Received by NCD. S1/29/2023 3:25:02 PM U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Sundry Print Reportso 11/29/2023
Well Name: GATO GRANDE 9-4 FED COM	Well Location: T23S / R32E / SEC 9 / SESW /	County or Parish/State:
Well Number: 601H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM98192	Unit or CA Name:	Unit or CA Number:
US Well Number: 3002551815	Well Status: Approved Application for Permit to Drill	Operator: DEVON ENERGY PRODUCTION COMPANY LP

Notice of Intent

Sundry ID: 2762282

Type of Submission: Notice of Intent

Date Sundry Submitted: 11/20/2023

Date proposed operation will begin: 11/20/2023

Type of Action: APD Change Time Sundry Submitted: 08:13

Procedure Description: Engineer Review only - DRILLING CHANGE: Devon Energy Production Co., L.P. (Devon) respectfully requests to change the drilling plan with casing changes and cement loss plan. Please see attachments.

NOI Attachments

Procedure Description

5.500in_20.00___0.361_Wall__P110EC_VAM_SPRINT_TC_SC_20231120081223.pdf

GATO_GRANDE_9_4_FED_COM_601H_20231120081222.pdf

7.625in_29.7ppf_P110EC_SPRINT_FJ_12.9.2020_20231120081223.pdf

9.625_40__J55_20231120081223.pdf

5.5in_20lbf_P110EC_VAM_SPRINT_SF_20231120081223.pdf

Received by OCD: 11/29/2023 3:25:02 PM Well Name: GATO GRANDE 9-4 FED COM	Well Location: T23S / R32E / SEC 9 / SESW /	County or Parish/State: Page 2 of 3
Well Number: 601H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM98192	Unit or CA Name:	Unit or CA Number:
US Well Number: 3002551815	Well Status: Approved Application for Permit to Drill	Operator: DEVON ENERGY PRODUCTION COMPANY LP

Conditions of Approval

Specialist Review

Gato_Grande_9_4_Fed_Com_601H_Sundry_ID_2762282_20231129113514.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: SHAYDA OMOUMI

Name: DEVON ENERGY PRODUCTION COMPANY LP

Title: Regulatory Compliance Associate 3

Street Address: 333 W SHERIDAN AVE

City: OKLAHOMA CITY State: OK

Phone: (405) 235-3611

Email address: SHAYDA.OMOUMI@DVN.COM

State:

Field

Representative Name: Street Address: City: Phone: Email address:

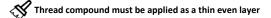
BLM Point of Contact

BLM POC Name: LONG VO BLM POC Phone: 5759885402 Disposition: Approved Signature: Long Vo BLM POC Title: Petroleum Engineer BLM POC Email Address: LVO@BLM.GOV Disposition Date: 11/29/2023

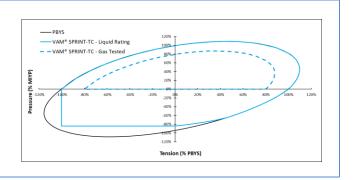
Signed on: NOV 20, 2023 08:13 AM

Zip:

Issued on: 24 Oct. 2022 by Logan Van Gorp


				_	
OD	Weight (lb/ft)	Wall Th.	Grade	API Drift:	Connection
5 1/2 in.	Nominal: 20.00 Plain End: 19.83	0.361 in.	P110 EC	4.653 in.	VAM® SPRINT-TC SC

PIPE PROPERTIES		
Nominal OD	5.500	in.
Nominal ID	4.778	in.
Nominal Cross Section Area	5.828	sqin.
Grade Type	Hig	jh Yield
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Ultimate Tensile Strength	135	ksi


CONNECTION PROPERTIES		
Connection Type		T&C
Connection OD (nom):	5.900	in.
Connection ID (nom):	4.829	in.
Make-Up Loss	3.972	in.
Coupling Length	8.753	in.
Critical Cross Section	5.828	sqin.
Tension Efficiency	100.0	% of pipe
Compression Efficiency	100.0	% of pipe
Internal Pressure Efficiency	100.0	% of pipe
External Pressure Efficiency	100.0	% of pipe

CONNECTION PERFORMA	NCES	
Tensile Yield Strength	729	klb
Compression Resistance	729	klb
Internal Yield Pressure	14,360	psi
Collapse Resistance	12,080	psi
Max. Structural Bending	104	°/100ft
Max. Bending with ISO/API Sealability	30	°/100ft
Max. Load on Coupling Face	290	klb
* 87.5% RBW		

TORQUE VALUES		
Min. Make-up torque	23,000	ft.lb
Opt. Make-up torque	24,000	ft.lb
Max. Make-up torque	25,000	ft.lb
Max. Torque with Sealability (MTS)	39,200	ft.lb
Min. Locked Flank Torque	1,200	ft.lb
Max. Locked Flank Torque	16,800	ft.lb

VAM® SPRINT-TC is a threaded and coupled connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections.

Do you need help on this product? - Remember no one knows VAM[®] like VAM[®]

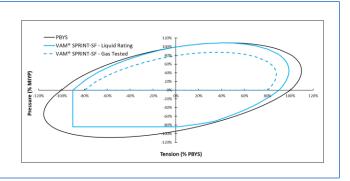
canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

Issued on: 08 Jul. 20	20 by Wesley Ott

OD	Weight	Wall Th.	Grade	API Drift:	Connection
5 1/2 in.	20.00 lb/ft	0.361 in.	P110EC	4.653 in.	VAM [®] SPRINT-SF

PIPE PROPERTIES		
Nominal OD	5.500	in.
Nominal ID	4.778	in.
Nominal Cross Section Area	5.828	sqin.
Grade Type	Hig	h Yield
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Ultimate Tensile Strength	135	ksi
	Nominal OD Nominal ID Nominal Cross Section Area Grade Type Min. Yield Strength Max. Yield Strength	Nominal OD5.500Nominal ID4.778Nominal Cross Section Area5.828Grade TypeHigMin. Yield Strength125Max. Yield Strength140


