eceined by OCP Appropria	023,9;05:22	AM	State of N	New Me	xico					Form 🖰	age 1 of
Office District I – (575) 393-6161		Energy, Minerals and Natural Resources			rces	Revised July 18, 2013					
1625 N. French Dr., Hobbs, I	M 88240						WELL API NO. 30-045-38313				
<u>District II</u> – (575) 748-1283 811 S. First St., Artesia, NM	88210	OIL (CONSERV	ATION	DIVISIO)N	5 India				
District III - (505) 334-6178		1	220 South	St. Fran	cis Dr.		5. Indicate Type of Lease STATE FEE				
1000 Rio Brazos Rd., Aztec, District IV – (505) 476-3460	NM 8/410		Santa Fe	, NM 87	505		6. State		_		
1220 S. St. Francis Dr., Santa	Fe, NM							NMN	1M033	358	
87505 SUN	DRY NOTIC	CES AND R	EPORTS ON	WELLS			7. Lease			greement Na	ıme
(DO NOT USE THIS FORM DIFFERENT RESERVOIR.	FOR PROPOS	ALS TO DRILI	L OR TO DEEP	EN OR PLU) A				ANCO UN	
PROPOSALS.) 1. Type of Well: Oil Well Gas Well Other						8. Well	Number	003F			
2. Name of Operator		SIMCOE LL					9. OGR		er 9736		
Address of Operator							10. Pool			t	
1199 M		STE #101	, DURANG	O, CO 8	31301		10. 100	BASIN			
4. Well Location Unit Letter	D :_	751 _{fe}	et from the _	NORT	Hline	and	724	_feet froi	m the _	WEST	line
Section	12	T	ownship 3'	1N Ra	nge 7'	W	NMPM		Count	y SAN JU	AN
		11. Elevation	on (Show who		RKB, RT,	GR, etc.)					
				6522'							
12	. Check A	ppropriate	Box to Inc	licate Na	ature of N	Notice, F	Report o	r Other	Data		
NOTIO	CE OF IN	TENTION	TO:			SUBS	SEQUE	NT RE	PORT	OF:	
PERFORM REMEDIAL	WORK 🗌	PLUG AND	ABANDON	\Box_{\prime}	REMEDIA	AL WORK	<		ALTER	RING CASING	3 □
TEMPORARILY ABANI	OON 🗌	CHANGE F		lacksquare	COMMEN			NS.□,	P AND	Α	
PULL OR ALTER CASI		MULTIPLE	COMPL		CASING/	CEMENT	JOB	$oldsymbol{\nabla}$			
DOWNHOLE COMMIN											
CLOSED-LOOP SYSTE OTHER:	EM 🗌				OTHER:						
13. Describe propos	ed or compl	eted operation	ns (Clearly	state all n		tails and	give perti	inent date	s inclu	ding estimate	ed date
of starting any p											ed date
proposed compl							F				
SIMCOE LLC is requesting to	extend the Surf	ace Casing to 3	,600' TVD.								
Cramont Craft on Coning Danger	(aa ammayad	in the ADD).									
Current Surface Casing Progra Casing size 13-3/8" set at ±110			job (1 stage), cir	culated to su	rface.						
D : 10 C G : D		·									
Revised Surface Casing Progra Casing size 13-3/8" set at ±360		lv 25' into the I	ewis Shale): con	nventional co	ement job (1 s	stage), circu	ulated to surf	face.			
		-,	,,		,						
Reasons for setting deeper surf Fo mitigate expected lost circu	ace casing:	in previously d	esianed lona (+5	5500' MD)	deviated inter	rmediate cas	sing section:	extreme lo	et circulat	ion encountered	both in
offset operator's wells in addit											
casing) before drilling into the					surface casir	ng deeper (i	nto the Lewi	is) allows fo	or improv	ed drilling effici	ency &
also increases the safety of dril No change to the Conductor, In					ed casing prog	gram. Please	e see attache	d NEBU 60)2-3H Up	dated Casing Sa	fety
Cement Program for details.				, 11		C			1	J	,
			7								
Spud Date:			Rig Ri	elease Dat	æ:						
I homoby comtification at 1	mformer at ' · · ·	hove is to	and compiler	. 40. 41 1.	at of 1	nov.1- 1.	om d 1- 11	£			
I hereby certify that the i	шогтаноп а	bove is true	and complete	e to the be	st of my kr	nowieage	and belie	1.			
	1 0	, ,									
signature <u></u> Ca	le Redy	sath	TITL	ERE	GULATO	DRY ANA	ALYST		TE		
Type or print name	Cale Re	dpath	E-ma	il address:	cale.red	lpath@ikav	veenergy.co	om PH	ONE:	970-852-5	154
For State Use Only											
-											
APPROVED BY:	·····		TITLE	Ξ				DA	TE		
Conditions of Approval	if any):										

Sundry Print Report

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Well Name: NORTHEAST BLANCO Well Location: T31N / R7W / SEC 12 / County or Parish/State:

UNIT 602 COM NWNW /

Well Number: 003H Type of Well: CONVENTIONAL GAS Allottee or Tribe Name:

WELL

Lease Number: NMNM03358 Unit or CA Name: NEBU--ST Unit or CA Number:

NMNM78402X

US Well Number: Well Status: Approved Application for Operator: SIMCOE LLC

Permit to Drill

Notice of Intent

Sundry ID: 2750465

Type of Submission: Notice of Intent

Type of Action: Casing

Date Sundry Submitted: 09/11/2023 Time Sundry Submitted: 10:59

Date proposed operation will begin: 09/11/2023

Procedure Description: SIMCOE LLC is requesting to extend the Surface Casing to 3,600' TVD. Current Casing Program (as approved in the APD) Conductor – 20" set at 150'; conventional cement job, circulated to surface Surface – 13-3/8" set at ±1100' TVD; conventional cement job (1 stage), circulated to surface Intermediate – 9-5/8" set at ±6350' TVD (roughly 150' into the Mancos Shale); conventional cement job (2 stage), circulated to surface Revised Casing Program Conductor – 20" set at 150'; conventional cement job, circulated to surface Surface – 13-3/8" set at ±3600' TVD (roughly 25' into the Lewis Shale); conventional cement job (1 stage), circulated to surface Intermediate – 9-5/8" set at ±6350' TVD (roughly 150' into the Mancos Shale); conventional cement job (2 stage), circulated to surface (no change from the original approved casing program) Reasons for setting deeper surface casing.... - to mitigate expected lost circulation problems in previously designed long (±5500' MD), deviated intermediate casing section - extreme lost circulation encountered both in offset operator's wells in addition to historic BP NEBU wells - will allow depleted intervals in Kirtland, Fruitland Coal, & Pictured Cliffs to be isolated behind pipe (surface casing) before drilling into the known depleted intervals in the Mesa Verde section - setting surface casing deeper (into the Lewis) allows for improved drilling efficiency & also increases the safety of drilling operations through these depleted sections Please see attached NEBU 602-3H Revised Casing and Cement Program for details.

