<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Form C-101 August 1, 2011

Permit 338167

APPLICATION FOR PERMIT TO DRILL, RE-ENTER, DEEPEN, PLUGBACK, OR ADD A ZON	ΙE
---	----

	74 1 107 (1011) 107 114111 107 14111 147 147 147 147 147 147 147 147								
Operator Name and Address		2. OGRID Number							
OXY USA INC		16696							
P.O. Box 4294		3. API Number							
Houston, TX 77210429	94	30-025-51343							
4. Property Code	5. Property Name	6. Well No.							
325625	AVOGATO 30 31 STATE COM	073H							

7. Surface Location

ı	UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County	
	С	30	22S	33E	С	420	N	2265	W	Lea	

8. Proposed Bottom Hole Location

UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County
0	31	22S	33E	0	20	S	1840	E	Lea

9. Pool Information

RED TANK;BONE SPRING, EAST	51687

Additional Well Information

11. Work Type	12. Well Type	13. Cable/Rotary	14. Lease Type	15. Ground Level Elevation
New Well	OIL		State	3698
16. Multiple	17. Proposed Depth	18. Formation	19. Contractor	20. Spud Date
N	22320	2nd Bone Spring Sand		6/10/2023
Depth to Ground water		Distance from nearest fresh water well		Distance to nearest surface water

☑ We will be using a closed-loop system in lieu of lined pits

21. Proposed Casing and Cement Program

Туре	Hole Size	Casing Size	Casing Weight/ft	Setting Depth	Sacks of Cement	Estimated TOC
Surf	14.75	10.75	45.5	1064	890	0
Int1	9.875	7.625	26.4	10995	1634	0
Prod	6.75	5.5	20	22320	893	10495

Casing/Cement Program: Additional Comments

22 Proposed Ployeut Provention Program

	opoccacat.		
Туре	Working Pressure	Test Pressure	Manufacturer
Annular	10000	10000	
Blind	10000	10000	
Double Ram	10000	10000	

knowledge and b	pelief. have complied with 19.15.14.9 (A)	true and complete to the best of my NMAC ⊠ and/or 19.15.14.9 (B) NMAC		OIL CONSERVATIO	ON DIVISION	
Printed Name:	Electronically filed by KELLEY MO	ONTGOMERY	Approved By:	Paul F Kautz		
Title:	Manager Regulatory		Title:	Geologist		
Email Address:	kelley_montgomery@oxy.com		Approved Date:	4/18/2023 Expiration Date: 4/18/2025		
Date:	4/13/2023	Phone: 713-366-5716	Conditions of Appr	roval Attached		

□ AMENDED REPORT

DISTRICT I 1625 N. FRENCH DR., HOBBS, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720

State of New Mexico Energy, Minerals & Natural Resources Department CONSERVATION DIVISION

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

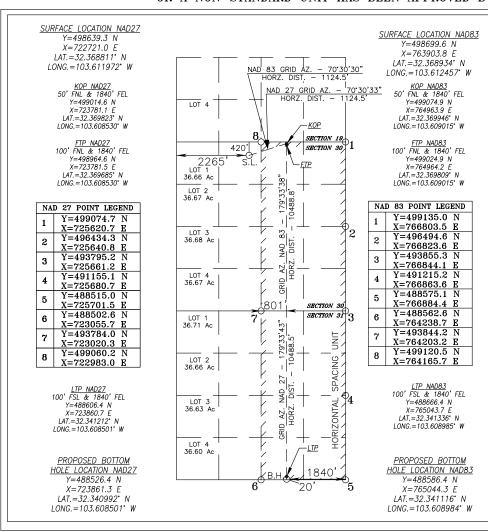
DISTRICT II 811 S. FIRST ST., ARTESIA, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

DISTRICT III 1000 RIO BRAZOS RD., AZTEC, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

1220 SOUTH ST. FRANCIS DR. Santa Fe, New Mexico 87505

DISTRICT IV 1220 S. ST. FRANCIS DR., SANTA FE, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

WELL LOCATION AND ACREAGE DEDICATION PLAT API Number Pool Code Pool Name 30-025 51687 ed Tank; Bone Spring, East 51343 Well Number Property Code Property Name AVOGATO 30_31 STATE COM 73H 325625 OGRID No. Operator Name Elevation 16696 OXY USA INC. 3697.6


Surface Location

UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
С	30	22-S	33-E		420	NORTH	2265	WEST	LEA

Bottom Hole Location If Different From Surface

UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
0	31	22-S	33-E		20	SOUTH	1840	EAST	LEA
Dedicated Acres	s Joint o	r Infill	Consolidation (Code Or	der No.				

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

OPERATOR CERTIFICATION

I hereby certify that the information I hereby certify that the information herein is true and complete to the best of my knowledge and belief, and that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of such mineral or working interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division.

Signature

04/13/2023 Date

Sarah McKinnev

Printed Name

sarah mckinney@oxy.com

E-mail Address

SURVEYOR CERTIFICATION

I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief.

DECEMBER 28, 2022

Date of Survey

Signature & Seal of Professional Surveyor

CHAD L. HARCRO MEX/C ZEW 0 R 29/FESSIONA

Certificate No. CHAD HARCROW 17777 W.O. 23-81 DRAWN BY: WN

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Form APD Conditions

Permit 338167

PERMIT CONDITIONS OF APPROVAL

Operator Name and Address:	API Number:
OXY USA INC [16696]	30-025-51343
P.O. Box 4294	Well:
Houston, TX 772104294	AVOGATO 30 31 STATE COM #073H

OCD Reviewer	Condition
pkautz	Notify OCD 24 hours prior to casing & cement
pkautz	Will require a File As Drilled C-102 and a Directional Survey with the C-104
pkautz	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string
	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system
pkautz	Cement is required to circulate on both surface and intermediate1 strings of casing
pkautz	The Operator is to notify NMOCD by sundry (Form C-103) within ten (10) days of the well being spud

PRD NM DIRECTIONAL PLANS (NAD 1983) Avogato 30-31 AVOGATO 30_31 STATE COM 73H

Wellbore #1

Plan: Permitting Plan

Standard Planning Report

23 March, 2023

Planning Report

HOPSPP Database:

ENGINEERING DESIGNS Company:

Project: PRD NM DIRECTIONAL PLANS (NAD 1983)

Site: Avogato 30-31

AVOGATO 30_31 STATE COM 73H Well:

Wellbore: Wellbore #1 Design: Permitting Plan Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well AVOGATO 30_31 STATE COM 73H

25' RKB @ 3722.60ft 25' RKB @ 3722.60ft

Grid

Minimum Curvature

Project PRD NM DIRECTIONAL PLANS (NAD 1983)

Map System: Geo Datum:

Position Uncertainty

Map Zone:

US State Plane 1983 North American Datum 1983 New Mexico Eastern Zone

System Datum:

Mean Sea Level

Using geodetic scale factor

Site Avogato 30-31

Site Position: From:

Northing: Easting: Мар

2.00 ft

498,694.54 usft 762,988.53 usft

Latitude: Longitude:

32.368937 -103.615421

Slot Radius: **Position Uncertainty:** 2.00 ft 13.200 in

AVOGATO 30_31 STATE COM 73H Well

Well Position +N/-S 0.00 ft 0.00 ft +E/-W

Northing: 498.699.60 usf 763,903.80 usf Easting: Wellhead Elevation: 0.00 ft

Latitude: Longitude: **Ground Level:**

32.368934 -103.612457 3,697.60 ft

Grid Convergence: 0.39°

Wellbore Wellbore #1

Magnetics **Model Name** Sample Date Declination Field Strength Dip Angle (°) (nT) HDGM FILE 3/27/2019 6.65 60.10 48,064.40000000

Design Permitting Plan

Audit Notes:

Version: Vertical Section: Phase:

PROTOTYPE +N/-S

Tie On Depth: +E/-W

0.00

Depth From (TVD) Direction (ft) (ft) (ft) (°) 0.00 0.00 0.00 173.57

Plan Survey Tool Program

Date 3/23/2023

Depth From Depth To (ft)

0.00

(ft)

Survey (Wellbore)

Tool Name

Remarks

22,320.89 Permitting Plan (Wellbore #1) B001Mb_MWD+HRGM

OWSG MWD + HRGM

Plan Sections	•									
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)	TFO (°)	Target
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
3,020.00	0.00	0.00	3,020.00	0.00	0.00	0.00	0.00	0.00	0.00	
3,595.01	11.50	46.73	3,591.15	39.42	41.88	2.00	2.00	0.00	46.73	
10,043.75	11.50	46.73	9,910.44	920.68	978.03	0.00	0.00	0.00	0.00	
11,096.55	11.50	179.56	10,953.87	887.30	1,056.13	2.00	0.00	12.62	155.99	
11,882.10	90.05	179.56	11,412.60	325.31	1,060.44	10.00	0.00	0.00	0.00	FTP (Avogato
22,321.29	90.05	179.56	11,402.60	-10,113.57	1,140.54	0.00	0.00	0.00	0.00	PBHL (Avogato

Planning Report

Database: Company: Project: HOPSPP

ENGINEERING DESIGNS

PRD NM DIRECTIONAL PLANS (NAD 1983)

Site: Avogato 30-31

Well: AVOGATO 30_31 STATE COM 73H

Wellbore: Wellbore #1

Design: Permitting Plan

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: Survey Calculation Method: Well AVOGATO 30_31 STATE COM 73H

25' RKB @ 3722.60ft 25' RKB @ 3722.60ft

Grid

anned Survey									
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00
200.00	0.00	0.00	200.00	0.00	0.00	0.00	0.00	0.00	0.00
300.00	0.00	0.00	300.00	0.00	0.00	0.00	0.00	0.00	0.00
400.00	0.00	0.00	400.00	0.00	0.00	0.00	0.00	0.00	0.00
500.00	0.00	0.00	500.00	0.00	0.00	0.00	0.00	0.00	0.00
600.00	0.00	0.00	600.00	0.00	0.00	0.00	0.00	0.00	0.00
700.00	0.00	0.00	700.00	0.00	0.00	0.00	0.00	0.00	0.00
800.00	0.00	0.00	800.00	0.00	0.00	0.00	0.00	0.00	0.00
900.00	0.00	0.00	900.00	0.00	0.00	0.00	0.00	0.00	0.00
1,000.00	0.00	0.00	1,000.00	0.00	0.00	0.00	0.00	0.00	0.00
1,100.00	0.00	0.00	1,100.00	0.00	0.00	0.00	0.00	0.00	0.00
1,200.00	0.00	0.00	1,200.00	0.00	0.00	0.00	0.00	0.00	0.00
1,300.00	0.00	0.00	1,300.00	0.00	0.00	0.00	0.00	0.00	0.00
1,400.00	0.00	0.00	1,400.00	0.00	0.00	0.00	0.00	0.00	0.00
1,500.00	0.00	0.00	1,500.00	0.00	0.00	0.00	0.00	0.00	0.00
1,600.00	0.00	0.00	1,600.00	0.00	0.00	0.00	0.00	0.00	0.00
1,700.00	0.00	0.00	1,700.00	0.00	0.00	0.00	0.00	0.00	0.00
1,800.00	0.00	0.00	1,800.00	0.00	0.00	0.00	0.00	0.00	0.00
1,900.00	0.00	0.00	1,900.00	0.00	0.00	0.00	0.00	0.00	0.00
2.000.00	0.00	0.00	2,000.00	0.00	0.00	0.00	0.00	0.00	0.00
2,100.00	0.00	0.00	2,100.00	0.00	0.00	0.00	0.00	0.00	0.00
2,200.00	0.00	0.00	2,200.00	0.00	0.00	0.00	0.00	0.00	0.00
2,300.00	0.00	0.00	2,300.00	0.00	0.00	0.00	0.00	0.00	0.00
2,400.00	0.00	0.00	2,400.00	0.00	0.00	0.00	0.00	0.00	0.00
								0.00	0.00
2,500.00	0.00 0.00	0.00	2,500.00 2,600.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
2,600.00 2,700.00	0.00	0.00 0.00	2,700.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00
2,800.00	0.00	0.00	2,800.00	0.00	0.00	0.00	0.00	0.00	0.00
2,900.00	0.00	0.00	2,900.00	0.00	0.00	0.00	0.00	0.00	0.00
2,900.00	0.00							0.00	0.00
3,000.00	0.00	0.00	3,000.00	0.00	0.00	0.00	0.00	0.00	0.00
3,020.00	0.00	0.00	3,020.00	0.00	0.00	0.00	0.00	0.00	0.00
3,100.00	1.60	46.73	3,099.99	0.77	0.81	-0.67	2.00	2.00	0.00
3,200.00	3.60	46.73	3,199.88	3.87	4.12	-3.39	2.00	2.00	0.00
3,300.00	5.60	46.73	3,299.55	9.37	9.96	-8.20	2.00	2.00	0.00
3,400.00	7.60	46.73	3,398.89	17.25	18.32	-15.09	2.00	2.00	0.00
3,500.00	9.60	46.73	3,497.76	27.50	29.21	-24.05	2.00	2.00	0.00
3,595.01	11.50	46.73	3,591.15	39.42	41.88	-34.48	2.00	2.00	0.00
3,600.00	11.50	46.73	3,596.05	40.10	42.60	-35.08	0.00	0.00	0.00
3,700.00	11.50	46.73	3,694.04	53.77	57.12	-47.03	0.00	0.00	0.00
3,800.00	11.50	46.73	3,792.03	67.44	71.64	-58.98 -70.04	0.00	0.00	0.00
3,900.00	11.50	46.73	3,890.02	81.10	86.15	-70.94	0.00	0.00	0.00
4,000.00	11.50	46.73 46.73	3,988.02	94.77	100.67 115.19	-82.89 -94.84	0.00 0.00	0.00	0.00 0.00
4,100.00 4,200.00	11.50 11.50	46.73 46.73	4,086.01	108.43			0.00	0.00 0.00	0.00
•	11.50	46.73	4,184.00	122.10	129.70	-106.79			
4,300.00	11.50	46.73	4,281.99	135.76	144.22	-118.75	0.00	0.00	0.00
4,400.00	11.50	46.73	4,379.99	149.43	158.74	-130.70	0.00	0.00	0.00
4,500.00	11.50	46.73	4,477.98	163.09	173.25	-142.65	0.00	0.00	0.00
4,600.00	11.50	46.73	4,575.97	176.76	187.77	-154.61	0.00	0.00	0.00
4,700.00	11.50	46.73	4,673.96	190.43	202.29	-166.56	0.00	0.00	0.00
4,800.00	11.50	46.73	4,771.96	204.09	216.80	-178.51	0.00	0.00	0.00
4,900.00	11.50	46.73	4,869.95	217.76	231.32	-190.46	0.00	0.00	0.00
5,000.00	11.50	46.73	4,967.94	231.42	245.84	-202.42	0.00	0.00	0.00
5,100.00	11.50	46.73	5,065.93	245.09	260.35	-214.37	0.00	0.00	0.00
5,200.00	11.50	46.73	5,163.93	258.75	274.87	-226.32	0.00	0.00	0.00

