U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Well Name	Well Number	US Well Number	Lease Number	Case Number	Operator
VAN DOO DAH	714H	3002549517	NMNM0359295A	NMNM0359295A	DEVON
VAN DOO DAH	624H	3002549519	NMNM0359295A	NMNM0359295A	DEVON
VAN DOO DAH	734H	3002549520	NMNM0359295A	NMNM0359295A	DEVON

Notice of Intent

Sundry ID: 2747852

Type of Submission: Notice of Intent

Date Sundry Submitted: 08/27/2023

Date proposed operation will begin: 08/24/2023

LONG VO Digitally signed by LONG VO Date: 2023.08.30 09:27:29 -05'00

Sundry Print Repor

Type of Action: APD Change Time Sundry Submitted: 02:50

Procedure Description: ENGINEERING ONLY Devon Energy Production Co., L.P. (Devon) respectfully requests to change the drilling plan with casing and cement changes to each string. Please see attached plan for each well along with new spec sheets for each string.

NOI Attachments

Procedure Description

Van_Doo_Dah_33_28_Fed_Com_624H_20230827144919.pdf Van_Doo_Dah_33_28_Fed_Com_714H_20230827144918.pdf Van_Doo_Dah_33_28_Fed_Com_734H_20230827144918.pdf 5.500in_20.00___0.361in_Wall__VST_P110EC_DWC_C_IS_CDS_AB_20230827144900.pdf 5.5in_20lbf_P110EC_VAM_SPRINT_SF_20230827144900.pdf 7.625_29.7lb_P110EC_SPRINT_FJ_20230824124912.pdf 9.625_40lb_J_55_20230824124851.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: CHELSEY GREEN Name: DEVON ENERGY PRODUCTION COMPANY LP Title: Regulatory Compliance Professional Street Address: 333 West Sheridan Avenue City: Oklahoma City State: OK Phone: (405) 228-8595 Email address: Chelsey.Green@dvn.com

State:

Field

Representative Name:

Street Address:

City:

Phone:

Email address:

Zip:

Signed on: AUG 24, 2023 12:32 PM

Page 2 of 36

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Devon Energy Production Company LP
LEASE NO.:	NMNM0359295A
LOCATION:	Section 33, T.25 S., R.32 E., NMPM
COUNTY:	Lea County, New Mexico
WELL NAME & NO.:	Van Doo Dah 33-28 Fed Com 624H
SURFACE HOLE FOOTAGE:	180'/S & 2246'/E
BOTTOM HOLE FOOTAGE	20'/N & 1890'/E
ATS/API ID:	3002549519
APD ID:	
Sundry ID:	2747852
WELL NAME & NO.:	Van Doo Dah 33-28 Fed Com 714H
SURFACE HOLE FOOTAGE:	180'/S & 2276'/E
BOTTOM HOLE FOOTAGE	20'/N & 2310'/E
ATS/API ID:	3002549517
APD ID:	
Sundry ID:	2747852
WELL NAME & NO.:	Van Doo Dah 33-28 Fed Com 734H
SURFACE HOLE FOOTAGE:	180'/S & 2216'/E
BOTTOM HOLE FOOTAGE	20'/N & 1650'/E
ATS/API ID:	3002549520
APD ID:	
Sundry ID:	2747852

COA

TIOC			
H2S	Yes		
Potash	None 🔽		
Cave/Karst	Low 🔫		
Potential			
Cave/Karst	Critical		
Potential			
Variance	🖸 None	🖸 Flex Hose	C Other
Wellhead	Conventional and Multibov	vl 🔻	
Other	□4 String	Capitan Reef	□ WIPP
		None -	
Other	Pilot Hole	🗆 Open Annulus	
	None 🔽		
Cementing	Contingency Squeeze	Echo-Meter	Primary Cement
	None -	Int 1 🔻	Squeeze
			None 🔫
Special	□ Water	COM	Unit Unit
Requirements	Disposal/Injection		
Special	Batch Sundry		
Requirements			
Special	Break Testing	□ Offline	Casing
Requirements		Cementing	Clearance
Variance			

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Jennings** formation. As a result, the Hydrogen Sulfide area must meet **43 CFR part 3170 Subpart 3176** requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- 1. The 9-5/8 inch surface casing shall be set at approximately 1075 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. The surface hole shall be 13 1/2 inch in diameter.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of

six hours after pumping cement and ideally between 8-10 hours after completing the cement job.

- b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

2. The minimum required fill of cement behind the 7-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above.

Option 2:

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- a. First stage: Operator will cement with intent to reach the top of the **Brushy** Canyon at 7170' (392 sxs Class H/C+ additives).
- b. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified. (Squeeze 400 sxs Class C)

Operator has proposed to pump down 9-5/8" X 7-5/8" annulus after primary cementing stage. <u>Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus Or operator shall run a CBL from TD of the 7-5/8" casing to surface after the second stage BH to verify TOC.</u>

Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must run one CBL per Well Pad.

If cement does not reach surface, the next casing string must come to surface.

Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the **7-5/8** inch surface casing shoe shall be **5000 (5M)** psi.

Option 2:

Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the **9-5/8** inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR part 3170 Subpart 3171
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

Batch Sundry:

- Approval shall be for wells with surface, intermediate, and production section within 200' TVD tolerance between shoes above the deepest well shoes set depth.
- Approval shall be for wells with same drill plan design. (Casing depth may vary and cement volumes may vary per Condition of Approval.)
- Approval shall be for wells within the same drill pad.
- Cement excess shall be a minimum of 25%, adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

Casing Clearance:

Operator casing variance is approved for the utilization of 5-1/2 inch Sprint Flush Joint **from** base of curve and a minimum of 500 feet or the minimum tie-back back requirement above whichever is greater into the previous casing shoe. **All** other 5-1/2 inch casing will run DWC/C IS.

Operator shall clean up cycles until wellbore is clear of cuttings and any large debris, ensure cutting sizes are adequate "coffee ground or less" before cementing.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

\boxtimes Eddy County

EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,

BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822

Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a

digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after

installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per **43 CFR**

part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

LVO 8/30/2023

1. Geologic Formations

TVD of target	12031	Pilot hole depth	N/A
MD at TD:	22377	Deepest expected fresh water	

Basin

Dasm	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	995		
Salt	1380		
Base of Salt	4625		
Delaware	4625		
Cherry Canyon	5580		
Brushy Canyon	7170		
1st Bone Spring Lime	8680		
Bone Spring 1st	9665		
Bone Spring 2nd	10310		
3rd Bone Spring Lime	10805		
Bone Spring 3rd	11415		
Wolfcamp	11910		

*H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing P	rogram (Pri	mary Design)	
		XX74	

		Wt			Casing	Interval	Casing	Interval
Hole Size	Csg. Size	(PPF)	Grade Conn		From (MD)	To (MD)	From (TVD)	To (TVD)
12 1/4	9 5/8	40	J-55	BTC	0	1075	0	1075
8 3/4	7 5/8	29.70	P110	Sprint FJ	0	11415	0	11415
6 3/4	5 1/2	20	P110	DWC/C-IS & Sprint FJ	0	22377	0	12031

• All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for contingency casing.

•Variance Approval

o 5-1/2" Production Casing will include Sprint Flush Joint connection (5.783") from base of curve and 500ft into 7-5/8" casing shoe

o All other 5-1/2" Production Casing will run DWC/C IS (6.05")

3. Cementing Program (Primary Design)

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures

Casing	# Sks	тос	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	369	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	397	Surf	13.0	2.3	2nd State: Bradenhead Squeeze - Lead: Class C Cement + additives
Int I	392	7179	13.2	1.44	Tail: Class H / C + additives
Production	62	9561	9	3.27	Lead: Class H /C + additives
Froduction	690	11561	13.2	1.44	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Prod	10%

.

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		*	Tested to:				
			An	nular	Х	50% of rated working pressure				
Int 1	13-5/8"	5M		d Ram	Х					
Int I	13-5/8	5111		e Ram		5M				
			Doub	le Ram	Х	5141				
			Other*							
			Annul	ar (5M)	Х	100% of rated working pressure				
Production	13-5/8"	/8" 10M	Blind Ram		Х					
Production			10101	10101	10101	10111	Pipe	e Ram		1014
			Double Ram		Х	10M				
			Other*							
			Annul	ar (5M)						
			Blind Ram Pipe Ram Double Ram							
			Other*							
N A variance is requested for	the use of	a diverter on the su	urface casing	g. See attache	d for schem	atic.				
Y A variance is requested to	A variance is requested to run a 5 M annular on a 10M system									

4. Pressure Control Equipment (Three String Design)

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid? PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging,	Coring and Testing
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the
Х	Completion Report and sbumitted to the BLM.
	No logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain.
	Coring? If yes, explain.

