Application for Permit to Drill

AFMSS

U.S. Department of the Interior

Bureau of Land Management

APD Package Report	Date Printed:	
APD ID:	Well Status:	
APD Received Date:	Well Name:	
Operator:	Well Number:	

APD Package Report Contents

- Form 3160-3

- Operator Certification Report
- Application Report
- Application Attachments
 - -- Operator Letter of Designation: 1 file(s)
 - -- Well Plat: 1 file(s)
- Drilling Plan Report
- Drilling Plan Attachments
 - -- Blowout Prevention Choke Diagram Attachment: 1 file(s)
 - -- Blowout Prevention BOP Diagram Attachment: 1 file(s)
 - -- Casing Design Assumptions and Worksheet(s): 3 file(s)
 - -- Proposed horizontal/directional/multi-lateral plan submission: 1 file(s)
 - -- Other Facets: 1 file(s)
- SUPO Report
- SUPO Attachments
 - -- Existing Road Map: 1 file(s)
 - -- Attach Well map: 1 file(s)
 - -- Production Facilities map: 4 file(s)
 - -- Water source and transportation map: 1 file(s)
 - -- Construction Materials source location attachment: 1 file(s)
 - -- Well Site Layout Diagram: 2 file(s)
 - -- Recontouring attachment: 1 file(s)
 - -- Other SUPO Attachment: 4 file(s)
- PWD Report
- PWD Attachments
 - -- None
- Bond Report

- Bond Attachments -- None

DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT 5. Lease Serial No. APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 1a. Type of work: DRILL REENTER 1b. Type of Well: Oil Well Gas Well Other 1c. Type of Completion: Hydraulic Fracturing Single Zone Multiple Zone 2. Name of Operator 9. API Well No. 30-039-31447 3a. Address 3b. Phone No. (include area code) 10. Field and Pool, or Exploratory	Form 3160-3 (June 2015) UNITED STATE	S	FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018				
1a. Type of work: DRILL REENTER 7. If Unit or CA Agreement, Name and N 1b. Type of Well: Oil Well Gas Well Other 1c. Type of Completion: Hydraulic Fracturing Single Zone Multiple Zone 2. Name of Operator 9. API Well No 8. Lease Name and Well No. 3a. Address 3b. Phone No. (include area code) 10. Field and Pool, or Exploratory 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. of Bik. and Survey or J. At surface At proposed prod. zone 12. Counity or Parish 13. State 15. Distance in miles and proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well Iccation to nearest proposed floation* 19. Proposed Depth 20. BLM/BIA Bond No. in file 17. Elevations (Show whether DF, KDB, RT, GL, etc.) 22 Approximate date work will start* 23. Estimated duration 24. Attachments 4. Bond to cover the operations unless envered by an existing bond on file ine? 3. Orabor States are you above). 3. Orabor States are you above. 2. Signature Name (Printed/Tiped) Date 2. Supported by (Signampe) Name (Printed/Tiped) Date Tide Office	DEPARTMENT OF THE I	5. Lease Serial No.					
In Type of Well. DRLE PALLA TEK Ib. Type of Well. DI Well Gas Well Other Ic. Type of Completion: Hydraulic Fracturing Single Zone Multiple Zone 2. Name of Operator 9: APLWEIN No. 30-039-314447 3a. Address 3b. Phone No. (include area code) 10) Field and bool, or Exploratory 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sex. T. R. M. of Blk. and Survey or / A turface 14. Distance in miles and direction from nearest town or post office* 12. County or Parish 13. State 15. Distance from proposed* property or nearest ine, fit, dray) 16. No of acres in lease µ17. Spacing Unit dedicated to this well 18. Distance from proposed. 19. Proposed Depth 20 BL//BIA Bond No. in file 13. State 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 23. A Surface USA paint (file location is on National Forest System Lands, the ispecific information and/or plans as may be required by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file item 20 abov. 24. Attachments 5. Signature Name (Printed/Typed) Date 25. Signature Name (Printed/Typed)	APPLICATION FOR PERMIT TO D	6. If Indian, Allotee or Tribe Name					
te. Type of Completion: Hydraulic Fracturing Single Zone Multiple Zone S. Lease Raine and Well No. 2. Name of Operator 9. APLWell No. [30-039-314447 3a. Address 3b. Phone No. (include area code) 10. Field and Pool, or Exploratory 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. or Bik. and Survey or A A surface 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. or Bik. and Survey or A A surface 14. Distance from proposed prod. zone 16. No of acress in lesse 17. Spacing Unit dedicated to this well property of these line, ft. 15. Distance from proposed rease line, ft. 10. Proposed Depth 20. BLM/BIA Bond No. in file 10. Bistance from proposed conton* to the requirements of Onsbore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162 (as applicable) 14. Bela tertified by a registered surveyor. 4. Bond to cover the operation endose on the subject Plan Gif the location is on National Forest System Lands, the State Teactor certification. 3. Surface USE Plan Gif the location is on National Forest System Lands, the M. 4. Bond to cover the operation endose on the subject lease which would entitle the proportiate forest Strvice Office). 13. State A structure Plan Gif the location is on National Forest System Lands, the M. 5. Sephatrocertification.		7. If Unit or CA Agreement, Name and No.					
3a. Address 3b. Phone No. (include area code) 10 Field and Pool, or Exploratory 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec. T. R. M. of Blk. and Survey or A 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec. T. R. M. of Blk. and Survey or A 14. Distance in miles and direction from nearest town or post office* 12. County or Parish 13. State 15. Distance from proposed* 16. No of acress in lease 17. Spacing Unit dedicated to this well location to nearest trig, unit line, if any) 19. Proposed Depth 20. BLM/BIA Bond No. in file 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 24. Attachments 4. Bond to cover the operations unless covered by an existing bond on file Item 20 above). 5. Operator certification. 6. Such other site specific information and/or plans as may be requested by BLM. 25. Signature Name (Printed/Typed) Date 71tle Office Approved by (Signature) Name (Printed/Typed) Date 71tle Office Office Applicath to operatid throw, arent the contifier throw. Cont			8. Lease Name and Well No.				
4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. of Blk. and Survey or A surface A1 proposed prod. zone 11. Sec., T. R. M. of Blk. and Survey or A surface 14. Distance in miles and direction from nearest town or post office* 12. County or Parish 13. State 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well location to nearest grouperty of lease ine, ft. 19. Proposed Depth 20. BLM/BIA Bond No. in file 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file 19. Proposed Depth 20. BLM/BIA Bond No. in file 23. Estimated duration 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 24. Attachments 4. Bond to cover the operations unless covered by an existing bond on file the applicable) 5. Operator certification. 6. Such other site specific information and/or plans as may be requested by BLM. 25. Signature Name (Printed/Typed) Date Title Office Applicable title to those rights in the subject lease which would entitle the applicant to conduct operations different set. Approved by (Signature) Name (Printed/Typed) Date Title Office <t< td=""><td>2. Name of Operator</td><td></td><td>9. API Well No. 30-039-31447</td></t<>	2. Name of Operator		9. API Well No. 30-039-31447				
At surface 14. Distance in miles and direction from nearest town or post office* 12. County or Parish 13. State 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well property or lease line, ft. 19. Proposed Depth 20. BLM/BIA Bond No. in file 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file 19. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 24. Attachments	3a. Address	3b. Phone No. (include area code)	10. Field and Pool, or Exploratory				
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig, unit line, if any) 16. No of acres in lease 17. Spacing Unit dedicated to this well 18. Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 19. Proposed Depth 20. BLM/BIA Bond No. in file 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 24. Attachments 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the SUPO must be filed with the appropriate Forest Service Office) 4. Bond to cover the operations and/or plans as may be requested by BLM. 25. Signature Name (<i>Printed/Typed</i>) Date Title Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle th applications of approval, if any, are attached.	At surface	with any State requirements.*)	11. Sec., T. R. M. or Blk. and Survey or Area				
location to nearest property or lease line, ft. (Also to nearest drig, unit line, if any) 19. Proposed Depth 20. BLM/BIA Bond No. in file 18. Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 19. Proposed Depth 20. BLM/BIA Bond No. in file 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 24. Attachments 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162 (as applicable) 4. Bond to cover the operations unless covered by an existing bond on file tem 20 above). 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file tem 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the SUPO must be filed with the appropriate Forest Service Office) 6. Such other site specific information and/or plans as may be requested by BLM. 25. Signature Name (<i>Printed/Typed</i>) Date Title Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached.	14. Distance in miles and direction from nearest town or post off	ice*	12. County or Parish 13. State				
18. Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 19. Proposed Depth 20. BLM/BIA Bond No. in file 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 24. Attachments 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162 (as applicable) 4. Bond to cover the operations unless covered by an existing bond on file Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the SUPO must be filed with the appropriate Forest Service Office). 4. Bond to cover the operations unless covered by an existing bond on file Item 20 above). 25. Signature Name (<i>Printed/Typed</i>) Date Title Office Approved by (<i>Signature</i>) Name (<i>Printed/Typed</i>) Date Title Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applications of approval, if any, are attached.	location to nearest property or lease line, ft.	16. No of acres in lease 17. Spaci	ng Unit dedicated to this well				
24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the SUPO must be filed with the appropriate Forest Service Office) 4. Bond to cover the operations unless covered by an existing bond on file Item 20 above). 5. Operator certification. 5. Operator certification. 6. Such other site specific information and/or plans as may be requested by BLM. 25. Signature Name (<i>Printed/Typed</i>) Title Office Approved by (<i>Signature</i>) Name (<i>Printed/Typed</i>) Date Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached. Equilable of the subject lease which would entitle the applicant to conduct operations thereon.	18. Distance from proposed location* to nearest well, drilling, completed,	19. Proposed Depth 20, BLM	/BIA Bond No. in file				
The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162 (as applicable) 1. Well plat certified by a registered surveyor. 2. A Drilling Plan. 3. A Surface Use Plan (if the location is on National Forest System Lands, the SUPO must be filed with the appropriate Forest Service Office). 25. Signature 26. Signature Name (Printed/Typed) Date Title Approved by (Signature) Name (Printed/Typed) Date Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached.	21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22. Approximate date work will start*	23. Estimated duration				
(as applicable) 4. Bond to cover the operations unless covered by an existing bond on file Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the SUPO must be filed with the appropriate Forest Service Office) 4. Bond to cover the operations unless covered by an existing bond on file Item 20 above). 5. Operator certification. 6. Such other site specific information and/or plans as may be requested by BLM. 25. Signature Name (Printed/Typed) Date Title Title Approved by (Signature) Name (Printed/Typed) Date Title Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached.		24. Attachments					
2. A Drilling Plan. Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the SUPO must be filed with the appropriate Forest Service Office). 5. Operator certification. 6. Such other site specific information and/or plans as may be requested by BLM. 25. Signature Name (Printed/Typed) Date Title Approved by (Signature) Name (Printed/Typed) Date Title Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached.		f Onshore Oil and Gas Order No. 1, and the l	Hydraulic Fracturing rule per 43 CFR 3162.3-3				
Title Approved by (Signature) Name (Printed/Typed) Date Title Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached.	 A Drilling Plan. A Surface Use Plan (if the location is on National Forest System) 	m Lands, the e), Experimental Structure (1990) Item 20 above). 5. Operator certification. 6. Such other site specific info					
Approved by (Signature) Name (Printed/Typed) Date Title Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached.	25. Signature	Name (Printed/Typed)	Date				
Title Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached.	Title						
Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached.	Approved by (Signature)	Name (Printed/Typed)	Date				
applicant to conduct operations thereon. Conditions of approval, if any, are attached.			I				
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or age	applicant to conduct operations thereon.	nt holds legal or equitable title to those rights	in the subject lease which would entitle the				
of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.							

(Continued on page 2)

.

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

Additional Operator Remarks

Location of Well

0. SHL: SWSW / 916 FSL / 390 FWL / TWSP: 23N / RANGE: 6W / SECTION: 3 / LAT: 36.248698 / LONG: -107.464489 (TVD: 0 feet, MD: 0 feet) PPP: SESE / 188 FSL / 312 FEL / TWSP: 23N / RANGE: 6W / SECTION: 4 / LAT: 36.246676 / LONG: -107.466893 (TVD: 5501 feet, MD: 6056 feet) BHL: LOT 4 / 453 FNL / 232 FWL / TWSP: 23N / RANGE: 6W / SECTION: 4 / LAT: 36.259361 / LONG: -107.482957 (TVD: 5521 feet, MD: 12673 feet)

BLM Point of Contact

Name: CHRISTOPHER P WENMAN Title: Natural Resource Specialist Phone: (505) 564-7727 Email: cwenman@blm.gov

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

Conditions of Approval

Operator:	Enduring Resources IV, LLC
Well Names:	Haynes Canyon Unit 428H Pad: HCU 428H, 430H, 440H, 442H
	Haynes Canyon Unit 432H Pad: HCU 432H, 434H, 436H, 438H,
	Northeast Lybrook COM 176H Pad: NELCA 262H and 263H
Legal Location:	Sec 3 & Sec 6 Township 23N, Range 6W, Rio Arriba County
NEPA Log Number:	DOI-BLM-NM-F010-2023-0067-EA
Inspection Date:	June 27, 2023
Lease Number:	NMNM-028733, NMNM-142111X, NMSF-078362, NMNM-132829

The following conditions of approval will apply to Haynes Canyon Unit 428H, 432H, and NE Lybrook Com 176H Reoccupation (NELCA 262H) Oil and Gas Wells Project, and other associated facilities, unless a particular Surface Managing Agency or private surface owner has supplied to Bureau of Land Management and the operator a contradictory environmental stipulation. The failure of the operator to comply with these requirements may result in an assessment or civil penalties pursuant to 43 CFR 3163.1 or 3163.2.

Disclaimers: BLM's approval of the APD does not relieve the lessee and operator from obtaining any other authorizations that may be required by the BIA, Navajo Tribe, State, or other jurisdictional entities.

Copy of Plans: A complete copy of the APD package, including Surface Use Plan of Operations, Bare Soil Reclamation Plan, Plan of Development (if required), Conditions of Approval, Cultural Resource Record of Review, Cultural Resources Compliance Form (if required), and Project Stipulations (if required) shall be at the project area at all times and available to all persons.

Review of NEPA documents: It is the responsibility of the operator to follow all the design features, best management practices, and mitigation measures as contained in the Environmental Assessment DOI-BLM-NM-F010-2023-0067-EA, which contains additional design features and best management practices that must be followed. Copies of the EA, Decision Record, and Finding of No Significant Impact may be obtained from the BLM FFO public room, or online at: EplanningUi (blm.gov).

Best Management Practices (BMPs): Farmington Field Office established environmental Best Management Practices (BMP's) will be followed during construction and reclamation of well site pads, access roads, pipeline ties, facility placement or any other surface disturbing activity associated with this project. Bureau wide standard BMP's are found in the Gold Book, Fourth Edition-Revised 2007 and at

<u>http://www.blm.gov/wo/st/en/prog/energy/oil_and_gas/best_management_practices.html</u>. Farmi ngton Field Office BMPs are integrated into the Environmental Assessment, Surface Use Plan of Operations, Bare Soil Reclamation Plan, and COAs.

Construction, Production, Facilities, Reclamation & Maintenance

Construction & Reclamation Notification: The operator or their contractor will contact the Bureau of Land Management, Farmington Field Office Environmental Protection Staff (505) 564-7600 or by email, at least 48 hours prior to any construction or reclamation on this project.

Production Facilities: design and layout of facilities will be deferred until an onsite with BLM-FFO surface protection staff is conducted to determine the best location. Enduring Resources or their contractor will contact the Bureau of Land Management, Farmington Field Office, Surface, and Environmental Protection Staff (505) 564-7600 to schedule a facility layout onsite.

Staking: The holder shall place slope stakes, culvert location and grade stakes, and other construction control stakes as deemed necessary by the authorized officer to ensure construction in accordance with the plan of development. If stakes are disturbed, they shall be replaced before proceeding with construction.

Weather: No construction or routine maintenance activities shall be performed during periods when the soil is too wet to adequately support construction equipment. If such equipment creates ruts more than 6 inches deep, the soil shall be deemed too wet.

Stockpile of Soil: The top 6 inches of soil material will be stripped and stockpiled in the construction zones around the pad [construction zones may be restricted or deleted to provide resource avoidance]. The stockpiled soil will be free of brush and tree limbs, trunks, and roots. The stockpiled soil material will be spread on the reclaimed portions of the pad [including the reserve pit, cut and fill slopes] prior to re-seeding. Spreading shall not be done when the ground or topsoil is frozen or wet.

Painting of Equipment: Within 90 days of installation, all above ground structures not subject to safety requirements shall be painted by the Holder to blend with the natural color of the landscape. A reflective material may be used to reduce hazards that may occur when such structures are near roads. Otherwise, the paint use shall be a non-glare, non-reflective, non-chalking color of: Federal 595a-34127 (Juniper Green).

Storage Tanks: All open top permanent production or storage tanks regardless of diameter made of fiberglass, steel, or other material used for the containment of oil, condensate, produced water and or other production waste shall be screened, netted, or otherwise covered to protect migratory birds and other wildlife from access.

Compressors: Compressor units on this well location not equipped with a drip pan for containment of fluids shall be lined with an impervious material at least 8 mils thick and a 12-inch berm. The compressor will be painted to match the well facilities. Any variance to this will be approved by the Authorized Officer (AO). Noise mitigation may be required at the time of compressor installation.

Culverts: Silt Traps/Bell Holes will be built upstream of all culvert locations.

Driving Surface Area: All activities associated within the construction, operation, maintenance, and abandonment of the well location is limited to areas approved in the APD or ROW permit. During the production of the well, vehicular traffic is limited to the daily driving surface area established during interim reclamation construction operations. This area typically forms a keyhole or teardrop driving surface from which all production facilities may be serviced or inspected. A v-type ditch will be constructed on the outside of the driving surface to further define the driving surface and to deter vehicular traffic from entering onto the interim reclamation areas.

Contouring of Cut and Fill Slopes: The interim cut and fill slope grade shall be as close to the original contour as possible. To obtain this ratio, pits and slopes shall be back sloped into the pad during interim reclamation. Only subsurface soil and material shall be utilized in the contouring of the cut and fill slopes. Under no circumstances shall topsoil be utilized as substrate material for contouring of cut and fill slopes.

Maintenance: In order to perform subsequent well operations, right-of-way (ROW) operations, or install new/additional equipment, it may be necessary to drive, park, and operate on restored, interim vegetation within the previously disturbed area. This is generally acceptable provided damage is promptly repaired and reclaimed following use. Where vehicular travel has occurred as a "convenience" and interim reclamation/vegetation has been compromised, immediate remediation of the affected areas is required. Additionally, where erosion has occurred and compromised the reclamation of the well location, the affected area must be promptly remediated so that future erosion is prevented, and the landform is stabilized.

Layflat Lines: Layflat lines used for development of the wells may be on the ground for a maximum of 6 months and shall be retrieved immediately following completion operations. If the layflat lines are needed for longer than 6 months a Sundry NOI shall be submitted to the BLM FFO for review and decision that includes a rationale for the time extension.

The holder or its contractors will notify the BLM of any fires and comply with all rules and regulations administered by the BLM concerning the use, prevention and suppression of fires on federal lands, including any fire prevention orders that may be in effect at the time of the permitted activity. The holder or its contractors may be held liable for the cost of fire suppression, stabilization and rehabilitation. In the event of a fire, personal safety will be the first priority of the holder or its contractors.

"Hotwork" and Construction Affecting Fire Safety: The holder or its contractors shall:

- 1. Operate all internal and external combustion engines (including off-highway vehicles, chainsaws, generators, heavy equipment, etc.) with a qualified spark arrester. Qualified spark arresters are maintained and not modified, and meet the Society of Automotive Engineers (SAE) Recommended Practices J335 or J350. Refer to 43 CFR §8343.1.
 - a. Refueling of any combustible engine equipment must be minimum of 3 meters away from any ignition source (open flame, smoking, etc.).
- 2. Maintain and clean all equipment regularly to remove flammable debris buildup and prevent fluid leaks that can lead to ignitions.

- Carry at least one shovel or wildland fire hand tool (combi, Pulaski, McLeod) per person working, minimum 5 gallons of water, and a fire extinguisher rated at a minimum as ABC - 10 pound on each piece of equipment and each vehicle.
- 4. When conducting "hotwork" such as, but not limited to welding, grinding, cutting, sparkproducing work with metal, work that creates hot material or slag; choose an area large enough to contain all hot material that is naturally free of all flammable vegetation or remove the flammable vegetation in a manner compliant with the permitted activity. If adequate clearance cannot be made, wet an area large enough to contain all hot material prior to the activity and periodically throughout the activity to reduce the risk of wildfire ignition. Regardless of clearance, maintain readiness to respond to an ignition at all times. In addition, keep one hand tool per person and at least one fire extinguisher ready, minimum, as specified earlier (#3) during this activity.
- 5. Keep apprised of current and forecasted weather at <u>https://www.weather.gov/abq/forecasts-fireweather-links</u> and fire conditions at <u>www.wfas.net</u> and take additional fire precautions when fire danger is rated High or greater. Red Flag Warnings are issued by the National Weather Service when fire conditions are most dangerous, and ignitions escape control quickly. Extra precautions are required during these warnings such as additional water, designate a fire watch/patrol and tools. If work is being conducted in an area that is not clear of vegetation within 50 feet of work area; then, when fire danger is rated High or greater and 1. There is a predicted Red Flag warning for your area or 2. If winds are predicted to be greater than 10 mph, stop all hotwork activities for the day at 10 am.
- 6. In the event of an ignition, initiate fire suppression actions in the work area to prevent fire spread to or on federally administered lands. If a fire spreads beyond the capability of workers with the stipulated tools, all will cease fire suppression action and leave the area immediately via pre-identified escape routes.
- 7. Call **911** or the **Taos Interagency Fire Dispatch Center (575-758-6208)** immediately of the location and status of any fire.

AND

Notify the respective BLM field office for which the permit or contract was issued immediately of the incident.

Farmington Field Office at 505-564-7600

Taos Field Office at 575-758-8851

Noxious Weeds

Inventory the proposed site for the presence of noxious and invasive weeds. Noxious weeds are those listed on the New Mexico Noxious Weed List and USDA's Federal Noxious Weed List. The New Mexico Noxious Weed List or USDA's Noxious Weed List can be updated at any time and should be regularly check for any changes. Invasive species may or may not be listed as a noxious weed but have been identified to likely cause economic or environmental harm or harm to human health. The following noxious weeds have been identified as occurring

on lands within the boundaries of the Farmington Field Office (FFO). There are numerous invasive species on the FFO such as Russian thistle (*Salsola spp.*) and field bindweed (*Convolvulus arvensis*).

Russian Knapweed (Centaurea repens)	Musk Thistle (Carduss nutans)
Bull Thistle (Cirsium vulgare)	Canada Thistle (Cirsium arvense)
Scotch Thistle (Onopordum acanthium)	Hoary Cress (Cardaria draba)
Perennial Pepperweed (Lepdium latiofolfium)	Halogeton (Halogeton glomeratus)
Spotted Knapweed (Centaurea maculosa)	Dalmation Toadflax (Linaria genistifolia)
Yellow Toadflax (Linaria vulgaris)	Camelthorn (Alhagi pseudalhagi)
African Rue (Penganum harmala)	Salt Cedar (Tamarix spp.)
Diffuse Knapweed (Centaurea diffusa)	Leafy Spurge (Euphorbia esula)

- a. Identified weeds will be treated prior to new surface disturbance if determined by the FFO Noxious Weed Coordinator. A Pesticide Use Proposal (PUP) must be submitted to and approved by the FFO Noxious Weed Coordinator prior to application of pesticide. The FFO Noxious Weeds Coordinator (505-564-7600) can provide assistance in the development of the PUP.
- b. Construction equipment should be inspected and cleaned prior to coming onto the work site. This is especially important on vehicles from out of state or if coming from a weed-infested site.
- c. Fill dirt or gravel may be needed for excavation, road construction/repair, or for spill remediation. If fill dirt or gravel will be required, the source shall be noxious weed free and approved by the FFO Noxious Weed Coordinator.
- d. The site shall be monitored for the life of the project for the presence of noxious weeds (includes maintenance and construction activities). If weeds are found the FFO Coordinator shall be notified at (505) 564-7600 and provided with a Weed Management Plan and if necessary, a Pesticide Use Proposal (PUP). The FFO Coordinator can provide assistance developing the Weed Management Plan and/or the Pesticide Use Proposal.
- e. Only pesticides authorized for use on BLM lands would be used and applied by a licensed pesticide applicator. The use of pesticides would comply with federal and state laws and used only in accordance with their registered use and limitations. (Company Name)'s weed-control contractor would contact the BLM-FFO prior to using these chemicals.
- f. Noxious/invasive weed treatments must be reported to the FFO Noxious Weed Coordinator. A Pesticide Application Record (PAR) is required to report any mechanical, chemical, biological or cultural treatments used to eradicate, and/or control noxious or invasive species. Reporting will be required quarterly and annually or per request from the FFO Noxious Weed Coordinator.

Bare ground vegetation trim-out: If bare ground vegetation treatment (trim-out) is desired around facility structures, the operator will submit a bare ground/trim-out design included in their Surface Use Plan of Operations (SUPO). The design will address vegetation safety concerns of the operator and BLM while minimizing impacts to interim reclamation efforts. The design must include what structures to be treated and buffer distances of trim-out. Pesticide use

for vegetation control around anchor structures is not approved. If pesticides are used for bare ground trim-out, the trim-out will not exceed three feet from the edge of any eligible permanent structure (i.e., well heads, fences, tanks). Additional distance/areas may be requested and must be approved by the FFO authorized officer. The additional information below must also be provided to the FFO:

- a. Pesticide use for trim out will require a Pesticide Use Proposal (PUP). A PUP is required *prior* to any treatment and must be approved by the FFO Noxious Weed Coordinator. Only pesticides authorized for use on BLM lands would be used and applied by a licensed pesticide applicator. The use of pesticides would comply with federal and state laws and used only in accordance with their registered use and limitations. Enduring Resources' weed-control contractor would contact the BLM-FFO prior to using these chemicals and provide Pesticide Use Reports (PURs) post treatment.
- A Pesticide Use Report (PUR) or a Biological Use Report (BUR) is required to report any chemical, or biological treatments used to eradicate, or control vegetation on site. Reporting will be required quarterly and annually or per request from the FFO Noxious Weed Coordinator.

Paleontology

Any paleontological resource discovered by the Operator, or any person working on his behalf, on public or Federal land shall be immediately reported to the Authorized Officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the Authorized Officer to determine appropriate actions to prevent the loss of significant scientific values. The Holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the Authorized Officer after consulting with the Holder.

Visual Resources

Dark Sky COAs need to be applied to existing lighting, which is not dark sky friendly and to any additional lights added as part of pad expansion. All permanent lighting will use full cutoff luminaires, which are fully shielded (i.e., not emitting direct or indirect light above an imaginary horizontal plane passing through the lowest part of the light source). All permanent lighting will be pointed straight down at the ground in order to prevent light spill to the sides. All permanent lighting will be 4000° Kelvin or less with 3000° Kelvin preferred. Warmer light colors are less noticeable by humans and cause less impact to wildlife. All permanent lighting will be controlled by a switch and/or timer which allows the lights to be turned on when workers are on location during dark periods but will keep the lights off the majority of the time.

Wildlife Resources

Wildlife: The proposed project intersects a known mule deer migration route. Big game habitat areas and hunting activities are valuable land uses which support BLM's multiple-use land management objectives. To maintain reasonable concurrence with surface use closure

requirements in other recognized mule deer migration areas in the BLM FFO, no surface use will take place December 1 – March 1.

Hazards: Wildlife hazards associated with the proposed project would be fenced, covered, and/or contained in storage tanks, as necessary.

Migratory Bird: Migratory nest survey stipulations. Once drilling and completion activities are complete, any open water that could be harmful to birds and wildlife. must be covered, screened, or netted to prevent entry.

Threatened, Endangered or Sensitive Species: If, in operations the operator/holder discovers any Threatened, Endangered, or Sensitive species, work in the vicinity of the discovery will be suspended and the discovery promptly reported to the BLM-FFO T&E specialist at (505) 564-7600. The BLM-FFO will then specify what action is to be taken. Failure to notify the BLM-FFO about a discovery may result in civil or criminal penalties in accordance with The Endangered Species Act (as amended).

Noise: This well is located within a designated Noise Sensitive Area (NSA). Once proposed project activities are complete, noise from pumpjack, compressor or other facilities cannot exceed 48.6 db at edge of Bald eagle ACEC core area. Any compressor that emits noise > 48.6db may require a 'noise wall' to deflect sound away from ACEC...

Nesting: If a bird nest containing eggs or young is encountered in the path of construction the operator will cease construction and consult with BLM to determine appropriate actions.

Livestock Grazing: Cattle are in allotment between 5/1 and 10/31. Industry may need to coordinate with permittee if concerns of livestock in area during construction.

Soil, Air, Water

Land Farming: No excavation, remediation or closure activities will be authorized without prior approval, on any federal or Indian mineral estate, federal surface, or federal ROW. A Sundry Notice (DOI, BLM Form 3160-5) must be submitted with an explanation of the remediation or closure plan for on-lease actions.

Emission Control Standard: Compressor engines 300 horsepower or less used during well production must be rated by the manufacturer as emitting NOx at 2 grams per horsepower hour or less to comply with the New Mexico Environmental Department, Air Quality Bureau's guidance.

Waste Disposal: All fluids (i.e., scrubber cleaners) used during washing of production equipment, including compressors, will be properly disposed of to avoid ground contamination, or hazard to livestock or wildlife.

Cultural Resources

Non-Permitted Disturbance: Construction, construction maintenance or any other activity outside the areas permitted by the APD will require additional approval and may require a new cultural survey and clearance.