CONNECTI	ON PROPERTIES	
Connection Type	Semi-Premium Integral Se	emi-Flush
Connection OD (nom):	5.783	in.
Connection ID (nom):	4.717	in.
Make-Up Loss	5.965	in.
Critical Cross Section	5.244	sqin.
Tension Efficiency	90.0	% of pipe
Compression Efficiency	90.0	% of pipe
Internal Pressure Efficiency	100	% of pipe
External Pressure Efficiency	100	% of pipe

CONNECTION PERFORMAN	ICES	
Tensile Yield Strength	656	klb
Compression Resistance	656	klb
Internal Yield Pressure	14,360	psi
Collapse Resistance	12,080	psi
Max. Structural Bending	89	°/100ft
Max. Bending with ISO/API Sealability	30	°/100ft

TORQUE VALUES		
Min. Make-up torque	20,000	ft.lb
Opt. Make-up torque	22,500	ft.lb
Max. Make-up torque	25,000	ft.lb
Max. Torque with Sealability (MTS)	40,000	ft.lb

* 87.5% RBW

VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements.

Do you need help on this product? - Remember no one knows VAM[®] like VAM[®]

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com uk@vamfieldservice.com dubal@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

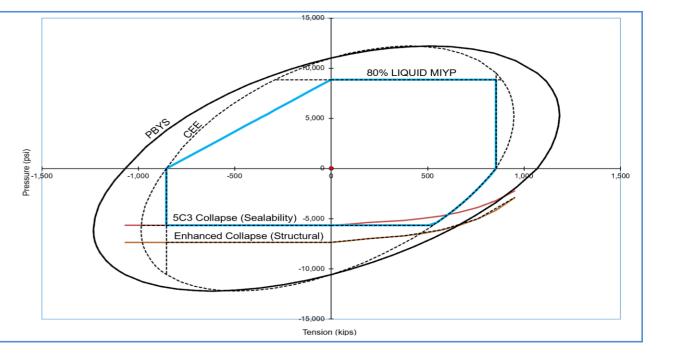
Issued on: 09 Dec. 2020 by Logan Van Gorp

Connection Data Sheet

100 % of pipe

OD	Weight	Wall Th.	Grade	API Drift:	Connection
7 5/8 in.	Nominal: 29.70 lb/ft	0.375 in.	P110EC	6.750 in.	VAM [®] SPRINT-FJ
	Plain End: 29.06 ft/lb				

PIPE PROPERTIES			CONNECTION	PROPERTIES	
Nominal OD	7.625	in.	Connection Type	Semi-Premium Int	egral Flush
Nominal ID	6.875	in.	Connection OD (nom):	7.654	in.
Nominal Cross Section Area	8.541	sqin.	Connection ID (nom):	6.827	in.
Grade Type	Enhanced C	ollapse	Make-Up Loss	4.055	in.
Min. Yield Strength	125	ksi	Critical Cross Section	6.979	sqin.
Max. Yield Strength	140	ksi	Tension Efficiency	80.0	% of pipe
Min. Ultimate Tensile Strength	135	ksi	Compression Efficiency	80.0	% of pipe
			Internal Pressure Efficiency	80.0	% of pipe


External Pressure Efficiency

CONNECTION PERFORMANCES		
Tensile Yield Strength	854	klb
Compression Resistance	854	klb
Max. Internal Pressure	8,610	psi
Structural Collapse Resistance	7,360	psi
Max. Structural Bending	57	°/100ft
Max. Bending with Sealability	10	°/100ft

	TORQUE VALUES		
)	Min. Make-up torque	15,000	ft.lb
)	Opt. Make-up torque	16,500	ft.lb
i	Max. Make-up torque	18,000	ft.lb
i	Max. Torque with Sealability (MTS)	32,000	ft.lb

* 87.5% RBW

VAM® SPRINT-FJ is a semi-premium flush connection designed for shale applications, where maximum clearance and high tension capacity are required for intermediate casing strings.

Do you need help on this product? - Remember no one knows $\text{VAM}^{\textcircled{B}}$ like $\text{VAM}^{\textcircled{B}}$

- canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com
- uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

SěAH 9.625" 40# .395" J-55

Dimensions (Nominal)

Outside Diameter Wall	9.625 0.395	in. in.
Inside Diameter	8.835	in.
Drift	8.750	in.
Weight, T&C	40.000	lbs./ft.
Weight, PE	38.970	lbs./ft.

Performance Properties

Collapse, PE	2570	psi
Internal Yield Pressure at Minimum Yield		
PE	3950	psi
LTC	3950	psi
BTC	3950	psi
Yield Strength, Pipe Body	630	1000 lbs.
Joint Strength		
STC	452	1000 lbs.
LTC	520	1000 lbs.
втс	714	1000 lbs.

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

1. Geologic Formations

TVD of target	12285	Pilot hole depth	N/A
MD at TD:	22738	Deepest expected fresh water	

Basin

	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	1160		
Salt	1454		
Base of Salt	4564		
Delaware	4819		
Cherry Canyon	5966		
Brushy Canyon	6915		
1st Bone Spring Lime	8640		
Bone Spring 1st	9780		
Bone Spring 2nd	10408		
3rd Bone Spring Lime	10946		
Bone Spring 3rd	11706		
wolfcamp	12097		

*H2S, water flows, loss of circulation, abnormal pressures, etc.

	Wt				Casing Interval		Casing Interval	
Hole Size	Csg. Size	(PPF)	Grade	Conn	From (MD)	To (MD)	From (TVD)	To (TVD)
13 1/2	9 5/8	40	J-55	BTC	0	1240	0	1240
8 3/4	7 5/8	29.7	P110	Sprint FJ	0	11846	0	11846
6 3/4	5 1/2	20	P110	Sprint-TC SC	0	22738	0	12285

2. Casing Program (Primary Design)

• All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for contingency casing.