Surface Disturbance

Is any additional surface disturbance proposed?: No

NOI Attachments

Procedure Description

NEBU_602_3H_Revised_Casing_and_Cement_Program_20230911105820.pdf

eived by OCD: 10/11/2023 9:05:22 AM Well Name: NORTHEAST BLANCO

UNIT 602 COM

Well Location: T31N / R7W / SEC 12 /

NWNW /

County or Parish/State:

Allottee or Tribe Name:

Page 3 of

Well Number: 003H

Type of Well: CONVENTIONAL GAS

Unit or CA Name: NEBU--ST Lease Number: NMNM03358

Unit or CA Number:

NMNM78402X

Zip:

US Well Number:

Well Status: Approved Application for

Permit to Drill

Operator: SIMCOE LLC

Conditions of Approval

Specialist Review

APD_Change_KR_09112023_20230911142048.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: CALE REDPATH Signed on: SEP 11, 2023 10:58 AM

Name: SIMCOE LLC Title: NOT RECORDED

Street Address: 1199 MAIN AVE SUITE 101

City: DURANGO State: CO

Phone: (970) 852-0082

Email address: CALE.REDPATH@IKAVENERGY.COM

State:

Field

Representative Name:

Street Address:

City:

Phone:

Email address:

BLM Point of Contact

Signature: Kenneth Rennick

BLM POC Name: KENNETH G RENNICK BLM POC Title: Petroleum Engineer

BLM POC Phone: 5055647742 BLM POC Email Address: krennick@blm.gov

Disposition: Approved Disposition Date: 09/11/2023

Page 2 of 2

Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR

FORM APPROVED
OMB No. 1004-0137
Expires: October 31, 202

5.	Lease	Serial	No

BURI	EAU OF LAND MANAGEMENT	3. Lease Schai ivo.			
Do not use this f	OTICES AND REPORTS ON Worm for proposals to drill or to Jse Form 3160-3 (APD) for suc	6. If Indian, Allottee or	6. If Indian, Allottee or Tribe Name		
abandoned wen.	ose romi oroc-o (Ar b) for suc	лі ріорозаіз.	7 IfII:: 4 - f C A / A	None and None	
	TRIPLICATE - Other instructions on page	9 2	/. If Unit of CA/Agree	ement, Name and/or No.	
1. Type of Well			8. Well Name and No.		
Oil Well Gas W	Vell Other				
2. Name of Operator			9. API Well No.		
3a. Address	3b. Phone No.	(include area code)	10. Field and Pool or I	Exploratory Area	
4. Location of Well (Footage, Sec., T.,R	.,M., or Survey Description)		11. Country or Parish,	State	
12. CHE	CK THE APPROPRIATE BOX(ES) TO INC	DICATE NATURE OF NO	TICE, REPORT OR OTH	IER DATA	
TYPE OF SUBMISSION		TYPE OF A	CTION		
Notice of Intent	Acidize Deep Alter Casing Hydra	=	oduction (Start/Resume)	Water Shut-Off Well Integrity	
Subsequent Report	Casing Repair New	Construction Re	ecomplete	Other	
Subsequent Report	Change Plans Plug	and Abandon Te	mporarily Abandon		
Final Abandonment Notice	Convert to Injection Plug	Back W	ater Disposal		
completed. Final Abandonment Not is ready for final inspection.)	ns. If the operation results in a multiple comices must be filed only after all requirements				
4. I hereby certify that the foregoing is	true and correct. Name (Printed/Typed)	Title			
Signature		Date			
	THE SPACE FOR FEDE	ERAL OR STATE C	FICE USE		
Approved by			I		
rr		Title	I	Date	
	ned. Approval of this notice does not warrant quitable title to those rights in the subject lead duct operations thereon.		'		
	B U.S.C Section 1212, make it a crime for an		villfully to make to any de	partment or agency of the United States	

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

(Form 3160-5, page 2)

Additional Information

Additional Remarks

Reasons for setting deeper surface casing.

- to mitigate expected lost circulation problems in previously designed long (5500 MD), deviated intermediate casing section
- extreme lost circulation encountered both in offset operators wells in addition to historic BP NEBU wells
- will allow depleted intervals in Kirtland, Fruitland Coal, & Pictured Cliffs to be isolated behind pipe (surface casing) before drilling into the known depleted intervals in the Mesa Verde section
- setting surface casing deeper (into the Lewis) allows for improved drilling efficiency & also increases the safety of drilling operations through these depleted sections

Please see attached NEBU 602-3H Revised Casing and Cement Program for details.

Location of Well

0. SHL: NWNW / 751 FNL / 724 FWL / TWSP: 31N / RANGE: 7W / SECTION: 12 / LAT: 36.9192148 / LONG: -107.5288175 (TVD: 0 feet, MD: 0 feet) PPP: NWSW / 1737 FSL / 626 FWL / TWSP: 31N / RANGE: 7W / SECTION: 1 / LAT: 36.926048 / LONG: -107.5291427 (TVD: 7298 feet, MD: 8128 feet) PPP: NESE / 1652 FSL / 1316 FEL / TWSP: 31N / RANGE: 7W / SECTION: 1 / LAT: 36.9257998 / LONG: -107.5177825 (TVD: 7301 feet, MD: 11450 feet) PPP: NWSW / 1619 FSL / 5264 FEL / TWSP: 31N / RANGE: 6W / SECTION: 6 / LAT: 36.9257011 / LONG: -107.5132804 (TVD: 7302 feet, MD: 12766 feet) BHL: NESE / 1469 FSL / 308 FEL / TWSP: 31N / RANGE: 6W / SECTION: 6 / LAT: 36.9253057 / LONG: -107.496326 (TVD: 7307 feet, MD: 17724 feet)

SECTION 3: CASING

BIT & CASING PROGRAM (all new casing strings)

ТҮРЕ	HOLE SIZE (IN)	CASING (IN)	WEIGHT (LBS/FT)	GRADE	COUPLING	SETTING DEPTH (MD FT)	COMMENTS
Conductor	26	20	94.00	J55	BT&C	0-150	New casing. May be pre-set. Cement circulated to surface.
Surface	17-1/2	13-3/8	54.50	J55	BT&C	0-3799	New casing. May be pre-set. Cement circulated to surface.
Intermediate	12-1/4	9-5/8	40.00	P110HC	BT&C	0-6776	New casing. Two-stage cement job, circulated to surface.
Production	8-3/4	5-1/2	20.00	P110HC	TCBC-HT	0-17,724	New casing. Single-stage cement job to overlap previous casing shoe.

