Form 3160-3 (June 2015)		FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018
UNITED STATE: DEPARTMENT OF THE I BUREAU OF LAND MAN	5. Lease Serial No.	
APPLICATION FOR PERMIT TO D	RILL OR REENTER	6. If Indian, Allotee or Tribe Name
1a. Type of work: DRILL	7. If Unit or CA Agreement, Name and No.	
	ther ingle Zone Multiple Zone	8. Lease Name and Well No.
2. Name of Operator		9. API Well No. 30-015-54145
3a. Address	3b. Phone No. (include area code)	10. Field and Pool, or Exploratory
 4. Location of Well (<i>Report location clearly and in accordance</i>) At surface At proposed prod. zone 	with any State requirements.*)	11. Sec., T. R. M. or Blk. and Survey or Area
14. Distance in miles and direction from nearest town or post off	ice*	12. County or Parish 13. State
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	16. No of acres in lease 17. Spac	ing Unit dedicated to this well
18. Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft.	19. Proposed Depth 20, BLM	/BIA Bond No. in file
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22. Approximate date work will start*	23. Estimated duration
	24. Attachments	
The following, completed in accordance with the requirements o (as applicable)	f Onshore Oil and Gas Order No. 1, and the	Hydraulic Fracturing rule per 43 CFR 3162.3-3
 Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest Syste SUPO must be filed with the appropriate Forest Service Office 	Item 20 above). m Lands, the 5. Operator certification.	ns unless covered by an existing bond on file (see rmation and/or plans as may be requested by the
25. Signature	Name (Printed/Typed)	Date
Title		
Approved by (Signature)	Name (Printed/Typed)	Date
Title	I	
Application approval does not warrant or certify that the applican applicant to conduct operations thereon. Conditions of approval, if any, are attached.	nt holds legal or equitable title to those rights	in the subject lease which would entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, n of the United States any false, fictitious or fraudulent statements		

(Continued on page 2)

.

DISTRICT I 1625 N. French Dr., Hobbs, NM 88240 Phone (575) 393-6161 Fax: (575) 393-0720 DISTRICT II 811 S. First St., Artesia, NM 88210 Phone (575) 746-1283 Fax: (575) 748-9720

DISTRICT III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone (505) 334-6178 Fax: (505) 334-6170 DISTRICT IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone (505) 476-3460 Fax: (505) 476-3462 State of New Mexico Energy, Minerals and Natural Resources Department Form C-102 Revised August 4, 2011

Submit one copy to appropriate District Office

OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

WELL LOCATION AND ACREAGE DEDICATION PLAT

□ AMENDED REPORT

		1	WELL LOCATION AND ACREAGE DEDICATION PLAT								
	Number)15-541	145		Pool Code 96370		МА	GRUDER B	Pool Name ONE SPRIN	IG, WEST (G	AS)	
Property C	ode	145		30370	Property 1				Well Nu	,	
334682				AN	EJO FEDEI		СОМ		20		
ogrid No 372262	-			SPO	0perator 1 C RESOUR				Elevat 315		
012201				510	Surface L						
UL or lot No.	Section	Township	Range	Lot Idn	Feet from th		OUTH/South line	Feet from the	East/West line	County	
L	23	21 S	26 E		2138		SOUTH	337	WEST	EDDY	
		•	Bottom	Hole Loo	ation If Di	iffere	nt From Surf	ace		I	
UL or lot No.	Section	Township	Range	Lot Idn	Feet from th	ne S	OUTH/South line	Feet from the	East/West line	County	
Р	23	21 S	26 E		1000		SOUTH	50	EAST	EDDY	
Dedicated Acres	Joint o	or Infill Co	nsolidation (Code Or	ler No.						
326.54											
NO ALLO	WABLE V						FIL ALL INTER PPROVED BY T		EEN CONSOLIDA	ATED	
N.: 535789.8	I					I	N.: 535832	1			
E.: 600306.6 (NAD83) Lat - N 32.4 Long - W 104.2 NMSPCE-N 533 Lat - N 32.4 Long - W 104.2 NMSPCE-N 533 Lat - N 32.4 Long - W 104.2 NMSPCE-N 533 NMSPCE-N 533	464189* 270749* 2608.4 0639.6 464072* 270242* 2548.3 9458.9	FIRST TAKE 1000' FSL & Lat - N 3 NMSPCE-N MMSPCE-N Lat - N 3 Long - W 11 NMSPCE-N (NAD-	100' FWL 32.461056' 04.271526' 531468.6 560400.7 83) 32.460939' 04.271018' 531408.5 519220.0	LAST TAKE POINT <u>1000' FSL & 100' FEL</u> Lat - N 32.461189' Long - W 104.254805' NMSPCE- E 56557.6 (NAD-83) Lat - N 32.461071' Long - W 104.254299' NMSPCE- N 531460.2 E 524376.8 (NAD-27)		Lat Long NMS Lat Long	I hereby contained her the best of m this organizati interest or un land includin location or he location or he location or he location or he location or he this location or he this location or he this location or he this location.Lat - N32.461073* Long - W 104.254137* NMSPCE-N 531460.7 NMSPCE-N 531460.7 NMSPCE-E 524426.8 (NAD-27)I hereby contained her this organizati interest or un land includin owner of suci or to a volum compulsory p the divisionLat - N32.461073* SignatureLat - N531460.7 SignatureNMSPCE-S24426.8 (NAD-27)Signature Lelan J And Printed Na		e ntoPetroleum.com s		
NW/45W, 40.81 AC	/4 	KICK OFF 1000' FSL & Lat N 3 Long W10 NMSPCE N NMSPCE N 3 Long H 10 Lat N 3 Long W10 NMSPCE N 10 NMSPCE N 10 NMSPCE N 10 NMSPCE N 10 NMSPCE N 10 <t< td=""><td><u>51' FWL</u> 2.461055* 94.271683* 531468.1 560352.1 83) 2.460938* 4.271176* 531408.1 519171.4</td><td>1000' FS Lat - N Long - N NMSPCE (N Lat - N Long - N Long - N NMSPCE NMSPCE NMSPCE NMSPCE</td><td>f POINT <u>L & 2678' FWL</u> N 32.461123' N 104.263166' _N 531494.4 E 562979.0 AD-83) N 32.461005' V 104.262659' _N 531434.3 E 521798.3 AD-27)</td><td> .: 53150 .: 5543'</td><td>18.3</td><td>on this plat w actual surveys supervison, an correct to th JANO Date Shrvey Signature & Professional</td><td>Seal of Surveyor</td><td>l notes of under my true and</td></t<>	<u>51' FWL</u> 2.461055* 94.271683* 531468.1 560352.1 83) 2.460938* 4.271176* 531408.1 519171.4	1000' FS Lat - N Long - N NMSPCE (N Lat - N Long - N Long - N NMSPCE NMSPCE NMSPCE NMSPCE	f POINT <u>L & 2678' FWL</u> N 32.461123' N 104.263166' _N 531494.4 E 562979.0 AD-83) N 32.461005' V 104.262659' _N 531434.3 E 521798.3 AD-27)	 .: 53150 .: 5543'	18.3	on this plat w actual surveys supervison, an correct to th JANO Date Shrvey Signature & Professional	Seal of Surveyor	l notes of under my true and	
SW/4SW/ 40.87 AC N.: 530467.5 E.: 560299.0 (NAD83)	/4	L: 561539.8 (NAD83) SE/4S 40.86			W/4SE/4 0.85 AC. 	(NAD8 		0' 500' нинин S	ASIN SURVEY S	2000'N	

Anejo Federal Com 204H Eddy County, NM

Prepared by Lelan J Anders Nov 2022

Well Name	Anejo Federal Com 204H	Drilling Rig	TBD
County	Eddy, NM	Field	[96370] MAGRUDER, BONE SPRINGS, WEST (GAS)
API Number	30-015-	OGRID Number	371496
AFE #		AFE Days	18
H ₂ S ROE	There is known H2S in the area	AFE Amount	
Lat / Long NAD 83	N 32.464189° W 104.270749°	Location	2138′ FSL & 337′ FWL Sec 23, T21S, R26E
NMSPCE SHL	N = 532608.4 E = 560639.6	NMSPCE BHL	N = 531520.8 E = 565607.6
Elevation	3,153′	KB Elevation	3,178′
MD / TVD	12,038′ / 6,950′	Rig Floor	25′

Driving Directions:

From the intersection of Hwy 285 and the George Shoup Relief Rte – Go south 1.0 miles. Turn left on to lease road, follow 0.4 miles to location.

Billing Information:

accountspayable@santopetroleum.com

Health, Safety, and Environmental Concerns:

- Always obey posted speed limit signs
- Everyone that arrives on location must check in with the Santo Company Representative and present an H2S Safety Certification card.
- All Pioneer employees and third-party representatives that are Short Service or Non-English-speaking Employees shall notify the Santo Company Representative to ensure the safety of everyone present on location.
- JSA's are required for everyone on location prior to any operations including, but not limited to, casing running, cementing, picking up tools, using heavy machinery, etc.

Handling Media & Other Public Inquiries on Location

- Be courteous and polite, but do NOT give any details or answer any questions.
- Tell the inquiring party that only Santo Petroleum company management is authorized to talk to the media.
- Direct them to call Santo's main line at 575-736-3250 or email <u>Info@SantoPetroleum.com</u> for the fastest response.

String	Hole Size	Casing	Approx. Depth	Depth Criteria
Surface	26″	20" 94# J-55 STC	120′	To be set prior to MIRU
1 st Intermediate	17 1/2″	13 3/8″ 54.5# J55 BTC	575′	Groundwater protection
2 nd Intermediate	12 1/4″	9 5/8″ 40# L80 BTC	2,812′	Case off salt/ lost circulation
Production	8 3/4"	5 1/2" 20# HCP110 CDCHT	12,038′	Final TD determined by casing tally and projection from Directional Driller

Hole Section Summary and Well Diagram

Bit, Hydraulics, and Drilling Parameters

Size	Vendor	Туре	Depth Out	TFA	WOB (k-lbs)	RPM	Flowrate (GPM)	Pressure (psi)
17 1/2"	Reed	TK69	575'	2.0	35-40K	80-110	800-1000	1500-2500
12 1/4"	Ulterra	SPL616	2,812'	1.1	25-50K	80-120	700-800	3000-3500
8-3/4" Vertical	Smith	XS716	6,950'	1.0	15-30K	80-120	500-600	3000-3500
8-3/4" Curve	Security	GTD64DU	7,350'	1.0	5-50K		400-600	2500-3000
8-3/4" Lateral	Ulterra	SPL616	12,038'	1.0	15-40K	80-120	400-600	3000-5000
8-3/4" Backup	Smith	XS616	12,038'	1.0	15-40K	80-120	400-600	3000-5000

Cement Program

	Hole		L	EAD SLURR	Y	TAIL SLURRY			
String	g Size Casing		Weight	тос	Excess / OH	Weight	тос	Excess / OH	
1 st Intermediate	17 1/2"	13 3/8"	N/A	N/A	N/A	14.8	Surface	100%	
2 nd Intermediate	12 1/4″	9 5/8″	12.8	Surface	100%	14.8	2,240′	100%	
Production	8 ¾″	5 1/2"	11.5	Surface	20%	13.2	8,000′	20%	

Section	Hole Size	BHA Description
Intermediate	17 1/2"	 17 1/2" PDC Bit 9 5/8" x 8" 7/8 4.0 1.75 FBH (w/ 11 3/4" NBS) IBS (1/4" UG) NMPC UBHO 2 - NMDC (MWD) 3 - 8" DC 12 - 6.5" Drill Collars
Intermediate	12 1/4"	 12 1/4" PDC Bit 9 5/8" x 8" 7/8 4.0 1.75 FBH (w/ 11 3/4" NBS) IBS (1/4" UG) NMPC UBHO 2 - NMDC (MWD) 3 - 8" DC 12 - 6.5" Drill Collars
Production Vertical	8 3/4″	 8-3/4" PDC Bit 7" 1.75 FBH 7/8 5.0 (w/ ¹/₂" UG NBS) IBS (1/2" UG) NMPC UBHO 2 - NMDC (MWD) 12 - 6.5" Drill Collars 5 - 5" HWDP 1- Drilling Jars 12 - 5" HWDP
Production Curve	8 3/4″	 8-3/4" PDC Bit 7" 2.12 FBH 6/7 5.0 (Slick Sleeve) NMPC UBHO 2 - NMDC (MWD)
Production Lateral	8 3/4″	 8 3/4" PDC Bit 7" 1.5 FBH 6/7 5.0 (w/ 8" NBS) 8 1/4" Nortrak 1 - UBHO 2 - NMDC (MWD) 90 - jnts 4" DP 1 - NOV Agitator 4" Drill Pipe

BHA Program

Anejo Federal Com 204H

.

Casing Characteristics

			ID	Cpl OD	Drift	Weight			Burst	Collapse	Tension	То	rque (ft-l	bs)
String	Depth (ft)	OD (in)	(in)	(in)	(in)	(#/ft)	Grade	Conn	(psi)	(psi)	(k-lbs)	Min	Opt	Max
Surface	120'	20	19.124	21	18.936	94	J55	STC	2110	520	1480			
1 st Intermediate	575' TVD	13 3/8	12.615	14.375	12.459	54.5	J55	BTC	1730	1130	607	Δ	Δ	Δ
2 nd Intermediate	2,812' TVD	9 5/8	8.835	10.625	8.679	40	L80	BTC	5750	3090	916	Δ	Δ	Δ
Production	12,038' MD	5 1/2	4.778	6.154	4.653	20	HCP110	BTC	12640	12200	641	Δ	Δ	Δ

Mud Program

Hole Section	Fluid Type	Mud Weight (ppg)	Funnel Visc (s/qt)	PV	ΥP	рН	API Fluid Loss	Cl- (mg/L)	6 rpm	Drill Solids (%)	ES
26″ 0′-120′	Spud Mud/ Bentonite	8.5-9.2	38-40	8-10	8-10	8.0-9.0	NC	1-5k	-	<5	-
17 1/2" 120'-575'	Spud Mud/ Bentonite	8.5-9.2	38-40	8-10	8-10	8.0-9.0	NC	1-5k	-	<5	-
12 1/4" 575'-2,812'	Brine/ Prehydrated Bentonite	10-10.1	28-29	NA	NA	10.5	NC	170k+	-	<5	-
8 ¾″ 2,812′-TD	OBM	9.5-9.8	45-50	15-20	8-12	-	RF	250k-300k	9-15	-	600-900

Survey Program

Hole	Туре	Comments
17 ½"	Inclination & Azm	Every 90' while drilling ahead w/ MWD Tools and Gamma
12 ¼"	Inc/ Azm/ Gamma	Every 90' while drilling ahead w/ MWD Tools and Gamma
8 ¾"	Inc/ Azm/ Azm Gamma	Curve section will be surveyed every 45' unless discussed otherwise. 90' surveys in the lateral.

<u>Make sure all the surveys are recorded in IADC report. Company rep is not to sign</u> off on daily IADC until surveys are put in.

Note: Maintain survey program and ensure deviation stays manageable in the vertical hole section.

Directional Target

KB Depth (ft)	Departure from BHL	Comments
Vertical hole	100' radius	Try to keep DLS below 3 degrees.
Production lateral	+/- 15' Window	Geologists will continue to monitor formation dip with gamma and adjust as needed.

Wellhead	Equipment
----------	-----------

		Bottom Flange		Top Flange		
Section	Man.	Size (in.)	WP (psi)	Size (in.)	WP (psi)	Comments
Casing Head Sec A	AFS	13 3/8″ SOW	-	13 5/8″	5000	Test casing head weld to 790 psi (70% of 13 3/8" J55 54.5# casing collapse pressure)
Casing Head Sec B	AFS	13 5/8″	5000	11″	10000	Test Void to 1,100 psi (70% of 10 3/4" J55 40.5# casing collapse). See vendor instructions for installation and testing procedures
Tubing Head	AFS	11″	10000	7-1/16″	15000	Test tubing head void to 7,500 psi (70% of 5 $1/2"$ HCP110 20# casing collapse). Install blind flange or valve on top of the tubing head.

BOP Equipment

Casing Wellhead Flange		В	OP Stack	(Pressure Test (psi)				
Size	Size	Pressure	_ (1)	Size	Pressure	Ini	tial	Subsequent	
(in.)	(in.)	(psi)	Type(1)		(psi)	Rams	Ann	Rams	Ann
13 3/8″	13 5/8″	5000	R, R, A, G	13 5/8″	10000	250/ 3500	250/ 1500		
9 5/8″	13 5/8″	10000	R, R, A, G	13 5/8″	10000	250/ 5000	250/ 2500	250/ 5000	250/ 2500

*Test BOPE 250/5000 psi, and 250/2500 psi for the annular preventer. This pressure exceeds the burst rating of 10 3/4" casing, therefore caution must be used to avoid exposing the casing to this high pressure. Make sure test plug is properly installed prior to beginning testing and <u>bradenhead valve is left open at all times while testing.</u>

(Single) R=Ram Preventer; (Double) R=Ram Preventer; A=Annular; G=Rotating Head

- One set of pipe rams should be located below drilling spool.
- Blind rams should be in lower most double ram cavity.
- Pipe rams should be fitted for 5" solid body ram.
- Use new ring gaskets every time BOPE is installed.
- Insure all BOPE tests are recorded and kept in Drilling Supervisor Office.
- TIW valve and inside BOP with appropriate wrenches must always be on rig floor.
- Drill pipe float is required in all BHA(s).

<u>All BOPE test pressures to be held for a minimum of 5 minutes.</u> Relevant well control equipment shall be tested following replacement of any pressure containing component; or following removal, then reinstallation of BOP stack; or following installation of each casing string; or at the discretion of the Drill Site Manager or Drilling Superintendent.

BOP/Casing Test Assumptions

13 3/8" Surface Casing:

<u>All BOP Tests:</u> Should be done by a 3rd party tester and held for 5 mins each. All BOP test charts are to be kept for record and done at a minimum of every 21 days. <u>Note: a test plug should be utilized and the casing valve left open for the entire BOP test</u>

Surface Casing Test: **500 psi** pressure drop of no more than 10% over <u>30 min</u> test.

