Form 3160-3 (June 2015)		FORM APPROVED OMB No. 1004-0137				
UNITED STATE	S	Expires: January 31, 2018				
DEPARTMENT OF THE I BUREAU OF LAND MAN		5. Lease Serial No.				
		6. If Indian, Allotee or Tribe Name				
1a. Type of work: DRILL	EENTER	7. If Unit or CA Agreement, Name and No.				
1b. Type of Well: Oil Well Gas Well C	Other	8. Lease Name and Well No.				
1c. Type of Completion: Hydraulic Fracturing S	ingle Zone Multiple Zone	o. Lease Maine and Wen No.				
	—	[333920]				
2. Name of Operator	6137]	9. API Well No. 30-025-51325				
3a. Address	3b. Phone No. (include area code)	10. Field and Pool, or Exploratory [98248				
4. Location of Well (Report location clearly and in accordance	with any State requirements.*)	11. Sec., T. R. M. or Blk. and Survey or Area				
At surface						
At proposed prod. zone						
14. Distance in miles and direction from nearest town or post of	fice*	12. County or Parish 13. State				
15. Distance from proposed*location to nearestproperty or lease line, ft.(Also to nearest drig. unit line, if any)	16. No of acres in lease 17. Space	ng Unit dedicated to this well				
18. Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft.	19. Proposed Depth 20./BLM	/BIA Bond No. in file				
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22. Approximate date work will start*	23. Estimated duration				
	24. Attachments	· · · · · · · · · · · · · · · · · · ·				
The following, completed in accordance with the requirements o (as applicable)	f Onshore Oil and Gas Order No. 1, and the I	Hydraulic Fracturing rule per 43 CFR 3162.3-3				
1. Well plat certified by a registered surveyor.	4. Bond to cover the operation	ns unless covered by an existing bond on file (see				
 A Drilling Plan. A Surface Use Plan (if the location is on National Forest System) 	Item 20 above). em Lands, the 5. Operator certification.					
SUPO must be filed with the appropriate Forest Service Office		rmation and/or plans as may be requested by the				
25. Signature	Name (Printed/Typed)	Date				
Title		· · · · · ·				
Approved by (Signature)	Name (Printed/Typed)	Date				
Title	Office					
Application approval does not warrant or certify that the application applicant to conduct operations thereon.	nt holds legal or equitable title to those rights	in the subject lease which would entitle the				
Conditions of approval, if any, are attached. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, r						
of the United States any false, fictitious or fraudulent statements	or representations as to any matter within its	Jurisdiction.				
NGMP Rec 04/07/2023		144				

*(Instructions on page 2)

.

Additional Operator Remarks

Location of Well

0. SHL: SESW / 250 FSL / 1420 FWL / TWSP: 23S / RANGE: 32E / SECTION: 9 / LAT: 32.3125443 / LONG: -103.6835722 (TVD: 0 feet, MD: 0 feet) PPP: SESW / 100 FSL / 1650 FWL / TWSP: 23S / RANGE: 32E / SECTION: 9 / LAT: 32.3121346 / LONG: -103.6828278 (TVD: 12097 feet, MD: 12144 feet) BHL: LOT 3 / 20 FNL / 1650 FWL / TWSP: 23S / RANGE: 32E / SECTION: 4 / LAT: 32.3407855 / LONG: -103.6828466 (TVD: 12248 feet, MD: 22571 feet)

BLM Point of Contact

Name: Candy Vigil Title: LIE Phone: (575) 234-5982 Email: cvigil@blm.gov

Phone: (575) 393-6161 <u>District II</u> 811 S. First St., Artesia Phone: (575) 748-1283 <u>District III</u> 1000 Rio Brazos Road, Phone: (505) 334-6178 <u>District IV</u> 1220 S. St. Francis Dr.,	Id25 N. French Dr., Hobbs, NM 88240 State of New Mexico Phone: (575) 393-6161 Fax: (575) 393-0720 Energy, Minerals & Natural Resources Department Bit S. First St., Artesia, NM 88210 OIL CONSERVATION DIVISION Phone: (575) 748-1283 Fax: (575) 748-9720 1220 South St. Francis Dr. District III 1220 South St. Francis Dr. 1000 Rio Brazos Road, Aztec, NM 87410 State of New Mexico Phone: (505) 334-6178 Fax: (505) 334-6170 State of New Mexico District IV 1220 South St. Francis Dr. 1220 S. st. Francis Dr., Santa Fe, NM 87505 Santa Fe, NM 87505 WELL LOCATION AND ACREAGE DEDICATION PLA								Form C-102 Revised August 1, 2011 copy to appropriate District Office ENDED REPORT				
· · · · · · · · · · · · · · · · · · ·			WEI	LL LC	-		AND ACI	REAGE DEDIC					
[98]													
30-025				⁵ Property Name									
⁴ Property (~	1 1				0	Well Number	
33392					(GAT	O GRANDE	9-4 FED COM				712H	
⁷ OGRID N	No.						⁸ Operator	Name			⁹ Elevation		
6137				DEV	ON EN	NER(GY PRODUC	CTION COMPA	NY, L.P.		3665.3		
							[™] Surfac	e Location					
UL or lot no.	Section	Townsh	ip	Range	Lot I	dn	Feet from the	North/South line	Feet from the	East/W	est line	County	
Ν	9	23 S	5	32 E		250 SOUTH 1420 V		WE	ST	LEA			
" Bottom Hole Location If Different From Surface							om Surface						
UL or lot no.	Section	Townsh	lip	Range	e Lot Idn Feet from the North/South line Feet from the East/West line				est line	County			
3	4	23 S	5	32 E			20	NORTH	1650	WE	ST	LEA	
¹² Dedicated Acre	s ¹³ Joint	or Infill	¹⁴ Cor	nsolidation	ı Code			1	¹⁵ Order No.			•	
319.47													
			1										

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

NN CORREP SEC. 4 LAT $= 32.340922X$ LONG = 103.5891580 $V_{T} = 22.342052X$ $V_{T} = 22.342052X$ $V_{T} = 22.342052X$ $V_{T} = 22.342052X$ $V_{T} = 22.342052X$ $V_{T} = 22.34255X$ $V_{T} = 22.3255X$ $V_{T} = 22.3255X$ $V_{T} = 22.34255X$ $V_{T} = 22.3425X$ $V_{T} = 22.$	N89'25'43"F	E 2641.74 FT N89'25'54"E 2641.69 FT		¹⁷ OPERATOR CERTIFICATION
$ \begin{array}{c} URT_{1} = \frac{32}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}{2} 1$		N/4 CORNER SEC. 4	NE CORNER SEC. 4	
LUNG. = 103.861300 W N = 4833257 E = 74058.37 E = 74058.57 E = 7400	LAT. = 32.3408222'N	LONG 103 6796364/W		
$ \begin{array}{c} \mathbf{M} = -\frac{6}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{1}{2} \frac{1}{2$	CM 100 100 100 100 100 100 100 100 100 10	0	4	
$ \begin{array}{c} E = 740363.37 \\ W/4 \ CORNER SEC, 4 \\ LAT = 32,3336129 \\ LAT = 32,3336129 \\ LAT = 32,3336129 \\ NASP EAST (P) \\ R = 742020.13 \\ E = 74223.57 \\ LAT = 32,3336129 \\ NASP EAST (P) \\ R = 4820347 \\ E = 74200.517 \\ R = 4820347 \\ R = 8420347 \\ R = 8420347 \\ R = 74200.5238 \\ \end{array} $	N = 48832321		© N = 488375.75	interest or unleased mineral interest in the land including the proposed bottom
W/4 CORNER SEC. 4 W/4 CORNER SEC. 4 LONG. = 103.6812578 LONG. = 103.6812578 LONG. = 103.6812578 LONG. = 103.681578 W/4 CORNER SEC. 4 LONG. = 103.681578 W/4 CORNER SEC. 9 LONG. = 103.681578 W/4 CORNER SE	E = /40363.3/		ч E = /45865.39	hole location or has a right to drill this well at this location pursuant to a contract
W/4 CORNER SEC. 4 UAL = 323336129N LONG. = 103.681737W LONG. = 103.691747W LONG. = 103.6917477W LONG. = 103.6917477W LONG. = 103.691747W LONG. = 103.691747	8 LAT. = 32.34078	355'N	3'04	with an owner of such a mineral or working interest, or to a voluntary pooling
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		28466'W	N S E/4 CORNER SEC. 4	agreement or a compulsory pooling order heretofore entered by the division.
Image 105701/17 LONG LONG LONG 4025783.80 Date Image 105703.47 E 740600.91 Image 105783.80 E 745882.98 Image 105783.80 E 745882.98 E 745882.98 E 745882.98 Image 105783.80 E F 745882.98 E 745882.98 F Image 105783.80 E F 745882.98 F F 745882.98 Image 105783.80 E F 745882.98 F<	LAT. = 32.3336129 N = 488319.82	100' FNL, 1650' FWL	م LAT. = 32.3336712'N LONG. = 103.6710806'W	Sinney Horns 10-8-2021
E = 740800.01 E = 740800.01 E = 740800.01 SW CORNER SEC. 9 LAT. = 32.3255517 LONG. = 103.6881703W NNSP EAST (FT) N = 48040.12 E = 74001.20 SW CORNER SEC. 9 LAT. = 32.322443N (NA083 LONG. = 103.6881703W NNSP EAST (FT) N = 460419.20 E = 74056.78 LONG. = 103.6881703W NNSP EAST (FT) N = 460419.20 E = 740565.78 LONG. = 103.6881703W NNSP EAST (FT) N = 460419.20 E = 740565.78 LAT. = 32.3112106N LONG. = 103.6881703W NNSP EAST (FT) N = 460419.20 E = 740565.78 LAT. = 32.3112106N LONG. = 103.6881703W NNSP EAST (FT) N = 460419.20 E = 740565.78 LAT. = 32.3112106N LONG. = 103.6881703W NNSP EAST (FT) N = 460419.20 E = 740565.78 LAT. = 32.3112106N LONG. = 103.6881703W NNSP EAST (FT) N = 460474.36 E = 740565.78 LAT. = 32.3112106N LONG. = 103.6881703W NNSP EAST (FT) N = 460474.36 E = 740565.78 LAT. = 32.3112106N LONG. = 103.6881703W NNSP EAST (FT) N = 460474.36 E = 740565.78 LAT. = 32.3112106N LONG. = 103.6881703W NNSP EAST (FT) N = 460474.36 E = 740565.78 LAT. = 32.3112106N LONG. = 103.6881703W NNSP EAST (FT) N = 45007.75 N LONG. = 103.6891703W NNSP EAST (FT) N = 450770 N MSP EAST (FT) N = 4507700 N N MSP EAST (FT) N = 4507700 N N MSP EAST (FT) N	105700.12		NMSP EAST (FT)	Signature Date
SW CORNER SEC. 9 W/4 CORNER SE	E = 740600.91	NMSP_EAST_(FT) N = 488239.85	E - 745882.08	JENNY HARMS
SW CORNER SEC. 9 W/4 CORNER SE	₽ ARE SHOWN USING	THE NORTH E = /42233.6/	540.	Duinted Nome
SW CORNER SEC. 9 W/4 CORNER SEC. 9 UAT. = 32.37653770 NMSP EAST (FT) N = 483061.05 E = 740618.95 W/4 CORNER SEC. 9 UAT. = 32.3104561 W/4 CORNER SEC. 9 UAT. = 32.3104561 W/4 CORNER SEC. 9 UAT. = 32.3104561 W/4 CORNER SEC. 9 UAT. = 32.3104561 UOK. = 103.6801706W NMSP EAST (FT) N = 48307.89 UAT. = 32.3104561 UAT. = 32.3104560 UAT. = 32.3104561 UAT. = 32.31045617 UAT. = 32.3116476 UAT. = 32.31184766 UAT. =	LISTED NEW MEXICO	<u>STATE_PLANE</u>	м П	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SW CORNER SEC. 4 5 BASIS OF BEARING	AND DISTANCES SEC. 4		JENNY.HARMS@DVN.COM
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LAI. = 32.32635511N FO EAST COORDINATES I LONG. = 103.6881754'W SURFACE, VERTICA	MODIFIED TO THE	N LONG. = 103.6710823'W	E-mail Address
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			NMSP EAST (FT)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E = 740618.05 NO9.23.03			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2040.47	LAT. = 32 3263874'N	E	I8SURVEYOR CERTIFICATION
$ \begin{array}{c} W/4 \ \text{CORNER SEC. 9} \\ W/4 \ \text{CORNER SEC. 9} \\ LAT. = 32.3190959'N \\ LONG. = 103.6881708'W \\ NMSP \ EAST (FT) \\ N = 4780419.26 \\ E = 740636.28 \end{array} \begin{array}{c} CATO \ GRANDE \ 9-4 \ FED \ COL \ 712H \\ E = 740636.28 \\ LAT. = 32.319588'N \\ LONG. = 103.6835722'W \\ NMSP \ EAST (FT) \\ N = 480474.36 \\ E = 745917.03 \end{array} \begin{array}{c} NMSP \ EAST (FT) \\ NMSP \ EAST (FT) \\ NMSP \ EAST (FT) \\ N = 478044.39 \\ E = 742071.31 \\ SW \ CORNER \ SEC. 9 \\ LAT. = 32.3118416'N \\ LONG. = 103.6881673'W \\ NMSP \ EAST (FT) \\ NMSP \ EAST$	52		∞ FIRST TAKE POINT 100' FSL, 1650' FWL	
W/4 CORNER SEC. 9SEC. 9 $M = 477896.74$ E = 742302.18my supervision, and that the same is true and correct to the best of my belief.W/4 CORNER SEC. 9CATO GRANDE 9-4_FED_COL 712HMSP EAST (FT)MSP EAST (FT)N = 480419.26EEV. = 3665.37LAT. = 32.3125443'N (NAD83)LNSP EAST (FT)N = 470636.28E = 740036.28MSP EAST (FT)MSP EAST (FT)N = 478044.39MSP EAST (FT)MSP EAST (FT)N = 478044.39MSP EAST (FT)MSP EAST (FT)LONG. = 103.68367027WS/4 CORNER SEC. 9MSP EAST (FT)LONG. = 103.6836706121WSHL - SU 3118706'NMSP EAST (FT)LONG. = 103.68706790121WMSP EAST (FT)MSP EAST (FT)NMSP EAST (FT)MSP EAST (FT)MSP EAST (FT)NMSP EAST (FT)SHL - SU 3118706'NMSP EAST (FT)LONG. = 103.6870679121WMSP EAST (FT)MSP EAST (FT)NMSP EAST (FT)MSP EAST (FT)MSP EAST (FT)	2641	N = 483087.89	LAT. = 32.3121346'N LONG. = 103.6828278'W	plotted from field notes of actual surveys made by me or under
W/4 CORNER SEC. 9 $E = 742302.18$ W/4 CORNER SEC. 9 $E/4$ CORNER SEC. 9 LONG. = 103.6881708'W $CATO \ GRANDE \ 9-4 \ FED \ COL \ 712H$ $E/4 \ CORNER SEC. 9$ NMSP EAST (FT) $EEV. = 3665.3^{\circ}$ $LONG. = 103.683722'W$ NMSP EAST (FT) $LAT. = 32.3125443'N \ (NADB3)$ $LONG. = 103.683722'W$ NMSP EAST (FT) $N = 478044.39$ $E = 742302.18$ SW CORNER SEC. 9 $LAT. = 32.3125443'N \ (NADB3)$ $LAT. = 32.3125443'N \ (NADB3)$ $LAT. = 32.3125443'N \ (NADB3)$ LONG. = 103.683702'W $NMSP \ EAST (FT)$ $N = 478044.39$ $E = 742302.18$ SW CORNER SEC. 9 $LAT. = 32.3118706'N \ LONG. = 103.663663'V' \ LONG. = 103.6670612'W \ SHL - N \ NMSP \ EAST (FT)$ $MSP \ EAST (FT)$ NMSP EAST (FT) $NMSP \ EAST (FT)$ $NMSP \ EAST (FT)$ NMSP EAST (FT) $NMSP \ EAST (FT)$ $NMSP \ EAST (FT)$ NMSP EAST (FT) $NMSP \ EAST (FT)$ $NMSP \ EAST (FT)$ NMSP EAST (FT) $NMSP \ EAST (FT)$ $NMSP \ EAST (FT)$ NMSP EAST (FT) $NMSP \ EAST (FT)$ $NMSP \ EAST (FT)$ NMSP EAST (FT) $NMSP \ EAST (FT)$ $NMSP \ EAST (FT)$ NMSP EAST (FT) $NMSP \ EAST (FT)$ $NMSP \ EAST (FT)$ <td>Mat 4</td> <td></td> <td>φ N = 477896.74</td> <td>my supervision, and that the same is true and correct to the</td>	Mat 4		φ N = 477896.74	my supervision, and that the same is true and correct to the
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22.3		E = 742302.18	hast of my halist
LONG. = 103.881708'W NMSP EAST (FT) N = 480419.26 E = 740636.28 SW CORNER SEC. 9 LAT. = 32.3118416'N LONG. = 103.6710760'W NMSP EAST (FT) N = 478044.39 E = 742071.33 SY4 CORNER SEC. 9 LAT. = 32.3118706'N LONG. = 103.6710760'W NMSP EAST (FT) SW CORNER SEC. 9 LAT. = 32.3118706'N LONG. = 103.6710760'W NMSP EAST (FT) SW CORNER SEC. 9 LAT. = 32.3118706'N LONG. = 103.6710683'W SHL N = 480474.36 SE CORNER SEC. 9 LAT. = 32.31188416'N SHL N = MSP EAST (FT) NMSP EAST (FT) SHL N = MSP EAST (FT) NMSP EAST (FT) NMSP EAST (FT) SHL N = MSP EAST (FT) NMSP EAST (FT) NMSP EAST (FT) NMSP EAST (FT) NMSP EAST (FT) NMSP EAST (FT) SHL N = MSP EAST (FT) NMSP EAST (FT) NMSP EAST (FT) SHL N = MSP EAST (FT) NMSP EAST (FT) SHL N = MSP	W/4 CORNER SEC. 9 6		\dot{O} E/4 CORNER SEC. 9	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1010 102 0001 20000	9-4_FED_COM_712H	LONG. = 103.6710760'W	AUGUST 17, 2021
E = 740636.28 $E = 740636.28$ $E = 740636.28$ $E = 742071.31$ $E = 742071.3$				Date of Survey
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		443 N (NAU83) 335722'W	F = 745917.03	
$\begin{bmatrix} 2 & -7420713 & \overline{574} \text{ CORNER SEC. 9} \\ \text{SW CORNER SEC. 9} \\ \text{LAT. = 32.3118916'N} \\ \text{LONG. = 103.6881673W} \\ \text{LONG. = 103.6881673W} \\ \text{MMSP FAST (FT)} \\ \text{SHL} \\$				
SW CORNER SEC. 9 G LAT. = 32,3118706'N SE CONNEL SEC. 9 Signature and Seal of Protessional surveyor: LAT. = 32,3118416'N 0 LAT. = 32,3118987'N NLAT. = 32,3118987'N Signature and Seal of Protessional surveyor: Signature and Seal of Protessional surveyor: LONG. = 103.6796121'W NMSP FAST (FT) NMSP FAST (FT) Signature and Seal of Protessional surveyor: Signature and Seal of Protessional surveyor:			26.	
LAI. = 32.3118416'N O LONG. = 103.6881673W O NMSP EAST (FT) O NMSP EAST (F	SW CORNER SEC. 9 🛃			
NMSP EAST (FT) SHL NMSP EAST (FT) NMSP EAST (FT) SNMSP EAST (FT) Certificate Number: TEAMOLE, JARAMELE, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12				Signature and Seal of Protosional Curry or:
	NMSP EAST (FT) 8 SHL	NMSP EAST (FT) N = 4 7806.75	NMSP EAST (FT)	
N = 477780.18 = 740653.25 = 1420' =	$N = 477780.18^{2} - 1420'$		N = 477833.18 F = 745935.72	PAOF EREPTORY 50. 8996
E = 740633.23 S89:25'27'W 2643.70 FT S89:25'35'W 2640.19 FT		2643.70 FT S89'25'35"W 2640.19 FT		UNE 2214-211 2010