Planning Report

Database: Company: Project: HOPSPP

ENGINEERING DESIGNS

PRD NM DIRECTIONAL PLANS (NAD 1983)

Site: Avogato 30-31

Well: AVOGATO 30_31 STATE COM 73H

Wellbore: Wellbore #1

Design: Permitting Plan

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well AVOGATO 30_31 STATE COM 73H

25' RKB @ 3722.60ft 25' RKB @ 3722.60ft

Grid

esign:	Permitting Pla	all 							
Planned Survey									
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
5,300.00	11.50	46.73	5,261.92	272.42	289.39	-238.27	0.00	0.00	0.00
5,400.00	11.50	46.73	5,359.91	286.09	303.90	-250.23	0.00	0.00	0.00
5,500.00	11.50	46.73	5,457.90	299.75	318.42	-262.18	0.00	0.00	0.00
5,600.00	11.50	46.73	5,555.90	313.42	332.94	-274.13	0.00	0.00	0.00
5,700.00	11.50	46.73	5,653.89	327.08	347.45	-286.09	0.00	0.00	0.00
5,800.00	11.50	46.73	5,751.88	340.75	361.97	-298.04	0.00	0.00	0.00
5,900.00	11.50	46.73	5,849.87	354.41	376.49	-309.99	0.00	0.00	0.00
6,000.00	11.50	46.73	5,947.86	368.08	391.00	-321.94	0.00	0.00	0.00
6,100.00	11.50	46.73	6,045.86	381.75	405.52	-333.90	0.00	0.00	0.00
6,200.00	11.50	46.73	6,143.85	395.41	420.04	-345.85	0.00	0.00	0.00
6,300.00	11.50	46.73	6,241.84	409.08	434.55	-357.80	0.00	0.00	0.00
6,400.00	11.50	46.73	6,339.83	422.74	449.07	-369.75	0.00	0.00	0.00
6,500.00	11.50	46.73	6,437.83	436.41	463.59	-381.71	0.00	0.00	0.00
6,600.00	11.50	46.73	6,535.82	450.41	403.59	-393.66	0.00	0.00	0.00
6,700.00	11.50	46.73 46.73	6,633.81	450.07 463.74	478.10	-393.66 -405.61	0.00	0.00	0.00
6,800.00	11.50	46.73	6,731.80	477.40	507.14	-417.57	0.00	0.00	0.00
6,900.00	11.50	46.73	6,829.80	491.07	521.65	-429.52	0.00	0.00	0.00
7,000.00	11.50	46.73	6,927.79	504.74	536.17	-441.47	0.00	0.00	0.00
7,100.00	11.50	46.73	7,025.78	518.40	550.69	-453.42	0.00	0.00	0.00
7,200.00	11.50	46.73	7,123.77	532.07	565.20	-465.38	0.00	0.00	0.00
7,300.00	11.50	46.73	7,221.77	545.73	579.72	-477.33	0.00	0.00	0.00
						-477.33 -489.28			
7,400.00	11.50	46.73	7,319.76	559.40	594.24		0.00	0.00	0.00
7,500.00	11.50	46.73	7,417.75	573.06	608.76	-501.24	0.00	0.00	0.00
7,600.00	11.50	46.73	7,515.74	586.73	623.27	-513.19	0.00	0.00	0.00
7,700.00	11.50	46.73	7,613.74	600.40	637.79	-525.14	0.00	0.00	0.00
7,800.00	11.50	46.73	7,711.73	614.06	652.31	-537.09	0.00	0.00	0.00
7,900.00	11.50	46.73	7,809.72	627.73	666.82	-549.05	0.00	0.00	0.00
8,000.00	11.50	46.73	7,907.71	641.39	681.34	-561.00	0.00	0.00	0.00
8,100.00	11.50	46.73	8,005.71	655.06	695.86	-572.95	0.00	0.00	0.00
8,200.00	11.50	46.73	8,103.70	668.72	710.37	-584.90	0.00	0.00	0.00
8,300.00	11.50	46.73	8,201.69	682.39	724.89	-596.86	0.00	0.00	0.00
8,400.00	11.50	46.73	8,299.68	696.05	739.41	-608.81	0.00	0.00	0.00
8,500.00	11.50	46.73	8,397.68	709.72	753.92	-620.76	0.00	0.00	0.00
8,600.00	11.50	46.73	8,495.67	723.39	768.44	-632.72	0.00	0.00	0.00
8,700.00	11.50	46.73	8,593.66	737.05	782.96	-644.67	0.00	0.00	0.00
8,800.00	11.50	46.73	8.691.65	750.72	797.47	-656.62	0.00	0.00	0.00
8,900.00	11.50	46.73	8,789.65	764.38	811.99	-668.57	0.00	0.00	0.00
9,000.00	11.50	46.73	8,887.64	704.36 778.05	826.51	-680.53	0.00	0.00	0.00
9,100.00	11.50	46.73	8,985.63	791.71	841.02	-692.48	0.00	0.00	0.00
9,200.00	11.50	46.73	9,083.62	805.38	855.54	-704.43	0.00	0.00	0.00
9,300.00	11.50	46.73	9,181.61	819.05	870.06	-716.39	0.00	0.00	0.00
9,400.00	11.50	46.73	9,279.61	832.71	884.57	-728.34	0.00	0.00	0.00
9,500.00	11.50	46.73	9,377.60	846.38	899.09	-740.29	0.00	0.00	0.00
9,600.00	11.50	46.73	9,475.59	860.04	913.61	-752.24	0.00	0.00	0.00
9,700.00	11.50	46.73	9,573.58	873.71	928.12	-764.20	0.00	0.00	0.00
9,800.00	11.50	46.73	9,671.58	887.37	942.64	-776.15	0.00	0.00	0.00
9,800.00	11.50	46.73 46.73	9,671.58	887.37 901.04	942.64 957.16	-776.15 -788.10	0.00	0.00	0.00
9,900.00	11.50	46.73 46.73	9,769.57	901.04	957.16 971.67	-788.10 -800.05	0.00	0.00	0.00
-,									
10,043.75	11.50	46.73	9,910.44	920.68	978.03	-805.28	0.00	0.00	0.00
10,100.00	10.48	49.25	9,965.65	927.87	985.98	-811.53	2.00	-1.81	4.47
10,200.00	8.74	55.13	10,064.25	938.15	999.11	-820.28	2.00	-1.74	5.88
10,300.00	7.13	63.77	10,163.29	945.24	1,010.90	-826.00	2.00	-1.61	8.64
10,400.00	5.76	76.91	10,262.66	949.11	1,021.36	-828.68	2.00	-1.36	13.14
		96.35	10,362.24		1,030.46	-828.32	2.00	-0.90	19.44
10,500.00	4.86	90.33	10,302.24	949.78	1,030.40	-020.32	2.00	-0.90	19.44

Planning Report

Database: Company: Project:

Site:

HOPSPP

ENGINEERING DESIGNS

PRD NM DIRECTIONAL PLANS (NAD 1983)

Avogato 30-31

Well: AVOGATO 30_31 STATE COM 73H

Wellbore: Wellbore #1

Design: Permitting Plan

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: Survey Calculation Method: Well AVOGATO 30_31 STATE COM 73H

25' RKB @ 3722.60ft 25' RKB @ 3722.60ft

Grid

Design:	Permitting Pla	an							
Planned Survey									
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
10,700.00	5.33	142.35	10,561.53	941.49	1,044.56	-818.51	2.00	0.64	21.89
10,800.00	6.54	157.89	10,661.00	932.54	1,049.54	-809.05	2.00	1.21	15.54
10,900.00	8.07	168.09	10,760.19	920.40	1,053.13	-796.59	2.00	1.53	10.21
11,000.00	9.77	174.92	10,858.98	905.08	1,055.33	-781.12	2.00	1.70	6.83
11,096.55	11.50	179.56	10,953.87	887.30	1,056.13	-763.36	2.00	1.79	4.80
11,100.00	11.84	179.56	10,957.25	886.60	1,056.13	-762.66		10.00	0.00
11,150.00	16.84	179.56	11,005.67	874.22	1,056.23	-750.35	10.00	10.00	0.00
11,200.00	21.84	179.56	11,052.83	857.66	1,056.35	-733.88	10.00	10.00	0.00
11,250.00	26.84	179.56	11,098.37	837.06	1,056.51	-713.39	10.00	10.00	0.00
11,300.00	31.84	179.56	11,141.94	812.56	1,056.70	-689.03	10.00	10.00	0.00
11,350.00	36.84	179.56	11,183.21	784.37	1,056.92	-660.98	10.00	10.00	0.00
11,400.00	41.84	179.56	11,221.87	752.68	1,057.16	-629.47	10.00	10.00	0.00
11,450.00	46.84	179.56	11,257.62	717.74	1,057.43	-594.72	10.00	10.00	0.00
11,500.00	51.84	179.56	11,290.18	679.82	1,057.72	-557.01	10.00	10.00	0.00
11,550.00 11,600.00 11,650.00	56.84 61.84 66.84	179.56 179.56 179.56	11,319.32 11,344.80 11,366.44	639.21 596.21 551.16	1,058.03 1,058.36 1,058.71	-516.62 -473.85 -429.04	10.00 10.00 10.00 10.00	10.00 10.00 10.00	0.00 0.00 0.00 0.00
11,700.00 11,750.00 11,800.00	71.84 76.84 81.84	179.56 179.56 179.56	11,384.08 11,397.56 11,406.81	504.39 456.26 407.14	1,059.06 1,059.43 1,059.81	-382.53 -334.66 -285.81	10.00 10.00 10.00 10.00	10.00 10.00 10.00	0.00 0.00 0.00 0.00
11,850.00	86.84	179.56	11,411.73	357.40	1,060.19	-236.34	10.00	10.00	0.00
11,882.10	90.05	179.56	11,412.60	325.31	1,060.44	-204.43	10.00	10.00	0.00
11,900.00	90.05	179.56	11,412.58	307.42	1,060.58	-186.63	0.00	0.00	0.00
12,000.00	90.05	179.56	11,412.49	207.42	1,061.34	-87.17	0.00	0.00	0.00
12,100.00	90.05	179.56	11,412.39	107.42	1,062.11	12.28	0.00	0.00	0.00
12,200.00	90.05	179.56	11,412.30	7.42	1,062.88	111.73	0.00	0.00	0.00
12,300.00	90.05	179.56	11,412.20	-92.57	1,063.65	211.18	0.00	0.00	0.00
12,400.00	90.05	179.56	11,412.10	-192.57	1,064.41	310.64	0.00	0.00	0.00
12,500.00	90.05	179.56	11,412.01	-292.57	1,065.18	410.09	0.00	0.00	0.00
12,600.00	90.05	179.56	11,411.91	-392.56	1,065.95	509.54	0.00	0.00	0.00
12,700.00	90.05	179.56	11,411.82	-492.56	1,066.71	609.00	0.00	0.00	0.00
12,800.00	90.05	179.56	11,411.72	-592.56	1,067.48	708.45	0.00	0.00	0.00
12,900.00	90.05	179.56	11,411.63	-692.55	1,068.25	807.90	0.00	0.00	0.00
13,000.00	90.05	179.56	11,411.53	-792.55	1,069.02	907.36	0.00	0.00	0.00
13,100.00	90.05	179.56	11,411.43	-892.55	1,069.78	1,006.81	0.00	0.00	0.00
13,200.00	90.05	179.56	11,411.34	-992.55	1,070.55	1,106.26	0.00	0.00	0.00
13,300.00	90.05	179.56	11,411.24	-1,092.54	1,071.32	1,205.72	0.00	0.00	0.00
13,400.00	90.05	179.56	11,411.15	-1,192.54	1,072.09	1,305.17	0.00	0.00	0.00
13,500.00	90.05	179.56	11,411.05	-1,292.54	1,072.85	1,404.62	0.00	0.00	0.00
13,600.00	90.05	179.56	11,410.95	-1,392.53	1,073.62	1,504.08	0.00	0.00	0.00
13,700.00	90.05	179.56	11,410.86	-1,492.53	1,074.39	1,603.53	0.00	0.00	0.00
13,800.00 13,900.00 14,000.00 14,100.00	90.05 90.05 90.05 90.05	179.56 179.56 179.56 179.56	11,410.66 11,410.67 11,410.57 11,410.48	-1,492.53 -1,592.53 -1,692.52 -1,792.52 -1,892.52	1,075.15 1,075.92 1,076.69 1,077.46	1,702.98 1,802.43 1,901.89 2,001.34	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
14,200.00	90.05	179.56	11,410.38	-1,992.52	1,078.22	2,100.79	0.00	0.00	0.00
14,300.00	90.05	179.56	11,410.28	-2,092.51	1,078.99	2,200.25	0.00	0.00	0.00
14,400.00	90.05	179.56	11,410.19	-2,192.51	1,079.76	2,299.70	0.00	0.00	0.00
14,500.00	90.05	179.56	11,410.09	-2,292.51	1,080.53	2,399.15	0.00	0.00	0.00
14,600.00	90.05	179.56	11,410.00	-2,392.50	1,081.29	2,498.61	0.00	0.00	0.00
14,700.00	90.05	179.56	11,409.90	-2,492.50	1,082.06	2,598.06	0.00	0.00	0.00
14,800.00	90.05	179.56	11,409.81	-2,592.50	1,082.83	2,697.51	0.00	0.00	0.00
14,900.00	90.05	179.56	11,409.71	-2,692.49	1,083.60	2,796.97	0.00	0.00	0.00
15,000.00	90.05	179.56	11,409.61	-2,792.49	1,084.36	2,896.42	0.00	0.00	0.00
15,100.00	90.05	179.56	11,409.52	-2,892.49	1,085.13	2,995.87	0.00	0.00	0.00