<u>Intermediate Casing Test:</u> **1500 psi** Acceptable pressure drop of no more than 10% over <u>30 min</u> test. **ENSURE CASING HEAD A-SECTION WELLHEAD** VALVE IS OPEN FOR THE ENTIRE TEST. Burst of 10 3/4" casing rated at 3130 psi

Possible hole problems

Surface Hole Section

- Red Beds swelling use Soap/SAPP as necessary to prevent swelling clays
- Possible lost circulation
- Wellbore cleaning problems due to unconsolidated formation, larger hole sizes.

Intermediate Hole Sections

- Seepage/ lost circulation
- Wellbore deviation concerns. We will have directional tools in the hole for this interval.
- Differential sticking possiblity, should the solids and mud weight become excessive.

Production Hole Section

- Seepage/ lost circulation
- H2S/ water flow
- Transition Zones reduce top drive RPM/ WOB when drilling through transition zones to extend bit/ BHA life.
- Abrasive drilling/ chert/ pyrite
- Excessive drag on connections that could require periodic weighted sweeps prior to running surveys or tripping for bit.
- Wellbore cleaning. Duning effect in curve of horizontal section of wellbore.
- Poor wellbore cleaning in horizontal section.

Approximate Formation Tops, Pressures, and Hazards

AN	TICIPATED GEOLOGIC MARKERS		
#	Marker*	MD (ft)	TVD (ft)
1	Option 1: Kelly Bushing	3,178	
2	Ground Level Elevation	3,153	
3			
4	Tanshill		142
5	Yates		333
6	Seven Rivers		536
7	Capitan	per directional plan	600
8	Delaware	per directional plan	2,243
9	Bone Spring	per directional plan	4,513
10	1st BSPG Sand	per directional plan	5,878
11	2nd Bone Spring Carbonate	per directional plan	6,122
12	2nd Bone Spring Sand	per directional plan	6,563
13	TOP WINDOW at LANDING POINT	per directional plan	6,880
14	LANDING POINT (LOWER 2ND BONE SPRING SAND TARGET)	per directional plan	6,890
15	BASE WINDOW at LANDING POINT		6,900

Formation Evaluation

Туре	Section \ Comments
MWD/ Azimuthal Gamma Ray	Gamma Ray logging from drill out of 13 3/8" casing to completion of wellbore. <u>Azimuthal Gamma in lateral section.</u> Vendor – Wellbenders – CW Ely – (979) 777-3329
Mud Logging	Rigged up and Logging 30' samples from surface casing to TD of wellbore. Vendor – Columbine – Ed Lesnick – (412) 559-3133
Geosteering	Geosteering with gamma ray and MWD while drilling the curve and lateral hole sections. Vendor – Columbine – Ed Lesnick – (412) 559-3133

Anejo Federal Com 204H

.

Drilling Procedure

Pre-Rig Move

- a. Ensure Emergency Evacuation Procedure and location coordinates are identified and documented prior to rig move.
- b. Review Emergency Response Plan and emergency contact list.
- c. Ensure the following information is received prior to rig move: approved trucking route, permit, GAU (water board) letter, AFE number, and well files.
- d. Drive to location and note any road hazards and power lines.
- e. Have conductor pre-set at the depth referenced on *Hole Section Summary.*
- f. DSM to have JSA from rig contractor prior to rig move.
- g. Conduct pre-job safety meeting with all persons, including 3rd party personnel, involved in rig move prior to mobilization. Update JSA as necessary. Shut off injectors.

Rig Move & Pre-spud

- a. Move in rig from previous location per rig contractor move plan.
- b. In morning report, note any downtime and waiting conditions during the move, including waiting on trucks, daylight, location, or road conditions.
- c. Notify BLM & NMOCD prior to well spud (575) 234-5972 & (505) 476-3440. Note time of notification and name of operator in morning report along with the job number.
- d. Complete <u>detailed</u> pre-spud rig inspection with the rig manager.
- e. <u>Pick up joint of drill pipe and verify derrick and top drive are</u> <u>leveled over the hole before accepting rig.</u>
- f. <u>Make sure solids control equipment is rigged up while crane is available</u> <u>during rig move.</u>
- g. Rig up diverter system and function test.

1st Intermediate Hole Drilling

Anticipated Problems

Туре	Comments
Hole Cleaning	GPM should always be maximized to aid in hole cleaning. Only if losses are experienced should Max GPM's not be maintained.
Lost Circulation	Partial to total loss returns can be experienced. If LCM treatments do not help do not continue to pump them and be prepared to dry drill to TD if necessary.
Hole Sticking	Hole sticking can become issue with red beds exposed. Limited time of clays being exposed is crucial. Maintain mud properties per the program to reduce clay swelling.

- a. Make up a 17 1/2" Surface hole BHA, drilling to 575' as referenced in the **BHA program.**
- b. Commence drilling surface hole at 400 GPM flow rate until depth is 100' below conductor. Monitor cellar and ground around conductor to ensure ground is not washing out. Limit surface RPMs to 40 until the stabilizers are clear of the conductor.
- c. Circulate through the steel pits maintaining volumes with additions of gel sweeps. Maintain mud weight with surface mud cleaning equipment.
- *d.* Continue drilling surface hole from ~80' to TD while bringing up parameters. Use surface parameters as referenced on *Drilling Parameters.*
- e. Monitor pick up, slack off, torque, returns, and standpipe pressure to evaluate hole cleaning. Pump high viscosity sweeps as needed as per the mud program.
- f. **SIMOPS:** While drilling surface hole strap, inspect, and drift surface casing and ensure that centralizers and float equipment are on site.
- g. **SIMOPS:** Verify the correct A-section of the wellhead has been delivered and measure the internal depth to determine the length of the surface casing that will be inserted into the bottom of the wellhead.
- h. A wiper trip is not required to run casing. Pump a viscous sweep at TD prior to tripping out of the hole. Circulate a minimum of two bottoms up at TD.
- i. POOH drilling string and BHA, racking back 9 5/8" motor for the intermediate hole run. If excessive drag is observed (>50 kips) call Drilling Superintendent to discuss possible clean out trip before commencing.
- j. Notify BLM & NMOCD of running and cementing surface casing if not done prior to spud and make a note in morning report. **Give the cementing company a first call notice for upcoming cement job. Have circulating iron on location prior to PU shoe track.**

1st Intermediate Hole Casing

- a. Conduct pre-job safety meeting with rig and casing crew
- b. Rig up Casing Crew to run 13 3/8" 54.5# J55 BTC casing.
- c. **SIMOPS**: Have a circulating swedge, swivel joint, and 2" low-torque available on the rig floor; function test low-torque valve on XO's.
- d. **SIMOPS**: Visually inspect float equipment for damage.
- e. Pick up first joint and verify derrick and top drive are aligned over hole to minimize cross threading.
- f. Make up and run 13 3/8" 54.5# J55 BTC casing as follows:
 - 1 Nose Guide Shoe
 - 1 joint 13 3/8" 54.5# J55 BTC casing
 - 1 Float Collar
 - 13 3/8" 54.5# J55 BTC casing to surface
 - Place bow spring centralizers as follows:
 - 1 bow spring on collar stop 10' above shoe
 - 1 bow spring on coupling above float collar
 - 1 bow spring on couplings every 4 joints to cellar.
- **SIMOPS**: Conduct the pre-job safety meeting with the cementing crew while circulating prior to the cement job.

• Chain down casing

- g. Wash down the last joint of the 13 3/8" casing. Establish circulation slowly and circulate two bottoms up. Once casing is landed do not move casing again while circulating hole.
- h. Rig up to displace with cement pump truck. Plan to do cementing job through cementing head. Make sure to have 2" high pressure hose or 1502 connection available to switch back to rig pumps if problems occur with cementing equipment. Drilling Supervisor is to visually verify that plug is properly loaded in cementing head.
- i. Ensure pressure is bled off mud lines.
- j. Pressure test cement line to 250 psi low and 3500 psi high hold each test for 5 minutes.
- k. Mix and pump cement as follows:

Fluid #	Fluid Type	Fluid Name	Estimated Avg Rate (bbl/min)	Downhole Volume (bbl)	Time (min)		
1	Spacer	Spacer (FW)	8	30	3.8		
2	Cement	Tail Cement	6	103	15.5		
3	Displacement Fluid	Fresh Water	8	89	11.9		
	Contingency 50%						
			Job T	ime	46.8		

See attached detailed cement proposal for slurry specifics

** Field blend test must have TT of no less than 2 hrs **

I. Drop wiper plug and displace with pump truck to float collar. Drilling supervisor to witness displacement volumes either on pump truck or in cementer van with computer tracked volumes.

- m. Decrease rate to ~4 bpm for last 10 bbls. <u>DO NOT OVERDISPLACE</u>
- n. Bump plug and pressure up to 500 psi over final displacing pressure for 5 minutes, do not exceed burst pressure rating for casing at any time, then bleed back to 0 psi. Check for back flow to ensure float is holding.
 - a. If floats do not hold, call DS and prep to hold pressure on casing until cement sets up.
- o. Report cement returns throughout cement job and report final volume of cement to surface in morning report.
 - a. Be ready to flush cement from surface lines and conductor once job is completed.
- p. If there are no cement returns to surface, a top job with 1" tubing will be necessary. Discuss remedial actions with DS before calling the NMOCD.
 - Notify the NMOCD
 - Calculate estimated top of cement from lift pressures
 - Take temperature survey if requested by NMOCD
 - Notify the NMOCD of results of the temperature survey
 - Perform remedial work as required
- q. Conduct PJSM; rig down cementing head and lines.
- Ensure that the casing is centered and level.
- Rough cut the casing above the final cut point.
- Remove the conductor
- Fine cut the casing taking into consideration the length of the casing that will be inserted into the wellhead so that the top flange of the multibowl wellhead will be at ground level. Make sure to confirm measurements with actual wellhead on the location and discuss with DS prior to operations.
- Weld the A section of the wellhead in place and allow to cool.
- Test the void between the welds to 790 psi (70% of casing collapse)
- Nipple up 13 5/8" 10M BOP stack per the following: (bottom to top)
 - A-section MBU wellhead
 - DSA (11" 10K x 13 5/8" 10K)
 - 13 5/8" 10M Single Rams with 5" rams
 - 13 5/8" 10M psi Double Ram (Blinds on bottom, 5" Pipe Rams on top)
 - 13 5/8 5M psi Annular Preventer
 - 13 5/8" Rotating Head
- ***This BOP NU could vary with rig specific equipment. Consult with DS prior to NU.***
 - r. **SIMOPS:** Make up test plug offline with one joint of DP.
 - s. Run test plug and perform remaining BOPE test as referenced in BOP Test Section for 5 minutes and chart same (test includes FOSV, IBOP and Top Drive valves). Retrieve test plug and chart results.
 - t. File BOP test chart in well file.

u. Install wear bushing.

v. Pick up 12 1/4" BHA as per **BHA Section**

- w. Commence drilling the intermediate hole with the saturated brine mud.
- x. Drill out the shoe track, limiting surface RPMs to 40 and flow rate to 400 GPM. Pump high viscosity gel sweeps as necessary while drilling cement. Record the firmness of cement in morning report.
- y. Drill 10' of new formation and circulate hole clean ensuring MW in and out are equal.
- z. Pull back into casing shoe, close BOP and perform **FIT to 10 ppg EMW**.
 - If shoe test is not obtained notify DS prior to drilling ahead.

2nd Intermediate Hole Drilling

Anticipated Problems

Туре	Comments
Hole Cleaning	Maintain maximum GPM when possible, to aid in hydraulics and hole cleaning. Make sure to monitor sweeps when they return to surface and adjust the frequency as needed.
Lost Circulation	Lost circulation can be encountered. Have LCM material readily available on location. Be prepared with enough volume to dry drill to TD if unable to re-establish returns.
a.	Make sure that mud-loggers are rigged up and ready to catch samples prior to drilling out surface casing shoe.
b.	Drill out surface casing shoe with brine and continue circulating through the steel pits following Buckeye mud program.
с.	Drill the Intermediate hole section as follows:
	 See recommended drilling parameters in Bit Program. Maintain enough WOB to maximize motor differential and maximize rotary speed to minimize building tendencies. Attempt to maximize flow rate to 700-800 GPM as hole conditions allow. If vibration is observed, adjust parameters in small increments trying to find a sweet spot.
	 Do not let weight drill off after kelly down. Cut rotary down to half, P/U and make connection. After connections, fan the PDC bit back to bottom to mitigate bit damage.
	 Conduct drill off tests every tour and every formation change to optimize drill rate.
	 Monitor and record pick up, slack off, and rotating weight/torque at every connection and evaluate as an indication of hole conditions.
	 Have bulk LCM on location at all times during drilling. Pump precautionary sweeps. Viscosify mud as necessary w/ polymer & salt gel to dampen string vibration & stick slip.
d.	Continue drilling to TD. Adjust TD deeper if necessary to accommodate the casing pipe tally.
e.	Pump a fluid caliper at TD of intermediate hole to confirm cement volumes.

- f. A wiper trip is not required to run casing. Pump a viscous sweep at TD prior to tripping out of the hole. Circulate a minimum of two bottoms up at TD.
- g. TOOH racking back DP and laying down 12 1/4" BHA.
- h. **SIMOPS:** While drilling intermediate hole strap, inspect, and drift casing and ensure that float equipment, and centralizers are on site. Make visual inspection of equipment.

2nd Intermediate Hole Casing

a. Pull wear bushing from wellhead.

- b. Conduct pre-job safety meeting with the casing running crew.
- c. **SIMOPS:** Have a circulating swedge, swivel joint, and 2" low-torque available on the rig floor; function test low-torque valve on XO's.
- d. **SIMOPS:** Visually inspect float equipment for damage; ensure that manufacturer model and numbers match with the descriptions below.
- e. **SIMOPS:** PU first joint and verify derrick and top drive are leveled over the hole to minimize cross threading.
- f. Make up and run 9-5/8" 40# L-80 BTC casing as follows:
 - PDC Drillable Float Shoe (thread locked).
 - 2 joints 9-5/8" 40# L-80 BTC casing (thread locked).
 - PDC Drillable float collar (thread locked)
 - 9-5/8" 40# L-80 BTC to surface
- g. After making up the shoe track, ensure proper operation of float equipment.
- h. Pick up landing joint with mandrel and wash last joint to bottom. Verify with wellhead technician mandrel is properly seated in MBS as per wellhead provider's running procedures.
- i. Break circulation slowly and circulate 2x bottoms at 400 GPM.
- j. **SIMOPS:** Conduct pre-job safety meeting with cementing crew prior to cement job while circulating.
- k. MAKE SURE all float equipment and ALL PLUGS for the intermediate casing come from the same manufacturer.
- Rig up cementing head (with top wiper plug pre-installed in cement head) and surface lines. Pressure test lines to 250/5000 psi; ensure that surface equipment is isolated from downhole while testing. Ensure pressure is bled off mud lines. <u>Drilling supervisor is to visually verify that the plug is</u> properly loaded in the cement head before installing it on casing.
- m. Mix and pump spacers / cement job at 8 BPM as follows (ensure and record all pressures and rates):

See detailed Cement Proposal for slurry specifics

Fluid #	Fluid Type	Fluid Name	Estimated Avg Rate bbl/min	Downhole Volume bbl	Time min			
1	Spacer	Fresh water	8	20	2.5			
2	Cement	Lead Cement	6	147	24.5			
3	Fluid	Displacement Fluid	8	276	34.5			
	Contingency 50%							
	Job Time							

Note: Field blend tests should have TT no less than 3 hrs

- n. Catch sample of dry cement, mix water, and wet cement.
- o. Drop wiper plug and displace with pump truck to float collar. Drilling supervisor to witness displacement volumes on pump truck or in cementer van with computer tracked volumes.
- p. Decrease rate to ~4 bpm for last 10 bbls. <u>DO NOT OVERDISPLACE</u>
- q. Bump plug and pressure up to 500 psi over final displacing pressure for 5 minutes, do not exceed burst pressure rating for casing at any time, then bleed back to 0 psi. Check for back flow to ensure float is holding.
 - a. If floats do not hold, call DS and prep to hold pressure on casing until cement sets up.
- o. Report cement returns throughout cement job and report final volume of cement returned to surface in morning report.
- p. Drain the BOP stack through the annulus gate valve and flush out the BOP stack thoroughly with fresh water to avoid any obstructions.
- q. Back out landing joint as per AFS running procedures and lay down. PU washout tool on joint of drill pipe and clean out area for pack-off to ensure no cement is left.
- r. Make up pack-off with joint of drill pipe and install in wellhead with UWS wellhead technician guidance.
- s. Once pack-off is properly installed test to <u>1,100 psi (~70% of collapse</u> rating of 9-5/8" 40# L-80 BTC casing)
- t. Install Wear Bushing
- u. Pick up 8 3/4" vertical BHA defined in **BHA Program**. Shallow hole test directional tools.
- v. TIH until you tag up at the float collar. Perform casing test to 1,500 psi. Pressure test casing with rig pumps to referenced pressures on casing test section using EDR system to chart results and document in well file. Surface pressure should not decline more than 10% in 30 minutes. If casing test fails, notify superintendent prior to drilling out shoe track.
- w. Drill out shoe track and circ bottoms up to clear casing of any residual cement cuttings. Drill 10 ft of new formation and circulate bottoms up and ensure mud weight in and out is consistent.
- x. Pull back into the casing and close BOP, perform FIT to **11.0 ppg EMW**.
 - If shoe test fails notify drilling superintendent before drilling ahead.