Additional	logs planned	Interval	
	Resistivity	Int. shoe to KOP	
	Density	Int. shoe to KOP	
Х	CBL	Production casing	
Х	Mud log	Intermediate shoe to TD	
	PEX		

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	6569
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren	Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations					
greater that	greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is					
encountere	encountered measured values and formations will be provided to the BLM.					
Ν	N H2S is present					
Y	H2S plan attached.					

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2
- The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).

³ The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.

- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments

X Directional Plan Other, describe

1. Geologic Formations

TVD of target	12276	Pilot hole depth	N/A
MD at TD:	22624	Deepest expected fresh water	

Basin

	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	995		
Salt	1380		
Base of Salt	4625		
Delaware	4625		
Cherry Canyon	5580		
Brushy Canyon	7170		
1st Bone Spring Lime	8680		
Bone Spring 1st	9665		
Bone Spring 2nd	10310		
3rd Bone Spring Lime	10805		
Bone Spring 3rd	11415		
Wolfcamp	11910		

*H2S, water flows, loss of circulation, abnormal pressures, etc.

		Wt		Casing		Interval	Casing Interval	
Hole Size	Csg. Size	(PPF)	Grade Conn	From (MD)	To (MD)	From (TVD)	To (TVD)	
12 1/4	9 5/8	40	J-55	BTC	0	1075	0	1075
8 3/4	7 5/8	29.7	P110	Sprint FJ	0	11415	0	11415
6 3/4	5 1/2	20	P110	DWC/C-IS & Sprint FJ	0	22624	0	12276

2. Casing Program (Primary Design)

• All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for contingency casing.

Variance Approval -

o 5-1/2" Production Casing will include Sprint Flush Joint connection (5.783") from base of curve and 500ft into 7-5/8"casing shoe o All other 5-1/2" Production Casing will run DWC/C IS (6.05")

3. Cementing Program (Primary Design)

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures

Casing	# Sks	тос	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	369	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	400	Surf	13.0	2.3	2nd State: Bradenhead Squeeze - Lead: Class C Cement + additives
Int I	388	7217	13.2	1.44	Tail: Class H / C + additives
Production	61	9820	9	3.27	Lead: Class H /C + additives
Production	689	11820	13.2	1.44	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Prod	10%

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		~	Tested to:
			An	nular	X	50% of rated working pressure
Int 1	13-5/8"	5M	Bline	d Ram	Х	
Int 1	13-3/0	5111	Pipe	e Ram		- 5M
			Doub	le Ram	Х	JIVI
			Other*]
		Ann		ar (5M)	Х	100% of rated working pressure
Production	13-5/8"	10M	Blind Ram		Х	
Production			Pipe Ram Double Ram			
					Х	10101
			Other*			
			Annul	ar (5M)		
			Blind Ram Pipe Ram Double Ram			
						7
			Other*]
N A variance is requested for	the use of a	a diverter on the s	urface casin	g. See attache	ed for schem	natic.
Y A variance is requested to :	A variance is requested to run a 5 M annular on a 10M system					

4. Pressure Control Equipment (Three String Design)

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid? PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, C	Logging, Coring and Testing					
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the					
Х	Completion Report and sbumitted to the BLM.					
	No logs are planned based on well control or offset log information.					
	Drill stem test? If yes, explain.					
	Coring? If yes, explain.					

Additional	logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
Х	CBL	Production casing
Х	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	6702
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren S	Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations					
greater than	greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is					
encountered	encountered measured values and formations will be provided to the BLM.					
N	H2S is present					
Y	H2S plan attached.					

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2
- The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments

- X Directional Plan
- Other, describe

1. Geologic Formations

TVD of target	11911	Pilot hole depth	N/A
MD at TD:	22292	Deepest expected fresh water	

Basin

Dasin			
	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	995		
Salt	1380		
Base of Salt	4625		
Delaware	4625		
Cherry Canyon	5580		
Brushy Canyon	7170		
1st Bone Spring Lime	8680		
Bone Spring 1st	9665		
Bone Spring 2nd	10310		
3rd Bone Spring Lime	10805		
Bone Spring 3rd	11415		
Wolfcamp	11910		

*H2S, water flows, loss of circulation, abnormal pressures, etc.

		Wt			Casing Interval		Casing Interval	
Hole Size	Csg. Size	(PPF)	Grade Conn		From (MD)	To (MD)	From (TVD)	To (TVD)
12 1/4	9 5/8	40	J-55	BTC	0	1075	0	1075
8 3/4	7 5/8	29.7	P110	Sprint FJ	0	11000	0	11000
6 3/4	5 1/2	20	P110	DWC/C-IS & Sprint FJ	0	22292	0	11911

2. Casing Program (Primary Design)

• All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for contingency casing.

Variance Approval -

o 5-1/2" Production Casing will include Sprint Flush Joint connection (5.783") from base of curve and 500ft into 7-5/8" casing shoe

o All other 5-1/2" Production Casing will run DWC/C IS (6.05")

3. Cementing Program (Primary Design)

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures

Casing	# Sks	тос	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	Surface369Surf13.21.44Lead: Class C Cement + 4		Lead: Class C Cement + additives		
Int 1	399	Surf	13.0	2.3	2nd State: Bradenhead Squeeze - Lead: Class C Cement + additives
	352	7200	13.2	1.44	Tail: Class H / C + additives
Production	61	9477	9	3.27	Lead: Class H /C + additives
Floduction	690	11477	13.2	1.44	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Prod	10%

.

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Ту	pe	~	Tested to:																																														
			Ann	nular	Х	50% of rated working pressure																																														
Int 1	13-5/8"	5M	Blind	l Ram	Х																																															
Int I	13-5/8	5111	Pipe	Ram		5M																																														
			Doubl	e Ram	Х	5111																																														
			Other*																																																	
	13-5/8"	5M	Annula	ar (5M)	Х	50% of rated working pressure																																														
Production			Blind	l Ram	Х																																															
Tioduction			5111	5111	5101	5141	5101	5101	5101	5141	5111	5111	5141	5101	5101	5111	5101	5141	5111	5111	5111	5111	5111			5111		5111	5111	5111	5111	5111	5101	5111	5111	5111	5101	5111	5111	5101	5111	5111	5101	5101	5111	5101	5101	5111	_	Ram		5M
																																		e Ram	Х	5111																
			Other*																																																	
			Annula	ar (5M)																																																
			Blind	l Ram																																																
			Pipe Ram																																																	
			Doubl	le Ram																																																
			Other*																																																	
N A variance is requested for	A variance is requested for the use of a diverter on the surface casing. See attached for schematic.					ematic.																																														
A variance is requested to run a 5 M annular on a 10M system																																																				

4. Pressure Control Equipment (Three String Design)

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, C	oring and Testing
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the
Х	Completion Rpeort and sbumitted to the BLM.
	No logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain.
	Coring? If yes, explain.

Additional logs planned I		Interval
Resistivity		Int. shoe to KOP
	Density	Int. shoe to KOP
Х	CBL	Production casing
Х	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	6503
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations
greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is
encountered measured values and formations will be provided to the BLM.NH2S is present

Y H2S plan attached.

8. Other facets of operation

Is this a walking operation? Potentially

1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.