Planning Report

Database: Company: Project: HOPSPP

ENGINEERING DESIGNS

PRD NM DIRECTIONAL PLANS (NAD 1983)

Site: Avogato 30-31

Well: AVOGATO 30_31 STATE COM 73H

Wellbore: Wellbore #1

Design: Permitting Plan

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well AVOGATO 30_31 STATE COM 73H

25' RKB @ 3722.60ft 25' RKB @ 3722.60ft

Grid

Design:	Permitting Pla	an							
Planned Survey									
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
15,200.00	90.05	179.56	11,409.42	-2,992.49	1,085.90	3,095.33	0.00	0.00	0.00
15,300.00	90.05	179.56	11,409.33	-3,092.48	1,086.66	3,194.78	0.00	0.00	0.00
15,400.00	90.05	179.56	11,409.23	-3,192.48	1,087.43	3,294.23	0.00	0.00	0.00
15,500.00	90.05	179.56	11,409.13	-3,292.48	1,088.20	3,393.68	0.00	0.00	0.00
15,600.00	90.05	179.56	11,409.04	-3,392.47	1,088.97	3,493.14	0.00	0.00	0.00
15,700.00	90.05	179.56	11,408.94	-3,492.47	1,089.73	3,592.59	0.00	0.00	0.00
15,800.00	90.05	179.56	11,408.85	-3,592.47	1,090.50	3,692.04	0.00	0.00	0.00
15,900.00	90.05	179.56	11,408.75	-3,692.46	1,091.27	3,791.50	0.00	0.00	0.00
16,000.00	90.05	179.56	11,408.66	-3,792.46	1,092.04	3,890.95	0.00	0.00	0.00
16,100.00	90.05	179.56	11,408.56	-3,892.46	1,092.80	3,990.40	0.00	0.00	0.00
16,200.00	90.05	179.56	11,408.46	-3,992.46	1,093.57	4,089.86	0.00	0.00	0.00
16,300.00	90.05	179.56	11,408.37	-4,092.45	1,094.34	4,189.31	0.00	0.00	0.00
16,400.00	90.05	179.56	11,408.27	-4,192.45	1,095.11	4,288.76	0.00	0.00	0.00
16,500.00	90.05	179.56	11,408.18	-4,292.45	1,095.87	4,388.22	0.00	0.00	0.00
16,600.00	90.05	179.56	11,408.08	-4,392.44	1,096.64	4,487.67	0.00	0.00	0.00
16,700.00	90.05	179.56	11,407.99	-4,492.44	1,097.41	4,587.12	0.00	0.00	0.00
16,800.00	90.05	179.56	11,407.89	-4,592.44	1,098.17	4,686.58	0.00	0.00	0.00
16,900.00	90.05	179.56	11,407.79	-4,692.43	1,098.94	4,786.03	0.00	0.00	0.00
17,000.00 17,100.00	90.05 90.05	179.56 179.56	11,407.70 11,407.60	-4,792.43 -4,892.43	1,099.71 1,100.48	4,885.48 4,984.93	0.00	0.00	0.00 0.00
17,200.00	90.05	179.56	11,407.51	-4,992.43	1,101.24	5,084.39	0.00	0.00	0.00
17,300.00	90.05	179.56	11,407.41	-5,092.42	1,102.01	5,183.84	0.00	0.00	0.00
17,400.00	90.05	179.56	11,407.31	-5,192.42	1,102.78	5,283.29	0.00	0.00	0.00
17,500.00 17,600.00	90.05 90.05	179.56 179.56	11,407.22 11,407.12	-5,292.42 -5,392.41	1,103.55 1,104.31	5,382.75 5,482.20	0.00	0.00	0.00 0.00
17,700.00	90.05	179.56	11,407.03	-5,492.41	1,105.08	5,581.65	0.00	0.00	0.00
17,800.00	90.05	179.56	11,406.93	-5,592.41	1,105.85	5,681.11	0.00	0.00	0.00
17,900.00	90.05	179.56	11,406.84	-5,692.41	1,106.62	5,780.56	0.00	0.00	0.00
18,000.00	90.05	179.56	11,406.74	-5,792.40	1,107.38	5,880.01	0.00	0.00	0.00
18,100.00	90.05	179.56	11,406.64	-5,892.40	1,108.15	5,979.47		0.00	0.00
18,200.00	90.05	179.56	11,406.55	-5,992.40	1,108.92	6,078.92	0.00	0.00	0.00
18,300.00	90.05	179.56	11,406.45	-6,092.39	1,109.68	6,178.37	0.00	0.00	0.00
18,400.00	90.05	179.56	11,406.36	-6,192.39	1,110.45	6,277.83	0.00	0.00	0.00
18,500.00 18,600.00	90.05 90.05	179.56 179.56	11,406.26 11,406.16 11.406.07	-6,292.39 -6,392.38	1,111.22 1,111.99	6,377.28 6,476.73	0.00 0.00	0.00 0.00	0.00 0.00
18,700.00	90.05	179.56	11,405.07	-6,492.38	1,112.75	6,576.18	0.00	0.00	0.00
18,800.00	90.05	179.56	11,405.97	-6,592.38	1,113.52	6,675.64	0.00	0.00	0.00
18,900.00	90.05	179.56	11,405.88	-6,692.38	1,114.29	6,775.09	0.00	0.00	0.00
19,000.00	90.05	179.56	11,405.78	-6,792.37	1,115.06	6,874.54	0.00	0.00	0.00
19,100.00 19,200.00	90.05 90.05	179.56 179.56	11,405.69 11,405.59	-6,892.37 -6,992.37	1,115.82 1,116.59	6,974.00 7,073.45	0.00	0.00	0.00
19,300.00	90.05	179.56	11,405.49	-7,092.36	1,117.36	7,172.90	0.00	0.00	0.00
19,400.00	90.05	179.56	11,405.40	-7,192.36	1,118.13	7,272.36	0.00	0.00	0.00
19,500.00	90.05	179.56	11,405.30	-7,292.36	1,118.89	7,371.81	0.00	0.00	0.00
19,600.00	90.05	179.56	11,405.21	-7,392.35	1,119.66	7,471.26	0.00	0.00	0.00
19,700.00	90.05	179.56	11,405.11	-7,492.35	1,120.43	7,570.72	0.00	0.00	0.00
19,800.00	90.05	179.56	11,405.02	-7,592.35	1,121.19	7,670.17	0.00	0.00	0.00
19,900.00	90.05	179.56	11,404.92	-7,692.35	1,121.96	7,769.62	0.00	0.00	0.00
20,000.00	90.05	179.56	11,404.82	-7,792.34	1,122.73	7,869.08	0.00	0.00	0.00
20,100.00	90.05	179.56	11,404.73	-7,892.34	1,123.50	7,968.53	0.00	0.00	0.00
20,200.00	90.05	179.56	11,404.63	-7,992.34	1,124.26	8,067.98	0.00	0.00	0.00
20,300.00	90.05	179.56	11,404.54	-8,092.33	1,125.03	8,167.43	0.00	0.00	0.00
20,400.00	90.05	179.56	11,404.44	-8,192.33	1,125.80	8,266.89	0.00	0.00	0.00
20,500.00	90.05	179.56	11,404.34	-8,292.33	1,126.57	8,366.34	0.00	0.00	0.00
20,600.00	90.05	179.56	11,404.25	-8,392.32	1,127.33	8,465.79	0.00	0.00	0.00

Planning Report

Database: Company: Project: HOPSPP

ENGINEERING DESIGNS

PRD NM DIRECTIONAL PLANS (NAD 1983)

Site: Avogato 30-31

Well: AVOGATO 30_31 STATE COM 73H

Wellbore: Wellbore #1

Design: Permitting Plan

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

North Reference: Survey Calculation Method: Well AVOGATO 30_31 STATE COM 73H

25' RKB @ 3722.60ft 25' RKB @ 3722.60ft

Grid

Planned Survey										
			Vertical			Vartical	Damlan	Dild	T	
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)	
20,700.00	90.05	179.56	11,404.15	-8,492.32	1,128.10	8,565.25	0.00	0.00	0.00	
20,800.00	90.05	179.56	11,404.06	-8,592.32	1,128.87	8,664.70	0.00	0.00	0.00	
20,900.00	90.05	179.56	11,403.96	-8,692.32	1,129.64	8,764.15	0.00	0.00	0.00	
21,000.00	90.05	179.56	11,403.87	-8,792.31	1,130.40	8,863.61	0.00	0.00	0.00	
21,100.00	90.05	179.56	11,403.77	-8,892.31	1,131.17	8,963.06	0.00	0.00	0.00	
21,200.00	90.05	179.56	11,403.67	-8,992.31	1,131.94	9,062.51	0.00	0.00	0.00	
21,300.00	90.05	179.56	11,403.58	-9,092.30	1,132.70	9,161.97	0.00	0.00	0.00	
21,400.00	90.05	179.56	11,403.48	-9,192.30	1,133.47	9,261.42	0.00	0.00	0.00	
21,500.00	90.05	179.56	11,403.39	-9,292.30	1,134.24	9,360.87	0.00	0.00	0.00	
21,600.00	90.05	179.56	11,403.29	-9,392.29	1,135.01	9,460.33	0.00	0.00	0.00	
21,700.00	90.05	179.56	11,403.20	-9,492.29	1,135.77	9,559.78	0.00	0.00	0.00	
21,800.00	90.05	179.56	11,403.10	-9,592.29	1,136.54	9,659.23	0.00	0.00	0.00	
21,900.00	90.05	179.56	11,403.00	-9,692.29	1,137.31	9,758.69	0.00	0.00	0.00	
22,000.00	90.05	179.56	11,402.91	-9,792.28	1,138.08	9,858.14	0.00	0.00	0.00	
22,100.00	90.05	179.56	11,402.81	-9,892.28	1,138.84	9,957.59	0.00	0.00	0.00	
22,200.00	90.05	179.56	11,402.72	-9,992.28	1,139.61	10,057.04	0.00	0.00	0.00	
22,300.00	90.05	179.56	11,402.62	-10,092.27	1,140.38	10,156.50	0.00	0.00	0.00	
22,321.29	90.05	179.56	11,402.60	-10,113.57	1,140.54	10,177.67	0.00	0.00	0.00	

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude
PBHL (Avogato 30_31 - plan hits target cer - Point	0.00 nter	0.00	11,402.60	-10,113.57	1,140.54	488,586.40	765,044.30	32.341116	-103.608985
FTP (Avogato 30_31 - plan hits target cer - Point	0.00 nter	0.00	11,412.60	325.31	1,060.44	499,024.90	764,964.20	32.369809	-103.609015

Formations						
	Measured Depth (ft)	Vertical Depth (ft)	Name	Lithology	Dip (°)	Dip Direction (°)
	1,005.60	1,005.60	RUSTLER			
	1,665.60	1,665.60	SALADO			
	3,087.61	3,087.60	CASTILE			
	4,952.71	4,921.60	DELAWARE			
	5,024.14	4,991.60	BELL CANYON			
	5,912.99	5,862.60	CHERRY CANYON			
	7,255.95	7,178.60	BRUSHY CANYON			
	8,888.73	8,778.60	BONE SPRING			
	10,022.49	9,889.60	BONE SPRING 1ST			
	10,728.20	10,589.60	BONE SPRING 2ND			

Planning Report

Database: HOPSPP

Company: ENGINEERING DESIGNS

Project: PRD NM DIRECTIONAL PLANS (NAD 1983)

Site: Avogato 30-31

Well: AVOGATO 30_31 STATE COM 73H

Wellbore: Wellbore #1

Design: Permitting Plan

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well AVOGATO 30_31 STATE COM 73H

25' RKB @ 3722.60ft 25' RKB @ 3722.60ft

Grid

Plan Annotations	S				
	easured	Vertical	Local Coor	dinates	
	Depth (ft)	Depth (ft)	+N/-S (ft)	+E/-W (ft)	Comment
	3,020.00	3,020.00	0.00	0.00	Build 2.00°/100'
	3,595.01	3,591.16	39.42	41.88	Hold 11.50° Tangent
•	10,043.75	9,910.43	920.68	978.03	Turn 2.00°/100'
•	11,096.55	10,953.87	887.30	1,056.13	KOP, Build 10.00°/100'
•	11,882.10	11,412.60	325.32	1,060.44	Landing Point
2	22,321.29	11,402.60	-10,113.56	1,140.54	TD at 22321.29' MD

Project: PRD NM DIRECTIONAL PLANS (NAD 1983)

Site: Avogato 30-31

Well: AVOGATO 30_31 STATE COM 73H

Wellbore: Wellbore #1
Design: Permitting Plan

PROJECT DETAILS: NM DIRECTIONAL PLANS (NAD 1983)

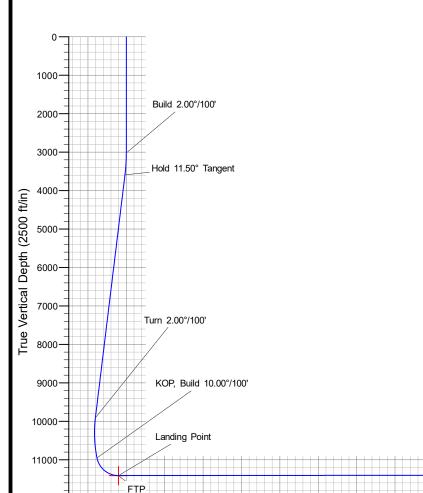
Geodetic System: US State Plane 1983

Datum: North American Datum 1983

Ellipsoid: GRS 1980

Zone: New Mexico Eastern Zone

System Datum: Mean Sea Level



Azimuths to Grid North True North: -0.39° Magnetic North: 5.98°

Magnetic Field Strength: 47750.0nT Dip Angle: 60.00° Date: 3/23/2022 Model: HDGM_FILE

	WELL DETAILS: AVOGATO 30_31 STATE COM 73H									
+N/-S 0.00	+E/-W 0.00	Northing 498699.60	Ground Level: Easting 763903.80	3697.60 3	Latittude 2.368934	Longitude -103.612457				
			SECTION DE	TAILC						