Variance Approval -

3. Cementing Program (Primary Design)

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures

Casing	# Sks	тос	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	650	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	385	Surf	13.0	2.3	2nd State: Bradenhead Squeeze - Lead: Class C Cement + additives
Int I	448	6985	13.2	1.44	Tail: Class H / C + additives
Production	62	9947	9	3.27	Lead: Class H /C + additives
Floduction	688	11947	13.2	1.44	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Prod	10%

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Ţ	уре	*	Tested to:
			Anı	nular	Х	50% of rated working pressure
Int 1	13-5/8"	5M	Bline	d Ram	Х	
Int I	15-5/0	JIVI	Pipe Ram			5M
			Double Ram	Х		
			Other*			
			Annul	ar (5M)	Х	100% of rated working pressure
Production	13-5/8"	10 M	Bline	d Ram	Х	
			Pipe Ram		10M	
			Double Ram			Х
			Other*			
			Annul	ar (5M)		
			Bline	d Ram		
			Pipe	e Ram		
			Doub	le Ram		
			Other*			
N A variance is requested for	A variance is requested for the use of a diverter on the surface casing. See attached for schematic.					
Y A variance is requested to r	A variance is requested to run a 5 M annular on a 10M system					

4. Pressure Control Equipment (Three String Design)

GATO GRANDE 9-4 FED COM 601H

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring
---	-----------------------------

6. Logging and Testing Procedures

Logging, Coring and Testing			
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the		
Х	Completion Report and sbumitted to the BLM.		
	No logs are planned based on well control or offset log information.		
	Drill stem test? If yes, explain.		
	Coring? If yes, explain.		

Additional	logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
Х	CBL	Production casing
Х	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	6708
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren S	Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations
greater than	100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is
encountered	l measured values and formations will be provided to the BLM.
N	H2S is present
Y	H2S plan attached.

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2
- The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments

- X Directional Plan
- Other, describe

Received by UCD: S1/29/2023 3:25:02 PM U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Sundry Print Reports 11/29/2023
Well Name: GATO GRANDE 9-4 FED COM	Well Location: T23S / R32E / SEC 9 / SESW /	County or Parish/State:
Well Number: 601H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM98192	Unit or CA Name:	Unit or CA Number:
US Well Number: 3002551815	Well Status: Approved Application for Permit to Drill	Operator: DEVON ENERGY PRODUCTION COMPANY LP

Notice of Intent

Sundry ID: 2762282

Type of Submission: Notice of Intent

Date Sundry Submitted: 11/20/2023

Date proposed operation will begin: 11/20/2023

Type of Action: APD Change Time Sundry Submitted: 08:13

Procedure Description: Engineer Review only - DRILLING CHANGE: Devon Energy Production Co., L.P. (Devon) respectfully requests to change the drilling plan with casing changes and cement loss plan. Please see attachments.

NOI Attachments

Procedure Description

5.500in_20.00___0.361_Wall__P110EC_VAM_SPRINT_TC_SC_20231120081223.pdf

GATO_GRANDE_9_4_FED_COM_601H_20231120081222.pdf

7.625in_29.7ppf_P110EC_SPRINT_FJ_12.9.2020_20231120081223.pdf

9.625_40__J55_20231120081223.pdf

5.5in_20lbf_P110EC_VAM_SPRINT_SF_20231120081223.pdf

Received by OCD: 11/29/2023 3:25:02 PA Well Name: GATO GRANDE 9-4 FE COM	Well Location: T23S / R32E / SEC 9 / SESW /	County or Parish/State: Page 13 of 36
Well Number: 601H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM98192	Unit or CA Name:	Unit or CA Number:
US Well Number: 3002551815	Well Status: Approved Application for Permit to Drill	Operator: DEVON ENERGY PRODUCTION COMPANY LP

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: SHAYDA OMOUMI Name: DEVON ENERGY PRODUCTION COMPANY LP Title: Regulatory Compliance Associate 3 Street Address: 333 W SHERIDAN AVE City: OKLAHOMA CITY State: OK

Phone: (405) 235-3611

Email address: SHAYDA.OMOUMI@DVN.COM

Field

Representative Name: Street Address: City: State: Phone: Email address:

Zip:

Signed on: NOV 20, 2023 08:13 AM

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

LEASE NO.: NMNM98192	
LOCATION: Section 9, T.23 S., R.32 E., NMPM	
COUNTY: Lea County, New Mexico	

WELL NAME & NO.:	Gato Grande 9-4 Fed Com 601H
SURFACE HOLE FOOTAGE:	250'/S & 1360'/W
BOTTOM HOLE FOOTAGE	20'/N & 780'/W
ATS/API ID:	3002551815
APD ID:	10400064576
Sundry ID:	2762282

COA

H2S	Yes		
Potash	None 🔽		
Cave/Karst Potential	Low		
Cave/Karst Potential	Critical		
Variance	C None	🖸 Flex Hose	C Other
Wellhead	Conventional and Multibow	/Ⅰ	
Other	□ 4 String	Capitan Reef	WIPP
		None	
Other	Pilot Hole	C Open Annulus	
	None 🚽		
Cementing	Contingency Squeeze	Echo-Meter	Primary Cement
	None 🔫	Int 1 🗾	Squeeze
			None 🚽
Special	□ Water	COM	Unit Unit
Requirements	Disposal/Injection		
Special	Batch Sundry		
Requirements			
Special	Break Testing	□ Offline	Casing
Requirements	_	Cementing	Clearance
Variance		_	

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Delaware** formation. As a result, the Hydrogen Sulfide area must meet **43 CFR part 3170 Subpart 3176** requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- The 9-5/8 inch surface casing shall be set at approximately 1261 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. The surface hole shall be 9 7/8 inch in diameter.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 7-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above.

Option 2:

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

a. First stage: Operator will cement with intent to reach the top of the Brushy Canyon at 6915' (448 sxs Class H/C+ additives).

- b. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified. (Squeeze 385 sxs Class C)

Operator has proposed to pump down 9-5/8" X 7-5/8" annulus after primary cementing stage. <u>Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus Or operator shall run a CBL from TD of the 7-5/8" casing to surface after the second stage BH to verify TOC.</u>

Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must run one CBL per Well Pad.

If cement does not reach surface, the next casing string must come to surface.

Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 7-5/8 inch intermediate casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.