Received by OCD: 4/6/2023 1:13:54 PM

Intent X As Drilled		
API# 30-025-51325		
Operator Name:	Property Name:	Well Number
DEVON ENERGY PRODUCTION CO., L.P.	GATO GRANDE 9-4 FED COM	712H

Kick Off Point (KOP)

UL	Section 9	Township 23S	Range 32E	Lot	Feet 49 FSL	From N/S	Feet 1581 FW	From E/W L	County LEA
Latitu	de				Longitude				NAD
32	32.31191618			-103.683	12657	83			

First Take Point (FTP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
N	9	23S	32E		100	SOUTH	1650	WEST	LEA
	Latitude 32.3121346				Longitude 103	8.6828278	}		NAD 83

Last Take Point (LTP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
	4	23S	32E	3	100	NORTH	1650	WEST	LEA
Latitu		405656			Longitud	103.682	8463		NAD 83

Is this well the defining well for the Horizontal Spacing Unit? NO

Is this well an infill well?

YES

If infill is yes please provide API if available, Operator Name and well number for Defining well for Horizontal Spacing Unit.

API #		
Operator Name:	Property Name:	Well Number

KZ 06/29/2018

	E	State nergy, Minerals as	e of New Mex nd Natural Res		nt		Subn Via E	nit Electronically E-permitting
		1220 S	nservation Di outh St. Franc ta Fe, NM 87:	cis Dr.				
	N	ATURAL GA	AS MANAO	GEMENT PI	LAN			
This Natural Gas Manag	gement Plan m	ust be submitted wi	th each Applicat	ion for Permit to D	Drill (Al	PD) for a 1	new or	recompleted well.
			<u>1 – Plan De</u> fective May 25,					
I. Operator: DEVON EN	ERGY PRODUCT	ION COMPANY, LP	OGRID:613	7		Date:	10 / !	5 / 2021
II. Type: 🖾 Original 🛛] Amendment	due to □ 19.15.27.	9.D(6)(a) NMA	C 🗆 19.15.27.9.D(6)(b) N	MAC 🗆 (Other.	
If Other, please describe	:							
III. Well(s): Provide the be recompleted from a s					vells pr	oposed to	be dri	lled or proposed to
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	1	cipated MCF/D	P	Anticipated roduced Water BBL/D
See attachment.								
IV. Central Delivery P	oint Name: _S	ee attachment				[See 1	9.15.2	7.9(D)(1) NMAC]
V. Anticipated Schedul proposed to be recomple		•		•	ell or se	et of wells	propo	osed to be drilled or
Well Name	API	Spud Date	TD Reached Date	Completion Commencement		Initial F Back D		First Production Date
See attachment								
VI. Separation Equipn	nent: 🖾 Attach	a complete descrip	ntion of how Ope	erator will size sepa	aration	equipmen	t to op	timize gas capture.
VII. Operational Prac Subsection A through F			iption of the act	tions Operator will	l take to	o comply	with t	he requirements of
VIII. Best Managemen during active and planne			te description of	Operator's best m	nanagen	nent pract	ices to	minimize venting

.

NATURAL GAS MANAGEMENT PLAN Section 1 - Plan Description

III. Well(s): Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	Central Delivery Point Name:	API	ULSTR		FOOT	AGES			Anticipated Oil BBL/D	Anticipated Ga MCF/D	s Anticipated Produce Water BBL/D
GATO GRANDE 9-4 FED COM 521H	Gato Grande 16 CTB 1		9-235-32E	400	FSL	1330	FWL	UPPER BONE SPRING	(+/-) 3270mc	fd/(+/-)1344bop	d/(+/-)2353bwpd
GATO GRANDE 9-4 FED COM 121H	Gato Grande 16 CTB 1		9-235-32E	400	FSL	1360	FWL	Lower Bone Spring	(+/-)2158mcf	d/(+/-)1338bopd	/(+/-)2287bwpd
GATO GRANDE 9-4 FED COM 522H	Gato Grande 16 CTB 1		9-235-32E	400	FSL	1390	FWL	UPPER BONE SPRING	(+/-) 3270mc	fd/(+/-)1344bop	d/(+/-)2353bwpd
GATO GRANDE 9-4 FED COM 523H	Gato Grande 16 CTB 1		9-235-32E	400	FSL	1420	FWL	UPPER BONE SPRING	(+/-) 3270mc	fd/(+/-)1344bop	d/(+/-)2353bwpd
GATO GRANDE 9-4 FED COM 711H	Gato Grande 16 CTB 1		9-235-32E	250	FSL	1330	FWL	Upper Wolfcamp	(+/-)3306mc	fd/(+/-)1574bop	d/(+/-)5451bwpd
GATO GRANDE 9-4 FED COM 611H	Gato Grande 16 CTB 1		9-235-32E	250	FSL	1360	FWL	Upper Wolfcamp	(+/-) 5413mc	fd/(+/-)1981bop	d/(+/-)5339bwpd
GATO GRANDE 9-4 FED COM 731H	Gato Grande 16 CTB 1		9-235-32E	250	FSL	1390	FWL	Upper Wolfcamp	(+/-) 5413mc	fd/(+/-)1981bop	d/(+/-)5339bwpd
GATO GRANDE 9-4 FED COM 712H	Gato Grande 16 CTB 1		9-235-32E	250	FSL	1420	FWL	Upper Wolfcamp	(+/-) 5413mc	fd/(+/-)1981bop	d/(+/-)5339bwpd
GATO GRANDE 9-4 FED COM 122H	Gato Grande 16 CTB 1		9-235-32E	400	FSL	2630	FWL	Lower Bone Spring	(+/-)2158mc	d/(+/-)1338bopd	l/(+/-)2287bwpd
GATO GRANDE 9-4 FED COM 524H	Gato Grande 16 CTB 1		9-235-32E	400	FSL	2620	FEL	UPPER BONE SPRING	(+/-) 3270mc	fd/(+/-)1344bop	d/(+/-)2353bwpd
GATO GRANDE 9-4 FED COM 525H	Gato Grande 16 CTB 1		9-235-32E	400	FSL	2590	FEL	UPPER BONE SPRING	(+/-) 3270mc	fd/(+/-)1344bop	d/(+/-)2353bwpd
GATO GRANDE 9-4 FED COM 123H	Gato Grande 16 CTB 1		9-23S-32E	400	FSL	2560	FEL	Lower Bone Spring	(+/-)2158mcf	d/(+/-)1338bopc	/{+/-)2287bwpd
GATO GRANDE 9-4 FED COM 612H	Gato Grande 16 CTB 1		9-235-32E	250	FSL	2630	FWL	Upper Wolfcamp	(+/-)3306mc	fd/(+/-)1574bop	d/(+/-)5451bwpd
GATO GRANDE 9-4 FED COM 732H	Gato Grande 16 CTB 1		9-235-328	250	FSL	2620	FEL	Upper Wolfcamp	(+/-) 5413mc	fd/(+/-)1981bop	d/(+/-)5339bwpd
GATO GRANDE 9-4 FED COM 713H	Gato Grande 16 CTB 1		9-235-32E	250	FSL	2590	FEL	Upper Wolfcamp	(+/-) 5413mc	fd/(+/-)1981bop	d/(+/-)5339bwpd
GATO GRANDE 9-4 FED COM 613H	Gato Grande 16 CTB 1		9-235-328	250	FSL	2560	FEL	Upper Wolfcamp	(+/-) 5413mc	fd/(+/-)1981bop	d/(+/-)5339bwpd
GATO GRANDE 9-4 FED COM 526H	Gato Grande 16 CTB 2		9-235-32E	400	FSL	1115	FEL	UPPER BONE SPRING	{+/-) 3270mc	fd/(+/-)1344bop	d/(+/-)2353bwpd
GATO GRANDE 9-4 FED STATE COM 527H	Gato Grande 16 CTB 2		9-23S-32E	400	FSL	1145	FEL	UPPER BONE SPRING	(+/-) 3270mc	fd/(+/-)1344bop	d/(+/-)2353bwpd
GATO GRANDE 9-4 FED STATE COM 124H	Gato Grande 16 CTB 2		9-235-32E	400	FSL	1175	FEL	Lower Bone Spring	(+/-)2158mc	d/(+/-)1338bopc	/(+/-)2287bwpd
GATO GRANDE 9-4 FED STATE COM 528H	Gato Grande 16 CTB 2		9-235-32E	400	FSL	1205	FEL	UPPER BONE SPRING	(+/-) 3270mc	fd/(+/-)1344bop	d/(+/-)2353bwpd
GATO GRANDE 9-4 FED COM 733H	Gato Grande 16 CT8 2		9-235-32E	250	FSL	1115	FEL	Upper Wolfcamp	(+/-) 5413mc	fd/(+/-)1981bop	d/(+/-)5339bwpd
GATO GRANDE 9-4 FED STATE COM 714H	Gato Grande 16 CTB 2		9-23S-32E	250	FSL	1145	FEL	Upper Wolfcamp	(+/-) 5413mc	fd/(+/-)1981bop	d/(+/-)5339bwpd
GATO GRANDE 9-4 FED STATE COM 614H	Gato Grande 16 CTB 2		9-235-32E	250	FSL	1175	FEL	Upper Wolfcamp	(+/-) 5413mc	fd/(+/-)1981bop	d/(+/-)5339bwpd
GATO GRANDE 9-4 FED STATE COM 734H	Gato Grande 16 CTB 2		9-235-32E	250	FSL	1205	FEL	Upper Wolfcamp	(+/-) 5413mc	fd/(+/-)1981bop	d/(+/-)5339bwpd

V. Anticipated Schedule: Provide the following information for each new or recompleted well or sat of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

				Completion		First
			TD Reached	Commencem	Initial Flow	Production
Well Name	API	Spud Date	Date	ent Date	back Date	Date
GATO GRANDE 9-4 FED COM 521H		9/23/2023	10/23/2023	2/20/2024	2/20/2024	
GATO GRANDE 9-4 FED COM 121H		9/23/2023	10/23/2023	2/20/2024	2/20/2024	2/20/2024
GATO GRANDE 9-4 FED COM 522H		9/23/2023	10/23/2023	2/20/2024	2/20/2024	2/20/2024
GATO GRANDE 9-4 FED COM 523H		9/23/2023	10/23/2023	2/20/2024	2/20/2024	2/20/2024
GATO GRANDE 9-4 FED COM 711H		9/23/2023	10/23/2023	2/20/2024	2/20/2024	2/20/2024
GATO GRANDE 9-4 FED COM 611H		9/23/2023	10/23/2023	2/20/2024	2/20/2024	2/20/2024
GATO GRANDE 9-4 FED COM 731H		9/23/2023	10/23/2023	2/20/2024	2/20/2024	2/20/2024
GATO GRANDE 9-4 FED COM 712H		9/23/2023	10/23/2023	2/20/2024	2/20/2024	2/20/2024
GATO GRANDE 9-4 FED COM 122H		9/23/2023	10/23/2023	2/20/2024	2/20/2024	2/20/2024
GATO GRANDE 9-4 FED COM 524H		9/23/2023	10/23/2023	2/20/2024	2/20/2024	2/20/2024
GATO GRANDE 9-4 FED COM 525H		9/23/2023	10/23/2023	2/20/2024	2/20/2024	2/20/2024
GATO GRANDE 9-4 FED COM 123H		9/23/2023	10/23/2023	2/20/2024	2/20/2024	2/20/2024
GATO GRANDE 9-4 FED COM 612H		9/23/2023	10/23/2023	2/20/2024	2/20/2024	2/20/2024
GATO GRANDE 9-4 FED COM 732H		9/23/2023	10/23/2023	2/20/2024	2/20/2024	2/20/2024
GATO GRANDE 9-4 FED COM 713H		9/23/2023	10/23/2023	2/20/2024	2/20/2024	2/20/2024
GATO GRANDE 9-4 FED COM 613H		9/23/2023	10/23/2023	2/20/2024	2/20/2024	2/20/2024
GATO GRANDE 9-4 FED COM 526H		9/23/2023	10/23/2023	2/20/2024	2/20/2024	2/20/2024
GATO GRANDE 9-4 FED STATE COM 527H		9/23/2023	10/23/2023	2/20/2024	2/20/2024	2/20/2024
GATO GRANDE 9-4 FED STATE COM 124H		9/23/2023	10/23/2023	2/20/2024	2/20/2024	2/20/2024
GATO GRANDE 9-4 FED STATE COM 528H		9/23/2023	10/23/2023	2/20/2024	2/20/2024	2/20/2024
GATO GRANDE 9-4 FED COM 733H		9/23/2023	10/23/2023	2/20/2024	2/20/2024	2/20/2024
GATO GRANDE 9-4 FED STATE COM 714H		9/23/2023	10/23/2023	2/20/2024	2/20/2024	2/20/2024
GATO GRANDE 9-4 FED STATE COM 614H		9/23/2023	10/23/2023	2/20/2024	2/20/2024	2/20/2024
GATO GRANDE 9-4 FED STATE COM 734H		9/23/2023	10/23/2023	2/20/2024	2/20/2024	2/20/2024

*dates above are subject to change

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

Departor certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \Box Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \Box will \Box will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \Box does \Box does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

□ Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \Box Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \square Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \Box Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In.
Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

Signature:
Printed Name: Lindsey Miles
Title: Land Manager
E-mail Address:
Date:
Phone:
OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

VI. Separation Equipment

Devon Energy Production Company, L.P. utilizes a "stage separation" process in which oil and gas separation is carried out through a series of separators operating at successively reduced pressures. Hydrocarbon liquids are produced into a high-pressure inlet separator, then carried through one or more lower pressure separation vessels before entering the storage tanks. The purpose of this separation process is to attain maximum recovery of liquid hydrocarbons from the fluids and allow maximum capture of produced gas into the sales pipeline. Devon utilizes a series of Low-Pressure Compression units to capture gas off the staged separation and send it to the sales pipeline. This process minimizes the amount of flash gas that enters the end-stage storage tanks that is subsequently vented or flared.

VII. Operational Practices

Devon Energy Production Company, L. P. will employ best management practices and control technologies to maximize the recovery and minimize waste of natural gas through venting and flaring.

- During drilling operations, Devon will utilize flares and/or combustors to capture and control natural gas, where technically feasible. If flaring is deemed technically in-feasible, Devon will employ best management practices to minimize or reduce venting to the extent possible.
- During completions operations, Devon will utilize Green Completion methods to capture gas
 produced during well completions that is otherwise vented or flared. If capture is technically
 in-feasible, flares and/or combustors will be used to capture and control flow back fluids
 entering into frac tanks during initial flowback. Upon indication of first measurable hydrocarbon
 volumes, Devon will turn operations to onsite separation vessels and flow to the gathering
 pipeline.
- During production operations, Devon will take every practical effort to minimize waste of natural gas through venting and flaring by:
 - Designing and constructing facilities in a manner consistent to achieve maximum capture and control of hydrocarbon liquids & produced gas
 - Utilizing a closed-loop capture system to collect and route produced gas to sales line via low pressure compression, or to a flare/combustor
 - Flaring in lieu of venting, where technically feasible
 - Utilizing auto-ignitors or continuous pilots, with thermocouples connected to Scada, to quickly detect and resolve issues related to malfunctioning flares/combustors
 - Employ the use of automatic tank gauging to minimize storage tank venting during loading events
 - Installing air-driven or electric-driven pneumatics & combustion engines, where technically feasible to minimize venting to the atmosphere
 - Confirm equipment is properly maintained and repaired through a preventative maintenance and repair program to ensure equipment meets all manufacturer specifications
 - Conduct and document AVO inspections on the frequency set forth in Part 27 to detect and repair any onsite leaks as quickly and efficiently as is feasible

VIII. Best Management Practices during Maintenance

Devon Energy Production Company, L.P. will utilize best management practices to minimize venting during active and planned maintenance activities. Devon is operating under guidance that production facilities permitted under NOI permits have no provisions to allow high pressure flaring and high pressure flaring is only allowed in disruption scenarios so long as the duration is less than eight hours. When technically feasible, flaring during maintenance activities will be utilized in lieu of venting to the atmosphere. Devon will work with third-party operators during scheduled maintenance of downstream pipeline or processing plants to address those events ahead of time to minimize venting. Actions considered include identifying alternative capture approaches or planning to temporarily reduce production or shut in the well to address these circumstances.