Employee Education: All employees of the project, including the Project Sponsor and its contractors and sub-contractors will be informed that cultural sites are to be avoided by all personnel, personal vehicles, and company equipment. They will also be notified that it is illegal to collect, damage, or disturb cultural resources, and that such activities are punishable by criminal and or administrative penalties under the provisions of the Archaeological Resources Protection Act (16 U.S.C. 470aa-mm) when on federal land and the New Mexico Cultural Properties Act NMSA 1978 when on state land.

Discovery of Cultural Resources in the Absence of Monitoring: Discovery of Cultural Resources in the Absence of Monitoring: If, in its operations, operator/holder discovers any previously unidentified historic or prehistoric cultural resources, then work in the vicinity of the discovery will be suspended and the discovery promptly reported to BLM Field Manager. BLM will then specify what action is to be taken. If there is an approved "discovery plan" in place for the project, then the plan will be executed. In the absence of an approved plan, the BLM will evaluate the significance of the discovery in accordance with 36 CFR Section 800.13, in consultation with the appropriate State or Tribal Historic Preservation Officer(s) and Indian tribe(s) that might attach religious and cultural significance to the affected property, or in accordance with an approved program alternative. Minor recordation, stabilization, or data recovery may be performed by BLM or a third party acting on its behalf, such as a permitted cultural resources consultant. If warranted, more extensive archaeological or alternative mitigation, likely implemented by a permitted cultural resources consultant, may be required of the operator/holder prior to allowing the project to proceed. Further damage to significant cultural resources will not be allowed until any mitigations determined appropriate through the agency's Section 106 consultation are completed. Failure to notify the BLM about a discovery may result in civil or criminal penalties in accordance with the Archeological Resources Protection Act (ARPA) of 1979, as amended, the Native American Graves Protection and Repatriation Act (NAGRPA) of 1990, as amended, and other applicable laws.

Discovery of Cultural Resources during Monitoring: If monitoring confirms the presence of previously unidentified historic or prehistoric cultural resources, then work in the vicinity of the discovery will be suspended and the monitor will promptly report the discovery to the BLM Field Manager. BLM will then specify what action is to be taken. If there is an approved "discovery plan" in place for the project, then the plan will be executed. In the absence of an approved plan, the BLM will evaluate the significance of the discovery in accordance with 36 CFR Section 800.13, in consultation with the appropriate State or Tribal Historic Preservation Officer(s) and Indian tribe(s) that might attach religious and cultural significance to the affected property, or in accordance with an approved program alternative. Minor recordation, stabilization, or data recovery may be performed by BLM or a third party acting on its behalf, such as a permitted cultural resources consultant. If warranted, more extensive archaeological or alternative mitigation, likely implemented by a permitted cultural resources consultant, may be required of the operator/holder prior to

allowing the project to proceed. Further damage to significant cultural resources will not be allowed until any mitigations determined appropriate through the agency's Section 106 consultation are completed.

Damage to Sites: If, in its operations, operator/holder damages, or is found to have damaged any previously documented or undocumented historic or prehistoric cultural resources, excluding "discoveries" as noted above, the operator/holder agrees at his/her expense to have a permitted cultural resources consultant prepare a BLM approved damage assessment and/or data recovery plan. The operator/holder agrees at his/her expense to implement a **mitigation** that the agency finds appropriate given the significance of the site, which the agency determines in consultation with the appropriate State or Tribal Historic Preservation Officer(s) and Indian tribe(s) that might attach religious and cultural significance to the affected property. **This mitigation may entail execution of the data recovery plan by a permitted cultural resources consultant and/or alternative mitigations.** Damage to cultural resources may result in **civil or criminal penalties in accordance with the Archeological Resources Protection Act (ARPA) of 1979, as amended, the Native American Graves Protection and Repatriation Act (NAGRPA) of 1990, as amended, and other applicable laws.**

See below additional cultural stipulations.

IN-HOUSE ARCHEOLOGICAL SURVEY DETERMINATION FARMINGTON FIELD OFFICE

NM-210-2024-003

Date Submitted: 10/17/2023.

Case No./Name: Haynes Canyon 428H Well Pad Company: Enduring Type of Case: Well Pad

IS A CULTURAL RESOURCE INVENTORY REQUIRED?

Proposal involves non-Federal lands.

Proposal is within an existing right-of-way.

 \boxtimes Proposal is along an existing road.

Proposal is within an existing disturbed area.

The well pad is to be expanded feet to the

Other: This new well pad will be re-permitted and drilled on an existing location.

Please see the attached base map.

Submitted by: Kim A. on behalf of Chris W.

CULTURAL RESOURCE SPECIALIST RECOMMENDATIONS

Inventory for cultural resources is required.

 \boxtimes Inventory for cultural resources **is not** required for the reason(s) indicated below.

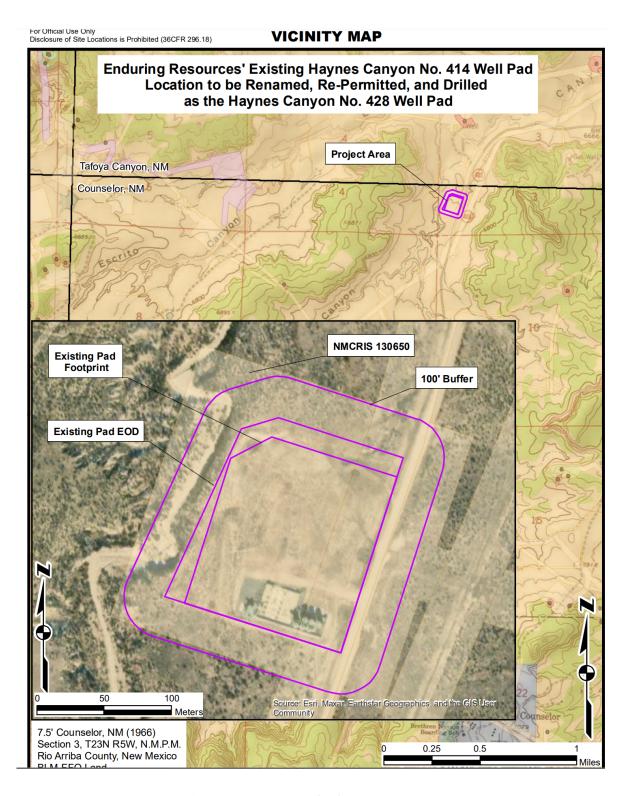
Previous natural ground disturbance has modified the surface so extensively that the likelihood of finding cultural properties is negligible (e.g., within a floodplain), or

Human activity has created a new land surface to such an extent as to eradicate traces of cultural properties, or

Existing Class II or equivalent inventory or environmental data are sufficient to indicate that there is no likelihood of finding a National Register or eligible property, or

Inventory at the Class III level of intensity has previously been performed and records adequately documenting the location, methods, and results of the inventory are available in report no. NMCRIS No 130650

or


Natural environmental characteristics are unfavorable to the presence of cultural properties (such as recent landslide or rock falls), or

The nature of the proposed action is such that no impact can be expected on significant cultural resources (e.g. land use will not require any surface disturbing action, e.g., aerial spraying, hand application of chemicals, travel on existing roads, etc.), or

Other: Recommended by: Kin Adams

Date: 10/17/2023

Archaeologist Cultural Notes (if any, e.g., conditions, stipulations, etc.):

Released to Imaging: 12/28/2023 5:06:15 PM Approval Date: 12/05/2023

<u>BLM Report Number:</u> 2024(I)002F <u>USGS Map:</u> Counselor & Tafoya Canyon, NM <u>Activity Code</u>: 1310 <u>NMCRIS No:</u> 153816

CULTURAL RESOURCE RECORD OF REVIEW

BUREAU OF LAND MANAGEMENT FARMINGTON FIELD OFFICE

1. Description of Report/Project:

<u>Project Name:</u> Haynes Canyon Unit 432H Reoccupation Well Pad, Access Road Upgrade, Pipeline, Layflat, and Temporary Use Areas.

Project Sponsor: Enduring Resources.

<u>Arch. Firm & Report No.</u>: Division of Conservation Archaeology; DCA Report No. 23-DCA-027. <u>Location</u>: T23N R6W Section 3.

Well Footages: 1,773' FNL, 303' FWL.

<u>Split Estate:</u> No.

Project Dimensions:400 ft x 400 ft – well pad (500 ft x 500 ft w/ a 50 ft construction zone).1,571 ft x 30 ft - access road upgrade.3,384 ft x 40 ft – pipeline/layflat.248 ft x 25 ft – TUA.323 ft x 25 ft – TUA.Sites Located:LA39919/NM-01-31536 (NRHP- Eligible; Avoided).

Determination: No Effect to Historic Properties.

2. Field Check: No

3. Cultural ACEC: No.

4. Sensitive Cultural Area: No.

5. Recommendation: *PROCEED WITH ACTION:* <u>X</u> *STIPULATIONS ATTACHED:* <u>X</u>

6. Reviewer / Archaeologist: Kim Adams **Date**: 10/23/2023

Note: I alt of this project was previously inventoried.												
Report Summary	BLM	Other	Total									
Acres Inventoried	14.93	0.00	14.93									
Sites Recorded	0	0	0									
Prev. Recorded Sites	1	0	1									
Sites Avoided	1	0	1									
Sites Treated	0	0	0									

Note: Part of this project was previously inventoried.

Discovery of Cultural Resources in the Presence or Absence of Monitoring: If any previously unidentified historic or prehistoric cultural resources are discovered during construction or project operations, work in the vicinity of the discovery will be suspended and the discovery will promptly be reported to the BLM Field Manager.

Note: If there are questions about these stipulations, contact Kim Adams (BLM) at 505.564.7683 or kadams@blm.gov. Or Geoffrey Haymes (BLM) at 505.564.7684 or ghaymes@blm.gov

1

CULTURAL RESOURCE STIPULATIONS Farmington Field Office BLM Report Number: 2024(I)002F

Project Name: Haynes Canyon Unit 432H Reoccupation Well Pad, Access Road Upgrade, Pipeline, Layflat, and Temporary Use Area. Project Sponsor: Enduring Resources.

1. SITE PROTECTION AND EMPLOYEE EDUCATION:

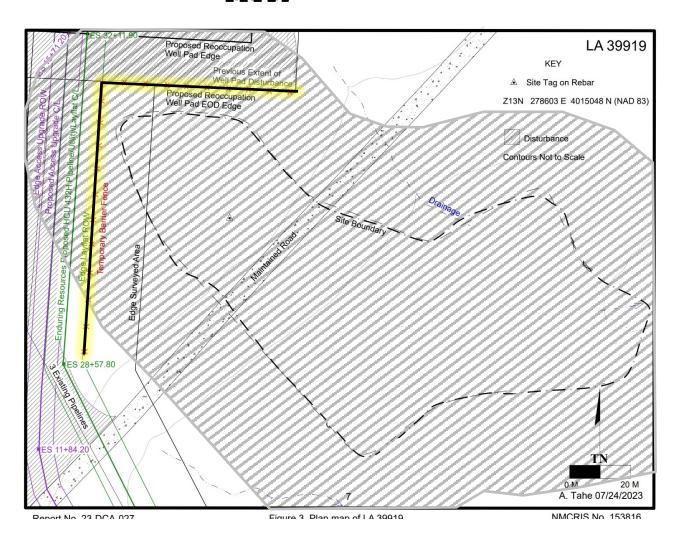
All employees of the project, including the Project Sponsor and its contractors and sub-contractors will be informed that cultural sites are to be avoided by all personnel, personal vehicles and company equipment. They will also be notified that it is illegal to collect, damage, or disturb cultural resources, and that such activities are punishable by criminal and or administrative penalties under the provisions of the Archaeological Resources Protection Act (16 U.S.C. 470aa-mm) when on federal land and the New Mexico Cultural Properties Act NMSA 1978 when on state land.

2. ARCHAEOLOGICAL MONITORING IS REQUIRED:

A copy of these stipulations will be supplied to the archeological monitor at least two working days prior to the start of construction activities. No construction activities, including vegetation removal, may begin before the arrival of the archaeological monitor. The monitor will:

- Ensure that the site protection barrier is located as indicated on the attached map in the vicinity of LA39919.
- Inform BLM-FFO archaeologists that monitoring will be occurring within 24 hours of the scheduled monitoring.
- Observe all construction activities within 100'of LA39919.
- Submit a report of the monitoring activities within 30 days of completion of monitoring unless other arrangements are made with the BLM. These stipulations must be attached to the report.

3. SITE PROTECTION BARRIER:


- The temporary site protection barrier will be erected prior to the start of construction. The barrier will consist of upright wooden survey lath spaced no more than 10 feet apart and marked with blue flagging or blue paint. The barrier will remain in place through reclamation and reseeding and shall be promptly removed after reclamation.
- The barrier will be placed as indicated on the attached map. •
- There will be no surface-disturbing activities or vehicle traffic past the barrier.

Note: If there are questions about these stipulations, contact Kim Adams (BLM) at 505.564.7683 or kadams@blm.gov.

For Official Use Only: Disclosure of site locations prohibited (43 CFR 7.18) CULTURAL RESOURCE STIPULATIONS Farmington Field Office BLM Report Number: 2024(I)002F

<u>Project Name:</u> Haynes Canyon Unit 432H Reoccupation Well Pad, Access Road Upgrade, Pipeline, Layflat, and Temporary Use Area. <u>Project Sponsor:</u> Enduring Resources.

MONITOR CONSTRUCTION = TEMPORARY FENCING =

BLM Report Number: 2024(I)005F USGS Map: Crow Mesa West, NM Activity Code: 1310 NMCRIS No: 154100

CULTURAL RESOURCE RECORD OF REVIEW

BUREAU OF LAND MANAGEMENT FARMINGTON FIELD OFFICE

1. Description of Report/Project:

<u>Project Name:</u> Northeast Lybrook Com No 262H **Reoccupation Well**. <u>Project Sponsor:</u> Enduring Resources. <u>Arch. Firm & Report No.:</u> Division of Conservation Archaeology; DCA Report No. 22-DCA-060. <u>Location:</u> T23N R6W Section 6.

Well Footages: See plats

Split Estate: No.

Project Dimensions: 300 ft x 500 ft – well pad (400 ft x 600 ft w/ a 50 ft construction zone).

Sites Located: LA64876/NM-01-34748 (NRHP- Eligible; Update; Avoided; No Further Work). LA175265/NM-210-47840 (NRHP- Eligible; Update; Avoided). LA178266/NM-210-48243 (NRHP- Eligible; Update; Avoided).

Determination: No Effect to Historic Properties.

2. Field Check: No

3. Cultural ACEC: No.

- 4. Sensitive Cultural Area: No.
- **5. Recommendation:** *PROCEED WITH ACTION:* <u>X</u> *STIPULATIONS ATTACHED:* <u>X</u>
- 6. Reviewer / Archaeologist: Kim Adams Date: 11/6/2023

Note: The majority of this project was previously inventoried (see NMCRIS No 129798).

Report Summary	BLM	Other	Total
Acres Inventoried	0.74	0.00	0.74
Sites Recorded	0	0	0
Prev. Recorded Sites	3	0	3
Sites Avoided	3	0	3
Sites Treated	0	0	0

Discovery of Cultural Resources in the Presence or Absence of Monitoring: If any previously unidentified historic or prehistoric cultural resources are discovered during construction or project operations, work in the vicinity of the discovery will be suspended and the discovery will promptly be reported to the BLM Field Manager.

Note: If there are questions about these stipulations, contact Kim Adams (BLM) at 505.564.7683 or kadams@blm.gov.

CULTURAL RESOURCE STIPULATIONS Farmington Field Office BLM Report Number: 2024(I)005F

<u>Project Name:</u> Northeast Lybrook Com No 262H **Reoccupation Well**. <u>Project Sponsor:</u> Enduring Resources.

1. SITE PROTECTION AND EMPLOYEE EDUCATION:

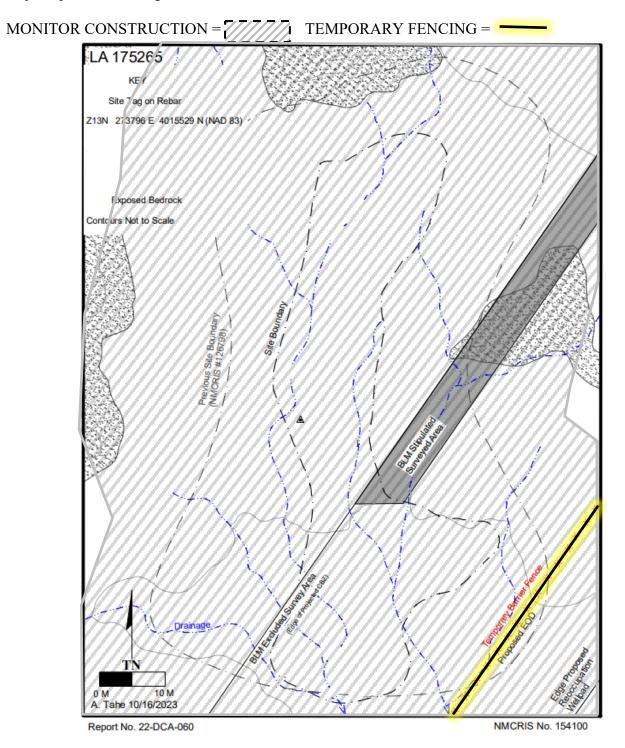
All employees of the project, including the Project Sponsor and its contractors and sub-contractors will be informed that cultural sites are to be avoided by all personnel, personal vehicles and company equipment. They will also be notified that it is illegal to collect, damage, or disturb cultural resources, and that such activities are punishable by criminal and or administrative penalties under the provisions of the Archaeological Resources Protection Act (16 U.S.C. 470aa-mm) when on federal land and the New Mexico Cultural Properties Act NMSA 1978 when on state land.

2. ARCHAEOLOGICAL MONITORING IS REQUIRED:

A copy of these stipulations will be supplied to the archeological monitor at least two working days prior to the start of construction activities. No construction activities, including vegetation removal, may begin before the arrival of the archaeological monitor.

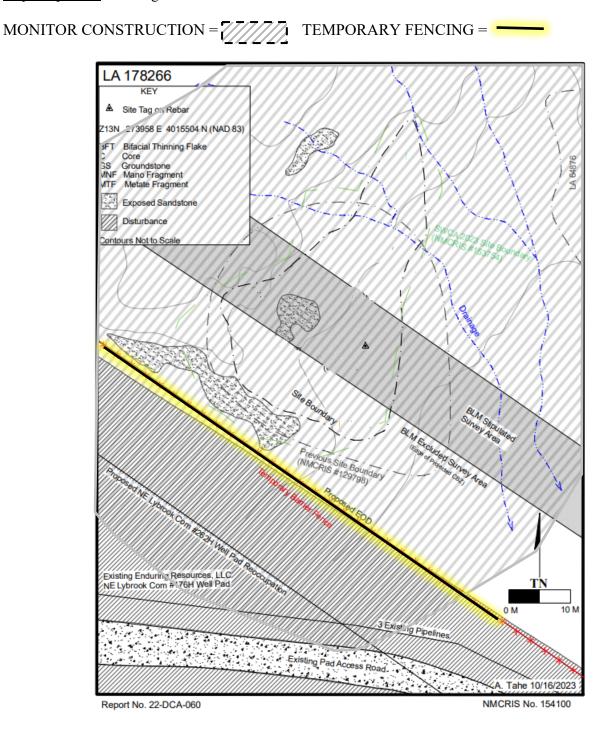
The monitor will:

- Ensure that the site protection barriers are located as indicated on the attached maps in the vicinity of LA175265, & LA178266.
- Inform BLM-FFO archaeologists that monitoring will be occurring within 24 hours of the scheduled monitoring.
- Observe all construction activities within 100'of LA175265, & LA178266.
- Submit a report of the monitoring activities within 30 days of completion of monitoring unless other arrangements are made with the BLM. These stipulations must be attached to the report.


3. SITE PROTECTION BARRIER:

- The temporary site protection barriers will be erected prior to the start of construction. The barriers will consist of upright wooden survey lath spaced no more than 10 feet apart and marked with blue flagging or blue paint. The barriers will remain in place through reclamation and reseeding and shall be promptly removed after reclamation.
- The barriers will be placed as indicated on the attached map.
- There will be no surface-disturbing activities or vehicle traffic past the barriers.

Note: If there are questions about these stipulations, contact Kim Adams (BLM) at 505.564.7683 or kadams@blm.gov.


For Official Use Only: Disclosure of site locations prohibited (43 CFR 7.18) CULTURAL RESOURCE STIPULATIONS Farmington Field Office BLM Report Number: 2024(I)005F

<u>Project Name:</u> Northeast Lybrook Com No 262H **Reoccupation Well**. <u>Project Sponsor:</u> Enduring Resources.

For Official Use Only: Disclosure of site locations prohibited (43 CFR 7.18) CULTURAL RESOURCE STIPULATIONS Farmington Field Office BLM Report Number: 2024(I)005F

<u>Project Name:</u> Northeast Lybrook Com No 262H **Reoccupation Well**. <u>Project Sponsor:</u> Enduring Resources.

United States Department of the Interior

BUREAU OF LAND MANAGEMENT Farmington District Office 6251 College Blvd, Suite A Farmington, New Mexico 87402

In Reply Refer To: 3162.3-1(NMF0110)

* ENDURING RESOURCES LLC
#440H HAYNES CANYON UNIT
Lease: NMNM130875 Agreement: NMNM105770949
SH: SW¼SW¼ Section 3, T. 23N., R. 6W. Rio Arriba County, New Mexico
BH: Lot 4 Section 11, T. 23N., R. 6W. Rio Arriba County, New Mexico
* Above Data Required on Well Sign

GENERAL REQUIREMENTS FOR OIL AND GAS OPERATIONS ON FEDERAL AND INDIAN LEASES

The following special requirements apply and are effective when checked:

- A. \boxtimes Note all surface/drilling conditions of approval attached.
- B. ☐ The required wait on cement (WOC) time will be a minimum of 500 psi compressive strength at 60 degrees. Blowout preventor (BOP) nipple-up operations may then be initiated
- C. ☐ Test all casing strings below the conductor casing to .22 psi/ft. of casing string length or 1500 psi, whichever is greater, but not to exceed 70% of the minimum internal yield (burst) for a minimum of 30 minutes. If pressure declines more than 10 percent in 30 minutes, corrective action shall be taken.
- D. Communitization Agreement covering the acreage dedicated to this well must be filed for approval with the Bureau of Land Management, New Mexico State Office, Reservoir Management Group, 301 Dinosaur Trail, Santa Fe, New Mexico 87508. The effective date of the agreement must be **prior** to any sales.
- E. The use of co-flex hose is authorized contingent upon the following: **1.** From the BOP to the choke manifold: the co-flex hose must be hobbled on both ends and saddle to prevent whip.
 - **2.** From the choke manifold to the discharge tank: the co-flex hoses must be as straight as practical, hobbled on both ends and anchored to prevent whip.

3. The co-flex hose pressure rating must be at least commensurate with approved BOPE.

INTERIOR REGION 7 • UPPER COLORADO BASIN

COLORADO, NEW MEXICO, UTAH, WYOMING

I. <u>GENERAL</u>

- A. Full compliance with all applicable laws and regulations, with the approved Permit to drill, and with the approved Surface Use and Operations Plan is required. Lessees and/or operators are fully accountable for the actions of their contractors and subcontractors. Failure to comply with these requirements and the filing of required reports will result in strict enforcement pursuant to 43 CFR 3163.1 or 3163.2.
- B. Each well shall have a well sign in legible condition from spud date to final abandonment. The sign should show the operator's name, lease serial number, or unit name, well number, location of the well, and whether lease is Tribal or Allotted, (See 43 CFR 3162.6(b)).
- C. A complete copy of the approved Application for Permit to Drill, along with any conditions of approval, shall be available to authorized personnel at the drill site whenever active drilling operations are under way.
- D. For Wildcat wells only, a drilling operations progress report is to be submitted, to the BLM-Field Office, weekly from the spud date until the well is completed and the Well Completion Report is filed. The report should be on $8-1/2 \times 11$ inch paper, and each page should identify the well by; operator's name, well number, location and lease number.
- E. As soon as practical, notice is required of all blowouts, fires and accidents involving life-threatening injuries or loss of life. (See NTL-3A).
- F. BOP equipment (except the annular preventer) shall be tested utilizing a test plug to full working pressure for 10 minutes. No bleed-off of pressure is acceptable. (See 43 CFR 3172.6(b)(9)(ii)).
- G. The operator shall have sufficient weighting materials and lost circulation materials on location in the event of a pressure kick or in the event of lost circulation. (See 43 CFR 3172.8(a)).
- H. The flare line(s) discharge shall be located not less than 100 feet from the well head, having straight lines unless turns are targeted with running tees, and shall be positioned downwind of the prevailing wind direction and shall be anchored. The flare system shall have an effective method for ignition. Where noncombustible gas is likely or expected to be vented, the system shall be provided supplemental fuel for ignition and to maintain a continuous flare. (See 43 CFR 3172.8(b)(7)).
- I. Prior approval by the BLM-Authorized Office (Drilling and Production Section) is required for variance from the approved drilling program and before commencing plugging operations, plug back work, casing repair work, corrective cementing operations, or suspending drilling operations indefinitely. Emergency approval may be obtained orally, but such approval is contingent upon filing of a Notice of Intent sundry within three business days. Any changes to the approved plan or any questions regarding drilling operations should be directed to BLM during regular business hours at 505-564-7600. Emergency program changes after hours should be directed to Virgil Lucero at 505-793-1836.
- J. The Inspection and Enforcement Section (I&E), phone number (505-564-7750) is to be notified at least 24 hours in advance of BOP test, spudding, cementing, or plugging operations so that a BLM representative may witness the operations.

- K. Unless drilling operations are commenced within two years, approval of the Application for Permit to Drill will expire. A written request for a two-year extension may be granted if submitted prior to expiration.
- L. From the time drilling operations are initiated and until drilling operations are completed, a member of the drilling crew or the tool pusher shall maintain rig surveillance at all times, unless the well is secured with blowout preventers or cement plugs.
- M. If for any reason, drilling operations are suspended for more than 90 days, a written notice must be provided to this office outlining your plans for this well.
- N. **Commingling**: No production (oil, gas, and water) from the subject well should start until Sundry Notices (if necessary) granting variances from applicable regulations as related to commingling and off-lease measurement are approved by this office.

II. <u>REPORTING REQUIREMENTS</u>

- A. For reporting purposes, all well Sundry notices, well completion and other well actions shall be referenced by the appropriate lease, communitization agreement and/or unit agreement numbers.
- B. The following reports shall be filed with the BLM-Authorized Officer online through AFMSS 2 within 30 days after the work is completed.
 - 1. Provide complete information concerning.
 - a. Setting of each string of casing. Show size and depth of hole, grade and weight of casing, depth set, depth of all cementing tools that are used, amount (in cubic feet) and types of cement used, whether cement circulated to surface and all cement tops in the casing annulus, casing test method and results, and the date work was done. Show spud date on first report submitted.
 - b. Intervals tested, perforated (include size, number and location of perforations), acidized, or fractured; and results obtained. Provide date work was done on well completion report and completion sundry notice.
 - c. Subsequent Report of Abandonment, show the way the well was plugged, including depths where casing was cut and pulled, intervals (by depths) where cement plugs were replaced, and dates of the operations.
 - 2. Well Completion Report will be submitted with 30 days after well has been completed.
 - a. Initial Bottom Hole Pressure (BHP) for the producing formations. Show the BHP on the completion report. The pressure may be: 1) measured with a bottom hole bomb, or; 2) calculated based on shut in surface pressures (minimum seven day buildup) and fluid level shot.
 - 3. Submit a cement evaluation log if cement is not circulated to surface.
- C. Production Startup Notification is required no later than the 5th business day after any well begins production on which royalty is due anywhere on a lease site or allocated to a lease site or resumes production in the case of a well which has been off production for more than 90 days. The operator shall notify the Authorized Officer by letter or Sundry Notice, Form 3160-5, or orally to be followed

by a letter or Sundry Notice, of the date on which such production has begun or resumed. CFR 43 3162.4-1(c).

III. DRILLER'S LOG

The following shall be entered in the daily driller's log: 1) Blowout preventer pressures tests, including test pressures and results, 2) Blowout preventer tests for proper functioning, 3) Blowout prevention drills conducted, 4) Casing run, including size, grade, weight, and depth set, 5) How pipe was cemented, including amount of cement, type, whether cement circulated to surface, location of cementing tools, etc., 6) Waiting on cement time for each casing string, 7) Casing pressure tests after cementing, including test pressure and results, and 8) Estimated amounts of oil and gas recovered and/or produced during drill stem test.

IV. GAS FLARING

Gas produced from this well may not be vented or flared beyond an initial, authorized test period of * Days or 50 MMCF following its (completion)(recompletion), whichever first occurs, without the prior, written approval of the authorized officer. Should gas be vented or flared without approval beyond the test period authorized above, you may be directed to shut-in the well until the gas can be captured or approval to continue venting or flaring as uneconomic is granted. You shall be required to compensate the lessor for the portion of the gas vented or flared without approval which is determined to have been avoidably lost.

*30 days, unless a longer test period is specifically approved by the authorized officer. The 30-day period will commence upon the first gas to surface.

V. SAFETY

- A. All rig heating stoves are to be of the explosion-proof type.
- B. Rig safety lines are to be installed.
- C. Hard hats and other Personal Protective Equipment (PPE) must be utilized.

VI. <u>CHANGE OF PLANS OR ABANDONMENT</u>

A. Any changes of plans required to mitigate unanticipated conditions encountered during drilling operations, will require approval as set forth in Section 1.F.

- B. If the well is dry, it is to be plugged in accordance with 43 CFR 3162.3-4, approval of the proposed plugging program is required as set forth in Section 1.F. The report should show the total depth reached, the reason for plugging, and the proposed intervals, by depths, where cement plugs are to be placed, type of plugging mud, etc. A Subsequent Report of Abandonment is required as set forth in Section II.B.1c.
- C. Unless a well has been properly cased and cemented, or properly plugged, the drilling rig must not be moved from the drill site without prior approval from the BLM-Authorized Officer.