Design Factor Tables

Conductor Casing Design - Evacuation/Casing Test (collapse & burst), 100K overpull (tension)

					Collapse (psi)	Burst (psi)	Tension (lbs)	
			Minimum	Safety Factors	1.125	1.100	1.400	
	Size (in.)	Weight (lb/ft)	Grade	Connection	Collapse (psi)	Burst (psi)	Yield - Body (lbs)	Yield - Connection (lbs)
Conductor	20	94	J55	ВТС	520	2,110	1,480,000	1,402,000
					80% of Burst =	1,688		
	Casing Depth, TVD (ft)	Mud Wt In (ppg)	Mud Wt Out (ppg)	Pressure Inside (psi)	Pressure Outside (psi)	Safety Factor		
Collapse	150	0	8.33	0	65	8.00		
Burst	150	8.33	0	1500	0	1.35	1500 psi casir	ngtest
	Casing Depth, TVD (ft)	Mud Wt (ppg)	Air Wt (lbs)	Bouyant Wt (lbs)	Bouyant Wt + 100K (lbs)			
Tension (Pipe Body)	150	9.00	14,100	12,163	112,163	13.20	100K lbs	overnull
Tension (Connection)	150	9.00	14,100	12,163	112,163	12.50	- TOOKIDS	overpull
NOTE:	BF = 1-((MW)/65.5)							

Surface Casing Design - Evacuation/Casing Test (collapse & burst), 100K overpull (tension)

				_	Collapse (psi)	Burst (psi)	Tension (lbs)	
			Minimum	Safety Factors	1.125	1.100	1.400	
	Size (in.)	Weight (lb/ft)	Grade	Connection	Collapse (psi)	Burst (psi)	Yield - Body (lbs)	Yield - Connection (lbs)
Surface	13.375	54.50	J55	ВТС	1,130	2,730	850,000	909,000
					80% of Burst =	2,184		
	Casing Depth, TVD (ft)	Mud Wt In (ppg)	Mud Wt Out (ppg)	Pressure Inside (psi)	Pressure Outside (psi)	Safety Factor		
Collapse	3600	9.00	9.00	842	1685	1.34	50% Casing vo ppg muc	
Burst	3600	9.00	9.00	3185	1685	1.82	1500 psi c	asingtest
	Casing Depth, TVD (ft)	Mud Wt (ppg)	Air Wt (lbs)	Bouyant Wt (lbs)	Bouyant Wt + 100K (lbs)			
Tension (Pipe Body)	3600	9.00	196,200	169,241	269,241	3.16	100K lbs	overnull
Tension (Connection)	3600	9.00	196,200	169,241	269,241	3.38	- 100K lbs	overpuil

NOTE: BF = 1 - ((MW)/65.5)

Intermediate Casing Design - Evacuation/Casing Test (collapse & burst), 100K overpull (tension)

					Collapse (psi)	Burst (psi)	Tension (lbs)	_
			Minimum	Safety Factors	1.125	1.100	1.400	
	Size (in.)	Weight (lb/ft)	Grade	Connection	Collapse (psi)	Burst (psi)	Yield - Body (lbs)	Yield - Connection (Ibs)
Intermediate	9.625	40.00	P110HC	ВТС	4,230	7,910	1,260,000	1,265,000
					80% of Burst =	6,328		
	Casing Depth, TVD (ft)	Mud Wt In (ppg)	Mud Wt Out (ppg)	Pressure Inside (psi)	Pressure Outside (psi)	Safety Factor		
Collapse	6348	0	10.00	0	3301	1.28		n with 10.0 ppg annulus
Burst	6348	10.00	0	1500	0	1.65	1500 psi c	asing test
	Casing Depth, TVD (ft)	Mud Wt (ppg)	Air Wt (lbs)	Bouyant Wt (lbs)	Bouyant Wt + 100K (lbs)			
Tension (Pipe Body)	6348	10.00	253,920	215,154	315,154	4.00	- 100K lbs	overnull
Tension (Connection)	6348	10.00	253,920	215,154	315,154	4.01	1001/102	overpun

NOTE: BF = 1-((MW)/65.5)

Production Casing Design - Evacuation/Casing Test (collapse & burst), 100K overpull (tension)

			_	Collapse (psi)	Burst (psi)	Tension (lbs)	_
		Minimum	Safety Factors	1.125	1.100	1.400	
Size (in.)	Weight (lb/ft)	Grade	Connection	Collapse (psi)	Burst (psi)	Yield - Body (lbs)	Yield - Connection (lbs)
5.5	20.00	P110HC	TCBC-HT	12,150	12,640	641,000	641,000
				80% of Burst =	10,112		
Casing Depth, TVD (ft)	Mud Wt In (ppg)	Mud Wt Out (ppg)	Pressure Inside (psi)	Pressure Outside (psi)	Safety Factor		
7307	0	13.30	0	5054	2.40		n with 13.3 ppg annulus
7307	13.30	0	1500	0	1.93	1500 psi c	asing test
Casing Depth, TVD (ft)	Mud Wt (ppg)	Air Wt (lbs)	Bouyant Wt (lbs)	Bouyant Wt + 100K (lbs)			
7307	13.30	146,140	116,466	216,466	2.96	100K lbs	overnull
7307	13.30	146,140	116,466	216.466	2.00	100 K 105	overpuil
	5.5 Casing Depth, TVD (ft) 7307 7307 Casing Depth, TVD (ft) 7307	Casing Depth, TVD (ft) Mud Wt In (ppg)	Size (in.) Weight (lb/ft) Grade 5.5 20.00 P110HC Casing Depth, TVD (ft) (ppg) Mud Wt In (ppg) Mud Wt Out (ppg) 7307 0 13.30 7307 13.30 0 Casing Depth, TVD (ft) (ppg) Mud Wt (ppg) Air Wt (lbs) 7307 13.30 146,140	Size (in.) Weight (lb/ft) Grade (princh of the princh of	Ninimum Safety Factors 1.125 Size (in.) Weight (lb/ft) Grade Connection Collapse (psi)	Ninimum Safety Factors 1.125 1.100	Ninimum Safety Factors 1.125 1.100 1.400 Size (in.) Weight (lb/ft) Grade Connection Collapse (psi) Burst (psi) Yield - Body (lbs) 5.5 20.00 P110HC TCBC-HT 12,150 12,640 641,000 80% of Burst = 10,112 Casing Depth, TVD (ft) Mud Wt In (ppg) Out (ppg) Dut (ppg) Out

NOTE: BF = 1 - ((MW)/65.5)

All casing strings (including conductor) will be tested to 0.22 psi/ft of string length or 1500 psi (whichever is greater), but not to exceed 70% of minimum internal yield.