1. Geologic Formations

TVD of target	12248	Pilot hole depth	N/A
MD at TD:	22571	Deepest expected fresh water	

Basin

Dusin			
	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	1160		
Salt	1454		
Base of Salt	4564		
Delaware	4819		
Cherry Canyon	5966		
Brushy Canyon	6915		
1st Bone Spring Lime	8640		
Bone Spring 1st	9780		
Bone Spring 2nd	10408		
3rd Bone Spring Lime	10946		
Bone Spring 3rd	11706		
wolfcamp	12097		

*H2S, water flows, loss of circulation, abnormal pressures, etc.

GATO GRANDE 9-4 FED COM 712H

.

2. Casing	Program	(Primary	Design)
2. Cubing	1 I VGI um	(I I IIII J	Design

Wt				Casing Interval		Casing Interval		
Hole Size	Csg. Size	(PPF)	Grade Conn		From (MD)	To (MD)	From (TVD)	To (TVD)
17 1/2	13 3/8	48	H40	STC	0	1185	0	1185
9 7/8	8 5/8	32	P110	TLW	0	11706	0	11706
7 7/8	5 1/2	17	P110	BTC	0	22571	0	12248

• All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for contingency casing.

3. Cementing Program (Primary Design)

Casing	# Sks	тос	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	896	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	499 Surf 9 3.27		3.27	Lead: Class C Cement + additives	
Int 1	465	4000' above	13.2	1.44	Tail: Class H / C + additives
Int 1	As Needed	Surf	13.2	1.44	Squeeze Lead: Class C Cement + additives
Intermediate	499	Surf	9	3.27	Lead: Class C Cement + additives
Squeeze	465	4000' above	13.2	1.44	Tail: Class H / C + additives
Production	117	9766	9	3.27	Lead: Class H /C + additives
roduction	1430	11766	13.2	1.44	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Intermediate 1 (Two Stage)	25%
Prod	10%

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		~	Tested to:						
			An	nular	X	50% of rated working pressure						
Int 1	13-58"	5M		d Ram	Х							
int i	15 50	5101	-	e Ram		5M						
			Doub	le Ram	X	5111						
			Other*									
	13-5/8"		Annular (5M)		Х	100% of rated working pressure						
Production		10M	Blind Ram		Х							
Fioduction		10111	Pipe Ram									
									Doub	le Ram	Х	10101
			Other*									
			Annul	ar (5M)								
		Blind Ram										
	Pipe Ram											
			Doub	le Ram								
			Other*									
N A variance is requested for	the use of a	a diverter or	n the surface	casing. See	attached for	schematic.						
Y A variance is requested to	A variance is requested to run a 5 M annular on a 10M system											

4. Pressure Control Equipment (Three String Design)

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, C	oring and Testing
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the
Х	Completion Rpeort and sbumitted to the BLM.
	No logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain.
	Coring? If yes, explain.

Additional	logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
Х	CBL	Production casing
Х	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	6687
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

IN 112	2S is present
Y H2	2S plan attached.

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed

GATO GRANDE 9-4 FED COM 712H

from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments

X Directional Plan Other, describe

Section 1 - Geologic Formations


Sec	ction 1 - Geologic	Formatio	ons				
Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
1118220	UNKNOWN	3665	0	0	ALLUVIUM, OTHER : Surface	NONE	N
1118221	RUSTLER	2505	1160	1160	SANDSTONE	NONE	N
1118225	TOP SALT	2211	1454	1454	SALT	NONE	N
1118223	BASE OF SALT	-899	4564	4564	SALT	NONE	N
1118229	BELL CANYON	-1154	4819	4819	SANDSTONE	NATURAL GAS, OIL	N
1118230	CHERRY CANYON	-2301	5966	5966	SANDSTONE	NATURAL GAS, OIL	N
1118231	BRUSHY CANYON	-3250	6915	6915	SANDSTONE	NATURAL GAS, OIL	N
1118232	BONE SPRING LIME	-4975	8640	8640	LIMESTONE	NATURAL GAS, OIL	N
1118222	BONE SPRING	-6115	9780	9780	SANDSTONE	NATURAL GAS, OIL	N
1118219	BONE SPRING 2ND	-6743	10408	10408	SANDSTONE	NATURAL GAS, OIL	N
1118233	BONE SPRING LIME	-7281	10946	10946	LIMESTONE	NATURAL GAS, OIL	N
1118234	BONE SPRING 3RD	-8041	11706	11706	SANDSTONE	NATURAL GAS, OIL	N
1118235	WOLFCAMP	-8432	12097	12097	SANDSTONE	NATURAL GAS, OIL	Y
1118236	STRAWN	-10385	14050	14050	LIMESTONE	NATURAL GAS, OIL	N

Section 2 - Blowout Prevention

Commitment Runs Deep

Design Plan Operation and Maintenance Plan Closure Plan

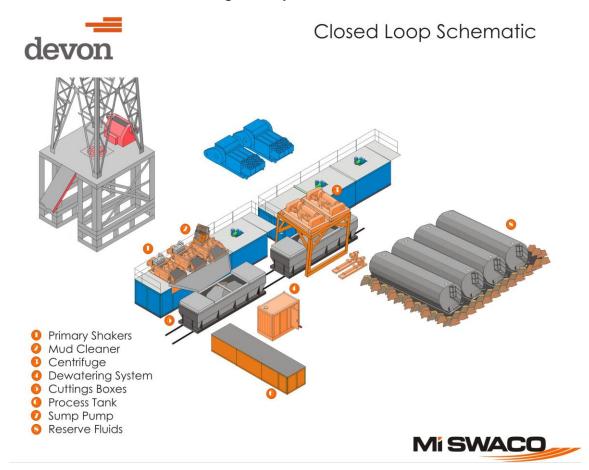
SENM - Closed Loop Systems June 2010

I. Design Plan

Devon uses MI SWACO closed loop system (CLS). The MI SWACO CLS is designed to maintain drill solids at or below 5%. The equipment is arranged to progressively remove solids from the largest to the smallest size. Drilling fluids can thus be reused and savings is realized on mud and disposal costs. Dewatering may be required with the centrifuges to insure removal of ultra fine solids.

The drilling location is constructed to allow storm water to flow to a central sump normally the cellar. This insures no contamination leaves the drilling pad in the event of a spill. Storm water is reused in the mud system or stored in a reserve fluid tank farm until it can be reused. All lubricants, oils, or chemicals are removed immediately from the ground to prevent the contamination of storm water. An oil trap is normally installed on the sump if an oil spill occurs during a storm.

A tank farm is utilized to store drilling fluids including fresh water and brine fluids. The tank farm is constructed on a 20 ml plastic lined, bermed pad to prevent the contamination of the drilling site during a spill. Fluids from other sites may be stored in these tanks for processing by the solids control equipment and reused in the mud system. At the end of the well the fluids are transported from the tank farm to an adjoining well or to the next well for the rig.


Prior to installing a closed-loop system on site, the topsoil, if present, will be stripped and stockpiled for use as the final cover or fill at the time of closure.

Signs will be posted on the fence surrounding the closed-loop system unless the closed-loop system is located on a site where there is an existing well, that is operated by Devon.

II. Operations and Maintenance Plan

Primary Shakers: The primary shakers make the first removal of drill solids from the drilling mud as it leaves the well bore. The shakers are sized to handle maximum drilling rate at optimal screen size. The shakers normally remove solids down to 74 microns.

Mud Cleaner: The Mud Cleaner cleans the fluid after it leaves the shakers. A set of hydrocyclones are sized to handle 1.25 to 1.5 times the maximum circulating rate. This ensures all the fluid is being processed to an average cut point of 25 microns. The wet discharged is dewatered on a shaker equipped with ultra fine mesh screens and generally cut at 40 microns.

Centrifuges: The centrifuges can be one or two in number depending on the well geometry or depth of well. The centrifuges are sized to maintain low gravity solids at 5% or below. They may or may not need a dewatering system to enhance the removal rates. The centrifuges can make a cut point of 8-10 microns depending on bowl speed, feed rate, solids loading and other factors.

The centrifuge system is designed to work on the active system and be flexible to process incoming fluids from other locations. This set-up is also dependent on well factors.

Dewatering System: The dewatering system is a chemical mixing and dosing system designed to enhance the solids removal of the centrifuge. Not commonly used in shallow wells. It may contain pH adjustment, coagulant mixing and dosing, and polymer mixing and dosing. Chemical flocculation binds ultra fine solids into a mass that is within the centrifuge operating design. The

dewatering system improves the centrifuge cut point to infinity or allows for the return of clear water or brine fluid. This ability allows for the ultimate control of low gravity solids.

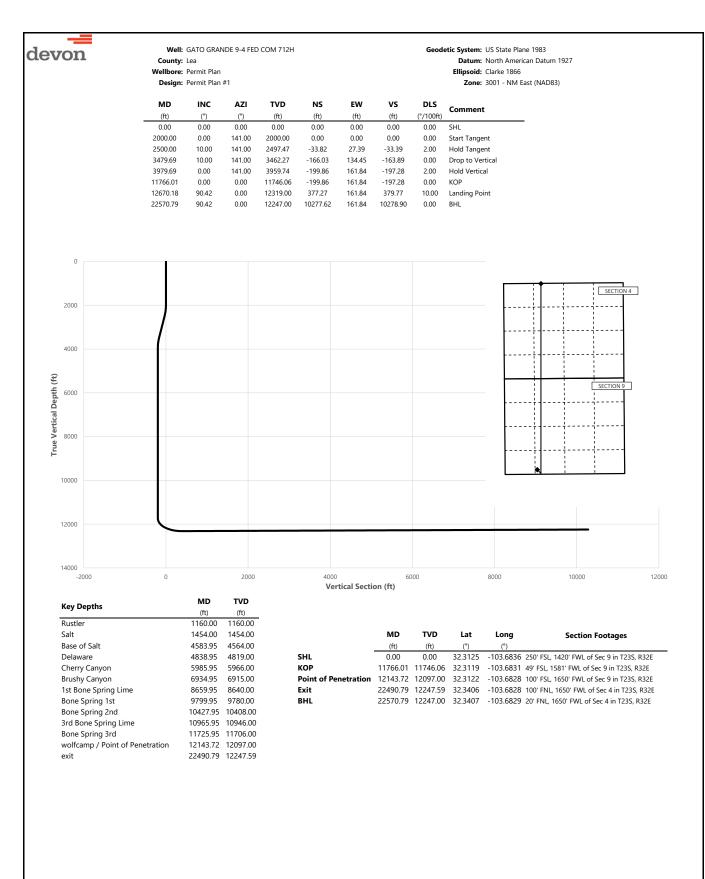
Cuttings Boxes: Cuttings boxes are utilized to capture drill solids that are discarded from the solids control equipment. These boxes are set upon a rail system that allows for the removal and replacement of a full box of cuttings with an empty one. They are equipped with a cover that insures no product is spilled into the environment during the transportation phase.

Process Tank: (Optional) The process tank allows for the holding and process of fluids that are being transferred into the mud system. Additionally, during times of lost circulation the process tank may hold active fluids that are removed for additional treatment. It can further be used as a mixing tank during well control conditions.

Sump and Sump Pump: The sump is used to collect storm water and the pump is used to transfer this fluid to the active system or to the tank for to hold in reserve. It can also be used to collect fluids that may escape during spills. The location contains drainage ditches that allow the location fluids to drain to the sump.

Reserve Fluids (Tank Farm): A series of frac tanks are used to replace the reserve pit. These are steel tanks that are equipped with a manifold system and a transfer pump. These tanks can contain any number of fluids used during the drilling process. These can include fresh water, cut brine, and saturated salt fluid. The fluid can be from the active well or reclaimed fluid from other locations. A 20 ml liner and berm system is employed to ensure the fluids do not migrate to the environment during a spill.

If a leak develops, the appropriate division district office will be notified within 48 hours of the discovery and the leak will be addressed. Spill prevention is accomplished by maintaining pump packing, hoses, and pipe fittings to insure no leaks are occurring. During an upset condition the source of the spill is isolated and repaired as soon as it is discovered. Free liquid is removed by a diaphragm pump and returned to the mud system. Loose topsoil may be used to stabilize the spill and the contaminated soil is excavated and placed in the cuttings boxes. After the well is finished and the rig has moved, the entire location is scrapped and testing will be performed to determine if a release has occurred.


All trash is kept in a wire mesh enclosure and removed to an approved landfill when full. All spent motor oils are kept in separate containers and they are removed and sent to an approved recycling center. Any spilled lubricants, pipe dope, or regulated chemicals are removed from soil and sent to landfills approved for these products.

These operations are monitored by Mi Swaco service technicians. Daily logs are maintained to ensure optimal equipment operation and maintenance. Screen and chemical use is logged to maintain inventory control. Fluid properties are monitored and recorded and drilling mud volumes are accounted for in the mud storage farm. This data is kept for end of well review to insure performance goals are met. Lessons learned are logged and used to help with continuous improvement.

A MI SWACO field supervisor manages from 3-5 wells. They are responsible for training personnel, supervising installations, and inspecting sites for compliance of MI SWACO safety and operational policy.

III. Closure Plan

A maximum 340' X 340' caliche pad is built per well. All of the trucks and steel tanks fit on this pad. All fluid cuttings go to the steel tanks to be hauled by various trucking companies to an agency approved disposal.

dament		Well	GATO GRA	NDE 9-4 FED	СОМ 712Н				Geodetic System: US State Plane 1983
devon		County:			20 / 1211				Datum: North American Datum 1927
			Permit Plan						Ellipsoid: Clarke 1866
		Design:	Permit Plan	#1					Zone: 3001 - NM East (NAD83)
	MD	INC	AZI	TVD	NS	EW	vs	DLS	Comment
	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	
	0.00 100.00	0.00 0.00	0.00 141.00	0.00 100.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	SHL
	200.00	0.00	141.00	200.00	0.00	0.00	0.00	0.00	
	300.00	0.00	141.00	300.00	0.00	0.00	0.00	0.00	
	400.00	0.00	141.00	400.00	0.00	0.00	0.00	0.00	
	500.00 600.00	0.00 0.00	141.00 141.00	500.00 600.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	
	700.00	0.00	141.00	700.00	0.00	0.00	0.00	0.00	
	800.00	0.00	141.00	800.00	0.00	0.00	0.00	0.00	
	900.00	0.00	141.00	900.00	0.00	0.00	0.00	0.00	
	1000.00	0.00	141.00	1000.00	0.00	0.00	0.00	0.00	
	1100.00 1160.00	0.00 0.00	141.00 141.00	1100.00 1160.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	Rustler
	1200.00	0.00	141.00	1200.00	0.00	0.00	0.00	0.00	
	1300.00	0.00	141.00	1300.00	0.00	0.00	0.00	0.00	
	1400.00	0.00	141.00	1400.00	0.00	0.00	0.00	0.00	
	1454.00	0.00	141.00	1454.00	0.00	0.00	0.00	0.00	Salt
	1500.00 1600.00	0.00 0.00	141.00 141.00	1500.00 1600.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	
	1700.00	0.00	141.00	1700.00	0.00	0.00	0.00	0.00	
	1800.00	0.00	141.00	1800.00	0.00	0.00	0.00	0.00	
	1900.00	0.00	141.00	1900.00	0.00	0.00	0.00	0.00	
	2000.00 2100.00	0.00 2.00	141.00 141.00	2000.00 2099.98	0.00 -1.36	0.00 1.10	0.00 -1.34	0.00 2.00	Start Tangent
	2200.00	4.00	141.00	2199.84	-5.42	4.39	-5.35	2.00	
	2300.00	6.00	141.00	2299.45	-12.20	9.88	-12.04	2.00	
	2400.00	8.00	141.00	2398.70	-21.67	17.55	-21.39	2.00	
	2500.00 2600.00	10.00 10.00	141.00 141.00	2497.47 2595.95	-33.82 -47.32	27.39 38.32	-33.39 -46.71	2.00 0.00	Hold Tangent
	2700.00	10.00	141.00	2694.43	-47.52	49.25	-60.03	0.00	
	2800.00	10.00	141.00	2792.91	-74.31	60.17	-73.35	0.00	
	2900.00	10.00	141.00	2891.39	-87.80	71.10	-86.67	0.00	
	3000.00	10.00	141.00	2989.87	-101.30	82.03	-99.99	0.00	
	3100.00 3200.00	10.00 10.00	141.00 141.00	3088.35 3186.83	-114.79 -128.29	92.96 103.89	-113.32 -126.64	0.00 0.00	
	3300.00	10.00	141.00	3285.31	-141.78	114.81	-139.96	0.00	
	3400.00	10.00	141.00	3383.79	-155.28	125.74	-153.28	0.00	
	3479.69	10.00	141.00	3462.27	-166.03	134.45	-163.89	0.00	Drop to Vertical
	3500.00 3600.00	9.59 7.59	141.00 141.00	3482.29 3581.16	-168.72 -180.33	136.63 146.03	-166.55 -178.01	2.00 2.00	
	3700.00	5.59	141.00	3680.49	-189.25	153.25	-186.82	2.00	
	3800.00	3.59	141.00	3780.16	-195.48	158.29	-192.96	2.00	
	3900.00	1.59	141.00	3880.06	-198.99	161.14	-196.43	2.00	
	3979.69 4000.00	0.00 0.00	141.00 0.00	3959.74 3980.05	-199.86 -199.86	161.84 161.84	-197.28 -197.28	2.00 0.00	Hold Vertical
	4100.00	0.00	0.00	4080.05	-199.86	161.84	-197.28	0.00	
	4200.00	0.00	0.00	4180.05	-199.86	161.84	-197.28	0.00	
	4300.00	0.00	0.00	4280.05	-199.86	161.84	-197.28	0.00	
	4400.00 4500.00	0.00 0.00	0.00 0.00	4380.05 4480.05	-199.86 -199.86	161.84 161.84	-197.28 -197.28	0.00 0.00	
	4500.00 4583.95	0.00	0.00	4480.05 4564.00	-199.86	161.84 161.84	-197.28	0.00	Base of Salt
	4600.00	0.00	0.00	4580.05	-199.86	161.84	-197.28	0.00	
	4700.00	0.00	0.00	4680.05	-199.86	161.84	-197.28	0.00	
	4800.00 4838.95	0.00 0.00	0.00 0.00	4780.05 4819.00	-199.86	161.84 161.84	-197.28	0.00	Delawara
	4030.95	0.00	0.00	4819.00	-199.86 -199.86	161.84	-197.28 -197.28	0.00 0.00	Delaware
	5000.00	0.00	0.00	4980.05	-199.86	161.84	-197.28	0.00	
	5100.00	0.00	0.00	5080.05	-199.86	161.84	-197.28	0.00	
	5200.00	0.00	0.00	5180.05	-199.86	161.84	-197.28	0.00	
	5300.00 5400.00	0.00 0.00	0.00 0.00	5280.05 5380.05	-199.86 -199.86	161.84 161.84	-197.28 -197.28	0.00 0.00	
	5500.00	0.00	0.00	5480.05	-199.86	161.84	-197.28	0.00	
	5600.00	0.00	0.00	5580.05	-199.86	161.84	-197.28	0.00	
	5700.00	0.00	0.00	5680.05	-199.86	161.84	-197.28	0.00	
	5800.00	0.00	0.00	5780.05	-199.86	161.84	-197.28	0.00	
	5900.00 5985.95	0.00 0.00	0.00 0.00	5880.05 5966.00	-199.86 -199.86	161.84 161.84	-197.28 -197.28	0.00 0.00	Cherry Canyon
	6000.00	0.00	0.00	5980.05	-199.86	161.84	-197.28	0.00	
	6100.00	0.00	0.00	6080.05	-199.86	161.84	-197.28	0.00	
	6200.00	0.00	0.00	6180.05	-199.86	161.84	-197.28	0.00	

