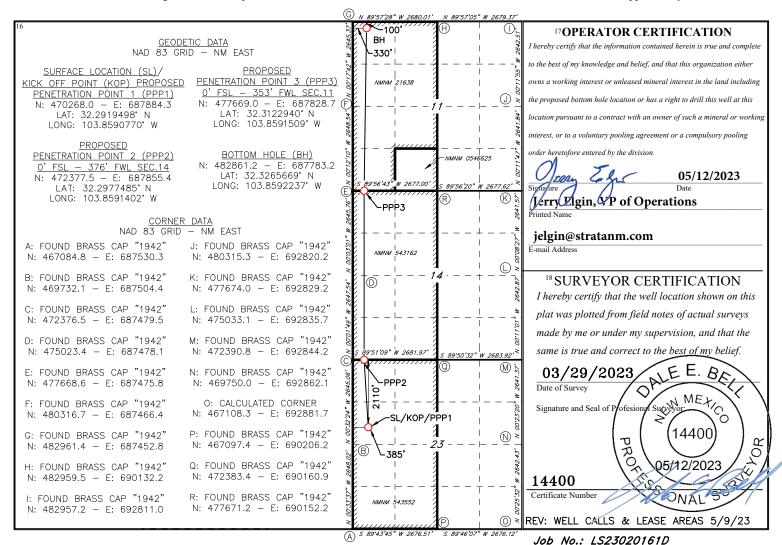
Form 3160-3 FORM APPROVED OMB No. 1004-0137 (June 2015) Expires: January 31, 2018 **UNITED STATES** DEPARTMENT OF THE INTERIOR 5. Lease Serial No. BUREAU OF LAND MANAGEMENT APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. DRILL REENTER 1a. Type of work: 1b. Type of Well: Oil Well Gas Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing Single Zone Multiple Zone 2. Name of Operator 9. API Well No. 30-015-54367 3a. Address 3b. Phone No. (include area code) 10. Field and Pool, or Exploratory 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. or Blk. and Survey or Area At surface At proposed prod. zone 14. Distance in miles and direction from nearest town or post office* 12. County or Parish 13. State 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, applied for, on this lease, ft. 23. Estimated duration 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see 2. A Drilling Plan. Item 20 above) 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. SUPO must be filed with the appropriate Forest Service Office). 6. Such other site specific information and/or plans as may be requested by the 25. Signature Name (Printed/Typed) Date Title Approved by (Signature) Name (Printed/Typed) Date (Electronic Submission) CODY LAYTON / Ph: (575) 234-5959 10/17/2023 Title Office Assistant Field Manager Lands & Minerals Carlsbad Field Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction

(Continued on page 2)

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV

1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462 State of New Mexico
Energy, Minerals & Natural Resources Department
OIL CONSERVATION DIVISION
1220 South St. Francis Dr.
Santa Fe, NM 87505


Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

■ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

1	API Numbe	r		² Pool Code			³ Pool Na	me							
30-0	15-543	67		24750		FORTY NINER RIDGE DELAWARE									
4Property Co	de		•		5 Property N			6	Well Number						
334851		OSCAR 23/11 EDL FED COM													
7 OGRID	NO.		8 Operator Name												
2171	2		STRATA PRODUCTION COMPANY												
	¹⁰ Surface Location														
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet From the	East/We	est line	County					
E	23	23S	30E		2110	NORTH	385	WES	ST	EDDY					
			11]	Bottom H	ole Location	If Different Fr	om Surface								
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/We	est line	County					
D	11	1 23S 30E 100 NORTH 330 WEST EDDY													
12 Dedicated Acres	s 13 Joint	or Infill 14 (Consolidation	Code 15 O	rder No.			-							
400															

No allowable will be assigned to this completion until all interest have been consolidated or a non-standard unit has been approved by the division.

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator: Strata	Production (Company	OGRID: _	21712	Date:	10/_10_/23								
II. Type: ☒ Original ☐	I. Type: ⊠ Original □ Amendment due to □ 19.15.27.9.D(6)(a) NMAC □ 19.15.27.9.D(6)(b) NMAC □ Other.													
If Other, please describe	::													
III. Well(s): Provide the be recompleted from a s					wells proposed to	be drilled or proposed to								
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water BBL/D								
Oscar 23 11 EDL Fed		Sec 23-T23S-R30I	E 2110' FNL 8	8 800	1,200	2,200								
Com 1H			385' FWL											
V. Anticipated Schedu or proposed to be recom Well Name		single well pad or co			nt. Initial F	low First Production								
				Commencement	Date Dack D	ate Date								
Oscar 23 11 EDL Fed		6/20/2024	7/20/2024	7/30/2024	8/4/202	24 8/28/2024								
Com 1H														
VII. Operational Prac Subsection A through F	tices: Atta of 19.15.27.8 at Practices:	ch a complete descrip NMAC.	otion of the act	tions Operator wil	l take to comply v	to optimize gas capture. with the requirements of ces to minimize venting								

Section 2 Enhanced Plan

			<u>'E APRIL 1, 2022</u>										
	2022, an operator tha complete this section.		with its statewide natural ga	as capture requirement for the applicable									
	s that it is not require for the applicable rep	-	ction because Operator is in o	compliance with its statewide natural gas									
IX. Anticipated Na	tural Gas Production	n:											
W	ell	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF									
Oscar 23 11 EDL Fed Com 1H 1,200 400,000													
	thering System (NGC												
Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in									
Strata Production Co.	Forty Niner Ridge	Sec 30-T23S-R30E	8/28/2024	15,000,000									
production operation the segment or porticular the segment or porticular the segment or porticular the segment or porticular the segment or volume for the segment of the s	ns to the existing or place on of the natural gas gath. The natural gas gath from the well prior to be. Operator ⊠ does □ g system(s) described s plan to manage producty: □ Operator asser d in Paragraph (2) of S	anned interconnect of gathering system(s) to hering system \(\mathbb{Z}\) will be the date of first product does not anticipate the above will continue to function in response to the terms of the confidentiality pursue.	the natural gas gathering syste which the well(s) will be consisted will not have capacity to getion. at its existing well(s) connect of meet anticipated increases in the increased line pressure. Suant to Section 71-2-8 NMS 27.9 NMAC, and attaches a few which we have a few meet anticipated increased.	aticipated pipeline route(s) connecting the em(s), and the maximum daily capacity of nected. Eather 100% of the anticipated natural gas are to the same segment, or portion, of the line pressure caused by the new well(s). EA 1978 for the information provided in full description of the specific information									

Section 3 - Certifications <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal: 🛮 Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system: or ☐ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. If Operator checks this box, Operator will select one of the following: Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or Venting and Flaring Plan.

Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including: (a) power generation on lease; **(b)** power generation for grid; (c) compression on lease; (d) liquids removal on lease; reinjection for underground storage; (e)

- **(f)** reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature:	
Printed Name: Jerry Elgin	
Title: Vice President Operations	
E-mail Address: jelgin@stratanm.com	
Date: 10/10/2023	
Phone: 575-622-1127, ext 18	
OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)	
Approved By:	
Title:	
Approval Date:	
Conditions of Approval:	

Strata Production Company Natural Gas Management Plan

Oscar 23 11 EDL Fed Com #1H Section 23-T23S-R30E Eddy County, New Mexico

Attachment to NMOCD Form NGMP

VI. Separation Equipment

Separation equipment consists of a 6' X 20' X 250 psi 3 phase separator at the well site in Section 27-T23S-R30E that separates the gas, water, and oil. The gas is routed to a gas gathering line that follows Strata's corridor through the field to Common Tank Battery 2 in the SWNW of Section 23-T23S-R30E where the gas goes through a 2 phase separator to remove any residual liquids, then through a compressor and into an interconnect with Enterprise GD LLC located in the NENE of Section 22-T23S-R30E (all in Eddy County, NM).

The oil and water are routed to Common Tank Battery 2 in the SWNW of Section 23-T23S-R30E where the oil goes through a separator to remove any residual gas then through a heater treater to remove any residual water. The oil is then stored in 500 bbl steel tanks at the battery. The facility separator, heater treater, and tanks are tied into a vapor recover unit so any liberated gas is routed into the gas gathering line.

VII. Strata Production Company will take the following actions to comply with regulations outlined in 19.15.27.8.

A. Venting and Flaring of Natural Gas

Strata will maximize recovery of natural gas by minimizing the waste, as defined in 19.15.2 NMAC, of natural gas through venting and flaring. Strata will be connected to natural gas gathering systems with sufficient capacity to transport its produced natural gas. If there is inadequate capacity to transport the gas, the well(s) will be shut in until there is adequate capacity or other arrangements can be made to avoid waste.

B. Venting and Flaring During Drilling Operations

Drilling rigs shall be equipped with a rig flare located at least 100 ft from the well. The flare will be utilized to combust any natural gas produced through drilling operations. Should gas be flared, an estimated volume will be reported as required by statutes. Gas will not be flared during normal drilling operations.

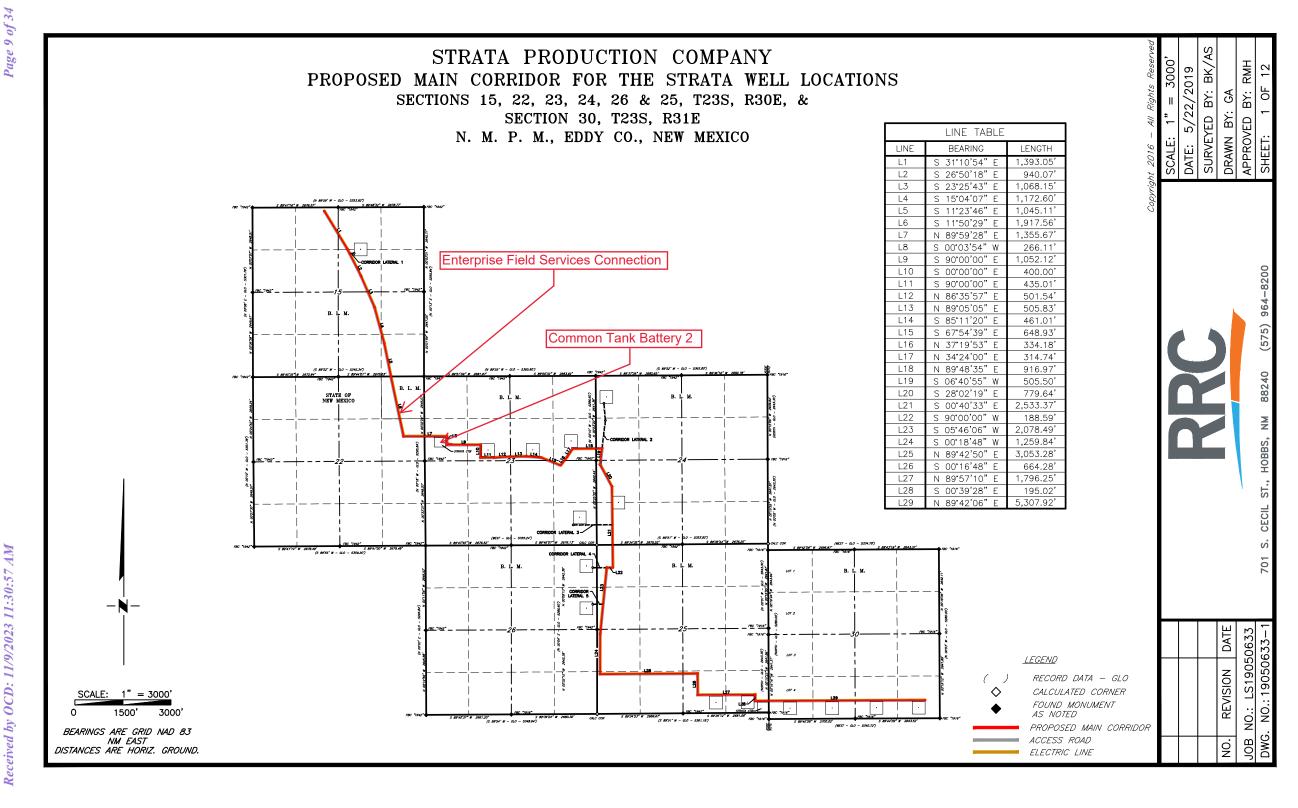
C. Venting and Flaring During Completion Operations

Natural gas produced during completion operations will be flared. All gas produced will be directed to permanent separation equipment and into sales as soon as practical. If natural gas does not meet pipeline specifications, Strata may flare the gas for up to 60 days or until the gas meets pipeline specifications, whichever is sooner. Strata will properly size the flare which will be equipped with automatic ignition source. The gas will be sampled no less than twice per week and the gas will be routed through Strata's gathering system as soon as it meets pipeline specifications.

D. Venting and Flaring During Production Operations

Natural gas will not be flared during normal production operations except as is allowed under 19.15.27.8 D (1)-(4). If capacity is inadequate, well(s) will be shut in until there is adequate capacity or other arrangements can be made to avoid waste except during emergency or malfunction situations. Flared volumes will be reported as required by statutes.