Minimum casing design safety factors:

Collapse – 1.125 Burst – 1.100 Tension – 1.400

Casing centralization:

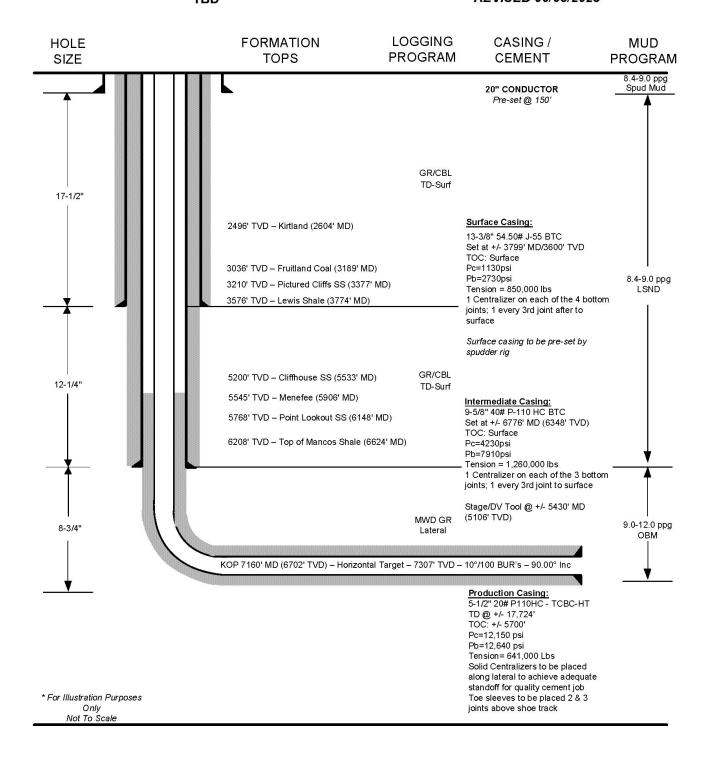
Surface Casing – Centralizers to be placed on bottom 4 joints of casing (1 per joint) and 1 every 3rd joint thereafter to surface.

Intermediate Casing – Centralizers to be placed on bottom 3 joints of casing (1 per joint) and 1 every 3rd joint thereafter to surface. A DV tool and external casing packer (ECP) may be placed at roughly 5430' MD, if necessary. *

Production Casing – Centralizers to be placed along lateral to achieve adequate standoff for quality cement job. Toe sleeves (2) will be placed 2 and 3 joints above the shoe track.

*NOTE: Use of the DV tool and ECP will be based on the magnitude of drilling fluid losses encountered while drilling the Intermediate section and concerns about cement possibly not being circulated to surface. Should heavy losses not be encountered, the DV tool and ECP will not be used.

Wellbore Schematic


STATE: New Mexico

WELL: Northeast Blanco Unit 602 COM 3H

PROSPECT: San Juan Basin – Mancos Shale (S1/Olive)

CATEGORY: Horizontal Well COUNTY: San Juan County

API #: TBD REVISED 06/05/2023

SECTION 4: CEMENT

The proposed cementing program has been designed to protect and/or isolate all usable water zones, potential productive zones, lost circulation zones, abnormally pressured zones, and any prospectively valuable deposits of minerals. Any isolating medium utilized (other than cement) shall receive approval prior to use. The casing setting depth shall be calculated to position the casing seat in a competent formation which will contain the maximum pressure to which it will be exposed during the drilling process. All indications of usable water shall be reported.

- Pea gravel or other material shall not be used to fill around the conductor or surface casing in the event cement is not circulated to surface or if cement fallback occurs.
- The conductor casing and surface casing shall be cemented back to surface. If cement is not circulated, or if the cement column falls back after circulation, remedial cementing will be performed to cement the casing to surface using 1" tubing. No more than 100' will be remediated without prior approval.
- Top plugs will be used to reduce possible contamination of the cement slurry by the displacement fluid. A bottom plug (or other acceptable technique such as a pre-flush fluid, inner string, etc.) will be used to isolate the cement slurry from the drilling fluid being displaced ahead of the cement.
- All cement volumes will be based on actual hole conditions.

Conductor Casing: Single Stage (0'-150' MD) - 26" Hole x 20" Casing, 100% XS

Cement to be circulated to surface with approximately 383 sx Class G cement (94 lb/sk) with 2% CaCl and 0.125 lb/sk poly flake mixed at 14.6 ppg using 6.69 gal/sk fresh water with yield of 1.39 ft3/sk. Approximate volume of 532 ft3.

Surface Casing: Single Stage (0'-3799' MD) - 17-1/2" Hole x 13-3/8" Casing, 50% XS

Cement to be circulated to surface. Lead Slurry will consist of approximately 1754 sx 65/35 Class G/Poz (87 lb/sk) with 5% D-CSE 1 + 0.25 lb/sk Cello Flake + 0.5% D-R 1 + 1.2% D-MPA-2 + 0.3% D-SA 1 + 0.3% D-CD 2 + 0.5% D-FP 1 + 0.25 lb/sk D-Phenoseal and 0.125 lb/sk D-Plexfiber mixed at 12.5 ppg using 10.71 gal/sk fresh water with yield of 1.96 ft3/sk. Tail Slurry will consist of approximately 459 sx Class G cement (94 lb/sk) with 5% D-CSE 1 + 0.25 lb/sk Cello Flake + 0.5% D-R 1 + 1.2% D-MPA-2 + 0.5% D-FP 1 + 0.25 lb/sk D-Phenoseal and 0.125 lb/sk D-Plexfiber mixed at 15.8 ppg using 5.17 gal/sk fresh water with yield of 1.21 ft3/sk. Total approximate volume of both slurries is 3993 ft3.

