U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Well Name	Well Number	US Well Number	Lease Number	Case Number	Operator
VAN DOO DAH	731H	3002551619	NMNM120909	NMNM120909	DEVON
VAN DOO DAH	711H	3002551762	NMNM120909	NMNM120909	DEVON
VAN DOO DAH	621H	3002551616	NMNM120909	NMNM120909	DEVON

Notice of Intent

Sundry ID: 2743120

Type of Submission: Notice of Intent

Type of Action: APD Change

Date Sundry Submitted: 07/27/2023 Time Sundry Submitted: 10:10

Date proposed operation will begin: 07/27/2023

Procedure Description: Devon Energy Production Company, L.P. respectfully requests approval to increase surface hole size from 13-1/2" to a 14-3/4" hole. Devon also request approval to utilize an echo-meter for each well. Please see the attached drill plans including the echo-meter verbiage and cementing details.

NOI Attachments

Procedure Description

Van_Doo_Dah_33_28_Fed_Com_731H_20230727100915.pdf

Van_Doo_Dah_33_28_Fed_Com_621H_20230727100850.pdf

Van_Doo_Dah_33_28_Fed_Com_711H_20230727100851.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: CHELSEY GREEN Signed on: JUL 27, 2023 10:06 AM

Name: DEVON ENERGY PRODUCTION COMPANY LP

Title: Regulatory Compliance Professional **Street Address:** 333 West Sheridan Avenue

City: Oklahoma City State: OK

Phone: (405) 228-8595

Email address: Chelsey.Green@dvn.com

Representative	١	lame:
----------------	---	-------

Street Address:

City: State: Zip

Phone:

Email address:

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: Devon Energy Production Company LP

LEASE NO.: NMNM120909

LOCATION: | Section 33, T.25 S., R.32 E., NMPM

COUNTY: Lea County, New Mexico

WELL NAME & NO.: | Van Doo Dah 33-28 Fed Com 621H

SURFACE HOLE FOOTAGE: 200'/S & 645'/W **BOTTOM HOLE FOOTAGE** 20'/N & 750'/W

ATS/API ID: | 3002551616

APD ID:

Sundry ID: | 2743120

WELL NAME & NO.: | Van Doo Dah 33-28 Fed Com 711H

SURFACE HOLE FOOTAGE: 200'/S & 615'/W **BOTTOM HOLE FOOTAGE** 20'/N & 330'/W **ATS/API ID:** 3002551762

APD ID: 10400085315 Sundry ID: 2743120

WELL NAME & NO.: Van Doo Dah 33-28 Fed Com 731H

SURFACE HOLE FOOTAGE: 200'/S & 675'/W **BOTTOM HOLE FOOTAGE** 20'/N & 990'/W **ATS/API ID:** 3002551619

APD ID: 3002551619 APD ID: 10400085316 Sundry ID: 2743120

COA

H2S	Yes ▼		
Potash	None		
Cave/Karst	Low		
Potential			
Cave/Karst	☐ Critical		
Potential			
Variance	None None	E Flex Hose	C Other
Wellhead	Conventional and Multibow	/I <u> </u>	
Other	□4 String	Capitan Reef	□WIPP
		None -	
		_	
Other	Pilot Hole	Open Annulus	
	None 🔻		
Cementing	Contingency Squeeze	Echo-Meter	Primary Cement
	None	Int 1 ▼	Squeeze
	_		None -
Special	□ Water	▼ COM	Unit Unit
Requirements	Disposal/Injection		
Special	☐ Batch Sundry		
Requirements			
Special	▼ Break Testing	□ Offline	☐ Casing
Requirements		Cementing	Clearance
Variance			

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Delaware and Bone Springs** formation. As a result, the Hydrogen Sulfide area must meet **43 CFR part 3170 Subpart 3176** requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- 1. The 10-3/4 inch surface casing shall be set at approximately 1200 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. The surface hole shall be 14 3/4 inch in diameter.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of

- six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above.