E. Performance Standards

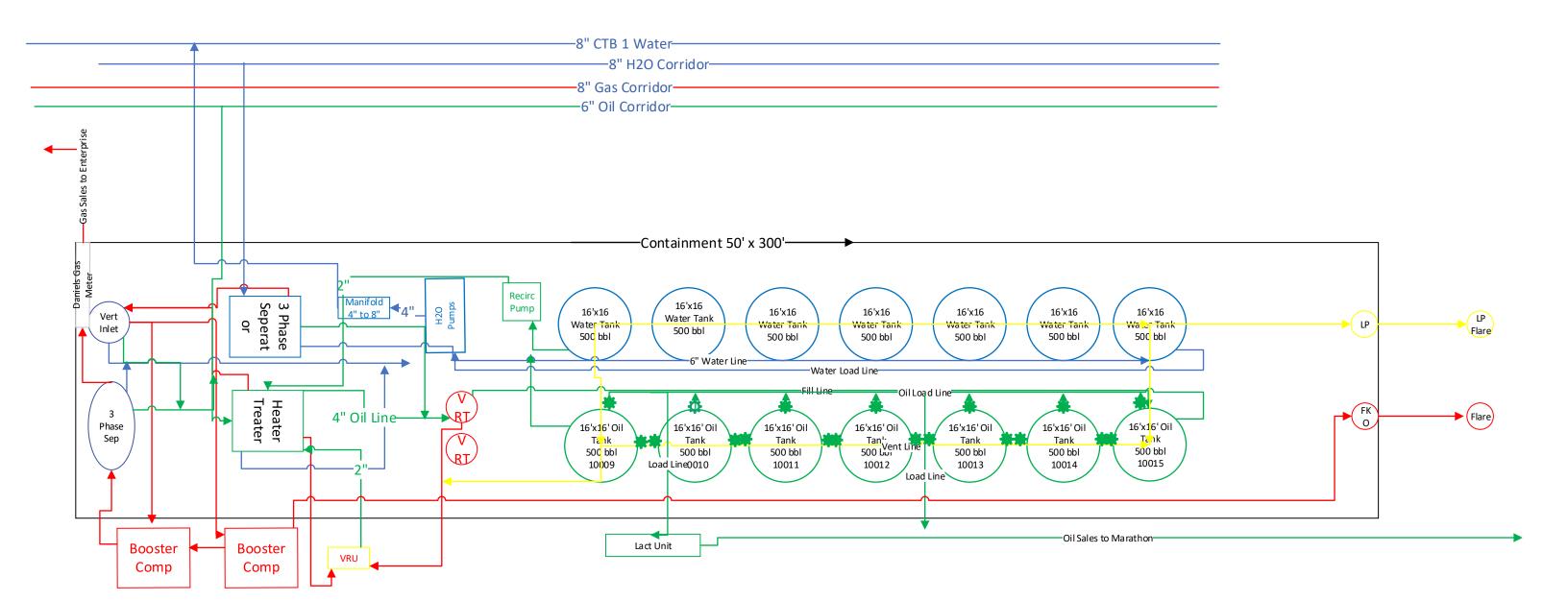

Strata will comply with the performance standards per 19.15.27.8 E (1)-(8). All equipment will be designed to accommodate anticipated volumes and pressures. Storage tanks will be equipped with automatic gauging equipment connected to Strata's SCADA system. Flares will be located at least 100 ft from wells and storage tanks and will be equipped with automatic ignition sources. Strata will conduct AVO inspections to comply with 19.15.27.8 E (5) (a) and 19.15.27.8 E (5) (b)-(c). Any emergency situations resulting in flaring will be resolved to minimize waste.

F. Measurement of Vented and Flared Natural Gas

Gas flared as the result of emergency of malfunction will be metered. Gas used beneficially during production operations will be metered or estimated. Should metering be impractical due to equipment malfunction or low flow, Strata will estimate the volume of gas vented or flared. All metering equipment will conform to industry standards and will not be equipped with a bypass around metering equipment except for the sole purpose of inspecting or servicing the metering equipment.

VIII. Maintenance Activities

For maintenance activities involving production equipment and compression, venting will be limited to depressurization of the equipment to provide safe working conditions. In the event maintenance is required on pressurized equipment, associated producing wells will be shut in to minimize waste. Gas normally routed through a vapor recovery unit may be routed to flares to avoid venting for the maintenance of VRU's and associated equipment.



Received by OCD: 11/9/2023 11:30:57 AM

Strata Production Company
Roadrunner NE CTB
SWNW of Sec 23, T23S, R30E NMP
Eddy Co., NM
API 30-015-49594
Lease NMNM114978
Forty Niner Ridge Unit/Delaware
Field

Sealed Valves

Released to Imaging: 11/16/2023 3:52:07 PM

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

APD ID: 10400092006 **Submission Date:** 06/01/2023

Operator Name: STRATA PRODUCTION COMPANY

Well Name: OSCAR 23 11 EDL FED COM Well Number: 1H

Well Type: OIL WELL Well Work Type: Drill

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
12317248	RUSTLER	3219	111	111	SALT	NONE	N
12317249	SALADO	2753	466	466	SALT	NONE	N
12317250	BASE OF SALT	-332	3551	3551	SALT	NONE	N
12317251	LAMAR	-542	3761	3761	LIMESTONE	NATURAL GAS, OIL	Y
12317252	BELL CANYON	-562	3781	3781	LIMESTONE, SANDSTONE, SILTSTONE	NATURAL GAS, OIL	Y
12317253	CHERRY CANYON	-1474	4693	4693	LIMESTONE, SANDSTONE, SILTSTONE	NATURAL GAS, OIL	Y
12317254	BRUSHY CANYON	-2778	5997	5997	LIMESTONE, SANDSTONE, SILTSTONE	NATURAL GAS, OIL	Y
12317255	BONE SPRING	-4419	7638	7638	LIMESTONE, SANDSTONE, SILTSTONE	NONE	N
12317247		0					

Section 2 - Blowout Prevention

Pressure Rating (PSI): 3M Rating Depth: 7700

Equipment: Annular, Blind Rams, Double Rams, Mud Gas Separator, Remote kill line and other equipment as listed on 3M attachment.

Requesting Variance? NO

Variance request:

Testing Procedure: BOPE will be tested by an independent service company to 250# psi low pressure and 3000# high pressure per Onshore Gas Order 2 requirements.

