,100.0	89.87	359.82	10,822.0	13,329.8	-42.3	13,329.8	0.00	0.00	0.00
24,200.0	89.87	359.82	10,822.2	13,429.8	-42.6	13,429.8	0.00	0.00	0.00
24,300.0	89.87	359.82	10,822.5	13,529.8	-42.9	13,529.8	0.00	0.00	0.00
24,400.0	89.87	359.82	10,822.7	13,629.8	-43.2	13,629.8	0.00	0.00	0.00
24,500.0	89.87	359.82	10,822.9	13,729.8	-43.5	13,729.8	0.00	0.00	0.00
24,600.0	89.87	359.82	10,823.2	13,829.8	-43.9	13,829.8	0.00	0.00	0.00
24,700.0	89.87	359.82	10,823.4	13,929.8	-44.2	13,929.8	0.00	0.00	0.00
24,800.0	89.87	359.82	10,823.6	14,029.8	-44.5	14,029.8	0.00	0.00	0.00
24,900.0	89.87	359.82	10,823.8	14,129.8	-44.8	14,129.8	0.00	0.00	0.00
24,965.2	89.87	359.82	10,824.0	14,195.0	-45.0	14,195.1	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
SHL: 230' FSL & 1310' F - plan hits target cent - Point	0.00 er	0.00	0.0	0.0	0.0	393,383.00	723,717.00	32.0801212	-103.7444816
KOP: 10' FSL & 1310' FI - plan hits target cent - Point	0.00 er	0.00	10,219.0	-220.0	0.0	393,163.00	723,717.00	32.0795165	-103.7444855
FTP: 100' FSL & 1310' F - plan hits target cent - Point	0.00 er	0.00	10,527.3	-130.0	-0.3	393,253.00	723,716.72	32.0797639	-103.7444848
LP: 583' FSL & 1310' FE - plan hits target cent - Point	0.00 er	0.00	10,792.0	353.0	-1.8	393,736.00	723,715.21	32.0810916	-103.7444812
PPP2: 2639' FSL & 131(- plan hits target cent - Point	0.00 er	0.00	10,796.8	2,409.0	-8.2	395,792.00	723,708.79	32.0867432	-103.7444657
PPP3: 1323' FNL & 131(- plan hits target cent - Point	0.00 er	0.00	10,799.8	3,731.0	-12.3	397,114.00	723,704.66	32.0903772	-103.7444557
PPP4: 2641' FSL & 131(- plan hits target cent - Point	0.00 er	0.00	10,809.0	7,695.0	-24.7	401,078.00	723,692.29	32.1012737	-103.7444257
PPP5: 2634' FNL & 131(- plan hits target cent - Point	0.00 er	0.00	10,821.2	12,979.0	-41.2	406,362.00	723,675.79	32.1157987	-103.7443858
BHL: 1418' FNL & 1310' - plan hits target cent - Point	0.00 er	0.00	10,824.0	14,195.0	-45.0	407,578.00	723,672.00	32.1191413	-103.7443766

Operator Name: Mewbourne Oil Company	Property Name: Armstrong 35/23 H3PH Fed Com	Well Number 2H
--------------------------------------	--	-------------------

Kick Off Point (KOP)

UL P	Section 35	Township 25S	Range 31E	Lot	Feet 10	From N/S S	Feet 1310	From E/W	County Eddy
Latitude			Longitude				NAD		
32.0	32.0795165		-103.7444855			83			

First Take Point (FTP)

UL P	Section 35	Township 25S	Range 31E	Lot	Feet 100	From N/S S	Feet 1310	From E/W	County Eddy
Latitude			Longitude			NAD			
32.0797639		-103.7444848			83				

Last Take Point (LTP)

UL H	Section 23	Township 25S	Range 31E	Lot	Feet 1418	From N/S	Feet 1310	From E/W	County Eddy
Latitude			Longitude			NAD			
32.1	32.1191413			-103.7443766			83		

Is this well the defining well for th	Υ	
Is this well an infill well?	N	

If infill is yes please provide API if available, Operator Name and well number for Defining well for Horizontal Spacing Unit.