Received by OCD: 12/5/2023 9:23:12 PM

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT Operator Certification Data Report

Operator

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: DANIELLE GAVITO Signed on: 09/28/202													
Title: Permit Agent													
Street Address: 9446 CLEARMONT STREET													
City: THORNTON	State: CO	Zip: 80229											
Phone: (303)524-4651													
Email address: DGAVITO@CDHC	ONSULT.COM												
Field													
Representative Name:													
Street Address:													
City: S	tate:	Zip:											
Phone:													
Email address:													

Received by OCD: 12/5/2023 9:23:12 PM

WAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400093966

Operator Name: ENDURING RESOURCES LLC Well Name: HAYNES CANYON UNIT Well Type: OIL WELL

Submission Date: 09/29/2023

Well Number: 440H Well Work Type: Drill Highlighted data reflects the most recent changes <u>Show Final Text</u>

Application Data

Section 1 - General

APD ID:	10400093966	Tie to previous NOS?	Submission Date: 09/29/2023
BLM Office	: Farmington	User: DANIELLE GAVI	TO Title: Permit Agent
Federal/Ind	dian APD: FED	Is the first lease penet	rated for production Federal or Indian? FED
Lease num	ber: NMNM130875	Lease Acres:	
Surface ac	cess agreement in place	? Allotted?	Reservation:
Agreemen	t in place? YES	Federal or Indian agree	ement: FEDERAL
Agreemen	t number: NMNM105770	049	
Agreemen	t name: Haynes Canyon l	Init	
Keep appli	cation confidential? Y		
Permitting	Agent? YES	APD Operator: ENDUR	RING RESOURCES LLC
Operator le	etter of	Operator_Certification_09062023	_20230906163846.pdf

Operator Info

Operator Organization Name: ENDURING RESOURCES LLC Operator Address: 200 ENERGY COURT Operator PO Box: Operator City: FARMINGTON State: NM Operator Phone: (505)497-8574 Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO	Master Development Plan name:							
Well in Master SUPO? NO	Master SUPO name:							
Well in Master Drilling Plan? NO	Master Drilling Plan name:							
Well Name: HAYNES CANYON UNIT	Well Number: 440H	Well API Number:						
Field/Pool or Exploratory? Exploratory	Field Name:	Pool Name:						

12/05/2023

Zip: 87401

Operator Name: ENDURING RESOURCES LLC Well Name: HAYNES CANYON UNIT

Well Number: 440H

Is the proposed well in an area containing other mineral resources? USEABLE WATER, NATURAL GAS, OIL

Is the proposed well in a Helium production are	a? N Use Existing Well Pad? Y	New surface disturbance? N
Type of Well Pad: MULTIPLE WELL	Multiple Well Pad Name: Haynes Canyon Unit	Number: 414H
Well Class: HORIZONTAL	Number of Legs: 1	
Well Work Type: Drill		
Well Type: OIL WELL		
Describe Well Type:		
Well sub-Type: EXPLORATORY (WILDCAT)		
Describe sub-type:		
Distance to town: 57 Miles Distance	e to nearest well: 20 FT Dist	ance to lease line: 390 FT
Reservoir well spacing assigned acres Measure	ement: 439.54 Acres	
Well plat: Haynes_Canyon_Unit440H_Revis	ed_Well_PlatsSIGNED_2023092	8131612.pdf
Well work start Date: 01/01/2024	Duration: 30 DAYS	
Section 3 - Well Location Table		

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Survey number: 15269

Vertical Datum: NAVD88

Reference Datum: GROUND LEVEL

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this
SHL	916	FSL	390	FW	23N	6W	3	Aliquot	36.24869		RIO	1		F	NMNM		0	0	N
Leg				L				SWS	8	107.4644 89	BA	MEXI CO	MEXI CO		28733	3			
#1								W		00									
KOP	916	FSL	390	FW	23N	6W	3	Aliquot	36.24869		RIO	1		F	NMNM	180	510	490	N
Leg				L				SWS	8			1	MEXI		28733	3	0	0	
#1								W		89	BA	со	со						
PPP	188	FSL	312	FEL	23N	6W	4	Aliquot	36.24667	-	RIO	NEW	NEW	F	NMNM	120	605	550	Y
Leg								SESE	6			MEXI	MEXI		130875	2	6	1	
#1-1										93	BA	со	со						

Operator Name: ENDURING RESOURCES LLC

Well Name: HAYNES CANYON UNIT

Well Number: 440H

	Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this
	EXIT Leg	453	FNL	232	FW L	23N	6W	4	Lot 4	36.25936 1	- 107.4829			NEW MEXI	F	NMNM 130875	118 2	126 73	552 1	Y
	_09 #1								-		57	BA	со	со						
ſ	BHL	453	FNL	232	FW	23N	6W	4	Lot	36.25936			1		F	NMNM	118	126	552	Y
	Leg								4	1	107.4829 57	ARRI BA	MEXI CO	MEXI CO		130875	2	73	1	
	#1										57		00	00						

Operator Certification:

I hereby certify that I, or someone under my direct supervision, has inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of State and Federal laws applicable to this operation; that the statements made in this APD package, to the best of my knowledge, are true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

Executed this 6th day of September	,2023.
Name: Heather Huntington	
Position Title Permitting Technician	
Address: 200 Energy Court, Farmington, NM 87401	
Telephone: 505-636-9751	_
Field representative (if not above signatory)	
Email: <u>hhuntington@enduringresources.com</u>	

Date: 9/6/2023

at

Heather Huntington Permitting Technician Enduring Resources, LLC **Receiperto: OCD: 12/5/2023 9:23:12 PM** 1625 N. French Drive, Hobbs, NM 88240 Phone: (575) 393–6161 Fax: (575) 393–0720

District II 811 S. First Street, Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334–6178 Fax: (505) 334–6170 District IV 1220 S. St. Francis Drive, Santa Fe, NM 87505 Phone: (505) 476–3460 Fax: (505) 476–3462

State of New Mexico Energy, Minerals & Natural Resources Department

FoPage-3020f 201 Revised August 1, 2011 Submit one copy to Appropriate District Office

OIL CONSERVATION DIVISION

1220 South St. Francis Drive Santa Fe, NM 87505

AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT ³Pool Name 'API Number ²Pool Code 13379 COUNSELOR GALLUP-DAKOTA OIL POOL "Well Number ^⁵Property Name ⁴Property Code HAYNES CANYON UNIT 440H OGRID No. *Elevation ⁹Operator Name ENDURING RESOURCES, LLC 6703 372286 ¹⁰ Surface Location UL or lot no. Section Township Range Lot Idn Feet from the North/South line Feet from the East/West line County RIO М З 23N 6W 916 SOUTH 390 WEST ARRIBA ¹¹ Bottom From Hole Location If Different Surface UL or lot no. Township Lot Idn North/South line County RIO Section Range Feet from the Feet from the East/West line D Δ 23N 6W 4 453 NORTH 232 WEST ARRIBA ¹³ Joint or Infill ¹⁴ Consolidation Code ¹⁵ Order No. Dedicated Acres SW/4 NE/4, NE/4 SW/4 NW/4, SE/4 - Section 4 439.54 NE/4 NE/4- Section 9 NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED (RECORD) S88 °27 W 2680.59 ' (RECORD) \$89 °29 W 2707.98 (RECORD) S88 °27 W 2680.26 (RECORD) S88 °27 W 2680.59 NON-STANDARD UNIT HAS BEEN OR А 589 °10 '30 "W 2680.23" S89 °10 '59 ''W 2678.68 (MEASURED) N89 °47 '06 "W 2708.06 589 °11'22 "W 2677.59 16 (MEASURED) APPROVED BY THE DIVISION (MEASURED) (MEASURED) 453 232' N (REC) LOT 17 OPERATOR CERTIFICATION (REC) 74 30 " OPERAIOR CERTIFICATION I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief, and that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom-hole location or has a right to drill this well at this location pursuant to a contract with an owner of such a mineral or working interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division. LOT 4 LOT LOT LOT 2 LOT LOT LOT (MEASURED) 22 '36 "E 2710.7 gg 2655. 2654.52 Δ 1 *40 E 2710.((RECORD) , CS Ļυ 2618. 37 Ļυ ŝ 53 46 M. 21. ON N01 NOZ 101 9 4 3 E rat H 8/31/23 (REC) (REC) (MEASURED) *17 '01''E 2652.63 2628.05 Signature Date NO1 SURFACE LOCATION 916' FSL 390' FWL SECTION 3, T23N, R6W 33/ Heather Huntington 46. 2626.14 NO °33'E 2651.88 (RECORD) 330 Printed Name 2627. Ш hhuntington@enduringresources.com _AT 36.248698 °N NG -107.464489 °W 390 .9<u>2</u> E-mail Address M. 2T. Ļυ LONG ŝ DATUM: NAD1983 46 SURVEYOR CERTIFICATION (MEASURED) 910 N01 2 20 I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief. 589 °30 '00 "W 2610.60 E R S88 °45 W 2610.96 (MEASURED) (REC) (MEASURED) 188 (MEASURED) 588 °21'17"W 2696.91 (RECORD) N87 °34 '16 "W 2643.31 . 02 588 20 23 W 2697.94 2626.85 S87°38W 2697.42 N88°18"W 2643.30 "34'18"E 2595.21 (MEASURED) -587 °38 W 2697.42 (RECORD) 2628. 2627.13 40 Date Revised: AUGUST 10, 2023 (RECORD) (RECORD) Survey Date: JANUARY 12, 2023 (RECORD) NO °08 W 2594 Ш μı Signature and Seal of Professional Surveyor 20, 80. .EE.07. M. EO. EDWARDS JASON с. MEXICO NOZ 2 20 2 JEW . 10 Q 2627.64 ' (M) Q (REC) Hestsmith ARCESSTOW (MEASURED) 5 '36 "E 2595.23 Sch EYOR 2628.58 FIRST TAKE POINT 188' FSL 312' FEL SECTION 4, T23N, R6W LAST TAKE POINT 453' FNL 232' FWL SECTION 4, T23N, R6W 46 2627.13 2594. CORD) Щ 03H) M. 80. LAT 36.259361 °N LONG -107.482957 °W DATUM: NAD1983 LAT 36.246676 °N ONG -107.466893 °W DATUM: NAD1983 θĘ, M. EO. LONG 30 ΞG. 9 9 22 ASON DWARDS

(MEASURED) N89 °42 '58 ''W 2697.07 (MEASURED) N89 °42 '58 "W 2697.07 Released in imaging: 12/28/2023 5 06 15 PM

2619.03 ' (M)

J., 86, 52, 0N

È

2624.54

21, 90, 72,

8

(REC)

2626.80

°25 E

N01

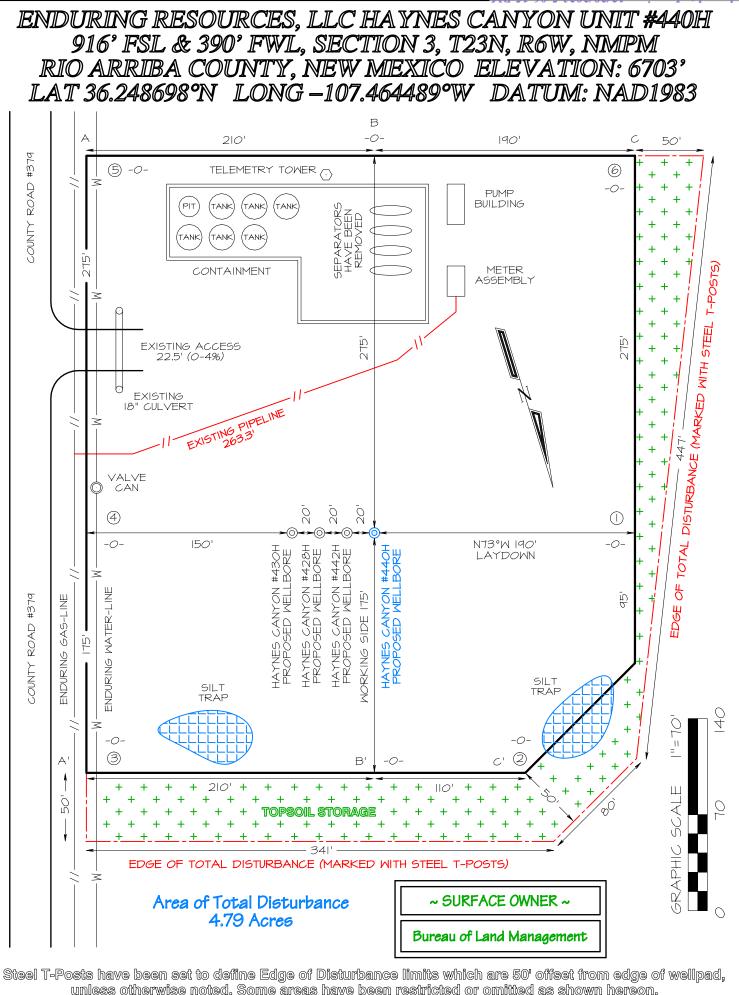
(REC)

2626.80 '

μ

шĸ

, 55 08


, 70N , 20N

(MEASURED) S89 °01 '37 ''W 2691.44 588°19W 2694.12' (RECORD)

(MEASURED) 589 °02 '38 "W 2694.26 S88 °19 W 2694.12 (RECORD)

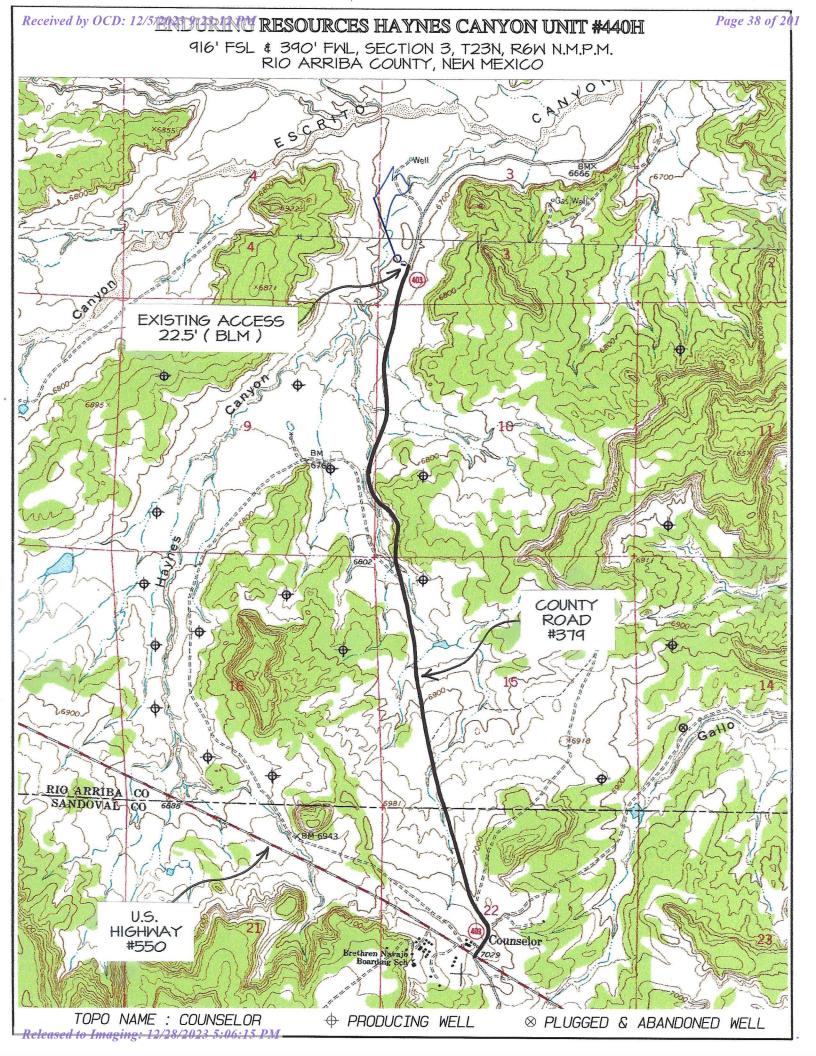
Certificate Number

15269

	EDWARDS SURVEYING, INC. IS NOT LIABLE FOR LOCATION OF UNDERGROUND UTILITIES OR PIPELINES. CONTRACTOR SHOULD CONTACT ONE-CALL FOR LOCATION OF ANY MARKED OR UNMARKED UNDERGROUND UTILITIES OR PIPELINES ON WELLPAD AND/OR ACCESS ROAD AT LEAST TWO WORKING DAYS PRIOR TO CONSTRUCTION.	TION OF UNDERGR N OF ANY MARKEI AT LEAST TWO WO	EDWARDS SURVEYING, INC. IS NOT LIABLE FOR LOCATION OF UNDERGR ITRACTOR SHOULD CONTACT ONE-CALL FOR LOCATION OF ANY MARKED OR PIPELINES ON WELLPAD AND/OR ACCESS ROAD AT LEAST TWO WOR	EDWARDS SURVE NTRACTOR SHOULI S OR PIPELINES ON	CO	
						18699
						67031
						18170
						<u> </u>
		C,				
		· · · · · ·		· · · ·		
						-Eb99
						6703
						18170
				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	₽ <u></u> ₽
		Ç				
· · · ·		· · · · ·		· · · ·	• • • • • •	
					•	16699
						6703
				· · · · · · · · · · · · · · · · · · ·	· · · · ·	6713
						$\wedge - \wedge $
2	IL VERTICAL SCALE I"=30'	C,	5CALE "=60'	HORIZONTAL SCALE	HC	
	S CANYON UNIT #440H 123N, R6W, NMIPM O ELEVATION: 6703'	LLC HA YNES SECTION 3, T NEW MEXICO	ENDURING RESOURCES, LLC HAYNES 916' FSL & 390' FWL, SECTION 3, T. RIO ARRIBA COUNTY, NEW MEXICO	RING RE: 16° FSL & ARRIBA	IENIDUI 91 RIO	

MA 21:30:2 2202/82/21 :gnigaml of besoels R

Received by OCD: 12/5/2023 9:23:12 PM


102 fo 98 of 201

ſ

Received by OCD: 12/5/2023 9:23:12 PM

Page 37 of 201 ENDURING RESOURCES, LLC HAYNES CANYON UNIT #440H EXISTING ACCESS ROAD SURVEY LOCATED IN SW/4 SW/4 OF SECTION 3, T23N, R6W, NMPM RIO ARRIBA COUNTY. NEW MEXICO FOUND FOUND FOUND 1964 BLM 1964 BLM 1964 BLM BRASS CAP BRASS CAP BRASS CAP 588°27'W 2680.59' (RECORD) 588°27'W 2680.59' (RECORD) : KINEMATIC GPS SURVEY 3TANED FROM SATELLITES N JANUARY 12, 2023 FROM 2E STATION POSITIONED IN OF SECTION 9, T23N, R6M 35 34 589°10'30"W 2680.23' (MEASURED) 34 34 589°10'59"W 2678.68' (MEASURED) 33 T24N 2 З T23N 3 4 З NOI°29'37"E 2655.30' (MEASURED) BEARING (MEASURED) LOT KINEMATIC GF TAINED FROM LOT (RECORD Lot LOT (RECORD 2 3 4 REAL-TIME KINEMAT SOLUTION OBTAINED F TRACKED ON JANUAR? A REFERENCE STATIO SWA4 NWV4 OF SECTIO ĥ BASIS 2654.52' NOI°40'E 2710.62' 2710.74 NO°46Ē Щ NO2°22'36' FOUND 1964 BLM ・ふら CAP 1964 BLM BRASS CAP FOUND 2 3 BRASS З 4 (MEASURED, ENDURING HAYNES CANYON UNIT #440H 916' FSL, 390' FWL, SECTION 3, T23N, R6W (MEASURED) 10°46'E 2627.46' (RECORD) (RECORD) ACT OR N41°04'50"W 247.54 T CONSTRUCTION BEGINS, OR IS ADVISED TO CALL FOR LOCATION OF ANY UNMARKED PIPELINES OF 000|=|TIE TO SW CORNER SECTION 3 S37°44'14"W 937.27' 2000 PRO, 2628.05 ACCESS ROAD SURVEY @ STA 0+22.5 T ON EDGE OF EXISTING WELLPAD 2651.88' 2652.63' Ŧ N72°37'03"W 22.50' PLAT NOTE R UNMARKED THE AREA OF Ш BEGIN ACCESS ROAD SURVEY @ STA 0+00 POINT ON EDGE OF COUNTY ROAD #379 °29'26"E ÀLF NO°33'E ヨ,, 10, 11, 10N \subset 0000 SC TIE FROM SOUTH 1/4 CORNER SECTION 3 N72°39'25"W 2201.79' CONTRACTOR γN <u>0</u> ONE-CALL ß SRAPHIC Z BEFORE MARKED З 2 ЗЩ 3 4 З CABL 10 11 588°21'17"W 2696.91' (MEASURED) 588°20'23"W 2697.94' (MEASURED) \bigcirc 10 q 587°38'W 2697.42' (RECORD) 10 587°38'W 2697.42' (RECORD) FOUND FOUND 1964 BLM FOUND EDWARDS 1964 BLM BRASS CAP JASON 1964 BLM C. BRASS CAP BRASS CAP MEXICO (JEM ~ SURFACE OWNERSHIP ~ Bureau of Land Management Sch EYOR REGISTER / 15269 0+00 TO 0+22.5 22.5 FT / I.4 RODS APOFESSIONAL CHECKED BY: JCE \mathbb{N} SOURCES COURT NM 87401 Land Surveyor: Jason C. Edwards DRAWN BY: EDO I, Jason C. Edwards, a registered Professional Surveyor RESOURC Mailing Address: under the laws of the State of New Mexico, hereby Post Office Box 6612 certify that this plat was prepared from field notes Farmington, NM 87499 ENDURING RES 200 ENERGY (FARMINGTON, 1 of an actual survey meeting the minimum requirements for: Æ **Business Address:** the standards for easement surveys and is true and of FILENAME: 2363MAPI 111 East Pinon Street correct to the best of my knowledge and belief. Prepared Farmington, NM 87402 . 4 OF 6 (505) 486-1695 (Office) SON DWARDS Date: August 10, 2023 ncesurveys@comcast.net SURVEYS, INC SHEET Jason C. Edwards. P.L.S#15269 New Mexico L.S.

Released to Imaging: 12/28/2023 5:06:15 PM

Directions from the Intersection of US Hwy 550 & US Hwy 64

in Bloomfield, NM to Enduring Resources, LLC Haynes Canyon Unit #440H

916' FSL & 390' FWL, Section 3, T23N, R6W, N.M.P.M., Rio Arriba County, NM

Latitude 36.248698°N Longitude -107.464489°W Datum: NAD1983

From the intersection of US Hwy 550 & US Hwy 64 in Bloomfield, NM, travel Southerly on US Hwy 550 for 53.8 miles to Mile Marker 97.6

Go Left (Northerly) on County Road #379 (aka State Highway #403) for 1.5 miles to fork in roadway;

Go Right (Northerly) which is straight remaining on County Road #379 (aka State Highway #403) for 1.4 miles to existing access road on left-hand side which continues for 22.5' to Enduring Haynes Canyon Unit #440H staked location.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400093966

Operator Name: ENDURING RESOURCES LLC

Well Name: HAYNES CANYON UNIT

Well Type: OIL WELL

Well Number: 440H Well Work Type: Drill

Submission Date: 09/29/2023

Highlighted data reflects the most recent changes

12/05/2023

Drilling Plan Data Report

Show Final Text

Section 1 - Geologic Formations

			ns				
Formation	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
12560934	NACIMIENTO	6728	0	0	SANDSTONE, SHALE	USEABLE WATER	N
12560938	OJO ALAMO	5325	1403	1406	SANDSTONE, SHALE	USEABLE WATER	N
12560939	KIRTLAND	5225	1503	1509	COAL, SHALE	COAL, NATURAL GAS	N
12560942	FRUITLAND	5000	1728	1746	COAL	COAL	N
12560944	PICTURED CLIFFS	4765	1963	1998	SANDSTONE	NATURAL GAS	N
12560946	LEWIS	4615	2113	2159	SHALE	NATURAL GAS	N
12560948	CHACRA	4320	2408	2475	SANDSTONE, SHALE	NATURAL GAS	N
12560950	CLIFFHOUSE	3210	3518	3665	SANDSTONE	NATURAL GAS	N
12560951	MENEFEE	3205	3523	3670	COAL, SANDSTONE, SHALE	NATURAL GAS	N
12560952	POINT LOOKOUT	2505	4223	4416	SANDSTONE, SHALE	NATURAL GAS	N
12560953	MANCOS	2230	4498	4696	SHALE	NATURAL GAS, OIL	Y
12560954	GALLUP	1890	4838	5036	SHALE	NATURAL GAS, OIL	Y
12560955	MANCOS	1800	4928	5126	SHALE	NATURAL GAS, OIL	Y
12560956	MANCOS	1665	5063	5263	SHALE	NATURAL GAS, OIL	Y
12560957	MANCOS	1600	5128	5333	SHALE	NATURAL GAS, OIL	Y
12560958	MANCOS	1525	5203	5418	SHALE	NATURAL GAS, OIL	Y
12560959	MANCOS	1440	5288	5525	SHALE	NATURAL GAS, OIL	Y

Well Name: HAYNES CANYON UNIT

Well Number: 440H

Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
12560960	MANCOS	1395	5333	5590	SHALE	NATURAL GAS, OIL	Y
12560961	MANCOS	1310	5418	5744	SHALE	NATURAL GAS, OIL	Y
12560962	MANCOS	1270	5458	5833	SHALE	NATURAL GAS, OIL	Y
12560964	MANCOS	1262	5466	5858	SHALE	NATURAL GAS, OIL	Y
12560963	MANCOS	1207	5521	12673	SHALE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M

Rating Depth: 5521

Equipment: See attached diagram for details regarding BOPE specifications and configuration.

Requesting Variance? NO

Variance request:

Testing Procedure: BOP testing shall be conducted (a) when initially installed, (b) whenever any seal is broken or repaired, (c) if the time since the previous test exceeds 30 days. Tests will be conducted using a test plug. BOP ram preventers will be tested to 3,000 psig for 10 minutes, and the annular preventer will be tested to 1,500 psi for 10 minutes. Ram and annular preventers will be tested to 250 psi for 5 minutes. Additionally, BOP and casing strings will be tested to .22 psi/ft or 1,500 psi, whichever is greater but not exceeding 70% of yield strength of the casing, for 30 minutes, prior to drilling out 13-3/8" and 9-5/8" casing. Rams and hydraulically operated remote choke line valve will be function tested daily at a minimum.

Choke Diagram Attachment:

Enduring_Resources_8.31.23_Choke_BOPE_20230904204733.pdf

BOP Diagram Attachment:

Enduring_Resources_8.31.23_Choke_BOPE_20230904204738.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	350	0	350	0	-350	350	J-55	54.5	BUTT	7.39	3.45	BUOY	7.79	BUOY	7.31

Well Name: HAYNES CANYON UNIT

Well Number: 440H

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
	INTERMED IATE	12.5	9.625	NEW	API	N	0	3833	0	3673	0	-3673	3833	J-55	36	LT&C	1.26	2.55	BUOY	2.1	BUOY	2.62
3	PRODUCTI ON	8.5	5.5	NEW	API	N	0	12673	0	5521	0	-5521	12673	P- 110	17	LT&C	2.74	1.18	BUOY	1.56	BUOY	1.91

Casing Attachments

Casing ID: 1 String SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Haynes_Canyon_Unit_440H_DrillingPlan_20230913194400.pdf

Casing ID: 2 String INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Haynes_Canyon_Unit_440H_DrillingPlan_20230913194410.pdf

Received by OCD: 12/5/2023 9:23:12 PM

Operator Name: ENDURING RESOURCES LLC

Well Name: HAYNES CANYON UNIT

Well Number: 440H

Page 43 of 201

Casing Attachments

Casing ID: 3 String PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Haynes_Canyon_Unit_440H_DrillingPlan_20230913194427.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	350	364	1.39	14.6	505.3	100		ASTM Type III Blend, Calcium Chloride 2% BWOC Accelerator, D- CD2 .3% BWOC Dispersant/Friction reducer .25 lbs/sx Cello Flake - seepage

INTERMEDIATE	Lead	0	3833	802	2.14	12.5	1715	70	90:10 Type III:POZ	ASTM Type III 90/10 Poz D-CSE 1 5.0% BWOC Strength Enhancer D-MPA-1 .4% BWOC Fluid Loss & Gas Migration Control D-SA 1 1.4% BWOC Na Metasilicate D-CD 2 .4% BWOC Dispersant Cello Flace LCM .25 Ib/sx D-FP1 0.5% BWOC Defoamer D-R1 .5% Retarder
INTERMEDIATE	Tail	3333	3833	150	1.38	14.6	207	20	Type III	ASTM Type III Blend, D-MPA-1 .4% BWOC Fluid Loss & Gas Migration Control, D-CD 2 .5% BWOC Dispersant Cello

Well Name: HAYNES CANYON UNIT

Well Number: 440H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
											Flace LCM .25 lb/sx, D- R1 .2% Retarder
PRODUCTION	Lead		0	1267 3	560	2.37	12.4	1328	50	ASTM type I/II	ASTM Type I/II BA90 Bonding Agent 5.0 lb/sx Bentonite Viscosifier 8% BWOB FL24 Fluid Loss .5% BWOB IntegraGuard GW86 Viscosifier .1% BWOB R7C Retarder .2% BWOB FP24 Defoamer 0.3% BWOB, Anti-Static .01 lb/sx
PRODUCTION	Tail		4696	1267 3	1280	1.57	13.3	2010	10	G:POZ blend	Type G 50% Pozzolan Fly Ash Extender 50% BA90 Bonding Agent 3.0 lb/sx Bentonite Viscosifier 4% BWOB FL24 Fluid Loss .4% BWOB IntegraGuard GW86 Viscosifier .1% BWOB R3 Retarder .5% BWOB FP24 Defoamer .3% BWOB, IntegraSeal 0.25 lb/sx

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: See "Detailed Drilling Plan" section for additional details. Sufficient barite will be on location to weight up mud system to balance maximum anticipated pressure gradient.