Choke Diagram Attachment:

Oscar_23_11_EDL_Fed_Com__1H_Choke_Diagram_20230502151226.pdf

BOP Diagram Attachment:

Oscar_23_11_EDL_Fed_Com__1H_BOPE_Description_20230502151241.pdf

Oscar_23_11_EDL_Fed_Com__1H_BOPE_20230502151242.pdf

Well Name: OSCAR 23 11 EDL FED COM Well Number: 1H

Oscar_23_11_EDL_Fed_Com__1H_Choke_Diagram_20230502151226.pdf

Oscar_23_11_EDL_Fed_Com__1H_BOPE_Description_20230502151241.pdf

Oscar_23_11_EDL_Fed_Com__1H_BOPE_20230502151242.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	450	0	450	3219	2769	450	H-40	48	ST&C	3.95	7.39	DRY	14.9	DRY	25
2	l	12.2 5	9.625	NEW	API	N	0	4000	0	4000	3219	-781	4000	J-55	40	LT&C	1.48	1.9	DRY	2.83	DRY	4.81
	PRODUCTI ON	8.75	7.0	NEW	API	N	0	7000	0	7000	3219	-3781	7000	P- 110	29	BUTT	2.81	3.08	DRY	4.7	DRY	4.58
	PRODUCTI ON	8.75	5.5	NEW	API	N	7000	19906	7000	7454	-3781	-4235	12906	P- 110	5.5	BUTT	3.43	1.84	DRY	2.48	DRY	2.58

Casing Attachments

Casing ID: 1 String SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Oscar_23_11_EDL_Fed_Com__1H_Casing_Worksheet_20230515135601.pdf

Well Name: OSCAR 23 11 EDL FED COM Well Number: 1H

Casing ID: 2

String

INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Oscar_23_11_EDL_Fed_Com__1H_Casing_Worksheet_20230515135633.pdf

Casing ID: 3

String

PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Oscar_23_11_EDL_Fed_Com__1H_Casing_Worksheet_20230515135718.pdf

Casing ID: 4

String

PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Oscar_23_11_EDL_Fed_Com__1H_Casing_Worksheet_20230515135700.pdf

Section 4 - Cement

Well Name: OSCAR 23 11 EDL FED COM Well Number: 1H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Lead		0	0	200	2.51	11	505	100	Class H	None
PRODUCTION	Tail		5200	1990 6	3090	1.43	13.2	4430	25	Class H	Salt, gel, extender, LCM
SURFACE	Lead		0	450	469	1.33	14.8	623	100	Class C	CaCl, LCM

INTERMEDIATE	Lead		0	3500	862	1.91	12.9	1645	50	Class C	Salt, gel, extender, LCM
INTERMEDIATE	Tail		3500	4000	194	1.33	14.8	258	65	Class C	Salt, LCM
PRODUCTION	Lead	5200	0	3700	241	2.54	11	612	10	Class C	Salt, gel, extender, LCM
PRODUCTION	Tail		3700	5200	253	1.34	14.8	337	50	Class C	None

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Kelly cock in the drill string, a full opening drill pipe stabbing valve on rig floor, remote kill line, mud gas separator.

Describe the mud monitoring system utilized: Pason pit level monitors, hourly weight check and viscosity, gel strength and pH, solids control.

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
450	4000	SALT SATURATED	10	10.5			10				Drill with brine water with LCM and gel sweeps.

Well Name: OSCAR 23 11 EDL FED COM Well Number: 1H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
4000	1990 6	WATER-BASED MUD	9.5	10.2			10				Drill with water based mud using sliders and gel sweeps in the lateral.
0	450	WATER-BASED MUD	8.5	8.9			10				Spud with fresh water and build mud while drilling.

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

None

List of open and cased hole logs run in the well:

CALIPER, CEMENT BOND LOG, COMPENSATED DENSILOG, DUAL LATERAL LOG/MICRO-SPHERICALLY FOCUSED, GAMMA RAY LOG, MUD LOG/GEOLOGICAL LITHOLOGY LOG,

Coring operation description for the well:

None

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 2500 Anticipated Surface Pressure: 851

Anticipated Bottom Hole Temperature(F): 125

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations

Oscar_23_11_EDL_Fed_Com__1H_H2S_Plan_20230502151206.pdf

Well Name: OSCAR 23 11 EDL FED COM Well Number: 1H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Oscar_23_11_EDL_Fed_Com__1H_WBD_20230512092034.pdf

Oscar_23_11_EDL_Fed_Com_1H_Preliminary_Well_Plan_20230512092122.pdf

Other proposed operations facets description:

Other proposed operations facets attachment:

Oscar_23_11_EDL_Fed_Com__1H_NGMP_20230502154936.pdf

Other Variance attachment:

MD (ft)	Inclination (deg)	Azimuth (deg)	TVD (ft)	DX (ft)	DY (ft)	:	X (ft)	Y (ft)	Subsea (ft)	Segment Length	Segment Inclination	Offset
0	0	0	0		0	0	687884.3	470268	3251	0	0	0
99.24	0	0	99.24		0	0	687884.3	470268	3151.76	99.24	0	0
198.48	0	0	198.48		0	0	687884.3	470268	3052.52	99.24	0	0
297.72	0.00001	0	297.72		0	0	687884.3	470268		99.24	0	0
396.96	0.00001	0	396.96		0	0	687884.3	470268	2854.04	99.24	0.00001	0
496.2	0.00002	0	496.2		0	0	687884.3	470268		99.24	0.00001	0
595.44	0.00002	0	595.44		0	0	687884.3	470268		99.24	0.00001	0
694.68	0.00002	0	694.68		0	0	687884.3	470268		99.24	0.00001	0
793.92	0.00003	0	793.92		0	0	687884.3	470268		99.24	0.00001	0
893.15	0.00003	0	893.16		0	0	687884.3	470268		99.24	0.00001	0
992.39	0.00003	0	992.39		0	0	687884.3	470268	2258.61	99.24	0.00002	0
1091.63	0.00004	0	1091.63		0	0	687884.3	470268	2159.37	99.24	0.00002	0
1190.87	0.00004	0	1190.87		0	0	687884.3	470268		99.24	0.00002	0
1290.11 1389.35	0.00004	0	1290.11		0 0	0	687884.3	470268		99.24 99.24	0.00002	0
1488.59	0.00005 0.00005	0	1389.35 1488.59		0	0	687884.3 687884.3	470268 470268		99.24	0.00002 0.00002	0
1587.83	0.00005	0	1587.83		0	0	687884.3	470268	1762.41 1663.17	99.24	0.00002	0
1687.07	0.00005	0	1687.07		0	0	687884.3	470268		99.24	0.00002	0
1786.31	0.00006		1786.31		0	0	687884.3	470268		99.24	0.00002	0
1885.55	0.00006		1885.55		0	0	687884.3	470268		99.24	0.00003	0
1984.79	0.00006		1984.79		0	0	687884.3	470268		99.24	0.00003	0
2084.03	0.00006		2084.03		0	0	687884.3	470268	1166.97	99.24	0.00003	0
2183.27	0.00006		2183.27		0	0	687884.3	470268	1067.73	99.24	0.00003	0
2282.51	0.00006	354.3666	2282.51		0	0	687884.3	470268		99.24	0.00003	0
2381.75	0.00006		2381.75		0	0	687884.3	470268		99.24	0.00003	0
2480.99	0.00006	352.869	2480.99		0	0	687884.3	470268		99.24	0.00003	0
2580.23	0.00006		2580.23		0	0	687884.3	470268		99.24	0.00003	0
2679.47	0.00006		2679.47		0	0	687884.3	470268		99.24	0.00003	0
2778.7	0.00006		2778.7		0	0	687884.3	470268		99.24	0.00003	0
2877.94	0.00006	350.3826	2877.94		0	0	687884.3	470268		99.24	0.00004	0
2977.18	0.00007	239.475	2977.18		0	0	687884.3	470268		99.24	0.00004	0
3076.42	0.00006		3076.42		0	0	687884.3	470268		99.24	0.00004	0
3175.66	0.00007	240.3246	3175.66		0	0	687884.3	470268		99.24	0.00004	0
3274.9	0.00006	348.4958	3274.9		0	0	687884.3	470268		99.24	0.00004	0
3374.14	0.00007	241.052	3374.14		0	0	687884.3	470268	-123.14	99.24	0.00004	0
3473.38	0.00006	347.737	3473.38		0	0	687884.3	470268		99.24	0.00004	0
3572.62	0.00007	241.6646	3572.62		0	0	687884.3	470268	-321.62	99.24	0.00004	0
3671.86	0.00006	347.1077	3671.86		0	0	687884.3	470268	-420.86	99.24	0.00004	0
3771.1	0.00007	242.1706	3771.1		0	0	687884.3	470268	-520.1	99.24	0.00004	0
3870.34	0.00006	346.6003	3870.34		0	0	687884.3	470268	-619.34	99.24	0.00004	0
3969.58	0.00007	242.5762	3969.58		0	0	687884.3	470268	-718.58	99.24	0.00004	0
4068.82	0.00007	346.1925	4068.82		0	0	687884.3	470268	-817.82	99.24	0.00004	0
4168.06	0.00007	242.8751	4168.06		0	0	687884.3	470268	-917.06	99.24	0.00004	0
4267.3	0.00007	345.9074	4267.3		0	0	687884.3	470268	-1016.3	99.24	0.00004	0
4366.54	0.00007	243.0805	4366.54		0	0	687884.3	470268	-1115.54	99.24	0.00004	0
4465.77	0.00007	345.7323	4465.78		0	0	687884.3	470268	-1214.78	99.24	0.00004	0
4565.01	0.00007	243.1926	4565.01		0	0	687884.3	470268	-1314.01	99.24	0.00004	0
4664.25	0.00007	345.6596	4664.25		0	0	687884.3	470268	-1413.25	99.24	0.00004	0
4763.49	0.00007	243.206	4763.49		0	0	687884.3	470268	-1512.49	99.24	0.00004	0
4862.73	0.00007		4862.73		0	0	687884.3	470268		99.24	0.00004	0
4961.97	0.00007		4961.97		0	0	687884.3	470268		99.24	0.00004	0
5061.21	0.00007		5061.21		0	0	687884.3	470268		99.24	0.00004	0
5160.45	0.00007		5160.45		0	0	687884.3	470268		99.24	0.00004	0
5259.69	0.00007		5259.69		0	0	687884.3	470268		99.24	0.00004	0
5358.93	0.00007		5358.93		0	0	687884.3	470268		99.24	0.00004	0
5458.17	0.00006		5458.17		0	0	687884.3			99.24	0.00004	0
5557.41	0.00007		5557.41		0	0	687884.3			99.24	0.00004	0
5656.65	0.00006	346.924	5656.65		0	0	687884.3	470268	-2405.65	99.24	0.00004	0

MD (fi	t)	Inclination (deg)	Azimuth (deg)	TVD (ft)	DX (ft)	DY (ft)	X (ft)	Y (ft)	Subsea (ft)	Segment Length	Segment Inclination	Offset
575	5.89	0.00007	241.8407	5755.89	C	0	687884.3	470268	-2504.89	99.24	0.00004	0
585	5.13	0.00006	347.5013	5855.13	C	0	687884.3	470268	-2604.13	99.24	0.00004	0
595	4.37	0.00007	241.2567	5954.37	C	0	687884.3	470268	-2703.37	99.24	0.00004	0
605	3.61	0.00006	348.1957	6053.61	C	0	687884.3	470268	-2802.61	99.24	0.00004	0
615	2.85	0.00007	240.5626	6152.85	C	0	687884.3	470268	-2901.85	99.24	0.00004	0
	2.08	0.00006		6252.08		0	687884.3	470268				0
	1.32	0.00007		6351.32			687884.3	470268				0
	0.56	0.00006		6450.56	C	0	687884.3	470268				0
65	49.8	0.00006	238.811	6549.8	C	0	687884.3	470268			0.00004	0
	9.04	0.00006		6649.04			687884.3	470268				0
	8.28	0.00006		6748.28			687884.3	470268				0
	7.52	0.00006		6847.52		0	687884.3	470268				0
	6.76	0.00006		6946.76		0	687884.3	470268				0
	7046	0.00006		7046		0	687884.3	470268				0
	7.34	4.47562		7077.31			687884.3					1.23
	8.63	8.76508		7108.38			687884.3					
	8.99	12.82342		7138.2								10.52
	0.32						687884.4					18.53
	8.00	20.61515		7197.35								28.31
	31.37			7225.59			687884.6	470308				39.98
	52.03	27.83047		7253.13								53.44
	93.7			7280.67								69.08
	4.51	34.81387		7306.47								85.91
	5.38	38.15995		7331.28			687884.9	470372.3				104.26
	86.27						687885	470392.1				124.04
	7.16	44.81662		7377.53			687885	470413.2				145.17
	8.03	48.16628		7398.78				470435.6				167.56
	8.86	51.51989		7418.66								191.11
	9.61	54.9512										215.75
	0.28	58.42458						470509.4		30.67		241.37
	0.84	62.01247					687885.2					267.9
	2.22		359.8631	7482.88			687885.1					296.07
	32.58	69.60648		7494.4				470592.2				324.15
	3.76	73.6429		7504.23			687885	470621.8				353.74
	4.89	77.86333		7511.89				470651.9				383.9
	25.09	82.07265		7517.15			687884.7			30.2		
	6.25	86.58858		7520.23				470712.7				
	86.64			7520.84			687884.3	470743			88.83287	
			359.4942				687883.3				91.07843	586.3
			359.4952				687882.5				91.07933	
			359.4964				687881.5				91.08071	
	89.7		359.4974				687880.7					
	7.19		359.4987					471253.5				
	35.96		359.4997					471342.2				
	1.52		359.5009				687878.1					
	6.04		359.5021				687877.2					1284.25
			359.5031				687876.4					1370.52
			359.5043				687875.5					1473.09
	86.46	91.0903					687874.7					1574.61
			359.5067				687873.8					
			359.5078					472042.5				1774.49
		91.09368					687872.1					1872.86
			359.5102				687871.3				91.09409	1970.17
			359.5102				687870.5				91.09532	2066.42
	3.57		359.5114				687869.6					2161.62
	3.37						687868.7					
			359.5151				687867.9					
			359.5165					472739.3			91.09996	
570	5.57	5 = . 1 5 5 5 5	233.3103	. 102.03	11.21	, ±.∠ /	33,307		.231.03	107.00	52.05550	, 1.55