<text><text><text></text></text></text>											
	. —		Walls	GATO GP/		COM 712H				Geodetic System: US State Plane 1983	
Description: Description: <th colspa<="" th=""><th>devon</th><th></th><th></th><th></th><th></th><th>001111211</th><th></th><th></th><th></th><th>-</th></th>	<th>devon</th> <th></th> <th></th> <th></th> <th></th> <th>001111211</th> <th></th> <th></th> <th></th> <th>-</th>	devon					001111211				-
ND K2 TO NS EV VS D15 Orment 10 0			Wellbore:	Permit Pla	n						
m m			Design:	Permit Pla	n #1					Zone: 3001 - NM East (NAD83)	
m m		МП	INC	471	TVD	NS	F\W/	vs			
61000 0.00 0.00 6326 1936 1614 19728 0.00 61000 0.00 64860 1996 1614 19728 0.00 61000 0.00 64860 1996 1614 19728 0.00 61000 0.00 64900 19966 1614 19728 0.00 61000 0.00 64900 19966 1614 19728 0.00 61000 0.00 64900 19966 1614 19728 0.00 71000 0.00 64900 19986 1614 19728 0.00 71000 0.00 72005 19986 1614 19728 0.00 71000 0.00 72005 19986 1614 19728 0.00 71000 0.00 72005 19986 1614 19728 0.00 71000 0.00 72005 19986 1614 19728 0.00 71000 0.00 720055										Comment	
65000 0.00 0.00 64000 19306 1934 1728 0.00 67000 0.00 64000 19306 16184 1728 0.00 67000 0.00 67000 0.00 67000 19306 11184 1728 0.00 67010 0.00 0.00 67000 19306 11184 1728 0.00 67010 0.00 0.00 67000 19306 11184 1728 0.00 77000 0.00 0.00 73000 19306 11184 17728 0.00 77000 0.00 0.00 73000 19306 11184 17728 0.00 77000 0.00 0.00 73000 19306 11184 17728 0.00 770000 0.00 0.00 73000 13906 11184 17728 0.00 78000 0.00 0.00 73000 13906 11184 17728 0.00 78000 0.00	-										
600006000											
67000600600600600											
e80000.000.000.7000-19300.1614-17220.00663430.000.000.600-19300.1614-17230.007100000.000.007000019301141-17230.007100000.000.007000019301141-17230.007100000.000.007000019301141-17230.007100000.000.007000019301141-17230.007100000.000.0070000193051141-17230.007100000.000.0070000193051141-17230.007100000.000.0070000193051141-17230.007100000.000.0070000193051141-17230.007100000.000.0070000193051141-17230.007100000.000.0070000193051141-17230.007100000.000.0020305193051141-17230.007100000.000.0020305193051141-17230.007100000.000.0020305193051141-17230.007100000.000.0020305193051141-17230.007100000.000.0020305193051141-17230.007100000.00<											
944450.000.000.9500- 194916.14- 19720.00Indep Cargen710000.000.007000- 194916.14- 19720.0710000.000.007000- 194916.14- 19720.0710000.000.007000- 194916.14- 19720.0710000.000.007000- 194916.14- 19720.0710000.000.007000- 194916.14- 19720.0710000.000.007000- 194916.14- 19720.0710000.000.007000- 194916.14- 19720.0710000.000.007000- 194916.14- 19720.0710000.000.007000- 194916.14- 19720.0710000.000.007000- 194916.14- 19720.0710000.000.00- 194916.14- 19720.0710000.000.00- 194916.14- 19720.0710000.000.00- 194916.14- 19720.0710000.000.00- 194916.14- 19720.0710000.000.00- 194916.14- 19720.0710000.000.00- 194916.14- 19720.0710000.000.00- 194916.14- 1972 <th></th>											
70000 000 000 70005 17840 1134 1772 000 72000 000 000 72005 17840 1772 000 72000 000 000 72005 17840 17728 000 74000 000 000 78005 17840 17728 000 770000 000 000 78005 17840 17728 000 770000 000 000 78005 19346 1144 17728 000 770000 000 000 78005 19346 1144 17728 000 770000 000 000 78005 19346 1144 17728 000 81000 000 000 88005 19346 1144 19728 000 81000 000 000 88005 19346 1144 19728 000 81000 000 000 98005 19346 1144 19728		6900.00	0.00	0.00		-199.86	161.84	-197.28	0.00		
710000 0.00 0.00 702005 1998 1614 19728 0.00 770000 0.00 0.00 79205 1998 1614 19728 0.00 770000 0.00 0.00 79005 1998 1614 19728 0.00 770010 0.00 0.00 79005 1998 1614 19728 0.00 770010 0.00 0.00 79005 1998 1614 19728 0.00 770010 0.00 0.00 79005 1998 1614 19728 0.00 770010 0.00 0.00 79005 1998 1614 19728 0.00 80000 0.00 0.00 79005 1998 1614 19728 0.00 80000 0.00 0.00 79005 1998 1614 19728 0.00 80000 0.00 0.00 79005 1998 1614 19728 0.00 80000 0.00 0.00 79005 1998 1614 19728 0.00 80000 0.00 0.00 79005 1998 1614 19728 0.00 80000 0.00 0.00 199005 19										Brushy Canyon	
720000 0.00 7180.05 195.80 161.84 197.28 0.00 7400.00 0.00 7280.05 195.80 161.84 197.28 0.00 7600.00 0.00 780.05 195.80 115.84 197.28 0.00 7600.00 0.00 780.05 195.80 191.24 0.00 7700.00 0.00 780.05 195.80 191.24 0.00 7700.00 0.00 0.00 7780.05 195.80 181.44 197.28 0.00 800.00 0.00 800.05 195.80 161.44 197.28 0.00 800.00 0.00 800.05 195.80 161.44 197.28 0.00 800.00 0.00 800.05 195.80 161.44 197.28 0.00 800.00 0.00 800.05 195.80 161.44 197.28 0.00 800.00 0.00 800.05 195.80 161.44 197.28 0.00 900.00 0.00											
73000 000 000 73800 19580 1154 19728 000 73000 000 000 748005 19580 1518 19728 000 770000 000 000 78005 19580 1518 19728 000 770000 000 000 78005 19580 1518 19728 000 790000 000 000 78005 19580 1518 19728 000 790000 000 000 68005 19586 1618 19728 000 810000 000 000 68005 19586 1614 19728 000 800000 000 68005 19586 1514 19728 000 800000 000 68005 19586 1514 19728 000 900000 000 68005 19586 1514 19728 000 900000 000 600 88005 19586 1514<											
75000 000 746005 19586 161.4 197.28 0.00 77000 000 000 7560.5 19586 161.4 197.28 0.00 77000 0.00 0.00 7860.5 19586 161.4 197.28 0.00 790000 0.00 0.00 7860.5 19586 161.4 197.28 0.00 810000 0.00 0.00 816.05 19586 161.4 197.28 0.00 810000 0.00 816.05 19586 161.4 197.28 0.00 820000 0.00 800.05 19586 161.4 197.28 0.00 820000 0.00 860.05 19586 161.4 197.28 0.00 800000 0.00 860.05 19586 161.4 197.28 0.00 910000 0.00 860.05 19586 161.4 197.28 0.00 910000 0.00 860.05 19586 161.44 197.28											
74000 000 758005 19580 1918 1912 0.00 770000 000 000 7780.05 19580 161.4 19728 0.00 770000 000 000 780.05 19580 161.4 19728 0.00 800000 000 000 808.05 19580 161.4 19728 0.00 800000 000 808.05 19580 161.4 19728 0.00 800000 000 808.05 19580 161.4 19728 0.00 800000 000 808.05 19580 161.4 19728 0.00 800000 000 800.05 19580 161.4 19728 0.00 900000 000 900.05 19580 161.4 19728 0.00 900000 000 900.05 19580 161.4 19728 0.00 900000 000 900.05 19580 161.4 19728 0.00											
77000 0.00 7780.05 1926 101.44 197.28 0.00 7800.00 0.00 7780.05 19266 11.84 197.28 0.00 8100.00 0.00 7880.05 19268 15.18 197.28 0.00 8100.00 0.00 8880.05 19368 15.18 197.28 0.00 8100.00 0.00 8880.05 19368 16.18 197.28 0.00 8100.00 0.00 8880.05 19368 16.18 197.28 0.00 8500.00 0.00 8480.05 19368 16.18 197.28 0.00 85595 0.00 0.00 8480.05 19368 16.18 197.28 0.00 8600.00 0.00 8800.05 19368 16.18 197.28 0.00 9000.00 0.00 8800.05 19368 16.18 197.28 0.00 9000.00 0.00 9300.05 19368 16.18 197.28 0.00											
78000 0.00 7780.5 -198.6 101.84 -197.28 0.00 80000 0.00 789.05 -198.6 101.84 -197.28 0.00 80000 0.00 880.05 -198.68 101.84 -197.28 0.00 820000 0.00 880.05 -198.68 101.84 -197.28 0.00 8400.00 0.00 880.05 -198.68 101.84 -197.28 0.00 8500.00 0.00 880.05 -198.68 101.84 -197.28 0.00 8500.00 0.00 880.05 -198.68 101.84 -197.28 0.00 8700.00 0.00 880.05 -198.68 101.84 -197.28 0.00 9800.00 0.00 880.05 -198.68 101.84 -197.28 0.00 9900.00 0.00 980.05 -198.68 101.84 -197.28 0.00 9900.00 0.00 980.05 -198.68 101.84 -197.28 0.00 <tr< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>											
80000 0.00 0.00 9800 1926 1014 19728 0.00 82000 0.00 0.00 8180.5 19968 11.84 19728 0.00 8400.00 0.00 8180.5 19968 11.84 19728 0.00 8400.00 0.00 8180.5 19986 11.84 1972.8 0.00 8600.00 0.00 8180.5 19986 11.84 1972.8 0.00 8600.00 0.00 8800.5 19986 11.84 1972.8 0.00 8700.00 0.00 8800.5 19986 11.84 1972.8 0.00 9800.00 0.00 8800.5 19986 11.84 1972.8 0.00 9900.00 0.00 9800.5 19986 11.84 1972.8 0.00 9900.00 0.00 9800.5 19986 11.84 1972.8 0.00 9900.00 0.00 9800.5 19986 11.84 1972.8 0.00											
111 <th< td=""><th></th><td>7900.00</td><td>0.00</td><td>0.00</td><td>7880.05</td><td>-199.86</td><td>161.84</td><td>-197.28</td><td>0.00</td><td></td></th<>		7900.00	0.00	0.00	7880.05	-199.86	161.84	-197.28	0.00		
200000.00											
30000 000 828005 19986 16184 19728 000 850000 000 86005 19986 16184 19728 000 865935 000 000 856905 19986 16184 19728 000 865935 000 000 856935 15184 19728 000 880000 000 86505 19986 15184 19728 000 900000 0.00 88005 19986 15184 19728 000 900000 0.00 98005 19986 15184 19728 000 900000 0.00 98005 19986 16184 19728 000 910000 0.00 930005 19986 16184 19728 000 910000 0.00 930005 19986 16184 19728 000 910000 0.00 930005 19986 16184 19728 000 910000 0.00											
4400.0 0.00 8800.5 199.6 161.84 197.28 0.00 6500.00 0.00 8500.5 199.66 161.84 197.28 0.00 6500.00 0.00 8500.5 199.66 161.84 197.28 0.00 7700.00 0.00 800.00 0.00 880.05 199.66 161.84 197.28 0.00 8800.00 0.00 0.00 880.05 199.66 161.84 197.28 0.00 9900.00 0.00 0.00 998.05 199.66 161.84 197.28 0.00 9900.00 0.00 0.00 998.05 199.66 161.84 197.28 0.00 9900.00 0.00 0.00 998.05 199.66 161.84 197.28 0.00 9900.00 0.00 0.00 998.05 199.66 161.84 197.28 0.00 9900.00 0.00 0.00 988.05 199.66 161.84 197.28 0.00 9900.00											
6800.0 0.00 85005 199.66 16184 -197.28 0.00 6700.0 0.00 8600.0 199.66 16184 -197.28 0.00 8700.00 0.00 0.00 8800.05 -199.86 16184 -197.28 0.00 8700.00 0.00 0.00 8800.05 -199.86 161.84 -197.28 0.00 900.00 0.00 900.00											
6699 900 000 84000 199.86 16184 197.28 0.00 80000 0.00 0.00 878005 199.86 161.84 197.28 0.00 90000 0.00 0.00 88005 199.86 161.84 197.28 0.00 910000 0.00 0.00 98005 199.86 161.84 197.28 0.00 930000 0.00 0.00 98005 199.86 161.84 197.28 0.00 930000 0.00 0.00 98005 199.86 161.84 197.28 0.00 950000 0.00 98005 199.86 161.84 197.28 0.00 970000 0.00 0.00 98005 199.86 161.84 197.28 0.00 970000 0.00 0.00 98005 199.86 161.84 197.28 0.00 100000 0.00 0.00 108005 199.86 161.84 197.28 0.00 1000000 <th></th> <td></td> <td>0.00</td> <td>0.00</td> <td>8480.05</td> <td>-199.86</td> <td>161.84</td> <td>-197.28</td> <td>0.00</td> <td></td>			0.00	0.00	8480.05	-199.86	161.84	-197.28	0.00		
870.00 0.00 880.05 -199.26 161.84 -197.28 0.00 890.00 0.00 0.00 880.05 -199.26 161.84 -197.28 0.00 900.00 0.00 0.00 980.05 -199.36 161.84 -197.28 0.00 910.00 0.00 980.05 -199.36 161.84 -197.28 0.00 920.00 0.00 0.00 980.05 -199.36 161.84 -197.28 0.00 940.00 0.00 0.00 980.05 -199.36 161.84 -197.28 0.00 960.00 0.00 980.05 -199.36 161.84 -197.28 0.00 9700.00 0.00 980.05 -199.36 161.84 -197.28 0.00 9700.00 0.00 980.05 -199.36 161.84 -197.28 0.00 1000.00 0.00 0.00 1080.05 -199.36 161.84 -197.28 0.00 10000.00 0.00 1080.05 <th></th>											
88000 0.00 8780.05 -199.86 161.84 -197.28 0.00 90000 0.00 9880.05 -199.86 161.84 -197.28 0.00 9100.00 0.00 980.05 -199.86 161.84 -197.28 0.00 9100.00 0.00 9180.05 -199.86 161.84 -197.28 0.00 9100.00 0.00 9180.05 -199.86 161.84 -197.28 0.00 9100.00 0.00 9280.05 -199.86 161.84 -197.28 0.00 9900.00 0.00 980.05 -199.86 161.84 -197.28 0.00 9700.00 0.00 980.05 -199.86 161.84 -197.28 0.00 9700.00 0.00 980.05 -199.86 161.84 -197.28 0.00 1000000 0.00 0.00 1080.05 -199.86 161.84 -197.28 0.00 1000000 0.00 0.00 1080.05 -199.86 161.84										1st Bone Spring Lime	
890.00 0.00 880.05 -199.86 616.84 -197.28 0.00 900.00 0.00 900.00 900.00 900.00 900.00 910.00 -199.86 161.84 -197.28 0.00 900.00 0.00 918.00 -199.86 161.84 -197.28 0.00 900.00 0.00 928.00 -199.86 161.84 -197.28 0.00 900.00 0.00 938.005 -199.86 161.84 -197.28 0.00 900.00 0.00 0.00 958.005 -199.86 161.84 -197.28 0.00 9700.00 0.00 970.00 0.00 988.05 -199.86 161.84 -197.28 0.00 1000.00 0.00 0.00 1088.05 -199.86 161.84 -197.28 0.00 1000.00 0.00 1088.05 -199.86 161.84 -197.28 0.00 1000.00 0.00 1088.05 -199.86 161.84 -197.28 0.00											
91000 0.00 9000 9000 918005 -19386 618.44 -19728 0.00 920000 0.00 928005 -19386 161.84 -19728 0.00 940000 0.00 0.00 938005 -19386 161.84 -19728 0.00 950000 0.00 0.00 958005 -19386 161.84 -19728 0.00 970000 0.00 958005 -19386 161.84 -19728 0.00 970000 0.00 000 978005 -19386 161.84 -19728 0.00 970000 0.00 000 000 1088005 -19386 161.84 -19728 0.00 1000000 0.00 108005 -19386 161.84 -19728 0.00 1010000 0.00 1028005 -19386 161.84 -19728 0.00 1040000 0.00 1038005 -19386 161.84 -19728 0.00 10400000 0.00											
920000 0.00 9000 9280.05 -199.86 161.84 -197.28 0.00 9400.00 0.00 9280.05 -199.86 161.84 -197.28 0.00 9500.00 0.00 0.00 980.05 -199.86 161.84 -197.28 0.00 9700.00 0.00 0.00 980.05 -199.86 161.84 -197.28 0.00 9709.00 0.00 0.00 980.05 -199.86 161.84 -197.28 0.00 10000.00 0.00 980.05 -199.86 161.84 -197.28 0.00 10000.00 0.00 0.00 980.05 -199.86 161.84 -197.28 0.00 10000.00 0.00 10080.05 -199.86 161.84 -197.28 0.00 11000.00 0.00 1080.05 -199.86 161.84 -197.28 0.00 11400.00 0.00 1040.05 -199.86 161.84 -197.28 0.00 11400.00 0.00											
93000 0.00 900 93003 9980 6184 -19728 0.00 940000 0.00 930035 -19986 16184 -19728 0.00 960000 0.00 0.00 98005 -19986 16184 -19728 0.00 970000 0.00 0.00 98005 -19986 16184 -19728 0.00 970000 0.00 0.00 98005 -19986 16184 -19728 0.00 970000 0.00 0.00 98005 -19986 16184 -19728 0.00 1000000 0.00 0.00 108005 -19986 16184 -19728 0.00 1020000 0.00 108005 -19986 16184 -19728 0.00 1040000 0.00 1040805 19986 16184 -19728 0.00 1040000 0.00 1040805 19986 16184 -19728 0.00 1040000 0.00 1040805 19986											
940.000.000.009480.05-199.86161.44-197.280.009500.000.000.009580.05-199.86161.44-197.280.009700.000.000.009580.05-199.86161.44-197.280.009709.000.000.009780.00199.86161.44-197.280.009700.000.000.009880.05-199.86161.44-197.280.001000.000.000.009880.05-199.86161.44-197.280.001000.000.000.0010880.05-199.86161.84-197.280.001000.000.000.0010880.05-199.86161.84-197.280.001000.000.000.0010280.05-199.86161.84-197.280.0010400.000.000.0010280.05-199.86161.84-197.280.0010400.000.000.0010480.05-199.86161.84-197.280.0010400.000.000.0010480.05-199.86161.84-197.280.0010500.000.000.0010580.05-199.86161.84-197.280.0010600.000.000.0010580.05-199.86161.84-197.280.0010700.000.000.0010580.05-199.86161.84-197.280.0010800.000.0010800.05-199.86161.84-197.280.00 <tr<< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tr<<>											
9600000.000.009680.05-199.86161.84-197.280.009709.000.000.009780.00199.86161.84-197.280.009000.000.000.009780.00199.86161.84-197.280.0010000.000.000.009880.05-199.86161.84-197.280.0010100.000.000.001080.05-199.86161.84-197.280.0010200.000.000.001080.05-199.86161.84-197.280.0010200.000.000.0010280.05-199.86161.84-197.280.0010400.000.000.0010280.05-199.86161.84-197.280.0010400.000.000.0010480.05-199.86161.84-197.280.0010400.000.000.0010480.05-199.86161.84-197.280.0010600.000.000.0010480.05-199.86161.84-197.280.0010600.000.000.001080.05-199.86161.84-197.280.0010800.000.000.001080.05-199.86161.84-197.280.0010800.000.001080.05-199.86161.84-197.280.0010800.000.001180.05-199.86161.84-197.280.0011800.000.001180.05-199.86161.84-197.280.0011800.000.00<											
9700.00 0.00 0.00 9780.00 -199.86 161.84 -197.28 0.00 9900.00 0.00 0.00 980.05 -199.86 161.84 -197.28 0.00 1000.00 0.00 0.00 980.05 -199.86 161.84 -197.28 0.00 10100.00 0.00 0.00 1080.05 -199.86 161.84 -197.28 0.00 1020.00 0.00 1000 1080.05 -199.86 161.84 -197.28 0.00 1020.00 0.00 0.00 10280.05 -199.86 161.84 -197.28 0.00 1040.00 0.00 0.00 10480.00 -199.86 161.84 -197.28 0.00 10400.00 0.00 0.00 10480.05 -199.86 161.84 -197.28 0.00 10600.00 0.00 10080.05 -199.86 161.84 -197.28 0.00 10800.00 0.00 10880.05 -199.86 161.84 -197.28 0.00 10960.55 0.00 10960.05 -199.86 161.84 -197.			0.00				161.84				
9799.95 0.00 0.00 9780.00 -199.86 161.84 -197.28 0.00 Bone Spring 1st. 9900.00 0.00 0.00 980.05 -199.86 161.84 -197.28 0.00 10100.00 0.00 0.00 199.05 -199.86 161.84 -197.28 0.00 10200.00 0.00 10180.05 -199.86 161.84 -197.28 0.00 10300.00 0.00 1000 10380.05 -199.86 161.84 -197.28 0.00 10407.05 0.00 1048.05 -199.86 161.84 -197.28 0.00 10427.95 0.00 0.00 1048.05 -199.86 161.84 -197.28 0.00 1060.00 0.00 1000 1098.05 -199.86 161.84 -197.28 0.00 1070.00 0.00 1086.05 -199.86 161.84 -197.28 0.00 1080.00 0.00 1086.05 -199.86 161.84 -197.28 0.00											
9900.00 0.00 9800.05 -199.86 161.84 -197.28 0.00 10000.00 0.00 000 1098.05 -199.86 161.84 -197.28 0.00 10200.00 0.00 1008.005 -199.86 161.84 -197.28 0.00 10200.00 0.00 1028.005 -199.86 161.84 -197.28 0.00 10400.00 0.00 1028.005 -199.86 161.84 -197.28 0.00 10427.95 0.00 0.00 10480.00 -199.86 161.84 -197.28 0.00 10600.00 0.00 10480.05 -199.86 161.84 -197.28 0.00 10600.00 0.00 10680.05 -199.86 161.84 -197.28 0.00 10700.00 0.00 10780.05 -199.86 161.84 -197.28 0.00 10900.00 0.00 10880.05 -199.86 161.84 -197.28 0.00 11000.00 0.00 10880.05 -199.86 161.84 -197.28 0.00 11100.00 0.00 1180.05 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Rone Spring 1st</th>										Rone Spring 1st	
10100.0 0.00 0.00 1008.0.5 -199.86 161.84 -197.28 0.00 10200.0 0.00 0.00 10180.05 -199.86 161.84 -197.28 0.00 10400.00 0.00 10280.00 -199.86 161.84 -197.28 0.00 10427.95 0.00 0.00 10480.05 -199.86 161.84 -197.28 0.00 10500.00 0.00 10480.05 -199.86 161.84 -197.28 0.00 10600.00 0.00 10480.05 -199.86 161.84 -197.28 0.00 10700.00 0.00 10780.05 -199.86 161.84 -197.28 0.00 10800.00 0.00 10780.05 -199.86 161.84 -197.28 0.00 10905.95 0.00 0.00 10880.05 -199.86 161.84 -197.28 0.00 11000.00 0.00 1080.05 -199.86 161.84 -197.28 0.00 11000.00 0.00										bole spring rst,	
10200.0 0.00 0.00 1018.005 -199.86 161.84 -197.28 0.00 10300.0 0.00 10280.05 -199.86 161.84 -197.28 0.00 10407.00 0.00 10380.05 -199.86 161.84 -197.28 0.00 10427.95 0.00 0.00 10480.05 -199.86 161.84 -197.28 0.00 10500.00 0.00 10480.05 -199.86 161.84 -197.28 0.00 10600.00 0.00 10680.05 -199.86 161.84 -197.28 0.00 10700.00 0.00 10780.05 -199.86 161.84 -197.28 0.00 10900.00 0.00 10860.05 -199.86 161.84 -197.28 0.00 10965.95 0.00 0.00 10960.05 -199.86 161.84 -197.28 0.00 11000.00 0.00 1180.05 -199.86 161.84 -197.28 0.00 11200.00 0.00 1180.05 <			0.00								
10300.0 0.00 0.00 10280.05 -199.86 161.84 -197.28 0.00 10407.00 0.00 0.00 10380.05 -199.86 161.84 -197.28 0.00 10427.95 0.00 0.00 10480.05 -199.86 161.84 -197.28 0.00 10500.0 0.00 0.00 10480.05 -199.86 161.84 -197.28 0.00 10700.00 0.00 0.00 10680.05 -199.86 161.84 -197.28 0.00 10800.00 0.00 10780.05 -199.86 161.84 -197.28 0.00 10900.00 0.00 10780.05 -199.86 161.84 -197.28 0.00 10900.00 0.00 10980.05 -199.86 161.84 -197.28 0.00 11000.00 0.00 10980.05 -199.86 161.84 -197.28 0.00 11100.00 0.00 11080.05 -199.86 161.84 -197.28 0.00 11100.00 0.00 1180.05 -199.86 161.84 -197.28 0.00 1180.05											
10400.0 0.00 10380.05 -199.86 161.84 -197.28 0.00 10427.95 0.00 0.00 10408.00 -199.86 161.84 -197.28 0.00 10500.00 0.00 0.00 10580.05 -199.86 161.84 -197.28 0.00 10600.00 0.00 0.00 10580.05 -199.86 161.84 -197.28 0.00 10800.00 0.00 0.00 10680.05 -199.86 161.84 -197.28 0.00 10900.00 0.00 0.00 10880.05 -199.86 161.84 -197.28 0.00 10905.95 0.00 0.00 10946.00 -199.86 161.84 -197.28 0.00 11000.00 0.00 0.00 10946.00 -199.86 161.84 -197.28 0.00 111000.00 0.00 1008 1199.86 161.84 -197.28 0.00 11100.00 0.00 11180.05 -199.86 161.84 -197.28 0.00 11200.00 0.00 11280.05 -199.86 161.84 -197.28											
10427.95 0.00 0.00 10480.00 -199.86 161.84 -197.28 0.00 10600.00 0.00 0.00 10580.05 -199.86 161.84 -197.28 0.00 10700.00 0.00 10580.05 -199.86 161.84 -197.28 0.00 10700.00 0.00 10680.05 -199.86 161.84 -197.28 0.00 10800.00 0.00 10780.05 -199.86 161.84 -197.28 0.00 10965.55 0.00 0.00 10880.05 -199.86 161.84 -197.28 0.00 11000.00 0.00 10980.05 -199.86 161.84 -197.28 0.00 11100.00 0.00 10180.05 -199.86 161.84 -197.28 0.00 11200.00 0.00 11180.05 -199.86 161.84 -197.28 0.00 11200.00 0.00 11280.05 -199.86 161.84 -197.28 0.00 11400.00 0.00 11280.05 -199.86 161.84 -197.28 0.00 11600.00 0.00 </td <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
10600.00 0.00 0.00 10580.05 -199.86 161.84 -197.28 0.00 10700.00 0.00 0.00 10780.05 -199.86 161.84 -197.28 0.00 10900.00 0.00 0.00 10780.05 -199.86 161.84 -197.28 0.00 10905.95 0.00 0.00 10980.05 -199.86 161.84 -197.28 0.00 11000.00 0.00 10980.05 -199.86 161.84 -197.28 0.00 11100.00 0.00 10980.05 -199.86 161.84 -197.28 0.00 11100.00 0.00 101980.05 -199.86 161.84 -197.28 0.00 11200.00 0.00 1180.05 -199.86 161.84 -197.28 0.00 11300.00 0.00 11480.05 -199.86 161.84 -197.28 0.00 11500.00 0.00 11480.05 -199.86 161.84 -197.28 0.00 11600.00 0.00 11780.05 -199.86 161.84 -197.28 0.00 11600.00 </td <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Bone Spring 2nd</td>										Bone Spring 2nd	
10700.00 0.00 10680.05 -199.86 161.84 -197.28 0.00 10800.00 0.00 10780.05 -199.86 161.84 -197.28 0.00 10965.95 0.00 0.00 10980.05 -199.86 161.84 -197.28 0.00 10965.95 0.00 0.00 10980.05 -199.86 161.84 -197.28 0.00 11000.00 0.00 0.00 10980.05 -199.86 161.84 -197.28 0.00 11100.00 0.00 0.00 11080.05 -199.86 161.84 -197.28 0.00 11100.00 0.00 100 11280.05 -199.86 161.84 -197.28 0.00 111400.00 0.00 11280.05 -199.86 161.84 -197.28 0.00 11400.00 0.00 11380.05 -199.86 161.84 -197.28 0.00 11500.00 0.00 11480.05 -199.86 161.84 -197.28 0.00 11705.00 0.00 11706.00 -199.86 161.84 -197.28 0.00 1											
10800.00 0.00 10780.05 -199.86 161.84 -197.28 0.00 10900.00 0.00 10840.05 -199.86 161.84 -197.28 0.00 10905.95 0.00 0.00 10946.00 -199.86 161.84 -197.28 0.00 11000.00 0.00 1090 10980.05 -199.86 161.84 -197.28 0.00 11100.00 0.00 1000 1180.05 -199.86 161.84 -197.28 0.00 11200.00 0.00 0.00 11180.05 -199.86 161.84 -197.28 0.00 11400.00 0.00 0.00 11180.05 -199.86 161.84 -197.28 0.00 11400.00 0.00 0.00 1180.05 -199.86 161.84 -197.28 0.00 11400.00 0.00 0.00 1180.05 -199.86 161.84 -197.28 0.00 11600.00 0.00 1176.00 -199.86 161.84 -197.28 0.00 1160.01 11705.05 0.00 1176.06 -199.86 161.84											
10900.000.000.0010880.05-199.86161.84-197.280.0010965.950.000.0010940.00-199.86161.84-197.280.0011000.000.000.0010980.05-199.86161.84-197.280.0011100.000.000.0011080.05-199.86161.84-197.280.0011200.000.000.001180.05-199.86161.84-197.280.0011300.000.000.001180.05-199.86161.84-197.280.0011400.000.000.001180.05-199.86161.84-197.280.0011500.000.000.001180.05-199.86161.84-197.280.0011600.000.000.001180.05-199.86161.84-197.280.0011700.000.000.001180.05-199.86161.84-197.280.0011700.000.000.001180.05-199.86161.84-197.280.0011700.000.000.001176.00-199.86161.84-197.280.0011700.000.000.0011780.03-199.86161.84-197.280.0011700.000.0011780.03-199.86161.84-197.280.0011700.003.400.0011780.03-199.86161.84-197.280.0011700.003.400.0011780.03-199.86161.84-197.280.00											
11000.00 0.00 1098.005 -199.86 161.84 -197.28 0.00 11100.00 0.00 0.00 11080.05 -199.86 161.84 -197.28 0.00 11200.00 0.00 0.00 11180.05 -199.86 161.84 -197.28 0.00 11300.00 0.00 0.00 11280.05 -199.86 161.84 -197.28 0.00 11400.00 0.00 0.00 11280.05 -199.86 161.84 -197.28 0.00 11400.00 0.00 0.00 11480.05 -199.86 161.84 -197.28 0.00 11500.00 0.00 0.00 1180.05 -199.86 161.84 -197.28 0.00 11700.00 0.00 0.00 1180.05 -199.86 161.84 -197.28 0.00 11772.95 0.00 0.00 1176.00 -199.86 161.84 -197.28 0.00 Bone Spring 3rd 11760.01 0.00 11746.03 -199.85 161.84 -197.28 0.00 KOP 11800.00 3.40 0.00											
11100.00 0.00 0.00 11080.05 -199.86 161.84 -197.28 0.00 11200.00 0.00 0.00 11180.05 -199.86 161.84 -197.28 0.00 11300.00 0.00 0.00 11280.05 -199.86 161.84 -197.28 0.00 11400.00 0.00 0.00 11380.05 -199.86 161.84 -197.28 0.00 11500.00 0.00 0.00 11480.05 -199.86 161.84 -197.28 0.00 11600.00 0.00 0.00 11580.05 -199.86 161.84 -197.28 0.00 11700.00 0.00 0.00 11580.05 -199.86 161.84 -197.28 0.00 11700.00 0.00 0.00 1170.00 -199.86 161.84 -197.28 0.00 11725.95 0.00 0.00 1176.06 -199.86 161.84 -197.28 0.00 11800.00 3.40 0.00 1178.03 -198.85 161.84 -197.28 0.00 11900.00 13.40 0.00 117										3rd Bone Spring Lime	
11200.00 0.00 11180.05 -199.86 161.84 -197.28 0.00 11300.00 0.00 0.00 11280.05 -199.86 161.84 -197.28 0.00 11400.00 0.00 0.00 11380.05 -199.86 161.84 -197.28 0.00 11500.00 0.00 0.00 11480.05 -199.86 161.84 -197.28 0.00 11600.00 0.00 0.00 11780.05 -199.86 161.84 -197.28 0.00 11700.00 0.00 0.00 11706.00 -199.86 161.84 -197.28 0.00 11725.95 0.00 0.00 11760.00 -199.86 161.84 -197.28 0.00 11766.01 0.00 0.00 1176.06 -199.86 161.84 -197.28 0.00 KOP 1180.00 3.40 0.00 1178.03 -198.85 161.84 -196.28 10.00 1190.00 13.40 0.00 1187.83 -184.26 161.84 -181.69 10.00 1200.00 33.40 0.00 1206											
11300.000.000.0011280.05-199.86161.84-197.280.0011400.000.000.0011380.05-199.86161.84-197.280.0011500.000.000.0011480.05-199.86161.84-197.280.0011600.000.000.0011580.05-199.86161.84-197.280.0011700.000.000.0011680.05-199.86161.84-197.280.0011725.950.000.0011746.06-199.86161.84-197.280.0011766.010.000.0011746.06-199.86161.84-197.280.0011800.003.400.0011780.03-198.85161.84-197.280.0011900.0013.400.001187.83-184.26161.84-196.2810.001200.0023.400.0012061.45-105.24161.84-150.1710.0012100.0033.400.0012139.72-43.20161.84-77.2410.0012200.0043.400.0012139.72-43.20161.84-40.6510.0012300.0053.400.001225.37116.55161.8434.0310.0012400.0063.400.0012258.37116.55161.84119.0810.00											
11400.00 0.00 0.00 11380.05 -199.86 161.84 -197.28 0.00 11500.00 0.00 0.00 11480.05 -199.86 161.84 -197.28 0.00 11600.00 0.00 0.00 11580.05 -199.86 161.84 -197.28 0.00 11700.00 0.00 0.00 11680.05 -199.86 161.84 -197.28 0.00 11705.95 0.00 0.00 11746.06 -199.86 161.84 -197.28 0.00 11766.01 0.00 0.00 11740.06 -199.86 161.84 -197.28 0.00 KOP 11800.00 3.40 0.00 11746.06 -199.86 161.84 -196.28 10.00 KOP 11800.00 3.40 0.00 11878.33 -184.26 161.84 -196.28 10.00 KOP 12000.00 23.40 0.00 1193.60 -152.74 161.84 -150.17 10.00 wolfcamp / Point of Penetration 12143.72 37.77 0.00 12097.03 31.48 161.84 -40.65 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>											
11600.00 0.00 0.00 11580.05 -199.86 161.84 -197.28 0.00 11700.00 0.00 0.00 11680.05 -199.86 161.84 -197.28 0.00 11725.95 0.00 0.00 1176.00 -199.86 161.84 -197.28 0.00 Bone Spring 3rd 11766.01 0.00 0.00 11746.06 -199.86 161.84 -197.28 0.00 KOP 11800.00 3.40 0.00 11780.03 -198.85 161.84 -196.28 10.00 11900.00 13.40 0.00 11878.83 -184.26 161.84 -181.69 10.00 12000.00 23.40 0.00 11973.60 -152.47 161.84 -150.17 10.00 12143.72 37.77 0.00 12097.00 -79.80 161.84 -77.24 10.00 wolfcamp / Point of Penetration 12200.00 43.40 0.00 1219.72 -43.20 161.84 34.03 10.00 12300.00 53.40 0.00 12296.03 31.48 161.84 34.03 10.00 <th></th> <th>11400.00</th> <th>0.00</th> <th>0.00</th> <th>11380.05</th> <th></th> <th>161.84</th> <th>-197.28</th> <th>0.00</th> <th></th>		11400.00	0.00	0.00	11380.05		161.84	-197.28	0.00		
11700.00 0.00 11680.05 -199.86 161.84 -197.28 0.00 11725.95 0.00 0.00 1170.00 -199.86 161.84 -197.28 0.00 Bone Spring 3rd 11766.01 0.00 0.00 1174.06 -199.86 161.84 -197.28 0.00 KOP 11800.00 3.40 0.00 11780.03 -198.85 161.84 -196.28 10.00 11900.00 13.40 0.00 11878.83 -184.26 161.84 -181.69 10.00 12000.00 23.40 0.00 11973.60 -152.74 161.84 -162.68 10.00 12143.72 37.77 0.00 12097.00 -79.80 161.84 -172.4 10.00 12200.00 43.40 0.00 12139.72 -43.20 161.84 -77.24 10.00 12200.00 43.40 0.00 12139.72 -43.20 161.84 -40.65 10.00 12200.00 53.40 0.00 12296.03 31.48 161.84 34.03 10.00 1240.000 63.40 0.00 <th></th>											
11725.950.000.0011706.00-199.86161.84-197.280.00Bone Spring 3rd11766.010.000.001174.06-199.86161.84-197.280.00KOP11800.003.400.0011780.03-198.85161.84-196.2810.0011900.0013.400.0011878.83-184.26161.84-181.6910.0012000.0023.400.001197.60-152.74161.84-150.1710.0012100.0033.400.0012061.45-105.24161.84-102.6810.0012200.0043.400.0012139.72-43.20161.84-77.2410.0012300.0053.400.001226.0331.48161.8434.0310.0012400.0063.400.0012258.37116.55161.84119.0810.00											
11766.01 0.00 0.00 11746.06 -199.86 161.84 -197.28 0.00 KOP 11800.00 3.40 0.00 11780.03 -198.85 161.84 -196.28 10.00 11900.00 13.40 0.00 11878.83 -184.26 161.84 -181.69 10.00 12000.00 23.40 0.00 11973.60 -152.74 161.84 -150.17 10.00 12100.00 33.40 0.00 12061.45 -105.24 161.84 -102.68 10.00 12143.72 37.77 0.00 12097.00 -79.80 161.84 -77.24 10.00 wolfcamp / Point of Penetration 12200.00 43.40 0.00 12139.72 -43.20 161.84 34.03 10.00 12300.00 53.40 0.00 12206.03 31.48 161.84 34.03 10.00 12400.00 63.40 0.00 12258.37 116.55 161.84 119.08 10.00										Bone Spring 3rd	
11800.00 3.40 0.00 11780.03 -198.85 161.84 -196.28 10.00 11900.00 13.40 0.00 11878.83 -184.26 161.84 -181.69 10.00 12000.00 23.40 0.00 11973.60 -152.74 161.84 -150.17 10.00 12100.00 33.40 0.00 12061.45 -105.24 161.84 -102.68 10.00 12143.72 37.77 0.00 12097.00 -79.80 161.84 -77.24 10.00 wolfcamp / Point of Penetration 12200.00 43.40 0.00 12139.72 -43.20 161.84 -40.65 10.00 12300.00 53.40 0.00 12296.03 31.48 161.84 34.03 10.00 12400.00 63.40 0.00 12258.37 116.55 161.84 119.08 10.00											
12000.00 23.40 0.00 11973.60 -152.74 161.84 -150.17 10.00 12100.00 33.40 0.00 12061.45 -105.24 161.84 -102.68 10.00 12143.72 37.77 0.00 12097.00 -79.80 161.84 -77.24 10.00 wolfcamp / Point of Penetration 12200.00 43.40 0.00 12139.72 -43.20 161.84 -40.65 10.00 12300.00 53.40 0.00 12206.03 31.48 161.84 34.03 10.00 12400.00 63.40 0.00 12258.37 116.55 161.84 119.08 10.00									10.00		
12100.00 33.40 0.00 12061.45 -105.24 161.84 -102.68 10.00 12143.72 37.77 0.00 12097.00 -79.80 161.84 -77.24 10.00 wolfcamp / Point of Penetration 12200.00 43.40 0.00 12139.72 -43.20 161.84 -40.65 10.00 12300.00 53.40 0.00 12206.03 31.48 161.84 34.03 10.00 12400.00 63.40 0.00 12258.37 116.55 161.84 119.08 10.00											
12143.72 37.77 0.00 12097.00 -79.80 161.84 -77.24 10.00 wolfcamp / Point of Penetration 12200.00 43.40 0.00 12139.72 -43.20 161.84 -40.65 10.00 12300.00 53.40 0.00 12206.03 31.48 161.84 34.03 10.00 12400.00 63.40 0.00 12258.37 116.55 161.84 119.08 10.00											
12200.00 43.40 0.00 12139.72 -43.20 161.84 -40.65 10.00 12300.00 53.40 0.00 12206.03 31.48 161.84 34.03 10.00 12400.00 63.40 0.00 12258.37 116.55 161.84 119.08 10.00										wolfcamp / Point of Penetration	
12400.00 63.40 0.00 12258.37 116.55 161.84 119.08 10.00											
12.500.00 75.40 0.00 12235.15 203.40 101.04 211.35 10.00											
		12300.00	13.40	0.00	12233.13	209.40	101.04	211.33	10.00		