Describe the mud monitoring system utilized: A fully, closed-loop system will be utilized. The system will consist of aboveground piping and above-ground storage tanks and bins. The system will not entail any earthen pits, below-grade storage, or drying pads. All equipment will be disassembled and removed from the site when drilling operations cease. The system will be capable of storing all fluids and generated cuttings and of preventing uncontrolled releases of the same. The system will be operated in an efficient manner to allow the recycling and reuse of as much fluid as possible and to minimalize the amount of fluids and solids that require disposal.

Circulating Medium Table

Well Name: HAYNES CANYON UNIT

Well Number: 440H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (Ibs/cu ft)	Gel Strength (lbs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	350	SPUD MUD	8.4	8.4			9	2			spud mud
0	3833	LOW SOLIDS NON- DISPERSED (LSND)	8.8	9.5			9	8		20	no OBM
0	1267 3	OIL-BASED MUD	8	9					120000		OWR 80:20; WBM as contingency

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures: REFERENCE OPS PLAN

List of open and cased hole logs run in the well:

GAMMA RAY LOG, DIRECTIONAL SURVEY, MEASUREMENT WHILE DRILLING,

Coring operation description for the well:

REFERENCE OPS PLAN

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 2380

Anticipated Surface Pressure: 1165

Anticipated Bottom Hole Temperature(F): 125

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? NO Hydrogen sulfide drilling operations

Well Name: HAYNES CANYON UNIT

Well Number: 440H

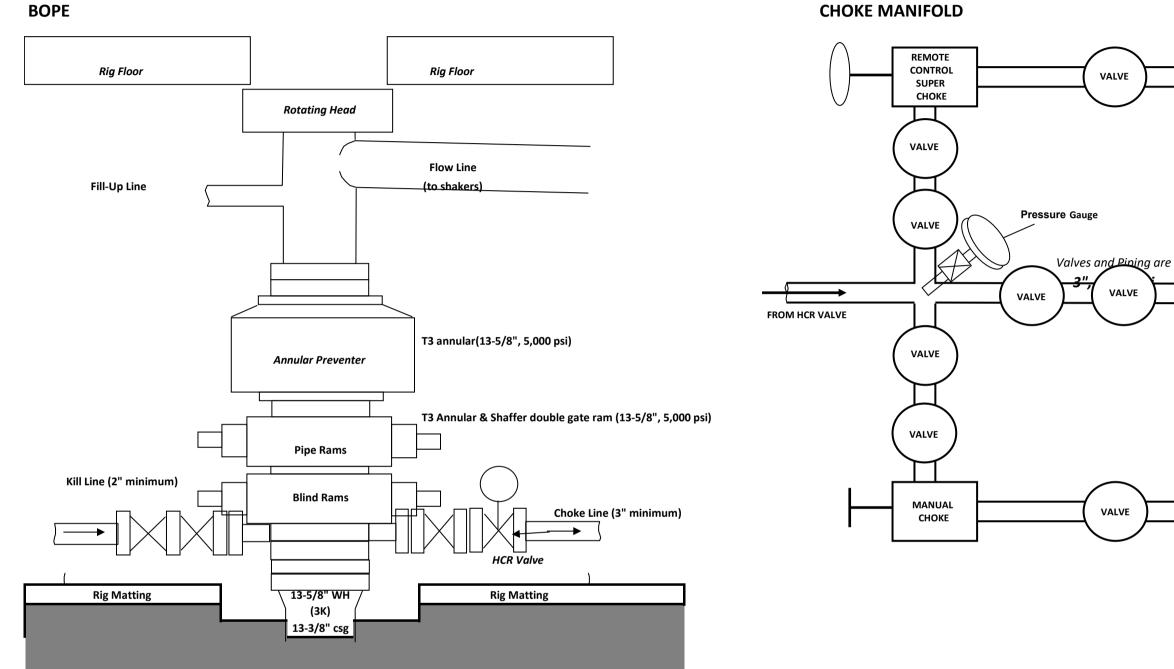
Page 46 of 201

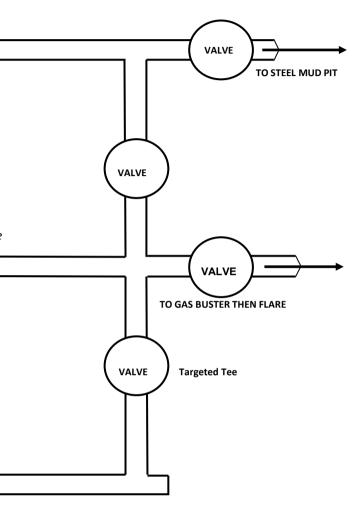
Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Enduring_Haynes_Canyon_Unit_440H_rev0_20230904210308.pdf

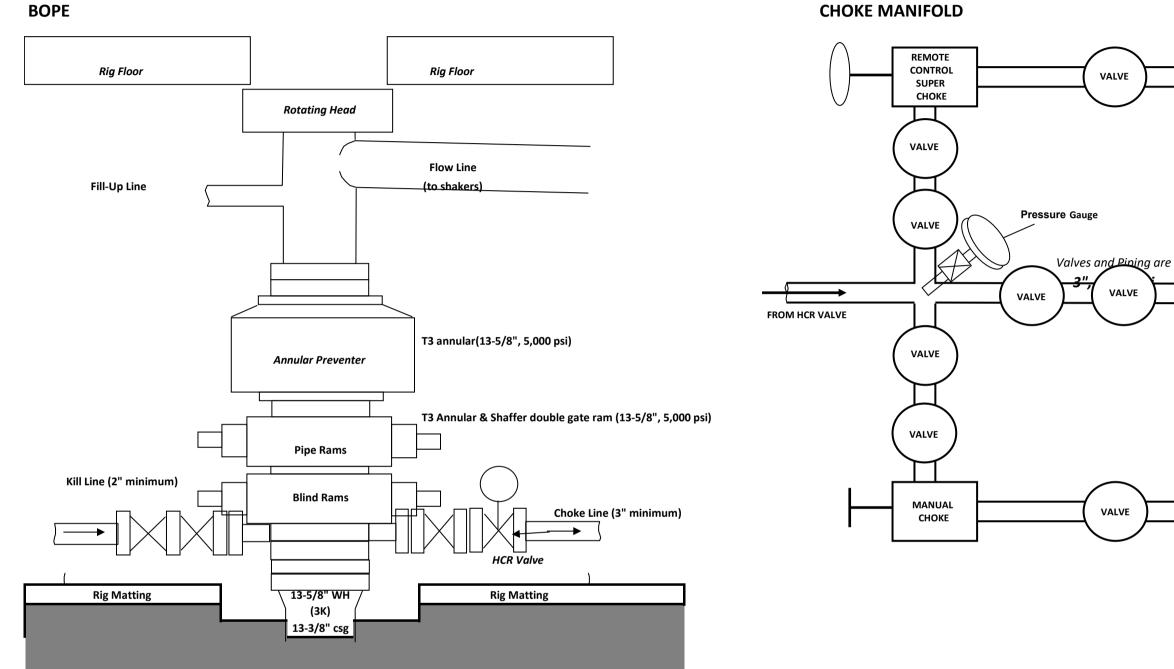
Other proposed operations facets description:

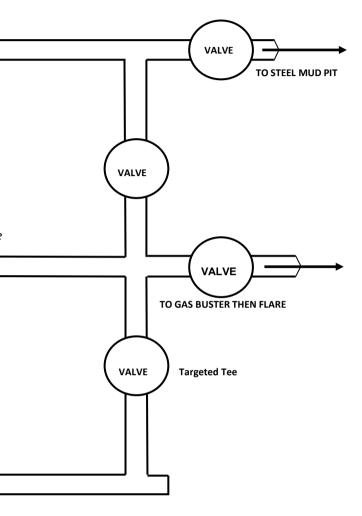

Other proposed operations facets attachment:


Haynes_Canyon_Unit_440H_WBD_20230913194343.pdf

Other Variance attachment:

BOPE & CHOKE MANIFOLD DIAGRAMS


NOTE: EXACT BOPE AND CHOKE CONFIRGURATION AND COMPONENTS MAY DIFFER FROM WHAT IS DEPICTED IN THE DIGRAMS BELOW DEPENDING ON THE RIG AND ITS ASSOCIATED EQUIPMENT. RAM PREVENTERS, ANNULAR PREVENTERS, AND CHOKE MANIFOLD AND COMPONENTS WILL BE RATED TO 3,000 PSI MINIMUM.



BOPE & CHOKE MANIFOLD DIAGRAMS

NOTE: EXACT BOPE AND CHOKE CONFIRGURATION AND COMPONENTS MAY DIFFER FROM WHAT IS DEPICTED IN THE DIGRAMS BELOW DEPENDING ON THE RIG AND ITS ASSOCIATED EQUIPMENT. RAM PREVENTERS, ANNULAR PREVENTERS, AND CHOKE MANIFOLD AND COMPONENTS WILL BE RATED TO 3,000 PSI MINIMUM.

ENDURING RESOURCES IV, LLC 6300 S SYRACUSE WAY, SUITE 525 **CENTENNIAL, COLORADO 80211**

DRILLING PLAN:

Drill, complete, and equip single lateral in the Mancos-H formation

WELL INFORMATION:

Name:	Haynes Canyon L	Unit 440H					
API Number:	Not yet assigned						
AFE Number:	Not yet assigned						
ER Well Number:	Not yet assigned						
State:	New Mexico						
County:	Rio Arriba						
Surface Elevation:	6,703 ft A	ASL (GL)	6,728	ft ASL (KB)			
Surface Location:	3-23-6 Sec	c-Twn-Rng	916	ft FSL	390	ft FWL	
	36.248698 [°] N	llatitude	107.464489	° W longitude		(NAD 83)	
BH Location:	4-23-6 Sec	c-Twn-Rng	453	ft FNL	232	ft FWL	
	36.259361 [°] N	llatitude	107.482957	° W longitude		(NAD 83)	
Driving Directions:	FROM THE INTERSE	ECTION OF US H	IWY 550 & US	HWY 64 IN BLOOM	FIELD, NM:		
	South on US Hwy 5	550 for 53.8 mi	iles to MM 97	.6; Left (North) on CF	R #379 (Stat	e Hwy 403) for 1.3 miles	to fork; F

Right (North) remaining on CR #379 for 1.5 miles to location access on left; Haynes Canyon Unit 428H Pad. From East to West 430H, 428H, 442H, 440H).

GEOLOGIC AND RESERVOIR INFORMATION:

Prog

Formation Tops	TVD (ft ASL)	TVD (ft KB)	MD (ft KB)	0/G/W	Pressure
Ojo Alamo	5,325	1,403	1,406	W	normal
Kirtland	5,225	1,503	1,509	W	normal
Fruitland	5,000	1,728	1,746	G, W	sub
Pictured Cliffs	4,765	1,963	1,998	G, W	sub
Lewis	4,615	2,113	2,159	G, W	normal
Chacra	4,320	2,408	2,475	G, W	normal
Cliff House	3,210	3,518	3,665	G, W	sub
Menefee	3,205	3,523	3,670	G, W	normal
Point Lookout	2,505	4,223	4,416	G, W	normal
Mancos	2,230	4,498	4,696	0,G	sub (~0.38
Gallup (MNCS_A)	1,890	4,838	5,036	0,G	sub (~0.38
MNCS_B	1,800	4,928	5,126	0,G	sub (~0.38
MNCS_C	1,665	5,063	5,263	0,G	sub (~0.38
MNCS_Cms	1,600	5,128	5,333	0,G	sub (~0.38
MNCS_D	1,525	5,203	5,418	0,G	sub (~0.38
MNCS_E	1,440	5,288	5,525	0,G	sub (~0.38
MNCS_F	1,395	5,333	5,590	0,G	sub (~0.38
MNCS_G	1,310	5,418	5,744	0,G	sub (~0.38
MNCS_H	1,270	5,458	5,833	0,G	sub (~0.38
MNCS_I	0	0	0	0,G	sub (~0.38
FTP TARGET	1,262	5,466	5,858	0,G	sub (~0.38
PROJECTED LTP	1,207	5,521	12,673	0,G	sub (~0.38

Surface: Nacimiento

Oil & Gas Zones: Several gas bearing zones will be encountered; target formation is the Gallup

Pressure: Normal (0.43 psi/ft) or sub-normal pressure gradients anticipated in all formations Max. pressure gradient: 0.43 psi/ft Evacuated hole gradient:

			0			
	Max. pressure gradient:	0.43	psi/ft	Evacuated hole gradient:	0.22	psi/ft
	Maximum anticipated BH press	ure, assumi	ng maximum	pressure gradient:	2,380	psi
	Maximum anticipated surface p	ressure, ass	uming partia	lly evacuated hole:	1,170	psi
Temperature:	Maximum anticipated BHT is 12	5° F or less				

H₂S INFORMATION:

H₂ S Zones: Encountering hydrogen-sulfide bearing zones is NOT anticipated.

Safety: Sensors and alarms will be placed in the substructure, on the rig floor, above the pits, and at the shakers.

LOGGING, CORING, AND TESTING:

Mud Logs: None planned; remote geo-steering from drill out of 9-5/8" casing to TD; gas detection from drillout of 13-3/8" casing to TD. MWD/LWD: Gamma Ray from drillout of 13-3/8" casing to TD Open Hole Logs: None planned Testing: None planned Coring: None planned Cased Hole Logs: CBL on 5-1/2" casing from deepest free-fall depth to surface

DRILLING RIG INFORMATION:

Contractor: Aztec

Rig No.:	1000		
Draw Works:	E80 AC 1,500 hp		
Mast:	Hyduke Triple (136 ft, 600,000 lbs, 10 lines)		
Top Drive:	NOV IDS-350PE (350 ton)		
Prime Movers:	4 - GE Jenbacher Natural Gas Generator		
Pumps:	2 - RS F-1600 (7,500 psi)		
BOPE 1:	Cameron single & double gate rams (13-5/8", 3,000 psi)		
BOPE 2:	Cameron annular (13-5/8", 5,000 psi)		
Choke	Cameron (4", 10,000 psi)		
KB-GL (ft):	25		
Note:	Actual drilling rig may vary depending on availability at time the well is scheduled to be drille	ed.	
E AND FEDERAL	NOTIFICATIONS	BLM	State
nstruction and	BLM is to be notified minimum of 48 hours prior to start of construction or reclamation.		
eclamation:	Grazing permittee is to be notified 10 days in advance.	(505) 564-7600	
Spud	BLM and state are to be notified minimum of 24 hours prior to spud.	(505) 564-7750	(505) 334-6178
BOP	BLM is to be notified minimum of 24 hours prior to BOPE testing.	(505) 564-7750	see note

cementing.
Plugging
BLM and state are to be notified minimum of 24 hours prior to plugging ops.
All notifications are to be recorded in the WellView report with time, date, name or
number that notifications were made to.

Casing / cementing BLM and state are to be notified minimum of 24 hours prior to running casing and

Note: Monica Keuhling with the OCD requests state notifications 24 hrs in advance for spud, BOP tests, casing & cementing and any plugging be given to her in both phone message and email: (505) 320-0243, monica.keuhling@emnrd.nm.gov

(505) 564-7750 (505) 334-6178

(505) 564-7750 see note

BOPE REQUIREMENTS:

STATE Con: Re

- See attached diagram for details regarding BOPE specifications and configuration.
- 1) Rig will be equipped with upper and lower kelly cocks with handles available.
- 2)
- Inside BOP and TIW valves will be available to use on all sizes and threads of drill pipe used while drilling the well.
- 2) BOP accumulator will have enough capacity to open the HCR valve, close all rams and annular preventer, and retain minimum of 200 psi above precharge on the closing manifold without the use of closing pumps. The fluid reservoir capacity shall be at least double the usable fluid volume of the accumulator system capacity, and the fluid level shall be maintained at manufacturer's recommendation. There will be two additional sources of power for the closing pumps (electric and air). Sufficient nitrogen bottles will be available and will be recharged when pressure falls below manufacturer's recommended minimum.
- 3)

BOP testing shall be conducted (a) when initially installed, (b) whenever any seal is broken or repaired, (c) if the time since the previous test exceeds 30 days. Tests will be conducted using a test plug. BOP ram preventers will be tested to 3,000 psig for 10 minutes, and the annular preventer will be tested to 1,500 psi for 10 minutes. Ram and annular preventers will be tested to 250 psi for 5 minutes. Additionally, BOP and casing strings will be tested to .22 psi/ft or 1,500 psi, whichever is greater but not exceeding 70% of yield strength of the casing, for 30 minutes, prior to drilling out 13-3/8" and 9-5/8" casing. Rams and hydraulically operated remote choke line valve will be function tested daily at a minimum.

- 4) Remote valve for BOP rams, HCR, and choke shall be placed in a location that is readily available to the driller. The remote BOP valve shall be capable of closing and opening the rams.
- 5) Manual locking devices (hand wheels) shall be initialled on rams. A valve will be installed on the annular preventer's closing line as close as possible to the preventer to act as a locking device. The valve will be maintained in the open position and shall only be closed when the there is no power to the accumulator.

FLUIDS AND SOLIDS CONTROL PROGRAM:

Fluid Measurement:	
	Pumps shall be equipped with stroke counters with displays in the dog-house. Slow pump speed shall be recorded daily and after mudding up, at a minimum, on the drilling report. A Pit Volume Totalizer will be installed and the readout will be displayed in the dog-house. Gas-detecting equipment will be installed at the shakers, and readouts will be available in the dog-house and the in the geologist's work-station (if geologist or mud-logger is on-site).
Closed-Loop System:	
Fluid Disposal :	Fluids that cannot be reused, recycled, or returned to the supplier will be hauled to and disposed of at an approved disposal site (Industrial Ecosystem, Inc. or Envirotech, Inc.).
Solids Disposal :	
Fluid Program:	Drilling solids will be stored (until haul-off) on-site in separate containers with no other waste, debris, or garbage products. Waste solids will be hauled to and disposed of at an approved disposal site (Industrial Ecosystem, Inc. or Envirotech, Inc.). See "Detailed Drilling Plan" section for additional details. Sufficient barite will be on location to weight up mud system to balance maximum anticipated pressure gradient.

DETAILED DRILLING PLAN:

SURFACE: Drill vertically to casing setting depth (plus necessary rathole), run casing, cement casing to surface.