Production Hole Pilot Drilling

Anticipated Problems

	Anticipated Problems
Туре	Comments
Hole Cleaning	Maintain maximum GPM when possible to aid in hydraulics and hole cleaning. Make sure to monitor sweeps when they return to surface and adjust the frequency as needed.
Lost Circulation	Lost circulation can be encountered. Have LCM material readily available on location. Be prepared with enough volume to dry drill to TD if unable to re-establish returns.
Water flow	Possible water flows from the Delaware Mountain formations. Monitor pits for gains and losses. Have gas buster and power choke rigged up prior to drill out.
Bit Abrasion	This hole section is very difficult in larger hole sizes. ROP should be watched closely while encountering formation tops. If ROP decreases steadily down to 30 FPH, discuss with DS/ DE the possibility of a bit trip to avoid DBR.
b.	 Drill out intermediate casing shoe with cut brine/ prehydrated gel and continue circulating through the steel pits following Buckeye mud program. Drill the pilot hole section as follows: See recommended drilling parameters in Bit Program. Maintain enough WOB to maximize motor differential and maximize rotary speed to minimize building tendencies. Attempt to maximize flow rate to 600-800 GPM as hole conditions allow. If vibration is observed, adjust parameters in small increments trying to find a sweet spot. Do not let weight drill off after kelly down. Cut rotary down to half, P/U and make connection. After connections, fan the PDC bit back to bottom to mitigate bit damage. Conduct drill off tests every tour and every formation change to optimize drill rate. Monitor and record pick up, slack off, and rotating weight/torque at every connection and evaluate as an indication of hole conditions. Have bulk LCM on location at all times during drilling. Pump precautionary sweeps. Viscosify mud as necessary w/ polymer & salt gel to dampen string vibration & stick slip.
с.	A couple hundred feet before TD of the pilot hole, begin mudding up with white starch for water loss of <12 cc.
d.	Once pilot hole TD is reached, circulate and condition the hole. Pump a sweep and make a short trip (10 stands) to check for fill. Return to bottom and spot a 100 bbl pill prior to TOOH for logging run.

e. TOH and lay down 8 3/4" vertical BHA.

Anejo Federal Com 204H

Production Hole Curve/ Lateral Drilling

Anticipated Problems						
Туре	Comments					
Wellbore cleaning	Poor wellbore clean can occur while drilling the horizontal section. Maintain maximum allowable GPM's to aid in hole cleaning. Use of clean up cycle should be used as hole dictates. These should be performed at MCMR (max circulating max rotating).					
Excessive Torque and Drag	Clean up cycles and sweeps to aid in hole cleaning. Lubricity tests to be run on mud properties.					
Seepage/ Lost Circulation	Have LCM on hand in case of lost circulation or seepage losses. Drill with minimum mud weight allowable while still maintaining proper hydrostatic pressure on the hole.					
Abnormal Pressure	Monitor PVT system at all times in case of any well influx. Adjust mud properties as necessary if abnormal pressure is encountered.					

- a. Pick Up 8 3/4" curve assembly.
- b. Drill the production hole curve **as per directional plan**:
 - 10° / 100 ft BUR to EOC.
 - Drilling parameters as referenced in **Drilling Parameters**.
 - Attempt to drill curve with minimal flow rate to reduce washout on low side of hole and to allow for constant tool face control.
- c. Maintain sufficient WOB to maximize the differential pressure based on the motor and bit limits.
- d. Continue to monitor all surveys closely; calculate motor yield and project to TD after every survey to calculate build rates needed to land on target.
 - If you take a survey that has less than desired BUR, begin taking check shots between survey points to verify motor yield is sufficient.
 - If at any time calculated build rates to land on target are greater than motor yield stop drilling and contact DS and DE.
 - Directional team, on-site mud logger, and geologist to stay in constant communication while drilling curve section.
- e. Once at EOC, TOH racking back DP and laying down curve BHA.
- f. PU 8 $\frac{3}{4}$ " lateral BHA as noted in BHA summary section. Note any tight spots on TIH on morning report.
- g. TIH and resume drilling production lateral hole section.
 - See recommended drilling parameters in **Bit Program.** Maintain enough WOB to maximize motor differential and maximize rotary speed to minimize building tendencies. Attempt to maximize flow rate as hole

conditions allow. If vibration is observed, adjust parameters in small increments trying to find a sweet spot.

- Surveys should be taken at least every stand and more often if surveys indicate building tendencies. <u>Follow directional plan and notify DS</u> <u>and DE if surveys indicate issues maintaining plan.</u>
- After connections, fan the PDC bit back to bottom to mitigate bit damage.
- Monitor and record pick up, slack off, and rotating weight/torque at every connection and evaluate as an indication of hole conditions.
- While drilling entire hole section PVT data should be watched closely for gains/losses.
- Run centrifuge equipment continuously to keep LGS down and maximize ROP.
- h. Do not allow the torque to fluctuate greater than +/-1000 ft-lbs. If the formation appears "ratty" (erratic torque or larger swings in torque values), incrementally adjust the surface RPM and the WOB to eliminate this problem (Reduce RPMs in 3-5 RPM intervals, allowing sufficient time between adjustments for the string to stabilize).
- i. Have LCM on location per the Buckeye mud program at all times during drilling.
- j. Monitor and record pick up, slack off, and rotating weight/torque at every connection. Evaluate each for indications of hole conditions. Reference motor operating limits for the maximum and minimum operating flow rates.
- k. SIMOPS: While drilling production hole section, ensure casing is received, cleaned, tallied, and drifted with an API drift.
- I. Refer to the oil-based mud procedure for specific drilling fluid handling procedures while drilling the production hole.
- m. Continue drilling to TD. Once at TD perform clean up cycle while pumping high vis sweeps prior to TOH. Discuss with DS and DE about sweep frequency and rotating parameters.
 - Space out to allow a full stand (90ft) to be available to reciprocate drill pipe while pumping clean up cycle.
 - Pump at maximum allowable pump GPM's while rotating at maximum allowable RPM's

Production Hole Casing

NOTE: Notify the NMOCD of intent to run and cement the production casing.

- a. Conduct a pre-job safety meeting.
 - Hold safety meetings accordingly.
- b. **SIMOPS**: Visually inspect float equipment for damage and proper operation; ensure that the manufacturer model and numbers match with the descriptions below.
- c. Rig up CRT tool to run 5 1/2" production casing.
- d. Make up and run 5 1/2" 20# HCP110 BTC production casing as follows:
 - 1 5 1/2" Float Shoe -thread locked
 - 1 joint 5 1/2" 20# HCP110 BTC casing thread locked
 - 1 5 1/2" Float Collar
 - 5 1/2" 20# HCP110 BTC to base of curve (Confirm with DE)
 - 1 5 1/2" Float-In Sub

5 1/2" 20# HCP110 BTC to surface

Marker joints at halfway in the lateral and 200' above KOP

- e. After making up the shoe track, pump through equipment to ensure that floats are clean of any obstructions. Confirm flow.
- f. Pick up and run casing with casing crew. Monitor returns on the trip tank or pit volume and fill the casing every 20 joints. Stop at the intermediate casing shoe and break circulation. Record pick up and slack off weights.
- g. Proceed TIH through curve and lateral filling on the fly with CRT tool.
- h. Tag bottom and confirm hole depth.
- i. **SIMOPS:** Conduct pre-job safety meeting with cementing crew while circulating prior to cement job.
- j. Rig up cementing head (with top wiper plug pre-installed in cement head) and surface lines. Pressure test lines to 250/5000 psi; ensure that surface equipment is isolated from downhole while testing. Ensure pressure is bled off mud lines. <u>Drilling supervisor is to visually verify that the plug is</u> <u>properly loaded in the cement head before installing it on casing.</u>
- k. Mix and pump spacers / cement job at 8 BPM as follows (ensure and record all pressures and rates):

See detailed Cement Proposal for slurry specifics

Fluid #	Fluid Type	Fluid Name	Estimated Avg Rate bbl/min	Downhole Volume	Time min
1	Spacer	GXT Spacer	8	40	5
2	Cement	Lead Cement	8	77	10
3	Cement	Tail Cement	8	405	51
4	Displacement	Sugar Water	8	20	2.5
5	Displacement	Treated Water	8	247	32
			Contingency	25%	26
			Total Job Time	126	5.5

*****Note:** Field blend tests prior to job should have thickening time no less than 5.5 hrs***

- I. Catch sample of dry cement, mix water, and wet cement.
- m. Drop top wiper plug and displace with cement truck to float collar with <u>2%</u> <u>KCL water</u>, <u>do not over displace</u>. Slow pump rate to ±2 BPM for the last 10 bbls. Bump plug and pressure up to 500 psi for 5 minutes, then bleed back to 0 psi. Check for back flow. Flow check annulus and confirm fluid level is holding at surface and record results.
- n. Once it has been confirmed that floats are holding, pressure up to burst the top wiper plug rupture disk. Displace with an additional 3 bbls for a wet shoe.
- o. Monitor well and confirm well is static for a min of 30 min.
- p. Back out landing joint as per AFS running procedures and lay down. PU washout tool on joint of drill pipe and clean out area for pack-off to ensure no cement is left.
- q. Make up pack-off with joint of drill pipe and install in wellhead with wellhead technician guidance.
- r. ND BOP and install the Tubing Head and test to 7500 psi.
- s. Laydown remaining drill string from derrick.
- t. Prep for Rig Release.

						Anejo 🛛	Federal	Com 204	H - Casing	Design						
Casing String Size Weight Grade Condition API Tapered Burst Collapse (connection Connection Conn Tensile Length									API Design Factor							
	5126	weight	Grade	condition		Tapereu	Durst	conapse	(1000 lbs)	connection	(1000 lbs)	Length	Burst	Collapse	Tension	Coupl
Surface	20"	94	J-55	NEW	Standard	NO	2,110	520	1,480	STC	784	120	1.67	5.71	13.30	-
Intermediate	13-3/8"	54.4	J-55	NEW	Standard	NO	2,730	1,130	853	LTC	547	575	1.52	2.59	6.50	
Intermediate	9-5/8"	40	L-80	NEW	Standard	NO	5,750	3,090	916	BTC	737	2,812	1.94	1.45	4.31	3
Production	5-1/2"	20	HCP-110	NEW	Standard	NO	12,640	11,100	641	BTC	641	12,038	1.63	2.09	2.67	

Casing D	Anejo Federal Com 204H esign Factors are derived on the following assumptions:
Collapse	Surface Casing
Burst	
Tension	1200 psi casing test with 10 ppg mud weight Weight of casing +100,000 allowable overpull
Coupling	Weight of casing +100,000 allowable overpull
	1st Intermediate Casing
Collapse	Full evacuation
Burst	1500 psi casing test with 10 ppg mud weight
Tension	Weight of casing +100,000 allowable overpull
Coupling	Weight of casing +100,000 allowable overpull
	2nd Intermediate Casing
Collapse	Full evacuation
Burst	1500 psi casing test with 10 ppg mud weight
Tension	Weight of casing +100,000 allowable overpull
Coupling	Weight of casing +100,000 allowable overpull
	Production Casing
Collapse	Full evacuation
Burst	1500 psi casing test with 10 ppg mud weight
Tension	Weight of casing +100,000 allowable overpull
Coupling	Weight of casing +100,000 allowable overpull

.

		Cement Plan - Anejo Federal Com 204	H									
Surface Casing: 20" casing inside of 26" hole set at 120' MD												
Cement Stage	Cement Type	Additives	Volume (cuft)	Density	Excess	Yield	Length	Total sks	Total bbl			
Lead	Class C	Foam Preventer @ 0.5 gals/100sks, Sodium Chloride @ 2.0 BWOW, Sodium Metasilicate, 1.0 BWOB	n Preventer @ 0.5 gals/100sks, Sodium Chloride @ 2.0 BWOW, Sodium Metasilicate, 1.0 BWOB 144 12.0 1.44 40									
Tail	Class C	Foam Preventer @ 0.5 gals/100sks, Sodium Chloride @ 2.0 BWOW, Sodium Metasilicate, 1.0 BWOB	217	12.0	100%	1.44	80	151	44.7			
1st Intermediate Casing: 13-3/8" casing inside of 17.5" hole set at 575' MD												
Cement Stage	Cement Type	Additives	Volume (cuft)	Density	Excess	Yield	Length	Total sks	Total bbl			
Lead	Class C	Foam Preventer @ 0.5 gals/100sks, Sodium Chloride @ 2.0 BWOW, Sodium Metasilicate, 1.0 BWOB	240	12.0		2.4	175	100				
Tail	Class C	Foam Preventer @ 0.5 gals/100sks, Sodium Chloride @ 2.0 BWOW, Sodium Metasilicate, 1.0 BWOB	599	12.0	100%	2.4	400	233	59.3			
		1st Intermediate Casing: 9-5/8" casing inside of 13-3/8" casing an	nd 12-1/4" Open Hole									
Cement Stage	Cement Type	Additives	Volume (cuft)	Density	Excess	Yield	Length	Total sks	Total bbl			
Lead	Class C	Foam Preventer @ 0.5 gals/100sks, Sodium Chloride @ 2.0 BWOW, Sodium Metasilicate, 1.0 BWOB	1505	12.0	100%	2.4	2312	627	111.7			
Tail	Class C	Foam Preventer @ 0.005 gals/sks, Retarder @ 0.2 BWOB	313	14.8	100%	1.33	500	235	41.9			
		Production Casing: 5-1/2" casing inside of 9-5/8" casing and 8	3-3/4" Open Hole									
Cement Stage	Cement Type	Additives	Volume (cuft)	Density	Excess	Yield	Length	Total sks	Total bbl			
Lead	35/65 POZ H	5% Salt BWOW + 4% Bentonite + 0.4%CAS-2 + 0.1% CFR-1 +0.2% CFL-1 + 0.4% CFL-5 + 0.65% CR-1	2497	13.5	50%	1.6	6500	1561	278.0			
Tail	35/65 POZ H	5% Salt BWOW + 4% Bentonite + 0.4%CAS-2 + 0.1% CFR-1 +0.2% CFL-1 + 0.4% CFL-5 + 0.65% CR-1	1749	13.5	25%	1.6	5538	1093	194.7			

•

Santo Petroleum

Eddy County, NM (NAD 83 - NME) ANEJO FEDERAL COM 204H

Wellbore #1

Plan: PLAN #3

Standard Planning Report

07 February, 2022

1 0	.00 12,037.68	3 PLAN #3 (We	ellbore #1)	MWD+IGRF OWSG MWD + I				
Depth Fro (usft)	(usft)	Survey (Wel		Tool Name	Ren	arks		
Plan Survey T	-	Date 02/0	7/22					
		C	0.00	0.00	0.00	89	9.43	
Vertical Section	on:	(L	rom (TVD) Isft)	+N/-S (usft)	+E/-W (usft)		ection (°)	
Version:			Phase:	PLAN	Tie On D		0.00	
Audit Notes:								
Design	PLAN #3							
	IG	GRF2020	02/02/22		6.812	59.994	47,498.853	63113
Magnetics	Model I	Name	Sample Date	Declination (°)		Dip Angle (°)	Field Streng (nT)	th
Wellbore	Wellbore #	¥1						
Position Unce	rtainty	0.00 usft	•	Elevation:	- 	Ground Level:		3,153.00 us
Well Position	+N/-S +E/-W	487.20 usft -4,844.50 usft	Northing: Easting:		2,608.40 usft 0,639.60 usft	Latitude: Longitude:		32.46418 -104.27074
Well	204H	407.00			000.46 %			
Position Unce		0.00 usft	Slot Radius:	13.	200 in Grid (convergence:		0.042
From:	Мар	0.00	Easting:	565,484.7	0 usft Longi	tude:		-104.25504
Site Position:	ANEJU FE		Northing:	532,121.2	20 usft Latitu	dor		32.46284
Site		EDERAL COM						
Geo Datum: Map Zone:		can Datum 198 Eastern Zone	3	-				
Map System:	US State Pl		5 - NWL)	System Datun	ו:	Mean Sea Level		
Project		nty, NM (NAD 8	3 - NME)					
Vellbore: Design:	Wellbore PLAN #3	#1						
Site: Nell:	204H			North Refere Survey Calcu	nce: Ilation Method	Grid : Minimum Curv	ature	
Project:		inty, NM (NAD 8 EDERAL COM	33 - NME)	MD Reference	e:	RKB = 25' @ 3	3178.00usft (TBD)	
Company:	Santo Pet	QL_2 troleum		TVD Referen	linate Referend ce:		8178.00usft (TBD)	

Planning Report

Database:	WBDS_SQL_2	Local Co-ordinate Reference:	Well 204H
Company:	Santo Petroleum	TVD Reference:	RKB = 25' @ 3178.00usft (TBD)
Project:	Eddy County, NM (NAD 83 - NME)	MD Reference:	RKB = 25' @ 3178.00usft (TBD)
Site:	ANEJO FEDERAL COM	North Reference:	Grid
Well:	204H	Survey Calculation Method:	Minimum Curvature
Wellbore: Design:	Wellbore #1 PLAN #3		

Plan Sections

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)	TFO (°)	Target
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	
700.00	0.00	0.00	700.00	0.00	0.00	0.00	0.00	0.00	0.000	
1,159.88	13.80	194.15	1,155.44	-53.43	-13.47	3.00	3.00	0.00	194.150	
5,513.49	13.80	194.15	5,383.45	-1,060.14	-267.27	0.00	0.00	0.00	0.000	
6,203.30	0.00	89.43	6,066.62	-1,140.28	-287.47	2.00	-2.00	0.00	180.000	
6,453.30	0.00	89.43	6,316.62	-1,140.28	-287.47	0.00	0.00	0.00	0.000	
7,343.85	89.05	89.43	6,889.50	-1,134.64	276.00	10.00	10.00	0.00	0.000	PLAN LP #204H: 1(
8,828.52	89.05	89.43	6,914.00	-1,119.78	1,760.40	0.00	0.00	0.00	0.000	PLAN #204H CP1:
8,865.81	88.31	89.43	6,914.86	-1,119.41	1,797.68	2.00	-2.00	0.00	-179.902	
11,987.65	88.31	89.43	7,007.00	-1,088.10	4,918.00	0.00	0.00	0.00	0.000	PLAT #204H LTP: 1
12,037.68	88.31	89.43	7,008.48	-1,087.60	4,968.00	0.00	0.00	0.00	0.000	PLAT #204H BHL: '