MD (ft)	Inclination (deg)	Azimuth (deg)	TVD (ft)	DX (ft)	DY (ft)	X (ft)	Y (ft)	Subsea (ft)	Segment Length	Segment Inclination	Offset
9873.98	91.10133	359.5177	7481.15	-18.03	2561.89	687866.3	472829.9	-4230.15	90.64	91.10072	2561.96
9978.39	91.10246	359.5191	7479.14	-18.91	2666.28	687865.4	472934.3	-4228.14	104.41	91.10187	2666.35
10066.74	91.1034	359.5202	7477.44	-19.65	2754.61	687864.6	473022.6	-4226.44	88.35	91.10301	2754.68
10168.47	91.10448	359.5216	7475.48	-20.5	2856.32	687863.8	473124.3	-4224.48	101.73	91.10392	2856.39
10268.76	91.10551	359.523	7473.55	-21.34	2956.59	687862.9	473224.6	-4222.55	100.29	91.10502	2956.66
10367.61	91.10653	359.5243	7471.64	-22.16	3055.41	687862.1	473323.4	-4220.64	98.85	91.10587	3055.49
10465.01	91.10751	359.5256	7469.76	-22.97	3152.79	687861.3	473420.8	-4218.76	97.4	91.10706	3152.87
10560.96	91.10845	359.527	7467.9	-23.76	3248.72	687860.5	473516.7	-4216.9	95.96	91.10799	3248.81
10668.85	91.10948	359.5285	7465.81	-24.65	3356.59	687859.6	473624.6		107.89	91.10911	3356.68
10761.71		359.5299	7464.02	-25.41	3449.42	687858.9	473717.4		92.85		3449.52
10866.05	91.11129	359.5314	7461.99	-26.27	3553.74	687858	473821.8	-4210.99	104.34	91.11089	3553.84
10968.5			7460.01	-27.1	3656.17	687857.2	473924.2		102.45		3656.27
11056.58			7458.29	-27.82	3744.24	687856.5	474012.3		88.09		3744.34
11155.48			7456.37	-28.62	3843.11	687855.7	474111.1		98.89		3843.21
11264.46			7454.25	-29.51	3952.07		474220.1		108.98		3952.18
11359.32			7452.41	-30.27	4046.9	687854	474314.9		94.86		4047.02
11463.76			7450.38	-31.11	4151.32		474419.3		104.44		4151.44
11554.57		359.542	7448.61	-31.84	4242.11	687852.5	474510.1		90.81		4242.23
11654.46			7446.66	-32.63	4341.98	687851.7	474610		99.89		4342.1
11751.94			7444.76	-33.41	4439.44	687850.9	474707.5		97.48		4439.56
11857.41			7442.71	-34.24	4544.89	687850	474812.9		105.47		4545.01
11949.79			7440.9	-34.97	4637.24	687849.3	474905.3		92.38		4637.37
12049.59			7438.96	-35.76	4737.02	687848.5	475005		99.8		4737.15
12146.4			7438.50	-36.51	4833.81	687847.8	475101.8		96.81		4833.95
12249.44			7435.06	-37.32	4936.82	687847	475204.8		103.04		4936.96
12348.85			7433.13	-37.32	5036.21	687846.2	475304.2		99.41		5036.36
12444.63			7433.13	-38.83	5131.97	687845.5	475400		95.78		5132.12
12544.97		359.5596	7431.20	-38.83	5232.3	687844.7	475500.3		100.35		5232.45
12648.8			7423.31	-40.4	5336.1	687843.9	475604.1		100.33	91.11332	5336.25
12747.54			7425.39	-41.15	5434.81	687843.1	475702.8		98.74		5434.97
											5528.6
12841.18			7423.58	-41.86	5528.44	687842.4 687841.7	475796.5		93.64		
12942.89			7421.63	-42.63	5630.13		475898.2 475999.1		101.71		5630.29
13043.9			7419.7	-43.39	5731.11				101		5731.28
13137.15 13237.82			7417.93	-44.09	5824.35	687840.2 687839.4			93.26		5824.51
			7416.05	-44.84	5924.99		476193		100.66		5925.16
13336.32			7414.23	-45.58	6023.48	687838.7	476291.5		98.51		6023.65
13436.1			7412.45	-46.32	6123.23	687838	476391.3		99.77	91.02435	6123.41
13535.99			7410.77	-47.06	6223.11	687837.2	476491.1	-4159.77	99.89	90.9632	6223.28
13632.49		359.5463		-47.8		687836.5				90.74711	
		359.5132		-48.64		687835.6				90.08038	
13831.83		359.5277		-49.45		687834.8	476787			89.80289	
		359.5075		-50.29	6618.77		476886.8			89.71785	
		359.5245		-51.17		687833.1				89.67176	6722.86
		359.5056		-51.99		687832.3				89.64343	
		359.5233		-52.85		687831.4				89.62465	
		359.5047		-53.67		687830.6				89.61093	
		359.5226		-54.56		687829.7				89.60042	
		359.5042		-55.39		687828.9				89.59223	
		359.5222		-56.2		687828.1				89.58623	
		359.5038		-57.05		687827.2				89.58163	
		359.5219		-57.94		687826.3				89.57721	
	89.30138		7417.09	-58.8		687825.5				89.57423	
		359.5217		-59.62		687824.7	477986			89.57144	
		359.5035		-60.47		687823.8				89.56968	
	89.83844		7419.33	-61.35		687822.9				89.56779	
		359.5034		-62.17		687822.1				89.56675	
		359.5216		-63.02		687821.3					
15532.83	89.29321	359.5033	7421.6	-63.89	8219.82	687820.4	4/8487.8	-4170.6	102.52	89.56474	8220.07