Intermediate Casing: Two Stages (0'-6676' MD) - 12-1/4" Hole x 9-5/8" Casing, DV tool ±5430', 30% XS

Cement to be circulated to surface. Stage 1 Lead Slurry will consist of approximately 219 sx 65/35 Class G/Poz (87 lb/sk) with 5% D-CSE 1 + 0.6% D-R 1 + 0.6% D-MPA-2 + 0.6% D-SA 1 + 0.6% D-CD 2 and 0.6% D-FP 1 mixed at 12.5 ppg using 10.72 gal/sk fresh water with yield of 1.95 ft3/sk. Stage 1 Tail Slurry will consist of approximately 133 sx Class G cement (94 lb/sk) with 0.4% D-CD2 + 0.2% D-R 1 + 0.3% D-MPA-2 mixed at 15.6 ppg using 5.20 gal/sk fresh water with yield of 1.18 ft3/sk. Total approximate volume of both slurries is 584 ft3.

Stage 2 Lead Slurry will consist of approximately 985 sx 65/35 Class G/Poz (87 lb/sk) with 5% D-CSE 1 + 0.6% D-R 1 + 0.6% D-MPA-2 + 0.6% D-SA 1 + 0.6% D-CD 2 and 0.6% D-FP 1 mixed at 12.5 ppg using 10.72 gal/sk fresh water with yield of 1.95 ft3/sk. Stage 2 Tail Slurry will consist of approximately 104 sx Class G cement (94 lb/sk) with 0.4% D-CD2 + 0.2% D-R 1 + 0.3% D-MPA-2 mixed at 15.6 ppg using 5.20 gal/sk fresh water with yield of 1.18 ft3/sk. Total approximate volume of both slurries is 2043 ft3.

Total approximate volume of all slurries is 2627 ft3.

Production Casing: Single Stage (0'-17,724' MD) - 8-3/4" Hole x 5-1/2" Casing, 50% XS

Cement to be circulated into Intermediate Casing (estimated TOC at 5700') with approximately 4014 sx 80/20 Class G/Poz (91 lb/sk) with 0.25 lb/sk Cello Flake + 1.0% D-R 1 + 1.2% D-MPA-2 and 0.2% D-CD mixed at 15.8 ppg using 4.40 gal/sk fresh water with yield of 1.10 ft3/sk. Approximate volume of 4415 ft3.

All cement slurries will meet or exceed minimum BLM and NMOCD requirements. Slurries used will the slurries listed above or equivalent slurries, depending on service provider selected. Cement yields may change based on actual slurries selected.

All "waiting on cement" (WOC) times shall be either a minimum of 8 hours or the time required to achieve a minimum of 500 psi compressive strength at the casing shoe.

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT FARMINGTON DISTRICT OFFICE

6251 COLLEGE BLVD. FARMINGTON, NEW MEXICO 87402

APD Changes

Surface Casing

SIMCOE LLC

CONDITIONS OF APPROVAL

1. Surface casing must be always at a minimum half fluid fill.

K. Rennick 09/11/2023

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Sundry Print Reports
10/11/2023

Well Name: NORTHEAST BLANCO Well Location: T31N / R7W / SEC 12 / County or Parish/State:

UNIT 602 COM NWNW /

Well Number: 003H Type of Well: CONVENTIONAL GAS Allottee or Tribe Name:

WELL

Lease Number: NMNM03358 Unit or CA Name: NEBU--ST Unit or CA Number:

NMNM78402X

US Well Number: Well Status: Approved Application for Operator: SIMCOE LLC

Permit to Drill

Notice of Intent

Sundry ID: 2750465

Type of Submission: Notice of Intent

Type of Action: Casing

Date Sundry Submitted: 09/11/2023 Time Sundry Submitted: 10:59

Date proposed operation will begin: 09/11/2023

Procedure Description: SIMCOE LLC is requesting to extend the Surface Casing to 3,600' TVD. Current Casing Program (as approved in the APD) Conductor – 20" set at 150'; conventional cement job, circulated to surface Surface – 13-3/8" set at ±1100' TVD; conventional cement job (1 stage), circulated to surface Intermediate – 9-5/8" set at ±6350' TVD (roughly 150' into the Mancos Shale); conventional cement job (2 stage), circulated to surface Revised Casing Program Conductor – 20" set at 150'; conventional cement job, circulated to surface Surface – 13-3/8" set at ±3600' TVD (roughly 25' into the Lewis Shale); conventional cement job (1 stage), circulated to surface Intermediate – 9-5/8" set at ±6350' TVD (roughly 150' into the Mancos Shale); conventional cement job (2 stage), circulated to surface (no change from the original approved casing program) Reasons for setting deeper surface casing.... - to mitigate expected lost circulation problems in previously designed long (±5500' MD), deviated intermediate casing section - extreme lost circulation encountered both in offset operator's wells in addition to historic BP NEBU wells - will allow depleted intervals in Kirtland, Fruitland Coal, & Pictured Cliffs to be isolated behind pipe (surface casing) before drilling into the known depleted intervals in the Mesa Verde section - setting surface casing deeper (into the Lewis) allows for improved drilling efficiency & also increases the safety of drilling operations through these depleted sections Please see attached NEBU 602-3H Revised Casing and Cement Program for details.

Surface Disturbance

Is any additional surface disturbance proposed?: No

NOI Attachments

Procedure Description

NEBU_602_3H_Revised_Casing_and_Cement_Program_20230911105820.pdf

Page 1 of 2

eived by OCD: 10/11/2023 9:05:22 AM Well Name: NORTHEAST BLANCO

UNIT 602 COM

Well Location: T31N / R7W / SEC 12 /

NWNW /

Page 15 of County or Parish/State:

Allottee or Tribe Name:

Well Number: 003H

Type of Well: CONVENTIONAL GAS

Unit or CA Name: NEBU--ST Lease Number: NMNM03358

Unit or CA Number:

NMNM78402X

Zip:

US Well Number:

Well Status: Approved Application for

Permit to Drill

Operator: SIMCOE LLC

Conditions of Approval

Specialist Review

APD_Change_KR_09112023_20230911142048.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: CALE REDPATH Signed on: SEP 11, 2023 10:58 AM

Name: SIMCOE LLC Title: NOT RECORDED

Street Address: 1199 MAIN AVE SUITE 101

City: DURANGO State: CO

Phone: (970) 852-0082

Email address: CALE.REDPATH@IKAVENERGY.COM

Field

Representative Name:

Street Address:

City: State:

Phone:

Email address:

BLM Point of Contact

Signature: Kenneth Rennick

BLM POC Name: KENNETH G RENNICK BLM POC Title: Petroleum Engineer

BLM POC Phone: 5055647742 BLM POC Email Address: krennick@blm.gov

Disposition: Approved Disposition Date: 09/11/2023

Page 2 of 2

Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF

	OMB N	 	
Е	xpires: O	 	
rial No.			