Option 2:

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- a. First stage: Operator will cement with intent to reach the top of the **Brushy** Canyon at 7170' (546 sxs Class H/C+ additives).
- b. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified. (Squeeze 504 sxs Class C)

Operator has proposed to pump down 10-3/4" X 8-5/8" annulus after primary cementing stage. Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus Or operator shall run a CBL from TD of the 8-5/8" casing to surface after the second stage BH to verify TOC.

Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must run one CBL per Well Pad.

If cement does not reach surface, the next casing string must come to surface.

Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.

Production casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi. Annular which shall be tested to 5000 (5M) psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the **8-5/8** inch intermediate casing shoe shall be **5000 (5M)** psi.

Option 2:

Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the 10-3/4 inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR part 3170 Subpart 3171
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

BOPE Break Testing Variance (Approved)

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-689-5981 Lea County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per Onshore Oil and Gas Order No. 2.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

(575) 361-2822

- Eddy County
 EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,
 BLM NM CFO DrillingNotifications@BLM.GOV
- ✓ Lea CountyCall the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a

digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after

installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR

part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

LVO 8/2/2023

Van Doo Dah 33-28 Fed Com 731H

1. Geologic Formations

TVD of target	12269	Pilot hole depth	N/A
MD at TD:	22548	Deepest expected fresh water	

Basin

Dasin		TT	
	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	995		
Salt	1380		
Base of Salt	4625		
Delaware	4625		
Cherry Canyon	5580		
Brushy Canyon	7170		
1st Bone Spring Lime	8680		
Bone Spring 1st	9665		
Bone Spring 2nd	10310		
3rd Bone Spring Lime	10805		
Bone Spring 3rd	11415		
Wolfcamp	11910		

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program (Primary Design)

		Wt			Casing	Interval	Casing	Interval
Hole Size	Csg. Size	(PPF)	Grade	Conn	From (MD)	To (MD)	From (TVD)	To (TVD)
14 3/4	10 3/4	40 1/2	H40	ВТС	0	1020	0	1020
9 7/8	8 5/8	32	P110	TLW	0	11910	0	11910
7 7/8	5 1/2	17	P110	ВТС	0	22548	0	12269

[•] All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for contingency casing.

3. Cementing Program (Primary Design)

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures.

Casing	# Sks	TOC	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	617	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	527	Surf	13.0	2.3	2nd State: Bradenhead Squeeze - Lead: Class C Cement + additives
III I	546	7197	13.2	1.44	Tail: Class H / C + additives
Production	117	9763	9	3.27	Lead: Class H /C + additives
Froduction	1427	11763	13.2	1.44	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Prod	10%

4. Pressure Control Equipment (Three String Design)

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Ty	ype	✓	Tested to:	
			Anı	nular	X	50% of rated working pressure	
Int 1	13-5/8"	/8" 5M	Bline	d Ram	X		
IIIt I	13-3/6	J1V1	Pipe	Ram		5M	
			Doub	le Ram	X	JIVI	
			Other*				
			Annul	ar (5M)	X	100% of rated working pressure	
Dun dunation	12 5/0"	101/1	Blind Ram	X			
Production	13-5/8"	10M	Pipe	Ram		10M	
			Doub	le Ram	X	TOW	
			Other*				
			Annular (5M)				
			Blind Ram				
			Pipe Ram			1	
			Doub	le Ram		1	
			Other*				
N A variance is requested for	the use of a	a diverter or	the surface	casing. See	attached for s	schematic.	
Y A variance is requested to 1							

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, Coring and Testing							
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the						
X	Completion Report and sbumitted to the BLM.						
	No logs are planned based on well control or offset log information.						
	Drill stem test? If yes, explain.						
	Coring? If yes, explain.						

Additiona	l logs planned	Interval
Resistivity		Int. shoe to KOP
Density		Int. shoe to KOP
X	CBL	Production casing
X	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	6699
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

encountered	encountered measured values and formations will be provided to the BEW.					
N	H2S is present					
Y	H2S plan attached.					