Planning Report

Database: Company:	WBDS_SQL_2 Santo Petroleum	Local Co-ordinate Reference: TVD Reference:	Well 204H RKB = 25' @ 3178.00usft (TBD)
Project:	Eddy County, NM (NAD 83 - NME)	MD Reference:	RKB = 25' @ 3178.00usft (TBD)
Site: Well:	ANEJO FEDERAL COM 204H	North Reference: Survey Calculation Method:	Grid Minimum Curvature
Wellbore:	Wellbore #1		
Design:	PLAN #3		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4H SHL: 2138'								0.00
100.00 200.00 300.00 400.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	100.00 200.00 300.00 400.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
500.00 600.00 700.00 800.00 900.00	0.00 0.00 0.00 3.00 6.00	0.00 0.00 0.00 194.15 194.15	500.00 600.00 700.00 799.95 899.63	0.00 0.00 -2.54 -10.14	0.00 0.00 0.00 -0.64 -2.56	0.00 0.00 -0.67 -2.66	0.00 0.00 0.00 3.00 3.00	0.00 0.00 0.00 3.00 3.00	0.00 0.00 0.00 0.00 0.00
1,000.00 1,100.00 1,159.88 1,200.00 1,300.00	9.00 12.00 13.80 13.80 13.80	194.15 194.15 194.15 194.15 194.15 194.15	998.77 1,097.08 1,155.44 1,194.41 1,291.53	-22.80 -40.47 -53.43 -62.71 -85.83	-5.75 -10.20 -13.47 -15.81 -21.64	-5.97 -10.60 -14.00 -16.43 -22.49	3.00 3.00 3.00 0.00 0.00	3.00 3.00 3.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
1,400.00 1,500.00 1,600.00 1,700.00 1,800.00	13.80 13.80 13.80 13.80 13.80	194.15 194.15 194.15 194.15 194.15 194.15	1,388.64 1,485.76 1,582.87 1,679.99 1,777.10	-108.95 -132.08 -155.20 -178.32 -201.45	-27.47 -33.30 -39.13 -44.96 -50.79	-28.55 -34.61 -40.67 -46.73 -52.79	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
1,900.00 2,000.00 2,100.00 2,200.00 2,300.00	13.80 13.80 13.80 13.80 13.80	194.15 194.15 194.15 194.15 194.15 194.15	1,874.22 1,971.33 2,068.45 2,165.56 2,262.68	-224.57 -247.69 -270.82 -293.94 -317.07	-56.62 -62.45 -68.28 -74.11 -79.93	-58.85 -64.91 -70.97 -77.03 -83.08	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
2,400.00 2,500.00 2,600.00 2,700.00 2,800.00	13.80 13.80 13.80 13.80 13.80 13.80	194.15 194.15 194.15 194.15 194.15 194.15	2,359.79 2,456.91 2,554.02 2,651.14 2,748.25	-340.19 -363.31 -386.44 -409.56 -432.68	-85.76 -91.59 -97.42 -103.25 -109.08	-89.14 -95.20 -101.26 -107.32 -113.38	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
2,900.00 3,000.00 3,100.00 3,200.00 3,300.00	13.80 13.80 13.80 13.80 13.80 13.80	194.15 194.15 194.15 194.15 194.15 194.15	2,845.37 2,942.48 3,039.60 3,136.71 3,233.83	-455.81 -478.93 -502.05 -525.18 -548.30	-114.91 -120.74 -126.57 -132.40 -138.23	-119.44 -125.50 -131.56 -137.62 -143.68	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
3,400.00 3,500.00 3,600.00 3,700.00 3,800.00	13.80 13.80 13.80 13.80 13.80	194.15 194.15 194.15 194.15 194.15 194.15	3,330.94 3,428.06 3,525.17 3,622.29 3,719.40	-571.42 -594.55 -617.67 -640.80 -663.92	-144.06 -149.89 -155.72 -161.55 -167.38	-149.74 -155.80 -161.86 -167.92 -173.98	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
3,900.00 4,000.00 4,100.00 4,200.00 4,300.00	13.80 13.80 13.80 13.80 13.80	194.15 194.15 194.15 194.15 194.15 194.15	3,816.52 3,913.63 4,010.75 4,107.86 4,204.98	-687.04 -710.17 -733.29 -756.41 -779.54	-173.21 -179.04 -184.87 -190.70 -196.53	-180.03 -186.09 -192.15 -198.21 -204.27	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
4,400.00 4,500.00 4,600.00 4,700.00 4,800.00	13.80 13.80 13.80 13.80 13.80	194.15 194.15 194.15 194.15 194.15 194.15	4,302.09 4,399.21 4,496.32 4,593.44 4,690.55	-802.66 -825.78 -848.91 -872.03 -895.15	-202.36 -208.19 -214.02 -219.85 -225.68	-210.33 -216.39 -222.45 -228.51 -234.57	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
4,900.00 5,000.00 5,100.00	13.80 13.80 13.80	194.15 194.15 194.15	4,787.67 4,884.78 4,981.90	-918.28 -941.40 -964.53	-231.50 -237.33 -243.16	-240.63 -246.69 -252.75	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00

02/07/22 3:29:00PM

Page 4

COMPASS 5000.14 Build 85

Planning Report

Database: Company:	WBDS_SQL_2 Santo Petroleum	Local Co-ordinate Reference: TVD Reference:	Well 204H RKB = 25' @ 3178.00usft (TBD)
Project:	Eddy County, NM (NAD 83 - NME)	MD Reference:	RKB = 25' @ 3178.00usft (TBD)
Site: Well:	ANEJO FEDERAL COM 204H	North Reference: Survey Calculation Method:	Grid Minimum Curvature
Wellbore:	Wellbore #1		
Design:	PLAN #3		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
5,200.00	13.80	194.15	5,079.01	-987.65	-248.99	-258.81	0.00	0.00	0.00
5,300.00	13.80	194.15	5,176.12	-1,010.77	-254.82	-264.87	0.00	0.00	0.00
5,400.00 5,500.00 5,513.49 5,600.00 5,700.00	13.80 13.80 13.80 12.07 10.07	194.15 194.15 194.15 194.15 194.15 194.15	5,273.24 5,370.35 5,383.45 5,467.77 5,565.90	-1,033.90 -1,057.02 -1,060.14 -1,078.91 -1,097.52	-260.65 -266.48 -267.27 -272.00 -276.69	-270.93 -276.98 -277.80 -282.72 -287.60	0.00 0.00 0.00 2.00 2.00	0.00 0.00 0.00 -2.00 -2.00	0.00 0.00 0.00 0.00 0.00
5,800.00	8.07	194.15	5,664.65	-1,112.80	-280.55	-291.60	2.00	-2.00	0.00
5,900.00	6.07	194.15	5,763.89	-1,124.73	-283.55	-294.73	2.00	-2.00	0.00
6,000.00	4.07	194.15	5,863.49	-1,133.29	-285.71	-296.97	2.00	-2.00	0.00
6,100.00	2.07	194.15	5,963.34	-1,138.48	-287.02	-298.33	2.00	-2.00	0.00
6,203.30	0.00	89.43	6,066.62	-1,140.28	-287.47	-298.80	2.00	-2.00	0.00
6,300.00	0.00	0.00	6,163.32	-1,140.28	-287.47	-298.80	0.00	0.00	0.00
6,400.00	0.00	0.00	6,263.32	-1,140.28	-287.47	-298.80	0.00	0.00	0.00
6,453.30	0.00	89.43	6,316.62	-1,140.28	-287.47	-298.80	0.00	0.00	0.00
6,500.00	4.67	89.43	6,363.27	-1,140.26	-285.57	-296.90	10.00	10.00	0.00
6,550.00	9.67	89.43	6,412.86	-1,140.20	-279.33	-290.66	10.00	10.00	0.00
6,600.00 6,650.00 6,700.00 6,750.00 6,800.00	14.67 19.67 24.67 29.67 34.67	89.43 89.43 89.43 89.43 89.43 89.43	6,461.72 6,509.48 6,555.77 6,600.24 6,642.55	-1,140.09 -1,139.95 -1,139.76 -1,139.53 -1,139.26	-268.80 -254.04 -235.18 -212.36 -185.75	-280.13 -265.37 -246.51 -223.68 -197.07	10.00 10.00 10.00 10.00 10.00	10.00 10.00 10.00 10.00 10.00	0.00 0.00 0.00 0.00 0.00
6,850.00	39.67	89.43	6,682.38	-1,138.96	-155.55	-166.87	10.00	10.00	0.00
6,900.00	44.67	89.43	6,719.42	-1,138.62	-121.99	-133.32	10.00	10.00	0.00
6,924.11	47.08	89.43	6,736.21	-1,138.45	-104.69	-116.01	10.00	10.00	0.00
	H FTP: 1000' I						10.00	10.00	
6,950.00	49.67	89.43	6,753.40	-1,138.26	-85.34	-96.66	10.00	10.00	0.00
7,000.00	54.67	89.43	6,784.06	-1,137.86	-45.86	-57.18	10.00	10.00	0.00
7,050.00 7,100.00 7,150.00 7,200.00 7,250.00	59.67 64.67 69.67 74.67 79.67	89.43 89.43 89.43 89.43 89.43 89.43	6,811.16 6,834.49 6,853.89 6,869.19 6,880.29	-1,137.44 -1,137.00 -1,136.54 -1,136.06 -1,135.57	-3.86 40.34 86.40 133.98 182.72	-15.18 29.02 75.09 122.68 171.41	10.00 10.00 10.00 10.00 10.00	10.00 10.00 10.00 10.00 10.00	0.00 0.00 0.00 0.00 0.00
7,300.00	84.67	89.43	6,887.10	-1,135.08	232.23	220.93	10.00	10.00	0.00
7,343.85	89.05	89.43	6,889.50	-1,134.64	276.00	264.70	10.00	10.00	0.00
PLAN LP #	204H: 1000' F	SL & 615' FWI	-						
7,400.00	89.05	89.43	6,890.43	-1,134.08	332.14	320.85	0.00	0.00	0.00
7,500.00	89.05	89.43	6,892.08	-1,133.08	432.13	420.83	0.00	0.00	0.00
7,600.00	89.05	89.43	6,893.73	-1,132.08	532.11	520.82	0.00	0.00	0.00
7,700.00 7,800.00 7,900.00 8,000.00 8,100.00	89.05 89.05 89.05 89.05 89.05 89.05	89.43 89.43 89.43 89.43 89.43 89.43	6,895.38 6,897.03 6,898.68 6,900.33 6,901.98	-1,131.08 -1,130.07 -1,129.07 -1,128.07 -1,127.07	632.09 732.07 832.05 932.03 1,032.01	620.80 720.79 820.78 920.76 1,020.75	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
8,200.00	89.05	89.43	6,903.63	-1,126.07	1,132.00	1,120.74	0.00	0.00	0.00
8,300.00	89.05	89.43	6,905.28	-1,125.07	1,231.98	1,220.72	0.00	0.00	0.00
8,400.00	89.05	89.43	6,906.93	-1,124.07	1,331.96	1,320.71	0.00	0.00	0.00
8,500.00	89.05	89.43	6,908.58	-1,123.07	1,431.94	1,420.70	0.00	0.00	0.00
8,600.00 8,700.00 8,800.00 8,828.52	89.05 89.05 89.05 89.05 4H CP1: 1000'	89.43 89.43 89.43 89.43	6,910.23 6,911.88 6,913.53 6,914.00	-1,122.07 -1,121.07 -1,120.07 -1,119.78	1,531.92 1,631.90 1,731.88 1,760.40	1,520.68 1,620.67 1,720.66 1,749.17	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00