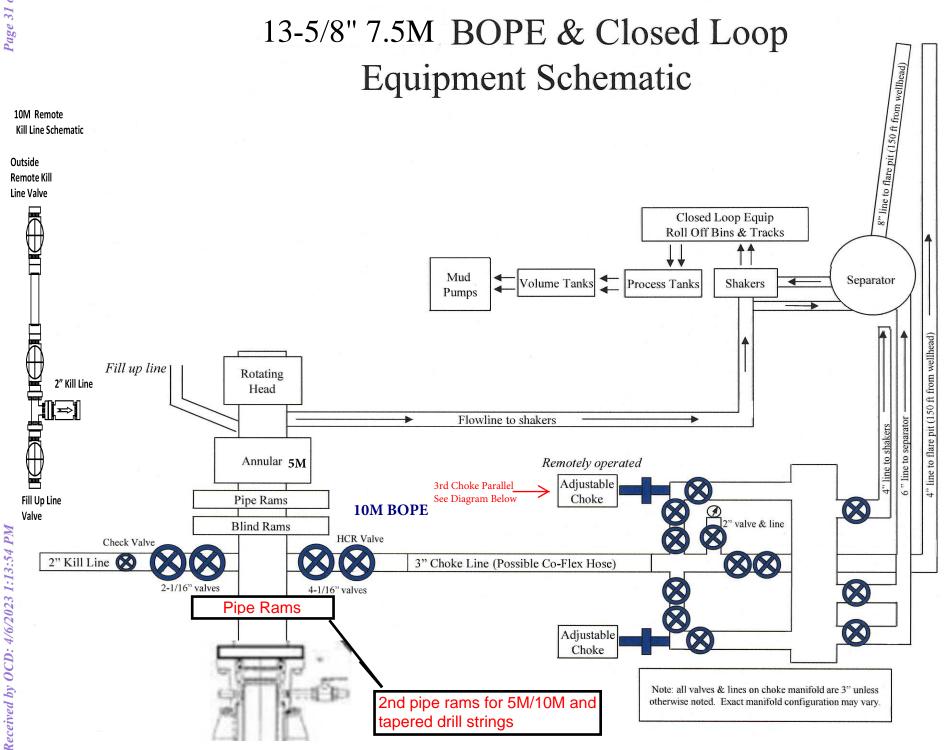
. —		.الم	GATO CP/	ANDE 9-4 FED	COM 712H				Geodetic System	US State Plane 1983
devon		Well: County:		NINDE 9-4 FED	CONT / 12H				•	US State Plane 1983 North American Datum 1927
		Wellbore:		n						Clarke 1866
		Design:	Permit Pla	n #1					Zone:	3001 - NM East (NAD83)
	MD	INC	471	TVD	NS	EW	vs			
	(ft)	(°)	AZI (°)	(ft)	(ft)	E VV (ft)	VS (ft)	DLS (°/100ft)	Comment	
•	12600.00	83.40	0.00	12315.22	307.24	161.84	309.75	10.00		
	12670.18	90.42	0.00	12319.00	377.27	161.84	379.77	10.00	Landing Point	
	12700.00	90.42	0.00	12318.78	407.09	161.84	409.59	0.00		
	12800.00 12900.00	90.42 90.42	0.00 0.00	12318.06 12317.33	507.09 607.09	161.84 161.84	509.57 609.56	0.00 0.00		
	13000.00	90.42	0.00	12316.60	707.08	161.84	709.54	0.00		
	13100.00	90.42	0.00	12315.87	807.08	161.84	809.53	0.00		
	13200.00	90.42	0.00	12315.15	907.08	161.84	909.51	0.00		
	13300.00 13400.00	90.42 90.42	0.00 0.00	12314.42 12313.69	1007.08 1107.07	161.84 161.84	1009.50 1109.48	0.00 0.00		
	13400.00	90.42 90.42	0.00	12313.09	1207.07	161.84	1209.47	0.00		
	13600.00	90.42	0.00	12312.24	1307.07	161.84	1309.45	0.00		
	13700.00	90.42	0.00	12311.51	1407.06	161.84	1409.44	0.00		
	13800.00	90.42	0.00	12310.79	1507.06	161.84	1509.42	0.00		
	13900.00 14000.00	90.42 90.42	0.00 0.00	12310.06 12309.33	1607.06 1707.06	161.84 161.84	1609.41 1709.39	0.00 0.00		
	14000.00	90.42	0.00	12308.60	1807.05	161.84	1809.38	0.00		
	14200.00	90.42	0.00	12307.88	1907.05	161.84	1909.36	0.00		
	14300.00	90.42	0.00	12307.15	2007.05	161.84	2009.35	0.00		
	14400.00	90.42	0.00	12306.42	2107.05	161.84	2109.33	0.00		
	14500.00 14600.00	90.42 90.42	0.00 0.00	12305.70 12304.97	2207.04 2307.04	161.84 161.84	2209.32 2309.30	0.00 0.00		
	14700.00	90.42	0.00	12304.24	2407.04	161.84	2409.29	0.00		
	14800.00	90.42	0.00	12303.51	2507.04	161.84	2509.27	0.00		
	14900.00	90.42	0.00	12302.79	2607.03	161.84	2609.26	0.00		
	15000.00 15100.00	90.42 90.42	0.00 0.00	12302.06 12301.33	2707.03 2807.03	161.84 161.84	2709.24 2809.23	0.00 0.00		
	15200.00	90.42 90.42	0.00	12300.61	2907.03	161.84	2909.23	0.00		
	15300.00	90.42	0.00	12299.88	3007.02	161.84	3009.20	0.00		
	15400.00	90.42	0.00	12299.15	3107.02	161.84	3109.18	0.00		
	15500.00	90.42	0.00	12298.42	3207.02	161.84	3209.17	0.00		
	15600.00 15700.00	90.42 90.42	0.00 0.00	12297.70 12296.97	3307.01 3407.01	161.84 161.84	3309.15 3409.14	0.00 0.00		
	15800.00	90.42	0.00	12296.24	3507.01	161.84	3509.12	0.00		
	15900.00	90.42	0.00	12295.52	3607.01	161.84	3609.11	0.00		
	16000.00	90.42	0.00	12294.79	3707.00 3807.00	161.84	3709.09	0.00		
	16100.00 16200.00	90.42 90.42	0.00 0.00	12294.06 12293.33	3807.00	161.84 161.84	3809.08 3909.06	0.00 0.00		
	16300.00	90.42	0.00	12292.61	4007.00	161.84	4009.05	0.00		
	16400.00	90.42	0.00	12291.88	4106.99	161.84	4109.03	0.00		
	16500.00	90.42	0.00	12291.15	4206.99	161.84	4209.02	0.00		
	16600.00 16700.00	90.42 90.42	0.00 0.00	12290.43 12289.70	4306.99 4406.99	161.84 161.84	4309.00 4408.99	0.00 0.00		
	16800.00	90.42	0.00	12288.97	4506.98	161.84	4508.97	0.00		
	16900.00	90.42	0.00	12288.25	4606.98	161.84	4608.96	0.00		
	17000.00	90.42	0.00	12287.52	4706.98	161.84	4708.94	0.00		
	17100.00 17200.00	90.42 90.42	0.00 0.00	12286.79 12286.06	4806.97 4906.97	161.84 161.84	4808.93 4908.91	0.00 0.00		
	17200.00	90.42 90.42	0.00	12285.34	4900.97 5006.97	161.84	5008.90	0.00		
	17400.00	90.42	0.00	12284.61	5106.97	161.84	5108.88	0.00		
	17500.00	90.42	0.00	12283.88	5206.96	161.84	5208.87	0.00		
	17600.00 17700.00	90.42	0.00	12283.16	5306.96	161.84	5308.85	0.00		
	17800.00	90.42 90.42	0.00 0.00	12282.43 12281.70	5406.96 5506.96	161.84 161.84	5408.84 5508.82	0.00 0.00		
	17900.00	90.42	0.00	12280.97	5606.95	161.84	5608.81	0.00		
	18000.00	90.42	0.00	12280.25	5706.95	161.84	5708.79	0.00		
	18100.00	90.42	0.00	12279.52	5806.95	161.84	5808.78	0.00		
	18200.00 18300.00	90.42 90.42	0.00 0.00	12278.79 12278.07	5906.95 6006.94	161.84 161.84	5908.76 6008.75	0.00 0.00		
	18300.00	90.42 90.42	0.00	12278.07	6006.94 6106.94	161.84 161.84	6108.73	0.00		
	18500.00	90.42	0.00	12276.61	6206.94	161.84	6208.72	0.00		
	18600.00	90.42	0.00	12275.88	6306.94	161.84	6308.70	0.00		
	18700.00	90.42	0.00	12275.16	6406.93	161.84	6408.69	0.00		
	18800.00 18900.00	90.42 90.42	0.00 0.00	12274.43 12273.70	6506.93 6606.93	161.84 161.84	6508.67 6608.66	0.00 0.00		
	19000.00	90.42 90.42	0.00	12273.70	6706.92	161.84	6708.64	0.00		
	19100.00	90.42	0.00	12272.25	6806.92	161.84	6808.63	0.00		
	19200.00	90.42	0.00	12271.52	6906.92	161.84	6908.61	0.00		
	19300.00 19400.00	90.42 90.42	0.00	12270.79	7006.92 7106.91	161.84 161.84	7008.60 7108.58	0.00		
	13400.00	90.42	0.00	12270.07	1100.91	161.84	1100.30	0.00		
l										