2

- The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

1 Spudder rig will move in and batch drill surface hole.

- a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- ³ The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

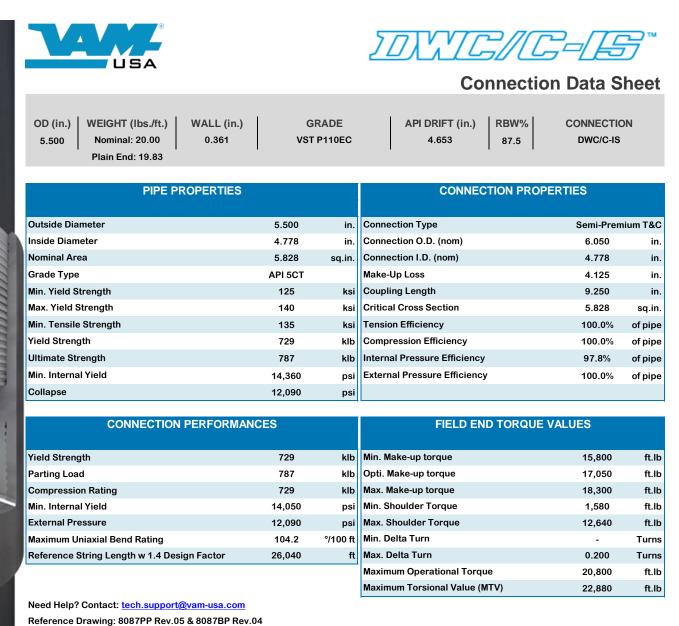
Attachments

X Directional Plan

Other, describe

U. S. Steel Tubular Products 9.625" 40.00lbs/ft (0.395" Wall) J55

1/24/2019 2:45:24 PM


MECHANICAL PROPERTIES	Pipe	втс	LTC	STC	
Minimum Yield Strength	55,000				psi
Maximum Yield Strength	80,000				psi
Minimum Tensile Strength	75,000				psi
DIMENSIONS	Pipe	втс	LTC	STC	
Outside Diameter	9.625	10.625	10.625	10.625	in.
Wall Thickness	0.395				in.
Inside Diameter	8.835	8.835	8.835	8.835	in.
Standard Drift	8.679	8.679	8.679	8.679	in.
Alternate Drift	8.750	8.750	8.750	8.750	in.
Nominal Linear Weight, T&C	40.00				lbs/ft
Plain End Weight	38.97				lbs/ft
PERFORMANCE	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	2,570	2,570	2,570	2,570	psi
Minimum Internal Yield Pressure	3,950	3,950	3,950	3,950	psi
Minimum Pipe Body Yield Strength	630				1,000 lbs
Joint Strength		714	520	452	1,000 lbs
Reference Length		11,898	8,665	7,529	ft
MAKE-UP DATA	Pipe	втс	LTC	STC	
Make-Up Loss		4.81	4.75	3.38	in.
Minimum Make-Up Torque			3,900	3,390	ft-lbs
Maximum Make-Up Torque			6,500	5,650	ft-Ibs

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

> U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S connections@uss.com Spring, Texas 77380

1-877-893-9461 www.usstubular.com

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages.

Date: 01/06/2020 Time: 10:56:21 AM

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234 VAM[®] USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

1. DWC connections are available with a seal ring (SR) option.

2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.

Connection performance properties are based on nominal pipe body and connection dimensions.
 DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
 DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.

6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.

7. Bending efficiency is equal to the compression efficiency.

8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.

9. Connection yield torque is not to be exceeded.

10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.

11. DWC connections will accommodate API standard drift diameters.

12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

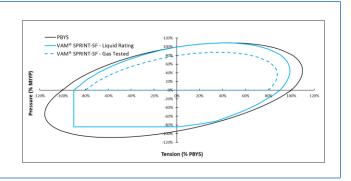
Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

Issued on: 08 Jul. 2020 by Wesley Ott

OD	Weight	Wall Th.	Grade	API Drift:	Connection
5 1/2 in.	20.00 lb/ft	0.361 in.	P110EC	4.653 in.	VAM [®] SPRINT-SF

IES	
5.500	in.
4.778	in.
5.828	sqin.
Hig	h Yield
125	ks
140	ks
135	ks
	4.778 5.828 Hig 125 140


CONNECTIO	N PROPERTIES	
Connection Type	Semi-Premium Integral S	emi-Flush
Connection OD (nom):	5.783	in.
Connection ID (nom):	4.717	in.
Make-Up Loss	5.965	in.
Critical Cross Section	5.244	sqin.
Tension Efficiency	90.0	% of pipe
Compression Efficiency	90.0	% of pipe
Internal Pressure Efficiency	100	% of pipe
External Pressure Efficiency	100	% of pipe

CONNECTION PERFORMAN	ICES	
Tensile Yield Strength	656	klb
Compression Resistance	656	klb
Internal Yield Pressure	14,360	psi
Collapse Resistance	12,080	psi
Max. Structural Bending	89	°/100ft
Max. Bending with ISO/API Sealability	30	°/100ft

TORQUE VALUES		
Min. Make-up torque	20,000	ft.lb
Opt. Make-up torque	22,500	ft.lb
Max. Make-up torque	25,000	ft.lb
Max. Torque with Sealability (MTS)	40,000	ft.lb

* 87.5% RBW

VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements.

Do you need help on this product? - Remember no one knows $\text{VAM}^{\textcircled{B}}$ like $\text{VAM}^{\textcircled{B}}$

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com uk@vamfieldservice.com dubal@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

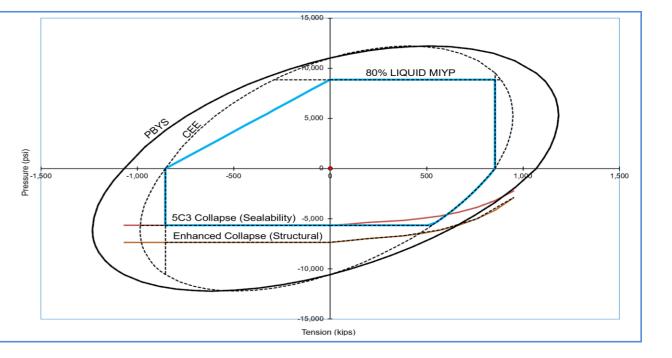
Issued on: 09 Dec. 2020 by Logan Van Gorp

Connection Data Sheet

100 % of pipe

OD	Weight	Wall Th.	Grade	API Drift:	Connection
7 5/8 in.	Nominal: 29.70 lb/ft	0.375 in.	P110EC	6.750 in.	VAM [®] SPRINT-FJ
	Plain End: 29.06 ft/lb				

PIPE PROPERTIES			CONNECTION PROPERTIES		
Nominal OD	7.625	in.	Connection Type	Semi-Premium Int	egral Flush
Nominal ID	6.875	in.	Connection OD (nom):	7.654	in.
Nominal Cross Section Area	8.541	sqin.	Connection ID (nom):	6.827	in.
Grade Type	Enhanced C	ollapse	Make-Up Loss	4.055	in.
Min. Yield Strength	125	ksi	Critical Cross Section	6.979	sqin.
Max. Yield Strength	140	ksi	Tension Efficiency	80.0	% of pipe
Min. Ultimate Tensile Strength	135	ksi	Compression Efficiency	80.0	% of pipe
			Internal Pressure Efficiency	80.0	% of pipe


External Pressure Efficiency

CONNECTION PERFORMANCES		
Tensile Yield Strength	854	klb
Compression Resistance	854	klb
Max. Internal Pressure	8,610	psi
Structural Collapse Resistance	7,360	psi
Max. Structural Bending	57	°/100ft
Max. Bending with Sealability	10	°/100ft

	TORQUE VALUES		
)	Min. Make-up torque	15,000	ft.lb
)	Opt. Make-up torque	16,500	ft.lb
i	Max. Make-up torque	18,000	ft.lb
i	Max. Torque with Sealability (MTS)	32,000	ft.lb

* 87.5% RBW

VAM® SPRINT-FJ is a semi-premium flush connection designed for shale applications, where maximum clearance and high tension capacity are required for intermediate casing strings.