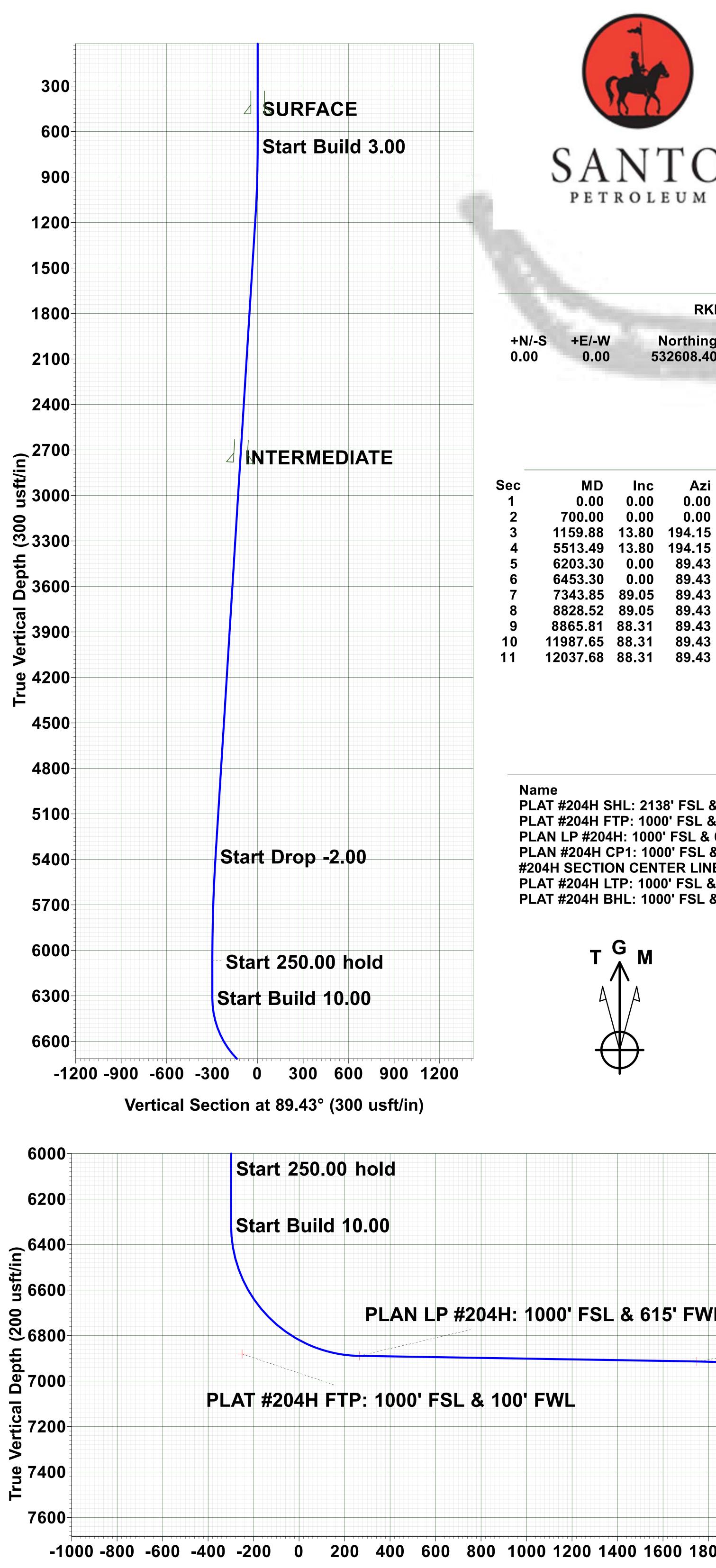
02/07/22 3:29:00PM

Planning Report

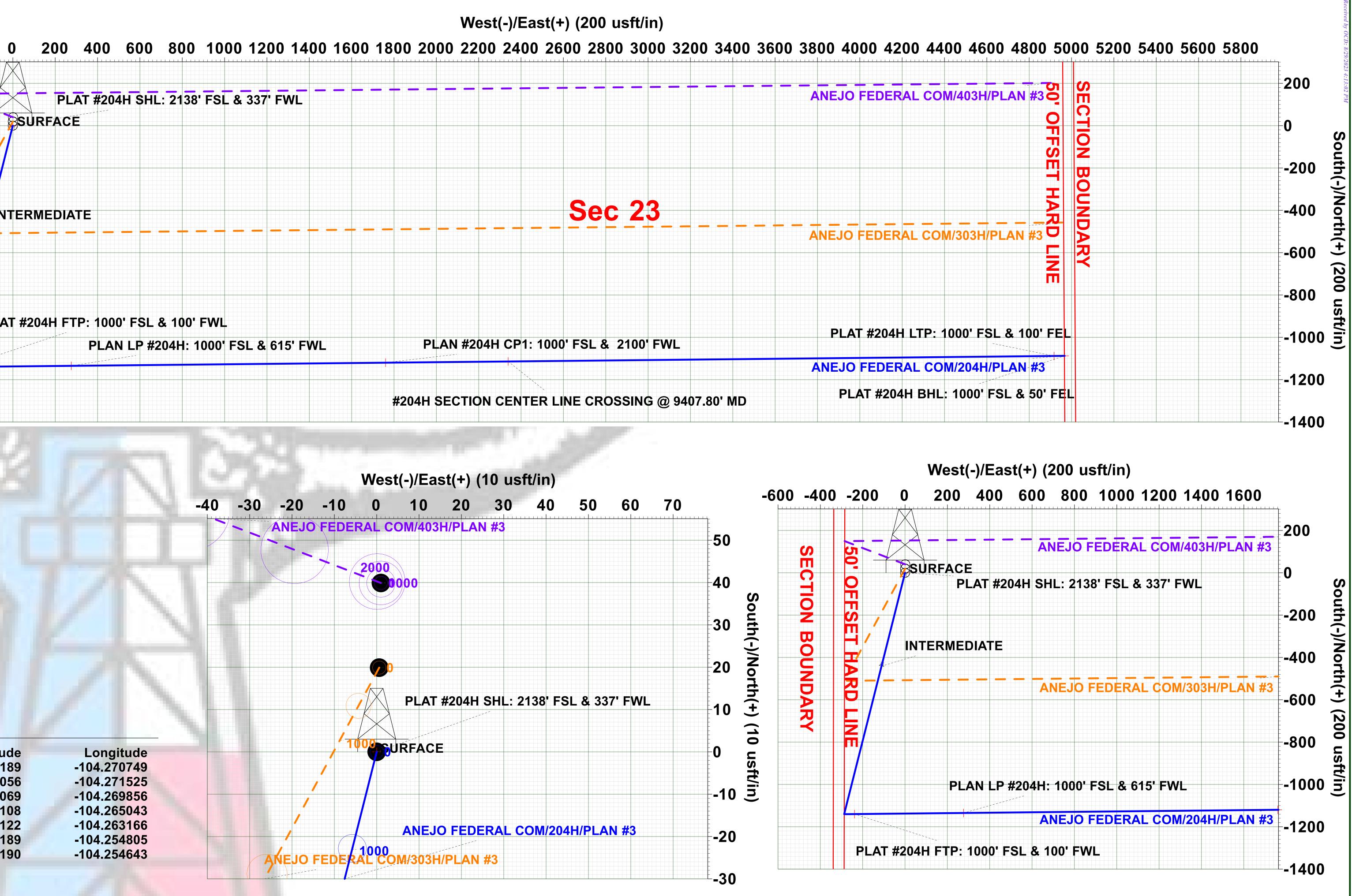
Database: Company:	WBDS_SQL_2 Santo Petroleum	Local Co-ordinate Reference: TVD Reference:	Well 204H RKB = 25' @ 3178.00usft (TBD)
Project: Site:	Eddy County, NM (NAD 83 - NME) ANEJO FEDERAL COM	MD Reference: North Reference:	RKB = 25' @ 3178.00usft (TBD) Grid
Well:	204H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	PLAN #3		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
8,865.81 8,900.00	88.31 88.31	89.43 89.43	6,914.86 6,915.87	-1,119.41 -1,119.06	1,797.68 1,831.85	1,786.45 1,820.63	2.00 0.00	-2.00 0.00	0.00 0.00
9,000.00 9,100.00 9,200.00 9,300.00 9,400.00	88.31 88.31 88.31 88.31 88.31	89.43 89.43 89.43 89.43 89.43 89.43	6,918.82 6,921.77 6,924.72 6,927.67 6,930.62	-1,118.06 -1,117.06 -1,116.06 -1,115.05 -1,114.05	1,931.80 2,031.75 2,131.70 2,231.66 2,331.61	1,920.58 2,020.54 2,120.50 2,220.45 2,320.41	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
9,500.00 9,600.00 9,700.00 9,800.00 9,900.00	88.31 88.31 88.31 88.31 88.31	89.43 89.43 89.43 89.43 89.43 89.43	6,933.58 6,936.53 6,939.48 6,942.43 6,945.38	-1,113.05 -1,112.04 -1,111.04 -1,110.04 -1,109.04	2,431.56 2,531.51 2,631.46 2,731.41 2,831.36	2,420.36 2,520.32 2,620.28 2,720.23 2,820.19	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
10,000.00 10,100.00 10,200.00 10,300.00 10,400.00	88.31 88.31 88.31 88.31 88.31	89.43 89.43 89.43 89.43 89.43 89.43	6,948.33 6,951.29 6,954.24 6,957.19 6,960.14	-1,108.03 -1,107.03 -1,106.03 -1,105.02 -1,104.02	2,931.32 3,031.27 3,131.22 3,231.17 3,331.12	2,920.15 3,020.10 3,120.06 3,220.02 3,319.97	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
10,500.00 10,600.00 10,700.00 10,800.00 10,900.00	88.31 88.31 88.31 88.31 88.31	89.43 89.43 89.43 89.43 89.43 89.43	6,963.09 6,966.04 6,968.99 6,971.95 6,974.90	-1,103.02 -1,102.02 -1,101.01 -1,100.01 -1,099.01	3,431.07 3,531.02 3,630.97 3,730.93 3,830.88	3,419.93 3,519.89 3,619.84 3,719.80 3,819.75	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
11,000.00 11,100.00 11,200.00 11,300.00 11,400.00	88.31 88.31 88.31 88.31 88.31	89.43 89.43 89.43 89.43 89.43 89.43	6,977.85 6,980.80 6,983.75 6,986.70 6,989.66	-1,098.00 -1,097.00 -1,096.00 -1,095.00 -1,093.99	3,930.83 4,030.78 4,130.73 4,230.68 4,330.63	3,919.71 4,019.67 4,119.62 4,219.58 4,319.54	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
11,500.00 11,600.00 11,700.00 11,800.00 11,900.00	88.31 88.31 88.31 88.31 88.31	89.43 89.43 89.43 89.43 89.43 89.43	6,992.61 6,995.56 6,998.51 7,001.46 7,004.41	-1,092.99 -1,091.99 -1,090.98 -1,089.98 -1,088.98	4,430.59 4,530.54 4,630.49 4,730.44 4,830.39	4,419.49 4,519.45 4,619.41 4,719.36 4,819.32	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
	88.31 11 LTP: 1000' I			-1,088.10	4,918.00	4,906.93	0.00	0.00	0.00
12,000.00 12,037.68	88.31 88.31 4H BHL: 1000'	89.43 89.43	7,007.36 7,008.48	-1,087.98 -1,087.60	4,930.34 4,968.00	4,919.28 4,956.93	0.00 0.00	0.00 0.00	0.00 0.00
PLAI #204	+n BHL: 1000	FOL & DU FEL	•						

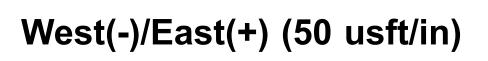


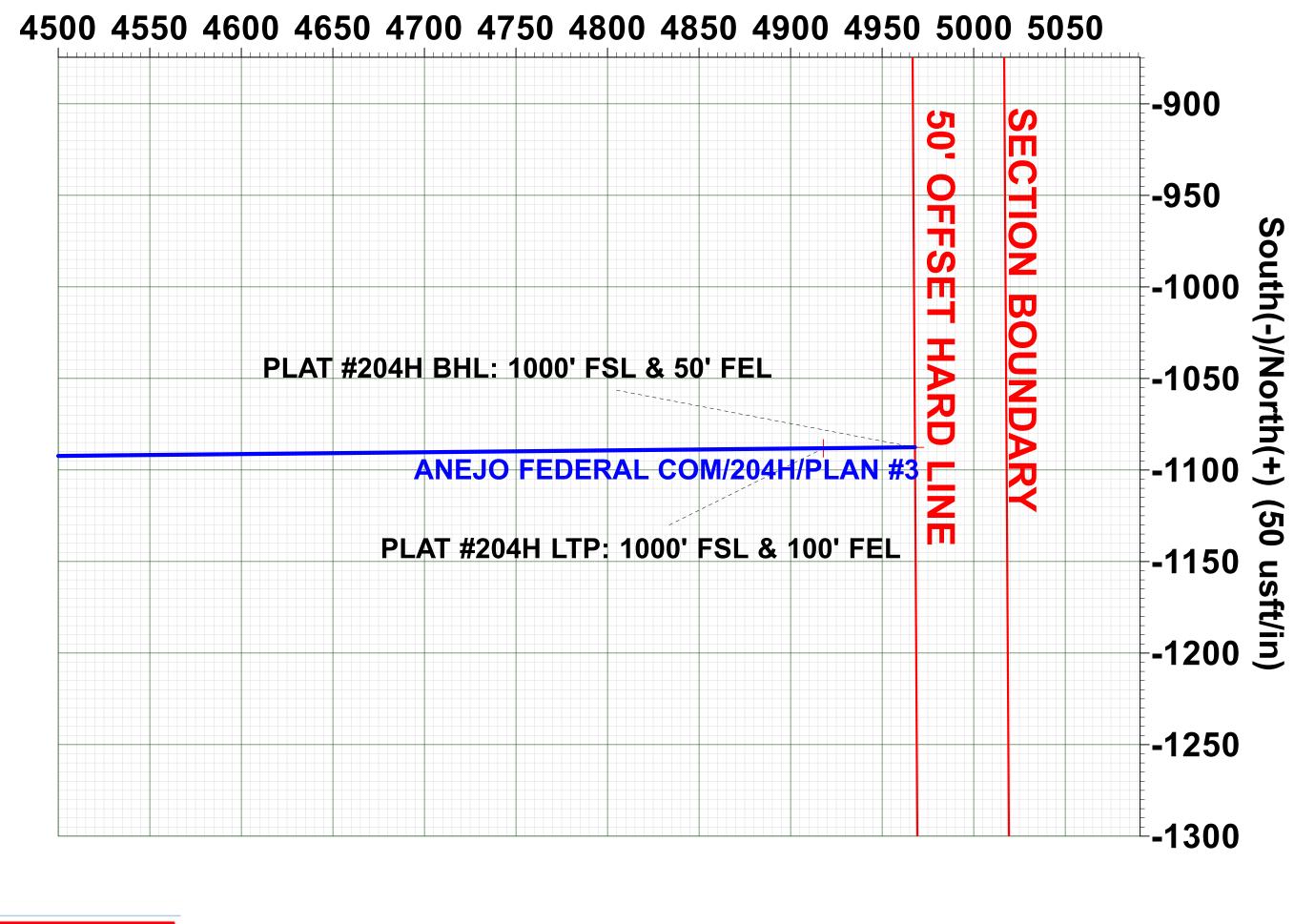
Planning Report



Database: Company: Project: Site: Well: Wellbore: Design:	WBDS_SQL_2 Santo Petroleum Eddy County, NM (NAD 83 - NME) ANEJO FEDERAL COM 204H Wellbore #1 PLAN #3					Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method:			Well 204H RKB = 25' @ 3178.00usft (TBD) RKB = 25' @ 3178.00usft (TBD) Grid Minimum Curvature		
Design Targets											
Target Name - hit/miss target - Shape	Dip Ang (°)	le Dip D (°)		TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Eastin (usft)	•	Longitude	
PLAT #204H SHL: 21 - plan hits target - Point		00 C	0.00	0.00	0.00	0.00	532,608.40	560,6	39.60 32.464189	-104.270749	
PLAT #204H FTP: 10 - plan misses targ - Point					-1,139.80 usft MD (673	-238.90 6.21 TVD, -1	531,468.60 138.45 N, -104.6	560,4 9 E)	00.70 32.461056	-104.271526	
PLAN LP #204H: 100 - plan hits target - Point		00 C	0.00	6,889.50	-1,134.64	276.00	531,473.76	560,9	15.60 32.461069	-104.269856	
PLAN #204H CP1: 10 - plan hits target - Point		00 0	0.00	6,914.00	-1,119.78	1,760.40	531,488.62	562,4	00.00 32.461108	-104.265043	
PLAT #204H LTP: 10 - plan hits target - Point		00 C	0.00	7,007.00	-1,088.10	4,918.00	531,520.30	565,5	57.60 32.461189	-104.254806	
PLAT #204H BHL: 10 - plan hits target - Point		00 C	0.00	7,008.48	-1,087.60	4,968.00	531,520.80	565,6	07.60 32.461190	-104.254644	

Casing Points Vertical Measured Casing Hole Depth Depth Diameter Diameter (usft) (usft) (in) (in) Name 483.00 483.00 SURFACE 0.000 0.000 0.000 2,835.78 2,783.00 INTERMEDIATE 0.000




		_		_		900 6	00 400	N 200 0	200	400 60		4000	4200 44			West(-)/Eas		_
	Proje S W	ect: Ede	dy Coι EJO F 4Η	EDERAL C	NAD 83 - NM COM	<u> </u>		5		LAT #204H S								
\cap		ig: TB	D		March 08 202	22	N											
м	Design		πΟ	10.03, 1			BOUND			ATE							<u>Sec</u>	23_
WELL D	ETAILS: 204H						RY											
RKB = 25' @) 3178.00usft (1 3153.00	TBD)						PLAT	#204H F	TP: 1000' FS	SL & 100	' FWL						
	Easting 0639.60	Latittud 32.46418		Longitude -104.270749						PLAN LP	#204H:	1000' FS	L & 615' FV	VL.	PLAN	#204H CP1: 1	000' FSL & 2	2100' FWL
			h.												#204H SEC	TION CENTER	LINE CROS	SING @ 9
			N DETA	and the second second	No. of Concession, name		in the second											
Azi TVD 0.00 0.00 0.00 700.00 1.15 1155.44 1.15 5383.45 0.43 6066.62 0.43 6316.62	0.00 0.00 -53.43 -1060.14 -1140.28	+E/-W 0.00 0.00 -13.47 -267.27 -287.47 -287.47	Dleg 0.00 0.00 3.00 0.00 2.00 0.00	VSect 0.00 0.00 -14.00 -277.80 -298.80 -298.80			lar	get				-40 -:	30 -20 ANEJC	-10 0		-) (10 usft/ir 0 30 4 LAN #3		60 70
9.436889.509.436914.009.436914.869.437007.009.437008.48	-1134.64 -1119.78 -1119.41 -1088.10	276.00 1760.40 1797.68 4918.00 4968.00	10.00 0.00 2.00 0.00 0.00	264.70 1749.17 1786.45 4906.93 4956.93	PLAN #204H (PLAT #204	#204H: 1000' FSL CP1: 1000' FSL & H LTP: 1000' FSI 4H BHL: 1000' FS	& 2100'F L & 100'F	WL FEL										
			DES	IGN TARGET	DETAILS				l						PLAT #20	4H SHL: 2138	' FSL & 337'	FWL
SL & 337' FW SL & 100' FW	L		TVD 0.00 881.00	+N/-S 0.00 -1139.80	0.00 5326 -238.90 5314	rthing Easti 508.40 560639. 468.60 560400.	.60 .70	Latitude 32.464189 32.461050) 5	Longitude -104.270749 -104.271525	9 5				SURFACE			
L & 615' FWL SL & 2100' F LINE CROSS SL & 100' FEL SL & 50' FEL	WL ING @ 9407.80 -	69 0' MD 60 70	889.50 914.00 930.85 007.00 008.48	-1134.64 -1119.78 -1114.00 -1088.10 -1087.60	1760.40 5314 2339.40 5314 4918.00 5315	473.76560915488.62562400494.40562979520.30565557520.80565607	.00 .00 .60	32.461069 32.461108 32.461122 32.461189 32.461190		-104.269856 -104.265043 -104.263166 -104.254805 -104.254643	3 6 5		ANEJO	FEDERAL	ANEJO FI O COM/303H/PL	EDERAL COM	/204H/PLAN	#3
	nuths to Grid Nor True North: -0.0 gnetic North: 6.7)3°				ECTION REFEREN							PROJEC	DETAILS:	Eddy County, NI	M (NAD 83 - NM	E)	
	Magnetic Fie ength: 47498.9si Dip Angle: 59.9 Date: 02/02/202 Model: IGRF202	eld nT 99° 22		T	Magnetic I	rection to a Grid E	Direction, S Direction	Subtract 0.034 , Add 6.812° E						Datum: Ellipsoid: Zone:	US State Plane North American GRS 1980 New Mexico Ea Mean Sea Lev	n Datum 1983 astern Zone		
-WL	PLAN #20	4H CP1	: 1000'	'FSL & 21	100' FWL		PLAT #2	204H LTF	2: 10 0)' FSL & '	100' F							
) at 12	2037.68								
	#204H SE		CENTE	ER LINE C	ROSSING @	9407.80' MI	D											
							PL	AT #2041	I BHL	: 1000' FS	SL & :	50' FEI						Disc All Plan lines a location
1800 2000) 3200 3400 3° (200 usft/) 3600 3800 40 /in)	000 4200 440	0 4600	4800 5000) 5200	5400 5600	0 5800	6000 6	200 640	0 6600 68	300			provided subjec
				·	.													

sclaimer: lan Details, boundary

Created By: Derek Stephens Date: 10:09, March 08 2022

Plan: PLAN #3 (204H/Wellbore #1) TBD

nes and offset well ion/ survey data is ded by customer and bject to customer approval.

Santo Petroleum

Eddy County, NM (NAD 83 - NME) ANEJO FEDERAL COM 204H

Wellbore #1 PLAN #3

Anticollision Report

08 March, 2022

Anticollision Report

Company:	Santo Petroleum	Local Co-ordinate Reference:	Well 204H
Project:	Eddy County, NM (NAD 83 - NME)	TVD Reference:	RKB = 25' @ 3178.00usft (TBD)
Reference Site:	ANEJO FEDERAL COM	MD Reference:	RKB = 25' @ 3178.00usft (TBD)
Site Error:	0.00 usft	North Reference:	Grid
Reference Well:	204H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.00 usft	Output errors are at	2.00 sigma
Reference Wellbore	Wellbore #1	Database:	WBDS_SQL_2
Reference Design:	PLAN #3	Offset TVD Reference:	Reference Datum
Reference	PLAN #3		

Filter type:	NO GLOBAL FILTER: Using user defined selection & filtering criteria									
Interpolation Method:	MD Interval 100.00usft	Error Model:	ISCWSA							
Depth Range:	Unlimited	Scan Method:	Closest Approach 3D							
Results Limited by:	Maximum center-center distance of 2,000.00 us	Error Surface:	Pedal Curve							
Warning Levels Evaluation	ated at: 2.00 Sigma	Casing Method:	Not applied							

Survey Tool Pr	ogram	Date 02/07/22		
From (usft)	To (usft)	Survey (Wellbore)	Tool Name	Description
0.	.00 12,037.68	8 PLAN #3 (Wellbore #1)	MWD+IGRF	OWSG MWD + IGRF or WMM

Summary						
Site Name Offset Well - Wellbore - Design	Reference Measured Depth	Offset Measured Depth	Dista Between Centres	Between Ellipses	Separation Factor	Warning
ANEJO FEDERAL COM	(usft)	(usft)	(usft)	(usft)		
303H - Wellbore #1 - PLAN #3	711.94	713.06	19.91	15.25	4.275 C	0
303H - Wellbore #1 - PLAN #3	800.00	801.94	20.07	14.81	3.817 ES	S
303H - Wellbore #1 - PLAN #3	900.00	902.57	20.95	15.03	3.540 SI	=
403H - Wellbore #1 - PLAN #3	700.00	700.00	39.91	35.34	8.733 C	C, ES
403H - Wellbore #1 - PLAN #3	800.00	800.05	42.47	37.20	8.056 SI	,