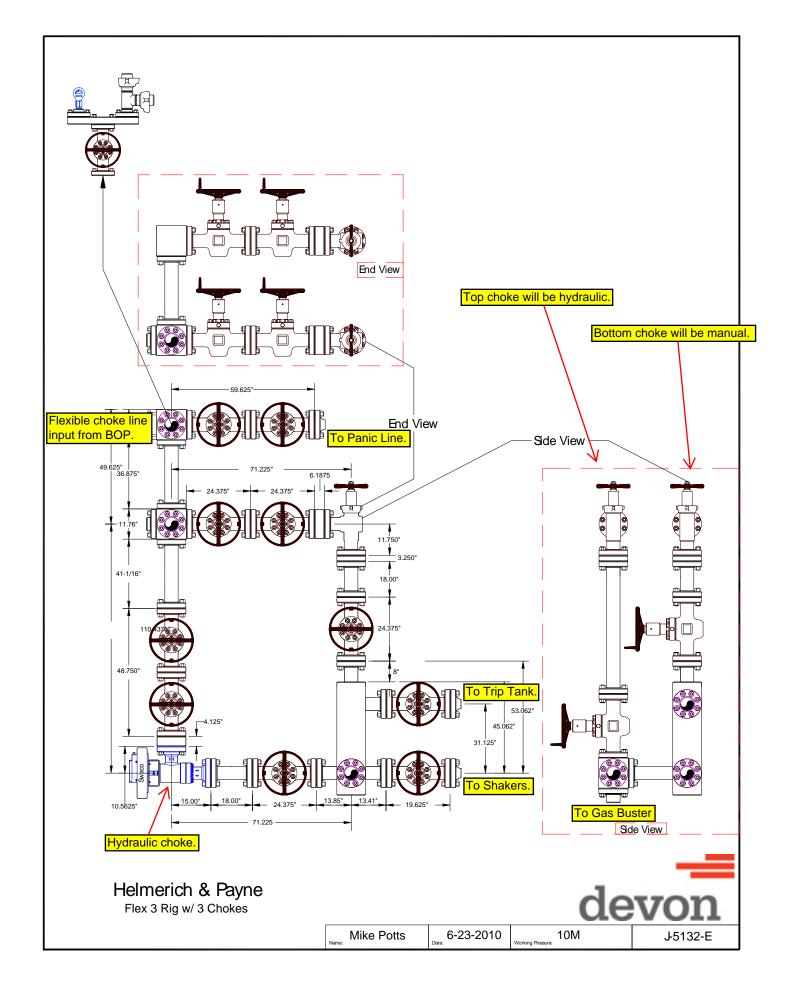
von		County: Wellbore:		Geodetic System: US State Plane 1983 Datum: North American Datum 1927 Ellipsoid: Clarke 1866 Zone: 3001 - NM East (NAD83)					
	MD	INC	AZI	TVD	NS	EW	vs	DLS	Comment
	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
	19500.00	90.42	0.00	12269.34	7206.91	161.84	7208.57	0.00	
	19600.00	90.42	0.00	12268.61	7306.91	161.84	7308.55	0.00	
	19700.00	90.42	0.00	12267.89	7406.91	161.84	7408.54	0.00	
	19800.00	90.42	0.00	12267.16	7506.90	161.84	7508.52	0.00	
	19900.00	90.42	0.00	12266.43	7606.90	161.84	7608.51	0.00	
	20000.00	90.42	0.00	12265.71	7706.90	161.84	7708.49	0.00	
	20100.00	90.42	0.00	12264.98	7806.90	161.84	7808.48	0.00	
	20200.00	90.42	0.00	12264.25	7906.89	161.84	7908.46	0.00	
	20300.00	90.42	0.00	12263.52	8006.89	161.84	8008.45	0.00	
	20400.00	90.42	0.00	12262.80	8106.89	161.84	8108.43	0.00	
	20500.00	90.42	0.00	12262.07	8206.88	161.84	8208.42	0.00	
	20600.00	90.42	0.00	12261.34	8306.88	161.84	8308.40	0.00	
	20700.00	90.42	0.00	12260.62	8406.88	161.84	8408.39	0.00	
	20800.00	90.42	0.00	12259.89	8506.88	161.84	8508.37	0.00	
	20900.00	90.42	0.00	12259.16	8606.87	161.84	8608.36	0.00	
	21000.00	90.42	0.00	12258.43	8706.87	161.84	8708.34	0.00	
	21100.00	90.42	0.00	12257.71	8806.87	161.84	8808.33	0.00	
	21200.00	90.42	0.00	12256.98	8906.87	161.84	8908.31	0.00	
	21300.00	90.42	0.00	12256.25	9006.86	161.84	9008.30	0.00	
	21400.00	90.42	0.00	12255.53	9106.86	161.84	9108.28	0.00	
	21500.00	90.42	0.00	12254.80	9206.86	161.84	9208.27	0.00	
	21600.00	90.42	0.00	12254.07	9306.86	161.84	9308.25	0.00	
	21700.00	90.42	0.00	12253.34	9406.85	161.84	9408.24	0.00	
	21800.00	90.42	0.00	12252.62	9506.85	161.84	9508.22	0.00	
	21900.00	90.42	0.00	12251.89	9606.85	161.84	9608.21	0.00	
	22000.00	90.42	0.00	12251.16	9706.85	161.84	9708.19	0.00	
	22100.00	90.42	0.00	12250.44	9806.84	161.84	9808.18	0.00	
	22200.00	90.42	0.00	12249.71	9906.84	161.84	9908.16	0.00	
	22300.00	90.42	0.00	12248.98	10006.84	161.84	10008.15	0.00	
	22400.00	90.42	0.00	12248.26	10106.83	161.84	10108.13	0.00	
	22490.79	90.42	0.00	12247.59	10197.63	161.84	10198.91	0.00	exit
	22500.00	90.42	0.00	12247.53	10206.83	161.84	10208.12	0.00	
	22570.79	90.42	0.00	12247.00	10277.62	161.84	10278.90	0.00	BHL