F LAND MANAGEMENT 5. L	ease Se	eri
------------------------	---------	-----

DOKI	EAU OF LAND MANAGEMENT			
Do not use this fo	OTICES AND REPORTS ON Worm for proposals to drill or to Use Form 3160-3 (APD) for suc	6. If Indian, Allottee or Tribe Name		
abandoned wen. C	ose Form 3160-3 (APD) for suc	TARTE COATA		
	TRIPLICATE - Other instructions on page	2	/. If Unit of CA/Agree	ement, Name and/or No.
1. Type of Well			8. Well Name and No.	
Oil Well Gas W	Vell Other		8. Well Name and No.	
2. Name of Operator			9. API Well No.	
3a. Address	3b. Phone No.	(include area code)	10. Field and Pool or I	Exploratory Area
		•		
4. Location of Well (Footage, Sec., T.,R	.,M., or Survey Description)		11. Country or Parish,	State
12. CHE	CK THE APPROPRIATE BOX(ES) TO INC	DICATE NATURE OF NOTI	ICE, REPORT OR OTH	IER DATA
TYPE OF SUBMISSION		TYPE OF AC	TION	
Notice of Intent	Acidize Deep	en Prod	luction (Start/Resume)	Water Shut-Off
Notice of filterit	Alter Casing Hydra	nulic Fracturing Recla	amation	Well Integrity
Subsequent Report	Casing Repair New	Construction Reco	omplete	Other
		and Abandon Temp	porarily Abandon	
Final Abandonment Notice	Convert to Injection Plug	Back Wate	er Disposal	
	ns. If the operation results in a multiple comices must be filed only after all requirements			
14. I hereby certify that the foregoing is	true and correct. Name (Printed/Typed)			
		Title		
Signature		Date		
	THE SPACE FOR FEDE	ERAL OR STATE OF	ICE USE	
Approved by				
••		Title		Date
	ned. Approval of this notice does not warrant quitable title to those rights in the subject lead duct operations thereon.			
Fitle 18 U.S.C Section 1001 and Title 43	U.S.C Section 1212, make it a crime for an	y person knowingly and will	Ifully to make to any de	partment or agency of the United States

any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

(Form 3160-5, page 2)

Additional Information

Additional Remarks

Reasons for setting deeper surface casing.

- to mitigate expected lost circulation problems in previously designed long (5500 MD), deviated intermediate casing section
- extreme lost circulation encountered both in offset operators wells in addition to historic BP NEBU wells
- will allow depleted intervals in Kirtland, Fruitland Coal, & Pictured Cliffs to be isolated behind pipe (surface casing) before drilling into the known depleted intervals in the Mesa Verde section
- setting surface casing deeper (into the Lewis) allows for improved drilling efficiency & also increases the safety of drilling operations through these depleted sections

Please see attached NEBU 602-3H Revised Casing and Cement Program for details.

Location of Well

0. SHL: NWNW / 751 FNL / 724 FWL / TWSP: 31N / RANGE: 7W / SECTION: 12 / LAT: 36.9192148 / LONG: -107.5288175 (TVD: 0 feet, MD: 0 feet) PPP: NWSW / 1737 FSL / 626 FWL / TWSP: 31N / RANGE: 7W / SECTION: 1 / LAT: 36.926048 / LONG: -107.5291427 (TVD: 7298 feet, MD: 8128 feet) PPP: NESE / 1652 FSL / 1316 FEL / TWSP: 31N / RANGE: 7W / SECTION: 1 / LAT: 36.9257998 / LONG: -107.5177825 (TVD: 7301 feet, MD: 11450 feet) PPP: NWSW / 1619 FSL / 5264 FEL / TWSP: 31N / RANGE: 6W / SECTION: 6 / LAT: 36.9257011 / LONG: -107.5132804 (TVD: 7302 feet, MD: 12766 feet) BHL: NESE / 1469 FSL / 308 FEL / TWSP: 31N / RANGE: 6W / SECTION: 6 / LAT: 36.9253057 / LONG: -107.496326 (TVD: 7307 feet, MD: 17724 feet)

SECTION 3: CASING

BIT & CASING PROGRAM (all new casing strings)

ТҮРЕ	HOLE SIZE (IN)	CASING (IN)	WEIGHT (LBS/FT)	GRADE	COUPLING	SETTING DEPTH (MD FT)	COMMENTS
Conductor	26	20	94.00	J55	BT&C	0-150	New casing. May be pre-set. Cement circulated to surface.
Surface	17-1/2	13-3/8	54.50	J55	BT&C	0-3799	New casing. May be pre-set. Cement circulated to surface.
Intermediate	12-1/4	9-5/8	40.00	P110HC	BT&C	0-6776	New casing. Two-stage cement job, circulated to surface.
Production	8-3/4	5-1/2	20.00	P110HC	TCBC-HT	0-17,724	New casing. Single-stage cement job to overlap previous casing shoe.

Design Factor Tables

Conductor Casing Design - Evacuation/Casing Test (collapse & burst), 100K overpull (tension)

					Collapse (psi)	Burst (psi)	Tension (lbs)	
			Minimum Safety Factors		1.125	1.100	1.400	
	Size (in.)	Weight (lb/ft)	Grade	Connection	Collapse (psi)	Burst (psi)	Yield - Body (lbs)	Yield - Connection (lbs)
Conductor	20	94	J55	ВТС	520	2,110	1,480,000	1,402,000
		80% of Burst = 1,688						
	Casing Depth, TVD (ft)	Mud Wt In (ppg)	Mud Wt Out (ppg)	Pressure Inside (psi)	Pressure Outside (psi)	Safety Factor		
Collapse	150	0	8.33	0	65	8.00		
Burst	150	8.33	0	1500	0	1.35	1500 psi casir	ngtest
	Casing Depth, TVD (ft)	Mud Wt (ppg)	Air Wt (lbs)	Bouyant Wt (lbs)	Bouyant Wt + 100K (lbs)			
Tension (Pipe Body)	150	9.00	14,100	12,163	112,163	13.20	100K lbs	overnull.
Tension (Connection)	150	9.00	14,100	12,163	112,163	12.50	- TOOKIDS	overpull
NOTE:	BF = 1-((MW)/65.5)							

Surface Casing Design - Evacuation/Casing Test (collapse & burst), 100K overpull (tension)