				_		.,				
MD 0.00	Inc 0.00	Azi 0.00	TVD 0.00	+N/-S 0.00	+E/-W 0.00	Dleg 0.00	TFace 0.00	VSect 0.00	Annotation	
3020.00	0.00	0.00	3020.00	0.00	0.00	0.00	0.00	0.00	Build 2.00°/100'	
3595.01	11.50	46.73	3591.15	39.42	41.88	2.00	46.73	-34.48	Hold 11.50° Tangent	
10043.75	11.50	46.73	9910.44	920.68	978.03	0.00	0.00	-805.28	Turn 2.00°/100'	
11096.55	11.50	179.56	10953.87	887.30	1056.13	2.00	155.99	-763.36	KOP, Build 10.00°/100'	
11882.10	90.05	179.56	11412.60	325.31	1060.44	10.00	0.00	-204.43	Landing Point	
22321.29	90.05	179.56	11402.60	-10113.57	1140.54	0.00	0.00	10177.67	TD at 22321.29' MD	

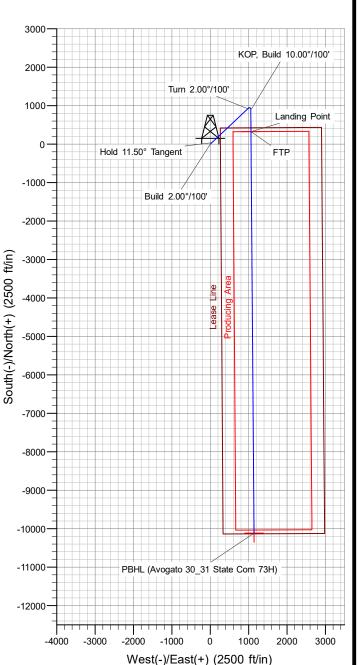
2000

4000

5000

Vertical Section at 173.57° (2500 ft/in)

6000

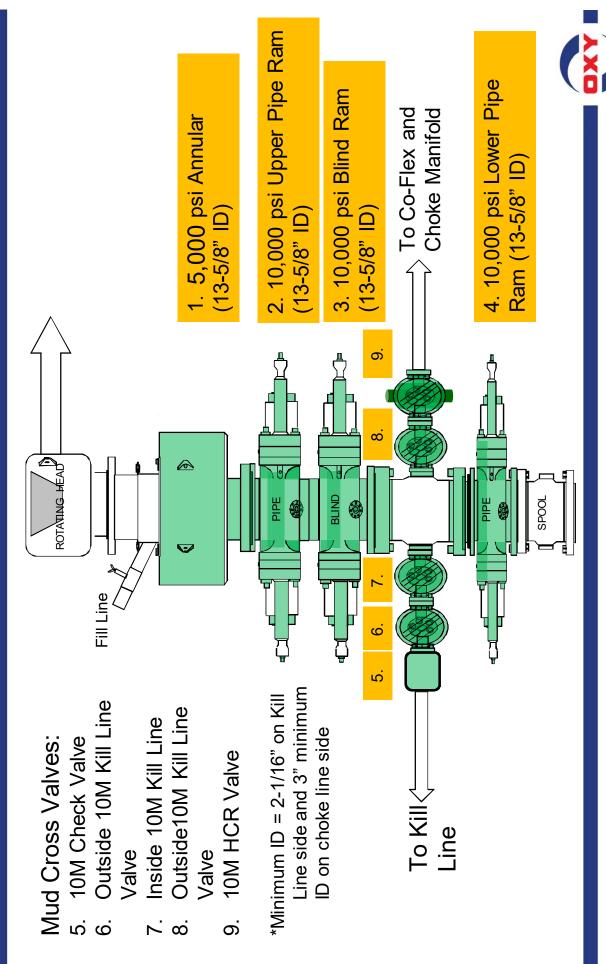

7000

8000

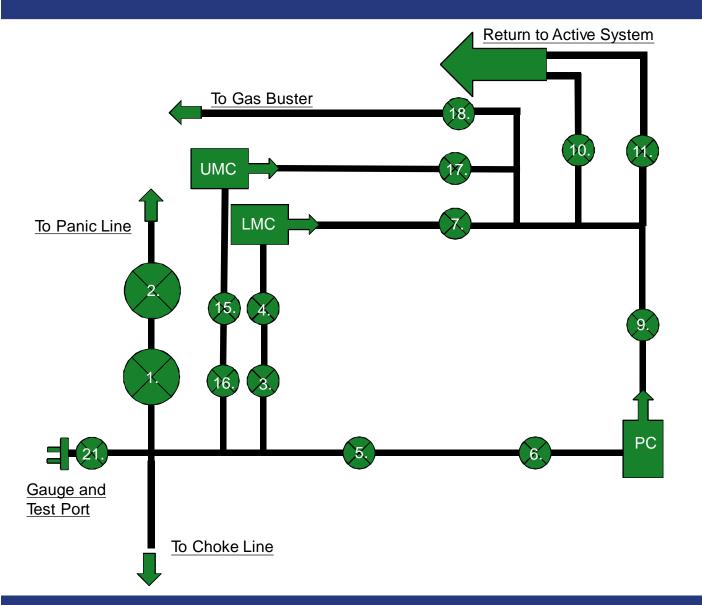
1000

12000

-1000

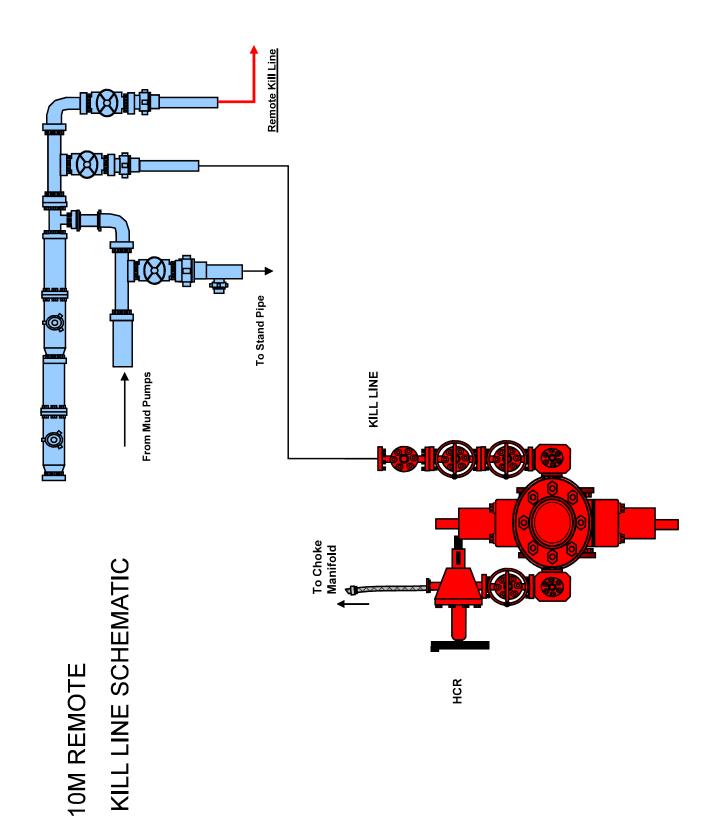


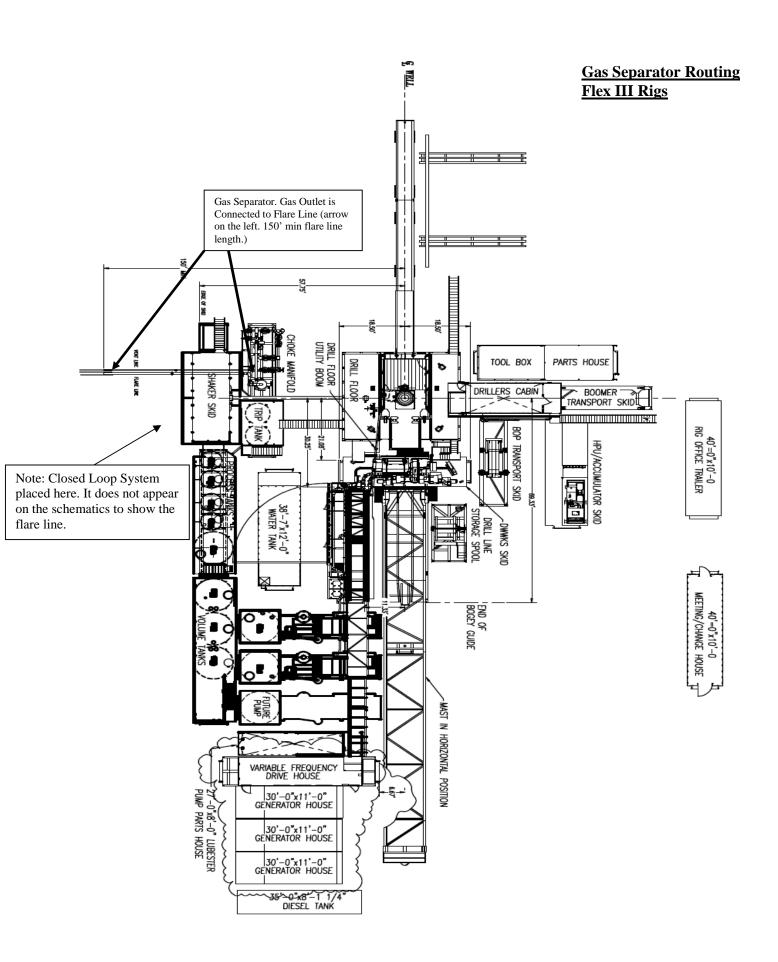
PBHL

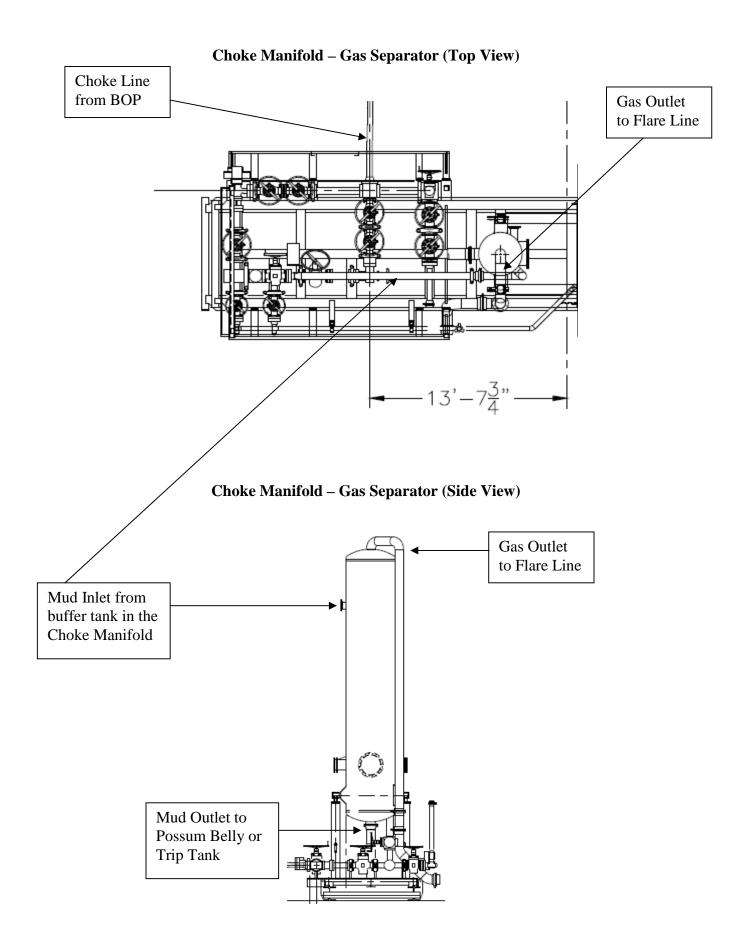

10000

9000

5/10M BOP Stack


10M Choke Panel




- 1. Choke Manifold Valve
- 2. Choke Manifold Valve
- 3. Choke Manifold Valve
- 4. Choke Manifold Valve
- 5. Choke Manifold Valve
- 6. Choke Manifold Valve
- 7. Choke Manifold Valve
- 8. PC Power Choke
- 9. Choke Manifold Valve
- 10. Choke Manifold Valve
- 11. Choke Manifold Valve
- 12. LMC Lower Manual Choke
- 13. UMC Upper manual choke
- 15. Choke Manifold Valve
- 16. Choke Manifold Valve
- 17. Choke Manifold Valve
- 18. Choke Manifold Valve
- 21. Vertical Choke Manifold Valve

*All Valves 3" minimum

OXY's Minimum Design Criteria

Burst, Collapse, and Tensile SF are calculated using Landmark's Stress Check (Casing Design) software. A sundry will be requested if any lesser grade or different size casing is substituted.

1) Casing Design Assumptions

a) Burst Loads

CSG Test (Surface)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Pore pressure in open hole.

CSG Test (Intermediate)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

CSG Test (Production)

- Internal:
 - For Drilling: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
 - For Production: The design pressure test should be the greater of (1) the planned test pressure prior to stimulation down the casing. (2) the regulatory test pressure, and (3) the expected gas lift system pressure. The design test fluid should be the fluid associated with pressure test having the greatest pressure.

External:

- For Drilling: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
- For Production: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Column (Surface)

- o Internal: Assumes a full column of gas in the casing with a Gas/Oil Gradient of 0.1 psi/ft in the absence of better information. It is limited to the controlling pressure based on the fracture pressure at the shoe or the maximum expected pore pressure within the next drilling interval, whichever results in a lower surface pressure.
- External: Fluid gradient below TOC, pore pressure from the TOC to the Intermediate CSG shoe (if applicable), and MW of the drilling mud that was in the hole when the CSG was run from Intermediate CSG shoe to surface.