		County: Wellbore:	Lea Permit Plan	IDE 9-4 FED (COM 712H		Geodetic System: US State Plane 1983 Datum: North American Datum 1927 Ellipsoid: Clarke 1866 Tarve 2001 NM Evet (MDDO2)				
-	MD (ft)	INC (°)	Permit Plan AZI (°)	TVD (ft)	NS (ft)	EW (ft)	VS (ft)	DLS (°/100ft)	Comment	: 3001 - NM East (NAD83)	

Devon Energy APD VARIANCE DATA

OPERATOR NAME: Devon Energy


1. SUMMARY OF Variance:


Devon Energy respectfully requests approval for the following additions to the drilling plan:

1. Potential utilization of a spudder rig to pre-set surface casing.

2. Description of Operations

- **1.** A spudder rig contractor may move in their rig to drill the surface hole section and pre-set surface casing on this well.
 - **a.** After drilling the surface hole section, the rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
 - **b.** Rig will utilize fresh water based mud to drill surface hole to TD.
- 2. The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- **3.** A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wingvalves.
 - **a.** A means for intervention will be maintained while the drilling rig is not over the well.
- 4. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 5. Drilling operation will be performed with the big rig. At that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - **a.** The BLM will be contacted / notified 24 hours before the big rig moves back on to the pad with the pre-set surface casing.
- **6.** Devon Energy will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations.
- 7. Once the rig is removed, Devon Energy will secure the wellhead area by placing a guard rail around the cellar area.

A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

Devon proposes using a multi-bowl wellhead assembly. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.

- Wellhead will be installed by wellhead representatives.
- If the welding is performed by a third party, the wellhead representative will monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- Wellhead representative will install the test plug for the initial BOP test.
- Wellhead company will install a solid steel body pack-off to completely isolate the lower head after cementing intermediate casing. After installation of the pack-off, the pack-off and the lower flange will be tested to 5M, as shown on the attached schematic. Everything above the pack-off will not have been altered whatsoever from the initial nipple up. Therefore the BOP components will not be retested at that time.
- If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head will be cut and top out operations will be conducted.
- Devon will pressure test all seals above and below the mandrel (but still above the casing) to full working pressure rating.
- Devon will test the casing to 0.22 psi/ft or 1500 psi, whichever is greater, as per Onshore Order #2.

After running the surface casing, a 13-5/8" BOP/BOPE system with a minimum rating of 5M will be installed on the wellhead system and will undergo a 250 psi low pressure test followed by a 5,000 psi high pressure test. The 5,000 psi high and 250 psi low test will cover testing requirements a maximum of 30 days, as per Onshore Order #2. If the well is not complete within 30 days of this BOP test, another full BOP test will be conducted, as per Onshore Order #2.

After running the intermediate casing with a mandrel hanger, the 13-5/8" BOP/BOPE system with a minimum rating of 10M will be installed and tested, with 5M annular being tested to 100% of rated working pressure.

The pipe rams will be operated and checked each 24 hour period and each time the drill pipe is out of the hole. These tests will be logged in the daily driller's log. A 2" kill line and 3" choke line will be incorporated into the drilling spool below the ram BOP. In addition to the rams and annular preventer, additional BOP accessories include a kelly cock, floor safety valve, choke lines, and choke manifold rated at 10,000 psi WP.

Devon's proposed wellhead manufactures will be FMC Technologies, Cactus Wellhead, or Cameron.

Devon Energy Annular Preventer Summary

1. Component and Preventer Compatibility Table

The table below, which covers the drilling and casing of the 10M MASP portion of the well, outlines the tubulars and the compatible preventers in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Component	OD	Preventer	RWP
Drillpipe	4.5"	Fixed lower 4.5"	10M
		Upper 4.5-7" VBR	
HWDP	4.5"	Fixed lower 4.5"	10M
		Upper 4.5-7" VBR	
Drill collars and MWD tools	4.75"	Upper 4.5-7" VBR	10M
Mud Motor	4.75"	Upper 4.5-7" VBR	10M
Production casing	5.5"	Upper 4.5-7" VBR	10M
ALL	0-13-5/8"	Annular	5M
Open-hole	-	Blind Rams	10M

6-3/4" Production hole section, 10M requirement

VBR = Variable Bore Ram. Compatible range listed in chart.

2. Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the BHA through the BOPs. The pressure at which control is swapped from the annular to another compatible ram is variable, but the operator will document in the submission their operating pressure limit. The operator may chose an operating pressure less than or equal to RWP, but in no case will it exceed the RWP of the annular preventer.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in Well (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to the upper pipe ram.

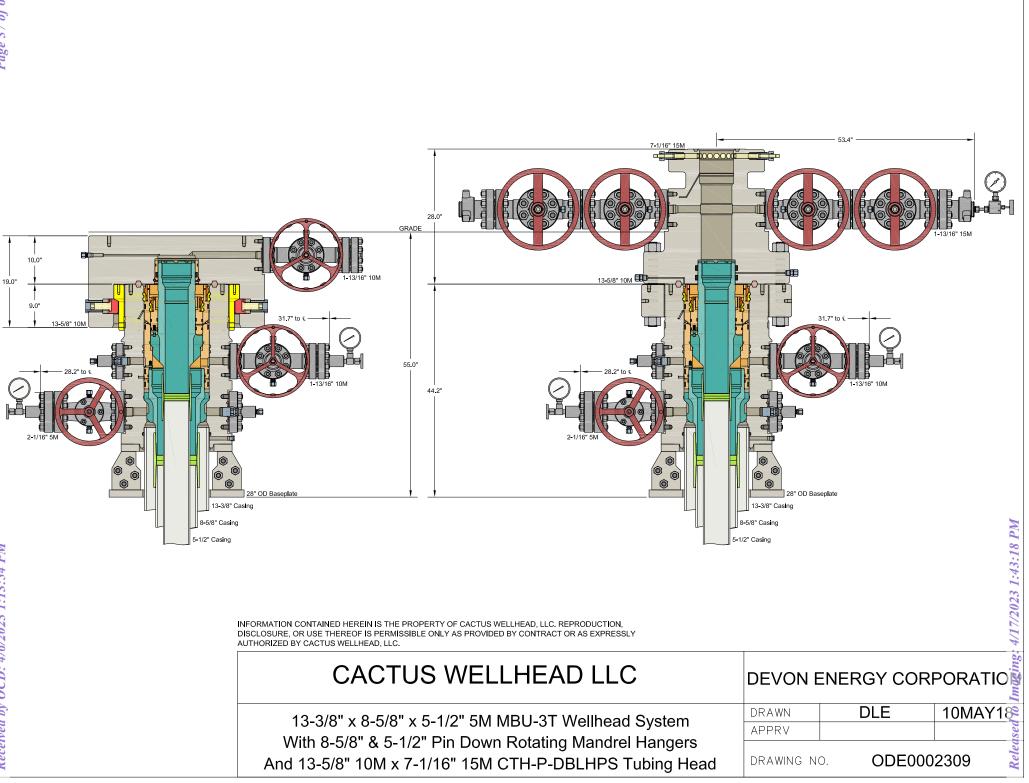
Devon Energy Annular Preventer Summary

General Procedure While Tripping

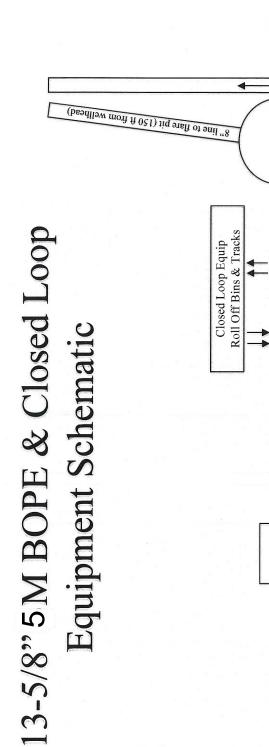
- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close
- 3. Space out drill string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to the upper pipe ram.

General Procedure While Running Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full opening safety valve and close
- 3. Space out string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to compatible pipe ram.


General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams or BSR. (HCR and choke will already be in the closed position.)
- 3. Confirm shut-in
- 4. Notify toolpusher/company representative
- 5. Read and record the following:
 - a. SICP
 - b. Pit gain
 - c. Time
- 6. Regroup and identify forward plan

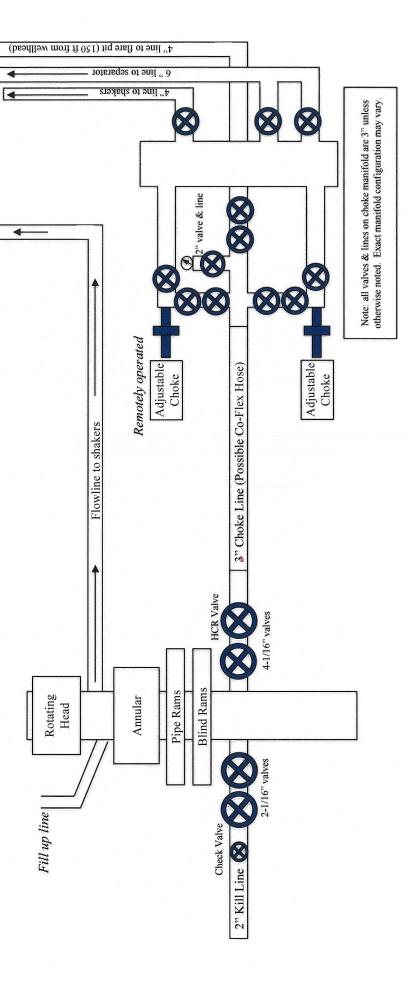

Devon Energy Annular Preventer Summary

General Procedures While Pulling BHA thru Stack

- 1. PRIOR to pulling last joint of drillpipe thru the stack.
 - a. Perform flowcheck, if flowing:
 - b. Sound alarm (alert crew)
 - c. Stab full opening safety valve and close
 - d. Space out drill string with tool joint just beneath the upper pipe ram.
 - e. Shut-in using upper pipe ram. (HCR and choke will already be in the closed position.)
 - f. Confirm shut-in
 - g. Notify toolpusher/company representative
 - h. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - i. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full opening safety valve and close
 - c. Space out drill string with upset just beneath the compatible pipe ram.
 - d. Shut-in using compatible pipe ram. (HCR and choke will already be in the closed position.)
 - e. Confirm shut-in
 - f. Notify toolpusher/company representative
 - g. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - h. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. If possible to pick up high enough, pull string clear of the stack and follow "Open Hole" scenario.
 - c. If impossible to pick up high enough to pull the string clear of the stack:
 - d. Stab crossover, make up one joint/stand of drillpipe, and full opening safety valve and close
 - e. Space out drill string with tooljoint just beneath the upper pipe ram.
 - f. Shut-in using upper pipe ram. (HCR and choke will already be in the closed position.)
 - g. Confirm shut-in
 - h. Notify toolpusher/company representative
 - i. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - j. Regroup and identify forward plan

Page 37 of 63

Separator


Shakers

Process Tanks

↓↓

Volume Tanks

Mud Pumps

Released to Imaging: 4/17/2023 1:43:18 PM

Surface

Surface Casing Burst Design		
Load Case	External Pressure	Internal Pressure
Pressure Test	Formation Pore Pressure	Max mud weight of next hole-
		section plus Test psi
Drill Ahead	Formation Pore Pressure	Max mud weight of next hole
		section
Displace to Gas	Formation Pore Pressure	Dry gas from next casing point