М	D (ft)	Inclination (deg)	Azimuth (deg)	TVD (ft)	DX (ft)	DY (ft)	X (ft)	Y (ft)	Subsea (ft)	Segment Length	Segment Inclination	Offset
1	15627.56	89.83535	359.5215	7422.32	-64.7	8314.54	687819.6	478582.6	-4171.32	94.72	89.56434	8314.79
	15724.6	89.29246	359.5033	7423.06	-65.53	8411.58	687818.8	478679.6	-4172.06	97.05	89.56384	8411.83
1	L5823.98	89.83488	359.5215	7423.82	-66.37	8510.95	687817.9	478779	-4172.82	99.38	89.56365	8511.21
	15925.7	89.29225	359.5033	7424.59	-67.24	8612.66	687817.1	478880.7	-4173.59	101.71	89.56349	8612.92
1	L6029.75	89.83492	359.5215	7425.38	-68.12	8716.7	687816.2	478984.7	-4174.38	104.05	89.56362	8716.97
	16124.2	89.2925	359.5033	7426.1	-68.93	8811.15	687815.4	479079.2	-4175.1	94.46	89.56371	8811.42
1	16232.68			7426.93	-69.85	8919.62	687814.4	479187.6	-4175.93	108.48	89.56388	8919.89
1	L6331.07	89.2931	359.5033	7427.68	-70.69	9018.01	687813.6	479286	-4176.68	98.39	89.5644	9018.29
1	16431.33			7428.44	-71.54	9118.25	687812.7	479386.3	-4177.44	100.25	89.56438	9118.53
1	L6520.57	89.2939	359.5034	7429.12	-72.3	9207.49	687812	479475.5	-4178.12	89.25	89.56521	9207.78
	16624.32			7429.9		9311.23	687811.1					9311.52
1	16729.92			7430.7	-74.08	9416.83	687810.2			105.61	89.56607	9417.12
1	16823.86			7431.41		9510.76	687809.4					9511.05
	16919.23			7432.13		9606.12	687808.6					9606.42
	17029.97			7432.97		9716.86	687807.7					9717.16
	L7128.41			7433.71		9815.29	687806.8					9815.6
	L7228.29	89.84087		7434.46			687806					9915.47
	L7329.61			7435.22								
	L7417.59	89.8423		7435.88	-79.93		687804.4					
	L7521.58			7436.66			687803.5	480476.5				
	L7627.01			7437.45	-81.71	10313.86	687802.6					
	L7718.53			7438.13	-82.49	10405.37	687801.8					10405.7
	L7826.65			7438.93			687800.9	480781.5				
	L7920.47			7439.63	-84.21	10607.3	687800.1					
1	18015.36			7440.33			687799.3					
	18127.4			7441.16		10814.22	687798.3					
1	18224.6 18322.86			7441.88	-86.79	10911.41	687797.5	481179.4				
1				7442.6	-87.63	11009.66 11108.99	687796.7					
	18422.2 18522.6			7443.33 7444.07	-88.47 -89.33	11108.99	687795.8 687795	481377 481477.4				
1	18624.07			7444.07			687794.1					
	18726.62			7444.81			687793.2					
	18812.89			7446.18		11413.59	687792.5					
	18917.4			7446.18			687791.6					
1	10317.4	89.85632		7440.34	-92.08		687790.7					
	19111.8			7448.35	-94.33		687790					
1	19111.6			7449.13			687789	482174.1				
	19309.81			7449.78	-96.02		687788.3					
	19419.35	89.86002		7450.57			687787.3					
	19511.45			7451.23		12198.17	687786.6					
	19622.97			7452.03	-98.68		687785.6					
	19716.72			7452.69	-99.47	12403.43	687784.8					
	19811.23			7453.37	-100.27	12497.93	687784	482766				
	19906.49		359.5043	7454.04	-101.08			482861.2				
_												

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: Strata Production Company
WELL NAME & NO.: Oscar 23 11 EDL Fed Com 1H
LOCATION: Sec 23-23S-30E-NMP
COUNTY: Eddy County, New Mexico

COA

H ₂ S	No	C Yes		
Potash / WIPP	None	Secretary	⊙ R-111-P	□ WIPP
Cave / Karst	• Low	Medium	High	Critical
Wellhead	Conventional	Multibowl	O Both	Diverter
Cementing	☐ Primary Squeeze	☐ Cont. Squeeze	☐ EchoMeter	□ DV Tool
Special Req	☐ Break Testing	☐ Water Disposal	▼ COM	□ Unit
Variance	☐ Flex Hose	☐ Casing Clearance	☐ Pilot Hole	☐ Capitan Reef
Variance	☐ Four-String	☐ Offline Cementing	☐ Fluid-Filled	☐ Open Annulus
		Batch APD / Sundry		_

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The **13-3/8** inch surface casing shall be set at approximately 441 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. *Set depth altered per BLM geologist.*
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **24 hours in the Potash Area** or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours

- after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the Choose an item. inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.
 - ❖ In <u>R111 Potash Areas</u> if cement does not circulate to surface on the first two salt protection casing strings, the cement on the 3rd casing salt string must come to surface.
- 3. The minimum required fill of cement behind the 7 inch production casing is:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.

C. PRESSURE EQUIPMENT

1. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **3000 (3M)** psi.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

• The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the

- signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR 3171 and 3172.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County
 Email or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822
 - ☑ Lea CountyCall the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.

- BOP/BOPE test to be conducted per **43 CFR part 3170 Subpart 3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.

- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.

- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR part 3170 Subpart 3172 must be followed.
- e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
 - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to **43 CFR part 3170 Subpart 3172** with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
 - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - e. The results of the test shall be reported to the appropriate BLM office.

- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Strata Production Company

Oscar 23 11 EDL Fed Com #1H

Section 23 T23S, R30E

SHL: 2110' FNL & 385' FWL of Sec 23 BHL: 100' FNL & 330' FWL of Sec 11

Eddy County, NM

HYDROGEN SULFIDE DRILLING OPERATIONS PLAN

I. HYDROGEN SULFIDE TRAINING

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- A. The hazards and characteristics of hydrogen sulfide (H_2S) .
- B. The proper use and maintenance of personal protective equipment and life support systems.
- C. The proper use of H2S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- D. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- A. The effects of H2S on metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- B. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- C. The contents and requirements of the H₂S Drilling Operations Plan and the Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H2S zone (within 3 days or 500 feet) and weekly H2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H2S Drilling Operations Plan and the Public Protection Plan. This plan shall be available at the well site. All personnel will be required to carry documentation that they have received the proper training.

II. <u>H2S SAFETY EQUIPMENT AND SYSTEMS</u>

Note: All H2S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H2S.

A. Well Control Equipment:

All BOP and BOP equipment is shown in the attachments.

Flare line.

Choke manifold with a remotely operated choke as shown in Attachment #5.

Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit.

Auxiliary equipment to include annular preventer, mudgas separator, rotating head.

B. Protective equipment for essential personnel:

Mark II Surviveair 30-minute units located in the dog house and at briefing areas.

C. H2S detection and monitoring equipment:

2 - portable H2S monitor positioned on location for best coverage and response. These units have warning lights and audible sirens when H2S levels of 20 ppm are reached.

D. Visual warning systems:

Caution/Danger signs shall be posted on roads providing direct access to location. Signs will be painted a high visibility yellow with black lettering of sufficient size to be readable at a reasonable distance from the immediate location. Bilingual signs will be used, when appropriate.

Wind Direction indicators as seen in the H2S Well Site Diagram.