API#		
Operator Name:	Property Name:	Well Number

KZ 06/27/2018

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: | Mewbourne Oil Company

LEASE NO.: | NMNM017232

WELL NAME & NO.: | ARMSTRONG 35-23 H3PH FED COM 2H

SURFACE HOLE FOOTAGE: 230'/S & 1310'/E **BOTTOM HOLE FOOTAGE** 1418'/N & 1310'/E

LOCATION: Section 35, T.25 S., R.31 E., NMP

COUNTY: | Eddy County, New Mexico

COA

H2S	O Yes	• No	
Potash	None	Secretary	© R-111-P
Cave/Karst Potential	O Low	• Medium	O High
Cave/Karst Potential	Critical		
Variance	O None	Flex Hose	Other
Wellhead	Conventional	• Multibowl	O Both
Other	☐4 String Area	☐ Capitan Reef	□WIPP
Other	☐ Fluid Filled	☐ Cement Squeeze	☐ Pilot Hole
Special Requirements	☐ Water Disposal	☑ COM	□ Unit

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

Casing Design:

- 1. The 13-3/8 inch surface casing shall be set at approximately 995 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after

- completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8 hours** or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the **10-3/4** inch intermediate casing shall be set at approximately **4,170** feet is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above.
 Excess cement calculates to 19%, additional cement might be required
- 3. The minimum required fill of cement behind the **7-5/8** inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.
- 4. The minimum required fill of cement behind the 5-1/2 inch production liner is:
 - Cement should tie-back **100 feet** into the previous casing. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000** (**5M**) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.

- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - ☑ Eddy CountyCall the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
 - Lea County
 Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575)
 689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.

- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
 - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for

the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).

- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

OTA03082023

<u>Hydrogen Sulfide Drilling Operations Plan</u> **Mewbourne Oil Company**

1. General Requirements

Rule 118 does not apply to this well because MOC has researched this area and no high concentrations of H2S were found. MOC will have on location and working all H2S safety equipment before the Delaware formation for purposes of safety and insurance requirements.

2. Hydrogen Sulfide Training

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will have received training from a qualified instructor in the following areas prior to entering the drilling pad area of the well:

- 1. The hazards and characteristics of hydrogen sulfide gas.
- 2. The proper use of personal protective equipment and life support systems.
- 3. The proper use of hydrogen sulfide detectors, alarms, warning systems, briefing areas, evacuation procedures.
- 4. The proper techniques for first aid and rescue operations.

Additionally, supervisory personnel will be trained in the following areas:

- 1 The effects of hydrogen sulfide on metal components. If high tensile tubular systems are utilized, supervisory personnel will be trained in their special maintenance requirements.
- 2 Corrective action and shut in procedures, blowout prevention, and well control procedures while drilling a well.
- The contents of the Hydrogen Sulfide Drilling Operations Plan.

There will be an initial training session prior to encountering a know hydrogen sulfide source. The initial training session shall include a review of the site specific Hydrogen Sulfide Drilling Operations Plan.

3. Hydrogen Sulfide Safety Equipment and Systems

All hydrogen sulfide safety equipment and systems will be installed, tested, and operational prior to drilling below the 9 5/8" intermediate casing.

1. Well Control Equipment

- A. Choke manifold with minimum of one adjustable choke/remote choke.
- B. Blowout preventers equipped with blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit
- C. Auxiliary equipment including annular type blowout preventer.
- 2. Protective Equipment for Essential Personnel

Thirty minute self contained work unit located in the dog house and at briefing areas.

Additionally: If H2S is encountered in concentrations less than 10 ppm, fans will be placed in work areas to prevent the accumulation of hazardous amounts of poisonous gas. If higher concentrations of H2S are detected the well will be shut in and a rotating head, mud/gas separator, remote choke and flare line with igniter will be installed.

3. <u>Hydrogen Sulfide Protection and Monitoring Equipment</u>

Two portable hydrogen sulfide monitors positioned on location for optimum coverage and detection. The units shall have audible sirens to notify personnel when hydrogen sulfide levels exceed 20 PPM.

4. Visual Warning Systems

- A. Wind direction indicators as indicated on the wellsite diagram.
- B. Caution signs shall be posted on roads providing access to location. Signs shall be painted a high visibility color with lettering of sufficient size to be readable at reasonable distances from potentially contaminated areas.

4. Mud Program

The mud program has been designed to minimize the amount of hydrogen sulfide entrained in the mud system. Proper mud weight, safe drilling practices, and the use of hydrogen sulfide scavengers will minimize hazards while drilling the well.

5. Metallurgy

All tubular systems, wellheads, blowout preventers, drilling spools, kill lines, choke manifolds, and valves shall be suitable for service in a hydrogen sulfide environment when chemically treated.

6. Communications

State & County Officials phone numbers are posted on rig floor and supervisors trailer. Communications in company vehicles and toolpushers are either two way radios or cellular phones.