Do you need help on this product? - Remember no one knows $\text{VAM}^{\textcircled{B}}$ like $\text{VAM}^{\textcircled{B}}$

- canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com
- uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Van Doo Dah 33-28 Fed Com 734H

9 5/8	su	rface csg in a	13 1/2 i	inch hole.		Design I	Factors			Surface	9	
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	40.00		j 55	btc	14.65	5.11	0.63	1.075	8	1.06	9.66	43,000
"B"	10100] 00	btc		0.111	0.00	0	Ŭ		0.00	0
_	w/8.4	#/g mud, 30min Sfc Csg Test	psig: 1.500	Tail Cmt	does not	circ to sfc.	Totals:	1,075				43,000
Comparison of		Minimum Required Cem					rotaioi	.,				,
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
13 1/2	0.4887	369	531	525	1	9.00	3715	5M				1.44
	inent(s) for segr	nent(s) A, B = , b All > (J.70, OK.		site plat (pip			III.D.4.I. HOU	iouna.			
7 5/8	cas	ing inside the	9 5/8			Design I	Factors			Int 1		
Segment	#/ft	Grade	, -	Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	29.70		p 110	vam sprint fj	2.52	1.18	1.29	11,415	1	2.16	1.98	339,026
"B"			•					0	- i -	-		0
_	w/8.4	#/g mud, 30min Sfc Csg Test	psig:				Totals:	11,415				339.026
	, 6.11			ded to achieve a top of	0	ft from su		1075				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
8 3/4	0.1005	352	507	1156	-56	10.50	3995	5M				0.55
D V Tool(s):	0.1000	002	7170	1100	-00	10.00	sum of sx	Σ CuFt				Σ%excess
by stage % :		19	26				751	1425				23
, ,		15	20				101	1420				20
lass 'C' tail cm	t yld > 1.35											
Tail cmt		ing inside the	7 5/8			Design Fac	<u>ctors</u>			Prod 1		
Tail cmt 5 1/2		ing inside the Grade	7 5/8	Coupling	Joint	<u>Design Fac</u> Collapse		Length	B@s	Prod 1 a-B	a-C	Weight
Tail cmt 5 1/2	cas	0	7 5/8 p 110	Coupling dwc/c is	Joint 2.97		<u>ctors</u> Burst 2.1	Length 10,915	B@s 2		a-C	
Tail cmt 5 1/2 Segment	cas #/ft 20.00	0	p 110	dwc/c is	2.97	Collapse 2.03	Burst 2.1	10,915	2	a-B 3.52	a-C 3.40	218,300
Tail cmt 5 1/2 Segment "A"	cas #/ft	0		dwc/c is vam sprint sf		Collapse	Burst	10,915 1,361		a-B	a-C	218,300 27,220
Tail cmt 5 1/2 Segment "A" "B"	cas #/ft 20.00 20.00	0	р 110 р 110	dwc/c is	2.97 23.55	Collapse 2.03 1.80	Burst 2.1 2.14	10,915 1,361 10,348	2 2	a-B 3.52 3.59	a-C 3.40 3.02	218,300 27,220
Tail cmt 5 1/2 Segment "A" "B" "C"	cas #/ft 20.00 20.00 20.00	Grade	p 110 p 110 0 110	dwc/c is vam sprint sf dwc/c is	2.97 23.55	Collapse 2.03 1.80	Burst 2.1 2.14 2.10	10,915 1,361 10,348 0	2 2	a-B 3.52 3.59	a-C 3.40 3.02	218,300 27,220 206,960 0
Tail cmt 5 1/2 Segment "A" "B" "C"	cas #/ft 20.00 20.00 20.00	Grade #/g mud, 30min Sfc Csg Test	p 110 p 110 0 110 psig: 2,401	dwc/c is vam sprint sf dwc/c is 0	2.97 23.55 ∞	Collapse 2.03 1.80 1.81	Burst 2.1 2.14 2.10 Totals:	10,915 1,361 10,348	2 2	a-B 3.52 3.59	a-C 3.40 3.02 3.03	218,300 27,220 206,960 0 452,480
Tail cmt 5 1/2 Segment "A" "B" "C"	cas #/ft 20.00 20.00 20.00	Grade #/g mud, 30min Sfc Csg Test The cement	p 110 p 110 0 110 psig: 2,401 volume(s) are inten	dwc/c is vam sprint sf dwc/c is	2.97 23.55	Collapse 2.03 1.80	Burst 2.1 2.14 2.10 Totals:	10,915 1,361 10,348 0 22,624 200	2 2	a-B 3.52 3.59	a-C 3.40 3.02 3.03	218,300 27,220 206,960 0 452,480 overlap.
Tail cmt 5 1/2 Segment "A" "B" "C" "D"	cas #/ft 20.00 20.00 20.00 w/8.4	Grade #/g mud, 30min Sfc Csg Test The cement 1 Stage	p 110 p 110 0 110 psig: 2,401 volume(s) are inten 1 Stage	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of Min	2.97 23.55 ∞ 11215 1 Stage	Collapse 2.03 1.80 1.81 ft from su Drilling	Burst 2.1 2.14 2.10 Totals: rface or a	10,915 1,361 10,348 0 22,624 200 Req'd	2 2	a-B 3.52 3.59	a-C 3.40 3.02 3.03	218,300 27,220 206,960 0 452,480 overlap. Min Dist
5 1/2 Segment "A" "C" "D" Hole Size	cas #/ft 20.00 20.00 20.00 w/8.4: Annular Volume	Grade #/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx	p 110 p 110 0 110 psig: 2,401 volume(s) are inten 1 Stage CuFt Cmt	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of	2.97 23.55 ∞ 11215 1 Stage % Excess	Collapse 2.03 1.80 1.81 ft from su Drilling Mud Wt	Burst 2.1 2.14 2.10 Totals: Inface or a Calc	10,915 1,361 10,348 0 22,624 200	2 2	a-B 3.52 3.59	a-C 3.40 3.02 3.03	218,300 27,220 206,960 0 452,480 overlap. Min Dist Hole-Cplg
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole	cas #/ft 20.00 20.00 20.00 w/8.4 Annular Volume 0.0835	Grade #/g mud, 30min Sfc Csg Test The cement 1 Stage	p 110 p 110 0 110 psig: 2,401 volume(s) are inten 1 Stage	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of Min Cu Ft	2.97 23.55 ∞ 11215 1 Stage	Collapse 2.03 1.80 1.81 ft from su Drilling	Burst 2.1 2.14 2.10 Totals: Inface or a Calc	10,915 1,361 10,348 0 22,624 200 Req'd	2 2	a-B 3.52 3.59	a-C 3.40 3.02 3.03	218,300 27,220 206,960 0 452,480 overlap. Min Dist
Tail cmt 5 1/2 Segment "A" "C" "D" Hole Size 6 3/4 Class 'C' tail cm	cas #/ft 20.00 20.00 20.00 w/8.4 Annular Volume 0.0835	Grade #/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx	p 110 p 110 0 110 psig: 2,401 volume(s) are inten 1 Stage CuFt Cmt 1192	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of Min Cu Ft	2.97 23.55 ∞ 11215 1 Stage % Excess	Collapse 2.03 1.80 1.81 ft from su Drilling Mud Wt 10.50	Burst 2.1 2.14 2.10 Totals: rface or a Calc MASP	10,915 1,361 10,348 0 22,624 200 Req'd	2 2 2	a-B 3.52 3.59 3.52	a-C 3.40 3.02 3.03	206,960 0 452,480 overlap. Min Dist Hole-Cplg
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cm #N/A 0	cas #/ft 20.00 20.00 20.00 w/8.4 Annular Volume 0.0835 t yld > 1.35	Grade #/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 750	p 110 p 110 0 110 psig: 2,401 volume(s) are inten 1 Stage CuFt Cmt	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of Min Cu Ft 955	2.97 23.55 ~~ 11215 1 Stage % Excess 25	Collapse 2.03 1.80 1.81 ft from su Drilling Mud Wt 10.50	Burst 2.1 2.14 2.10 Totals: rface or a Calc MASP	10,915 1,361 10,348 0 22,624 200 Req'd BOPE	2 2 2	a-B 3.52 3.59 3.52	a-C 3.40 3.02 3.03	218,300 27,220 206,960 0 452,480 overlap. Min Dist Hole-Cplg 0.35