Bullheading (Surface / Intermediate)

- Internal: The string must be designed to withstand a pressure profile based on the fracture pressure at the casing shoe with a column of water above the shoe plus an additional surface pressure (in psi) of 0.02 X MD of the shoe to account for pumping friction pressure.
- External: Mud weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Kick (Intermediate)

- The string must be designed to at least a gas kick load case unless the rig is unable to detect a kick. For the gas kick load case, the internal pressure profile must be based on a minimum volume of 50 bbl or the minimum kick detection capability of the rig, whichever is greater, and a kick intensity of 2.0 ppg for Class 1, 1.0 ppg of Class 2, and 0.5 ppg for Class 3 and 4 wells.
- Internal: Influx depth of the maximum pore pressure of 0.55 "gas kick gravity" of gas to surface while drilling the next hole section.
- External: Mud weight to the TOC, cement mix water gradient below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Producing (Production)

- Internal: SITP plus a packer fluid gradient to the shoe or top of packer.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Stimulating (Production)

- Internal: Surface pressure or pressure-relief system pressure, whichever is lower plus packer fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Injection / Stimulation Down Casing (Production)

- Internal: Surface pressure plus injection fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

b) Collapse Loads

Lost Circulation (Surface / Intermediate)

- Internal: Lost circulation at the TD of the next hole section, and the fluid level falls to a depth where the hydrostatic of the mud equals pore pressure at the depth of the lost circulation zone.
- External: MW of the drilling mud that was in the hole when the casing was run.

Cementing (Surface / Intermediate / Production)

- Internal: Displacement fluid density.
- External: Mud weight from TOC to surface and cement slurry weight from TOC to casing shoe.

Full Evacuation (Production)

- Internal: Full void pipe.
- External: MW of drilling mud in the hole when the casing was run.

c) Tension Loads

Running Casing (Surface / Intermediate / Production)

 Axial: Buoyant weight of the string plus the lesser of 100,000 lb or the string weight in air.

Green Cement (Surface / Intermediate / Production)

Axial: Buoyant weight of the string plus cement plug bump pressure load.

Oxy USA Inc. - AVOGATO 30_31 STATE COM 73H Drill Plan

1. Geologic Formations

TVD of Target (ft):	11411	Pilot Hole Depth (ft):	
Total Measured Depth (ft):	22320	Deepest Expected Fresh Water (ft):	1004

Delaware Basin

Formation	MD-RKB (ft)	TVD-RKB (ft)	Expected Fluids
Rustler	1004	1004	
Salado	1664	1664	Salt
Castile	3088	3088	Salt
Delaware	4953	4922	Oil/Gas/Brine
Bell Canyon	5024	4992	Oil/Gas/Brine
Cherry Canyon	5913	5863	Oil/Gas/Brine
Brushy Canyon	7256	7179	Losses
Bone Spring	8889	8779	Oil/Gas
Bone Spring 1st	10022	9890	Oil/Gas
Bone Spring 2nd	10728	10590	Oil/Gas
Bone Spring 3rd			Oil/Gas
Wolfcamp			Oil/Gas
Penn			Oil/Gas
Strawn	_	_	Oil/Gas

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

	V	ID	T\	/D					
	Hole	From	То	From	То	Csg.	Csg Wt.		
Section	Size (in)	(ft)	(ft)	(ft)	(ft)	OD (in)	(ppf)	Grade	Conn.
Surface	14.75	0	1064	0	1064	10.75	45.5	J-55	BTC
Intermediate	9.875	0	10995	0	10852	7.625	26.4	L-80 HC	BTC
Production	6.75	0	22320	0	11411	5.5	20	P-110	Wedge 461

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

^{*}Oxy requests the option to run production casing with DQX, TORQ DQW, Wedge 425, Wedge 461, and/or Wedge 441 connections to accommodate hole conditions or drilling operations.

All Casing SF Values will meet or exceed						
those below						
SF	SF	Body SF	Joint SF			
Collapse	Burst	Tension	Tension			
1.125	1.2	1.4	1.4			

Annular Clearance Variance Request

As per the agreement reached in the Oxy/BLM face-to-face meeting on Feb 22, 2018, Oxy requests permission to allow deviation from the 0.422" annular clearance requirement from Onshore Order #2 under the following conditions:

- 1. Annular clearance to meet or exceed 0.422" between intermediate casing ID and production casing coupling only on the first 500' overlap between both casings.
- 2. Annular clearance less than 0.422" is acceptable for the curve and lateral portions of the production open hole section.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Y
Does the above casing design meet or exceed BLM's minimum standards?	Y
If not provide justification (loading assumptions, casing design criteria).	1
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching	Y
the collapse pressure rating of the casing?	1
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there strings cemented to surface?	

3. Cementing Program

Section	Stage	Slurry:	Sacks	Yield (ft^3/ft)	Density (lb/gal)	Excess:	тос	Placement	Description
Surface	1	Surface - Tail	890	1.33	14.8	100%	1	Circulate	Class C+Accel.
Int.	1	Intermediate 1S - Tail	477	1.65	13.2	5%	7,506	Circulate	Class H+Accel., Disper., Salt
Int.	2	Intermediate 2S - Tail BH	1157	1.71	13.3	25%	-	Bradenhead	Class C+Accel.
Prod.	1	Production - Tail	893	1.38	13.2	25%	10,495	Circulate	Class H+Ret., Disper., Salt

Offline Cementing

Oxy requests a variance to cement the 9.625" and/or 7.625" intermediate casing strings offline in accordance to the approved variance, EC Tran 461365.

The summarized operational sequence will be as follows:

Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment (float collar and shoe). Land casing.

Fill pipe with kill weight fluid, and confirm well is static.

If well Oxy requests a variance to cement the 9.625" and/or 7.625" intermediate casing strings offline in accordance to the approved variance, EC Tran 461365.

The summarized operational sequence will be as follows:

- 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment (float collar and shoe).
- 2. Land casing.
- 3. Fill pipe with kill weight fluid, and confirm well is static.
 - a. If well is not static notify BLM and kill well.
 - b. Once well is static notify BLM with intent to proceed with nipple down and offline cementing.
- 4. Set and pressure test annular packoff.
- 5. After confirmation of both annular barriers and internal barriers, nipple down BOP and install cap flange. If any barrier fails to test, the BOP stack will not be nippled down until after the cement job is completed.
- 6. Skid rig to next well on pad.
- 7. Confirm well is static before removing cap flange.
- 8. If well is not static notify BLM and kill well prior to cementing or nippling up for further remediation.
- 9. Install offline cement tool.
- 10. Rig up cement equipment.
 - a. Notify BLM prior to cement job.
- 11. Perform cement job.
- 12. Confirm well is static and floats are holding after cement job.
- 13. Remove cement equipment, offline cement tools and install night cap with pressure gauge for monitoring.

Oxy requests permission to adjust the CBL requirement after bradenhead cement jobs, on 7-5/8" intermediate casings, as per the agreement reached in the OXY/BLM meeting on September 5, 2019.

Three string wells:

- CBL will be required on one well per pad
- If the pumped volume of cement is less than permitted in the APD, BLM will be notified and a CBL may be run
- Echometer will be used after bradenhead cement job to determine TOC before pumping top-out cement

Page 4 of 8

4. Pressure Control Equipment

BOP installed and tested before drilling which hole?	Size?	Min. Required WP		Туре	>	Tested to:	Deepest TVD Depth (ft) per Section:
		5M		Annular	\	70% of working pressure	
				Blind Ram	\		
9.875" Hole	13-5/8"	5M		Pipe Ram		250 psi / 5000 psi	10852
		SIVI	Double Ram		>	250 psi / 5000 psi	
			Other*				
		5M	Annular		>	100% of working pressure	
	13-5/8"			Blind Ram	>		
6.75" Hole		10M	Pipe Ram			250 poi / 10000 poi	11411
				Double Ram		250 psi / 10000 psi	
			Other*				

*Specify if additional ram is utilized

Per BLM's Memorandum No. NM-2017-008: *Decision and Rationale for a Variance Allowing the Use of a 5M Annular Preventer with a 10M BOP Stack,* Oxy requests to employ a 5M annular with a 10M BOPE stack in the pilot and lateral sections of the well and will ensure that two barriers to flow are maintained at all times. Please see attached Well Control Plan.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold.

Formation integrity test will be performed per Onshore Order #2.

On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.

A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.

Y Are anchors required by manufacturer?

A multibowl or a unionized multibowl wellhead system will be employed. The wellhead and connection to the BOPE will meet all API 6A requirements. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. We will test the flange connection of the wellhead with a test port that is directly in the flange. We are proposing that we will run the wellhead through the rotary prior to cementing surface casing as discussed with the BLM on October 8, 2015.

See attached schematics.

BOP Break Testing Request

Oxy requests permission to adjust the BOP break testing requirements as per the agreement reached in the OXY/BLM meeting on September 5, 2019.

BOP break test under the following conditions:

- After a full BOP test is conducted
- When skidding to drill an intermediate section where ICP is set into the third Bone Spring or shallower.

If the kill line is broken prior to skid, two tests will be performed.

- 1) Wellhead flange, co-flex hose, kill line connections and upper pipe rams
- 2) Wellhead flange, HCR valve, check valve, upper pipe rams

If the kill line is not broken prior to skid, only one test will be performed.

1) Wellhead flange, co-flex hose, check valve, upper pipe rams

Oxy will use Cameron ADAPT wellhead system that uses an OEC top flange connection. This connection has been fully vetted and verified by API to Spec 6A and carries an API monogram.

Created On: 3/27/2023 at 1:29 PM

5. Mud Program

Saatian	Depth - MD		Depth - TVD		Tymo	Weight	Vigogitz	Water
Section	From (ft)	To (ft)	From (ft)	To (ft)	Туре	(ppg)	Viscosity	Loss
Surface	0	1064	0	1064	Water-Based Mud	8.6 - 8.8	40-60	N/C
Intermediate	1064	10995	1064	10852	Saturated Brine-Based or Oil-Based Mud	8.0 - 10.0	35-45	N/C
Production	10995	22320	10852	11411	Water-Based or Oil- Based Mud	9.5 - 12.5	38-50	N/C

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls, Drilling Paper, Salt Water Clay, CACL2. Oxy will use a closed mud system.

What will be used to monitor the	DVT/MD Tates Wiscol Manitoring
loss or gain of fluid?	PVT/MD Totco/Visual Monitoring

6. Logging and Testing Procedures

Loggi	ing, Coring and Testing.
Yes	Will run GR from TD to surface (horizontal well – vertical portion of hole).
res	Stated logs run will be in the Completion Report and submitted to the BLM.
No	Logs are planned based on well control or offset log information.
No	Drill stem test? If yes, explain
No	Coring? If yes, explain

Addit	ional logs planned	Interval
No	Resistivity	
No	Density	
Yes	CBL	Production string
Yes	Mud log	Bone Spring – TD
No	PEX	

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	7418 psi
Abnormal Temperature	No
BH Temperature at deepest TVD	172°F

Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for zonal

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

DLIVI.	
N	H2S is present
Υ	H2S Plan attached

8. Other facets of operation

	Yes/No
Will the well be drilled with a walking/skidding operation? If yes, describe.	
We plan to drill the 3 well pad in batch by section: all surface sections, intermediate	Vas
sections and production sections. The wellhead will be secured with a night cap whenever	Yes
the rig is not over the well.	
Will more than one drilling rig be used for drilling operations? If yes, describe.	
Oxy requests the option to contract a Surface Rig to drill, set surface casing, and cement for	
this well. If the timing between rigs is such that Oxy would not be able to preset surface,	Yes
the Primary Rig will MIRU and drill the well in its entirety per the APD. Please see the	
attached document for information on the spudder rig.	

Total Estimated Cuttings Volume: 1667 bbls

Attachments

- _x__ Directional Plan
- _x__ H2S Contingency Plan
- _x__ Flex III Attachments
- _x__ Spudder Rig Attachment
- _x__ Premium Connection Specs

9. Company Personnel

Name	<u>Title</u>	Office Phone	Mobile Phone
Garrett Granier	Drilling Engineer	713-513-6633	832-265-0581
Derek Adam	Drilling Engineer Supervisor	713-366-5170	916-802-8873
Casey Martin	Drilling Superintendent	713-497-2530	337-764-4278
Kevin Threadgill	Drilling Manager	713-366-5958	361-815-0788

Fluid Technology

Quality Document

CERTIFICATE OF CONFORMITY

Supplier : CONTITECH RUBBER INDUSTRIAL KFT.

Equipment: 6 pcs. Choke and Kill Hose with installed couplings

Type: 3" x 10,67 m WP: 10000 psi

Supplier File Number : 412638

Date of Shipment : April. 2008

Customer : Phoenix Beattie Co.

Customer P.o. : 002491

Referenced Standards

/ Codes / Specifications : API Spec 16 C

Serial No.: 52754,52755,52776,52777,52778,52782

STATEMENT OF CONFORMITY

We hereby certify that the above items/equipment supplied by us are in conformity with the terms, conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested in accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.

COUNTRY OF ORIGIN HUNGARY/EU

Signed: Dan Language

ontiTech Rubber Industrial Kft. Quality Control Dept.

Position: Q.C. Manager

Date: 04. April. 2008

Page: 1/1

1111			4		de composition de la composition della compositi	lahiri (
2		50 m		1111111	1 1 1 1 1 1 1 1 1 1 1 1 1	Conti Tech Rubber
	# 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 100 100 100 100 100 100 100 100 100		1111111	the few eres frame.	Smilly Control Dept.
20	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13 (A) 17		All lan market		
事	125.03 1255	4				
179	115.65					
	20 1		40	60	80	
18					4	The second secon
				144	Marie and a second	ifferences of the control of the con
17					Armenia a	And the second s
Ш	74553				And the second s	A principal of the prin
16					Market and the second s	The state of the s
	+	and from Classics	1111111			
15:				4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		And the second s

the tree and the tree and

-

▼ PHOE PA № 006330	INIX Be	a	Material Identifi	I Iden	ntificati Ref 3	Material Identification Certificate	cate		Page	p=1
Part No	Description	Material Desc	Material Spec	Qţ	WO No	Batch No	Test Cert No	Bin No	Dra No	N COLO
HP10CK3A-35-4F1	3" 10K 16C C&K HOSE x 35ft OAL			1	2491	4,		MATER	000	issue No
SECK3-HPF3	LIFTING & SAFETY EQUIPMENT TO			-1	2440	002440		N/STK		
SC725-200CS	SAFETY CLAMP 200NM 7.25T	CARBON STEEL		1	2519	H665		250		
SC725-132CS	SAFETY CLAMP 132MM 7.25T	CARBON STEEL			2242	H139		2		
								3		
					_					
										I
							-			

We hereby certify that these goods have been inspected by our Quality Management System, and to the best of our knowledge are found to conform to relevant industry standards within the requirements of the purchase order as issued to Phoenix Beattie Corporation.