Option 2:

Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the **9-5/8** inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **10,000 (10M)** psi. Variance is approved to use a **5000 (5M)** Annular which shall be tested to **5000 (5M)** psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR part 3170 Subpart 3171
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

\boxtimes Eddy County

EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,

BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822

Lea CountyCall the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a

digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after

installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170
 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per **43 CFR**

part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

LVO 11/29/2023

Received by OCD: 11/29/2023 3:25:02 PM

eceivea by OCD. 11/29/202	3 3.43.04 F W			ruge 25 0j.
	UNITED STATES DEPARTMENT OF THE IN UREAU OF LAND MANA	ON Expi	PRM APPROVED <i>I</i> B No. 1004-0137 res: October 31, 2021 INM98192	
Do not use th	Y NOTICES AND REPOF is form for proposals to II. Use Form 3160-3 (AP	drill or to re-enter an		Tribe Name
	IN TRIPLICATE - Other instruct	tions on page 2	7. If Unit of CA/Agreen	nent, Name and/or No.
	as Well Other		8. Well Name and No.	GATO GRANDE 9-4 FED COM/6011
2. Name of Operator DEVON EN	ERGY PRODUCTION COMPAN	9. API Well No. 30025	9. API Well No. 3002551815	
3a. Address 333 WEST SHERID		e) 10. Field and Pool or E	10. Field and Pool or Exploratory Area WC-025 G-08 S243217P/UPPER WOLFCAMP	
4. Location of Well (Footage, Sec., SEC 9/T23S/R32E/NMP	T.,R.,M., or Survey Description)		11. Country or Parish, S LEA/NM	State
12. (CHECK THE APPROPRIATE BOX	K(ES) TO INDICATE NATURE	OF NOTICE, REPORT OR OTH	ER DATA
TYPE OF SUBMISSION		TY	PE OF ACTION	
✓ Notice of Intent	Acidize Alter Casing	Deepen Hydraulic Fracturing	Production (Start/Resume) Reclamation	Water Shut-Off Well Integrity
Subsequent Report	Casing Repair	New Construction Plug and Abandon	Recomplete	Other
Final Abandonment Notice	Convert to Injection	Plug Back	Water Disposal	
the proposal is to deepen direct the Bond under which the work	ionally or recomplete horizontally, will be perfonned or provide the E	give subsurface locations and n Bond No. on file with BLM/BIA	neasured and true vertical depths of . Required subsequent reports must	k and approximate duration thereof. If fall pertinent markers and zones. Attach to filed within 30 days following 60-4 must be filed once testing has been

Engineer Review only - DRILLING CHANGE: Devon Energy Production Co., L.P. (Devon) respectfully requests to change the drilling plan with casing changes and cement loss plan. Please see attachments.

completed. Final Abandonment Notices must be filed only after all requirements, including reclamation, have been completed and the operator has detennined that the site

14. I hereby certify that the foregoing is true and correct. Name (<i>Printed/Typed</i>) SHAYDA OMOUMI / Ph: (405) 235-3611	Regulatory Compliance Associate 3		
(Electronic Submission) Signature	Date 11/20/2023		2023
THE SPACE FOR FEDE	ERAL OR STATE	OFICE USE	
Approved by			
	Title		Date
Conditions of approval, if any, are attached. Approval of this notice does not warrant certify that the applicant holds legal or equitable title to those rights in the subject lead which would entitle the applicant to conduct operations thereon.			
Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for an any false, fictitious or fraudulent statements or representations as to any matter within		willfully to make to any c	lepartment or agency of the United States

(Instructions on page 2)

is ready for final inspection.)

Released to Imaging: 12/15/2023 9:50:39 AM

Page 23 of 36

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

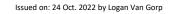
PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.


Response to this request is mandatory.

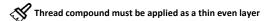
The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

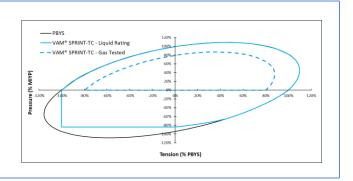
Additional Information

Location of Well

0. SHL: SESW / 250 FSL / 1360 FWL / TWSP: 23S / RANGE: 32E / SECTION: 9 / LAT: 32.3125435 / LONG: -103.6837665 (TVD: 0 feet, MD: 0 feet) PPP: SWSW / 100 FSL / 780 FWL / TWSP: 23S / RANGE: 32E / SECTION: 9 / LAT: 32.312125 / LONG: -103.6856432 (TVD: 12097 feet, MD: 12425 feet) BHL: LOT 4 / 20 FNL / 780 FWL / TWSP: 23S / RANGE: 29E / SECTION: 4 / LAT: 32.3407761 / LONG: -103.6856629 (TVD: 12100 feet, MD: 22391 feet)


OD	Weight (lb/ft)	Wall Th.	Grade	API Drift:	Connection
5 1/2 in.	Nominal: 20.00 Plain End: 19.83	0.361 in.	P110 EC	4.653 in.	VAM® SPRINT-TC SC

PIPE PROPERTIES						
Nominal OD	5.500	in.				
Nominal ID	4.778	in.				
Nominal Cross Section Area	5.828	sqin.				
Grade Type	Hig	h Yield				
Min. Yield Strength	125	ksi				
Max. Yield Strength	140	ksi				
Min. Ultimate Tensile Strength	135	ksi				


CONNECTION PROPERTIES		
Connection Type		T&C
Connection OD (nom):	5.900	in.
Connection ID (nom):	4.829	in.
Make-Up Loss	3.972	in.
Coupling Length	8.753	in.
Critical Cross Section	5.828	sqin.
Tension Efficiency	100.0	% of pipe
Compression Efficiency	100.0	% of pipe
Internal Pressure Efficiency	100.0	% of pipe
External Pressure Efficiency	100.0	% of pipe

CONNECTION PERFORMANCES							
Tensile Yield Strength	729	klb					
Compression Resistance	729	klb					
Internal Yield Pressure	14,360	psi					
Collapse Resistance	12,080	psi					
Max. Structural Bending	104	°/100ft					
Max. Bending with ISO/API Sealability	30	°/100ft					
Max. Load on Coupling Face	290	klb					
* 87.5% RBW							

TORQUE VALUES		
Min. Make-up torque	23,000	ft.lb
Opt. Make-up torque	24,000	ft.lb
Max. Make-up torque	25,000	ft.lb
Max. Torque with Sealability (MTS)	39,200	ft.lb
Min. Locked Flank Torque	1,200	ft.lb
Max. Locked Flank Torque	16,800	ft.lb

VAM® SPRINT-TC is a threaded and coupled connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections.