					Collapse (psi)	Burst (psi)	Tension (lbs)	
					1.125	1.100	1.400	l
	Size (in.)	Weight (lb/ft)	Grade	Connection	Collapse (psi)	Burst (psi)	Yield - Body (lbs)	Yield - Connection (lbs)
Surface	13.375	54.50	J55	ВТС	1,130	2,730	850,000	909,000
					80% of Burst =	2,184		
	Casing Depth, TVD (ft)	Mud Wt In (ppg)	Mud Wt Out (ppg)	Pressure Inside (psi)	Pressure Outside (psi)	Safety Factor		
Collapse	3600	9.00	9.00	842	1685	1.34	50% Casing volume with 9.0 ppg mud system	
Burst	3600	9.00	9.00	3185	1685	1.82	1500 psi c	asingtest
	Casing Depth, TVD (ft)	Mud Wt (ppg)	Air Wt (lbs)	Bouyant Wt (lbs)	Bouyant Wt + 100K (lbs)			
Tension (Pipe Body)	3600	9.00	196,200	169,241	269,241	3.16	— 100K lbs overpull	
Tension (Connection)	3600	9.00	196,200	169,241	269,241	3.38		

NOTE: BF = 1 - ((MW)/65.5)

Intermediate Casing Design - Evacuation/Casing Test (collapse & burst), 100K overpull (tension)

		Collapse		Collapse (psi)	Burst (psi)	Tension (lbs)		
			Minimum Safety Factors		1.125	1.100	1.400	
	Size (in.)	Weight (lb/ft)	Grade	Connection	Collapse (psi)	Burst (psi)	Yield - Body (lbs)	Yield - Connection (Ibs)
Intermediate	9.625	40.00	P110HC	втс	4,230	7,910	1,260,000	1,265,000
					80% of Burst =	6,328		
	Casing Depth, TVD (ft)	Mud Wt In (ppg)	Mud Wt Out (ppg)	Pressure Inside (psi)	Pressure Outside (psi)	Safety Factor		
Collapse	6348	0	10.00	0	3301	1.28	Full evacuation with 10.0 ppg mud in annulus	
Burst	6348	10.00	0	1500	0	1.65	1500 psi casing test	
	Casing Depth, TVD (ft)	Mud Wt (ppg)	Air Wt (lbs)	Bouyant Wt (lbs)	Bouyant Wt + 100K (lbs)			
Tension (Pipe Body)	6348	10.00	253,920	215,154	315,154	4.00	— 100K lbs overpull	
Tension (Connection)	6348	10.00	253,920	215,154	315,154	4.01		

NOTE: BF = 1-((MW)/65.5)

Production Casing Design - Evacuation/Casing Test (collapse & burst), 100K overpull (tension)

				_	Collapse (psi)	Burst (psi)	Tension (lbs)	_
			Minimum Safety Factors		1.125	1.100	1.400	
	Size (in.)	Weight (lb/ft)	Grade	Connection	Collapse (psi)	Burst (psi)	Yield - Body (lbs)	Yield - Connection (lbs)
Production	5.5	20.00	P110HC	TCBC-HT	12,150	12,640	641,000	641,000
					80% of Burst =	10,112		
	Casing Depth, TVD (ft)	Mud Wt In (ppg)	Mud Wt Out (ppg)	Pressure Inside (psi)	Pressure Outside (psi)	Safety Factor		
Collapse	7307	0	13.30	0	5054	2.40	Full evacuation with 13.3 ppg mud in annulus	
Burst	7307	13.30	0	1500	0	1.93	1500 psi casing test	
	Casing Depth, TVD (ft)	Mud Wt (ppg)	Air Wt (lbs)	Bouyant Wt (lbs)	Bouyant Wt + 100K (lbs)			
Tension (Pipe Body)	7307	13.30	146,140	116,466	216,466	2.96	100K lbs	ave specifi
Tension (Connection)	7307	13.30	146,140	116,466	216,466	2.96	– 100K lbs overpull	

NOTE: BF = 1 - ((MW)/65.5)

All casing strings (including conductor) will be tested to 0.22 psi/ft of string length or 1500 psi (whichever is greater), but not to exceed 70% of minimum internal yield.

Minimum casing design safety factors:

Collapse – 1.125 Burst – 1.100 Tension – 1.400

Casing centralization:

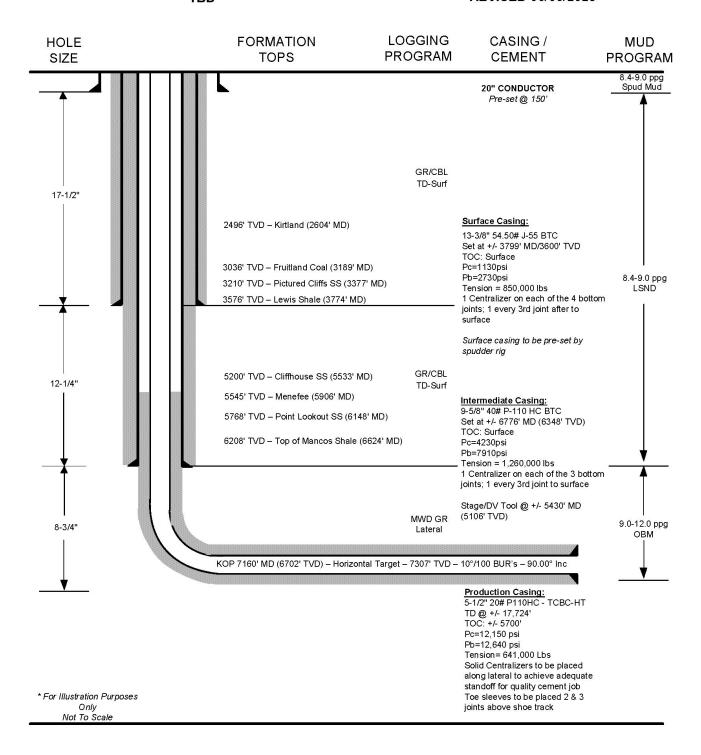
Surface Casing – Centralizers to be placed on bottom 4 joints of casing (1 per joint) and 1 every 3rd joint thereafter to surface.

Intermediate Casing – Centralizers to be placed on bottom 3 joints of casing (1 per joint) and 1 every 3rd joint thereafter to surface. A DV tool and external casing packer (ECP) may be placed at roughly 5430' MD, if necessary. *

Production Casing – Centralizers to be placed along lateral to achieve adequate standoff for quality cement job. Toe sleeves (2) will be placed 2 and 3 joints above the shoe track.

*NOTE: Use of the DV tool and ECP will be based on the magnitude of drilling fluid losses encountered while drilling the Intermediate section and concerns about cement possibly not being circulated to surface. Should heavy losses not be encountered, the DV tool and ECP will not be used.