05/23/08.

Form No 100/12

→ PHOENIX Beattie

Phoenix Beattie Corp

11535 Brittmoore Park Drive Houston, TX 77041 Tel: (832) 327-0141 Fax: (832) 327-0148 E-mail mail@phoentxbeattie.com www.phoentxbeattie.com

Delivery Note

Customer Order Number	370-369-001	Delivery Note Number	003078	Page	1
Customer / Invoice Address HELMERICH & PAYNE INT'L D 1437 SOUTH BOULDER TULSA, OK 74119		Delivery / Address HELMERICH & PAYNE IDC ATTN: JOE STEPHENSON - RIG 13609 INDUSTRIAL ROAD HOUSTON, TX 77015	G 370		

Customer Acc No	Phoenix Beattie Contract Manager	Phoenix Beattie Reference	Date
H01	JJL	006330	05/23/2008

Item No	Beattie Part Number / Description	Qty Ordered	Qty Sent	Oty To Follow
1	HP10CK3A-35-4F1 3" 10K 16C C&K HOSE x 35ft OAL CW 4.1/16" API SPEC FLANGE E/ End 1: 4.1/16" 10Kpsi API Spec 6A Type 6BX Flange End 2: 4.1/16" 10Kpsi API Spec 6A Type 6BX Flange c/w BX155 Standard ring groove at each end Suitable for H2S Service Working pressure: 10,000psi Test pressure: 15,000psi Standard: API 16C Full specification Armor Guarding: Included Fire Rating: Not Included Temperature rating: -20 Deg C to +100 Deg C	1	1	0
2	SECK3-HPF3 LIFTING & SAFETY EQUIPMENT TO SUIT HP10CK3-35-F1 2 x 160mm ID Safety Clamps 2 x 244mm ID Lifting Collars & element C's 2 x 7ft Stainless Steel wire rope 3/4" OD 4 x 7.75t Shackles	1	1	0
3	SC725-200CS SAFETY CLAMP 200MM 7.25T C/S GALVANISED	1	1	0

Continued...

All goods remain the property of Phoenix Beattle until paid for in full. Any damage or shortage on this delivery must be advised within 5 days. Returns may be subject to a handling charge.

Fluid Technology

Quality Document

QUALI					- A TE		CERT.	N°:	746	**********
INSPECTION A					AIC				000404	
7 011011100111	Phoenix	pea	ttie U	O.			P.O. Nº		002491	
CONTITECH ORDER N°:	412638		HOS	E TYPE:	3"	ID .	Ch	oke and l	Kill Hose	
HOSE SERIAL Nº:	52777		NOM	INAL / AC	TUAL L	ENGTH:		10,67 n	n	
W.P. 68,96 MPa 10	0000	psi	T.P.	103,4	MPa	15000	laq (Duration:	60 ~	min.
Pressure test with water at ambient temperature										
		See	attac	chment.	(1 pa	ae)			•	
					, , , , , , ,	ð-,				,
										-
↑ 10 mm = 10 Min. → 10 mm = 25 MPs							,			
				COUP	LINGS					
Туре			Serial	N°		(Quality		Heat N°	
3" coupling with		917		913		AIS	1 4130		T7998A	
4 1/16" Flange end						AIS	1 4130		26984	
INFOCHIP INSTALLED API Spec 16 C Temperature rate:"B"										
All metal parts are flawless WE CERTIFY THAT THE ABOVE	AUGE H	A	EN MA	MICACTI	DEN IN	ACCORD	ANCE W	TU THE TE	DING OF THE OPD	ED AND
PRESSURE TESTED AS ABOVE					KED IK	ACCORD	AINCE W	in inc ic	KM3 OF THE OND	er and
Date:	Inspecto	r			Qualit	y Contro				
04. April. 2008		and have see easy spe	(Markey Prophy phy		4	Daces (Ind	iTech Rubb instrial Kit y Control D (1)	t.	(

Form No 100/12

→ PHOENIX Beattie

Phoenix Beattle Corp

11535 Brittmoore Park Drive Houston, TX 77041 Tel: (832) 327-0141 Fax: (832) 327-0148 E-mail mail@phoenixbeattie.com

Delivery Note

Customer Order Number	370-369-001	Delivery Note Number	003078	Page	2
Customer / Invoice Addres HELMERICH & PAYNE INT'L D 1437 SOUTH BOULDER TULSA, OK 74119		Delivery / Address HELMERICH & PAYNE IDC ATTN: JOE STEPHENSON - RI 13609 INDUSTRIAL ROAD HOUSTON, TX 77015	G 370		

Customer Acc No	Phoenix Beattie Contract Manager	Phoenix Beattie Reference	Date
H01	JJL	006330	05/23/2008

Item No	Beattie Part Number / Description	Qty Ordered	Qty Sent	Oty To Follow
4	SC725-132CS SAFETY CLAMP 132MM 7.25T C/S GALVANIZED C/W BOLTS	1	1	0
	OOCERT-HYDRO HYDROSTATIC PRESSURE TEST CERTIFICATE	1	1	0
6	OOCERT-LOAD LOAD TEST CERTIFICATES	1	1	0
	OOFREIGHT INBOUND / OUTBOUND FREIGHT PRE-PAY & ADD TO FINAL INVOICE NOTE: MATERIAL MUST BE ACCOMPANIED BY PAPERWORK INCLUDING THE PURCHASE ORDER, RIG NUMBER TO ENSURE PROPER PAYMENT	1	1	0
			$\left \bigcap_{i} \right $	

Phoenix Beattle Inspection Signature:

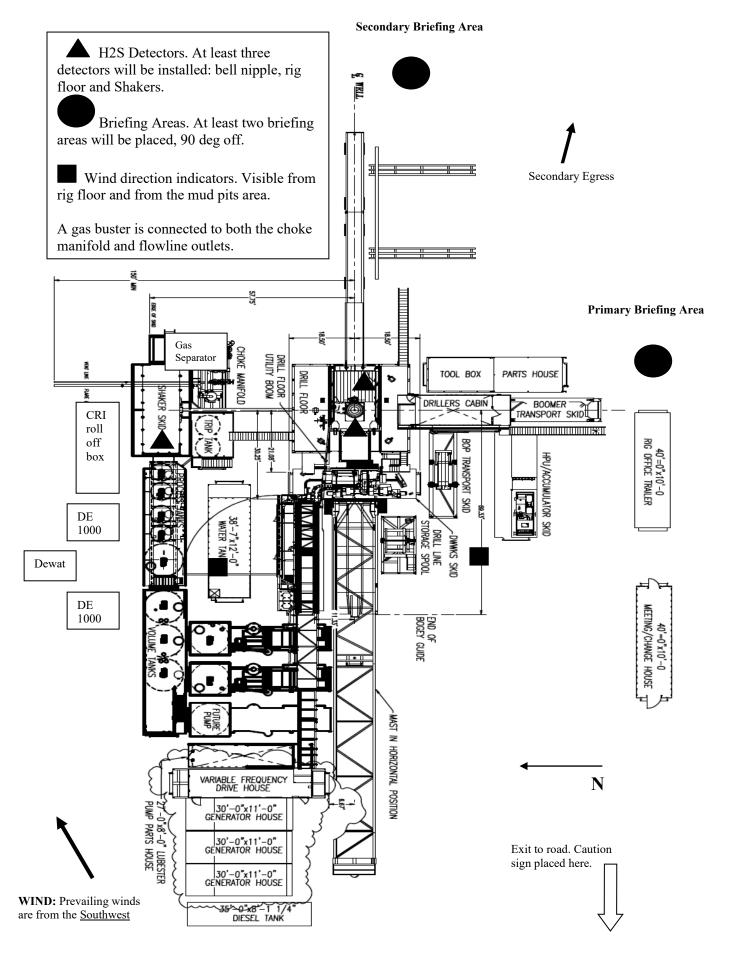
Received In Good Condition: Si

Signature

Print Name

Date ____

All goods remain the property of Phoenix Beattie until paid for in full. Any damage or shortage on this delivery must be advised within 5 days. Returns may be subject to a handling charge.



Permian Drilling Hydrogen Sulfide Drilling Operations Plan

Open drill site. No homes or buildings are near the proposed location.

1. Escape

Personnel shall escape upwind of wellbore in the event of an emergency gas release. Escape can take place through the lease road on the Southeast side of the location. Personnel need to move to a safe distance and block the entrance to location. If the primary route is not an option due to the wind direction, then a secondary egress route should be taken.

Permian Drilling Hydrogen Sulfide Drilling Operations Plan New Mexico

Scope

This contingency plan establishes guidelines for the public, all company employees, and contract employees who's work activities may involve exposure to hydrogen sulfide (H2S) gas.

While drilling this well, it is possible to encounter H2S bearing formations. At all times, the first barrier to control H2S emissions will be the drilling fluid, which will have a density high enough to control influx.

Objective

- 1. Provide an immediate and predetermined response plan to any condition when H2S is detected. All H2S detections in excess of 10 parts per million (ppm) concentration are considered an Emergency.
- 2. Prevent any and all accidents, and prevent the uncontrolled release of hydrogen sulfide into the atmosphere.
- 3. Provide proper evacuation procedures to cope with emergencies.
- 4. Provide immediate and adequate medical attention should an injury occur.

Discussion

Implementation: This plan with all details is to be fully implemented

before drilling to commence.

Emergency response This section outlines the conditions and denotes steps

Procedure: to be taken in the event of an emergency.

Emergency equipment This section outlines the safety and emergency

Procedure: equipment that will be required for the drilling of this

well.

Training provisions: This section outlines the training provisions that must

be adhered to prior to drilling.

Drilling emergency call lists: Included are the telephone numbers of all persons to

be contacted should an emergency exist.

Briefing: This section deals with the briefing of all people

involved in the drilling operation.

Public safety: Public safety personnel will be made aware of any

potential evacuation and any additional support

needed.

Check lists: Status check lists and procedural check lists have been

included to insure adherence to the plan.

General information: A general information section has been included to

supply support information.

Hydrogen Sulfide Training

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on the well:

- 1. The hazards and characteristics of H2S.
- 2. Proper use and maintenance of personal protective equipment and life support systems.
- 3. H2S detection.
- 4. Proper use of H2S detectors, alarms, warning systems, briefing areas, evacuation procedures and prevailing winds.
- 5. Proper techniques for first aid and rescue procedures.
- 6. Physical effects of hydrogen sulfide on the human body.
- 7. Toxicity of hydrogen sulfide and sulfur dioxide.
- 8. Use of SCBA and supplied air equipment.
- 9. First aid and artificial respiration.
- 10. Emergency rescue.

In addition, supervisory personnel will be trained in the following areas:

- 1. The effects of H2S on metal components. If high tensile strength tubular is to be used, personnel will be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling a well, blowout prevention and well control procedures.
- 3. The contents and requirements of the H2S Drilling Operations Plan.

H2S training refresher must have been taken within one year prior to drilling the well. Specifics on the well to be drilled will be discussed during the pre-spud meeting. H2S and well control (choke) drills will be performed while drilling the well, at least on a weekly basis. This plan shall be available in the well site. All personnel will be required to carry the documentation proving that the H2S training has been taken.

Service company and visiting personnel

- A. Each service company that will be on this well will be notified if the zone contains H2S.
- B. Each service company must provide for the training and equipment of their employees before they arrive at the well site.
- C. Each service company will be expected to attend a well site briefing

Emergency Equipment Requirements

1. Well control equipment

The well shall have hydraulic BOP equipment for the anticipated pressures. Equipment is to be tested on installation and follow Oxy Well Control standard, as well as BLM Onshore Order #2.

Special control equipment:

- A. Hydraulic BOP equipment with remote control on ground. Remotely operated choke.
- B. Rotating head
- C. Gas buster equipment shall be installed before drilling out of surface pipe.

2. <u>Protective equipment for personnel</u>

- A. Four (4) 30-minute positive pressure air packs (2 at each briefing area) on location.
- B. Adequate fire extinguishers shall be located at strategic locations.
- C. Radio / cell telephone communication will be available at the rig.
 - Rig floor and trailers.
 - Vehicle.

3. Hydrogen sulfide sensors and alarms

- A. H2S sensor with alarms will be located on the rig floor, at the bell nipple, and at the flow line. These monitors will be set to alarm at 10 ppm with strobe light, and audible alarm.
- B. Hand operated detectors with tubes.
- C. H2S monitor tester (to be provided by contract Safety Company.)
- D. There shall be one combustible gas detector on location at all times.

4. Visual Warning Systems

A. One sign located at each location entrance with the following language:

Caution – potential poison gas Hydrogen sulfide No admittance without authorization *Wind sock – wind streamers:*

- A. One 36" (in length) wind sock located at protection center, at height visible from rig floor.
- B. One 36" (in length) wind sock located at height visible from pit areas.

Condition flags

A. One each condition flag to be displayed to denote conditions.

```
green – normal conditions
yellow – potential danger
red – danger, H2S present
```

B. Condition flag shall be posted at each location sign entrance.

5. <u>Mud Program</u>

The mud program is designed to minimize the risk of having H2S and other formation fluids at surface. Proper mud weight and safe drilling practices will be applied. H2S scavengers will be used to minimize the hazards while drilling. Below is a summary of the drilling program.

Mud inspection devices:

Garrett gas train or hatch tester for inspection of sulfide concentration in mud system.

6. <u>Metallurgy</u>

- A. Drill string, casing, tubing, wellhead, blowout preventers, drilling spools or adapters, kill lines, choke manifold, lines and valves shall be suitable for the H2S service.
- B. All the elastomers, packing, seals and ring gaskets shall be suitable for H2S service.

7. <u>Well Testing</u>

No drill stem test will be performed on this well.

8. Evacuation plan

Evacuation routes should be established prior to well spud for each well and discussed with all rig personnel.

9. <u>Designated area</u>

- A. Parking and visitor area: all vehicles are to be parked at a predetermined safe distance from the wellhead.
- B. There will be a designated smoking area.
- C. Two briefing areas on either side of the location at the maximum allowable distance from the well bore so they offset prevailing winds perpendicularly, or at a 45-degree angle if wind direction tends to shift in the area.