Do you need help on this product? - Remember no one knows VAM[®] like VAM[®]

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

1. Geologic Formations

TVD of target	12285	Pilot hole depth	N/A
MD at TD:	22738	Deepest expected fresh water	

Basin

	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	1160		
Salt	1454		
Base of Salt	4564		
Delaware	4819		
Cherry Canyon	5966		
Brushy Canyon	6915		
1st Bone Spring Lime	8640		
Bone Spring 1st	9780		
Bone Spring 2nd	10408		
3rd Bone Spring Lime	10946		
Bone Spring 3rd	11706		
wolfcamp	12097		

*H2S, water flows, loss of circulation, abnormal pressures, etc.

GATO GRANDE 9-4 FED COM 601H

		Wt			Casing	Interval	Casing	Interval
Hole Size	Csg. Size	(PPF)	Grade	Conn	From (MD)	To (MD)	From (TVD)	To (TVD)
13 1/2	9 5/8	40	J-55	BTC	0	1240	0	1240
8 3/4	7 5/8	29.7	P110	Sprint FJ	0	11846	0	11846
6 3/4	5 1/2	20	P110	Sprint-TC SC	0	22738	0	12285

2. Casing Program (Primary Design)

• All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for contingency casing.

Variance Approval -

3. Cementing Program (Primary Design)

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures

Casing	# Sks	тос	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	650	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	385	Surf	13.0	2.3	2nd State: Bradenhead Squeeze - Lead: Class C Cement + additives
Int I	448	6985	13.2	1.44	Tail: Class H / C + additives
Production	62	9947	9	3.27	Lead: Class H /C + additives
Froduction	688	11947	13.2	1.44	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Prod	10%

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	T	уре	~	Tested to:
			An	nular	X	50% of rated working pressure
Int 1	13-5/8"	5M	Bline	d Ram	X	
IIIt I	13-3/8	5101	Pipe	e Ram		5M
			Doub	le Ram	X	JIVI
			Other*			
	n 13-5/8"	10M	Annul	ar (5M)	Х	100% of rated working pressure
Production			Blind Ram		Х	
Production			Pipe Ram			10M
			Doub	le Ram	Х	10101
			Other*			
			Annul	lar (5M)		
			Blind Ram Pipe Ram Double Ram			
						1
			Other*			1
N A variance is requested for	the use of a	a diverter on the s	urface casin	g. See attach	ed for schem	atic.
	A variance is requested to run a 5 M annular on a 10M system					

4. Pressure Control Equipment (Three String Design)

GATO GRANDE 9-4 FED COM 601H

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring
---	-----------------------------

6. Logging and Testing Procedures

Logging, Co	Logging, Coring and Testing					
Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the						
Х	Completion Report and sbumitted to the BLM.					
	No logs are planned based on well control or offset log information.					
	Drill stem test? If yes, explain.					
	Coring? If yes, explain.					

Additiona	l logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
Х	CBL	Production casing
Х	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	6708
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren S	Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations
greater than	100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is
encountered	l measured values and formations will be provided to the BLM.
N	H2S is present
Y	H2S plan attached.

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2
- The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments

- X Directional Plan
- Other, describe

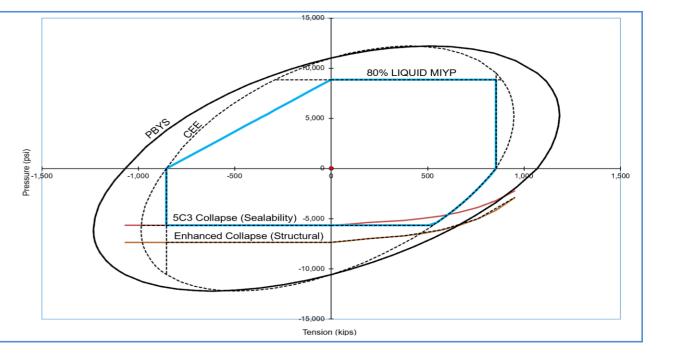
Issued on: 09 Dec. 2020 by Logan Van Gorp

Connection Data Sheet

100 % of pipe

OD	Weight	Wall Th.	Grade	API Drift:	Connection
7 5/8 in.	Nominal: 29.70 lb/ft	0.375 in.	P110EC	6.750 in.	VAM [®] SPRINT-FJ
	Plain End: 29.06 ft/lb				

PIPE PROPERTIES			CONNECTION P	ROPERTIES	
Nominal OD	7.625	in.	Connection Type	Semi-Premium Int	egral Flush
Nominal ID	6.875	in.	Connection OD (nom):	7.654	in.
Nominal Cross Section Area	8.541	sqin.	Connection ID (nom):	6.827	in.
Grade Type	Enhanced C	Collapse	Make-Up Loss	4.055	in.
Min. Yield Strength	125	ksi	Critical Cross Section	6.979	sqin.
Max. Yield Strength	140	ksi	Tension Efficiency	80.0	% of pipe
Min. Ultimate Tensile Strength	135	ksi	Compression Efficiency	80.0	% of pipe
			Internal Pressure Efficiency	80.0	% of pipe


External Pressure Efficiency

CONNECTION PERFORMANCES				
Tensile Yield Strength	854	klb		
Compression Resistance	854	klb		
Max. Internal Pressure	8,610	psi		
Structural Collapse Resistance	7,360	psi		
Max. Structural Bending	57	°/100ft		
Max. Bending with Sealability	10	°/100ft		

	TORQUE VALUES		
כ	Min. Make-up torque	15,000	ft.lb
5	Opt. Make-up torque	16,500	ft.lb
i	Max. Make-up torque	18,000	ft.lb
i	Max. Torque with Sealability (MTS)	32,000	ft.lb

* 87.5% RBW

VAM® SPRINT-FJ is a semi-premium flush connection designed for shale applications, where maximum clearance and high tension capacity are required for intermediate casing strings.