		ft (MD)	to		ft (MD)		Section Length:	
		ft (TVD)	to		ft (TVD) a smaller rig in d		asing Required: drilling rig	350 fi
	Note: Surjuce in	ione may be an	icu, cuscu, unu	cemented with	u sinunci rig in t	avance of the	unning rig.	
Fluid:	Туре	MW (ppg)	FL (mL/30 min)	PV (cp)	YP (lb/100 sqft)	рН		ments
	Fresh Water	8.4	N/C	2 - 8	2 - 12	9.0	Spuc	d mud
Hole Size:		D C						
MWD / Survey:	Mill Tooth or P							
Logging:		actorisativey						
55 5		e 12-/4" bit and	open to 17-1/2'	" if unable to dri	ll with 17-1/2" b	it. Run inclinat	ion survey in 10	00'stations
					g as required. TO			
	below. Monito	r returns durinន្	g cement job and	d note cement v	olume to surface	e. Install cellar a	and wellhead.	
		L	T	T			T	
		14/4 (IL / f 4)	Crada	Com		Descent (see 1)	Tens. Body	Tens. Conn
Casing Specs:	13.375	Wt (lb/ft)	Grade J-55	Conn. BTC	Collapse (psi)	Burst (psi)	(lbs)	(lbs)
Specs Loading	13.375	54.5	J-55	BIC	1,130 153	2,730 791	853,000 116,634	909,000 116,634
Min. S.F.					7.39	3.45	7.31	7.79
WIIII. 5.1 .	Assumptions	Collanse: fully	evacuated casi	na with 8 4 nna	equivalent exte			1.15
	rissumptions.				with 9.5 ppg flu			intermediate
			pg equivalent e	, ,	11.55	ina misiae casin	y white utility	memute
					-			
II Torous (ft lbs).	Minumum	N/A	-		100,000 lbs over Maximum:			
U Torque (ft lbs):	Minumum:	,	Optimum: onnection runni	N/A	wiuximum.	N/A		
asing Summary:								
- ,					om 3 jts, 1 centra	lizer ner 2 its to	surface	
centrunzers.	2 centralizers p				Hole Cap.		Planned TOC	
Cement:	Туре	Weight (nng)	Yield (cuft/sk)	Water (gal/sk)		% Excess	(ft MD)	Total Cmt (sx)
cement.	TYPE III	14.6	1.39	6.686	0.6946	100%	0	364
nnular Capacity	0.6946	cuft/ft		x 17-1/2" hole		Csg capacity	0.8680	ft3/ft
		,			le and the exces	• • •		Cu Ft Slurry
DIUKEL	lergy services.	culturatea cer	nent volumes us	sume guuge no	ie unu the exces.		-	
			D-CD2 .3% BWOC					505.3
		Calcium Chloride 2%	Dispersant/Friction	.25 lbs/sx Cello				
Tail	ASTM Type III Blend			Flake - seepage				
					ement must ach	ieve 500 psi co	mpressive stre	ngth before
	drilling out.							
	anning out							
NTERMEDIATE:	Drill as per dire	ectional plan to	casina settina	depth. run casir	na. cement casin	a to surface.		
NTERMEDIATE:		ectional plan to ft (MD)	casing setting to		ng, cement casin ft (MD)		Section Length:	3,483 fi
NTERMEDIATE:	350			3,833	-	Hole	Section Length: asing Required:	
<u>NTERMEDIATE:</u>	350	ft (MD)	to	3,833	ft (MD)	Hole	-	
NTERMEDIATE:	350	ft (MD)	to	3,833	ft (MD)	Hole	-	
NTERMEDIATE: Fluid:	350	ft (MD)	to to	3,833	ft (MD) ft (TVD)	Hole	asing Required:	
	350 350	ft (MD) ft (TVD)	to to FL (mL/30	3,833 3,673	ft (MD) ft (TVD) YP (lb/100	Hole S Ca	asing Required:	3,833 fi
	350 350 Type LSND (5% KCl)	ft (MD) ft (TVD) MW (ppg)	to to FL (mL/30 min)	3,833 3,673 PV (cp)	ft (MD) ft (TVD) YP (lb/100 sqft)	Hole S Ca	asing Required:	3,833 fi
Fluid: Hole Size:	350 350 Type LSND (5% KCl)	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5	to to FL (mL/30 min) 20	3,833 3,673 PV (cp)	ft (MD) ft (TVD) YP (lb/100 sqft)	Hole S Ca	asing Required:	3,833 fi
Fluid: Hole Size: Bit / Motor:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor	to to FL (mL/30 min) 20	3,833 3,673 PV (cp) 8 - 14	ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14	Hole 5 Cr pH 9.0 - 9.5	asing Required:	3,833 fi
Fluid: Hole Size: Bit / Motor:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4.	to to FL (mL/30 min) 20 0, stage, 0.16 re	3,833 3,673 PV (cp) 8 - 14	ft (MD) ft (TVD) YP (lb/100 sqft)	Hole S Cr PH 9.0 - 9.5 DIFF PSIG	asing Required: Com No	3,833 fi
Fluid: Hole Size: Bit / Motor:	350 350 LSND (5% KCI) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or	to to FL (mL/30 min) 20 0, stage, 0.16 re 19 mm cutters,	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG , TFA = 0.67 sq-ir	ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0.	Hole S Cr 9.0 - 9.5 DIFF PSIG 90 max), jet wi	asing Required: Com No	3,833 fi
Fluid: Hole Size: Bit / Motor: Bit / Motor:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or	to to FL (mL/30 min) 20 0, stage, 0.16 re 19 mm cutters,	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG , TFA = 0.67 sq-ir	ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0.	Hole S Cr 9.0 - 9.5 DIFF PSIG 90 max), jet wi	asing Required: Com No	3,833 fi
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or ith inclination	to to FL (mL/30 min) 20 0, stage, 0.16 re 19 mm cutters, and azimuth sur	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's	ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 h (range 0.65 - 0. at a minimum), C	Hole S Cr 9.0 - 9.5 DIFF PSIG 90 max), jet wi	asing Required: Com No th 6 - 12s	3,833 fi ments OBM
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted abo	to to FL (mL/30 min) 20 0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'; est 13-3/8" casin	ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 o (range 0.65 - 0. at a minimum), G g to	Hole S Cr 9.0 - 9.5 DIFF PSIG 90 max), jet wi 5R optional 1,500	th 6 - 12s	3,833 fi ments OBM
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted abo wing direction	to to FL (mL/30 min) 20 r 0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat-f	3,833 3,673 PV (cp) 8 - 14 2v/gal, 1.83 DEG TFA = 0.67 sq-ir rvey (every 100'; est 13-3/8" casin nole past casing	ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0.: at a minimum), G g to setting depth). S	PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi 5R optional 1,500 Steer as needed	th 6 - 12s	3,833 fi ments OBM utes.
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted abo wing direction id keep slide len	to to Tel: (mL/30 min) 20 7 0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat-figth < 10', when	3,833 3,673 PV (cp) 8 - 14 vv/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's est 13-3/8" casin possible. Take su	ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0 at a minimum), 0 gto setting depth). 1 urveys every stan	PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi GR optional 1,500 Steer as needed d, at a minimu	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r	3,833 f ments OBM utes. plan. Keep DLS rates of 750
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- wying direction d keep slide len able to control	to to FL (mL/30 min) 20 0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat- gth < 10', when return rates). M	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG . TFA = 0.67 sq-ir rvey (every 100's est 13-3/8" casin pole past casing possible. Take ss inimum desired	ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0 at a minimum), G g to setting depth), S urveys every stan flow-rate is 650	PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi 5R optional 1,500 Steer as needed d, at a minimu GPM. At TD, co	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r ndition hole an	3,833 f ments OBM utes. plan. Keep DLS rates of 750 d fluid for
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a casing running.	ft (MD) ft (TVD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- wying direction d keep slide len able to control . TOOH. Run cas	to to Televice to the second s	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir rvey (every 100's est 13-3/8" casin pole past casing possible. Take su inimum desired and washing / ci	ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0 at a minimum), G g to setting depth). S urveys every stan flow-rate is 650 rculating as requ	Hole S Cr 9.0 - 9.5 DIFF PSIG 90 max), jet wi 5R optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casi	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r indition hole an ng. ND BOPE. W	3,833 f ments OBM Utes. Pplan. Keep DLS rates of 750 d fluid for 'alk rig to next
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a casing running, well. Perform o	ft (MD) ft (TVD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- wying direction d keep slide len able to control . TOOH. Run cas ff-line cement j	to to Televice to the second s	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir rvey (every 100's est 13-3/8" casin pole past casing possible. Take su inimum desired and washing / ci	ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0 at a minimum), G g to setting depth), S urveys every stan flow-rate is 650	Hole S Cr 9.0 - 9.5 DIFF PSIG 90 max), jet wi 5R optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casi	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r indition hole an ng. ND BOPE. W	3,833 f ments OBM Utes. Pplan. Keep DLS rates of 750 d fluid for 'alk rig to next
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a casing running.	ft (MD) ft (TVD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- wying direction d keep slide len able to control . TOOH. Run cas ff-line cement j	to to Televice to the second s	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir rvey (every 100's est 13-3/8" casin pole past casing possible. Take su inimum desired and washing / ci	ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0 at a minimum), G gto setting depth). S urveys every stan flow-rate is 650 rculating as requ	Hole S Cr 9.0 - 9.5 DIFF PSIG 90 max), jet wi 5R optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casi	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r indition hole an ng. ND BOPE. W	3,833 f ments OBM Utes. Pplan. Keep DLS rates of 750 d fluid for 'alk rig to next
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a casing running, well. Perform o	ft (MD) ft (TVD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- wying direction d keep slide len able to control . TOOH. Run cas ff-line cement j	to to Televice to the second s	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir rvey (every 100's est 13-3/8" casin pole past casing possible. Take su inimum desired and washing / ci	ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0 at a minimum), G gto setting depth). S urveys every stan flow-rate is 650 rculating as requ	Hole S Cr 9.0 - 9.5 DIFF PSIG 90 max), jet wi 5R optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casi	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r ndition hole an ng. ND BOPE. W ement job and n	3,833 f ments OBM utes. aplan. Keep DLS rates of 750 id fluid for 'alk rig to next iote cement
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test: Procedure:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a casing running, well. Perform o	ft (MD) ft (TVD) ft (TVD) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- owing direction d keep slide len able to control . TOOH. Run cass ff-line cement j ace.	to to Television to the second	3,833 3,673 PV (cp) 8 - 14 vv/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's est 13-3/8" casin possible. Take su inimum desired and washing / ci int as detailed be	ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0.: at a minimum), 0 g to setting depth). 1 urveys every stan flow-rate is 650 reculating as requ- elow. Monitor re	Hole S Cr 90 - 9.5 DIFF PSIG 90 max), jet wi GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, co ijred. Land casi iturns during ce	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r indition hole an ng. ND BOPE. W ement job and n	3,833 f ments OBM Utes. Pplan. Keep DLS rates of 750 Id fluid for /alk rig to next iote cement Tens. Conn
Fluid: Hole Size: Bit / Motor: Bit / Motor: Logging: Pressure Test: Procedure:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a casing running, well. Perform o volume to surfa	ft (MD) ft (TVD) ft (TVD) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- owing direction d keep slide len able to control . TOOH. Run cass off-line cement j acce. wt (lb/ft)	to to Teleformer to the second	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's est 13-3/8" casin possible. Take su inimum desired and washing / ci int as detailed be Conn.	ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0. at a minimum), 0 g to setting depth). 1 grow-rate is 650 rculating as requered collapse (psi)	Hole S Cr PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casi iturns during co Burst (psi)	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r indition hole an ng. ND BOPE. W ement job and n Tens. Body (lbs)	3,833 f ments OBM Utes. Palan. Keep DLS rates of 750 Id fluid for /alk rig to next iote cement Tens. Conn (lbs)
Fluid: Hole Size: Bit / Motor: Bit / Motor: Uogging: Pressure Test: Procedure: Casing Specs: Specs	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a casing running, well. Perform o	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- owing direction d keep slide len able to control . TOOH. Run cass ff-line cement j ace.	to to Tel: FL (mL/30 min) 20 0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat- gth < 10', when return rates). M sing using a CRT ob. Pump ceme	3,833 3,673 PV (cp) 8 - 14 vv/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's est 13-3/8" casin pole past casing possible. Take su inimum desired and washing / ci int as detailed be	ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0. at a minimum), 0 g to g to setting depth). 1 grveys every stan flow-rate is 650 rculating as requered elow. Monitor reference Collapse (psi) 2,020	Hole S PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, co irred. Land casi iturns during co Burst (psi) 3,520	th 6 - 12s psi for 30 minu to keep well on m. Target flow-rr indition hole an ng. ND BOPE. W ement job and n Tens. Body (lbs) 564,000	3,833 fi ments OBM Utes. Palan. Keep DLS rates of 750 d fluid for 'alk rig to next iote cement Tens. Conn (lbs) 453,000
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test: Procedure: Casing Specs: Specs Loading	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a casing running, well. Perform o volume to surfa	ft (MD) ft (TVD) ft (TVD) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- owing direction d keep slide len able to control . TOOH. Run cass off-line cement j acce. wt (lb/ft)	to to Teleformer to to Teleformer teleformer teleformer teleformer teleformer	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's est 13-3/8" casin possible. Take su inimum desired and washing / ci int as detailed be Conn.	ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0. at a minimum), C g to setting depth). S urveys every stan flow-rate is 650 rculating as requ elow. Monitor re Collapse (psi) 2,020 1,604	Hole S PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, coc ijred. Land casi iturns during co Burst (psi) 3,520 1,380	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r indition hole and n mg. ND BOPE. W ement job and n Tens. Body (lbs) 564,000 215,309	3,833 f ments OBM Utes. plan. Keep DLS rates of 750 of fluid for /alk rig to next ote cement Tens. Conn (lbs) 453,000 215,309
Fluid: Hole Size: Bit / Motor: Bit / Motor: Uogging: Pressure Test: Procedure: Casing Specs: Specs	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo <3 deg/100' an GPM (higher if a casing running, well. Perform o volume to surfa	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- owing direction d keep slide len able to control stifeline cement j ace. Wt (lb/ft) 36.0	to to Television to the second	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's est 13-3/8" casin pole past casing possible. Take su inimum desired and washing / ci int as detailed be Conn. LTC	ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 , 900 GPM, 950 h (range 0.65 - 0 at a minimum), C g to setting depth). 9 g to setting depth). 9 rculating as requesting as requesting collapse (psi) 2,020 1,604 1.26	Hole S PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi 5R optional 1,500 Steer as needed d, at a minimu GPM. At TD, coc iired. Land casi iturns during co Burst (psi) 3,520 1,380 2.55	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r ndition hole an ng. ND BOPE. We ement job and n Tens. Body (lbs) 564,000 215,309 2.62	3,833 fi ments OBM Utes. Palan. Keep DLS rates of 750 d fluid for 'alk rig to next iote cement Tens. Conn (lbs) 453,000
Fluid: Hole Size: Bit / Motor: Bit / Motor: Uogging: Pressure Test: Procedure: Casing Specs: Specs Loading	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo <3 deg/100' an GPM (higher if a casing running, well. Perform o volume to surfa	ft (MD) ft (TVD) MW (ppg) 8.8-9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or ith inclination est (as noted abo wing direction d keep slide len able to control . TOOH. Run cas off-line cement j ace. Wt (lb/ft) 36.0 Collapse: fully	to to Televice to the series of the series o	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's est 13-3/8" casin nole past casing possible. Take su inimum desired and washing / ci int as detailed be Conn. LTC	ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 , 900 GPM, 950 0 (range 0.65 - 0. at a minimum), C gto setting depth). 3 rrveys every stan flow-rate is 650 rculating as requented collapse (psi) 2,020 1,604 1.26 equivalent exter.	Hole S PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi 5R optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casi iturns during co Burst (psi) 3,520 1,380 2.55 rnal pressure g	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r indition hole an ng. ND BOPE. W ement job and n Tens. Body (lbs) 564,000 215,309 2.62 radient	3,833 f ments OBM Utes. plan. Keep DLS rates of 750 dd fluid for 'alk rig to next rote cement Tens. Conn (lbs) 453,000 215,309 2.10
Fluid: Hole Size: Bit / Motor: Bit / Motor: Uogging: Pressure Test: Procedure: Casing Specs: Specs Loading	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo <3 deg/100' an GPM (higher if a casing running, well. Perform o volume to surfa	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or with inclination est (as noted aboving direction d keep slide len able to control . TOOH. Run cas off-line cement j ace. Wt (lb/ft) 36.0 Collapse: fully Burst: maximu	to to TRL (mL/30 min) 20 c, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat-f gth <10', when return rates). M sing using a CRT a ob. Pump ceme Grade J-55 evacuated casin um anticipated s	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's est 13-3/8" casin nole past casing possible. Take su inimum desired and washing / ci int as detailed be Conn. LTC	ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 , 900 GPM, 950 a (range 0.65 - 0. at a minimum), G gto setting depth). S gto setting depth). S rculating as reques collapse (psi) 2,020 1,604 1.26 equivalent exter with 9.5 ppg flu	Hole S PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi 5R optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casi iturns during co Burst (psi) 3,520 1,380 2.55 rnal pressure g	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r indition hole an ng. ND BOPE. W ement job and n Tens. Body (lbs) 564,000 215,309 2.62 radient	3,833 f ments OBM Jtes. plan. Keep DLS rates of 750 dd fluid for falk rig to next sote cement Tens. Conn (lbs) 453,000 215,309 2.10
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test: Procedure: Casing Specs: Specs Loading	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo <3 deg/100' an GPM (higher if a casing running, well. Perform o volume to surfa	ft (MD) ft (TVD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted abo wing direction d keep slide len able to control . TOOH. Run cas off-line cement j ace. Wt (lb/ft) 36.0 Collapse: fully Burst: maximu hole and 8.4 p	to to Televice to the second s	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir rvey (every 100'; est 13-3/8" casin nole past casing possible. Take su inimum desired and washing / ci int as detailed be Conn. LTC	ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0.: at a minimum), G g to setting depth). S grupys every stan flow-rate is 650 rculating as requ elow. Monitor ref Collapse (psi) 2,020 1,604 1.26 equivalent exter with 9.5 ppg flue gradient	Hole S PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casi iturns during ce Burst (psi) 3,520 1,380 2.55 rnal pressure g iid inside casin	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r indition hole an ng. ND BOPE. W ement job and n Tens. Body (lbs) 564,000 215,309 2.62 radient	3,833 fi ments OBM Jtes. plan. Keep DLS rates of 750 dd fluid for falk rig to next sote cement Tens. Conn (lbs) 453,000 215,309 2.10
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test: Procedure: Casing Specs: Specs Loading Min. S.F.	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if, casing running, well. Perform o volume to surfa	ft (MD) ft (TVD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or ith inclination est (as noted aboving direction id keep slide len able to control . TOOH. Run cas off-line cement j ace. Wt (lb/ft) 36.0 Collapse: fully Burst: maximu hole and 8.4 p Tension: buoye	to to Televice to the second s	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir rvey (every 100'; est 13-3/8" casin possible. Take su inimum desired and washing / ci int as detailed be Conn. LTC	ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0.2 at a minimum), G g to setting depth). S grupys every stan flow-rate is 650 rculating as requ elow. Monitor ref Collapse (psi) 2,020 1,604 1.26 equivalent exter with 9.5 ppg flu e gradient 100,000 lbs over	Hole S PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi 5R optional 1,500 Steer as needed d, at a minimu GPM. At TD, co irred. Land casi irred. Land casi iturns during ce Burst (psi) 3,520 1,380 2.55 rnal pressure g id inside casin -pull	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r indition hole an ng. ND BOPE. W ement job and n Tens. Body (lbs) 564,000 215,309 2.62 radient	3,833 fi ments OBM Jtes. plan. Keep DLS rates of 750 dd fluid for falk rig to next sote cement Tens. Conn (lbs) 453,000 215,309 2.10
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test: Procedure: Procedure: Specs Loading Min. S.F.	350 350 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo <3 deg/100'an GPM (higher if a casing running, well. Perform o volume to surfa 9.625 Assumptions: Minumum:	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- wing direction id keep slide len able to control . TOOH. Run cas off-line cement j ace. Wt (lb/ft) 36.0 Collapse: fully Burst: maximu hole and 8.4 p Tension: buoye 3,400	to to Television to the second	3,833 3,673 PV (cp) 8 -14 ev/gal, 1.83 DEG . TFA = 0.67 sq-ir rvey (every 100's est 13-3/8" casin possible. Take su inimum desired and washing / ci nt as detailed be Conn. LTC mg with 8.4 ppg surface pressure xternal pressure surface pressure xternal pressure 4,530	ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 900 GPM, 950 n (range 0.65 - 0. at a minimum), 0 g to setting depth). 1 urveys every stan flow-rate is 650 rculating as requ elow. Monitor ref Collapse (psi) 2,020 1,604 1.26 equivalent exter. with 9.5 pp flu gradient 100,000 lbs over Maximum:	Hole S PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, co irred. Land casi d, at a minimu GPM. At TD, co irred. Land casi turns during ce Burst (psi) 3,520 1,380 2.55 rnal pressure g irid inside casin -pull 5,660	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r indition hole an ng. ND BOPE. W ement job and n Tens. Body (lbs) 564,000 215,309 2.62 radient g while drilling	3,833 fi ments OBM Jtes. plan. Keep DLS rates of 750 dd fluid for 'alk rig to next rote cement Tens. Conn (lbs) 453,000 215,309 2.10
Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test: Procedure: Casing Specs: Specs Loading	350 350 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo <3 deg/100'an GPM (higher if a casing running, well. Perform o volume to surfa 9.625 Assumptions: Minumum:	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- wing direction id keep slide len able to control . TOOH. Run cas off-line cement j ace. Wt (lb/ft) 36.0 Collapse: fully Burst: maximu hole and 8.4 p Tension: buoye 3,400	to to Television to the second	3,833 3,673 PV (cp) 8 -14 ev/gal, 1.83 DEG . TFA = 0.67 sq-ir rvey (every 100's est 13-3/8" casin possible. Take su inimum desired and washing / ci nt as detailed be Conn. LTC mg with 8.4 ppg surface pressure xternal pressure surface pressure xternal pressure 4,530	ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 900 GPM, 950 n (range 0.65 - 0. at a minimum), 0 g to setting depth). 1 urveys every stan flow-rate is 650 rculating as requ elow. Monitor ref Collapse (psi) 2,020 1,604 1.26 equivalent exter. with 9.5 pp flu gradient 100,000 lbs over Maximum:	Hole S PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, co irred. Land casi d, at a minimu GPM. At TD, co irred. Land casi turns during ce Burst (psi) 3,520 1,380 2.55 rnal pressure g irid inside casin -pull 5,660	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r indition hole an ng. ND BOPE. W ement job and n Tens. Body (lbs) 564,000 215,309 2.62 radient g while drilling	3,833 fi ments OBM Jtes. plan. Keep DLS rates of 750 dd fluid for 'alk rig to next rote cement Tens. Conn (lbs) 453,000 215,309 2.10

Centralizers: 1 per joint in non-vertical hole; 1 per 2-joints in vertical hole

		11.75" SOLID E	BODY POLYMER	.)	1	r	1	1	1
	Cement:	Туре	Weight (ppg)	Yield (cuft/sk)	Water (gal/sk)	% Excess	Planned TOC (ft MD)	Total Cmt (sx)	Total Cmt (cu ft)
age 1	Spacer	D-Mud Breaker	8.5				0	10 bbls	
	المعط	90:10 Type	12.5	2.140	12.05	700/	0	000	1 715
	Lead Tail	III:POZ Type III	12.5 14.6	2.140 1.380	12.05 6.64	70% 20%	0 3,333	802 150	1,715 207
Die	splacement			1.560	0.04	2076	3,333	130	207
	ar Capacity	0.3627	cuft/ft	9-5/8" casina >	x 13-3/8" casing	annulus	1		1
	, ,	0.3132	cuft/ft		x 12-1/4" hole ai		9-5/8" 36#ID	8.921	
		0.4341	cuft/ft	9-5/8" casing v	vol	est shoe jt ft	44		
		Calculated cer	nent volumes as	ssume gauge ho	le and the exces	s (open hole on	ly) noted in tab	le	
	Concor	D Marid Description	SAPP						
	Spacer	D-Mud Breaker	SAPP						
		ASTM Type III	D-CSE 1 5.0% BWOC	D-MPA-1 .4% BWOC	D-SA 1 1.4% BWOC		Cello Flace LCM .25		
	Lead	90/10 Poz		Migration Control		Dispersant	lb/sx	Defoamer	D-R1 .5% Retarder
			Ū.						
				D-MPA-1 .4% BWOC Fluid Loss & Gas		D-CD 2 .5% BWOC	Cello Flace LCM .25		
	Tail	ASTM Type III Blend		Migration Control		Dispersant	lb/sx		D-R1 .2% Retarder
		Drake Interme	diate Cementin	g Program					
					rength before d ted to surface. (-	chieve 500 psi c	ompressive stre	ength before
PRO	DUCTION:	Drill to TD follo	owing direction	al plan, run cas	ing, cement cas	ing to surface.			
		3,833	ft (MD)	to	12,673	ft (MD)	Hole	Section Length:	8,840
		3,673	ft (TVD)	to	5,521	ft (TVD)	C	asing Required:	12,673
						6 (2.22)		6 (= (=)	1
				Estimated KOP:		ft (MD)		ft (TVD)	-
			Estimated Landi		-	ft (MD)	5,466	ft (TVD)	
			Estimatea	ateral Length:	6,815	ft (MD)			
	Fluid:	Туре	MW (ppg)	WPS ppm	нтнр	YP (lb/100 sqft)	ES	OWR	Comment WBM as
		ОВМ	8.0 - 9.0	120,000 CaCl	NC	sqft) ±6	+300	80:20	WBM as contingency
Fluids / So		ОВМ	8.0 - 9.0	120,000 CaCl		sqft) ±6	+300	80:20	WBM as contingency
Fluids / So		OBM OptiDrill OBM shakers. Solids	8.0 - 9.0 system will be b control will but	120,000 CaCl uilt from previo	NC pus well. Ensure ttings samples o	sqft) ±6 that drying shaking per tour to c	+300 kers are rigged u heck % ROC. Ad	80:20 p after the rig (2 d diesel and pro-	WBM as contingency nd set) of
Fluids / So		OBM OptiDrill OBM shakers. Solids	8.0 - 9.0 system will be b control will but	120,000 CaCl uilt from previo	NC	sqft) ±6 that drying shaking per tour to c	+300 kers are rigged u heck % ROC. Ad	80:20 p after the rig (2 d diesel and pro-	WBM as contingency nd set) of
Fluids / So	olids Notes:	OBM OptiDrill OBM shakers. Solids required to ma	8.0 - 9.0 system will be b control will but	120,000 CaCl uilt from previo	NC pus well. Ensure ttings samples o	sqft) ±6 that drying shaking per tour to c	+300 kers are rigged u heck % ROC. Ad	80:20 p after the rig (2 d diesel and pro-	WBM as contingency nd set) of
	olids Notes: Hole Size:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2"	8.0 - 9.0 system will be b control will bur intain mud in p	120,000 CaCl uilt from previo	NC pus well. Ensure ttings samples o	sqft) ±6 that drying shaking per tour to c	+300 kers are rigged u heck % ROC. Ad	80:20 p after the rig (2 d diesel and pro-	WBM as contingency nd set) of
E	olids Notes: Hole Size: Bit / Motor:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor	120,000 CaCl uilt from previc rn retorts on cut rogram specs. R	NC pus well. Ensure ttings samples o eference Newpa	sqft) ±6 that drying shak ne per tour to c rk's mud progra	+300 kers are rigged u heck % ROC. Ad im for additiona	80:20 p after the rig (2 d diesel and pro al details.	WBM as contingency nd set) of ducts as
E	olids Notes: Hole Size: Bit / Motor:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/	120,000 CaCl uilt from previc rn retorts on cut rogram specs. R 8, 5.0 stage, 0.2	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o	sqft) ±6 that drying shak ne per tour to c rk's mud progra	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG	80:20 p after the rig (2 d diesel and pro al details.	WBM as contingency nd set) of ducts as
E	olids Notes: Hole Size: Bit / Motor:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breaking	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re	120,000 CaCl uilt from previc rn retorts on cut rogram specs. R 8, 5.0 stage, 0.2 equired, bottom	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o n tool spaced ~3,	sqft) ±6 that drying shak ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit.	80:20 p after the rig (2 d diesel and pro al details.	WBM as contingency nd set) of ducts as
E	olids Notes: Hole Size: Bit / Motor: Bit / Motor:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1	120,000 CaCl uilt from previc ro retorts on cut rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o n tool spaced ~3, natrix body, targ	sqft) ±6 that drying shak ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1.	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o	WBM as contingency nd set) of ducts as
E	olids Notes: Hole Size: Bit / Motor: Bit / Motor:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR,	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, an	120,000 CaCl uilt from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o n tool spaced ~3,	sqft) ±6 that drying shak ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1.	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o	WBM as contingency nd set) of ducts as
E	blids Notes: Hole Size: Bit / Motor: Bit / Motor: /D / Survey:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, an d after Landing F	120,000 CaCl uilt from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, r d azimuth (surve 20int)	NC pus well. Ensure ttings samples o eference Newpa 23 rev/gal, 1.83 o n tool spaced ~3, natrix body, targ ey every joint fro	sqft) ±6 that drying shak ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1. om KOP to Land	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o	WBM as contingency nd set) of ducts as
E E MW	olids Notes: Hole Size: Bit / Motor: Bit / Motor: /D / Survey: Logging:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 i.nclination, an d after Landing F ntire section, no	120,000 CaCl puilt from previo rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve Point) mud-log or cut	NC bus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling,	sqft) ±6 that drying shak ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1 om KOP to Land no OH WL logs	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o	WBM as contingency nd set) of ducts as demand minimum
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and to	8.0 - 9.0 system will be b control will bur intain mud in p 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, an d after Landing F ntire section, no est (as noted abo	120,000 CaCl puilt from previc rogram specs. R 28, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve oint) mud-log or cut pove); pressure te	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o n tool spaced ~3, matrix body, targ ey every joint fro tings sampling, est 9-5/8" casing	sqft) ±6 that drying shak ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1. om KOP to Land no OH WL logs to	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o Irvey every 100'	WBM as contingency nd set) of ducts as demand minimum ites.
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 777857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 10 i.inclination, an d after Landing F titre section, no est (as noted abo	120,000 CaCl puilt from previc ro retorts on cut rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve ooint) mud-log or cut pressure te nal plan. Target	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, matrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650	sqft) ±6 that drying shal- ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar,	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o irvey every 100' psi for 30 minu s pressure is 700	WBM as contingency nd set) of ducts as demand minimum utes. 0 - 1,000 psig.
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 50C	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 177857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, a dafter Landing F ntire section, no est (as noted abo lowing directio 0 - 600 ft/hr. Ste	120,000 CaCl mult from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve Point) or mud-log or cut pove); pressure te nal plan. Target er as needed to	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o n tool spaced ~3, matrix body, targ ey every joint fro tings sampling, est 9-5/8" casing	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar, n. Keep DLS < 3	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o irvey every 100' psi for 30 minu s pressure is 700 eep slide length	WBM as contingency nd set) of ducts as demand minimum ites. 0 - 1,000 psig. < 10' until KOP
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 50C when feasible.	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 177857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, a d after Landing F ntire section, no est (as noted abu llowing directio D - 600 ft/hr. Ste Take surveys ever	120,000 CaCl nuilt from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, r d azimuth (surve 20 int) 9 mud-log or cut ove); pressure te nal plan. Target er as needed to ery stand, at a m	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla	sqft) ±6 that drying shal- ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o irvey every 100' psi for 30 minu s pressure is 700 eep slide length - for curve, and Ko	WBM as contingency nd set) of ducts as demand minimum utes. < 10' until KOP OP with
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 50C when feasible. Geology and Er	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 177857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, an d after Landing F ntire section, no est (as noted ab llowing directio D - 600 ft/hr. Ste Take surveys even ngineering. Drill	120,000 CaCl nuilt from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve Point) o mud-log or cut ove); pressure te nal plan. Target er as needed to ery stand, at a m curve following	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, ist 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confirm	sqft) ±6 that drying shal- ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated l	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR anding target. T	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o irvey every 100' psi for 30 minu s pressure is 700 eep slide length of for curve, and Ko 'ake survey every	WBM as contingency nd set) of ducts as demand minimum rtes. < 10' until KOP OP with / joint during
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 50C when feasible. Geology and Er curve. Land cu	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 777857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, an d after Landing F ntire section, no est (as noted abo lowing directio D - 600 ft/hr. Ste Take surveys even ngineering. Drill rve. Continue do	120,000 CaCl nuilt from previc ro retorts on cut rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve Point) o mud-log or cut ove); pressure te nal plan. Target rer as needed to ery stand, at a m curve following rilling in lateral	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confirn g directional pla	sqft) ±6 that drying shal- ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind th- get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated l gas needed to ke	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR anding target. T eep well on plar	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o rvey every 100' psi for 30 minu s pressure is 700 eep slide length of for curve, and K0 ake survey every and in the targe	WBM as contingency nd set) of ducts as demand minimum ites. > 1,000 psig. < 10' until KOP OP with / joint during et window.
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er curve. Land cu Keep DLS < 2 do	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 177857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, an d after Landing F ntire section, no est (as noted abo lowing directio) - 600 ft/hr. Ste Take surveys even ngineering. Drill rve. Continue di eg/100' and keep	120,000 CaCl uilt from previc ror retorts on cut rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, r d azimuth (surve Point) o mud-log or cut ove); pressure te nal plan. Target ier as needed to ery stand, at a m curve following rilling in lateral p slide length < 2	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, ist 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confiri g directional pla section, steering	sqft) ±6 that drying shak ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar, n. Keep DLS < 3 m landing targe n and updated l gas needed to ke e. Take surveys	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR i anding target. T eep well on plar every stand, at a	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o rvey every 100' psi for 30 minu s pressure is 700 eep slide length for curve, and K0 ake survey every and in the targe	WBM as contingency nd set) of ducts as demand minimum ites. > 1,000 psig. < 10' until KOP OP with r joint during et window. get rotating
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 50C when feasible. Geology and Er Geology and Er	8.0 - 9.0 system will be b control will bur intain mud in p 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 i. inclination, an d after Landing F ntire section, no est (as noted abo lowing directio D - 600 ft/hr. Ste Take surveys eve Take sur	120,000 CaCl uilt from previous reported to the previous rogram specs. R (8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve Point) o mud-log or cut powe); pressure te nal plan. Target er as needed to ery stand, at a m curve following curve following rilling in lateral: poside length < 2 pow-rate is 650 - ipe MUT). After	NC bus well. Ensure- ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, st 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confir gdirectional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per	sqft) ±6 that drying shak ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1. om KOP to Land no OH WL logs to -700 GPM. Tar n. Keep DLS < 3 m landing targen and updated l gas needed to ke e. Take surveys sential is pressu form no more t	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR anding target. T eep well on plar every stand, at a re is 700 - 1,00 han one clean-u	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o rrvey every 100' psi for 30 minu s pressure is 700 exp slide length for curve, and length for curve, and in the targo a minimum. Targ 0 psig, ROP 500 up cycle to cond	WBM as contingency nd set) of ducts as demand minimum ites.) - 1,000 psig. < 10' until KOP OP with / joint during et window. get rotating - 600 ft/hr, ition hole for
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and to Drill to KOP fol Target ROP 500 when feasible. Geology and te curve. Land cu Keep DLS < 2 du parameters / p torque 38K ft-l casing running	8.0 - 9.0 system will be b control will bur intain mud in p 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 inclination, an d after Landing F ntire section, no est (as noted abo lowing directio) - 600 ft/hr. Ste Take surveys even ngineering. Drill rve. Continue du eg/100' and kee performance: flo lbs (MAX drill pi cunless shakers i	120,000 CaCl mult from previous rogram specs. R 28, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve or) and cutters, r d azimuth (surve or) spessure te nal plan. Target er as needed to ery stand, at a m curve following rilling in lateral op slide length < 2 ow-rate is 650 - ipe MUT). After ndicate additio	NC bus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confiri g directional place inimum. Starp 20', when feasibl 700 GPM, differ reaching TD, per nal cleaning nee	sqft) ±6 that drying shak ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated l gas needed to ke e. Take surveys tential is pressu form no more t ded. TOOH & LE	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR : anding target. anding target. every stand, at a re is 700 - 1,00 han one clean-u 0 drill pipe (ROC	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o rvvey every 100' psi for 30 minu s pressure is 700 exp slide length o for curve, and KO iake survey every and in the targo a minimum. Targ 0 psig, ROP 500 pc yccle to cond DH, if required; s	WBM as contingency nd set) of ducts as demand minimum utes. > - 1,000 psig. < 10' until KOP OP with / joint during et window. get rotating - 600 ft/hr, ition hole for hould NOT be
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and to Drill to KOP fol Target ROP 500 when feasible. Geology and te Drill to KOP fol Target ROP 500 when feasible. Geology and te torque 38K ft-1 casing running required with 0	8.0 - 9.0 system will be b control will bur intain mud in p 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, an d after Landing F ntire section, no est (as noted abo lowing directio) - 600 ft/hr. Ste Take surveys even ingineering. Drill rve. Continue du eg/100' and keep eerformance: flo tubes (MAX drill pi unless shakers i OBM system). W	120,000 CaCl uilt from previc rogram specs. R (8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surva Point) mud-log or cut ove); pressure te nal plan. Target ier as needed to ery stand, at a m curve following rilling in lateral p slide length < 2 pw-rate is 650 - ipe MUT). After ndicate additio (hen pumping h	NC bus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confiri g directional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per nal cleaning nee ole cleaning swe	sqft) ±6 that drying shal- ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar, n. Keep DLS < 3 m landing targe n and updated 1 gas needed to ke e. Take surveys rential is pressu form no more t ded. TOOH & LED pes, fine LCM p	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR i anding target. T eep well on plar every stand, at ar every stand, at ar e is 700 - 1,00 han one clean-u o drill pipe (ROC roduct is to be u	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o invey every 100' psi for 30 minu s pressure is 700 exp slide length - for curve, and K(ake survey every and in the targe o psig, ROP 500 up cycle to cond DH, if required; s used -Do not use	WBM as contingency nd set) of ducts as demand minimum ites. 0 - 1,000 psig. < 10' until KOP OP with joint during et window. get rotating - 600 ft/hr, ition hole for hould NOT be barite for
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er curve. Land cu Keep DLS < 2 dd parameters / p torque 38K ft-I casing running required with 0 sweeps. Run c	8.0 - 9.0 system will be b control will bur intain mud in p 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, an d after Landing F titre section, no est (as noted abo lowing directio) - 600 ft/hr. Ste Take surveys even gineering. Drill rve. Continue dh eg/100' and keep gerformance: fto bs (MAX drill pi unless shakers i OBM system). W asing as describ	120,000 CaCl uilt from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve coint) mud-log or cut ove); pressure te nal plan. Target ier as needed to ery stand, at a m curve following rilling in lateral p slide length < 2 pow-rate is 650 - ipe MUT). After ndicate additio (hen pumping h	NC bus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confiri g directional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per nal cleaning nee ole cleaning swe RT for casing rur	sqft) ±6 that drying shall ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind thug get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar, n. Keep DLS < 3 m landing targe n and updated 1 gas needed to kk e. Take surves tential is pressu form no more to ded. TOOH & LED puning only if neo	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR t, planned	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o urvey every 100' psi for 30 minu s pressure is 700 eep slide length for curve, and Ku for curve, and for curve, and for curve, and for c	WBM as contingency nd set) of ducts as demand demand demand utes. 0 - 1,000 psig. < 10' until KOP DP with joint during et window. get rotating - 600 ft/hr, ition hole for hould NOT be barite for with OBM).
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er curve. Land cu Keep DLS <2 dd parameters / p torque 38K ft-l casing running required with 0 sweeps. Run c	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 i.inclination, an d after Landing F tire section, no est (as noted abo lowing directio 0 - 600 ft/hr. Ste Take surveys eve agineering. Drill rve. Continue di eg/100' and keej berformance: fto los (MAX drill pi unless shakers i OBM system). W asing as describ	120,000 CaCl mult from previous rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, rr 4 azimuth (surve coint) 9 mud-log or cut ove); pressure te nal plan. Target rer as needed to ery stand, at a m curve following rilling in lateral p slide length < 2 ow-rate is 650 ow-rate is 650 ow-rate additio then pumping h ed below. Use C unning casing. Sp	NC Dus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confiru g directional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per nal cleaning nee ole cleaning swe RT for casing rur pace out casing rur	sqft) ±6 that drying shall ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind thug get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar, n. Keep DLS < 3 m landing targe n and updated l gas needed to kk e. Take survess form no more to ded. TOOH & LC ups, fine LCM p ming only if neo getting the toes	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR: anding target. T eep well on plar every stand, at a re is 700 - 1,00 han one clean-u) drill pipe (ROC roduct is to be u tessary (should I sleeve as close to	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o urvey every 100' psi for 30 minu s pressure is 700 eep slide length - for curve, and K0 ake survey every a minimum. Targ O psig, ROP 500 up cycle to cond H, if required; s used -Do not use NOT be required o LTP as possible	WBM as contingency nd set) of ducts as demand demand demand ites. 0 - 1,000 psig. < 10' until KOP OP with i joint during et window. get rotating - 600 ft/hr, ition hole for hould NOT be barite for with OBM). Land casing
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 50C when feasible. Geology and Er curve. Land cu Keep DLS < 2 de parameters / p torque 38K ft- casing running required with 0 sweeps. Run c	8.0 - 9.0 system will be b control will bur intain mud in p """"""""""""""""""""""""""""""""""""	120,000 CaCl mult from previce representation of the rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve obint) or mud-log or cut ove); pressure te nal plan. Target wer as needed to ery stand, at a m curve following rilling in lateral op slide length < 2 ow-rate is 650 ow-rate is 650 ipe MUT). After ndicate additio then pumping h ed below. Use C unning casing. Sp ion sub, fill casing	NC bus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confir g directional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per eaching TD, per ole cleaning swe RT for casing rur pace out casing g	sqft) ±6 that drying shall ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind thug get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar, n. Keep DLS < 3 m landing targe n and updated l gas needed to k e. Take surveys rential is pressu form no more t ded. TOOH & LD seas required. Put	+300 kers are rigged u heck % ROC. Ad im for additional s,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR anding target. T eep well on plar every stand, at a re is 700 - 1 ,00 han one clean-u d orill pipe (ROC roduct is to be e cessary (should f sleeve as close to imp cement as o	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o urvey every 100' psi for 30 minu s pressure is 700 eep slide length - for curve, and K0 ake survey every a minimum. Targ O psig, ROP 500 up cycle to cond H, if required; s used -Do not use NOT be required o LTP as possible	WBM as contingency nd set) of ducts as demand demand demand ites. 0 - 1,000 psig. < 10' until KOP OP with i joint during et window. get rotating - 600 ft/hr, ition hole for hould NOT be barite for with OBM). Land casing
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 50C when feasible. Geology and Er curve. Land cu Keep DLS < 2 de parameters / p torque 38K ft- casing running required with 0 sweeps. Run c	8.0 - 9.0 system will be b control will bur intain mud in p """"""""""""""""""""""""""""""""""""	120,000 CaCl mult from previce representation of the rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve obint) or mud-log or cut ove); pressure te nal plan. Target wer as needed to ery stand, at a m curve following rilling in lateral op slide length < 2 ow-rate is 650 ow-rate is 650 ipe MUT). After ndicate additio then pumping h ed below. Use C unning casing. Sp ion sub, fill casing	NC Dus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confiru g directional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per nal cleaning nee ole cleaning swe RT for casing rur pace out casing rur	sqft) ±6 that drying shall ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind thug get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar, n. Keep DLS < 3 m landing targe n and updated l gas needed to k e. Take surveys rential is pressu form no more t ded. TOOH & LD seas required. Put	+300 kers are rigged u heck % ROC. Ad im for additional s,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR anding target. T eep well on plar every stand, at a re is 700 - 1 ,00 han one clean-u d orill pipe (ROC roduct is to be e cessary (should f sleeve as close to imp cement as o	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o urvey every 100' psi for 30 minu s pressure is 700 eep slide length - for curve, and K0 ake survey every a minimum. Targ O psig, ROP 500 up cycle to cond H, if required; s used -Do not use NOT be required o LTP as possible	WBM as contingency nd set) of ducts as demand demand demand ites. 0 - 1,000 psig. < 10' until KOP OP with i joint during et window. get rotating - 600 ft/hr, ition hole for hould NOT be barite for with OBM). Land casing
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 50C when feasible. Geology and Er curve. Land cu Keep DLS < 2 de parameters / p torque 38K ft- casing running required with 0 sweeps. Run c	8.0 - 9.0 system will be b control will bur intain mud in p """"""""""""""""""""""""""""""""""""	120,000 CaCl mult from previce representation of the rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve obint) or mud-log or cut ove); pressure te nal plan. Target wer as needed to ery stand, at a m curve following rilling in lateral op slide length < 2 ow-rate is 650 ow-rate is 650 ipe MUT). After ndicate additio then pumping h ed below. Use C unning casing. Sp ion sub, fill casing	NC bus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confirn 3 directional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per eaching TD, per ole cleaning swe RT for casing rur pace out casing g	sqft) ±6 that drying shall ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind thug get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar, n. Keep DLS < 3 m landing targe n and updated l gas needed to k e. Take surveys rential is pressu form no more t ded. TOOH & LD seas required. Put	+300 kers are rigged u heck % ROC. Ad im for additional s,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR anding target. T eep well on plar every stand, at a re is 700 - 1 ,00 han one clean-u d orill pipe (ROC roduct is to be e cessary (should f sleeve as close to imp cement as o	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o urvey every 100' psi for 30 minu s pressure is 700 eep slide length - for curve, and K0 ake survey every a minimum. Targ O psig, ROP 500 up cycle to cond H, if required; s used -Do not use NOT be required o LTP as possible	WBM as contingency nd set) of ducts as demand demand demand ites. 0 - 1,000 psig. < 10' until KOP OP with / joint during et window. get rotating - 600 ft/hr, ition hole for hould NOT be barite for with OBM). Land casing
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 50C when feasible. Geology and Er curve. Land cu Keep DLS < 2 de parameters / p torque 38K ft- casing running required with 0 sweeps. Run c	8.0 - 9.0 system will be b control will bur intain mud in p """"""""""""""""""""""""""""""""""""	120,000 CaCl mult from previce representation of the rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve obint) or mud-log or cut ove); pressure te nal plan. Target wer as needed to ery stand, at a m curve following rilling in lateral op slide length < 2 ow-rate is 650 ow-rate is 650 ipe MUT). After ndicate additio then pumping h ed below. Use C unning casing. Sp ion sub, fill casing	NC bus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confirn 3 directional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per eaching TD, per ole cleaning swe RT for casing rur pace out casing g	sqft) ±6 that drying shall ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind thug get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar, n. Keep DLS < 3 m landing targe n and updated l gas needed to k e. Take surveys rential is pressu form no more t ded. TOOH & LD seas required. Put	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR anding target. T eep well on plar every stand, at a re is 700 - 1,00 han one clean-u han one clean-u o drill pipe (ROC roduct is to be e kessary (should f sleeve as close to imp cement as o	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o invey every 100' psi for 30 minu s pressure is 700 eep slide length - for curve, and Ko for curve, and Ko for curve, and Ko for curve, and Ko ake survey every and in the targo a minimum. Targ 0 psig, ROP 500 up cycle to cond DH, if required; s used -Do not use NOT be required b LTP as possible detailed below. I	WBM as contingency nd set) of ducts as demand minimum rtes. > -1,000 psig. < 10' until KOP OP with / joint during te window. get rotating - 600 ft/hr, ition hole for hould NOT be barite for with OBM). . Land casing Note cement
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 50C when feasible. Geology and Er curve. Land cu Keep DLS < 2 de parameters / p torque 38K ft- casing running required with 0 sweeps. Run c	8.0 - 9.0 system will be b control will bur intain mud in p """"""""""""""""""""""""""""""""""""	120,000 CaCl mult from previce representation of the rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve obint) or mud-log or cut ove); pressure te nal plan. Target wer as needed to ery stand, at a m curve following rilling in lateral op slide length < 2 ow-rate is 650 ow-rate is 650 ipe MUT). After ndicate additio then pumping h ed below. Use C unning casing. Sp ion sub, fill casing	NC bus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confirn 3 directional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per eaching TD, per ole cleaning swe RT for casing rur pace out casing g	sqft) ±6 that drying shall ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind thug get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar, n. Keep DLS < 3 m landing targe n and updated l gas needed to k e. Take surveys rential is pressu form no more t ded. TOOH & LD seas required. Put	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR anding target. T eep well on plar every stand, at a re is 700 - 1,00 han one clean-u han one clean-u o drill pipe (ROC roduct is to be e kessary (should f sleeve as close to imp cement as o	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o urvey every 100' psi for 30 minu s pressure is 700 eep slide length - for curve, and K0 ake survey every a minimum. Targ O psig, ROP 500 up cycle to cond H, if required; s used -Do not use NOT be required o LTP as possible	WBM as contingency nd set) of ducts as demand minimum ites. 0 - 1,000 psig. < 10' until KOP. OP with joint during et window. get rotating - 600 ft/hr, ition hole for hould NOT be barite for with OBM). Land casing