Offset D	esign	ANEJO	FEDER	AL COM -	303H -	Wellbore #	41 - PLAN #3						Offset Site Error:	0.00 usf
Survey Pro	gram: 0-N	1WD+IGRF											Offset Well Error:	0.00 usf
Refer	ence	Offs	ət	Semi Majo	r Axis				Dista	ance				
leasured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	Offset Wellbor +N/-S (usft)	e Centre +E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
0.00	0.00	1.00	0.00	0.00	0.00	1.727	19.90	0.60	19.91					
100.00	100.00	101.00	100.00	0.13	0.14	1.727	19.90	0.60	19.91	19.64	0.27	73.077		
200.00	200.00	201.00	200.00	0.49	0.50	1.727	19.90	0.60	19.91	18.92	0.99	20.123		
300.00	300.00	301.00	300.00	0.85	0.85	1.727	19.90	0.60	19.91	18.20	1.71	11.668		
400.00	400.00	401.00	400.00	1.21	1.21	1.727	19.90	0.60	19.91	17.49	2.42	8.216		
500.00	500.00	501.00	500.00	1.57	1.57	1.727	19.90	0.60	19.91	16.77	3.14	6.340		
600.00	600.00	601.00	600.00	1.93	1.93	1.727	19.90	0.60	19.91	16.05	3.86	5.162		
700.00	700.00	701.01	700.01	2.29	2.29	1.727	19.90	0.60	19.91	15.33	4.57	4.353		
711.94	711.94	713.06	712.06	2.33	2.33	167.543	19.86	0.58	19.91	15.25	4.66	4.275 C	С	
800.00	799.95	801.94	800.89	2.63	2.64	165.701	17.51	-0.70	20.07	14.81	5.26	3.817 E	S	
900.00	899.63	902.57	901.22	2.96	2.98	160.810	10.67	-4.41	20.95	15.03	5.92	3.540 S	F	
1,000.00	998.77	1,002.45	1,000.68	3.32	3.32	159.202	2.72	-8.72	25.77	19.16	6.60	3.901		
1,100.00	1,097.08	1,101.95	1,099.78	3.71	3.68	161.194	-5.19	-13.02	35.49	28.19	7.30	4.860		
1,200.00	1,194.41	1,200.89	1,198.31	4.14	4.04	163.997	-13.06	-17.29	49.82	41.81	8.01	6.219		
1,300.00	1,291.53	1,300.30	1,296.71	4.61	4.41	165.796	-20.92	-21.56	65.11	56.39	8.72	7.467		
1,400.00	1,388.64	1,401.49	1,395.12	5.10	4.79	166.910	-28.78	-25.82	80.45	71.00	9.44	8.518		
1,500.00	1,485.76	1,502.68	1,493.52	5.61	5.18	167.668	-36.64	-30.09	95.80	85.63	10.17	9.416		
1,600.00	1,582.87	1,603.88	1,591.92	6.13	5.57	168.216	-44.50	-34.36	111.17	100.26	10.91	10.189		
1,700.00	1,679.99	1,705.07	1,690.32	6.65	5.95	168.631	-52.36	-38.62	126.54	114.89	11.65	10.861		
1,800.00	1,777.10	1,806.26	1,788.72	7.19	6.35	168.956	-60.22	-42.89	141.92	129.53	12.40	11.449		
1,900.00	1,874.22	1,907.45	1,887.13	7.73	6.74	169.217	-68.08	-47.15	157.31	144.16	13.14	11.969		
2,000.00	1,971.33	2,008.65	1,985.53	8.28	7.13	169.432	-75.94	-51.42	172.69	158.80	13.89	12.431		

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

03/08/22 10:05:47AM

Anticollision Report

Company:	Santo Petroleum	Local Co-ordinate Reference:	Well 204H
Project:	Eddy County, NM (NAD 83 - NME)	TVD Reference:	RKB = 25' @ 3178.00usft (TBD)
Reference Site:	ANEJO FEDERAL COM	MD Reference:	RKB = 25' @ 3178.00usft (TBD)
Site Error:	0.00 usft	North Reference:	Grid
Reference Well:	204H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.00 usft	Output errors are at	2.00 sigma
Reference Wellbore	Wellbore #1	Database:	WBDS_SQL_2
Reference Design:	PLAN #3	Offset TVD Reference:	Reference Datum

Offset D	esign	ANEJO		RAL COM -	303H -	Wellbore #	#1 - PLAN #3						Offset Site Error:	0.00 usft
Survey Pro	gram: 0-N	/WD+IGRF											Offset Well Error:	0.00 usft
Refer		Offs		Semi Majo						ance				
Measured		Measured	Vertical	Reference	Offset	Highside	Offset Wellbo		Between			Separation	Warning	
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S	+E/-W	Centres (usft)	Ellipses (usft)	Separation (usft)	Factor		
							(usft)	(usft)						
2,100.00	2,068.45		2,083.93	8.83	7.53	169.612	-83.80	-55.68	188.08	173.44		12.843		
2,200.00	2,165.56		2,182.33	9.38	7.83	169.764	-91.66	-59.95	203.47	188.15				
2,300.00	2,262.68		2,280.73	9.93	8.22	169.895	-99.52	-64.22	218.86	202.80		13.624		
2,400.00	2,359.79		2,379.14	10.49	8.61	170.009	-107.38	-68.48	234.25	217.44		13.934		
2,500.00	2,456.91		2,477.54	11.05	9.00	170.109	-115.24	-72.75	249.64	232.08		14.216		
2,600.00	2,554.02	2,584.20	2,575.94	11.61	9.38	170.197	-123.10	-77.01	265.04	246.73	18.31	14.475		
2,700.00	2,651.14	2,683.01	2,674.34	12.17	9.77	170.276	-130.96	-81.28	280.43	261.37	19.06	14.712		
2,800.00	2,748.25		2,772.74	12.73	10.16	170.346	-138.82	-85.55	295.82	276.01	19.81	14.931		
2,900.00	2,845.37		2,871.14	13.30	10.55	170.410	-146.68	-89.81	311.22	290.65		15.133		
3,000.00	2,942.48		2,969.55	13.86	10.94	170.467	-154.54	-94.08	326.61	305.29	21.32	15.321		
3,100.00	3,039.60		3,067.95	14.43	11.33	170.519	-162.39	-98.34	342.01	319.94		15.495		
	-,		.,											
3,200.00	3,136.71	3,177.04	3,166.35	14.99	11.72	170.567	-170.25	-102.61	357.40	334.58	22.83	15.658		
3,300.00	3,233.83	3,275.85	3,264.75	15.56	12.11	170.611	-178.11	-106.88	372.80	349.22	23.58	15.810		
3,400.00	3,330.94	3,374.66	3,363.15	16.13	12.50	170.651	-185.97	-111.14	388.19	363.86	24.34	15.952		
3,500.00	3,428.06	3,473.47	3,461.56	16.69	12.89	170.689	-193.83	-115.41	403.59	378.50	25.09	16.085		
3,600.00	3,525.17	3,572.27	3,559.96	17.26	13.28	170.723	-201.69	-119.67	418.98	393.14	25.85	16.210		
	0.000.00	0.0-1.0-	0.055.55			170								
3,700.00	3,622.29		3,658.36	17.83	13.67	170.755	-209.55	-123.94	434.38	407.78		16.328		
3,800.00	3,719.40		3,756.76	18.40	14.07	170.785	-217.41	-128.21	449.78	422.42		16.440		
3,900.00	3,816.52		3,855.16	18.97	14.46	170.813	-225.27	-132.47	465.17	437.06		16.545		
4,000.00	3,913.63		3,953.57	19.54	14.85	170.839	-233.13	-136.74	480.57	451.70	28.87	16.644		
4,100.00	4,010.75	4,066.31	4,051.97	20.11	15.24	170.864	-240.99	-141.00	495.97	466.34	29.63	16.738		
4,200.00	4,107.86	4,165.12	4,150.37	20.68	15.63	170.887	-248.85	-145.27	511.36	480.97	30.39	16.828		
4,300.00	4,204.98		4,248.77	21.25	16.02	170.908	-256.71	-149.54	526.76	495.61	31.15	16.913		
4,400.00	4,302.09		4,347.17	21.82	16.42	170.929	-264.57	-153.80	542.16	510.25		16.994		
4,500.00	4,399.21	4,461.54	4,445.58	22.39	16.81	170.948	-272.43	-158.07	557.55	524.89	32.66	17.071		
4,600.00	4,496.32		4,543.98	22.96	17.20	170.966	-280.29	-162.33	572.95	539.53		17.144		
1,000.00	1,100.02	1,000.00	1,010.00	22.00			200.20	102.00	0.2.00	000.00	00.12			
4,700.00	4,593.44	4,659.15	4,642.38	23.54	17.59	170.984	-288.15	-166.60	588.35	554.17	34.18	17.214		
4,800.00	4,690.55	4,757.96	4,740.78	24.11	17.98	171.000	-296.01	-170.86	603.74	568.81	34.94	17.281		
4,900.00	4,787.67	4,856.77	4,839.18	24.68	18.38	171.016	-303.87	-175.13	619.14	583.44	35.70	17.345		
5,000.00	4,884.78	4,955.58	4,937.59	25.25	18.77	171.031	-311.73	-179.40	634.54	598.08	36.45	17.406		
5,100.00	4,981.90	5,054.38	5,035.99	25.82	19.16	171.045	-319.59	-183.66	649.93	612.72	37.21	17.465		
5,200.00	5,079.01	5,153.19	5,134.39	26.39	19.55	171.058	-327.45	-187.93	665.33	627.36		17.521		
5,300.00	5,176.12		5,232.79	26.97	19.94	171.071	-335.30	-192.19	680.73	642.00	38.73	17.576		
5,400.00	5,273.24		5,331.19	27.54	20.34	171.083	-343.16	-196.46	696.12	656.63		17.627		
5,500.00	5,370.35		5,429.59	28.11	20.73	171.095	-351.02	-200.73	711.52	671.27		17.677		
5,600.00	5,467.77	5,548.61	5,528.18	28.67	21.12	171.128	-358.90	-205.00	725.64	684.63	41.01	17.695		
5,700.00	5,565.90	5,648.02	5,627.19	29.18	21.52	171.115	-366.81	-209.29	736.37	694.61	41.76	17.633		
5,800.00	5,664.65		5,726.50	29.64	21.92	171.050	-374.74	-209.29	743.67	701.16		17.495		
5,900.00	5,763.89		5,826.00	30.05	21.91	170.935	-382.69	-217.91	743.07	701.10	43.25	17.493		
6,000.00	5,863.49		5,925.56	30.42	22.71	170.767	-390.64	-222.23	747.94	703.96		17.005		
	5,963.34			30.74	23.11	170.545	-398.58	-226.54	744.92	700.21	44.71	16.662		
0,100100	0,000.01	0,011.00	0,020.00	00.11	20.11		000.00	220.01				10.002		
6,200.00	6,063.32	6,147.26	6,124.38	31.01	23.50	170.264	-406.52	-230.85	738.47	693.06	45.42	16.260		
6,300.00	6,163.32	6,246.85	6,223.56	31.23	23.90	4.123	-414.44	-235.15	730.21	684.11	46.11	15.837		
6,400.00	6,263.32	6,346.44	6,322.74	31.46	24.29	3.827	-422.36	-239.45	721.97	675.18	46.80	15.428		
6,500.00	6,363.27	6,445.90	6,421.79	31.69	24.69	-86.451	-430.27	-243.74	713.62	666.13	47.50	15.024		
6,600.00	6,461.72		6,518.70	31.88	25.08	-88.976	-438.01	-247.94	704.70	656.45	48.25	14.607		
6,700.00	6,555.77	6,635.39	6,610.51	32.02	25.44	-92.617	-445.35	-251.92	696.77	647.72		14.205		
6,800.00	6,642.55		6,694.41	32.11	25.78	-96.737	-452.05	-255.56	692.70	642.77		13.874		
6,812.99	6,653.15		6,704.59	32.11	25.82	-97.265	-452.86	-256.00	692.63	642.58		13.839		
6,900.00	6,719.42		6,767.86	32.16	26.12	-100.504	-457.91	-258.74	696.00	645.06		13.663		
7,000.00	6,784.06	6,854.42	6,828.64	32.18	26.31	-103.059	-462.77	-261.38	710.06	658.14	51.92	13.676		
7,100.00	6,834.49	6 000 86	6,874.88	32.20	26.50	-103.650	-466.46	-263.38	737.22	684.28	52.94	13.926		
1,100.00	0,034.49	•												
			Min cent	re to cente	r distan	ce or cover	rgent point, Sl		paration f	actor, ES	6 - min elli	pse separa	ation	
02/00/22 1	0 05 47						Dege	~				_		

03/08/22 10:05:47AM

COMPASS 5000.14 Build 85

Anticollision Report

Company: S	Santo Petroleum	Local Co-ordinate Reference:	Well 204H
Project: E	Eddy County, NM (NAD 83 - NME)	TVD Reference:	RKB = 25' @ 3178.00usft (TBD)
Reference Site: A	ANEJO FEDERAL COM	MD Reference:	RKB = 25' @ 3178.00usft (TBD)
Site Error: 0	0.00 usft	North Reference:	Grid
Reference Well: 2	204H	Survey Calculation Method:	Minimum Curvature
Well Error: 0	0.00 usft	Output errors are at	2.00 sigma
Reference Wellbore V	Wellbore #1	Database:	WBDS_SQL_2
Reference Design: F	PLAN #3	Offset TVD Reference:	Reference Datum

Offset D	•		D FEDER	RAL COM -	303H -	Wellbore #	#1 - PLAN #3						Offset Site Error:	0.00 usft
Survey Pro	-		a t	Sami Maia	Avio				Diet	ance			Offset Well Error:	0.00 usft
Refer Measured Depth (usft)	Vertical Depth (usft)	Offs Measured Depth (usft)	Vertical Depth (usft)	Semi Majo Reference (usft)	Offset (usft)	Highside Toolface (°)	Offset Wellbo +N/-S (usft)	re Centre +E/-W (usft)	Between Centres (usft)	ance Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
7,200.00	6,869.19	6,931.30	6,905.20	32.24	26.62	-101.648	-468.88	-264.70	778.06	724.21	53.85	14.450		
7,300.00	6,887.10	6,944.81	6,918.66	32.35	26.67	-96.557	-469.96	-265.28	831.20	776.65	54.55	15.236		
7,400.00	6,890.43	6,943.73	6,917.58	32.59	26.67	-93.151	-469.87	-265.23	893.74	838.70		16.237		
7,500.00	6,892.08	6,940.98	6,914.84	33.04	26.66	-92.917	-469.65	-265.11	962.70	907.29	55.42	17.372		
7,600.00	6,893.73	6,938.23	6,912.10	33.76	26.65	-92.682	-469.43	-265.00	1,036.73			18.611		
7,700.00	6,895.38	6,935.47	6,909.36	34.77	26.64	-92.447	-469.22	-264.88	1,114.81	1,058.88	55.93	19.934		
7,800.00	6,897.03	6,932.72	6,906.61	36.06	26.62	-92.213	-469.00	-264.76	1,196.15		56.09	21.324		
7,900.00	6,898.68	6,929.97	6,903.87	37.56	26.61	-91.978	-468.78	-264.64	1,280.14		56.22	22.769		
8,000.00	6,900.33	6,927.21	6,901.13	39.22	26.60	-91.744	-468.56	-264.52	1,366.27	1,309.95	56.32	24.259		
8,100.00	6,901.98	6,924.46	6,898.39	41.02	26.59	-91.509	-468.34	-264.40	1,454.18		56.39	25.786		
8,200.00	6,903.63	6,921.71	6,895.65	42.92	26.58	-91.275	-468.12	-264.28	1,543.55	1,487.10	56.45	27.344		
8,300.00	6,905.28	9,653.12	8,388.07	44.91	45.76	-156.985	-495.38	1,207.15	1,611.15			31.295		
8,400.00	6,906.93	9,753.12	8,389.32	46.97	47.77	-156.979	-494.38	1,307.14	1,610.78			30.196		
8,500.00	6,908.58 6,910.23	9,853.12	8,390.57	49.08	49.84	-156.974 -156.968	-493.38	1,407.13	1,610.41	1,555.15		29.144		
8,600.00 8,700.00	6,910.23	9,953.11 10,053.11	8,391.82 8,393.07	51.25 53.46	51.95 54.11	-156.968	-492.38 -491.38	1,507.11 1,607.10	1,610.04 1,609.67			28.139 27.181		
8,800.00	6,913.53		8,394.32	55.71	56.31	-156.958	-490.39	1,707.08	1,609.30		61.26	26.270		
8,900.00 9,000.00	6,915.87 6,918.82		8,395.53 8,397.94	57.98 60.29	58.19 60.40	-156.945 -156.939	-489.54 -488.56	1,791.58 1,888.76	1,608.52 1,608.08		63.07 65.13	25.504 24.692		
9,100.00	6,921.77		8,400.42	62.63	62.69	-156.932	-487.56	1,988.73	1,607.64	-		23.902		
9,200.00			8,402.90	64.99	65.00	-156.925	-486.55	2,088.69	1,607.21	1,537.79	69.42	23.153		
9,300.00	6,927.67	10,634.84	8,405.38	67.37	67.34	-156.919	-485.54	2,188.65	1,606.78	1,535.18	71.60	22.440		
9,400.00	6,930.62		8,407.86	69.76	69.70	-156.912	-484.54	2,288.62	1,606.35		73.81	21.764		
9,500.00	6,933.58	-	8,410.34	72.18	72.08	-156.905	-483.53	2,388.58	1,605.91			21.121		
9,600.00	6,936.53		8,412.82	74.60	74.47	-156.899	-482.52	2,488.54	1,605.48		78.28	20.510		
9,700.00	6,939.48		8,415.30	77.04	76.88	-156.892	-481.52	2,588.51	1,605.05		80.54	19.929		
9,800.00	6,942.43	11,134.83	8,417.78	79.50	79.30	-156.885	-480.51	2,688.47	1,604.62	1,521.80	82.82	19.376		
9,900.00	6,945.38		8,420.26	81.96	81.74	-156.878	-479.50	2,788.43	1,604.19		85.11	18.849		
10,000.00	6,948.33	11,334.83	8,422.74	84.43	84.19	-156.872	-478.50	2,888.40	1,603.75	1,516.34	87.41	18.347		
10,100.00	6,951.29	11,434.83	8,425.22	86.91	86.64	-156.865	-477.49	2,988.36	1,603.32	1,513.59	89.73	17.868		
10,200.00	6,954.24	11,534.83	8,427.70	89.40	89.11	-156.858	-476.48	3,088.32	1,602.89	1,510.83	92.06	17.411		
10,300.00	6,957.19	11,634.83	8,430.18	91.90	91.59	-156.851	-475.48	3,188.28	1,602.46	1,508.06	94.40	16.975		
10,400.00	6,960.14	11,734.83	8,432.66	94.41	94.07	-156.845	-474.47	3,288.25	1,602.02	1,505.27	96.75	16.558		
10,500.00	6,963.09	11,834.82	8,435.14	96.92	96.56	-156.838	-473.46	3,388.21	1,601.59	1,502.48	99.11	16.159		
10,600.00	6,966.04		8,437.62	99.43	99.06	-156.831	-472.46	3,488.17	1,601.16			15.778		
10,700.00	6,968.99	12,034.82	8,440.10	101.96	101.57	-156.824	-471.45	3,588.14	1,600.73	1,496.87	103.86	15.413		
10,800.00	6,971.95	12,134.82	8,442.58	104.48	104.08	-156.818	-470.45	3,688.10	1,600.30	1,494.05	106.24	15.063		
10,900.00	6,974.90	12,234.82	8,445.06	107.02	106.59	-156.811	-469.44	3,788.06	1,599.86	1,491.23	108.64	14.727		
11,000.00	6,977.85		8,447.54	109.55	109.12	-156.804	-468.43	3,888.03	1,599.43		111.04	14.405		
11,100.00	6,980.80		8,450.02	112.09	111.64	-156.797	-467.43	3,987.99	1,599.00			14.095		
11,200.00	6,983.75	12,534.82	8,452.50	114.64	114.17	-156.791	-466.42	4,087.95	1,598.57	1,482.71	115.85	13.798		
11,300.00			8,454.98	117.19	116.71	-156.784	-465.41	4,187.91	1,598.14			13.512		
11,400.00			8,457.46	119.74	119.25	-156.777	-464.41	4,287.88	1,597.70		120.70	13.237		
11,500.00	6,992.61		8,459.94	122.29	121.79	-156.770	-463.40	4,387.84	1,597.27			12.973		
11,600.00		12,934.81	8,462.42	124.85	124.34	-156.764 156.757	-462.39	4,487.80	1,596.84			12.718		
11,700.00	6,998.51	13,034.81	8,464.90	127.41	126.89	-156.757	-461.39	4,587.77	1,596.41	1,468.41	128.00	12.472		
11,800.00			8,467.38	129.98	129.44	-156.750	-460.38	4,687.73	1,595.98			12.235		
11,900.00		13,234.81	8,469.86	132.54	132.00	-156.743	-459.37	4,787.69	1,595.55			12.006		
12,000.00			8,472.34	135.11	134.56	-156.736	-458.37	4,887.66	1,595.11	1,459.77	135.34	11.786		
12,037.68	7,008.48	13,372.48	8,473.28	136.08	135.52	-156.734	-457.99	4,925.32	1,594.95	1,458.68	136.27	11.705		