- E. Mud Program: The mud program has been designed to minimize the volume of H2S circulated to the surface.
- F. Metallurgy:

All drill strings, casings, tubing, wellhead, blowout preventers, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.

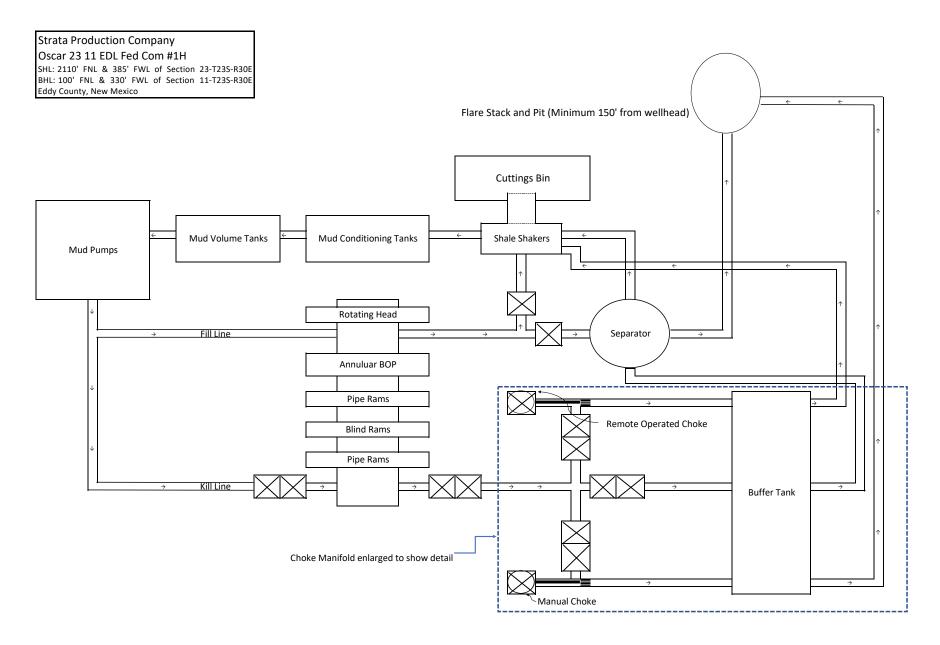
G. Communication:

Company vehicles equipped with cellular telephone.

WARNING

YOU ARE ENTERING AN H₂S AREA AUTHORIZED PERSONNEL ONLY

- 1. BEARDS OR CONTACT LENSES NOT ALLOWED
- 2. HARD HATS REQUIRED
- 3. SMOKING IN DESIGNATED AREAS ONLY
- 4. BE WIND CONSCIOUS AT ALL TIMES
- 5. CK WITH STRATA FOREMAN AT MAIN OFFICE


STRATA PRODUCTION COMPANY

575-622-1127 EXT 18 575-626-7909

EMERGENCY NUMBERS

911 Must have Correct County & State & Directions to your location

Eddy County Sheriff's Office		575-887-7551
Lea County Sherrif's Office	(Lovington)	575-396-3611
New Mexico State Police	(Roswell)	575-622-7200
Eastern NM Medical Center	(Roswell)	575-622-8170
Lea Regional Hospital	(Hobbs)	575-492-5000
Carlsbad Hospital		575-887-4100
Carlsbad Fire Department		575-885-3125
Ambulance Service		575-885-2111
BLM Carlsbad		575-234-5972
BLM Hobbs		575-393-3612
NMOCD Hobbs		575-393-6161
Mosaic Potash Carlsbad		575-887-2871
Strata Office		575-622-1127
Jerry Elgin		575-622-1127 x18
Cheyenne Scharf		307-360-3062
Rygel Russell		575-626-1479
Pilar Mendoza		575-626-8161
Mitch Krakauskas		575-622-1127 x23

STRATA PRODUCTION COMPANY

Oscar 23 11 EDL Fed Com #1H SHL: 2110' FNL & 385' FWL of Sec 23 BHL: 100' FNL & 330' FWL of Sec 11

Sec 23-T23S-R30E Eddy County, NM

BLOWOUT PREVENTER EQUIPMENT DESCRIPTION

All equipment should be at least 3,000 psi WP or higher unless otherwise specified.

- 1. Bell Nipple.
- 2. Hydril bag type preventer.
- 3. Ram type pressure operated blowout preventer with blind rams.
- 4. Flanged spool with one 3" and one 2" (minimum) outlet.
- 5. 2" (minimum) flanged plug or gate valve.
- 6. 2"x 2"x 2" (minimum) flanged.
- 7. 3" gate valve.
- 8. Ram type pressure operated blowout preventer with pipe rams.
- 9. Flanged type casing head with one side outlet.
- 10. 2" threaded (or flanged) plug or gate valve. Flanged on 5000# WP, threaded on 3000# WP or less.
- 11. 3" flanged spacer spool.
- 12. 3"x 2" x 2"x 2" flanged cross.
- 13. 2" flanged plug or gate valve.
- 14. 2" flanged adjustable choke.
- 15. 2" threaded flange.
- 16. 2" XXH Nipple.
- 17. 2" forged steel 90 Ell.
- 18. Cameron (or equal) threaded pressure gauge.
- 19. Threaded flange.
- 20. 2" flanged tee.
- 21. 2" flanged plug or gate valve.
- 22. 2 ½" pipe, 300' to pit, anchored.
- 23. 2 ½" SE valve.
- 24. 2 ½" line to steel pit or separator.

NOTES:

- 1). Items 3, 4, and 8 may be replaced with double ram type preventer with side outlets <u>between</u> the rams.
- 2). The two valves next to the stack on the fill and kill line to be closed unless drill string is being pulled.
- 3). Kill line is for emergency use only. This connection shall not be used for filling.
- 4). Replacement pipe rams and blind rams shall always be on location.
- 5). Only type U, LSW and QRC ram type preventers with secondary seals are acceptable for 5000 psi WP and higher BOP stacks.
- 6). Type E ram-type BOP's with factory modified side outlets may be used on 3000 psi or lower WP BOP stacks.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 284311

CONDITIONS

Operator:	OGRID:
STRATA PRODUCTION CO	21712
P.O. Box 1030	Action Number:
Roswell, NM 882021030	284311
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
ward.rikala	Notify OCD 24 hours prior to casing & cement	11/16/2023
ward.rikala	Will require a File As Drilled C-102 and a Directional Survey with the C-104	11/16/2023
ward.rikala	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string	11/16/2023
ward.rikala	Cement is required to circulate on both surface and intermediate1 strings of casing	11/16/2023
ward.rikala	If cement does not circulate on any string, a CBL is required for that string of casing	11/16/2023
ward.rikala	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system	11/16/2023
ward.rikala	This well can not be produced until the well name is changed per NM OCD naming convention.	11/16/2023