Do you need help on this product? - Remember no one knows $\text{VAM}^{\textcircled{B}}$ like $\text{VAM}^{\textcircled{B}}$

- canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com
- uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

SěAH 9.625" 40# .395" J-55

Dimensions (Nominal)

Outside Diameter	9.625	in.
Wall	0.395	in.
Inside Diameter	8.835	in.
Drift	8.750	in.
Weight, T&C	40.000	lbs./ft.
Weight, PE	38.970	lbs./ft.

Performance Properties

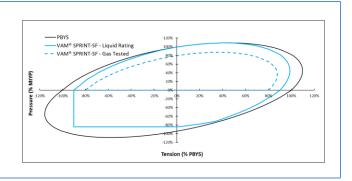
Collapse, PE	2570	psi
Internal Yield Pressure at Minimum Yield		
PE	3950	psi
LTC	3950	psi
втс	3950	psi
Yield Strength, Pipe Body	630	1000 lbs.
Joint Strength		
STC	452	1000 lbs.
LTC	520	1000 lbs.
BTC	714	1000 lbs.

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

Issued on: 08 Jul. 2020 by Wesley Ott	
, ,	

OD	Weight	Wall Th.	Grade	API Drift:	Connection
5 1/2 in.	20.00 lb/ft	0.361 in.	P110EC	4.653 in.	VAM [®] SPRINT-SF

PIPE PROPERTIES		
Nominal OD	5.500	in.
Nominal ID	4.778	in.
Nominal Cross Section Area	5.828	sqin.
Grade Type	Hig	h Yield
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Ultimate Tensile Strength	135	ksi
	Nominal OD Nominal ID Nominal Cross Section Area Grade Type Min. Yield Strength Max. Yield Strength	Nominal OD5.500Nominal ID4.778Nominal Cross Section Area5.828Grade TypeHigMin. Yield Strength125Max. Yield Strength140


CONNECTI	ON PROPERTIES	
Connection Type	Semi-Premium Integral S	emi-Flush
Connection OD (nom):	5.783	in.
Connection ID (nom):	4.717	in.
Make-Up Loss	5.965	in.
Critical Cross Section	5.244	sqin.
Tension Efficiency	90.0	% of pipe
Compression Efficiency	90.0	% of pipe
Internal Pressure Efficiency	100	% of pipe
External Pressure Efficiency	100	% of pipe

CONNECTION PERFORMANCES						
Tensile Yield Strength	656	klb				
Compression Resistance	656	klb				
Internal Yield Pressure	14,360	psi				
Collapse Resistance	12,080	psi				
Max. Structural Bending	89	°/100ft				
Max. Bending with ISO/API Sealability	30	°/100ft				

TORQUE VALUES		
Min. Make-up torque	20,000	ft.lb
Opt. Make-up torque	22,500	ft.lb
Max. Make-up torque	25,000	ft.lb
Max. Torque with Sealability (MTS)	40,000	ft.lb

* 87.5% RBW

VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements.

Do you need help on this product? - Remember no one knows VAM[®] like VAM[®]