Van Doo Dah 33-28 Fed Com 731H

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachment	ts
X	Directional Plan
	Other, describe

Van Doo Dah 33-28 Fed Com 621H

1. Geologic Formations

TVD of target	11934	Pilot hole depth	N/A
MD at TD:	22210	Deepest expected fresh water	

Basin

Dasin		TT	
	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	995		
Salt	1380		
Base of Salt	4625		
Delaware	4625		
Cherry Canyon	5580		
Brushy Canyon	7170		
1st Bone Spring Lime	8680		
Bone Spring 1st	9665		
Bone Spring 2nd	10310		
3rd Bone Spring Lime	10805		
Bone Spring 3rd	11415		
Wolfcamp	11910		

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program (Primary Design)

	- 	Wt			Casing	Interval	Casing Interval	
Hole Size	Csg. Size	(PPF)	Grade Conn		From (MD)	To (MD)	From (TVD)	To (TVD)
14 3/4	10 3/4	40 1/2	H40	ВТС	0	1020	0	1020
9 7/8	8 5/8	32	P110	TLW	0	11415	0	11415
7 7/8	5 1/2	17	P110	ВТС	0	22210	0	11934

[•] All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for contingency casing.

3. Cementing Program (Primary Design)

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures.

Casing	# Sks	TOC	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	615	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	504	Surf	13.0	2.3	2nd State: Bradenhead Squeeze - Lead: Class C Cement + additives
III I	492	7182	13.2	1.44	Tail: Class H / C + additives
Production	117	9421	9	3.27	Lead: Class H /C + additives
Froduction	1428	11421	13.2	1.44	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Prod	10%

4. Pressure Control Equipment (Three String Design)

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		✓	Tested to:																					
			Annular		X	50% of rated working pressure																					
Int 1	13-5/8"	5M		d Ram	X																						
Int I	13-3/0	3111	Pipe	Ram		5M																					
			Doub	le Ram	X	J1V1																					
			Other*																								
	13-5/8"	5M	Annular (5M)		X	50% of rated working pressure																					
Production			Blind Ram		X	5M																					
Production			Pipe Ram																								
																									Doub	le Ram	X
			Other*																								
			Annular (5M)																								
			Bline	d Ram																							
	Pipe Ram]																							
		Doub	le Ram]																						
			Other*																								
N A variance is requested for	the use of a	diverter or	n the surface	casing. See	attached for s	chematic.																					
Y A variance is requested to a	A variance is requested to run a 5 M annular on a 10M system																										

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, C	Logging, Coring and Testing						
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the						
X	Completion Report and sbumitted to the BLM.						
	No logs are planned based on well control or offset log information.						
	Drill stem test? If yes, explain.						
	Coring? If yes, explain.						

Additional logs planned		Interval		
Resistivity		Int. shoe to KOP		
	Density	Int. shoe to KOP		
X	CBL	Production casing		
X	Mud log	Intermediate shoe to TD		
	PEX			

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	6516
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

cheodificated fieldsdred values and formations will be provided to the BEVI.					
N	H2S is present				
Y	H2S plan attached.				

Van Doo Dah 33-28 Fed Com 621H

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments	1
X	Directional Plan
	Other, describe

Van Doo Dah 33-28 Fed Com 711H

1. Geologic Formations

TVD of target	12055	Pilot hole depth	N/A
MD at TD:	22336	Deepest expected fresh water	

Basin

Dasin		TT	
	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	995		
Salt	1380		
Base of Salt	4625		
Delaware	4625		
Cherry Canyon	5580		
Brushy Canyon	7170		
1st Bone Spring Lime	8680		
Bone Spring 1st	9665		
Bone Spring 2nd	10310		
3rd Bone Spring Lime	10805		
Bone Spring 3rd	11415		
Wolfcamp	11910		

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program (Primary Design)

		Wt			Casing	Interval	Casing	Interval
Hole Size	Csg. Size	(PPF)	Grade	Conn	From (MD)	To (MD)	From (TVD)	To (TVD)
14 3/4	10 3/4	40 1/2	H40	ВТС	0	1020	0	1020
9 7/8	8 5/8	32	P110	TLW	0	11415	0	11415
7 7/8	5 1/2	17	P110	ВТС	0	22336	0	12055

[•] All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for contingency casing.

3. Cementing Program (Primary Design)

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures.