Tail cmt 51/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 class 'C' tail cm #N/A 0 Segment	cas #/ft 20.00 20.00 20.00 w/8.4 Annular Volume 0.0835	Grade #/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx	p 110 p 110 0 110 psig: 2,401 volume(s) are inten 1 Stage CuFt Cmt 1192	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of Min Cu Ft 955 Coupling	2.97 23.55 ∞ 11215 1 Stage % Excess	Collapse 2.03 1.80 1.81 ft from su Drilling Mud Wt 10.50	Burst 2.1 2.14 2.10 Totals: rface or a Calc MASP	10,915 1,361 10,348 0 22,624 200 Req'd BOPE	2 2 2	a-B 3.52 3.59 3.52	a-C 3.40 3.02 3.03	218,300 27,220 206,960 0 452,480 overlap. Min Dist Hole-Cpl 0.35
Tail cmt 51/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cm #N/A 0 Segment "A"	cas #/ft 20.00 20.00 20.00 w/8.4 Annular Volume 0.0835 t yld > 1.35	Grade #/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 750	p 110 p 110 0 110 psig: 2,401 volume(s) are inten 1 Stage CuFt Cmt 1192	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of Min Cu Ft 955 Coupling 0.00	2.97 23.55 ~~ 11215 1 Stage % Excess 25	Collapse 2.03 1.80 1.81 ft from su Drilling Mud Wt 10.50	Burst 2.1 2.14 2.10 Totals: rface or a Calc MASP	10,915 1,361 10,348 0 22,624 200 Req'd BOPE	2 2 2	a-B 3.52 3.59 3.52	a-C 3.40 3.02 3.03	218,300 27,220 206,960 0 452,480 overlap. Min Dist Hole-Cpl 0.35
Tail cmt 51/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 class 'C' tail cm #N/A 0 Segment	cas #/ft 20.00 20.00 20.00 w/8.4 Annular Volume 0.0835 t yld > 1.35	Grade #/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 750	p 110 p 110 0 110 psig: 2,401 volume(s) are inten 1 Stage CuFt Cmt 1192	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of Min Cu Ft 955 Coupling	2.97 23.55 ~~ 11215 1 Stage % Excess 25	Collapse 2.03 1.80 1.81 ft from su Drilling Mud Wt 10.50	Burst 2.1 2.14 2.10 Totals: rface or a Calc MASP	10,915 1,361 10,348 0 22,624 200 Req'd BOPE	2 2 2	a-B 3.52 3.59 3.52	a-C 3.40 3.02 3.03	218,300 27,220 206,960 0 452,480 overlap. Min Dist Hole-Cpl 0.35 Weight 0
Tail cmt 51/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cm #N/A 0 Segment "A"	cas #/ft 20.00 20.00 20.00 w/8.4 Annular Volume 0.0835 t yld > 1.35 #/ft	Grade #/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 750 Grade #/g mud, 30min Sfc Csg Test	p 110 p 110 0 110 psig: 2,401 volume(s) are inten 1 Stage CuFt Cmt 1192 5 1/2	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of Min Cu Ft 955 Coupling 0.00 0.00	2.97 23.55 ∞ 11215 1 Stage % Excess 25 #N/A	Collapse 2.03 1.80 1.81 ft from su Drilling Mud Wt 10.50 <u>Design F</u> Collapse	Burst 2.1 2.14 2.10 Totals: rface or a Calc MASP Factors Burst	10,915 1,361 10,348 0 22,624 200 Req'd BOPE	2 2 2	a-B 3.52 3.59 3.52	a-C 3.40 3.02 3.03 sing> a-C	218,300 27,220 206,960 0 452,480 overlap. Min Dist Hole-Cpl 0.35 Weight 0 0
Tail cmt 51/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cm #N/A 0 Segment "A"	cas #/ft 20.00 20.00 20.00 w/8.4 Annular Volume 0.0835 t yld > 1.35 #/ft	Grade #/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 750 Grade #/g mud, 30min Sfc Csg Test	p 110 p 110 0 110 psig: 2,401 volume(s) are inten 1 Stage CuFt Cmt 1192 5 1/2	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of Min Cu Ft 955 Coupling 0.00	2.97 23.55 ~~ 11215 1 Stage % Excess 25	Collapse 2.03 1.80 1.81 ft from su Drilling Mud Wt 10.50	Burst 2.1 2.14 2.10 Totals: rface or a Calc MASP Factors Burst	10,915 1,361 10,348 0 22,624 200 Req'd BOPE	2 2 2	a-B 3.52 3.59 3.52	a-C 3.40 3.02 3.03 sing> a-C	218,300 27,220 206,960 0 452,480 overlap. Min Dist Hole-Cpl 0.35 Weight 0
Tail cmt 51/2 Segment "A" "C" "D" Hole Size 63/4 Class 'C' tail cm #N/A 0 Segment "A"	cas #/ft 20.00 20.00 20.00 w/8.4 Annular Volume 0.0835 t yld > 1.35 #/ft	Grade #/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 750 Grade #/g mud, 30min Sfc Csg Test	p 110 p 110 0 110 psig: 2,401 volume(s) are inten 1 Stage CuFt Cmt 1192 5 1/2	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of Min Cu Ft 955 Coupling 0.00 0.00	2.97 23.55 ∞ 11215 1 Stage % Excess 25 #N/A	Collapse 2.03 1.80 1.81 ft from su Drilling Mud Wt 10.50 <u>Design F</u> Collapse	Burst 2.1 2.14 2.10 Totals: rface or a Calc MASP Factors Burst	10,915 1,361 10,348 0 22,624 200 Req'd BOPE	2 2 2	a-B 3.52 3.59 3.52	a-C 3.40 3.02 3.03 sing> a-C	218,300 27,220 206,960 0 452,480 overlap. Min Dist Hole-Cpl 0.35 Weight 0 0 0 0 overlap.
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cm #N/A 0 Segment "A" "B"	cas #/ft 20.00 20.00 20.00 w/8.4 Annular Volume 0.0835 tyld > 1.35 #/ft	Grade #/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 750 Grade #/g mud, 30min Sfc Csg Test Cmt vol c	p 110 p 110 0 110 psig: 2,401 volume(s) are inten 1 Stage CuFt Cmt 1192 5 1/2 psig: alc below includes	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of Min Cu Ft 955 Coupling 0.00 0.00 0.00	2.97 23.55 ∞ 11215 1 Stage % Excess 25 #N/A	Collapse 2.03 1.80 1.81 ft from su Drilling Mud Wt 10.50 Design F Collapse	Burst 2.1 2.14 2.10 Totals: Inface or a Calc MASP Factors Burst	10,915 1,361 10,348 0 22,624 200 Req'd BOPE	2 2 2	a-B 3.52 3.59 3.52	a-C 3.40 3.02 3.03 sing> a-C	218,300 27,220 206,960 0 452,480 overlap. Min Dist Hole-Cpl 0.35 Weight 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cm #N/A 0 Segment "A" "B" Hole	cas #/ft 20.00 20.00 20.00 w/8.4 Volume 0.0835 t yld > 1.35 #/ft w/8.4 Annular	Grade #/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 750 Grade #/g mud, 30min Sfc Csg Test Cmt vol c 1 Stage	p 110 p 110 0 110 volume(s) are inten 1 Stage CuFt Cmt 1192 5 1/2 psig: alc below includes i 1 Stage	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of Min Cu Ft 955 Coupling 0.00 0.00 0.00 this csg, TOC intended Min	2.97 23.55 ∞ 11215 1 Stage % Excess 25 #N/A 1 Stage	Collapse 2.03 1.80 1.81 ft from su Drilling Mud Wt 10.50 Design I Collapse ft from su Drilling	Burst 2.1 2.14 2.10 Totals: rface or a Calc MASP Factors Burst	10,915 1,361 10,348 0 22,624 2000 Req'd BOPE Length 0 0 0 0 #N/A Req'd	2 2 2	a-B 3.52 3.59 3.52	a-C 3.40 3.02 3.03 sing> a-C	218,300 27,220 206,960 0 452,480 overlap. Min Dist Hole-Cplg 0.35 Weight 0 0 0