Emergency procedures

- A. In the event of any evidence of H2S level above 10 ppm, take the following steps:
 - 1. The Driller will pick up off bottom, shut down the pumps, slow down the pipe rotation.
 - 2. Secure and don escape breathing equipment, report to the upwind designated safe briefing / muster area.
 - 3. All personnel on location will be accounted for and emergency search should begin for any missing, the Buddy System will be implemented.
 - 4. Order non-essential personnel to leave the well site, order all essential personnel out of the danger zone and upwind to the nearest designated safe briefing / muster area.
 - 5. Entrance to the location will be secured to a higher level than our usual "Meet and Greet" requirement, and the proper condition flag will be displayed at the entrance to the location.
 - 6. Take steps to determine if the H2S level can be corrected or suppressed and, if so, proceed as required.

B. If uncontrollable conditions occur:

1. Take steps to protect and/or remove any public in the down-wind area from the rig – partial evacuation and isolation. Notify necessary public safety personnel and appropriate regulatory entities (i.e. BLM) of the situation.

- 2. Remove all personnel to the nearest upwind designated safe briefing / muster area or off location.
- 3. Notify public safety personnel of safe briefing / muster area.
- 4. An assigned crew member will blockade the entrance to the location. No unauthorized personnel will be allowed entry to the location.
- 5. Proceed with best plan (at the time) to regain control of the well. Maintain tight security and safety procedures.

C. Responsibility:

- 1. Designated personnel.
 - a. Shall be responsible for the total implementation of this plan.
 - b. Shall be in complete command during any emergency.
 - c. Shall designate a back-up.

A 11	1	
Λ III \cdot	narconna	•
ДΠ	personnel	١.

- 1. On alarm, don escape unit and report to the nearest upwind designated safe briefing / muster area upw
- 2. Check status of personnel (buddy system).
- 3. Secure breathing equipment.
- 4. Await orders from supervisor.

Drill site manager:

- 1. Don escape unit if necessary and report to nearest upwind designated safe briefing / muster area.
- 2. Coordinate preparations of individuals to return to point of release with tool pusher and driller (using the buddy system).
- 3. Determine H2S concentrations.
- 4. Assess situation and take control measures.

Tool pusher:

- 1. Don escape unit Report to up nearest upwind designated safe briefing / muster area.
- 2. Coordinate preparation of individuals to return to point of release with tool pusher drill site manager (using the buddy system).
- 3. Determine H2S concentration.
- 4. Assess situation and take control measures.

Driller:

1. Don escape unit, shut down pumps, continue

- rotating DP.
- 2. Check monitor for point of release.
- 3. Report to nearest upwind designated safe briefing / muster area.
- 4. Check status of personnel (in an attempt to rescue, use the buddy system).
- 5. Assigns least essential person to notify Drill Site Manager and tool pusher by quickest means in case of their absence.
- 6. Assumes the responsibilities of the Drill Site Manager and tool pusher until they arrive should they be absent.

Derrick man Floor man #1 Floor man #2 1. Will remain in briefing / muster area until instructed by supervisor.

Mud engineer:

- 1. Report to nearest upwind designated safe briefing / muster area.
- 2. When instructed, begin check of mud for ph and H2S level. (Garett gas train.)

Safety personnel:

1. Mask up and check status of all personnel and secure operations as instructed by drill site manager.

Taking a kick

When taking a kick during an H2S emergency, all personnel will follow standard Well control procedures after reporting to briefing area and masking up.

Open-hole logging

All unnecessary personnel off floor. Drill Site Manager and safety personnel should monitor condition, advise status and determine need for use of air equipment.

Running casing or plugging

Following the same "tripping" procedure as above. Drill Site Manager and safety personnel should determine if all personnel have access to protective equipment.

Ignition procedures

The decision to ignite the well is the responsibility of the operator (Oxy Drilling Management). The decision should be made only as a last resort and in a situation where it is clear that:

- 1. Human life and property are endangered.
- 2. There is no hope controlling the blowout under the prevailing conditions at the well.

<u>Instructions for igniting the well</u>

- 1. Two people are required for the actual igniting operation. They must wear self-contained breathing units and have a safety rope attached. One man (tool pusher or safety engineer) will check the atmosphere for explosive gases with the gas monitor. The other man is responsible for igniting the well.
- 2. Primary method to ignite: 25 mm flare gun with range of approximately 500 feet.
- 3. Ignite upwind and do not approach any closer than is warranted.
- 4. Select the ignition site best for protection, and which offers an easy escape route.
- 5. Before firing, check for presence of combustible gas.
- 6. After lighting, continue emergency action and procedure as before.
- 7. All unassigned personnel will remain in briefing area until instructed by supervisor or directed by the Drill Site Manager.

<u>Remember</u>: After well is ignited, burning hydrogen sulfide will convert to sulfur dioxide, which is also highly toxic. <u>Do not assume the area is safe after the well is ignited.</u>

Status check list

Note: All items on this list must be completed before drilling to production casing point.

- 1. H2S sign at location entrance.
- 2. Two (2) wind socks located as required.
- 3. Four (4) 30-minute positive pressure air packs (2 at each Briefing area) on location for all rig personnel and mud loggers.
- 4. Air packs inspected and ready for use.
- 5. Cascade system and hose line hook-up as needed.
- 6. Cascade system for refilling air bottles as needed.
- 7. Condition flag on location and ready for use.
- 8. H2S detection system hooked up and tested.
- 9. H2S alarm system hooked up and tested.
- 10. Hand operated H2S detector with tubes on location.
- 11. 1 100' length of nylon rope on location.
- 12. All rig crew and supervisors trained as required.
- 13. All outside service contractors advised of potential H2S hazard on well.
- 14. No smoking sign posted and a designated smoking area identified.
- 15. Calibration of all H2S equipment shall be noted on the IADC report.

Checked by	7:	Date:

Procedural check list during H2S events

Perform each tour:

- 1. Check fire extinguishers to see that they have the proper charge.
- 2. Check breathing equipment to ensure that it in proper working order.
- 3. Make sure all the H2S detection system is operative.

Perform each week:

- 1. Check each piece of breathing equipment to make sure that demand or forced air regulator is working. This requires that the bottle be opened and the mask assembly be put on tight enough so that when you inhale, you receive air or feel air flow.
- 2. BOP skills (well control drills).
- 3. Check supply pressure on BOP accumulator stand by source.
- 4. Check breathing equipment mask assembly to see that straps are loosened and turned back, ready to put on.
- 5. Check pressure on breathing equipment air bottles to make sure they are charged to full volume. (Air quality checked for proper air grade "D" before bringing to location)
- 6. Confirm pressure on all supply air bottles.
- 7. Perform breathing equipment drills with on-site personnel.
- 8. Check the following supplies for availability.
 - A. Emergency telephone list.
 - B. Hand operated H2S detectors and tubes.

General evacuation plan

- 1. When the company approved supervisor (Drill Site Manager, consultant, rig pusher, or driller) determines the H2S gas cannot be limited to the well location and the public will be involved, he will activate the evacuation plan.
- 2. Drill Site Manager or designee will notify local government agency that a hazardous condition exists and evacuation needs to be implemented.
- 3. Company or contractor safety personnel that have been trained in the use of H2S detection equipment and self-contained breathing equipment will monitor H2S concentrations, wind directions, and area of exposure. They will delineate the outer perimeter of the hazardous gas area. Extension to the evacuation area will be determined from information gathered.
- 4. Law enforcement personnel (state police, police dept., fire dept., and sheriff's dept.) Will be called to aid in setting up and maintaining road blocks. Also, they will aid in evacuation of the public if necessary.
- 5. After the discharge of gas has been controlled, company safety personnel will determine when the area is safe for re-entry.

<u>Important:</u> Law enforcement personnel will not be asked to come into a contaminated area. Their assistance will be limited to uncontaminated areas. Constant radio contact will be maintained with them.

Emergency actions

Well blowout – if emergency

- 1. Evacuate all personnel to "Safe Briefing / Muster Areas" or off location if needed.
- 2. If sour gas evacuate rig personnel.
- 3. If sour gas evacuate public within 3000 ft radius of exposure.
- 4. Don SCBA and shut well in if possible using the buddy system.
- 5. Notify Drilling Superintendent and call 911 for emergency help (fire dept and ambulance) if needed.
- 6. Implement the Blowout Contingency Plan, and Drilling Emergency Action Plan.
- 6. Give first aid as needed.

Person down location/facility

- 1. If immediately possible, contact 911. Give location and wait for confirmation.
- 2. Don SCBA and perform rescue operation using buddy system.

Toxic effects of hydrogen sulfide

Hydrogen sulfide is extremely toxic. The acceptable ceiling concentration for eight-hour exposure is 10 ppm, which is .001% by volume. Hydrogen sulfide is heavier than air (specific gravity – 1.192) and colorless. It forms an explosive mixture with air between 4.3 and 46.0 percent by volume. Hydrogen sulfide is almost as toxic as hydrogen cyanide and is between five and six times more toxic than carbon monoxide. Toxicity data for hydrogen sulfide and various other gases are compared in table i. Physical effects at various hydrogen sulfide exposure levels are shown in table ii.

Table i Toxicity of various gases

Common name	Chemical formula	Specific gravity (sc=1)	Threshold limit (1)	Hazardous limit (2)	Lethal concentration (3)
Hydrogen Cyanide	Hen	0.94	10 ppm	150 ppm/hr	300 ppm
Hydrogen Sulfide	H2S	1.18	10 ppm	250 ppm/hr	600 ppm
Sulfur Dioxide	So2	2.21	5 ppm	-	1000 ppm
Chlorine	C12	2.45	1 ppm	4 ppm/hr	1000 ppm
Carbon Monoxide	Co	0.97	50 ppm	400 ppm/hr	1000 ppm
Carbon Dioxide	Co2	1.52	5000 ppm	5%	10%
Methane	Ch4	0.55	90,000 ppm	Combustibl	e above 5% in air

- 1) threshold limit concentration at which it is believed that all workers may be repeatedly exposed day after day without adverse effects.
- 2) hazardous limit concentration that will cause death with short-term exposure.
- 3) lethal concentration concentration that will cause death with short-term exposure.

Toxic effects of hydrogen sulfide

Table ii Physical effects of hydrogen sulfide

		Concentration	Physical effects
Percent (%)	<u>Ppm</u>	Grains	
		100 std. Ft3*	
0.001	<10	00.65	Obvious and unpleasant odor.

0.002	10	01.30	Safe for 8 hours of exposure.
0.010	100	06.48	Kill smell in $3 - 15$ minutes. May sting eyes and throat.
0.020	200	12.96	Kills smell shortly; stings eyes and throat.
0.050	500	32.96	Dizziness; breathing ceases in a few minutes; needs prompt artificial respiration.
0.070	700	45.36	Unconscious quickly; death will result if not rescued promptly.
0.100	1000	64.30	Unconscious at once; followed by death within minutes.

^{*}at 15.00 psia and 60'f.

Use of self-contained breathing equipment (SCBA)

- 1. Written procedures shall be prepared covering safe use of SCBA's in dangerous atmosphere, which might be encountered in normal operations or in emergencies. Personnel shall be familiar with these procedures and the available SCBA.
- 2 SCBA's shall be inspected frequently at random to insure that they are properly used, cleaned, and maintained.
- 3. Anyone who may use the SCBA's shall be trained in how to insure proper face-piece to face seal. They shall wear SCBA's in normal air and then wear them in a test atmosphere. (note: such items as facial hair {beard or sideburns} and eyeglasses will not allow proper seal.) Anyone that may be reasonably expected to wear SCBA's should have these items removed before entering a toxic atmosphere. A special mask must be obtained for anyone who must wear eyeglasses or contact lenses.
- 4. Maintenance and care of SCBA's:
 - a. A program for maintenance and care of SCBA's shall include the following:
 - 1. Inspection for defects, including leak checks.
 - 2. Cleaning and disinfecting.
 - 3. Repair.
 - 4. Storage.
 - b. Inspection, self-contained breathing apparatus for emergency use shall be inspected monthly.
 - 1. Fully charged cylinders.
 - 2. Regulator and warning device operation.
 - 3. Condition of face piece and connections.
 - 4. Rubber parts shall be maintained to keep them pliable and prevent deterioration.
 - c. Routinely used SCBA's shall be collected, cleaned and disinfected as frequently as necessary to insure proper protection is provided.
- 5. Persons assigned tasks that requires use of self-contained breathing equipment shall be certified physically fit (medically cleared) for breathing equipment usage at least annually.
- 6. SCBA's should be worn when:
 - A. Any employee works near the top or on top of any tank unless test reveals less than 10 ppm of H2S.

- B. When breaking out any line where H2S can reasonably be expected.
- C. When sampling air in areas to determine if toxic concentrations of H2S exists.
- D. When working in areas where over 10 ppm H2S has been detected.
- E. At any time there is a doubt as to the H2S level in the area to be entered.

Rescue First aid for H2S poisoning

Do not panic!

Remain calm – think!

- 1. Don SCBA breathing equipment.
- 2. Remove victim(s) utilizing buddy system to fresh air as quickly as possible. (go up-wind from source or at right angle to the wind. Not down wind.)
- 3. Briefly apply chest pressure arm lift method of artificial respiration to clean the victim's lungs and to avoid inhaling any toxic gas directly from the victim's lungs.
- 4. Provide for prompt transportation to the hospital, and continue giving artificial respiration if needed.
- 5. Hospital(s) or medical facilities need to be informed, before-hand, of the possibility of H2S gas poisoning no matter how remote the possibility is.
- 6. Notify emergency room personnel that the victim(s) has been exposed to H2S gas.

Besides basic first aid, everyone on location should have a good working knowledge of artificial respiration.