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

03/08/22 10:05:47AM

Anticollision Report

Company:	Santo Petroleum	Local Co-ordinate Reference:	Well 204H
Project:	Eddy County, NM (NAD 83 - NME)	TVD Reference:	RKB = 25' @ 3178.00usft (TBD)
Reference Site:	ANEJO FEDERAL COM	MD Reference:	RKB = 25' @ 3178.00usft (TBD)
Site Error:	0.00 usft	North Reference:	Grid
Reference Well:	204H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.00 usft	Output errors are at	2.00 sigma
Reference Wellbore	Wellbore #1	Database:	WBDS_SQL_2
Reference Design:	PLAN #3	Offset TVD Reference:	Reference Datum

Offset D Survey Pro) FEDEF	RAL COM -	403H -	Wellbore #	‡1 - PLAN #3						Offset Site Error: Offset Well Error:	0.00 ust 0.00 ust
Refer	-	Offs	et	Semi Major	Axis				Dist	ance				
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	Offset Wellbo +N/-S (usft)	re Centre +E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
0.00	0.00	0.00	0.00	0.00	0.00	1.436	39.90	1.00	39.91					
100.00	100.00	100.00	100.00	0.13	0.13	1.436	39.90	1.00	39.91	39.64	0.27	148.454		
200.00	200.00	200.00	200.00	0.49	0.49	1.436	39.90	1.00	39.91	38.93	0.99	40.488		
300.00	300.00	300.00	300.00	0.85	0.85	1.436	39.90	1.00	39.91			23.440		
400.00	400.00	400.00	400.00	1.21	1.21	1.436	39.90	1.00	39.91	37.49		16.495		
500.00	500.00	500.00	500.00	1.57	1.57	1.436	39.90	1.00	39.91	36.78		12.725		
600.00	600.00	600.00	600.00	1.93	1.93	1.436	39.90	1.00	39.91	36.06		10.357	~ ~ ~	
700.00	700.00	700.00	700.00	2.29	2.29	1.436	39.90	1.00	39.91	35.34			CC, ES	
800.00	799.95 899.63	800.05	799.95 899.63	2.63	2.64	168.047 169.862	39.90 39.90	1.00	42.47	37.20 44.20		8.056 8.408	SF	
900.00 1,000.00	998.77	900.37 1,001.23	998.77	2.96 3.32	3.00 3.37	171.894	39.90	1.00 1.00	50.17 63.06	44.20 56.39	5.97 6.67	9.450		
1,100.00	1,097.08	1,102.92	1,097.08	3.71	3.73	173.648	39.90	1.00	81.15	73.76	7.39	10.982		
1,200.00	1,194.41	1,205.59	1,194.41	4.14	4.10	175.010	39.90	1.00	103.97	95.86		12.813		
1,300.00	1,291.53	1,308.47	1,291.53	4.61	4.47	175.940	39.90	1.00	127.75	118.92		14.468		
1,400.00	1,388.64	1,388.64	1,388.64	5.10	4.75	176.579	39.90	1.00	151.55	142.08		16.004		
1,500.00	1,485.76	1,485.76	1,485.76	5.61	5.10	177.044	39.90	1.00	175.36	165.19	10.18	17.235		
1,600.00	1,582.87	1,582.87	1,582.87	6.13	5.45	177.397	39.90	1.00	199.18	188.30	10.88	18.300		
1,700.00	1,679.99	1,679.99	1,679.99	6.65	5.80	177.676	39.90	1.00	223.01	211.41	11.60	19.230		
1,800.00	1,777.10	1,777.10	1,777.10	7.19	6.15	177.900	39.90	1.00	246.84	234.53	12.31	20.049		
1,900.00	1,874.22	1,873.49	1,873.49	7.73	6.49	178.020	40.01	0.73	270.72	257.70		20.787		
2,000.00	1,971.33	1,968.85	1,968.76	8.28	6.82	177.413	41.39	-2.88	295.17	281.44	13.72	21.506		
2,100.00	2,068.45	2,065.68	2,065.45	8.83	7.16	176.662	43.24	-7.71	319.86	305.42	14.44	22.153		
2,200.00	2,165.56	2,162.50	2,162.14	9.38	7.51	176.019	45.10	-12.53	344.60	329.44	15.16	22.737		
2,300.00	2,262.68	2,259.32	2,258.82	9.93	7.85	175.462	46.95	-17.36	369.37	353.50		23.265		
2,400.00 2,500.00	2,359.79 2,456.91	2,356.15 2,452.97	2,355.51 2,452.20	10.49 11.05	8.19 8.54	174.975 174.546	48.80 50.65	-22.19 -27.01	394.18 419.00	377.57 401.67		23.745 24.183		
2,600.00		2,549.80	2,548.88	11.61	8.89	174.165	52.51	-31.84	443.85	425.79		24.583		
2,700.00 2,800.00	2,651.14 2,748.25	2,646.62 2,743.45	2,645.57 2,742.26	12.17 12.73	9.23 9.58	173.824 173.517	54.36 56.21	-36.67 -41.49	468.71 493.58	449.92 474.07	18.79 19.52	24.951 25.289		
2,800.00		2,743.45	2,742.20	12.73	9.58	173.240	58.07	-41.49	493.38 518.47	498.22		25.602		
3,000.00		2,937.10	2,935.63	13.86	10.28	172.988	59.92	-51.15	543.37	522.38		25.891		
3,100.00	3,039.60	3,033.92	3,032.31	14.43	10.63	172.758	61.77	-55.97	568.28	546.55	21.72	26.160		
3,200.00	3,136.71	3,130.75	3,129.00	14.99	10.98	172.548	63.62	-60.80	593.19	570.73		26.410		
3,300.00	3,233.83	3,227.57	3,225.69	15.56	11.34	172.355	65.48	-65.62	618.11	594.91	23.20	26.643		
3,400.00	3,330.94	3,324.39	3,322.37	16.13	11.69	172.176	67.33	-70.45	643.04	619.10	23.94	26.861		
3,500.00	3,428.06	3,421.22	3,419.06	16.69	12.04	172.011	69.18	-75.28	667.97	643.29	24.68	27.065		
3,600.00	3,525.17	3,518.04	3,515.75	17.26	12.40	171.858	71.04	-80.10	692.91	667.49	25.42	27.257		
3,700.00	3,622.29	3,614.87	3,612.43	17.83	12.75	171.715	72.89	-84.93	717.85	691.69	26.16	27.437		
3,800.00	3,719.40	3,711.69	3,709.12	18.40	13.10	171.582	74.74	-89.76	742.80	715.89	26.91	27.607		
3,900.00			3,805.81	18.97	13.46	171.457	76.60	-94.58	767.75	740.10		27.767		
	3,913.63		3,902.49	19.54	13.81	171.341	78.45	-99.41	792.70	764.31		27.918		
4,100.00			3,999.18	20.11	14.17	171.231	80.30	-104.24	817.66	788.52		28.061		
4,200.00	4,107.86 4,204.98	4,101.01	4,095.87	20.68	14.53	171.128	82.15	-109.06	842.62	812.73		28.190		
4,300.00 4,400.00	,	4,204.19	4,192.55	21.25	14.91	171.031	84.01	-113.89	867.58	836.92		28.297		
4,400.00		4,307.36 4,389.46	4,289.24 4,385.92	21.82 22.39	15.29 15.59	170.940 170.853	85.86 87.71	-118.72 -123.54	892.54 917.51	861.11 885.38	31.43 32.12	28.398 28.563		
4,600.00 4,700.00		4,486.29 4,583.11	4,482.61 4,579.30	22.96 23.54	15.94 16.30	170.771 170.693	89.57 91.42	-128.37 -133.19	942.47 967.44	909.60 933.83		28.674 28.779		
4,700.00 4,800.00		4,583.11 4,679.94	4,579.30 4,675.98	23.54 24.11	16.30	170.693	91.42 93.27	-133.19 -138.02	967.44 992.41	933.83 958.05		28.779		
4,900.00		4,079.94	4,075.90	24.11	17.01	170.549	95.27	-142.85	1,017.38	982.27		28.976		
5,000.00		4,873.59	4,869.36	25.25	17.37	170.482	96.98	-147.67	1,042.36			29.067		
5,100.00	4,981.90		4,966.04	25.82	17.73	170.418	98.83	-152.50	1,067.33			29.155		
12/00/00 1			Min cent	tre to cente	r distano	ce or cover	gent point, S	F - min se	paration f	actor, ES	6 - min elli		ation	

03/08/22 10:05:47AM

COMPASS 5000.14 Build 85

Anticollision Report

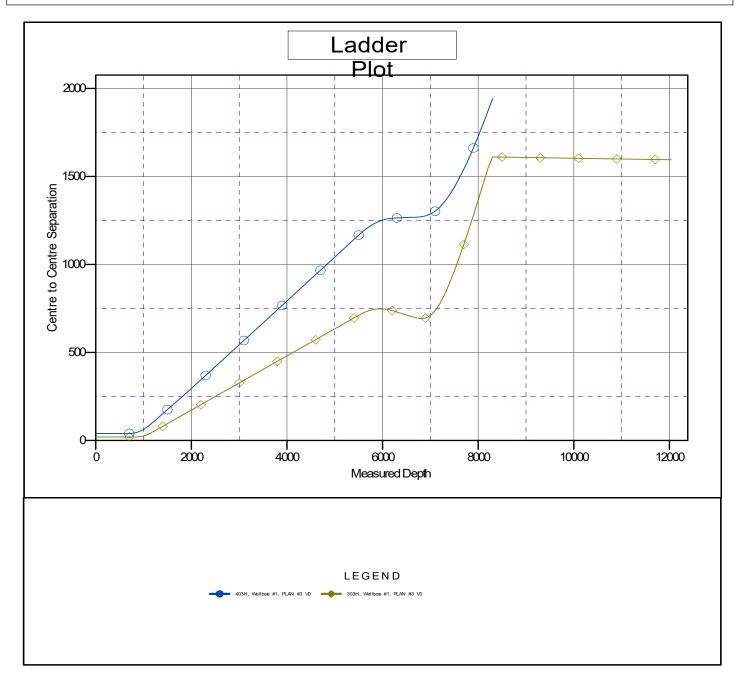
0.00 usft

0.00 usft

Company:	Santo Petroleum	Local Co-ordinate Reference:	Well 204H
Project:	Eddy County, NM (NAD 83 - NME)	TVD Reference:	RKB = 25' @ 3178.00usft (TBD)
Reference Site:	ANEJO FEDERAL COM	MD Reference:	RKB = 25' @ 3178.00usft (TBD)
Site Error:	0.00 usft	North Reference:	Grid
Reference Well:	204H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.00 usft	Output errors are at	2.00 sigma
Reference Wellbore	Wellbore #1	Database:	WBDS_SQL_2
Reference Design:	PLAN #3	Offset TVD Reference:	Reference Datum

Offset Design ANEJO FEDERAL COM - 403H - Wellbore #1 - PLAN #3 Offset Site Error: Survey Program: 0-MWD+IGRF Offset Well Error: Reference Offset Semi Major Axis Distance Measured Vertical Measured Vertical Reference Offset Highside Offset Wellbore Centre Between Between Minimum Separation Warning Depth Depth Depth Depth Toolface Centres Ellipses Separation Factor +N/-S +E/-W (usft) (usft) (usft) (usft) (usft) (usft) (°) (usft) (usft) . (usft) (usft) (usft) 5.067.24 5.062.73 18.08 170.357 100.68 1,092.31 1.054.95 29.239 5,200.00 5.079.01 26.39 -157.33 37.36 5.300.00 5.176.12 5.164.06 5.159.42 26.97 18.44 170.299 102.54 -162.15 1.117.28 1.079.18 38.11 29.320 5,400.00 5,273.24 5,260.88 5,256.10 27.54 18.80 170.244 104.39 -166.98 1,142.26 1,103.41 38.86 29.397 5,352.79 5.500.00 5.370.35 5.357.71 28.11 170.190 106.24 -171.81 1.167.24 1.127.63 39.61 29.471 19.15 5.449.78 170.200 108.10 5.600.00 5.467.77 5.454.84 28.67 19.51 -176.65 1.190.97 1.150.62 40.35 29.513 5,700.00 5,565.90 5,552.71 5,547.51 29.18 19.87 170.182 109.97 -181.53 1,211.38 1,170.28 41.10 29.476 5,800.00 5,664.65 5,651.22 5,645.88 29.64 20.24 170.128 111.86 -186.44 1,228.41 1,186.57 41.84 29.362 5.900.00 5.763.89 5.750.23 5.744.75 30.05 20.60 170 036 113.75 -191.37 1.242.05 1,199.48 42 57 29.176 6,000.00 5,863.49 5,849.64 5,844.02 30.42 20.97 169.908 115.66 -196.33 1,252.29 1,208.99 43.30 28.923 6,100.00 5,963.34 5,949.31 5,943.55 30.74 21.34 169.742 117.56 -201.30 1,259.12 1,215.10 44.01 28.607 6.200.00 6,063.32 6,049.14 6,043.23 31.01 21.71 169.538 119.47 -206.27 1,262.53 1.217.81 44.71 28.235 6,300.00 6,163.32 6,149.00 6,142.95 31.23 22.07 3.457 121.38 -211.25 1,264.13 1,218.73 45.40 27.845 6,248.85 123.30 1,265.75 6,400.00 6,263.32 6,242.66 31.46 22.44 3.227 -216.23 1,219.67 46.08 27.469 6.500.00 6.363.27 6.348.56 6.342.23 31.69 22.81 -86.449 125.20 -221.20 1.267.28 1.220.51 46.76 27.100 6,600.00 6,461.72 6,446.04 6,439.57 31.88 23.17 -87.323 127.07 -226.06 1,268.08 1,220.65 47.43 26.737 6.700.00 6.555.77 6.538.29 6.531.68 32.02 23.51 -88.839 128.83 -230.65 1.268.83 1.220.77 48.05 26.404 6,800.00 6,642.55 6.622.49 6,615.76 32.11 23.83 -90.663 130.45 -234.85 1,270.94 1.222.30 48 64 26.129 6,900.00 6,719.42 6,703.91 6,689.26 -92.369 131.85 1,226.94 32.16 24.13 -238.52 1,276.17 49.23 25.923 7,000.00 6,784.06 6,756.85 6,749.94 32.18 24.32 -93.505 133.02 -241.55 1,286.31 1,236.56 49.75 25.856 7.100.00 6.834.49 6.802.93 6.795.95 32.20 24.49 -93.652 133.90 -243.85 1.302.85 1.252.55 50.30 25.901 7,200.00 6,869.19 6,832.93 6,825.91 32.24 24.60 -92.479 134.47 -245.34 1,326.66 1,275.80 50.86 26.087 7,300.00 6,887.10 6,845.94 6,838.89 32.35 24.65 -89.786 134.72 -245.99 1,357.72 1,306.34 51.39 26.422 7.400.00 6 890 43 6 844 30 6.837.26 32 59 24 65 -88 030 134 69 -245 91 1.395.26 1.343.39 51 87 26 898 7,500.00 6,892.08 6,840.98 6,833.94 33.04 24.63 -87.881 134.63 -245.74 1,438.74 1,386.36 52.38 27.468 7,600.00 6,893.73 6,837.66 6,830.63 33.76 24.62 -87.732 134.56 -245.58 1,487.67 1.434.77 52.90 28.124 6,895.38 6,834.35 6,827.32 34.77 24.61 -87.583 134.50 1.541.53 1,488.12 28.863 7.700.00 -245.41 53.41 7,800.00 6,897.03 6,831.03 6,824.01 36.06 24.60 -87.435 134.44 -245.25 1,599.83 1,545.93 53.90 29.681 7,900.00 6,898.68 6,827.71 6,820.70 37.56 24.58 -87.286 134.37 -245.08 1,607.74 1,662.11 54.37 30.572 8.000.00 6.900.33 6.824.40 6.817.38 39.22 24.57 -87.137 134.31 -244.92 1.727.92 1.673.11 31.529 54.80 8,100.00 6,901.98 6,821.08 6,814.07 41.02 24.56 -86.988 134.25 -244.75 1,796.88 1,741.67 55.21 32.548 -86.839 134.18 -244.59 8.200.00 6.903.63 6.817.76 6.810.76 42.92 24.55 1.868.65 1.813.07 55.58 33.621 8.300.00 6 905 28 6.814.45 6.807.45 44 91 24 54 -86 691 134 12 -244 42 1.942.90 1.886.98 55 92 34 744