.

Van Doo Dah 33-28 Fed Com 624H

	surf	ace csg in a	13 1/2	inch hole.		Design	Factors			Surface		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	40.00		j 55	btc	14.65	5.11	0.66	1,075	8	1.10	9.66	43,000
"B"			,	btc				0				0
	w/8.4#/	g mud, 30min Sfc Csg Tes	psig: 1,500	Tail Cmt	does not	circ to sfc.	Totals:	1,075				43,000
omparison o		nimum Required Cem										
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
13 1/2	0.4887	369	531	525	1	9.00	3580	5M				1.44
urst Frac Grad	dient(s) for Segmer	it(s) A, B = , b All > 0	.70, OK.									
7 5/8		g inside the	9 5/8	_		<u>Design</u>				Int 1		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	29.70		p 110	vam sprint fj	2.61	1.23	1.33	11,000	1	2.22	2.06	326,700
"B"								0				0
	w/8.4#/	g mud, 30min Sfc Csg Tes					Totals:	11,000				326,700
				ded to achieve a top of	0	ft from su		1075				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
8 3/4	0.1005	352	507	1114	-54	10.50	3876	5M				0.55
D V Tool(s):			7170				sum of sx	<u>Σ CuFt</u>				Σ%exces
by stage % : Class 'C' tail cm		32	26				751	1425				28
Tail cmt 5 1/2	casin	g inside the	7 5/8			Design Fa	ctors			Prod 1		
Segment	#/ft	Grade	7 570	Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	20.00	0.000	p 110	dwc/c is	3.06	2.11	2.16	10,500	2	3.62		210,000
"B"	20.00		p 110	vam sprint sf	22.72	1.86	2.21	1,411	2	3.70	3.12	28,220
"C"	20.00		p 110	dwc/c is	00	1.86	2.16	10,381	2	3.62		207,620
"D"				0				0				0
	w/8.4#/	g mud, 30min Sfc Csg Tes	ncia: 2 310				Totala	22,292				445,840
							Totals:					overlap.
		The cement		ded to achieve a top of	10800	ft from su		200				
Hole	Annular	The cement 1 Stage		ded to achieve a top of Min	10800 1 Stage	ft from su Drilling						Min Dist
Hole Size	Annular Volume		volume(s) are inten				rface or a	200				
		1 Stage	volume(s) are inten 1 Stage	Min	1 Stage	Drilling	rface or a Calc	200 Req'd				
Size 6 3/4	Volume 0.0835	1 Stage Cmt Sx	volume(s) are inten 1 Stage CuFt Cmt	Min Cu Ft	1 Stage % Excess	Drilling Mud Wt	rface or a Calc	200 Req'd				Hole-Cpl
Size 6 3/4 Class 'C' tail cm	Volume 0.0835	1 Stage Cmt Sx	volume(s) are inten 1 Stage CuFt Cmt	Min Cu Ft	1 Stage % Excess	Drilling Mud Wt	rface or a Calc	200 Req'd	1			Hole-Cpl
Size 6 3/4 Class 'C' tail cm #N/A	Volume 0.0835	1 Stage Cmt Sx	volume(s) are inten 1 Stage CuFt Cmt 1196	Min Cu Ft	1 Stage % Excess	Drilling Mud Wt 10.50	rface or a Calc MASP	200 Req'd				Hole-Cpl
Size 6 3/4 Class 'C' tail cm #N/A 0	Volume 0.0835 ht yld > 1.35	1 Stage Cmt Sx 752	volume(s) are inten 1 Stage CuFt Cmt	Min Cu Ft 962	1 Stage % Excess 24	Drilling Mud Wt 10.50 Design	rface or a Calc MASP Factors	200 Req'd BOPE		hoose Casi	ng>	
Size 6 3/4 class 'C' tail cm #N/A 0 Segment	Volume 0.0835	1 Stage Cmt Sx	volume(s) are inten 1 Stage CuFt Cmt 1196	Min Cu Ft 962 Coupling	1 Stage % Excess	Drilling Mud Wt 10.50	rface or a Calc MASP	200 Req'd BOPE	<c B@s</c 	hoose Casi a-B		Hole-Cple 0.35
Size 6 3/4 Class 'C' tail cm #N/A 0 Segment "A"	Volume 0.0835 ht yld > 1.35	1 Stage Cmt Sx 752	volume(s) are inten 1 Stage CuFt Cmt 1196	Min Cu Ft 962 Coupling 0.00	1 Stage % Excess 24	Drilling Mud Wt 10.50 Design	rface or a Calc MASP Factors	200 Req'd BOPE			ng>	Hole-Cpl 0.35 Weight 0
Size 6 3/4 class 'C' tail cm #N/A 0 Segment	Volume 0.0835 ht yld > 1.35 #/ft	1 Stage Cmt Sx 752 Grade	volume(s) are inten 1 Stage CuFt Cmt 1196 5 1/2	Min Cu Ft 962 Coupling	1 Stage % Excess 24	Drilling Mud Wt 10.50 Design	rface or a Calc MASP Factors Burst	200 Req'd BOPE Length 0 0			ng>	Hole-Cpl 0.35 Weight 0 0
Size 6 3/4 Class 'C' tail cm #N/A 0 Segment "A"	Volume 0.0835 ht yld > 1.35 #/ft	1 Stage Cmt Sx 752 Grade g mud, 30min Sfc Csg Tes	volume(s) are inten 1 Stage CuFt Cmt 1196 51/2	Min Cu Ft 962 Coupling 0.00 0.00	1 Stage % Excess 24 #N/A	Drilling Mud Wt 10.50 <u>Design I</u> Collapse	rface or a Calc MASP Factors Burst Totals:	200 Req'd BOPE Length 0 0			ing> a-C	Hole-Cpl 0.35 Weight 0 0 0
Size 6 3/4 Class 'C' tail cm #N/A 0 Segment "A" "B"	Volume 0.0835 ht yld > 1.35 #/ft w/8.4#/	1 Stage Cmt Sx 752 Grade g mud, 30min Sfc Csg Tes Cmt vol c	volume(s) are inten 1 Stage CuFt Cmt 1196 5 1/2 : psig: alc below includes	Min Cu Ft 962 Coupling 0.00 0.00 this csg, TOC intended	1 Stage % Excess 24 #N/A	Drilling Mud Wt 10.50 <u>Design I</u> Collapse	rface or a Calc MASP Factors Burst Totals: rface or a	200 Req'd BOPE Length 0 0 0 #N/A			ing> a-C	Hole-Cpl 0.35 Weigh 0 0 0 0 overlap.
Size 6 3/4 class 'C' tail cm #N/A 0 Segment "A" "B" Hole	Volume 0.0835 ht yld > 1.35 #/ft w/8.4#// Annular	1 Stage Cmt Sx 752 Grade g mud, 30min Sfc Csg Tess Cmt vol c 1 Stage	volume(s) are inten 1 Stage CuFt Cmt 1196 5 1/2 : psig: alc below includes 1 Stage	Min Cu Ft 962 Coupling 0.00 0.00 this csg, TOC intended Min	1 Stage % Excess 24 #N/A #N/A 1 Stage	Drilling Mud Wt 10.50 Design I Collapse ft from su Drilling	rface or a Calc MASP Factors Burst Totals: rface or a Calc	200 Req'd BOPE Length 0 0 0 #N/A Req'd			ing> a-C	Hole-Cpl 0.35 Weight 0 0 0 0 overlap. Min Dist
Size 6 3/4 Class 'C' tail cm #N/A 0 Segment "A" "B" Hole Size	Volume 0.0835 ht yld > 1.35 #/ft w/8.4#/	1 Stage Cmt Sx 752 Grade g mud, 30min Sfc Csg Tes Cmt vol c 1 Stage Cmt Sx	volume(s) are inten 1 Stage CuFt Cmt 1196 5 1/2 5 1/2 1 Stage CuFt Cmt	Min Cu Ft 962 Coupling 0.00 0.00 0.00 this csg, TOC intended Min Cu Ft	1 Stage % Excess 24 #N/A #N/A 1 Stage % Excess	Drilling Mud Wt 10.50 <u>Design I</u> Collapse	rface or a Calc MASP Factors Burst Totals: rface or a	200 Req'd BOPE Length 0 0 0 #N/A			ing> a-C	Hole-Cpl 0.35 Weight 0 0 0
Size 6 3/4 class 'C' tail cm #N/A 0 Segment "A" "B" Hole	Volume 0.0835 ht yld > 1.35 #/ft w/8.4#// Annular	1 Stage Cmt Sx 752 Grade g mud, 30min Sfc Csg Tess Cmt vol c 1 Stage	volume(s) are inten 1 Stage CuFt Cmt 1196 5 1/2 : psig: alc below includes 1 Stage	Min Cu Ft 962 Coupling 0.00 0.00 0.00 this csg, TOC intended Min Cu Ft 0	1 Stage % Excess 24 #N/A #N/A 1 Stage	Drilling Mud Wt 10.50 Design I Collapse ft from su Drilling	rface or a Calc MASP Factors Burst Totals: rface or a Calc	200 Req'd BOPE Length 0 0 0 #N/A Req'd			ing> a-C	Hole-Cpl 0.35 Weight 0 0 0 0 overlap. Min Dist

.