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

Gato Grande 9-4 Fed Com 601H

9 5/8		surface csg in a	13 1/2	inch hole.		Design	Factors			Surface		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	40.00		j 55	btc sc	12.49	4.36	0.61	1,261	7	1.02	8.23	50,440
"B"				btc sc				0				0
	w/8	3.4#/g mud, 30min Sfc Csg Test	psig: 1,500	Tail Cmt	does not	circ to sfc.	Totals:	1,261				50,440
Comparison of	f Proposed to	Minimum Required Cem	ent Volumes									
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
13 1/2	0.4887	650	936	616	52	9.00	3855	5M				1.94
urst Frac Grad	ient(s) for Seg	gment(s) A, B = , b All > 0.	70, OK.									
7 5/8		asing inside the	9 5/8	Court!	le!t	Design		1	DO-	Int 1	- 0	Maint
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A" "B"	29.70		p 110	vam sprint fj	2.43	1.14	1.28	11,846	1	2.15	1.91	,
B			. 050				Total-	0				0
	w/8	3.4#/g mud, 30min Sfc Csg Test		ded to achieve a top of	0	ft from su	Totals:	11,846 1261				351,826 overlap.
Hole	Annular	1 Stage	1 Stage	Min	0 1 Stage	Drilling	Calc	Rea'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
8 3/4	0.1005	448	645	1201	-46	10.50	3998	5M				0.55
D V Tool(s):	0.1000	440	6915	1201	-+0	10.00	sum of sx	<u>Σ CuFt</u>				Σ%exces
		30	26				833	1531				27
hv stage % ·							000	1001				
, ,	t yld > 1.35											
Class 'C' tail cmt			7 5/8			Design Fa	ctors			Prod 1		
Tail cmt 5 1/2		asing inside the Grade	7 5/8	Coupling	Body	<u>Design Fa</u> Collapse	<u>ctors</u> Burst	Length	B@s	Prod 1 a-B	a-C	Weight
Tail cmt 5 1/2	Ca	asing inside the	7 5/8 p 110	Coupling vam sprint sf	Body 2.61			Length 22,738	B@s 2		a-C 3.02	•
Tail cmt 5 1/2 Segment	ca #/ft	asing inside the				Collapse	Burst	•	<u> </u>	a-B		•
Tail cmt 5 1/2 Segment "A"	ca #/ft	asing inside the				Collapse	Burst	22,738	<u> </u>	a-B		454,760
Tail cmt 5 1/2 Segment "A" "B"	ca #/ft	asing inside the				Collapse	Burst	22,738 0	<u> </u>	a-B		454,760 0
Tail cmt 5 1/2 Segment "A" "B" "C"	ca #/ft 20.00	asing inside the	p 110	vam sprint sf		Collapse	Burst	22,738 0 0	<u> </u>	a-B	3.02	454,760 0 0 454,760
Tail cmt 5 1/2 Segment "A" "B" "C"	ca #/ft 20.00	asing inside the Grade 3.4#/g mud, 30min Sfc Csg Test	p 110	vam sprint sf	2.61	Collapse	Burst 2.14 Totals:	22,738 0 0 0	<u> </u>	a-B	3.02	454,760 0 0
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole	ca #/ft 20.00 w/8 Annular	asing inside the Grade 3.4#/g mud, 30min Sfc Csg Test The cement v 1 Stage	p 110 psig: 2,703 volume(s) are inten 1 Stage	vam sprint sf 0 ded to achieve a top of Min	2.61 11646 1 Stage	Collapse 1.8 ft from su Drilling	Burst 2.14 Totals: Inface or a Calc	22,738 0 0 22,738 200 Req'd	<u> </u>	a-B	3.02	454,760 0 0 454,760 overlap. Min Dist
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size	ca #/ft 20.00 w/s Annular Volume	asing inside the Grade 3.4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx	p 110 psig: 2,703 volume(s) are inten 1 Stage CuFt Cmt	vam sprint sf 0 ded to achieve a top of Min Cu Ft	2.61 11646 1 Stage % Excess	Collapse 1.8 ft from su Drilling Mud Wt	Burst 2.14 Totals: Irface or a	22,738 0 0 22,738 200	<u> </u>	a-B	3.02	0 0 454,760 overlap. Min Dist Hole-Cplg
Tail cmt 51/2 Segment "A" "B" "C" "D" Hole Size 6 3/4	۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰	asing inside the Grade 3.4#/g mud, 30min Sfc Csg Test The cement v 1 Stage	p 110 psig: 2,703 volume(s) are inten 1 Stage	vam sprint sf 0 ded to achieve a top of Min	2.61 11646 1 Stage	Collapse 1.8 ft from su Drilling	Burst 2.14 Totals: Inface or a Calc	22,738 0 0 22,738 200 Req'd	<u> </u>	a-B	3.02	454,760 0 0 454,760 overlap. Min Dist
5 1/2 Segment "A" "C" "D" Hole Size	۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰	asing inside the Grade 3.4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx	p 110 psig: 2,703 volume(s) are inten 1 Stage CuFt Cmt	vam sprint sf 0 ded to achieve a top of Min Cu Ft	2.61 11646 1 Stage % Excess	Collapse 1.8 ft from su Drilling Mud Wt	Burst 2.14 Totals: Inface or a Calc	22,738 0 0 22,738 200 Req'd	<u> </u>	a-B	3.02	454,760 0 0 454,760 overlap. Min Dist Hole-Cpl
Tail cmt 51/2 Segment "A" "B" "C" "D" Hole Size 6 3/4	۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰	asing inside the Grade 3.4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx	p 110 psig: 2,703 volume(s) are inten 1 Stage CuFt Cmt	vam sprint sf 0 ded to achieve a top of Min Cu Ft	2.61 11646 1 Stage % Excess	Collapse 1.8 ft from su Drilling Mud Wt	Burst 2.14 Totals: Inface or a Calc	22,738 0 0 22,738 200 Req'd	<u> </u>	a-B	3.02	454,760 0 0 454,760 overlap. Min Dist Hole-Cpl
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cm	۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰	asing inside the Grade 3.4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx	p 110 psig: 2,703 volume(s) are inten 1 Stage CuFt Cmt	vam sprint sf 0 ded to achieve a top of Min Cu Ft	2.61 11646 1 Stage % Excess	Collapse 1.8 ft from su Drilling Mud Wt	Burst 2.14 Totals: urface or a Calc MASP	22,738 0 0 22,738 200 Req'd	2	a-B	3.02	454,760 0 0 454,760 overlap. Min Dist Hole-Cpl
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 class 'C' tail cmt #N/A 0 Segment	۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰	asing inside the Grade 3.4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx	p 110 psig: 2,703 volume(s) are inten 1 Stage CuFt Cmt 1193	vam sprint sf 0 ded to achieve a top of Min Cu Ft	2.61 11646 1 Stage % Excess	Collapse 1.8 ft from su Drilling Mud Wt 10.50	Burst 2.14 Totals: urface or a Calc MASP	22,738 0 0 22,738 200 Req'd	2	a-B 3.59	3.02	454,760 0 0 454,760 overlap. Min Dist Hole-Cpl 0.48