7. Well Testing

Drill stem testing is not an anticipated requirement for evaluation of this well. If a drill stem test is required, it will be conducted with a minimum number of personnel in the immediate vicinity. The test will be conducted during daylight hours only.

8. Emergency Phone Numbers

Eddy County Sheriff's Office	911 or 575-887-7551
Ambulance Service	911 or 575-885-2111
Carlsbad Fire Dept	911 or 575-885-2111
Loco Hills Volunteer Fire Dept.	911 or 575-677-3266
Closest Medical Facility - Columbia Medical Cente	er of Carlsbad 575-492-5000

Mewbourne Oil Company	Hobbs District Office Fax 2 nd Fax	575-393-5905 575-397-6252 575-393-7259
District Manager	Robin Terrell	575-390-4816
Drilling Superintendent	Frosty Lathan	575-390-4103
	Bradley Bishop	575-390-6838
Drilling Foreman	Wesley Noseff	575-441-0729

Operator Name: MEWBOURNE OIL COMPANY

Well Name: ARMSTRONG 35/23 H3PH FED COM Well Number: 2H

Disposal location description: City of Carlsbad Water Treatment facility

Waste type: GARBAGE

Waste content description: Garbage & Trash

Amount of waste: 1500 pounds

Waste disposal frequency: One Time Only

Safe containment description: Enclosed trash trailer

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

FACILITY

Disposal type description:

Disposal location description: Waste Management facility in Carlsbad.

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? N

Description of cuttings location

Cuttings area length (ft.) Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Operator Name: MEWBOURNE OIL COMPANY

Well Name: ARMSTRONG 35/23 H3PH FED COM Well Number: 2H

Section 8 - Ancillary

Are you requesting any Ancillary Facilities?: N

Ancillary Facilities

Comments:

Section 9 - Well Site

Well Site Layout Diagram:

Armstrong35_23H3PHFedCom2H_wellsitelayout_20220325133653.pdf

Comments:

Section 10 - Plans for Surface

Type of disturbance: New Surface Disturbance Multiple Well Pad Name: Armstrong 35/23 & 35/26 H3 & B2 Fed

wells

Multiple Well Pad Number: 5

Recontouring

Drainage/Erosion control construction: NONE

Drainage/Erosion control reclamation: NONE

Well pad proposed disturbance Well pad interim reclamation (acres): Well pad long term disturbance

(acres): 4.4 1.7 (acres): 2.69

Road proposed disturbance (acres): Road interim reclamation (acres): 0 Road long term disturbance (acres): 0

0.41

Powerline proposed disturbance Powerline interim reclamation (acres): Powerline long term disturbance

(acres): 0 (acres): 0

Pipeline proposed disturbance Pipeline interim reclamation (acres): 0 Pipeline long term disturbance

(acres): 0.77

Other proposed disturbance (acres): 0 Other interim reclamation (acres): 0 Other long term disturbance (acres): 0

Total proposed disturbance: 5.58 Total interim reclamation: 1.7 Total long term disturbance: 2.69

Disturbance Comments: In areas to be heavily disturbed, the top 6 inches of soil material, will be stripped and stockpiled on the perimeter of the well location to keep topsoil viable, and to make redistribution of topsoil more efficient during interim reclamation. Stockpiled topsoil should include vegetative material. Topsoil will be clearly segregated and stored separately from subsoils. Contaminated soil will not be stockpiled, but properly treated and handled prior to topsoil salvaging.

Reconstruction method: The areas planned for interim reclamation will then be recontoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to re-seeding will not be steeper than a 3:1 ration, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be recontoured to the above ratios during interim reclamation.

Topsoil redistribution: Topsoil will be evenly respread and aggressively revegetated over the entire disturbed area not needed for all-weather operations including cuts & fills. To see the area, the proper BLM seed mixture, free of noxious weeks, will be used.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 196814

CONDITIONS

Operator:	OGRID:
MEWBOURNE OIL CO	14744
P.O. Box 5270	Action Number:
Hobbs, NM 88241	196814
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
kpickford	Will require a name change complying with OCD policy prior to putting the well into production.	3/17/2023
kpickford	Notify OCD 24 hours prior to casing & cement	3/17/2023
kpickford	Will require a File As Drilled C-102 and a Directional Survey with the C-104	3/17/2023
kpickford	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string	3/17/2023
kpickford	Cement is required to circulate on both surface and intermediate1 strings of casing	3/17/2023
kpickford	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system	3/17/2023