Van Doo Dah 33-28 Fed Com 714H

9 5/8	SI	urface csg in a	13 1/2	inch hole.		Design I	Factors			Surface	2	
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	40.00		j 55	btc	14.65	5.11	0.63	1,075	8	1.06	9.66	43,000
"B"	10.00] 00	btc	11.00	0.11	0.00	0	Ŭ	1.00	0.00	0
_	w/8.4	1#/g mud, 30min Sfc Csg Test	psig: 1.500	Tail Cmt	does not	circ to sfc.	Totals:	1,075				43,000
comparison of		Minimum Required Cem						.,				-,
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
13 1/2	0.4887	369	531	525	1	9.00	3715	5M				1.44
urst Frac Grad	lient(s) for Seg	ment(s) A, B = , b All > ().70, OK.									
									-			
7 5/8	ca	sing inside the	9 5/8			Design I	Factors			Int 1		
Segment	#/ft	Grade	, -	Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weigh
"A"	29.70	5.000	p 110	vam sprint fj	2.52	1.18	1.31	11,415	1	2.20	1.98	339,02
"B"	20.70		- 110	. an opinicij	2.02	1.10	1.01	0	- ¹ -	2.20	1.00	000,02
_	w/8.4	1#/g mud, 30min Sfc Csg Test	nsig:				Totals:	11,415				339,02
				ded to achieve a top of	0	ft from su		1075				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cp
8 3/4	0.1005	352	507	1156	-56	10.50	3916	5M				0.55
D V Tool(s):	0.1000	552	7170	1150	-00	10.50	sum of sx	Σ CuFt				Σ%exces
		19	26				751	1425				23
							751	1420				20
lass 'C' tail cm	t yld > 1.35	13	20									
		sing inside the	7 5/8			Design Fac	ctors			Prod 1		
Tail cmt 5 1/2				Coupling	Joint	<u>Design Fac</u> Collapse	<u>ctors</u> Burst	Length	B@s	Prod 1 a-B	a-C	Weigh
Tail cmt 5 1/2	cas	sing inside the		Coupling dwc/c is	Joint 3.03			Length 10,915	B@s 2			
Tail cmt 5 1/2 Segment	ca: #/ft	sing inside the	7 5/8			Collapse	Burst	•	-	a-B	a-C	218,30
Tail cmt 5 1/2 Segment "A"	ca: #/ft 20.00	sing inside the	7 5/8 p 110	dwc/c is	3.03	Collapse 2.03	Burst 2.14	10,915	2	a-B 3.59	a-C 3.40	218,30 22,320
Tail cmt 5 1/2 Segment "A" "B"	ca: #/ft 20.00 20.00	sing inside the	7 5/8 p 110 p 110	dwc/c is vam sprint sf	3.03 28.72	Collapse 2.03 1.84	Burst 2.14 2.19	10,915 1,116	2 2 2	a-B 3.59 3.67	a-C 3.40 3.09	218,30 22,320
Tail cmt 5 1/2 Segment "A" "B" "C"	ca: #/ft 20.00 20.00 20.00	sing inside the Grade	7 5/8 p 110 p 110 0 110	dwc/c is vam sprint sf dwc/c is	3.03 28.72	Collapse 2.03 1.84	Burst 2.14 2.19	10,915 1,116 10,346	2 2 2	a-B 3.59 3.67	a-C 3.40 3.09	218,30 22,320 206,92 0
Tail cmt 5 1/2 Segment "A" "B" "C"	ca: #/ft 20.00 20.00 20.00	sing inside the Grade #/g mud, 30min Sfc Csg Test	7 5/8 p 110 p 110 0 110 psig: 2,401	dwc/c is vam sprint sf dwc/c is	3.03 28.72 ∞	Collapse 2.03 1.84	Burst 2.14 2.19 2.14 Totals:	10,915 1,116 10,346 0	2 2 2	a-B 3.59 3.67	a-C 3.40 3.09 3.09	218,30 22,320 206,92 0
Tail cmt 5 1/2 Segment "A" "B" "C"	ca: #/ft 20.00 20.00 20.00	sing inside the Grade #/g mud, 30min Sfc Csg Test	7 5/8 p 110 p 110 0 110 psig: 2,401	dwc/c is vam sprint sf dwc/c is 0	3.03 28.72 ∞	Collapse 2.03 1.84 1.84	Burst 2.14 2.19 2.14 Totals:	10,915 1,116 10,346 0 22,377	2 2 2	a-B 3.59 3.67	a-C 3.40 3.09 3.09	218,30 22,320 206,92 0 447,54 overlap.
Tail cmt 5 1/2 Segment "A" "B" "C" "D"	ca: #/ft 20.00 20.00 20.00 w/8.4	sing inside the Grade 1#/g mud, 30min Sfc Csg Test The cement	7 5/8 p 110 p 110 0 110 psig: 2,401 volume(s) are inten	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of	3.03 28.72 ∞ 11215	Collapse 2.03 1.84 1.84 ft from su	Burst 2.14 2.19 2.14 Totals: rface or a	10,915 1,116 10,346 0 22,377 200	2 2 2	a-B 3.59 3.67	a-C 3.40 3.09 3.09	218,300 22,320 206,920 0 447,540 overlap. Min Dis
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole	ca: #/ft 20.00 20.00 20.00 w/8.4 Annular	sing inside the Grade 1#/g mud, 30min Sfc Csg Test The cement 1 Stage	7 5/8 p 110 p 110 0 110 psig: 2,401 volume(s) are inten 1 Stage	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of Min	3.03 28.72 ∞ 11215 1 Stage	Collapse 2.03 1.84 1.84 ft from su Drilling	Burst 2.14 2.19 2.14 Totals: Inface or a Calc	10,915 1,116 10,346 0 22,377 200 Req'd	2 2 2	a-B 3.59 3.67	a-C 3.40 3.09 3.09	218,300 22,320 206,920 0 447,540 overlap. Min Dis
5 1/2 Segment "A" "C" "D" Hole Size	ca: #/ft 20.00 20.00 20.00 w/8.4 Annular Volume 0.0835	sing inside the Grade ##/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx	7 5/8 p 110 p 110 0 110 psig: 2,401 volume(s) are inten 1 Stage CuFt Cmt	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of Min Cu Ft	3.03 28.72 ∞ 11215 1 Stage % Excess	Collapse 2.03 1.84 1.84 ft from su Drilling Mud Wt	Burst 2.14 2.19 2.14 Totals: Inface or a Calc	10,915 1,116 10,346 0 22,377 200 Req'd	2 2	a-B 3.59 3.67	a-C 3.40 3.09 3.09	218,300 22,320 206,920 0 447,540 overlap. Min Dist Hole-Cpl
Class 'C' tail cm Tail cmt 51/2 Segment "A" "B" "C" "D" Hole Size 63/4 Class 'C' tail cm	ca: #/ft 20.00 20.00 20.00 w/8.4 Annular Volume 0.0835	sing inside the Grade ##/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx	7 5/8 p 110 p 110 0 110 psig: 2,401 volume(s) are inten 1 Stage CuFt Cmt	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of Min Cu Ft	3.03 28.72 ∞ 11215 1 Stage % Excess	Collapse 2.03 1.84 1.84 ft from su Drilling Mud Wt 10.50	Burst 2.14 2.19 2.14 Totals: rface or a Calc MASP	10,915 1,116 10,346 0 22,377 200 Req'd	2 2 2	a-B 3.59 3.67 3.59	a-C 3.40 3.09 3.09	218,300 22,320 206,920 0 447,540 overlap. Min Dist Hole-Cpl
Tail cmt Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cm	ca: #/ft 20.00 20.00 20.00 w/8.4 Annular Volume 0.0835 t yld > 1.35	sing inside the Grade #/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 752	7 5/8 p 110 p 110 0 110 psig: 2,401 volume(s) are inten 1 Stage CuFt Cmt	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of Min Cu Ft 934	3.03 28.72 ~~ 11215 1 Stage % Excess 28	Collapse 2.03 1.84 1.84 ft from su Drilling Mud Wt 10.50	Burst 2.14 2.19 2.14 Totals: rface or a Calc MASP	10,915 1,116 10,346 0 22,377 200 Req'd	2 2 2	a-B 3.59 3.67 3.59	a-C 3.40 3.09 3.09	218,300 22,320 206,920 0 447,540 overlap. Min Dist Hole-Cpl 0.35