Specs	5.500	17.0	P-110	LTC	7,460	10,640	546,000	445,000
Loading					2,727	9,017	285,906	285,906
Min. S.F.					2.74	1.18	1.91	1.56
MU Torque (ft lbs): Casing Summary: Casing Summary:	Minumum: Float shoe, flo spaced evenly cannot be place Float shoe, flo intitiation slee sub (NCS Air-L boundary thar Wellbore path sleeve and is n	fluid with 8.4 f Tension: buoyo 3,470 at collar, 1 jt cas in lateral every 2 ced closer than 3	si maximum sur opg equivalent of ed weight in 9.0 Optimum: ing, float collar, 2,000', floatatio i30' to the unit to is catcher, 1 jt c 00 psi), casing to perpendicular to ser than 600' fro il Plan. Drill pas	face treating pr external pressur ppg fluid with : 4,620 20' marker join n sub at KOP, ca boundary when asing, float colla KOP with 20' n to surface. The to surface. The to the East or W m the parallel let t the LTP as requ	fluid in the ann ressure with 10. re gradient 100,000 lbs ove Maximum: t, toe-intitiatio sing to surface. measured perper ar (Weatherford arker joints spa toe-initiation sl est lease lines. Note: uired for necess	nulus (floating c 2 ppg equivaler 5,780 n sleeve, casing The toe-initiation endicular to the d (WFT) float equa aced evenly in la eeve shall be pla or a East-West az the LTP is the n	to KOP with 20 on sleeve (last-ti e well path. digment), 20' m digment), 20' m digment, 20' m di	inning) sand laden ' marker joint ake-point) narker joint, tu 00', floatatio o the unit rellbore. o of the toe
		us crose to (but i	iot pust, the pro	inica zni as po	5515101			
Centralizers:	Lateral: 1 cent Top of curve to	unt and placem tralizer per 3 joir o 9-5/8" shoe: 1 o surface: 1 cent	nts (purchase cer centralizer per	ntralizers from e 5 joints				Total Cmt (d
Cement:	Туре	Weight (ppg)	Yield (cuft/sk)	Water (gal/sk)	% Excess	(ft MD)	Total Cmt (sx)	-
Spacer	IntegraGuard Star	11	riera (early ony	31.6	70 2.00000	0	60 bbls	,
Lead	ASTM type I/II	12.4	2.370	13.40	50%	0	560	1,328
Tail	G:POZ blend	13.3	1.570	7.70	10%	4,696	1,280	2,010
Displacement	120	est bbls		•	•			•
Annular Capacity	0.2691	cuft/ft	5-1/2" casing >	(9-5/8" casing (annulus			
	0.2291	cuft/ft	5-1/2" casing >	(8-1/2"hole an	nulus			
	0.1245	cuft/ft	5-1/2" casing v	vol	est shoe jt ft	100		
Spacer	American Cem S-8 Silica Flour 163.7 lbs/bbl	Avis 616 viscosifier 11.6 lb/bbl		d IntegraGuard Star Plus 3K LCM 15 Ib/bbl	SS201 Surfactant 1 gal/bbl IntegraGuard GW86	i	FP24 Defoamer	
Lead	ASTM Type I/II	BA90 Bonding Agent 5.0 lb/sx	Bentonite Viscosifier 8% BWOB	FL24 Fluid Loss .5% BWOB	Viscosifier .1% BWOB	R7C Retarder .2% BWOB	0.3% BWOB, Anti- Static .01 lb/sx	500 / D /
Tail	Туре G 50%	Pozzolan Fly Ash Extender 50%	BA90 Bonding Agent 3.0 lb/sx	Bentonite Viscosifier 4% BWOB	FL24 Fluid Loss .4% BWOB	IntegraGuard GW86 Viscosifier .1% BWOB	R3 Retarder .5% BWOB	FP24 Defoamer . BWOB, IntegraSe 0.25 lb/sx
Note:	Notify NMOCC This well will r 19.15.16.15.0 measured alor completed int 19.15.16.7.E a initiation sleev perforation sh	ment volumes a. D & BLM if ceme not be considere C.1.a and 19.15. Ing the azimuth o terval, as defined and NMAC 19.1! ve, and the first ti nall be closer to r to the azimuth	nt is not circula d an unorthodo 16.15.C.1.b, no f the well or 330 by NMAC 19.15 5.16.7.J, respect cake point will b the unit bounda	ted to surface. x well location a point in the cor ' measured perp i.16.7.B, are the tively. In the cas e the top perfor	as definted by N npleted interva bendicular to th e last take point e of this well, th ation. Neither	MAC19.15.16.2 I shall be closer ne azimuth well. Cand first take p ne last take poin the toe-initiation	to the unit bou The boundaries oint, as defined t will be the bot on sleeve nor th	ndary than 10 s of the by NMAC ttom toe- ne top
<u>FINISH WELL:</u> Procedure:		vell, RDMO. ement job, cap a	and cover well. (Continue drilling	z operations on	subsequent we	lls on pad.	
		, , , , , , , , , , , , , , , , , , ,					1	
OMPLETION AND PR		LAN:						
Est Lateral Length:	6,715	5						
Est Frac Inform:	28	Frac Stages	108,000	bbls slick wate	r	8,730,000	lbs proppant	
		ough production ugh production f			nt production a	nd storage facili	ities	
Drilling: Completion:	11/1/23							
Completion: Production:	12/31/23 2/14/24							
epared by: odated:	Alec Bridge	1 2/20/21 2/20/23						

2/20/23

3/27/23

Greg Olson Greg Olson

Updated:

ENDURING RESOURCES IV, LLC 6300 S SYRACUSE WAY, SUITE 525 CENTENNIAL, COLORADO 80211

DRILLING PLAN:

Drill, complete, and equip single lateral in the Mancos-H formation

WELL INFORMATION:

Name:	Haynes Canyo	n Unit 440H					
API Number:	Not yet assigned	d					
AFE Number:	Not yet assigne	d					
ER Well Number:	Not yet assigne	d					
State:	New Mexico						
County:	Rio Arriba						
Surface Elevation:	6,703	ft ASL (GL)	6,728	ft ASL (KB)			
Surface Location:	3-23-6	Sec-Twn-Rng	916	ft FSL	390	ft FWL	
	36.248698	° N latitude	107.464489	° W longitude		(NAD 83)	
BH Location:	4-23-6	Sec-Twn-Rng	453	ft FNL	232	ft FWL	
	36.259361	° N latitude	107.482957	° W longitude		(NAD 83)	
Driving Directions:	FROM THE INTE	RSECTION OF U	6 HWY 550 & U	6 HWY 64 IN BLC	OMFIELD, NM		
	South on US Hw	vy 550 for 53.8	miles to MM 97	.6; Left (North) c	on CR #379 (Stat	te Hwy 403) for 1.3	miles to fork;

South on US Hwy 550 for 53.8 miles to MM 97.6; Left (North) on CR #379 (State Hwy 403) for 1.3 miles to fork; Right (North) remaining on CR #379 for 1.5 miles to location access on left; Haynes Canyon Unit 428H Pad. From East to West 430H, 428H, 442H, 440H).

GEOLOGIC AND RESERVOIR INFORMATION:

Prog

Formation Tops	TVD (ft ASL)	TVD (ft KB)	MD (ft KB)	O/G/W	Pressure
Ojo Alamo	5,325	1,403	1,406	W	normal
Kirtland	5,225	1,503	1,509	W	normal
Fruitland	5,000	1,728	1,746	G, W	sub
Pictured Cliffs	4,765	1,963	1,998	G <i>,</i> W	sub
Lewis	4,615	2,113	2,159	G, W	normal
Chacra	4,320	2,408	2,475	G, W	normal
Cliff House	3,210	3,518	3,665	G <i>,</i> W	sub
Menefee	3,205	3,523	3,670	G, W	normal
Point Lookout	2,505	4,223	4,416	G, W	normal
Mancos	2,230	4,498	4,696	0,G	sub (~0.38
Gallup (MNCS_A)	1,890	4,838	5,036	0,G	sub (~0.38
MNCS_B	1,800	4,928	5,126	0,G	sub (~0.38
MNCS_C	1,665	5,063	5,263	0,G	sub (~0.38
MNCS_Cms	1,600	5,128	5,333	0,G	sub (~0.38
MNCS_D	1,525	5,203	5,418	0,G	sub (~0.38
MNCS_E	1,440	5,288	5,525	0,G	sub (~0.38
MNCS_F	1,395	5,333	5,590	0,G	sub (~0.38
MNCS_G	1,310	5,418	5,744	0,G	sub (~0.38
MNCS_H	1,270	5,458	5,833	0,G	sub (~0.38
MNCS_I	0	0	0	0,G	sub (~0.38
FTP TARGET	1,262	5,466	5,858	0,G	sub (~0.38
PROJECTED LTP	1,207	5,521	12,673	0,G	sub (~0.38

Surface: Nacimiento

Oil & Gas Zones: Several gas bearing zones will be encountered; target formation is the Gallup

Pressure: Normal (0.43 psi/ft) or sub-normal pressure gradients anticipated in all formations

	Max. pressure gradient:	0.43	psi/ft	Evacuated hole gradient:	0.22	psi/ft
	Maximum anticipated BH pres	2,380	psi			
	Maximum anticipated surface	pressure, ass	uming partia	lly evacuated hole:	1,170	psi
Temperature:	Maximum anticipated BHT is 1					

H₂S INFORMATION:

H₂ S Zones: Encountering hydrogen-sulfide bearing zones is NOT anticipated.

Safety: Sensors and alarms will be placed in the substructure, on the rig floor, above the pits, and at the shakers.

LOGGING, CORING, AND TESTING:

 Mud Logs:
 None planned; remote geo-steering from drill out of 9-5/8" casing to TD; gas detection from drillout of 13-3/8" casing to TD.

 MWD/LWD:
 Gamma Ray from drillout of 13-3/8" casing to TD

 Open HoleLogs:
 None planned

 Coring:
 None planned

 Cased HoleLogs:
 CBL on 5-1/2" casing from deepest free-fall depth to surface

DRILLING RIG INFORMATION:

Contractor: Aztec

Rig No.:	1000								
Draw Works:	E80 AC 1,500 hp								
Mast:	Hyduke Triple (136 ft, 600,000 lbs, 10 lines)								
Top Drive:	NOV IDS-350PE (350 ton)								
Prime Movers:	4 - GE Jenbacher Natural Gas Generator								
Pumps:	2 - RS F-1600 (7,500 psi)								
BOPE 1:	Cameron single & double gate rams (13-5/8", 3,000 psi)								
BOPE 2:	Cameron annular (13-5/8", 5,000 psi)								
Choke	Cameron (4", 10,000 psi)								
KB-GL (ft):	25								
Note:	Actual drilling rig may vary depending on availability at time the well is scheduled to be drille	ed.							
E AND FEDERAL	NOTIFICATIONS	BLM	State						
nstruction and	BLM is to be notified minimum of 48 hours prior to start of construction or reclamation.								
eclamation:	Grazing permittee is to be notified 10 days in advance.	(505) 564-7600							
Spud	BLM and state are to be notified minimum of 24 hours prior to spud.	(505) 564-7750	(505) 334-6178						
BOP	BLM is to be notified minimum of 24 hours prior to BOPE testing.	(505) 564-7750	see note						

cementing.
Plugging
BLM and state are to be notified minimum of 24 hours prior to plugging ops.
All notifications are to be recorded in the WellView report with time, date, name or
number that notifications were made to.

Casing / cementing BLM and state are to be notified minimum of 24 hours prior to running casing and

Note: Monica Keuhling with the OCD requests state notifications 24 hrs in advance for spud, BOP tests, casing & cementing and any plugging be given to her in both phone message and email: (505) 320-0243, monica.keuhling@emnrd.nm.gov

(505) 564-7750 (505) 334-6178 (505) 564-7750 see note

BOPE REQUIREMENTS:

STATE Con: Re

- See attached diagram for details regarding BOPE specifications and configuration.
- 1) Rig will be equipped with upper and lower kelly cocks with handles available.
- 2)
- Inside BOP and TIW valves will be available to use on all sizes and threads of drill pipe used while drilling the well.
- 2) BOP accumulator will have enough capacity to open the HCR valve, close all rams and annular preventer, and retain minimum of 200 psi above precharge on the closing manifold without the use of closing pumps. The fluid reservoir capacity shall be at least double the usable fluid volume of the accumulator system capacity, and the fluid level shall be maintained at manufacturer's recommendation. There will be two additional sources of power for the closing pumps (electric and air). Sufficient nitrogen bottles will be available and will be recharged when pressure falls below manufacturer's recommended minimum.
- 3)

BOP testing shall be conducted (a) when initially installed, (b) whenever any seal is broken or repaired, (c) if the time since the previous test exceeds 30 days. Tests will be conducted using a test plug. BOP ram preventers will be tested to 3,000 psig for 10 minutes, and the annular preventer will be tested to 1,500 psi for 10 minutes. Ram and annular preventers will be tested to 250 psi for 5 minutes. Additionally, BOP and casing strings will be tested to .22 psi/ft or 1,500 psi, whichever is greater but not exceeding 70% of yield strength of the casing, for 30 minutes, prior to drilling out 13-3/8" and 9-5/8" casing. Rams and hydraulically operated remote choke line valve will be function tested daily at a minimum.

- 4) Remote valve for BOP rams, HCR, and choke shall be placed in a location that is readily available to the driller. The remote BOP valve shall be capable of closing and opening the rams.
- 5) Manual locking devices (hand wheels) shall be intalled on rams. A valve will be installed on the annular preventer's closing line as close as possible to the preventer to act as a locking device. The valve will be maintained in the open position and shall only be closed when the there is no power to the accumulator.

FLUIDS AND SOLIDS CONTROL PROGRAM:

Fluid Measurement: Pumps shall be equipped with stroke counters with displays in the dog-house. Slow pump speed shall be recorded daily and after mudding up, at a minimum, on the drilling report. A Pit Volume Totalizer will be installed and the readout will be displayed in the dog-house. Gas-detecting equipment will be installed at the shakers, and readouts will be available in the dog-house and the in the geologist's work-station (if geologist or mud-logger is on-site). Closed-Loop System: A fully, closed-loop system will be utilized. The system will consist of above-ground piping and above-ground storage tanks and bins. The system will not entail any earthen pits, below-grade storage, or drying pads. All equipment will be disassembled and removed from the site when drilling operations cease. The system will be capable of storing all fluids and generated cuttings and of preventing uncontrolled releases of the same. The system will be operated in an efficient manner to allow the recycling and reuse of as much fluid as possible and to minimimize the amount of fluids and solids that require disposal. Fluid Disposal : Fluids that cannot be reused, recycled, or returned to the supplier will be hauled to and disposed of at an approved disposal site (Industrial Ecosystem, Inc. or Envirotech, Inc.). Solids Disposal : Drilling solids will be stored (until haul-off) on-site in separate containers with no other waste, debris, or garbage products. Waste solids will be hauled to and disposed of at an approved disposal site (Industrial Ecosystem, Inc. or Envirotech, Inc.). Fluid Program: See "Detailed Drilling Plan" section for additional details. Sufficient barite will be on location to weight up mud system to balance maximum anticipated pressure gradient.

DETAILED DRILLING PLAN:

SURFACE: Drill vertically to casing setting depth (plus necessary rathole), run casing, cement casing to surface.