Casing	# Sks	TOC	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	615	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	504 Surf 13.0		2.3	2nd State: Bradenhead Squeeze - Lead: Class C Cement + additives	
Int 1	491	7191	13.2	1.44	Tail: Class H / C + additives
Production	117	9553.135	9	3.27	Lead: Class H /C + additives
Production	1427	11553.13	13.2	1.44	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Prod	10%

4. Pressure Control Equipment (Three String Design)

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		✓	Tested to:	
			Annular		X	50% of rated working pressure	
Int 1	13-5/8"	5M	Bline	d Ram	X		
IIIC I	13-3/6	J1V1		Ram		5M	
			Doub	le Ram	X	J1V1	
			Other*				
Post Con	13-5/8"	10M		Annul	ar (5M)	X	100% of rated working pressure
			Blind Ram		X	10M	
Production			Pipe Ram				
			Double Ram		X	TOW	
			Other*				
			Annul	ar (5M)			
			Bline	d Ram			
			Pipe Ram Double Ram				
]	
			Other*				
N A variance is requested for	A variance is requested for the use of a diverter on the surface casing. See attached for schematic.						
Y A variance is requested to	A variance is requested to run a 5 M annular on a 10M system						

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, C	oring and Testing
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the
X	Completion Report and shumitted to the BLM.
	No logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain.
	Coring? If yes, explain.

Additiona	l logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
X	CBL	Production casing
X	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	6582
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

L	cheountereu	measured values and formations will be provided to the BEM.
		H2S is present
	Y	H2S plan attached.

Van Doo Dah 33-28 Fed Com 711H

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments	1
X	Directional Plan
	Other, describe

Van Doo Dah 33-28 Fed Com 711H

				Van Doo Dah 33-2	28 Fed Com	711H						
10 3/4		surface csg in a	14 3/4 i	nch hole.		Design	Factors -			Surface		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weigh
"A"	40.50		h 40	btc	9.60	2.53	0.37	1,175	4	0.61	4.78	47,58
"B"				btc				0				0
	v	v/8.4#/g mud, 30min Sfc Csg Test	t nsig: 1 083	Tail Cmt	does not	circ to sfc.	Totals:	1,175				47,58
omnarison o		to Minimum Required Cem			4000	00 10 0.0.	Totaloi	.,				,00
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cr
14 3/4	0.5563	615	886	654			3715	5M				2.00
14 3/4	0.5565	615	000	634	35	9.00	37 13	JIVI				2.00
Burst Frac Grad	lient(s) for S	segment(s) A, B = , b All > 0	.70, OK.									
0 = /0		cosing inside the	10.2/4			Docian	Factors			Int 1		
8 5/8		casing inside the	10 3/4	Coupling	laint	Design		Longth	D@a		а-С	Wales
Segment	#/ft	Grade	- 110	Coupling	Joint	Collapse	Burst	Length	B@s	a-B		Weigh
"A"	32.00		p 110	tlw	2.95	0.68	1.36	11,415	1	2.28	1.14	
"B"								0				0
	v	v/8.4#/g mud, 30min Sfc Csg Test					Totals:	11,415				365,28
		The cement	volume(s) are intend	ed to achieve a top of	0	ft from su	ırface or a	1175				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Di
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-C
9 7/8	0.1261	491	707	1462	-52	10.50	3923	5M				0.44
D V Tool(s):			7170				sum of sx	Σ CuFt				Σ%exce
by stage % :		32	25				995	1866				28
Class 'C' tail cm	t vld > 1 35		20									
Tail cmt 5 1/2		casing inside the	8 5/8			Design Fa	ctors			Prod 1		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	а-В	a-C	Weigh
"A"	17.00	Orado	p 110	btc	2.66	1.14	1.62	22,336	2	2.71	1.91	379,71
"B"	17.00		p 110	Dic	2.00	1.14	1.02	0		2.7 1	1.31	0
"C"								0				0
				•								
"D"				0				0				0
	v	v/8.4#/g mud, 30min Sfc Csg Test					Totals:	22,336				379,7
				ed to achieve a top of	11215	ft from su		200				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Di
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cp
7 7/8	0.1733	1544	2437	1928	26	10.50						0.91
Class 'C' tail cm	t yld > 1.35											
#N/A	· 											
0 #IN/A			F 1/2			Dooler	Ecotoro			haaaa C'		
-	#IEL	Cuada	5 1/2	Courting	#N1/A	Design		Lawrith		hoose Casi		\A/=!<-!
Segment	#/ft	Grade		Coupling	#N/A	Collapse	Burst	Length	B@s	а-В	a-C	Weigh
"A"				0.00				0				0
"B"				0.00				0				0
	v	v/8.4#/g mud, 30min Sfc Csg Test	t psig:				Totals:	0				0
		Cmt vol c	alc below includes th	nis csg, TOC intended	#N/A	ft from su	ırface or a	#N/A				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Di
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-C
0		#N/A	#N/A	0	#N/A							- 1
#N/A			Capitan Reef est	-								
,			Cupitali Neel est	COP AAAA.								