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 class 'C' tail cm #N/A 0 Segment	ca: #/ft 20.00 20.00 20.00 w/8.4 Annular Volume 0.0835	sing inside the Grade ##/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx	7 5/8 p 110 p 110 0 110 psig: 2,401 volume(s) are inten 1 Stage CuFt Cmt 1196	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of Min Cu Ft 934 Coupling	3.03 28.72 ∞ 11215 1 Stage % Excess	Collapse 2.03 1.84 1.84 ft from su Drilling Mud Wt 10.50	Burst 2.14 2.19 2.14 Totals: rface or a Calc MASP	10,915 1,116 10,346 0 22,377 200 Req'd BOPE Length	2 2 2	a-B 3.59 3.67 3.59	a-C 3.40 3.09 3.09	218,300 22,320 206,920 0 447,540 overlap. Min Dist Hole-Cpl 0.35
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Cass 'C' tail cm #N/A 0 Segment "A"	ca: #/ft 20.00 20.00 20.00 w/8.4 Annular Volume 0.0835 t yld > 1.35	sing inside the Grade #/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 752	7 5/8 p 110 p 110 0 110 psig: 2,401 volume(s) are inten 1 Stage CuFt Cmt 1196	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of Min Cu Ft 934 Coupling 0.00	3.03 28.72 ~~ 11215 1 Stage % Excess 28	Collapse 2.03 1.84 1.84 ft from su Drilling Mud Wt 10.50	Burst 2.14 2.19 2.14 Totals: rface or a Calc MASP	10,915 1,116 10,346 0 22,377 200 Req'd BOPE	2 2 2	a-B 3.59 3.67 3.59	a-C 3.40 3.09 3.09	218,300 22,320 206,920 0 447,540 overlap. Min Dis Hole-Cpl 0.35 Weigh 0
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 class 'C' tail cm #N/A 0 Segment	ca: #/ft 20.00 20.00 20.00 w/8.4 Annular Volume 0.0835 t yld > 1.35	sing inside the Grade #/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 752	7 5/8 p 110 p 110 0 110 psig: 2,401 volume(s) are inten 1 Stage CuFt Cmt 1196	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of Min Cu Ft 934 Coupling	3.03 28.72 ~~ 11215 1 Stage % Excess 28	Collapse 2.03 1.84 1.84 ft from su Drilling Mud Wt 10.50	Burst 2.14 2.19 2.14 Totals: rface or a Calc MASP	10,915 1,116 10,346 0 22,377 200 Req'd BOPE	2 2 2	a-B 3.59 3.67 3.59	a-C 3.40 3.09 3.09	218,30 22,32(206,92 0 447,54 overlap. Min Dis Hole-Cp 0.35 Weigh 0 0
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Cass 'C' tail cm #N/A 0 Segment "A"	Ca: #/ft 20.00 20.00 20.00 w/8.4 Annular Volume 0.0835 t yld > 1.35 #/ft	sing inside the Grade #/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 752 Grade #/g mud, 30min Sfc Csg Test	7 5/8 p 110 p 110 0 110 psig: 2,401 volume(s) are inten 1 Stage CuFt Cmt 1196 5 1/2 psig:	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of Min Cu Ft 934 Coupling 0.00 0.00	3.03 28.72 ∞ 11215 1 Stage % Excess 28 #N/A	Collapse 2.03 1.84 1.84 ft from su Drilling Mud Wt 10.50 Design I Collapse	Burst 2.14 2.19 2.14 Totals: rface or a Calc MASP Factors Burst	10,915 1,116 10,346 0 22,377 200 Req'd BOPE	2 2 2	a-B 3.59 3.67 3.59	a-C 3.40 3.09 3.09 sing> a-C	218,30 22,320 206,92 0 447,54 overlap. Min Dis Hole-Cp 0.35 Weigh 0 0
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Cass 'C' tail cm #N/A 0 Segment "A"	Ca: #/ft 20.00 20.00 20.00 w/8.4 Annular Volume 0.0835 t yld > 1.35 #/ft	sing inside the Grade #/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 752 Grade #/g mud, 30min Sfc Csg Test	7 5/8 p 110 p 110 0 110 psig: 2,401 volume(s) are inten 1 Stage CuFt Cmt 1196 5 1/2 psig:	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of Min Cu Ft 934 Coupling 0.00	3.03 28.72 ~~ 11215 1 Stage % Excess 28	Collapse 2.03 1.84 1.84 ft from su Drilling Mud Wt 10.50	Burst 2.14 2.19 2.14 Totals: rface or a Calc MASP Factors Burst	10,915 1,116 10,346 0 22,377 200 Req'd BOPE	2 2 2	a-B 3.59 3.67 3.59	a-C 3.40 3.09 3.09 sing> a-C	218,30 22,32(206,92 0 447,54 overlap. Min Dis Hole-Cp 0.35 Weigh 0 0
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Cass 'C' tail cm #N/A 0 Segment "A"	Ca: #/ft 20.00 20.00 20.00 w/8.4 Annular Volume 0.0835 t yld > 1.35 #/ft	sing inside the Grade #/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 752 Grade #/g mud, 30min Sfc Csg Test	7 5/8 p 110 p 110 0 110 psig: 2,401 volume(s) are inten 1 Stage CuFt Cmt 1196 5 1/2 psig:	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of Min Cu Ft 934 Coupling 0.00 0.00	3.03 28.72 ∞ 11215 1 Stage % Excess 28 #N/A	Collapse 2.03 1.84 1.84 ft from su Drilling Mud Wt 10.50 Design I Collapse	Burst 2.14 2.19 2.14 Totals: rface or a Calc MASP Factors Burst	10,915 1,116 10,346 0 22,377 200 Req'd BOPE	2 2 2	a-B 3.59 3.67 3.59	a-C 3.40 3.09 3.09 sing> a-C	218,30 22,320 206,92 0 447,54 overlap. Min Dis Hole-Cp 0.35 Weigh 0 0 0 0 overlap.
Tail cmt Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cm #N/A 0 Segment "A" "B"	ca: #/ft 20.00 20.00 20.00 20.00 w/8.4 Annular Volume 0.0835 tryld > 1.35 #/ft	sing inside the Grade #/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 752 Grade #/g mud, 30min Sfc Csg Test Cmt vol c	7 5/8 p 110 p 110 0 110 psig: 2,401 volume(s) are inten 1 Stage CuFt Cmt 1196 5 1/2 psig: alc below includes	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of Min Cu Ft 934 Coupling 0.00 0.00 this csg, TOC intended	3.03 28.72 ∞ 11215 1 Stage % Excess 28 #N/A	Collapse 2.03 1.84 1.84 ft from su Drilling Mud Wt 10.50 Design I Collapse	Burst 2.14 2.19 2.14 Totals: Inface or a Calc MASP Factors Burst	10,915 1,116 10,346 0 22,377 200 Req'd BOPE	2 2 2	a-B 3.59 3.67 3.59	a-C 3.40 3.09 3.09 sing> a-C	218,300 22,320 206,920 0 447,540 overlap. Min Dis Hole-Cpl 0.35 Weigh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cm #N/A 0 Segment "A" "B" Hole	حمد #/ft 20.00 20.00 20.00 20.00 w/8.4 Annular Volume 0.0835 t yld > 1.35 t yld > 1.35 #/ft w/8.4 Annular	sing inside the Grade #/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 752 Grade #/g mud, 30min Sfc Csg Test Cmt vol c 1 Stage	7 5/8 p 110 p 110 0 110 psig: 2,401 volume(s) are inten 1 Stage CuFt Cmt 1196 5 1/2 psig: alc below includes 1 Stage	dwc/c is vam sprint sf dwc/c is 0 ded to achieve a top of Min Cu Ft 934 Coupling 0.00 0.00 this csg, TOC intended Min	3.03 28.72 ∞ 11215 1 Stage % Excess 28 #N/A 1 Stage	Collapse 2.03 1.84 1.84 ft from su Drilling Mud Wt 10.50 Design I Collapse	Burst 2.14 2.19 2.14 Totals: rface or a Calc MASP Factors Burst	10,915 1,116 10,346 0 22,377 200 Req'd BOPE Length 0 0 0 0 #N/A Req'd	2 2 2	a-B 3.59 3.67 3.59	a-C 3.40 3.09 3.09 sing> a-C	447,54(overlap. Min Dist Hole-Cpl 0.35 Weight 0 0 0

.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	259188
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By		Condition Date
pkautz	WHEN DETERMINING TOP OF CEMENT MUST RUN CBL.	9/22/2023

Page 36 of 36