		ft (MD)	to		ft (MD)		ection Length:	
		ft (TVD) ole may be dril	to lled, cased, and		ft (TVD) a smaller rig in d		asing Required: drilling rig.	350 f
							5 5	
Fluid:	Туре	MW (ppg)	FL (mL/30 min)	PV (cp)	YP (lb/100 sqft)	рН	Com	ments
11-1-C	Fresh Water	8.4	N/C	2 - 8	2 - 12	9.0	Spuc	d mud
Hole Size: Bit / Motor:	Mill Tooth or P	DC no motor						
MWD / Survey:								
Logging:		,						
Procedure:	Drill to TD. Use	e 12-/4" bit and	open to 17-1/2'	' if unable to dri	ll with 17-1/2" b	it. Run inclinat	ion survey in 10	00' stations
					g as required. TO	-		as detailed
	below. Monito	r returns during	g cement job and	d note cement v	olume to surface	e. Install cellar a	and wellhead.	
			1				The Ded	
Casing Specs:		Wt (lb/ft)	Grade	Conn.	Collapse (psi)	Burst (psi)	Tens. Body (lbs)	Tens. Conn (lbs)
Specs.	13.375	54.5	J-55	BTC	1,130	2,730	853,000	909,000
Loading	101070	0110	100	510	153	791	116,634	116,634
Min. S.F.					7.39	3.45	7.31	7.79
	Assumptions:	Collapse: fully	evacuated casir	ng with 8.4 ppg	equivalent exte	rnal pressure gi	radient	•
			,	, ,	with 9.5 ppg flu	id inside casing	g while drilling	intermediate
			pg equivalent e		-			
		,			100,000 lbs over			
IU Torque (ft lbs):	Minumum:	N/A	Optimum:	N/A	Maximum:	N/A		
			onnection runni	• ·				
Casing Summary:					om 3 jts, 1 centra	lizor por 2 its to	surface	
Centrunzers.	2 Centralizers p		ed 10 monneach		Hole Cap.	inzer per 2 jts to	Planned TOC	T
Cement:	Туре	Weight (nng)	Yield (cuft/sk)	Water (gal/sk)		% Excess	(ft MD)	Total Cmt (sx
cement.	TYPE III	14.6	1.39	6.686	0.6946	100%	0	364
Annular Capacity	0.6946	cuft/ft		x 17-1/2" hole		Csg capacity	0.8680	ft3/ft
		,			le and the exces			Cu Ft Slurry
			B 653 34 81400					505.3
		Calcium Chloride 2%	D-CD2 .3% BWOC Dispersant/Friction	.25 lbs/sx Cello				
Tail	ASTM Type III Blend	BWOC Accelerator	reducer	Flake - seepage				
	Notify COGCC 8	& BLM if cemen	nt is not circulate	adda and a C				
				ed to surface. C	ement must ach	ieve 500 psi co	mpressive stre	ngth before
	drilling out.			ed to surface. C	ement must ach	ieve 500 psi co	mpressive stre	ngth before
	-	ational plan to				·	mpressive stre	ngth before
INTERMEDIATE:	Drill as per dire			depth, run casir	ng, cement casin	g to surface.		
NTERMEDIATE:	Drill as per dire 350	ft (MD)	to	depth, run casir 3,833	ng, cement casin ft (MD)	g to surface. Hole S	Section Length:	3,4831
INTERMEDIATE:	Drill as per dire 350			depth, run casir 3,833	ng, cement casin	g to surface. Hole S		3,4831
NTERMEDIATE:	Drill as per dire 350	ft (MD)	to	depth, run casir 3,833	ng, cement casin ft (MD) ft (TVD)	g to surface. Hole S	Section Length:	3,4831
NTERMEDIATE: Fluid:	Drill as per dire 350 350	ft (MD)	to to	depth, run casir 3,833 3,673	ng, cement casin ft (MD) ft (TVD) YP (lb/100	g to surface. Hole S Ca	Section Length: asing Required:	3,483 f
	Drill as per dire 350	ft (MD) ft (TVD)	to to FL (mL/30	depth, run casir 3,833	ng, cement casin ft (MD) ft (TVD)	g to surface. Hole S	Section Length: asing Required: Com	3,483 f 3,833 f
	Drill as per dire 350 350 Type LSND (5% KCl)	ft (MD) ft (TVD) MW (ppg)	to to FL (mL/30 min)	depth, run casir 3,833 3,673 PV (cp)	ng, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft)	g to surface. Hole S Ca	Section Length: asing Required: Com	3,483 f 3,833 f ments
Fluid: Hole Size:	Drill as per dire 350 350 Type LSND (5% KCl)	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5	to to FL (mL/30 min) 20	depth, run casir 3,833 3,673 PV (cp)	ng, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft)	g to surface. Hole S Ca	Section Length: asing Required: Com	3,483 i 3,833 i ments
Fluid: Hole Size: Bit / Motor:	Drill as per dire 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor	to to FL (mL/30 min) 20	depth, run casir 3,833 3,673 PV (cp) 8 - 14	ng, cement casin ft (MD) ft (TVD) YP (lb/100 sqft)	g to surface. Hole S Ca pH 9.0 - 9.5	Section Length: asing Required: Com	3,483 i 3,833 i ments
Fluid: Hole Size: Bit / Motor:	Drill as per dire 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4.	to to FL (mL/30 min) 20	depth, run casir 3,833 3,673 PV (cp) 8 - 14 vv/gal, 1.83 DEG	ng, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14	g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG	Section Length: asing Required: Comi	3,483 i 3,833 i ments
Fluid: Hole Size: Bit / Motor:	Drill as per dire 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or	to to FL (mL/30 min) 20 r .0, stage, 0.16 re - 19 mm cutters,	depth, run casir 3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir	ng, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0.	g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit	Section Length: asing Required: Comi	3,483 i 3,833 i ments
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging:	Drill as per dire 350 350 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or ith inclination	to to FL (mL/30 min) 20 r 0, stage, 0.16 re 19 mm cutters, and azimuth sur	depth, run casir 3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's	ng, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 h (range 0.65 - 0. at a minimum), G	g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit	Section Length: asing Required: Com No th 6 - 12s	3,483 1 3,833 1 ments OBM
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	Drill as per dire 350 350 LSND (5% KCl) 12-1/4" 12-1/4" 12-1/4" BIT: 6-BLADE PI MWD Survey w None NU BOPE and to	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted abo	to to FL (mL/30 min) 20 r .0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te	PV (cp) 8 - 14 xv/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100') vest 13-3/8" casin	ng, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 o (range 0.65 - 0. at a minimum), C g to	g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GR optional 1,500	Section Length: asing Required: Com No th 6 - 12s	3,483 f 3,833 f ments OBM
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	Drill as per dire 350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and to Drill to TD follo	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted abo wing direction	to to FL (mL/30 min) 20 r .0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat-h	Description 3,833 3,673 9V (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100') est 13-3/8" casing	ng, cement casin ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 , 900 GPM, 950 o (range 0.65 - 0. at a minimum), G g to setting depth). S	g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GR optional 1,500 Steer as needed	Section Length: asing Required: Comi No th 6 - 12s psi for 30 minu to keep well on	3,483 f 3,833 f ments OBM utes.
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	Drill as per dire 350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and to Drill to TD follo < 3 deg/100' an	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted abo wing direction id keep slide len	to to Tel: (mL/30 min) 20 r .0, stage, 0.16 re -19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat-F ogth < 10', when	depth, run casir 3,833 3,673 PV (cp) 8 - 14 v/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's tst 13-3/8" casin possible. Take so	rt (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 o (range 0.65 - 0.1 at a minimum), G g to setting depth). S urveys every stan	g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GR optional 1,500 Steer as needed d, at a minimu	Section Length: asing Required: Com No th 6 - 12s psi for 30 minu to keep well on m. Target flow-r	3,483 f 3,833 f ments OBM Jtes. aplan. Keep DL: rates of 750
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	Drill as per dire 350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and to Drill to TD follo < 3 deg/100' an GPM (higher if for	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- owing direction ad keep slide len able to control	to to Teleformation to to to to to to to to to to to to to	depth, run casir 3,833 3,673 PV (cp) 8 - 14 v/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's est 13-3/8" casin possible. Take su inimum desired	rt (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 , 900 GPM, 950 o (range 0.65 - 0.1 at a minimum), 0 g to setting depth). 1 grveys every stan flow-rate is 650	g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, co	section Length: asing Required: Com No th 6 - 12s psi for 30 minu to keep well on m. Target flow-r ndition hole an	3,483 1 3,833 1 ments OBM Utes. plan. Keep DL: rates of 750 d fluid for
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	Drill as per dire 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if if casing running	ft (MD) ft (TVD) ft (TVD) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- owing direction d keep slide len able to control . TOOH. Run cas	to to Tr (0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat- togth < 10', when return rates). Mi sing using a CRT a	depth, run casin 3,833 3,673 PV (cp) 8 - 14 v/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'; ist 13-3/8" casin pole past casing possible. Take su inimum desired and washing / ci	rveys every stan flow-rate is 650 rculating as requ	g to surface. Hole S Cc PH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casin	bection Length: asing Required: Comi No th 6 - 12s psi for 30 minu to keep well on m. Target flow-r ndition hole an ng. ND BOPE. W	3,483 f 3,833 f ments OBM Utes. plan. Keep DL: rates of 750 d fluid for 'alk rig to next
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	Drill as per dire 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and to Drill to TD follo c 3 deg/100' an GPM (higher if, casing running well. Perform c	ft (MD) ft (TVD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- wying direction d keep slide len able to control . TOOH. Run cas off-line cement j	to to Tr (0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat- togth < 10', when return rates). Mi sing using a CRT a	depth, run casin 3,833 3,673 PV (cp) 8 - 14 v/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'; ist 13-3/8" casin pole past casing possible. Take su inimum desired and washing / ci	rt (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 , 900 GPM, 950 o (range 0.65 - 0.1 at a minimum), 0 g to setting depth). 1 grveys every stan flow-rate is 650	g to surface. Hole S Cc PH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casin	bection Length: asing Required: Comi No th 6 - 12s psi for 30 minu to keep well on m. Target flow-r ndition hole an ng. ND BOPE. W	3,483 f 3,833 f ments OBM Utes. plan. Keep DL: rates of 750 d fluid for 'alk rig to next
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	Drill as per dire 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if if casing running	ft (MD) ft (TVD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- wying direction d keep slide len able to control . TOOH. Run cas off-line cement j	to to Tr (0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat- togth < 10', when return rates). Mi sing using a CRT a	depth, run casin 3,833 3,673 PV (cp) 8 - 14 v/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'; ist 13-3/8" casin pole past casing possible. Take su inimum desired and washing / ci	rveys every stan flow-rate is 650 rculating as requ	g to surface. Hole S Cc PH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casin	bection Length: asing Required: Comi No th 6 - 12s psi for 30 minu to keep well on m. Target flow-r ndition hole an ng. ND BOPE. W	i 3,483 i 3,833 i ments OBM Utes. plan. Keep DL rates of 750 d fluid for 'alk rig to next
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	Drill as per dire 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and to Drill to TD follo c 3 deg/100' an GPM (higher if, casing running well. Perform c	ft (MD) ft (TVD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- wying direction d keep slide len able to control . TOOH. Run cas off-line cement j	to to Tr (0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat- togth < 10', when return rates). Mi sing using a CRT a	depth, run casin 3,833 3,673 PV (cp) 8 - 14 v/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'; ist 13-3/8" casin pole past casing possible. Take su inimum desired and washing / ci	rveys every stan flow-rate is 650 rculating as requ	g to surface. Hole S Cc PH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casin	section Length: asing Required: Comin No th 6 - 12s psi for 30 minu to keep well on m. Target flow-r ndition hole an ng. ND BOPE. W ement job and n	ates. ates of 750 d fluid for 'alk rig to next ote cement
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test: Procedure:	Drill as per dire 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and to Drill to TD follo c 3 deg/100' an GPM (higher if, casing running well. Perform c	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- owing direction d keep slide len able to control . TOOH. Run cass ff-line cement j ace.	to to Television to the second	depth, run casin 3,833 3,673 PV (cp) 8 -14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'; est 13-3/8" casin possible. Take su inimum desired and washing / ci nt as detailed be	ryp (lb/100 sqft) 8 - 14 900 GPM, 950 n (range 0.65 - 0.4 at a minimum), G gto setting depth). 3 rrveys every stan flow-rate is 650 rculating as requered.	g to surface. Hole S Cc PH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casii turns during ce	bection Length: asing Required: Comin No th 6 - 12s psi for 30 minu to keep well on m. Target flow-r ndition hole an ng. ND BOPE. We ement job and n	i 3,483 f 3,833 f ments OBM utes. plan. Keep DL rates of 750 dd fluid for falk rig to next tote cement Tens. Conn
Fluid: Hole Size: Bit / Motor: Bit / Motor: Uogging: Pressure Test: Procedure: Casing Specs:	Drill as per dire 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and to Drill to TD follo < 3 deg/100' an GPM (higher if, casing running well. Perform c volume to surfa	ft (MD) ft (TVD) ft (TVD) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- owing direction d keep slide len able to control . TOOH. Run cass off-line cement j acce. wt (lb/ft)	to to Teleformer to to Teleformer to to to to to to to to to to to to to t	depth, run casin 3,833 3,673 PV (cp) 8 -14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'; ist 13-3/8" casin possible. Take su inimum desired and washing / ci nt as detailed be Conn.	reg, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0. at a minimum), 0 g to setting depth). 3 urveys every stam flow-rate is 650 rculating as requered elow. Monitor reference	g to surface. Hole S Cc PH 9.0 - 9.5 DIFF PSIG 90 max), jet wit 5R optional 1,500 Steer as needed d, at a minimu GPM. At TD, co irred. Land casin turns during ce Burst (psi)	bection Length: asing Required: Com No th 6 - 12s psi for 30 minu to keep well on m. Target flow-r ndition hole an ng. ND BOPE. W ement job and n Tens. Body (lbs)	ites. plan. Keep DL: ates of 750 d fluid for falk rig to next ote cement Tens. Conn (lbs)
Fluid: Hole Size: Bit / Motor: Bit / Motor: Logging: Pressure Test: Procedure: Casing Specs: Specs	Drill as per dire 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and to Drill to TD follo c 3 deg/100' an GPM (higher if, casing running well. Perform c	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- owing direction d keep slide len able to control . TOOH. Run cass ff-line cement j ace.	to to Television to the second	depth, run casin 3,833 3,673 PV (cp) 8 -14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'; est 13-3/8" casin possible. Take su inimum desired and washing / ci nt as detailed be	reg, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0. at a minimum), 0 g to setting depth). 1 grveys every stam flow-rate is 650 rcculating as requ elow. Monitor re	g to surface. Hole S Cc PH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, co irred. Land cash turns during ce Burst (psi) 3,520	bection Length: asing Required: Com No th 6 - 12s psi for 30 minu to keep well on m. Target flow-r m. Target	i 3,483 f 3,833 f ments OBM OBM OBM Tens. Conn (lbs) 453,000
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test: Procedure: Casing Specs: Specs Loading	Drill as per dire 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and to Drill to TD follo < 3 deg/100' an GPM (higher if, casing running well. Perform c volume to surfa	ft (MD) ft (TVD) ft (TVD) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- owing direction d keep slide len able to control . TOOH. Run cass off-line cement j acce. wt (lb/ft)	to to Teleformer to to Teleformer to to to to to to to to to to to to to t	depth, run casin 3,833 3,673 PV (cp) 8 -14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'; ist 13-3/8" casin possible. Take su inimum desired and washing / ci nt as detailed be Conn.	reg, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0. at a minimum), 0 g to g to setting depth). 1 grveys every stan flow-rate is 650 rculating as requ elow. Monitor re Collapse (psi) 2,020 1,604	g to surface. Hole S Cc PH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GPM at minimu GPM. At TD, co inired. Land casi iturns during ce Burst (psi) 3,520 1,380	section Length: asing Required: Com No th 6 - 12s psi for 30 minu to keep well on m. Target flow-r ndition hole an ng. ND BOPE. W ment job and n Tens. Body (lbs) 564,000 215,309	i 3,483 f 3,833 f ments OBM observed observed observed dfluid for rates of 750 dfluid for for for for for for for for for for
Fluid: Hole Size: Bit / Motor: Bit / Motor: Logging: Pressure Test: Procedure: Casing Specs: Specs	Drill as per dire 350 350 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and tt Drill to TD follo <3 deg/100' an GPM (higher if i casing running well. Perform c volume to surfar 9.625	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted abo wing direction d keep slide len able to control TOOH. Run cas off-line cement j ace. Wt (lb/ft) 36.0	to to Television to the second	depth, run casir 3,833 3,673 PV (cp) 8 -14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's est 13-3/8" casin possible. Take sis inimum desired and washing / ci nt as detailed be Conn. LTC	reg, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 900 GPM, 950 ft (range 0.65 - 0. at a minimum), G gto setting depth). S urveys every stan flow-rate is 650 rculating as requ elow. Monitor res Collapse (psi) 2,020 1,604 1.26	g to surface. Hole S Ca PH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, co ijred. Land casin turns during co Burst (psi) 3,520 1,380 2.55	section Length: asing Required: Com No th 6 - 12s psi for 30 minu to keep well on m. Target flow-en ndition hole and n mg. ND BOPE. W ment job and n Tens. Body (lbs) 564,000 215,309 2.62	i 3,483 f 3,833 f ments OBM OBM OBM Tens. Conn (lbs) 453,000
Fluid: Hole Size: Bit / Motor: Bit / Motor: Logging: Pressure Test: Procedure: Casing Specs: Specs Loading	Drill as per dire 350 350 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and tt Drill to TD follo <3 deg/100' an GPM (higher if i casing running well. Perform c volume to surfar 9.625	ft (MD) ft (TVD) MW (ppg) 8.8-9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or ith inclination est (as noted abo wing direction d keep slide len able to control . TOOH. Run cas off-line cement j ace. Wt (lb/ft) 36.0 Collapse: fully	to to Televice to the series of the series o	depth, run casir 3,833 3,673 PV (cp) 8 -14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's est 13-3/8" casin possible. Take si inimum desired and washing / ci nt as detailed be Conn. LTC	ryp (Ib/100 sqft) 8 - 14 900 GPM, 950 (range 0.65 - 0. at a minimum), G g to setting depth), s ruveys every stan flow-rate is 650 rculating as requ elow. Monitor re Collapse (psi) 2,020 1,604 1.26 equivalent exter	g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GR optional 1,500 Steer as needed d, at a minimul GPM. At TD, cool iired. Land casil iturns during ce Burst (psi) 3,520 1,380 2.55 rnal pressure gu	bection Length: asing Required: Com No th 6 - 12s psi for 30 minu to keep well on m. Target flow-r ndition hole an ng. ND BOPE. We ment job and n Tens. Body (lbs) 564,000 215,309 2.62 radient	i 3,483 f 3,833 f ments OBM utes. aplan. Keep DL rates of 750 d fluid for 'alk rig to next note cement Tens. Conn (lbs) 453,000 215,309 2.10
Fluid: Hole Size: Bit / Motor: Bit / Motor: Logging: Pressure Test: Procedure: Casing Specs: Specs Loading	Drill as per dire 350 350 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and tt Drill to TD follo <3 deg/100' an GPM (higher if fi casing running well. Perform c volume to surfar 9.625	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or ith inclination est (as noted abo wing direction d keep slide len able to control . TOOH. Run cas off-line cement j ace. Wt (lb/ft) 36.0 Collapse: fully Burst: maximu	to to Televice to the series of the series o	depth, run casir 3,833 3,673 PV (cp) 8 -14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's est 13-3/8" casin possible. Take ss inimum desired and washing / ci nt as detailed be Conn. LTC mg with 8.4 ppg surface pressure	reg, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 (range 0.65 - 0 at a minimum), C gto setting depth). 3 grow-rate is 650 rculating as requered elow. Monitor ref Collapse (psi) 2,020 1,604 1.26 equivalent exter with 9.5 ppg flu	g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GR optional 1,500 Steer as needed d, at a minimul GPM. At TD, cool iired. Land casil iturns during ce Burst (psi) 3,520 1,380 2.55 rnal pressure gu	bection Length: asing Required: Com No th 6 - 12s psi for 30 minu to keep well on m. Target flow-r ndition hole an ng. ND BOPE. We ment job and n Tens. Body (lbs) 564,000 215,309 2.62 radient	3,483 f 3,833 f ments OBM utes. plan. Keep DL: rates of 750 d fluid for /alk rig to next vote cement Tens. Conn (lbs) 453,000 215,309 2.10
Fluid: Hole Size: Bit / Motor: Bit / Motor: Logging: Pressure Test: Procedure: Casing Specs: Specs Loading	Drill as per dire 350 350 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and tt Drill to TD follo <3 deg/100' an GPM (higher if fi casing running well. Perform c volume to surfar 9.625	ft (MD) ft (TVD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted abo wing direction d keep slide len able to control . TOOH. Run cas off-line cement j ace. Wt (lb/ft) 36.0 Collapse: fully Burst: maximu hole and 8.4 p	to to Televice to to to FL (mL/30 min) 20 r .0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat-F oyth < 10', when return rates). Mis sing using a CRT a job. Pump ceme Grade J-55 evacuated casin um anticipated s pg equivalent ezero to	depth, run casir 3,833 3,673 PV (cp) 8 - 14 v/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'; ist 13-3/8" casin possible. Take st inimum desired and washing / ci nt as detailed be Conn. LTC ng with 8.4 ppg surface pressure xternal pressure	reg, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 (range 0.65 - 0 at a minimum), C gto setting depth). 3 grow-rate is 650 rculating as requered elow. Monitor ref Collapse (psi) 2,020 1,604 1.26 equivalent exter with 9.5 ppg flu	g to surface. Hole S Cc PH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GP max), jet wit GP max), jet wit GP max), jet wit GPM. At TD, co irred. Land casin turns during ce Burst (psi) 3,520 1,380 2.55 rnal pressure gr	bection Length: asing Required: Com No th 6 - 12s psi for 30 minu to keep well on m. Target flow-r ndition hole an ng. ND BOPE. We ment job and n Tens. Body (lbs) 564,000 215,309 2.62 radient	3,483 f 3,833 f ments OBM utes. plan. Keep DLS rates of 750 d fluid for /alk rig to next vote cement Tens. Conn (lbs) 453,000 215,309 2.10
Fluid: Hole Size: Bit / Motor: Bit / Motor: Logging: Pressure Test: Procedure: Casing Specs: Specs Loading Min. S.F.	Drill as per dire 350 350 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and tt Drill to TD follo <3 deg/100' an GPM (higher if fi casing running well. Perform c volume to surfar 9.625	ft (MD) ft (TVD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted abo wing direction d keep slide len able to control . TOOH. Run cas off-line cement j ace. Wt (lb/ft) 36.0 Collapse: fully Burst: maximu hole and 8.4 p	to to Televice to to to FL (mL/30 min) 20 r .0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat-F oyth < 10', when return rates). Mis sing using a CRT a job. Pump ceme Grade J-55 evacuated casin um anticipated s pg equivalent ezero to	depth, run casir 3,833 3,673 PV (cp) 8 - 14 v/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'; ist 13-3/8" casin possible. Take st inimum desired and washing / ci nt as detailed be Conn. LTC ng with 8.4 ppg surface pressure xternal pressure	reg, cement casin ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 , 900 GPM, 950 o (range 0.65 - 0.) at a minimum), C gto setting depth). 3 urveys every stan flow-rate is 650 rculating as required elow. Monitor ref Collapse (psi) 2,020 1,604 1.26 equivalent exter with 9.5 ppg flue e gradient	g to surface. Hole S Cc PH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GP max), jet wit GP max), jet wit GP max), jet wit GPM. At TD, co irred. Land casin turns during ce Burst (psi) 3,520 1,380 2.55 rnal pressure gr	bection Length: asing Required: Com No th 6 - 12s psi for 30 minu to keep well on m. Target flow-r ndition hole an ng. ND BOPE. We ment job and n Tens. Body (lbs) 564,000 215,309 2.62 radient	3,483 f 3,833 f ments OBM utes. plan. Keep DLS rates of 750 d fluid for /alk rig to next vote cement Tens. Conn (lbs) 453,000 215,309 2.10
Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test: Procedure: Casing Specs: Specs Loading	Drill as per dire 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and to Drill to TD fold and GPM (higher if, casing running well. Perform c volume to surfa 9.625 Assumptions: Minumum:	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- wing direction id keep slide len able to control . TOOH. Run cas off-line cement j ace. Wt (lb/ft) 36.0 Collapse: fully Burst: maximu hole and 8.4 p Tension: buoye 3,400	to to Televice to to to to to to to to to to to to to to t	depth, run casin 3,833 3,673 PV (cp) 8 -14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's est 13-3/8" casin nole past casing possible. Take su inimum desired and washing / ci nt as detailed be Conn. LTC bg with 8.4 ppg surface pressure external pressure external pressure pg fluid with 1 4,530	reg, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0. at a minimum), 0 g to setting depth). 3 urveys every stam flow-rate is 650 rculating as requ elow. Monitor re Collapse (psi) 2,020 1,604 1.26 equivalent exter with 9.5 pp gftu gradient 100,000 Ibs over Maximum:	g to surface. Hole S Ca PH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GR optional 1,500 Steer as needed d, at a minimum GPM. At TD, co fired. Land casin turns during ce Burst (psi) 3,520 1,380 2.55 rnal pressure gravitational pressure gravi	bection Length: asing Required: Com No th 6 - 12s psi for 30 minu to keep well on m. Target flow-r ndition hole an ng. ND BOPE. W ement job and n Tens. Body (lbs) 564,000 215,309 2.62 radient g while drilling	3,483 f 3,833 f ments OBM utes. plan. Keep DLS rates of 750 d fluid for /alk rig to next vote cement Tens. Conn (lbs) 453,000 215,309 2.10