Carlsbad Field Office 8/2/2023

Van Doo Dah 33-28 Fed Com 731H

10 3/4	sur	face csg in a	14 3/4	inch hole.		Design I	actors			Surfac	e	
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	40.50		h 40	btc	9.40	2.48	0.35	1,200	4	0.59	4.68	48,600
"B"				btc				0				0
	w/8.4#,	g mud, 30min Sfc Csg Tes	t psig: 1,072	Tail Cmt	does not	circ to sfc.	Totals:	1,200				48,600
Comparison of Proposed to Minimum Required Cement Volumes												
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
14 3/4	0.5563	617	888	668	33	9.00	3876	5M				2.00
Burst Frac Grad	dient(s) for Segm	ent(s) A, B = , b All >	0.70, OK.		Site plat (pip	ue racks S or E)	as per 0.0.1.	III.D.4.i. not	found.			

8 5/8	ca	ising inside the	10 3/4			Design	Factors -		-	Int 1		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	32.00	р	110	tlw	2.83	0.65	1.33	11,910	1	2.24	1.09	381,120
"B"								0				0
1	w/8.	.4#/g mud, 30min Sfc Csg Test psig:	1,054				Totals:	11,910				381,120
		The cement volur	nded to achieve a top of	0	ft from su	ırface or a	1200				overlap.	
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
9 7/8	0.1261	546	786	1525	-48	10.50	3993	5M				0.44
D V Tool(s):			7170				sum of sx	Σ CuFt				Σ%excess
t by stage % :		32	31				1073	1998				31
Class 'C' tail cm	nt yld > 1.35											

	p 110 ig: 2,699	Coupling btc	Body 2.62	Collapse 1.12	Burst 1.59	22,548 0	B@s 2	a-B 2.66	a-C 1.87	Weight 383,316	
	<u>'</u>	btc	2.62	1.12		0	2	2.66	1.87		
	ig: 2,699					-				•	
	ig: 2,699									0	
	w/8.4#/g mud, 30min Sfc Csg Test psig: 2,699 Totals: 22,548										
The cement vo	olume(s) are inten	ided to achieve a top of	11710	ft from su	rface or a	200				overlap.	
1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist	
Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg	
1544	2437	1879	30	10.50						0.91	

0			5 1/2	_		Design I	Factors		<0	Choose (Casing>	
Segment	#/ft	Grade		Coupling	#N/A	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"				0.00				0				0
"B"				0.00				0				0
	w/8.4#/	g mud, 30min Sfc Csg Test	osig:				Totals:	0				0
		Cmt vol ca	alc below includes th	is csg, TOC intended	#N/A	ft from su	rface or a	#N/A				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
0		#N/A	#N/A	0	#N/A							
#N/A			Capitan Reef est	top XXXX.								