Revised CM 6/27/2012

Intent	t X	As Dril	led											
API#														
Ope	025 rator Nar / USA I						perty N gato (ite Co	om			Well Number 73H
Kick C	Off Point ((KOP)												
UL B	Section 30	Township 22S	Range 33E	Lot	Feet 50		From N		Feet 184	0	From	E/W	County Lea	
Latitu	ıde	l	JOCE		Longitu				104	0	Las	,,	NAD	
32.	36994	16			-103	3.60	901	5					Nad8	3
First T	Take Poin	it (FTP)												
UL B	Section 30	Township 22S	Range 33E	Lot	Feet 100		From N North	•	Feet 184	0	From	E/W	County Lea	
Latitu	ıde		002		Longitu		le NAD				•			
32.	36980)9			-103	3.60	901)					Nad8	3
Last T	ake Poin	t (LTP)												
UL O	Section 31	Township 22S	Range 33E	Lot	Feet 100		m N/S	Feet 184		From I		County	У	
Latitu	ıde		OOL		Longitu	ıde		1		Luot	•	NAD		
32.	34133	36			-103	3.60	898	5				Nac	183	
										7				
Is this	well the	defining v	vell for th	e Horiz	ontal Sp	oacin	g Unit?	<u> </u>	No					
Is this	well an i	infill well?		Yes	1									
	l is yes pl ng Unit.	lease provi	ide API if a	availab	le, Opei	rator	Name :	and w	vell nu	ımber	for [efinin	g well fo	r Horizontal
API#	025-4	5961												
Ope	rator Nar / USA I	me:					perty N			ite Co	om			Well Number 025H

KZ 06/29/2018

TenarisHydril

5.500" 20.00 lb/ft P110-CY TenarisHydril Wedge 461™ Matched Strength

Special Data Sheet TH DS-20.0359 12 August 2020 Rev 00

Nominal OD	5.500 in.	Wall Thickness	0.361 in.	Grade	P110-CY
Min Wall Thickness	87.5%	Туре	CASING	Connection OD Option	MATCHED STRENGTH
Pipe Body Data					
Geometry				Performance	
Nominal OD	5.500 in.	Nominal ID	4.778 in.	Body Yield Strength	641 x 1000 lbs
Nominal Weight	20.00 lbs/ft	Wall Thickness	0.361 in.	Internal Yield	12640 psi
Standard Drift Diameter	4.653 in.	Plain End Weight	19.83 lbs/ft	SMYS	110000 psi
Special Drift Diameter	N/A	OD Tolerance	API	Collapse Pressure	11110 psi
Connection Data					
Geometry		Performance		Make-up Torques	
Matched Strength OD	6.050 in.	Tension Efficiency	100%	Minimum	17000 ft-lbs
Make-up Loss	3.775 in.	Joint Yield Strength	641 x 1000 lbs	Optimum	18000 ft-lbs
Threads per in.	3.40	Internal Yield	12640 psi	Maximum	21600 ft-lbs
Connection OD Option	MATCHED STRENGTH	Compression Efficiency	100%	Operational Limit Torques	5
Coupling Length	7.714 in.	Compression Strength	641 x 1000 lbs	Operating Torque	32000 ft-lbs
		Bending	92 °/100 ft	Yield Torque	38000 ft-lbs
		Collapse	11110 psi	Buck-On Torques	
				Minimum	21600 ft-lbs
				Maximum	23100 ft-lbs
Madaa					

Notes

^{*}If you need to use torque values that are higher than the maximum indicated, please contact a local Tenaris technical sales representative

TenarisHydril Wedge 425[®]

Coupling	Pipe Body
Grade: P110-CY	Grade: P110-CY
Body: White	1st Band: White
1st Band: Grey	2nd Band: Grey
2nd Band: -	3rd Band: -
3rd Band: -	4th Band: -
	5th Band: -
	6th Band: -

Outside Diameter	5.500 in.	Wall Thickness	0.361 in.	Grade	P110-CY
Min. Wall Thickness	87.50 %	Pipe Body Drift	API Standard	Туре	Casing
Connection OD Option	REGULAR				

Pipe Body Data

Geometry			
Nominal OD	5.500 in.	Wall Thickness	0.361 in.
Nominal Weight	20 lb/ft	Plain End Weight	19.83 lb/ft
Drift	4.653 in.	OD Tolerance	API
Nominal ID	4.778 in.		

Performance	
Body Yield Strength	641 x1000 lb
Min. Internal Yield Pressure	12,640 psi
SMYS	110,000 psi
Collapse Pressure	11,100 psi

Connection Data

Geometry	
Connection OD	5.777 in.
Connection ID	4.734 in.
Make-up Loss	5.823 in.
Threads per inch	3.77
Connection OD Option	Regular

Performance	
Tension Efficiency	90 %
Joint Yield Strength	577 x1000 lb
Internal Pressure Capacity	12,640 psi
Compression Efficiency	90 %
Compression Strength	577 x1000 lb
Max. Allowable Bending	82 °/100 ft
External Pressure Capacity	11,100 psi

15,700 ft-lb
19,600 ft-lb
21,600 ft-lb
29,000 ft-lb
36,000 ft-lb

Notes

This connection is fully interchangeable with: TORQ® SFWTM - 5.5 in. - 0.361 in. Connections with Dopeless® Technology are fully compatible with the same connection in its Standard version

For the lastest performance data, always visit our website: www.tenaris.com

Tenaris has issued this document for general information only, and the information in this document, including, without limitation, any pictures, drawings or designs ("Information") is not intended to constitute professional or any other type of advice or recommendation and is provided on an "as is" basis. No warranty is given. Tenaris has not independently verified any information —if any- provided by the user in connection with, or for the purpose of, the Information contained hereunder. The use of the Information is at user's own risk and Tenaris does not assume any responsibility of any kind for any loss, damage or injury resulting from, or in connection with any Information contained hereunder or any use thereof. The Information in this document is subject to change or modification without notice. Tenaris's products and services are subject to Tenaris's standard terms and conditions or otherwise to the terms resulting from the respective contracts of sale or services, as the case may be, between petitioner and Tenaris. For more complete information please contact a Tenaris's representative or visit our website at www.tenaris.com . ©Tenaris 2021.All rights reserved.

TenarisHydril Wedge 441®

Coupling	Pipe Body	
Grade: P110-CY	Grade: P110-CY	
Body: White	1st Band: White	
1st Band: Grey	2nd Band: Grey	
2nd Band: -	3rd Band: -	
3rd Band: -	4th Band: -	
	5th Band: -	
	6th Band: -	

Outside Diameter	5.500 in.	Wall Thickness	0.361 in.	Grade	P110-CY
Min. Wall Thickness	87.50 %	Drift	API Standard	Туре	Casing
Connection OD Option	REGULAR				

Pipe Body Data

Geometry			
Nominal OD	5.500 in.	Wall Thickness	0.361 in.
Nominal Weight	20 lb/ft	Plain End Weight	19.83 lb/ft
Drift	4.653 in.	OD Tolerance	API
Nominal ID	4.778 in.		

Performance	
Body Yield Strength	641 x1000 lb
Min. Internal Yield Pressure	12,640 psi
SMYS	110,000 psi
Collapse Pressure	11,100 psi

Connection Data

Geometry	
Connection OD	5.852 in.
Coupling Length	8.714 in.
Connection ID	4.778 in.
Make-up Loss	3.780 in.
Threads per inch	3.40
Connection OD Option	Regular

Performance	
Tension Efficiency	81.50 %
Joint Yield Strength	522 x1000 lb
Internal Pressure Capacity	12,640 psi
Compression Efficiency	81.50 %
Compression Strength	522 x1000 lb
Max. Allowable Bending	71 °/100 ft
External Pressure Capacity	11,100 psi

Make-Up Torques	
Minimum	15,000 ft-lb
Optimum	16,000 ft-lb
Maximum	19,200 ft-lb
Operation Limit Torques	
Operating Torque	32,000 ft-lb
Yield Torque	38,000 ft-lb
Buck-On	
Minimum	19,200 ft-lb
Maximum	20,700 ft-lb

Notes

This connection is fully interchangeable with: Wedge 441% - 5.5 in. - 0.304 in. Connections with Dopeless% Technology are fully compatible with the same connection in its Standard version

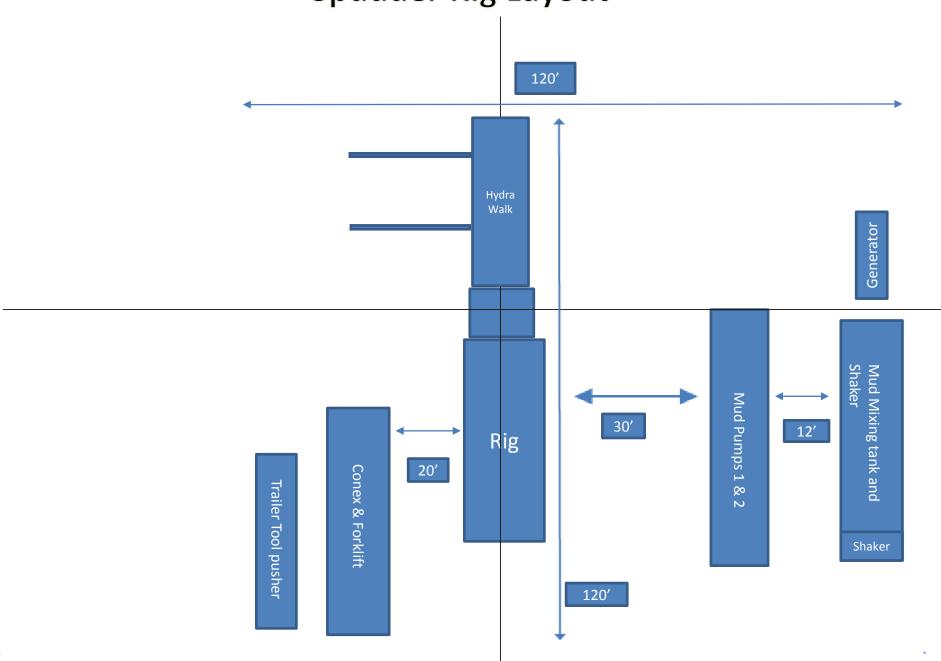
For the lastest performance data, always visit our website: www.tenaris.com

Tenaris has issued this document for general information only, and the information in this document, including, without limitation, any pictures, drawings or designs ("Information") is not intended to constitute professional or any other type of advice or recommendation and is provided on an "as is" basis. No warranty is given. Tenaris has not independently verified any information—if any-provided by the user in connection with, or for the purpose of, the Information contained hereunder. The use of the Information is at user's own risk and Tenaris does not assume any responsibility or liability of any kind for any loss, damage or injury resulting from, or in connection with any Information contained hereunder or any use thereof. The Information in this document is subject to change or modification without notice. Tenaris's products and services are subject to Tenaris's standard terms and conditions or otherwise to the terms resulting from the respective contracts of sale or services, as the case may be, between petitioner and Tenaris. For more complete information please contact a Tenaris's representative or visit our website at www.tenaris.com. ©Tenaris 2021.All rights reserved.

OXY USA Inc APD ATTACHMENT: SPUDDER RIG DATA

OPERATOR NAME / NUMBER: OXY USA Inc

1. SUMMARY OF REQUEST:


Oxy USA respectfully requests approval for the following operations for the surface hole in the drill plan:

1. Utilize a spudder rig to pre-set surface casing for time and cost savings.

2. Description of Operations

- 1. Spudder rig will move in to drill the surface hole and pre-set surface casing on the well.
 - **a.** After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
 - **b.** The spudder rig will utilize fresh water-based mud to drill the surface hole to TD. Solids control will be handled entirely on a closed loop basis. No earth pits will be used.
- 2. The wellhead will be installed and tested as soon as the surface casing is cut off and the WOC time has been reached.
- **3.** A blind flange at the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wingvalves.
 - **a.** A means for intervention will be maintained while the drilling rig is not over the well.
- **4.** Spudder rig operations are expected to take 2-3 days per well on the pad.
- 5. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations.
- **6.** Drilling operations will begin with a larger rig and a BOP stack equal to or greater than the pressure rating that was permitted will be nippled up and tested on the wellhead before drilling operations resume on each well.
 - **a.** The larger rig will move back onto the location within 90 days from the point at which the wells are secured and the spudder rig is moved off location.
 - **b.** The BLM will be contacted / notified 24 hours before the larger rig moves back on the pre-set locations.
- **7.** Oxy will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations.
- **8.** Once the rig is removed, Oxy will secure the wellhead area by placing a guard rail around the cellar area.

Spudder Rig Layout

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator: OXY US	A INC.		OGRID: <u>16</u>	6696	Date:	0 4/ 1	1 1/ 2 3
II. Type: ☑ Original □	l Amendment	due to □ 19.15.27.	9.D(6)(a) NMA	C □ 19.15.27.9.D((6)(b) NMAC □	Other.	
If Other, please describe	:						
III. Well(s): Provide the be recompleted from a si					wells proposed to	be drill	led or proposed to
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D		Anticipated oduced Water BBL/D
SEE ATTACHED							
V. Anticipated Schedul proposed to be recomple Well Name					Initial I	Flow	First Production Date
SEE ATTACHED							
VI. Separation Equipm VII. Operational Pract Subsection A through F VIII. Best Managemen during active and planne	ices: Attac of 19.15.27.8 I	h a complete descr NMAC.	ription of the ac	tions Operator wil	l take to comply	with th	ne requirements of

Section 2 – Enhanced Plan <u>EFFECTIVE APRIL 1, 2022</u>

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \square Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the
production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of
the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system	\square will \square will not have c	apacity to gather 100% of the	ne anticipated natural gas
production volume from the well prior to the date of fir	st production.		

XIII. L	ne Pressure. Operator \square does \square does not anticipate that its existing well(s) connected to the same segment, or	or portion,	of the
natural	gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by	the new we	ell(s).

$\overline{}$	A 1 .	O 1	9 1 4		1 4.	•	4 41 .	eased line pro	
	Attach (Incrator	'c nlan to	manage	nraduction	in rechance	to the incr	eaced line nr	2001110

XIV. Confidentiality: Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in
Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information
for which confidentiality is asserted and the basis for such assertion.

(i)

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal: Departor will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system: or ☐ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. If Operator checks this box, Operator will select one of the following: Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or Venting and Flaring Plan.

Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including: power generation on lease; (a) **(b)** power generation for grid; compression on lease; (c) (d) liquids removal on lease; reinjection for underground storage; (e) **(f)** reinjection for temporary storage; **(g)** reinjection for enhanced oil recovery; fuel cell production; and (h)

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

other alternative beneficial uses approved by the division.

- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.