Wellbore Schematic


STATE: New Mexico

WELL: Northeast Blanco Unit 602 COM 3H

PROSPECT: San Juan Basin – Mancos Shale (S1/Olive)

CATEGORY: Horizontal Well COUNTY: San Juan County

API #: TBD REVISED 06/05/2023

SECTION 4: CEMENT

The proposed cementing program has been designed to protect and/or isolate all usable water zones, potential productive zones, lost circulation zones, abnormally pressured zones, and any prospectively valuable deposits of minerals. Any isolating medium utilized (other than cement) shall receive approval prior to use. The casing setting depth shall be calculated to position the casing seat in a competent formation which will contain the maximum pressure to which it will be exposed during the drilling process. All indications of usable water shall be reported.

- Pea gravel or other material shall not be used to fill around the conductor or surface casing in the event cement is not circulated to surface or if cement fallback occurs.
- The conductor casing and surface casing shall be cemented back to surface. If cement is not circulated, or if the cement column falls back after circulation, remedial cementing will be performed to cement the casing to surface using 1" tubing. No more than 100' will be remediated without prior approval.
- Top plugs will be used to reduce possible contamination of the cement slurry by the displacement fluid. A bottom plug (or other acceptable technique such as a pre-flush fluid, inner string, etc.) will be used to isolate the cement slurry from the drilling fluid being displaced ahead of the cement.
- All cement volumes will be based on actual hole conditions.

Conductor Casing: Single Stage (0'-150' MD) - 26" Hole x 20" Casing, 100% XS

Cement to be circulated to surface with approximately 383 sx Class G cement (94 lb/sk) with 2% CaCl and 0.125 lb/sk poly flake mixed at 14.6 ppg using 6.69 gal/sk fresh water with yield of 1.39 ft3/sk. Approximate volume of 532 ft3.

Surface Casing: Single Stage (0'-3799' MD) - 17-1/2" Hole x 13-3/8" Casing, 50% XS

Cement to be circulated to surface. Lead Slurry will consist of approximately 1754 sx 65/35 Class G/Poz (87 lb/sk) with 5% D-CSE 1 + 0.25 lb/sk Cello Flake + 0.5% D-R 1 + 1.2% D-MPA-2 + 0.3% D-SA 1 + 0.3% D-CD 2 + 0.5% D-FP 1 + 0.25 lb/sk D-Phenoseal and 0.125 lb/sk D-Plexfiber mixed at 12.5 ppg using 10.71 gal/sk fresh water with yield of 1.96 ft3/sk. Tail Slurry will consist of approximately 459 sx Class G cement (94 lb/sk) with 5% D-CSE 1 + 0.25 lb/sk Cello Flake + 0.5% D-R 1 + 1.2% D-MPA-2 + 0.5% D-FP 1 + 0.25 lb/sk D-Phenoseal and 0.125 lb/sk D-Plexfiber mixed at 15.8 ppg using 5.17 gal/sk fresh water with yield of 1.21 ft3/sk. Total approximate volume of both slurries is 3993 ft3.

Intermediate Casing: Two Stages (0'-6676' MD) - 12-1/4" Hole x 9-5/8" Casing, DV tool ±5430', 30% XS

Cement to be circulated to surface. Stage 1 Lead Slurry will consist of approximately 219 sx 65/35 Class G/Poz (87 lb/sk) with 5% D-CSE 1 + 0.6% D-R 1 + 0.6% D-MPA-2 + 0.6% D-SA 1 + 0.6% D-CD 2 and 0.6% D-FP 1 mixed at 12.5 ppg using 10.72 gal/sk fresh water with yield of 1.95 ft3/sk. Stage 1 Tail Slurry will consist of approximately 133 sx Class G cement (94 lb/sk) with 0.4% D-CD2 + 0.2% D-R 1 + 0.3% D-MPA-2 mixed at 15.6 ppg using 5.20 gal/sk fresh water with yield of 1.18 ft3/sk. Total approximate volume of both slurries is 584 ft3.

Stage 2 Lead Slurry will consist of approximately 985 sx 65/35 Class G/Poz (87 lb/sk) with 5% D-CSE 1 + 0.6% D-R 1 + 0.6% D-MPA-2 + 0.6% D-SA 1 + 0.6% D-CD 2 and 0.6% D-FP 1 mixed at 12.5 ppg using 10.72 gal/sk fresh water with yield of 1.95 ft3/sk. Stage 2 Tail Slurry will consist of approximately 104 sx Class G cement (94 lb/sk) with 0.4% D-CD2 + 0.2% D-R 1 + 0.3% D-MPA-2 mixed at 15.6 ppg using 5.20 gal/sk fresh water with yield of 1.18 ft3/sk. Total approximate volume of both slurries is 2043 ft3.

Total approximate volume of all slurries is 2627 ft3.

Production Casing: Single Stage (0'-17,724' MD) - 8-3/4" Hole x 5-1/2" Casing, 50% XS

Cement to be circulated into Intermediate Casing (estimated TOC at 5700') with approximately 4014 sx 80/20 Class G/Poz (91 lb/sk) with 0.25 lb/sk Cello Flake + 1.0% D-R 1 + 1.2% D-MPA-2 and 0.2% D-CD mixed at 15.8 ppg using 4.40 gal/sk fresh water with yield of 1.10 ft3/sk. Approximate volume of 4415 ft3.

All cement slurries will meet or exceed minimum BLM and NMOCD requirements. Slurries used will the slurries listed above or equivalent slurries, depending on service provider selected. Cement yields may change based on actual slurries selected.

All "waiting on cement" (WOC) times shall be either a minimum of 8 hours or the time required to achieve a minimum of 500 psi compressive strength at the casing shoe.

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT FARMINGTON DISTRICT OFFICE

6251 COLLEGE BLVD. FARMINGTON, NEW MEXICO 87402

APD Changes

Surface Casing

SIMCOE LLC

CONDITIONS OF APPROVAL

1. Surface casing must be always at a minimum half fluid fill.

K. Rennick 09/11/2023

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 274497

CONDITIONS

Operator:	OGRID:
SIMCOE LLC	329736
1199 Main Ave., Suite 101	Action Number:
Durango, CO 81301	274497
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By	Condition	Condition Date
dmcclure	Fresh water-based mud shall be used when drilling the hole for the surface casing.	10/11/2023
dmcclure	If cement does not circulate for the surface casing, Simcoe shall do the following; (a) contact the Division's Northern Compliance Officer Supervisor and coordinate the remediation of the cement; (b) provide the Division a CBL demonstrating competent cement after the remediation of the cement; and (c) not proceed with drilling the well until approved to do so by the Division.	10/11/2023