Carlsbad Field Office 8/2/2023

Van Doo Dah 33-28 Fed Com 621H

#/ft	Cuada				Design	Factors -			ace		
	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
0.50	ŀ	1 40	btc	9.40	2.48	0.37	1,200	4	0.61	4.68	48,600
			btc				0				0
w/8.4#/g mud, 3	Omin Sfc Csg Test psig	: 1,072	Tail Cmt	does not	circ to sfc.	Totals:	1,200				48,600
Comparison of Proposed to Minimum Required Cement Volumes											
nular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
lume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
5563	615	886	668	33	9.00	3715	5M				2.00
s) for Segment(s) A	, B = , b All > 0.70	, OK.									
	w/8.4#/g mud, 3 posed to Minimum nular olume 5563	w/8.4#/g mud, 30min Sfc Csg Test psig posed to Minimum Required Cement nular 1 Stage olume Cmt Sx 5563 615	w/8.4#/g mud, 30min Sfc Csg Test psig: 1,072 posed to Minimum Required Cement Volumes nular 1 Stage 1 Stage slume Cmt Sx CuFt Cmt 5563 615 886	w/8.4#/g mud, 30min Sfc Csg Test psig: 1,072 Tail Cmt posed to Minimum Required Cement Volumes nular 1 Stage 1 Stage slume Cmt Sx CuFt Cmt Cu Ft 5563 615 886 668	btc w/8.4#/g mud, 30min Sfc Csg Test psig: 1,072 Tail Cmt does not posed to Minimum Required Cement Volumes I Stage Min 1 Stage Stage	btc w/8.4#/g mud, 30min Sfc Csg Test psig: 1,072 Tail Cmt does not circ to sfc.	btc w/8.4#/g mud, 30min Sfc Csg Test psig: 1,072 Tail Cmt does not circ to sfc. Totals: posed to Minimum Required Cement Volumes I Stage Min 1 Stage Drilling Calc Stume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP Stage Stage Stage Stage Min Stage Office Mud Wt MASP Stage Stage Stage Stage Min Stage Office Mud Wt MASP Stage Stag	No. No.	btc 0	w/8.4#/g mud, 30min Sfc Csg Test psig: 1,072 posed to Minimum Required Cement Volumes nular 1 Stage 1 Stage Min 1 Stage Drilling Calc Req'd slume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP 5563 615 886 668 33 9.00 3715 5M	btc 0

8 5/8	casir	g inside the	10 3/4			Design	Factors			Int 1		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	32.00		p 110	tlw	2.95	0.68	1.37	11,415	1	2.30	1.14	365,280
"B"								0				0
	w/8.4#/ ₈	g mud, 30min Sfc Csg Test	psig: 1,270				Totals:	11,415				365,280
		The cement	volume(s) are intend	ded to achieve a top of	f 0	ft from su	ırface or a	1200				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
9 7/8	0.1261	492	708	1463	-52	10.50	3884	5M				0.44
D V Tool(s):			7170				sum of sx	Σ CuFt				Σ%excess
t by stage % :		32	25				996	1868				28
Class 'C' tail cm	it yld > 1.35											
Tail cmt		·										

5 1/2	casii	ng inside the	8 5/8	_		Design Fac	ctors			Prod 1		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	17.00		p 110	btc	2.69	1.15	1.63	22,210	2	2.74	1.93	377,570
"B"								0				0
	w/8.4#/	g mud, 30min Sfc Csg Test	osig: 2,625				Totals:	22,210				377,570
		The cement	olume(s) are inter	nded to achieve a top of	11215	ft from su	rface or a	200				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
7 7/8	0.1733	1545	2439	1906	28	10.50						0.91
Class 'C' tail cmt yld > 1.35												

0	5 1/2 <u> </u>				Design Factors					Casing>		
Segment	#/ft	Grade		Coupling	#N/A	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"				0.00				0				0
"B"				0.00				0				0
	w/8.4#/g mud, 30min Sfc Csg Test psig:						Totals:	0				0
Cmt vol calc below includes this csg, TOC intended				#N/A	ft from surface or a #N/A		#N/A				overlap.	
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
0		#N/A	#N/A	0	#N/A							
ŧN/A			Capitan Reef est	top XXXX.								

Carlsbad Field Office 8/2/2023

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 248686

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	248686
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Create By	Condition	Condition Date
pkau	Z IF ON ANY STRING CEMENT DOES NOT CIRCULATE, A CBL MUST BE RUN ON THAT STRING OF CASING.	8/9/2023