Surface Casing Collapse Design		
Load Case External Pressure Internal Pressure		
Full Evacuation	Water gradient in cement, mud above TOC	None
Cementing	Wet cement weight	Water (8.33ppg)

Surface Casing Tension Design		
Load Case Assumptions		
Overpull	100kips	
Runing in hole 3 ft/s		
Service Loads N/A		

Intermediate

Intermediate Casing Burst Design		
Load Case External Pressure Internal Pressure		Internal Pressure
Pressure Test	Formation Pore Pressure	Max mud weight of next hole-
		section plus Test psi
Drill Ahead	Formation Pore Pressure	Max mud weight of next hole
		section
Fracture @ Shoe	Formation Pore Pressure	Dry gas

Intermediate Casing Collapse Design		
Load Case External Pressure Internal Pressure		
Full Evacuation	Water gradient in cement, mud	None
	above TOC	
Cementing	Wet cement weight	Water (8.33ppg)

Intermediate Casing Tension Design		
Load Case Assumptions		
Overpull	100kips	
Runing in hole 2 ft/s		
Service Loads N/A		

Production

Production Casing Burst Design		
Load Case	External Pressure	Internal Pressure
Pressure Test	Formation Pore Pressure	Fluid in hole (water or produced
		water) + test psi
Tubing Leak	Formation Pore Pressure	Packer @ KOP, leak below
		surface 8.6 ppg packer fluid
Stimulation	Formation Pore Pressure	Max frac pressure with heaviest
		frac fluid

Production Casing Collapse Design		
Load Case External Pressure Internal Pressure		
Full Evacuation	Water gradient in cement, mud above TOC.	None
Cementing	Wet cement weight	Water (8.33ppg)

Production Casing Tension Design		
Load Case Assumptions		
Overpull	100kips	
Runing in hole 2 ft/s		
Service Loads N/A		

Surface

Surface Casing Burst Design		
Load Case	External Pressure	Internal Pressure
Pressure Test	Formation Pore Pressure	Max mud weight of next hole-
		section plus Test psi
Drill Ahead	Formation Pore Pressure	Max mud weight of next hole
		section
Displace to Gas	Formation Pore Pressure	Dry gas from next casing point

Surface Casing Collapse Design		
Load Case External Pressure Internal Pressure		
Full Evacuation	Water gradient in cement, mud above TOC	None
Cementing	Wet cement weight	Water (8.33ppg)

Surface Casing Tension Design		
Load Case Assumptions		
Overpull	100kips	
Runing in hole 3 ft/s		
Service Loads N/A		

Intermediate

Intermediate Casing Burst Design			
Load Case External Pressure Internal Pressure			
Pressure Test	Formation Pore Pressure	Max mud weight of next hole-	
		section plus Test psi	
Drill Ahead	Formation Pore Pressure	Max mud weight of next hole	
		section	
Fracture @ Shoe	Formation Pore Pressure	Dry gas	

Intermediate Casing Collapse Design			
Load Case External Pressure Internal Pressure			
Full Evacuation	Water gradient in cement, mud above TOC	None	
Cementing	Wet cement weight	Water (8.33ppg)	

Intermediate Casing Tension Design		
Load Case Assumptions		
Overpull	100kips	
Runing in hole	2 ft/s	
Service Loads	N/A	

Production

Production Casing Burst Design			
Load Case	Internal Pressure		
Pressure Test	Formation Pore Pressure	Fluid in hole (water or produced	
		water) + test psi	
Tubing Leak	Formation Pore Pressure	Packer @ KOP, leak below	
		surface 8.6 ppg packer fluid	
Stimulation	Formation Pore Pressure	Max frac pressure with heaviest	
		frac fluid	

Production Casing Collapse Design			
Load Case External Pressure Internal Pressure			
Full Evacuation	Water gradient in cement, mud above TOC.	None	
Cementing	Wet cement weight	Water (8.33ppg)	

Production Casing Tension Design		
Load Case Assumptions		
Overpull	100kips	
Runing in hole	2 ft/s	
Service Loads	N/A	

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Devon Energy Production Company LP	
LEASE NO.:	NMNM98192	
LOCATION:	Section 9, T.23 S., R.32 E., NMPM	
COUNTY:	Lea County, New Mexico	
WELL NAME & NO.:	Gato Grande 9-4 Fed Com 611H	
SURFACE HOLE FOOTAGE:	250'/S & 1360'/W	
BOTTOM HOLE FOOTAGE	20'/N & 780'/W	
WELL NAME & NO.:	Gato Grande 9-4 Fed Com 613H	
SURFACE HOLE FOOTAGE:	250'/S & 2564'/E	
BOTTOM HOLE FOOTAGE	20'/N & 1860'/E	
WELL NAME & NO.:	Gato Grande 9-4 Fed Com 711H	
SURFACE HOLE FOOTAGE:	250'/S & 1330'/W	
BOTTOM HOLE FOOTAGE	20'/N & 330'/W	
WELL NAME & NO.:	Gato Grande 9-4 Fed Com 712H	
SURFACE HOLE FOOTAGE:	250'/S & 1420'/W	
BOTTOM HOLE FOOTAGE	20'/N & 1650'/W	
WELL NAME & NO.:	Gato Grande 9-4 Fed Com 713H	
SURFACE HOLE FOOTAGE:	250'/S & 2594'/E	
BOTTOM HOLE FOOTAGE	20'/N & 2310'/E	
WELL NAME & NO.:	Gato Grande 9-4 Fed Com 731H	
SURFACE HOLE FOOTAGE:	250'/S & 1390'/W	
BOTTOM HOLE FOOTAGE	20'/N & 990'/W	
	СОА	

COA

H2S	🖸 Yes	C No	
Potash	🖸 None	C Secretary	🖸 R-111-P
Cave/Karst Potential	🖸 Low	C Medium	🖸 High
Cave/Karst Potential	Critical		
Variance	🖸 None	🖸 Flex Hose	C Other
Wellhead	Conventional	C Multibowl	🖸 Both
Other	4 String Area	Capitan Reef	□ WIPP
Other	Fluid Filled	Cement Squeeze	Pilot Hole
Special Requirements	Water Disposal	COM	🗖 Unit

Approval Date: 04/04/2023

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Cherry Canyon** formation and **Antelope Ridge** Pool. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- 1. The 13-3/8 inch surface casing shall be set at approximately 1261 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 2. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Cement excess is less than 25%, more cement might be required.

Operator has proposed to pump down 13-3/8" X 8-5/8" annulus. <u>Operator must run</u> a CBL from TD of the 8-5/8" casing to surface. Submit results to BLM.

Production casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the intermediate casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.

Option 2:

- Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

Approval Date: 04/04/2023

e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
 - Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

M Approval Date: 04/04/2023

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24</u> <u>hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not

hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.
- C. DRILLING MUD

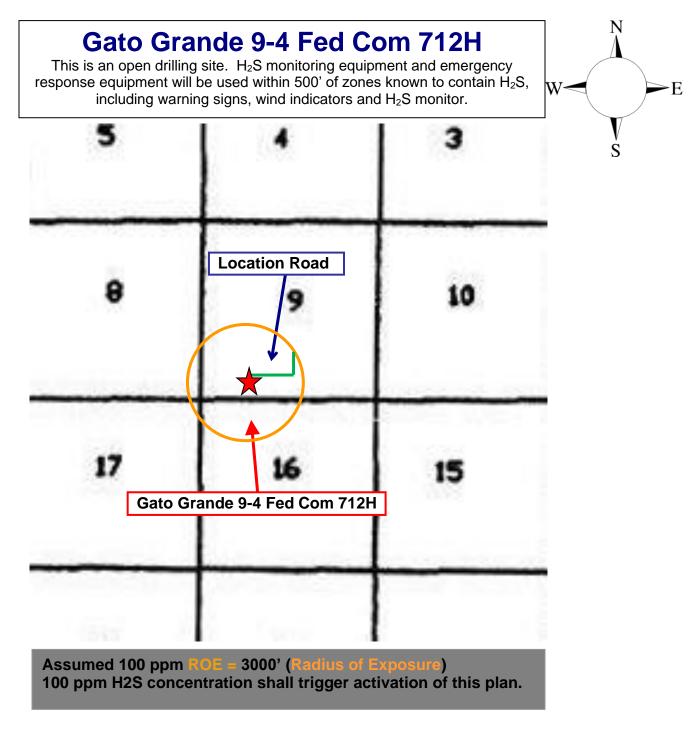
Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Devon Energy Center 333 West Sheridan Avenue Oklahoma City, Oklahoma 73102-5015


Hydrogen Sulfide (H₂S) Contingency Plan

For

Gato Grande 9-4 Fed Com 712H

Sec-9 T-23S R-32E 250 FSL & 1420' FWL LAT. = 32.3125443' N (NAD83) LONG = 103.6835722 W

Lea County NM

Escape

Crews shall escape upwind of escaping gas in the event of an emergency release of gas. Escape can be facilitated from the location entrance road. Crews should then block the entrance to the location from the lease road so as not to allow anyone traversing into a hazardous area. The blockade should be at a safe distance outside of the ROE. <u>There are no homes or buildings in or near the ROE</u>.

Assumed 100 ppm ROE = 3000'

100 ppm H₂S concentration shall trigger activation of this plan.

Emergency Procedures

In the event of a release of gas containing H₂S, the first responder(s) must

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response
- Take precautions to avoid personal injury during this operation.
- Contact operator and/or local officials to aid in operation. See list of phone numbers attached.
- Have received training in the
 - \circ Detection of H₂S, and
 - Measures for protection against the gas,
 - Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas

Common	Chemical	Specific	Threshold	Hazardous Limit	Lethal
Name	Formula	Gravity	Limit	Hazardous Limit	Concentration
Hydrogen Sulfide	H₂S	1.189 Air = 1	10 ppm	100 ppm/hr	600 ppm
Sulfur	50-	2.21	2	N/A	1000 nnm
Dioxide	SO ₂	Air = 1	2 ppm	N/A	1000 ppm

Characteristics of H₂S and SO₂

Contacting Authorities

Devon Energy Corp. personnel must liaison with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available. The following call list of essential and potential responders has been prepared for use during a release. Devon Energy Corp. Company response must be in coordination with the State of New Mexico's 'Hazardous Materials Emergency Response Plan' (HMER)

Hydrogen Sulfide Drilling Operation Plan

I. HYDROGEN SULFIDE (H₂S) TRAINING

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- 1. The hazards and characteristics of hydrogen sulfide (H₂S)
- 2. The proper use and maintenance of personal protective equipment and life support systems.
- 3. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- 4. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- 1. The effects of H₂S metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- 3. The contents and requirements of the H₂S Drilling Operations Plan.

There will be weekly H_2S and well control drills for all personnel in each crew.

II. HYDROGEN SULFIDE TRAINING

Note: All H₂S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H₂S.

1. Well Control Equipment

- A. Flare line
- B. Choke manifold Remotely Operated
- C. Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit
- D. Auxiliary equipment may include if applicable: annular preventer and rotating head.
- E. Mud/Gas Separator

2. Protective equipment for essential personnel:

30-minute SCBA units located at briefing areas, as indicated on well site diagram, with escape units available in the top doghouse. As it may be difficult to communicate audibly while wearing these units, hand signals shall be utilized.

3. H₂S detection and monitoring equipment:

Portable H₂S monitors positioned on location for best coverage and response. These units have warning lights which activate when H₂S levels reach 10 ppm and audible sirens which activate at 15 ppm. Sensor locations:

- Bell nipple
 Possum Belly/Shale shaker
- Rig floor
 Choke manifold
- Cellar

Visual warning systems:

- A. Wind direction indicators as shown on well site diagram
- B. Caution/ Danger signs shall be posted on roads providing direct access to locations. Signs will be painted a high visibility yellow with black lettering of sufficient size to be reasonable distance from the immediate location. Bilingual signs will be used when appropriate.

4. Mud program:

The mud program has been designed to minimize the volume of H₂S circulated to surface. Proper mud weight, safe drilling practices and the use of H₂S scavengers will minimize hazards when penetrating H₂S bearing zones.

5. Metallurgy:

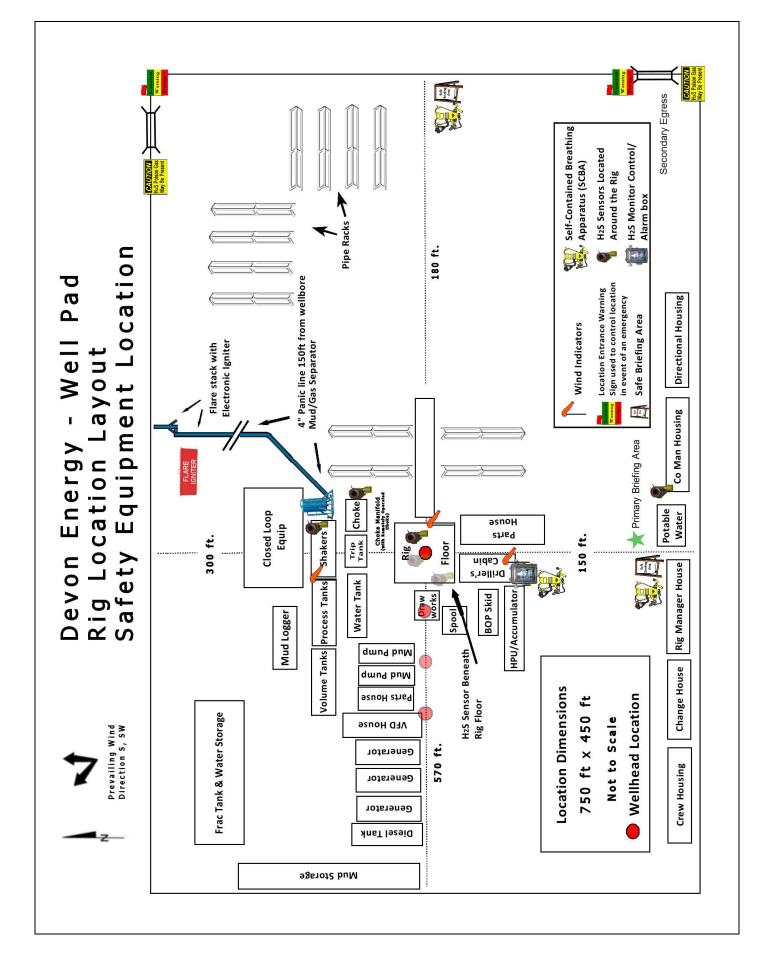
- A. All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold lines, and valves shall be H₂S trim.
- B. All elastomers used for packing and seals shall be H₂S trim.

6. Communication:

- A. Company personnel have/use cellular telephones in the field.
- B. Land line (telephone) communications at Office

7. Well testing:

- A. Drill stem testing will be performed with a minimum number of personnel in the immediate vicinity, which are necessary to safety and adequately conduct the test. The drill stem testing will be conducted during daylight hours and formation fluids will not be flowed to the surface. All drill-stem-testing operations conducted in an H₂S environment will use the closed chamber method of testing.
- B. There will be no drill stem testing.


	Representative	Position	Phone Number	After Hours Number	
	Fisher (North)	Drilling Manager	832-967-7912		
	debrand (South)	Drilling Manager	405-552-6514		
Rich Dowr	ney	Drilling VP	405-228-2415		
Josh Harv	ey	EHS Manger	405-228-2440	918-500-5536	
Laura Wrig	ght	EHS Supervisor	405-552-5334	832-969-8145	
Robert Glo	over	EHS Professional	575-703-5712	575-703-5712	
Lane Fran	ık	Lead EHS	580-579-7052	580-579-7052	
Rickey Po	rter	Lead EHS	903-720-8315	903-720-8315	
Ronnie Ha	-	Lead EHS	918-839-2046	918-839-2046	
Brock Vise	3	Lead EHS	918-413-3291	918-413-3291	
Agency	<u>v Call List</u>				
Lea	Hobbs				
<u>County</u>	Lea County Communic	ation Authority		397-926	
(575)	State Police			885-313	
	City Police	397-926			
	Sheriff's Office 396-3				
	Ambulance 91				
	Fire Department	397-930			
	LEPC (Local Emergen	393-287			
	NMOCD	393-616			
		anagement (Closed)		393-000	
	US Bureau of Land Management (Closed) 393-000				
<u>Eddy</u>	Carlsbad				
County State Police				885-313	
<u>(575)</u>	City Police	885-211			
	Sheriff's Office		887-755		
	Ambulance	91			
	Fire Department		885-312		
	LEPC (Local Emergen	887-379			
	US Bureau of Land Ma	anagement		234-597	
	NM Emergency Respo	nse Commission (Sar	nta Fe)	(505) 476-960	
	24 HR	`		(505) 827-912	
	National Emergency R	esponse Center		(800) 424-880	
	National Pollution Cont	(703) 872-600			
	For Oil Spills	(800) 280-711			
	Emergency Services				
	Wild Well Control			(281) 784-470	
	Cudd Pressure Contro	(Q1)	5) 699-0139	(915) 563-335	
		. (31.	,		
	Halliburton	X .		(575) 746-275	

•

Give	Native Air – Emergency Helicopter – Hobbs	(575) 347-9836
GPS	For Air Ambulance - Eddy County Dispatch	(575)-616-7155
position:	For Air Ambulance - Lea County (LCCA)	(575)-397-9265
	Poison Control (24/7)	(800) 222-1222
	Oil & Gas Pipeline 24 Hour Service	(800) 364-4366
	NOAA – Website - www.nhc.noaa.gov	
	National Pollution Control Center	202-795-6958
	NPCC – Oil Spills	800-280-7118

.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	204824
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
pkautz	Will require a File As Drilled C-102 and a Directional Survey with the C-104	4/17/2023
pkautz	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string	4/17/2023
pkautz	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system	4/17/2023
pkautz	Cement is required to circulate on both surface and intermediate1 strings of casing	4/17/2023

CONDITIONS

Page 63 of 63

Action 204824