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 class 'C' tail cmt #N/A 0	ca #/ft 20.00 w/8 Annular Volume 0.0835 t yld > 1.35	asing inside the Grade 8.4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 750	p 110 psig: 2,703 volume(s) are inten 1 Stage CuFt Cmt 1193	vam sprint sf 0 ded to achieve a top of Min Cu Ft 928 Coupling 0.00	2.61 11646 1 Stage % Excess 29	Collapse 1.8 ft from su Drilling Mud Wt 10.50 Design	Burst 2.14 Totals: urface or a Calc MASP Factors	22,738 0 0 22,738 200 Req'd BOPE	2	a-B 3.59	3.02 ing>	454,760 0 0 454,760 overlap. Min Dist Hole-Cpl 0.48
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 class 'C' tail cmt #N/A 0 Segment	ca #/ft 20.00 w/8 Annular Volume 0.0835 t yld > 1.35	asing inside the Grade 8.4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 750	p 110 psig: 2,703 volume(s) are inten 1 Stage CuFt Cmt 1193	vam sprint sf 0 ded to achieve a top of Min Cu Ft 928 Coupling	2.61 11646 1 Stage % Excess 29	Collapse 1.8 ft from su Drilling Mud Wt 10.50 Design	Burst 2.14 Totals: Inface or a Calc MASP Factors Burst	22,738 0 0 22,738 200 Req'd BOPE	2	a-B 3.59	3.02 ing>	454,760 0 0 454,760 overlap. Min Dist Hole-Cpl 0.48 Weight 0 0
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 class 'C' tail cml #N/A 0 Segment "A"	cc #/ft 20.00 w/8 Annular Volume 0.0835 tyld > 1.35 #/ft	asing inside the Grade 3.4#/g mud, 30min Sfc Csg Test The cement of 1 Stage Cmt Sx 750 Grade 3.4#/g mud, 30min Sfc Csg Test	p 110 p 110 psig: 2,703 volume(s) are inten 1 Stage CuFt Cmt 1193 5 1/2	vam sprint sf 0 ded to achieve a top of Min Cu Ft 928 Coupling 0.00 0.00	2.61 11646 1 Stage % Excess 29 #N/A	Collapse 1.8 ft from su Drilling Mud Wt 10.50 <u>Design I</u> Collapse	Burst 2.14 Totals: urface or a Calc MASP Factors Burst Totals:	22,738 0 0 22,738 200 Req'd BOPE	2	a-B 3.59	3.02 ing> a-C	454,760 0 0 454,760 overlap. Min Dist Hole-Cpl 0.48 Weight 0 0 0
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cmt #N/A 0 Segment "A" "B"	دو #/ft 20.00 w/٤ Annular Volume 0.0835 tyld > 1.35 tyld > 1.35	asing inside the Grade 3.4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 750 Grade 3.4#/g mud, 30min Sfc Csg Test Cmt vol ca	p 110 p 110 psig: 2,703 volume(s) are inten 1 Stage CuFt Cmt 1193 5 1/2 psig: alc below includes f	vam sprint sf 0 ded to achieve a top of Min Cu Ft 928 Coupling 0.00 0.00 this csg, TOC intended	2.61 11646 1 Stage % Excess 29 #N/A #N/A	Collapse 1.8 ft from su Drilling Mud Wt 10.50 <u>Design I</u> Collapse	Burst 2.14 Totals: urface or a Calc MASP Factors Burst Totals: urface or a	22,738 0 0 22,738 200 Req'd BOPE Length 0 0 0 #N/A	2	a-B 3.59	3.02 ing> a-C	454,760 0 0 454,760 overlap. Min Dis: Hole-Cpl 0.48 Weigh 0 0 0 0 0 0 0 0 0 0 0 0
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 class 'C' tail cmt #N/A 0 Segment "A" "B" Hole	ده #/ft 20.00 «/۶ Annular Volume 0.0835 tyld > 1.35 #/ft #/ft	asing inside the Grade 3.4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 750 Grade 3.4#/g mud, 30min Sfc Csg Test Cmt vol ca 1 Stage	p 110 p 110 psig: 2,703 volume(s) are inten 1 Stage CuFt Cmt 1193 5 1/2 psig: alc below includes 1 1 Stage	vam sprint sf 0 ded to achieve a top of Min Cu Ft 928 Coupling 0.00 0.00 this csg, TOC intended Min	2.61 11646 1 Stage % Excess 29 #N/A 1 Stage	Collapse 1.8 ft from su Drilling Mud Wt 10.50 <u>Design I</u> Collapse ft from su Drilling	Burst 2.14 Totals: urface or a Calc MASP Factors Burst Totals: urface or a Calc	22,738 0 0 22,738 200 Req'd BOPE Length 0 0 0 #N/A Req'd	2	a-B 3.59	3.02 ing> a-C	454,760 0 0 454,760 overlap. Min Dist Hole-Cpl 0.48 Weight 0 0 0 overlap. Min Dist
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 Class 'C' tail cm #N/A 0 Segment "A" "B" Hole Size	دو #/ft 20.00 w/٤ Annular Volume 0.0835 tyld > 1.35 tyld > 1.35	asing inside the Grade 3.4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 750 Grade 3.4#/g mud, 30min Sfc Csg Test Cmt vol ca 1 Stage Cmt Sx	p 110 p 110 psig: 2,703 volume(s) are inten 1 Stage CuFt Cmt 1193 5 1/2 5 1/2 spig: alc below includes to 1 Stage CuFt Cmt	vam sprint sf 0 ded to achieve a top of Min Cu Ft 928 Coupling 0.00 0.00 this csg, TOC intended Min Cu Ft	2.61 11646 1 Stage % Excess 29 #N/A 1 Stage % Excess	Collapse 1.8 ft from su Drilling Mud Wt 10.50 <u>Design I</u> Collapse	Burst 2.14 Totals: urface or a Calc MASP Factors Burst Totals: urface or a	22,738 0 0 22,738 200 Req'd BOPE Length 0 0 0 #N/A	2	a-B 3.59	3.02 ing> a-C	454,760 0 0 454,760 overlap. Min Dist Hole-Cpl, 0.48 Weight 0 0 0 0
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 class 'C' tail cmt #N/A 0 Segment "A" "B" Hole	ده #/ft 20.00 «/۶ Annular Volume 0.0835 tyld > 1.35 #/ft #/ft	asing inside the Grade 3.4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 750 Grade 3.4#/g mud, 30min Sfc Csg Test Cmt vol ca 1 Stage	p 110 p 110 psig: 2,703 volume(s) are inten 1 Stage CuFt Cmt 1193 5 1/2 psig: alc below includes 1 1 Stage	vam sprint sf 0 ded to achieve a top of Min Cu Ft 928 Coupling 0.00 0.00 0.00 this csg, TOC intended Min Cu Ft 0	2.61 11646 1 Stage % Excess 29 #N/A 1 Stage	Collapse 1.8 ft from su Drilling Mud Wt 10.50 <u>Design I</u> Collapse ft from su Drilling	Burst 2.14 Totals: urface or a Calc MASP Factors Burst Totals: urface or a Calc	22,738 0 0 22,738 200 Req'd BOPE Length 0 0 0 #N/A Req'd	2	a-B 3.59	3.02 ing> a-C	454,760 0 0 454,760 overlap. Min Dist Hole-Cpl 0.48 Weight 0 0 0 overlap. Min Dist

.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	289598
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created Condition Condition Date By 12/15/2023 pkautz None

.

CONDITIONS

Action 289598