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

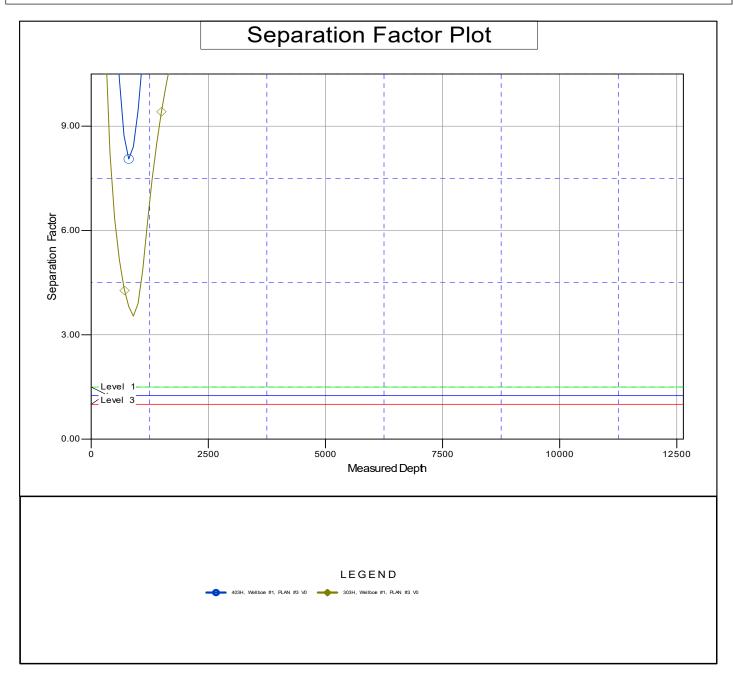


Anticollision Report

Company:	Santo Petroleum	Local Co-ordinate Reference:	Well 204H
Project:	Eddy County, NM (NAD 83 - NME)	TVD Reference:	RKB = 25' @ 3178.00usft (TBD)
Reference Site:	ANEJO FEDERAL COM	MD Reference:	RKB = 25' @ 3178.00usft (TBD)
Site Error:	0.00 usft	North Reference:	Grid
Reference Well:	204H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.00 usft	Output errors are at	2.00 sigma
Reference Wellbore	Wellbore #1	Database:	WBDS_SQL_2
Reference Design:	PLAN #3	Offset TVD Reference:	Reference Datum

Reference Depths are relative to RKB = 25' @ 3178.00usft (TBD) Offset Depths are relative to Offset Datum Central Meridian is -104.333334 Coordinates are relative to: 204H Coordinate System is US State Plane 1983, New Mexico Eastern Zone Grid Convergence at Surface is: 0.034°

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation



Anticollision Report

Company:	Santo Petroleum	Local Co-ordinate Reference:	Well 204H
Project:	Eddy County, NM (NAD 83 - NME)	TVD Reference:	RKB = 25' @ 3178.00usft (TBD)
Reference Site:	ANEJO FEDERAL COM	MD Reference:	RKB = 25' @ 3178.00usft (TBD)
Site Error:	0.00 usft	North Reference:	Grid
Reference Well:	204H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.00 usft	Output errors are at	2.00 sigma
Reference Wellbore	Wellbore #1	Database:	WBDS_SQL_2
Reference Design:	PLAN #3	Offset TVD Reference:	Reference Datum

Reference Depths are relative to RKB = 25' @ 3178.00usft (TBD) Offset Depths are relative to Offset Datum Central Meridian is -104.333334 Coordinates are relative to: 204H Coordinate System is US State Plane 1983, New Mexico Eastern Zone Grid Convergence at Surface is: 0.034°

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

03/08/22 10:05:47AM

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	SPC RESOURCES LLC
LEASE NO.:	NMNM0489599
WELL NAME & NO.:	ANEJO FED COM 204H
SURFACE HOLE FOOTAGE:	2138'/S & 337'/W
BOTTOM HOLE FOOTAGE	1000'/S & 50'/E
LOCATION:	SECTION 23, T21S, R26E, NMP
COUNTY:	Eddy County, New Mexico

COA

H2S	O Yes	• No	
Potash	None	Secretary	© R-111-P
Cave/Karst Potential	O Low	O Medium	• High
Cave/Karst Potential	Critical		
Variance	None	C Flex Hose	O Other
Wellhead	Conventional	O Multibowl	O Both
Other	4 String Area	Capitan Reef	WIPP
Other	□ Fluid Filled	Cement Squeeze	Pilot Hole
Special Requirements	🗌 Water Disposal	COM	🗆 Unit

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

Casing Design:

- 1. The **20** inch surface casing shall be set at approximately **350** feet (a minimum of **70 feet (Eddy County)** into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after

completing the cement job.

- b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u>
 <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The **13-3/8** inch first intermediate casing shall be set at approximately **575** feet. The minimum required fill of cement behind the **13-3/8** inch first intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
 - In <u>High Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
 - In <u>Capitan Reef Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
 - Special Capitan Reef requirements. If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following:
 (Use this for 3 string wells in the Capitan Reef, if 4 string well ensure FW based mud used across the capitan interval)
 - Switch to fresh water mud to protect the Capitan Reef and use fresh water mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
 - Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.
- 3. The **9-5/8** inch second intermediate casing shall be set at approximately **2,100** feet. The minimum required fill of cement behind the **9-5/8** inch second intermediate casing is:

Page 2 of 8

- Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 50 feet on top of Capitan Reef top. If cement does not circulate see B.1.a, c-d above.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

C. PRESSURE CONTROL

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **2000 (2M)** psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the first intermediate casing shoe shall be **2000 (2M)** psi.
- c. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the second intermediate casing shoe shall be **3000 (3M)** psi.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.

• In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

- Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a

larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been

done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test

does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

OTA05182023

Approval Date: 05/30/2023

Hydrogen Sulfide Drilling Operations Plan

SPC Resources, LLC 101 S. 4th Street, Suite B Artesia, NM 88210 (575) 736-3250

- 1. H₂S Safety Instructions to the following:
 - Characteristics of H₂S.
 - Physical effects and hazards.
 - Principal and operation of H₂S detectors, warning system and briefing areas.
 - Evacuation procedures, routes and First Aid.
 - Proper use of safety equipment and life support systems.
 - Essential personnel meeting medical evaluation criteria will receive additional training on the proper use of 30 min pressure demand air packs.
- 2. H₂S Detection & Alarm Systems:
 - H₂S sensor/detectors to be located on the drilling rig floor, in the base of the sub structure/cellar area, on the mud returns pits by the shale shaker. Additional H₂S monitors may be placed as deemed necessary.
 - An audio alarm system will be installed on the derrick, the floor, and in the doghouse.
- 3. Windsocks and Wind Streamers:
 - Windsocks at mud pit area should be high enough to be visible.
 - Windsock on the rig floor/top of doghouse should be high enough to be visible.
- 4. Condition Flags & Signs:
 - Warning sign on access road to location
 - Flags to be displayed on sign at entrance to location
 - i. Green Flag Normal Safe Operation Condition
 - ii. Yellow Flag Potential Pressure and Danger
 - iii. Red Flag Danger (H₂S present in dangerous concentrations) Only H₂S trained personnel admitted on location
- 5. Well Control Equipment:
 - See attached APD

- 6. Communications:
 - While working under masks, chalkboards will be used for communications
 - Hand signals will be used where chalk board is inappropriate
 - Two way radio will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at drilling foreman's trailer or living quarters.
- 7. Drilling Stem Testing:
 - No Drill Stem Tests or hole coring is planned at this time.
- 8. Drilling contractor supervisor will be required to be familiar with the effects H₂S has on tubular goods and other mechanical equipment.
- If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavenger chemicals if necessary.

10. Emergency Contacts:

Emergency Contact Information - Santo Personnel						
Santo Petroleum, LLC	Artesia Office	575-736-3250	Houston	713-600-7500		
Key Parties at Santo Petroleum	Title	Office	Mobile	Email		
Gary Waldrop	Field Land Manager	575-736-3256	469-261-3446	gwaldrop@santopetroleum.com		
Lelan J Anders	VP, Operations	713-600-7502	281-908-1752	landers@santopetroleum.com		
Hanson Yates	President	713-600-7503	713-412-2097	hyates@santopetroleum.com		

Carlsbad, New Mexico:	
Ambulance	911
State Police	575-885-3137
City Police	575-885-2111
Sheriff's Office	575-887-7551
Fire Department	575-887-3798
Local Emergency Planning Committee	575-887-6544
New Mexico Oil Conservation Division	575-887-6544

•

Santa Fe, New Mexico:	
New Mexico Emergency Response Commission	505-476-9600
New Mexico Emergency Response Commission (24 hr)	505-827-9126
New Mexico State Emergency Operations Center	505-476-9635
Federal Contacts:	
Carlsbad BLM Office	575-234-5972
National Emergency Response Center (Washington, DC)	800-424-8802
Medical:	
Flight for Life - Lubbock, TX	806-743-9911
AeroCare - Lubbock, TX	806-747-8923
Med Flight Air Ambulance - Albuquerque, NM	505-842-4433
SB Air Med Service - Albuquerque, NM	505-842-4949
Well Control/Other:	
Wild Well Control	281-784-4700
Boots & Coots IWC	800-256-9688
B.J. Services	575-746-3569
Halliburton	575-746-2757

Well Name: ANEJO FED COM

Well Number: 204H

Well Production type:

Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Using any construction materials: YES

Construction Materials description: Clean caliche will be hauled from 3rd party pit as depicted on the attached map.

Construction Materials source location

Caliche_Source_Map_20220309132850.pdf

Section 7 - Methods for Handling

Waste type: DRILLING

Waste content description: Drill cuttings, mud/fluids, salts and other chemicals from the well during drilling and completion operations

Amount of waste: 2000 barrels

Waste disposal frequency : Daily

Safe containment description: steel tanks

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY **Disposal type description:**

Disposal location description: NMOCD approved disposal facility

Waste type: SEWAGE

Waste content description: black and grey water

Amount of waste: 350 barrels

Waste disposal frequency : Weekly

Safe containment description: poly tanks

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: STATE FACILITY Disposal type description:

Disposal location description: local wastewater treatment plant

Operator Name: SPC RESOURCES LLC

Well Name: ANEJO FED COM

Well Number: 204H

Page 54 of 58

Waste type: GARBAGE

Waste content description: garbage and trash produced during drilling and completion operations

Amount of waste: 21600 pounds

Waste disposal frequency : Weekly

Safe containment description: Garbage and trash produced during drilling and completion operations will be collected in a trash container and disposed of properly at a state approved disposal facility. All trash on and around the well site will be collected for disposal.

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: STATE FACILITY Disposal type description:

Disposal location description: local landfill

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? Y

Description of cuttings location steel tanks

Cuttings area length (ft.)

Cuttings area depth (ft.)

Cuttings area width (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400085819

Operator Name: SPC RESOURCES LLC

Well Name: ANEJO FED COM

Well Type: OIL WELL

Well Number: 204H

Submission Date: 06/07/2022

Well Work Type: Drill

Highlighted data reflects the most recent changes

06/14/2023

Drilling Plan Data Report

Show Final Text

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
8692511		3153	25	25	OTHER : sand/gravel/unconsolidat ed	NONE	N
8692512	TANSILL	3011	142	142	OTHER : dolomite, limestone, silt	NONE	N
8692513	YATES	2820	333	333	OTHER : silts, sand, carbonates	NONE	N
8692514	SEVEN RIVERS	2617	536	536	ANHYDRITE, DOLOMITE	NONE	N
8692515	CAPITAN REEF	2553	600	600	ANHYDRITE, DOLOMITE, LIMESTONE	NONE	N
8692516	DELAWARE	910	2243	2243	SANDSTONE, SHALE	NATURAL GAS, OIL, USEABLE WATER	N
8692517	BONE SPRING	-1360	4513	4513	LIMESTONE, SHALE	NATURAL GAS, OIL, USEABLE WATER	N
8692518	BONE SPRING 1ST	-2725	5878	5878	LIMESTONE, SANDSTONE, SHALE	NATURAL GAS, OIL, USEABLE WATER	N
8692519	BONE SPRING 2ND	-2969	6122	6122	LIMESTONE, SHALE	NATURAL GAS, OIL	Y

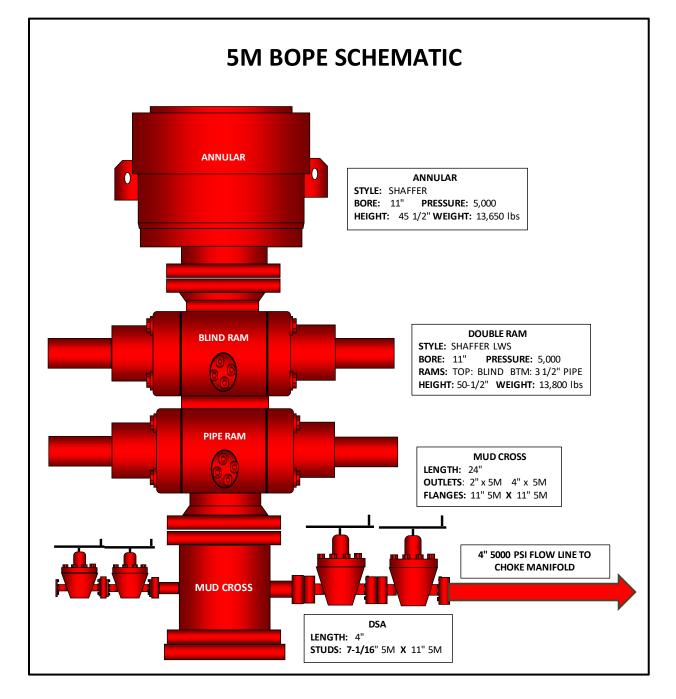
Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M

Rating Depth: 10000

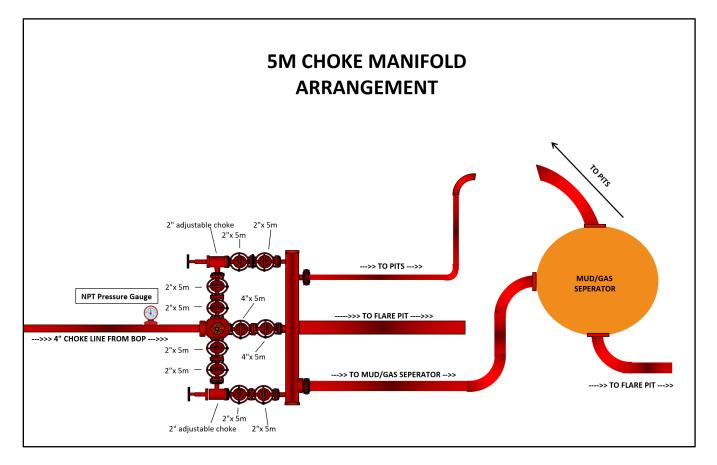
Equipment: - One set of pipe rams should be located below drilling spool. - Blind rams should be in lower most double ram cavity. - Pipe rams should be fitted for 5 solid body ram. - Use new ring gaskets every time BOPE is installed. - Insure all BOPE tests are recorded and kept in Drilling Supervisor Office. - TIW valve and inside BOP with appropriate wrenches must always be on rig floor. - Drill pipe float is required in all BHA(s). **Requesting Variance?** NO

Variance request:


Testing Procedure: All testing to be completed and charted by 3rd party testing crews b. All tests should be done for each BOP/Valve/Choke Manifold: 1. Recorded for 10 minutes on low pressure (500 psi) 2. Recorded for 10 minutes on high pressure (5000 psi) 3. All BOP testing will be completed with a test plug in place in wellhead c. After BOP testing is complete, remove test plug and test casing to 2000 psi for 30 minutes d. Company representative to email all copies of all plots to Drilling Engineer as well as save in the well file. e. BOPs shall be function tested every day. All BOPE test pressures to be held for a minimum of 5 minutes. Relevant well control equipment shall be tested following replacement of any pressure containing component; or following removal, then reinstallation of BOP stack; or following installation of each casing string; or at the

SPC RESOURCES, LLC 101 S. 4th Street, Suite B Artesia, NM 88210

Nipple-Up


- a. Raise stack and center over the wellhead
- b. Install DSA and ring gaskets
- c. Lower stack onto DSA
- d. Torque DSA flange bolts in a star pattern to the specified torque
- e. Verify BOP is centered to the rotary table
- f. Install rotating head
- g. Install hydraulic lines to BOP
- h. Verify manifold line-up
- i. Test BOP & manifold

Released to Imaging: 8/31/2023 2:49:20 PM

SPC RESOURCES, LLC 101 S. 4th Street, Suite B Artesia, NM 88210

Pressure Testing

- a. All testing to be completed and charted by 3rd party testing crews
- b. All tests should be done for each BOP/Valve/Choke Manifold:
 - 1. Recorded for 10 minutes on low pressure (500 psi)
 - 2. Recorded for 10 minutes on high pressure (5000 psi)
 - 3. All BOP testing will be completed with a test plug in place in wellhead
- c. After BOP testing is complete, remove test plug and test casing to 2000 psi for 30 minutes
- d. Company representative to email all copies of all plots to Drilling Engineer as well as save in the well file.
- e. BOP's shall be function tested every day.

Gas Buster Operation

- a. Flow should be directed to pits unless choke is needed to control gas
- **b.** Adjustable choke to adjusted only by SPC Resources Rep on location only
- c. Flare should remain burning (pilot lit) anytime fluid is going through gas buster
- d. Choke needs to be monitored to not overrun gas buster or flare

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
SPC RESOURCES, LLC	372262
P.O. Box 1020	Action Number:
Artesia, NM 88211	258772
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

CONDITIONS		
Created By	Condition	Condition Date
ward.rikala	Notify OCD 24 hours prior to casing & cement	8/31/2023
ward.rikala	Will require a File As Drilled C-102 and a Directional Survey with the C-104	8/31/2023
ward.rikala	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string	8/31/2023
ward.rikala	Cement is required to circulate on both surface and intermediate1 strings of casing	8/31/2023
ward.rikala	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system	8/31/2023

Page 58 of 58

Action 258772