Centralizers: 1 per joint in non-vertical hole; 1 per 2-joints in vertical hole

		11.75" SOLID E	BODY POLYMER	.)	1	r	1	1	1
	Cement:	Туре	Weight (ppg)	Yield (cuft/sk)	Water (gal/sk)	% Excess	Planned TOC (ft MD)	Total Cmt (sx)	Total Cmt (cu ft)
age 1	Spacer	D-Mud Breaker	8.5				0	10 bbls	
	المعط	90:10 Type	12 5	2.140	12.05	700/	0	000	1 715
	Lead Tail	III:POZ Type III	12.5 14.6	2.140 1.380	12.05 6.64	70% 20%	0 3,333	802 150	1,715 207
Die	splacement			1.560	0.04	2076	3,333	130	207
	ar Capacity	0.3627	cuft/ft	9-5/8" casina >	x 13-3/8" casing	annulus	1		1
	, ,	0.3132	cuft/ft		x 12-1/4" hole ai		9-5/8" 36#ID	8.921	
		0.4341	cuft/ft	9-5/8" casing v	vol	est shoe jt ft	44		
		Calculated cer	nent volumes as	ssume gauge ho	le and the exces	s (open hole on	ly) noted in tab	le	
	Concor	D Marid Description	SAPP						
	Spacer	D-Mud Breaker	SAPP						
		ASTM Type III	D-CSE 1 5.0% BWOC	D-MPA-1 .4% BWOC	D-SA 1 1.4% BWOC		Cello Flace LCM .25		
	Lead	90/10 Poz		Migration Control		Dispersant	lb/sx	Defoamer	D-R1 .5% Retarder
			Ū.						
				D-MPA-1 .4% BWOC Fluid Loss & Gas		D-CD 2 .5% BWOC	Cello Flace LCM .25		
	Tail	ASTM Type III Blend		Migration Control		Dispersant	lb/sx		D-R1 .2% Retarder
		Drake Interme	diate Cementin	g Program					
					rength before d ted to surface. (-	chieve 500 psi c	ompressive stre	ength before
PRO	DUCTION:	Drill to TD follo	owing direction	al plan, run cas	ing, cement cas	ing to surface.			
		3,833	ft (MD)	to	12,673	ft (MD)	Hole	Section Length:	8,840
		3,673	ft (TVD)	to	5,521	ft (TVD)	C	asing Required:	12,673
						6 (2.22)		6 (= (=)	1
		,		Estimated KOP:		ft (MD)		ft (TVD)	-
			Estimated Landi			ft (MD)	5,466	ft (TVD)	
			Estimatea	ateral Length:	6,815	ft (MD)			
	Fluid:	Туре	MW (ppg)	WPS ppm	нтнр	YP (lb/100 sqft)	ES	OWR	Comment WBM as
		ОВМ	8.0 - 9.0	120,000 CaCl	NC	sqft) ±6	+300	80:20	WBM as contingency
Fluids / So		ОВМ	8.0 - 9.0	120,000 CaCl		sqft) ±6	+300	80:20	WBM as contingency
Fluids / So		OBM OptiDrill OBM shakers. Solids	8.0 - 9.0 system will be b control will but	120,000 CaCl uilt from previo	NC pus well. Ensure ttings samples o	sqft) ±6 that drying shaking per tour to c	+300 kers are rigged u heck % ROC. Ad	80:20 p after the rig (2 d diesel and pro	WBM as contingency nd set) of
Fluids / So		OBM OptiDrill OBM shakers. Solids	8.0 - 9.0 system will be b control will but	120,000 CaCl uilt from previo	NC	sqft) ±6 that drying shaking per tour to c	+300 kers are rigged u heck % ROC. Ad	80:20 p after the rig (2 d diesel and pro	WBM as contingency nd set) of
Fluids / So	olids Notes:	OBM OptiDrill OBM shakers. Solids required to ma	8.0 - 9.0 system will be b control will but	120,000 CaCl uilt from previo	NC pus well. Ensure ttings samples o	sqft) ±6 that drying shaking per tour to c	+300 kers are rigged u heck % ROC. Ad	80:20 p after the rig (2 d diesel and pro	WBM as contingency nd set) of
	olids Notes: Hole Size:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2"	8.0 - 9.0 system will be b control will bur intain mud in p	120,000 CaCl uilt from previo	NC pus well. Ensure ttings samples o	sqft) ±6 that drying shaking per tour to c	+300 kers are rigged u heck % ROC. Ad	80:20 p after the rig (2 d diesel and pro	WBM as contingency nd set) of
E	olids Notes: Hole Size: Bit / Motor:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor	120,000 CaCl uilt from previc rn retorts on cut rogram specs. R	NC pus well. Ensure ttings samples o eference Newpa	sqft) ±6 that drying shak ne per tour to c rk's mud progra	+300 kers are rigged u heck % ROC. Ad im for additiona	80:20 p after the rig (2 d diesel and pro al details.	WBM as contingency nd set) of ducts as
E	olids Notes: Hole Size: Bit / Motor:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/	120,000 CaCl uilt from previc rn retorts on cut rogram specs. R 8, 5.0 stage, 0.2	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o	sqft) ±6 that drying shak ne per tour to c rk's mud progra	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG	80:20 p after the rig (2 d diesel and pro al details.	WBM as contingency nd set) of ducts as
E	olids Notes: Hole Size: Bit / Motor:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breaking	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re	120,000 CaCl uilt from previc rn retorts on cut rogram specs. R 8, 5.0 stage, 0.2 equired, bottom	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o n tool spaced ~3,	sqft) ±6 that drying shak ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit.	80:20 p after the rig (2 d diesel and pro al details.	WBM as contingency nd set) of ducts as
E	olids Notes: Hole Size: Bit / Motor: Bit / Motor:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1	120,000 CaCl uilt from previc ro retorts on cut rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o n tool spaced ~3, natrix body, targ	sqft) ±6 that drying shak ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1.	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o	WBM as contingency nd set) of ducts as
E	olids Notes: Hole Size: Bit / Motor: Bit / Motor:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR,	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, an	120,000 CaCl uilt from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o n tool spaced ~3,	sqft) ±6 that drying shak ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1.	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o	WBM as contingency nd set) of ducts as
E	blids Notes: Hole Size: Bit / Motor: Bit / Motor: /D / Survey:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, an d after Landing F	120,000 CaCl uilt from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, r d azimuth (surve 20int)	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o n tool spaced ~3, natrix body, targ ey every joint fro	sqft) ±6 that drying shak ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1. om KOP to Land	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o	WBM as contingency nd set) of ducts as
E E MW	olids Notes: Hole Size: Bit / Motor: Bit / Motor: /D / Survey: Logging:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 i.nclination, an d after Landing F ntire section, no	120,000 CaCl puilt from previo rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve Point) mud-log or cut	NC bus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling,	sqft) ±6 that drying shak ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1 om KOP to Land no OH WL logs	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o	WBM as contingency nd set) of ducts as demand minimum
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and to	8.0 - 9.0 system will be b control will bur intain mud in p 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, an d after Landing F ntire section, no est (as noted abo	120,000 CaCl puilt from previc rogram specs. R 28, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve oint) mud-log or cut pove); pressure te	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing	sqft) ±6 that drying shak ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1. om KOP to Land no OH WL logs to	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o Irvey every 100'	WBM as contingency nd set) of ducts as demand minimum ites.
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 777857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 10 i.inclination, an d after Landing F titre section, no est (as noted abo	120,000 CaCl puilt from previc ro retorts on cut rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve ooint) mud-log or cut pressure te nal plan. Target	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, matrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650	sqft) ±6 that drying shal- ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar,	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o irvey every 100' psi for 30 minu s pressure is 700	WBM as contingency nd set) of ducts as demand minimum utes. 0 - 1,000 psig.
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 50C	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 177857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, a dafter Landing F ntire section, no est (as noted abo lowing directio 0 - 600 ft/hr. Ste	120,000 CaCl mult from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve Point) or mud-log or cut pove); pressure te nal plan. Target er as needed to	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar, n. Keep DLS < 3	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o irvey every 100' psi for 30 minu s pressure is 700 eep slide length	WBM as contingency nd set) of ducts as demand minimum ites. 0 - 1,000 psig. < 10' until KOP
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 50C when feasible.	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 177857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, a d after Landing F ntire section, no est (as noted abu llowing directio D - 600 ft/hr. Ste Take surveys ever	120,000 CaCl nuilt from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, r d azimuth (surve 20 int) 9 mud-log or cut ove); pressure te nal plan. Target er as needed to ery stand, at a m	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla	sqft) ±6 that drying shal- ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o irvey every 100' psi for 30 minu s pressure is 700 eep slide length - for curve, and Ko	WBM as contingency nd set) of ducts as demand minimum utes. < 10' until KOP OP with
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 50C when feasible. Geology and Er	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 177857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, an d after Landing F ntire section, no est (as noted ab llowing directio D - 600 ft/hr. Ste Take surveys even ngineering. Drill	120,000 CaCl nuilt from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve Point) o mud-log or cut ove); pressure te nal plan. Target er as needed to ery stand, at a m curve following	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, ist 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confire	sqft) ±6 that drying shal- ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated l	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR anding target. T	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o irvey every 100' psi for 30 minu s pressure is 700 eep slide length of for curve, and Ko 'ake survey every	WBM as contingency nd set) of ducts as demand minimum rtes. < 10' until KOP OP with / joint during
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 50C when feasible. Geology and Er curve. Land cu	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 777857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, an d after Landing F ntire section, no est (as noted abo lowing directio D - 600 ft/hr. Ste Take surveys even ngineering. Drill rve. Continue do	120,000 CaCl nuilt from previc ro retorts on cut rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve Point) o mud-log or cut ove); pressure te nal plan. Target rer as needed to ery stand, at a m curve following rilling in lateral	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confirn g directional pla	sqft) ±6 that drying shal- ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind th- get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated l gas needed to ke	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR anding target. T eep well on plar	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o rvey every 100' psi for 30 minu s pressure is 700 eep slide length of for curve, and K0 ake survey every and in the targe	WBM as contingency nd set) of ducts as demand minimum ites. > 1,000 psig. < 10' until KOP OP with r/ joint during et window.
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er curve. Land cu Keep DLS < 2 do	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 177857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, an d after Landing F ntire section, no est (as noted abo lowing directio) - 600 ft/hr. Ste Take surveys even ngineering. Drill rve. Continue di eg/100' and keep	120,000 CaCl uilt from previc ror retorts on cut rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, r d azimuth (surve Point) o mud-log or cut ove); pressure te nal plan. Target ier as needed to ery stand, at a m curve following rilling in lateral p slide length < 2	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, ist 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confiri g directional pla section, steering	sqft) ±6 that drying shak ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar, n. Keep DLS < 3 m landing targe n and updated l gas needed to ke e. Take surveys	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR i anding target. T eep well on plar every stand, at a	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o rvey every 100' psi for 30 minu s pressure is 700 eep slide length for curve, and K0 ake survey every and in the targe	WBM as contingency nd set) of ducts as demand minimum ites. > 1,000 psig. < 10' until KOP OP with r joint during et window. get rotating
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 50C when feasible. Geology and Er Geology and Er	8.0 - 9.0 system will be b control will bur intain mud in p 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 i. inclination, an d after Landing F ntire section, no est (as noted abo lowing directio D - 600 ft/hr. Ste Take surveys eve Take sur	120,000 CaCl uilt from previous reported to the previous rogram specs. R (8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve Point) o mud-log or cut powe); pressure te nal plan. Target er as needed to ery stand, at a m curve following curve following curve following o slide length < 2 pow-rate is 650 - ipe MUT). After	NC bus well. Ensure- ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, st 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confir gdirectional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per	sqft) ±6 that drying shak ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1. om KOP to Land no OH WL logs to -700 GPM. Tar n. Keep DLS < 3 m landing targen and updated l gas needed to ke e. Take surveys sential is pressu form no more t	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR anding target. T eep well on plar every stand, at a re is 700 - 1,00 han one clean-u	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o rrvey every 100' psi for 30 minu s pressure is 700 exp slide length for curve, and length for curve, and in the targo a minimum. Targ 0 psig, ROP 500 up cycle to cond	WBM as contingency nd set) of ducts as demand minimum ites.) - 1,000 psig. < 10' until KOP OP with / joint during et window. get rotating - 600 ft/hr, ition hole for
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and to Drill to KOP fol Target ROP 500 when feasible. Geology and te curve. Land cu Keep DLS < 2 du parameters / p torque 38K ft-l casing running	8.0 - 9.0 system will be b control will bur intain mud in p 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 inclination, an d after Landing F ntire section, no est (as noted abo lowing directio) - 600 ft/hr. Ste Take surveys even ngineering. Drill rve. Continue du eg/100' and kee performance: flo lbs (MAX drill pi cunless shakers i	120,000 CaCl mult from previous reported to the second rogram specs. R sequired, bottom .9 mm cutters, r d azimuth (surve or) for a second to the second rogram spect of the second rog	NC bus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confiri g directional place inimum. Starp 20', when feasibl 700 GPM, differ reaching TD, per nal cleaning nee	sqft) ±6 that drying shak ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated l gas needed to ke e. Take surveys tential is pressu form no more t ded. TOOH & LE	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR : anding target. anding target. every stand, at a re is 700 - 1,00 han one clean-u 0 drill pipe (ROC	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o rvvey every 100' psi for 30 minu s pressure is 700 eap slide length o for curve, and KO iake survey every and in the targo a minimum. Targ 0 psig, ROP 500 pcycle to cond DH, if required; s	WBM as contingency nd set) of ducts as demand minimum utes. > - 1,000 psig. < 10' until KOP OP with / joint during et window. get rotating - 600 ft/hr, ition hole for hould NOT be
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and to Drill to KOP fol Target ROP 500 when feasible. Geology and te Drill to KOP fol Target ROP 500 when feasible. Geology and te torque 38K ft-1 casing running required with 0	8.0 - 9.0 system will be b control will bur intain mud in p 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, an d after Landing F ntire section, no est (as noted abo lowing directio) - 600 ft/hr. Ste Take surveys even ingineering. Drill rve. Continue du eg/100' and keep eerformance: flo tubes (MAX drill pi unless shakers i OBM system). W	120,000 CaCl uilt from previc rogram specs. R (8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surva Point) mud-log or cut ove); pressure te nal plan. Target ier as needed to ery stand, at a m curve following rilling in lateral p slide length < 2 pw-rate is 650 - ipe MUT). After ndicate additio (hen pumping h	NC bus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confiri g directional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per nal cleaning nee ole cleaning swe	sqft) ±6 that drying shal- ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar, n. Keep DLS < 3 m landing targe n and updated 1 gas needed to ke e. Take surveys rential is pressu form no more t ded. TOOH & LE reps, fine LCM p	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR i anding target. T eep well on plar every stand, at ar every stand, at ar e is 700 - 1,00 han one clean-u o drill pipe (ROC roduct is to be u	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o invey every 100' psi for 30 minu s pressure is 700 exp slide length - for curve, and K(ake survey every and in the targe o psig, ROP 500 up cycle to condi DH, if required; s used -Do not use	WBM as contingency nd set) of ducts as demand minimum ites. 0 - 1,000 psig. < 10' until KOP OP with joint during et window. get rotating - 600 ft/hr, ition hole for hould NOT be barite for
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er curve. Land cu Keep DLS < 2 dd parameters / p torque 38K ft-I casing running required with 0 sweeps. Run c	8.0 - 9.0 system will be b control will bur intain mud in p 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, an d after Landing F titre section, no est (as noted abo lowing directio) - 600 ft/hr. Ste Take surveys even gineering. Drill rve. Continue dh eg/100' and keep gerformance: fto bs (MAX drill pi unless shakers i OBM system). W asing as describ	120,000 CaCl mult from previous rogram specs. R 28, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve or) for a state of the mud-log or cut ore); pressure te nal plan. Target er as needed to ery stand, at a m curve following rilling in lateral p slide length < 2 p	NC bus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confiri g directional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per nal cleaning nee ole cleaning swe RT for casing rur	sqft) ±6 that drying shall ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind thug get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar, n. Keep DLS < 3 m landing targe n and updated 1 gas needed to kk e. Take surves tential is pressu form no more to ded. TOOH & LED puning only if neo	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR t, planned	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o urvey every 100' psi for 30 minu s pressure is 700 eep slide length for curve, and Ku for curve, and for curve, and for curve, and for c	WBM as contingency nd set) of ducts as demand demand demand ites. - 1,000 psig. < 10' until KOP DP with joint during et window. get rotating - 600 ft/hr, ition hole for hould NOT be barite for with OBM).
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er curve. Land cu Keep DLS <2 dd parameters / p torque 38K ft-l casing running required with 0 sweeps. Run c	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 i.inclination, an d after Landing F titre section, no est (as noted abo lowing directio D - 600 ft/hr. Ste Take surveys eve agineering. Drill rve. Continue di eg/100' and keep gerformance: fto bs (MAX drill pi unless shakers i DBM system). W asing as describ	120,000 CaCl mult from previous rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, rr 4 azimuth (surve coint) 9 mud-log or cut ove); pressure te nal plan. Target rer as needed to ery stand, at a m curve following rilling in lateral p slide length < 2 ow-rate is 650 ow-rate is 650 ow-rate additio then pumping h ed below. Use C unning casing. Sp	NC Dus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confiru g directional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per nal cleaning nee ole cleaning swe RT for casing rur pace out casing rur	sqft) ±6 that drying shall ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind thug get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar, n. Keep DLS < 3 m landing targe n and updated l gas needed to kk e. Take survess form no more to ded. TOOH & LC ups, fine LCM p ming only if neogetting the toos	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR: anding target. T eep well on plar every stand, at a re is 700 - 1,00 han one clean-u) drill pipe (ROC roduct is to be u tessary (should I sleeve as close to	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o urvey every 100' psi for 30 minu s pressure is 700 eep slide length - for curve, and K0 ake survey every a minimum. Targ O psig, ROP 500 up cycle to cond H, if required; s used -Do not use NOT be required o LTP as possible	WBM as contingency nd set) of ducts as demand demand demand ites. 0 - 1,000 psig. < 10' until KOP OP with i joint during et window. get rotating - 600 ft/hr, ition hole for hould NOT be barite for with OBM). Land casing
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 50C when feasible. Geology and Er curve. Land cu Keep DLS < 2 de parameters / p torque 38K ft- casing running required with 0 sweeps. Run c	8.0 - 9.0 system will be b control will bur intain mud in p """"""""""""""""""""""""""""""""""""	120,000 CaCl mult from previce representation of the rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve obint) or mud-log or cut ove); pressure te nal plan. Target wer as needed to ery stand, at a m curve following rilling in lateral op slide length < 2 ow-rate is 650- ipe MUT). After ndicate additio then pumping h ed below. Use C unning casing. Sp ion sub, fill casing	NC bus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confir g directional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per eaching TD, per ole cleaning swe RT for casing rur pace out casing g	sqft) ±6 that drying shall ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind thug get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar, n. Keep DLS < 3 m landing targe n and updated l gas needed to k e. Take surveys rential is pressu form no more to ded. TOOH & LD seas required. Put	+300 kers are rigged u heck % ROC. Ad im for additional s,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR anding target. T eep well on plar every stand, at a re is 700 - 1 ,00 han one clean-u d orill pipe (ROC roduct is to be e cessary (should f sleeve as close to imp cement as o	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o urvey every 100' psi for 30 minu s pressure is 700 eep slide length - for curve, and K0 ake survey every a minimum. Targ O psig, ROP 500 up cycle to cond H, if required; s used -Do not use NOT be required o LTP as possible	WBM as contingency nd set) of ducts as demand demand demand ites. 0 - 1,000 psig. < 10' until KOP OP with i joint during et window. get rotating - 600 ft/hr, ition hole for hould NOT be barite for with OBM). Land casing
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 50C when feasible. Geology and Er curve. Land cu Keep DLS < 2 de parameters / p torque 38K ft- casing running required with 0 sweeps. Run c	8.0 - 9.0 system will be b control will bur intain mud in p """"""""""""""""""""""""""""""""""""	120,000 CaCl mult from previce representation of the rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve obint) or mud-log or cut ove); pressure te nal plan. Target wer as needed to ery stand, at a m curve following rilling in lateral op slide length < 2 ow-rate is 650 ow-rate is 650 ipe MUT). After ndicate additio then pumping h ed below. Use C unning casing. Sp ion sub, fill casing	NC Dus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confiru g directional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per nal cleaning nee ole cleaning swe RT for casing rur pace out casing rur	sqft) ±6 that drying shall ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind thug get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar, n. Keep DLS < 3 m landing targe n and updated l gas needed to k e. Take surveys rential is pressu form no more to ded. TOOH & LD seas required. Put	+300 kers are rigged u heck % ROC. Ad im for additional s,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR anding target. T eep well on plar every stand, at a re is 700 - 1 ,00 han one clean-u d orill pipe (ROC roduct is to be e cessary (should f sleeve as close to imp cement as o	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o urvey every 100' psi for 30 minu s pressure is 700 eep slide length - for curve, and K0 ake survey every a minimum. Targ O psig, ROP 500 up cycle to cond H, if required; s used -Do not use NOT be required o LTP as possible	WBM as contingency nd set) of ducts as demand demand demand ites. 0 - 1,000 psig. < 10' until KOP OP with i joint during et window. get rotating - 600 ft/hr, ition hole for hould NOT be barite for with OBM). Land casing
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 50C when feasible. Geology and Er curve. Land cu Keep DLS < 2 de parameters / p torque 38K ft- casing running required with 0 sweeps. Run c	8.0 - 9.0 system will be b control will bur intain mud in p """"""""""""""""""""""""""""""""""""	120,000 CaCl mult from previce representation of the rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve obint) or mud-log or cut ove); pressure te nal plan. Target wer as needed to ery stand, at a m curve following rilling in lateral op slide length < 2 ow-rate is 650 ow-rate is 650 ipe MUT). After ndicate additio then pumping h ed below. Use C unning casing. Sp ion sub, fill casing	NC bus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confir g directional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per eaching TD, per ole cleaning swe RT for casing rur pace out casing g	sqft) ±6 that drying shall ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind thug get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar, n. Keep DLS < 3 m landing targe n and updated l gas needed to k e. Take surveys rential is pressu form no more to ded. TOOH & LD seas required. Put	+300 kers are rigged u heck % ROC. Ad im for additional s,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR anding target. T eep well on plar every stand, at a re is 700 - 1 ,00 han one clean-u d orill pipe (ROC roduct is to be e cessary (should f sleeve as close to imp cement as o	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o urvey every 100' psi for 30 minu s pressure is 700 eep slide length - for curve, and K0 ake survey every a minimum. Targ O psig, ROP 500 up cycle to cond H, if required; s used -Do not use NOT be required o LTP as possible	WBM as contingency nd set) of ducts as demand demand demand ites. 0 - 1,000 psig. < 10' until KOP OP with / joint during et window. get rotating - 600 ft/hr, ition hole for hould NOT be barite for with OBM). Land casing
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 50C when feasible. Geology and Er curve. Land cu Keep DLS < 2 de parameters / p torque 38K ft- casing running required with 0 sweeps. Run c	8.0 - 9.0 system will be b control will bur intain mud in p """"""""""""""""""""""""""""""""""""	120,000 CaCl mult from previce representation of the rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve obint) or mud-log or cut ove); pressure te nal plan. Target wer as needed to ery stand, at a m curve following rilling in lateral op slide length < 2 ow-rate is 650 ow-rate is 650 ipe MUT). After ndicate additio then pumping h ed below. Use C unning casing. Sp ion sub, fill casing	NC bus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confir g directional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per eaching TD, per ole cleaning swe RT for casing rur pace out casing g	sqft) ±6 that drying shall ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind thug get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar, n. Keep DLS < 3 m landing targe n and updated l gas needed to k e. Take surveys rential is pressu form no more to ded. TOOH & LD seas required. Put	+300 kers are rigged u heck % ROC. Ad im for additional s,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR anding target. T eep well on plar every stand, at a re is 700 - 1 ,00 han one clean-u d orill pipe (ROC roduct is to be e cessary (should f sleeve as close to imp cement as o	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o invey every 100' psi for 30 minu s pressure is 700 eep slide length - for curve, and Ko for curve, and Ko for curve, and Ko for curve, and Ko ake survey every and in the targo a minimum. Targ 0 psig, ROP 500 up cycle to cond DH, if required; s used -Do not use NOT be required b LTP as possible detailed below. I	WBM as contingency nd set) of ducts as demand minimum rtes. > -1,000 psig. < 10' until KOP OP with / joint during te window. get rotating - 600 ft/hr, ition hole for hould NOT be barite for with OBM). . Land casing Note cement
E E MW Pr	olids Notes: Hole Size: Bit / Motor: Bit / Motor: JD / Survey: Logging: ressure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 50C when feasible. Geology and Er curve. Land cu Keep DLS < 2 de parameters / p torque 38K ft- casing running required with 0 sweeps. Run c	8.0 - 9.0 system will be b control will bur intain mud in p """"""""""""""""""""""""""""""""""""	120,000 CaCl mult from previce representation of the rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve obint) or mud-log or cut ove); pressure te nal plan. Target wer as needed to ery stand, at a m curve following rilling in lateral op slide length < 2 ow-rate is 650 ow-rate is 650 ipe MUT). After ndicate additio then pumping h ed below. Use C unning casing. Sp ion sub, fill casing	NC bus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confir g directional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per eaching TD, per ole cleaning swe RT for casing rur pace out casing g	sqft) ±6 that drying shall ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind thug get TFA = 1.0 - 1. om KOP to Land no OH WL logs to - 700 GPM. Tar, n. Keep DLS < 3 m landing targe n and updated l gas needed to k e. Take surveys rential is pressu form no more to ded. TOOH & LD seas required. Put	+300 kers are rigged u heck % ROC. Ad im for additiona .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR anding target. T eep well on plar every stand, at a re is 700 - 1,00 han one clean-u han one clean-u o drill pipe (ROC roduct is to be e kessary (should f sleeve as close to imp cement as o	80:20 p after the rig (2 d diesel and pro- al details. (or similar); on o urvey every 100' psi for 30 minu s pressure is 700 eep slide length - for curve, and K0 ake survey every a minimum. Targ O psig, ROP 500 up cycle to cond H, if required; s used -Do not use NOT be required o LTP as possible	WBM as contingency nd set) of ducts as demand minimum ites. 0 - 1,000 psig. < 10' until KOP. OP with joint during et window. get rotating - 600 ft/hr, ition hole for hould NOT be barite for with OBM). Land casing

	·		•			1		
Specs	5.500	17.0	P-110	LTC	7,460	10,640	546,000	445,000
Loading Min. S.F.					2,727 2.74	9,017 1.18	285,906 1.91	285,906 1.56
WIIII. 3.1 .	Assumptions	Collanse: fully	evacuated casi	na with 9 5 nna		nulus (floating c		
MU Torque (ft lbs): Casing Summary: Casing Summary:	<i>Minumum:</i> Float shoe, floa spaced evenly cannot be plac Float shoe, floa intitiation slee sub (NCS Air-L d	Burst: 8,500 p. fluid with 8.4 y Tension: buoyo 3,470 at collar, 1 jt cas in lateral every 2 eed closer than 3 at collar w/debr eve (WFT RD 8,50 ock 2,500 psi fro	si maximum sur opg equivalent i ed weight in 9.0 Optimum: sing, float collar, 2,000', floatatio 330' to the unit l is catcher, 1 jt c 00 psi), casing to om WFT), casing	face treating pr external pressur ppg fluid with : 4,620 20' marker join n sub at KOP, ca boundary when asing, float colla b KOP with 20'n to surface. The	essure with 10. re gradient 100,000 lbs ove Maximum: t, toe-intitiatic sing to surface. measured perp ar (Weatherford marker joints spa- coe-initiation sl	2 ppg equivaler er-pull 5,780 on sleeve, casing The toe-initiatio endicular to the	to KOP with 20' on sleeve (last-ta well path. uipment) , 20' m teral every ~2,0 uced no closer to	and laden marker joints ike-point) arker joint, to 00', floatation o the unit
	sleeve and is n the toe sleeve o	oted on the Wel as close to (but i	ll Plan. Drill pas not past) the pla	t the LTP as requ inned LTP as po	iired for necess ssible.	: the LTP is the m ary rat-hole and	l shoe-track leng	
Centralizers:						and as-drilled s		
Cement:	Top of curve to 9-5/8" shoe to	9-5/8" shoe: 1	centralizer per ralizer per 5 joir	5 joints	% Excess	Planned TOC (ft MD)) Total Cmt (sx)	Total Cmt (cr ft)
Spacer	IntegraGuard Star	11		31.6		0	60 bbls	
Lead	ASTM type I/II	12.4	2.370	13.40	50%	0	560	1,328
Tail	G:POZ blend	13.3	1.570	7.70	10%	4,696	1,280	2,010
Displacement	120	est bbls						
Annular Capacity	0.2691	cuft/ft	5-1/2" casing >	(9-5/8" casing (annulus			
	0.2291	cuft/ft	5-1/2" casing >	8-1/2" hole an	nulus			
	0.1245	cuft/ft	5-1/2" casing v	vol	est shoe jt ft	100		
	Calculated cer	ment volumes a	ssume gauge ho	le and the exce	s noted in tabl	е		
			Production Blen					
	/ mericun cem	ching Emer a i	roudection bien	IntegraGuard Star				
	S-8 Silica Flour	Avis 616 viscosifier		Plus 3K LCM 15	SS201 Surfactant 1			
Spacer	163.7 lbs/bbl	11.6 lb/bbl	lb/bbl	lb/bbl	gal/bbl			
Lead	ASTM Type I/II	BA90 Bonding Agent 5.0 lb/sx	: Bentonite Viscosifier 8% BWOB	FL24 Fluid Loss .5% BWOB	IntegraGuard GW86 Viscosifier .1% BWOB	5 R7C Retarder .2% BWOB	FP24 Defoamer 0.3% BWOB, Anti- Static .01 lb/sx	
Tail	Туре G 50%	Pozzolan Fly Ash Extender 50%	BA90 Bonding Agent 3.0 lb/sx	Bentonite Viscosifier 4% BWOB	FL24 Fluid Loss .4% BWOB	IntegraGuard GW86 Viscosifier .1% BWOB	R3 Retarder .5% BWOB	FP24 Defoamer .3 BWOB, IntegraSea 0.25 lb/sx
			ssume gauge ho		ss noted in tabl	е		
	-		nt is not circula					
Note:	19.15.16.15.0 measured alon completed int 19.15.16.7.E a initiation sleev perforation sh	2.1.a and 19.15. Ig the azimuth o erval, as defined and NMAC 19.1 Ve, and the first f	16.15.C.1.b, no f the well or 330 by NMAC 19.15 5.16.7.J, respect take point will b the unit bound	point in the cor of measured perp of 16.7.8, are the tively. In the cas e the top perfor	npleted interva bendicular to the last take point e of this well, the ation. Neither	IMAC19.15.16.1 al shall be closer he azimuth well. t and first take p he last take poin the toe-initiatic the azimuth of th	to the unit bour The boundaries pint, as defined t will be the bot on sleeve nor th	ndary than 10 of the by NMAC tom toe- e top
EINISH WELL	ND BOP, cap w							
			and cover well (Continue drilling	operations on	subsequent we	ls on pad	
		, so, cap c				a second a second a second		
OMPLETION AND PI		AN:						
Est Lateral Length:								
Est Frac Inform:	-, -	Frac Stages	100 000	bbls slick wate	r	8 720 000	lhs propport	
•					1	0,750,000	lbs proppant	
	Flow back through				t production -	ind storage feet!	tioc	
Production:	Frouucethrou	ign production i	rubing via gas-lii	t into permaner	it production a	ind storage facili	ues	
STIMATED START D								
Drilling:								
Completion:								
Production:	2/14/24							
		-						
epared by: odated:	Alec Bridge Greg Olson	12/20/21 2/20/23						
	Greg Olson	3/27/23						

3/27/23

Greg Olson Greg Olson

Right (North)

psi/ft

ENDURING RESOURCES IV, LLC 6300 S SYRACUSE WAY, SUITE 525 CENTENNIAL, COLORADO 80211

DRILLING PLAN:

Drill, complete, and equip single lateral in the Mancos-H formation

WELL INFORMATION:

Name:	Haynes Canyo	n Unit 440H					
API Number:	Not yet assigned	d					
AFE Number:	Not yet assigne	d					
ER Well Number:	Not yet assigne	d					
State:	New Mexico						
County:	Rio Arriba						
Surface Elevation:	6,703	ft ASL (GL)	6,728	ft ASL (KB)			
Surface Location:	3-23-6	Sec-Twn-Rng	916	ft FSL	390	ft FWL	
	36.248698	° N latitude	107.464489	° W longitude		(NAD 83)	
BH Location:	4-23-6	Sec-Twn-Rng	453	ft FNL	232	ft FWL	
	36.259361	° N latitude	107.482957	° W longitude		(NAD 83)	
Driving Directions:	FROM THE INTE	RSECTION OF U	6 HWY 550 & U	6 HWY 64 IN BLC	OMFIELD, NM		
	South on US Hw	vy 550 for 53.8	miles to MM 97	.6; Left (North) c	on CR #379 (Stat	te Hwy 403) for 1.3	miles to fork;

remaining on CR #379 for 1.5 miles to location access on left; Haynes Canyon Unit 428H Pad. From East to West 430H, 428H, 442H, 440H).

GEOLOGIC AND RESERVOIR INFORMATION:

Prog

Formation Tops	TVD (ft ASL)	TVD (ft KB)	MD (ft KB)	0/G/W	Pressure
Ojo Alamo	5,325	1,403	1,406	W	normal
Kirtland	5,225	1,503	1,509	W	normal
Fruitland	5,000	1,728	1,746	G, W	sub
Pictured Cliffs	4,765	1,963	1,998	G, W	sub
Lewis	4,615	2,113	2,159	G, W	normal
Chacra	4,320	2,408	2,475	G, W	normal
Cliff House	3,210	3,518	3,665	G, W	sub
Menefee	3,205	3,523	3,670	G, W	normal
Point Lookout	2,505	4,223	4,416	G, W	normal
Mancos	2,230	4,498	4,696	0,G	sub (~0.3
Gallup (MNCS_A)	1,890	4,838	5,036	0,G	sub (~0.38
MNCS_B	1,800	4,928	5,126	0,G	sub (~0.3
MNCS_C	1,665	5,063	5,263	0,G	sub (~0.38
MNCS_Cms	1,600	5,128	5,333	0,G	sub (~0.38
MNCS_D	1,525	5,203	5,418	0,G	sub (~0.38
MNCS_E	1,440	5,288	5,525	0,G	sub (~0.38
MNCS_F	1,395	5,333	5,590	0,G	sub (~0.3
MNCS_G	1,310	5,418	5,744	0,G	sub (~0.3
MNCS_H	1,270	5,458	5,833	0,G	sub (~0.3
MNCS_I	0	0	0	0,G	sub (~0.3
FTP TARGET	1,262	5,466	5,858	0,G	sub (~0.3
PROJECTED LTP	1,207	5,521	12,673	0,G	sub (~0.38

Surface: Nacimiento

Oil & Gas Zones: Several gas bearing zones will be encountered; target formation is the Gallup

Pressure: Normal (0.43 psi/ft) or sub-norm	nal pressure	gradients an	ticipated in all formations	
Max. pressure gradient:	0.43	psi/ft	Evacuated hole gradient:	0.22

	Maximum anticipated BH pressure, assuming maximum pressure gradient:	2,380	psi
	Maximum anticipated surface pressure, assuming partially evacuated hole:	1,170	psi
Temperature:	Maximum anticipated BHT is 125° F or less		

H₂S INFORMATION:

H₂ S Zones: Encountering hydrogen-sulfide bearing zones is NOT anticipated.

Safety: Sensors and alarms will be placed in the substructure, on the rig floor, above the pits, and at the shakers.

LOGGING, CORING, AND TESTING:

 Mud Logs:
 None planned; remote geo-steering from drill out of 9-5/8" casing to TD; gas detection from drillout of 13-3/8" casing to TD.

 MWD/LWD:
 Gamma Ray from drillout of 13-3/8" casing to TD

 Open Hole Logs:
 None planned

 Coring:
 None planned

 Cased Hole Logs:
 CBL on 5-1/2" casing from deepest free-fall depth to surface

DRILLING RIG INFORMATION:

Contractor: Aztec

Rig No.:	1000		
	E80 AC 1,500 hp		
Mast:	Hyduke Triple (136 ft, 600,000 lbs, 10 lines)		
Top Drive:	NOV IDS-350PE (350 ton)		
Prime Movers:	4 - GE Jenbacher Natural Gas Generator		
Pumps:	2 - RS F-1600 (7,500 psi)		
BOPE 1:	Cameron single & double gate rams (13-5/8", 3,000 psi)		
	Cameron annular (13-5/8", 5,000 psi)		
	Cameron (4", 10,000 psi)		
KB-GL (ft):			
Note:	Actual drilling rig may vary depending on availability at time the well is scheduled to be dri	lled.	
STATE AND FEDERAL	NOTIFICATIONS	BLM	State
Construction and	BLM is to be notified minimum of 48 hours prior to start of construction or reclamation.		
Reclamation:	Grazing permittee is to be notified 10 days in advance.	(505) 564-7600	
Spud	BLM and state are to be notified minimum of 24 hours prior to spud.	(505) 564-7750	(505) 334-6178
	BLM is to be notified minimum of 24 hours prior to BOPE testing.	(505) 564-7750	
	BLM and state are to be notified minimum of 24 hours prior to running casing and	(,	sectione
·····y, ······y	cementing.	(505) 564-7750	(505) 334-6178
Plugging	BLM and state are to be notified minimum of 24 hours prior to plugging ops.	(505) 564-7750	see note
	All notifications are to be recorded in the WellView report with time, date, name or		
	number that notifications were made to.		
	Note: Monica Keuhling with the OCD requests state notifications 24 hrs in advance for spur		
	and any plugging be given to her in both phone message and email: (505) 320-0243, monic	a.keuniing@emni	ra.nm.gov
BOPE REQUIREMENT	S: See attached diagram for details regarding BOPE specifications and configuration.		
1)	Rig will be equipped with upper and lower kelly cocks with handles available.		
2)			
-/	Inside BOP and TIW valves will be available to use on all sizes and threads of drill pipe used v	while drilling the v	vell.
2)	BOP accumulator will have enough capacity to open the HCR valve, close all rams and annu	lar preventer, and	l retain
	minimum of 200 psi above precharge on the closing manifold without the use of closing pu	imps. The fluid res	ervoir capacity
	shall be at least double the usable fluid volume of the accumulator system capacity, and th		
	at manufacturer's recommendation. There will be two additional sources of power for the		
	Sufficient nitrogen bottles will be available and will be recharged when pressure falls below	/ manufacturer's r	ecommended
-	minimum.		
3)			
	BOP testing shall be conducted (a) when initially installed, (b) whenever any seal is broken of		
	the previous test exceeds 30 days. Tests will be conducted using a test plug. BOP ram preve		
	for 10 minutes, and the annular preventer will be tested to 1,500 psi for 10 minutes. Ram a		
	tested to 250 psi for 5 minutes. Additionally, BOP and casing strings will be tested to .22 ps		

greater but not exceeding 70% of yield strength of the casing, for 30 minutes, prior to drilling out 13-3/8" and 9-5/8" casing. Rams and hydraulically operated remote choke line valve will be function tested daily at a minimum.

- 4) Remote valve for BOP rams, HCR, and choke shall be placed in a location that is readily available to the driller. The remote BOP valve shall be capable of closing and opening the rams.
- 5) Manual locking devices (hand wheels) shall be intalled on rams. A valve will be installed on the annular preventer's closing line as close as possible to the preventer to act as a locking device. The valve will be maintained in the open position and shall only be closed when the there is no power to the accumulator.

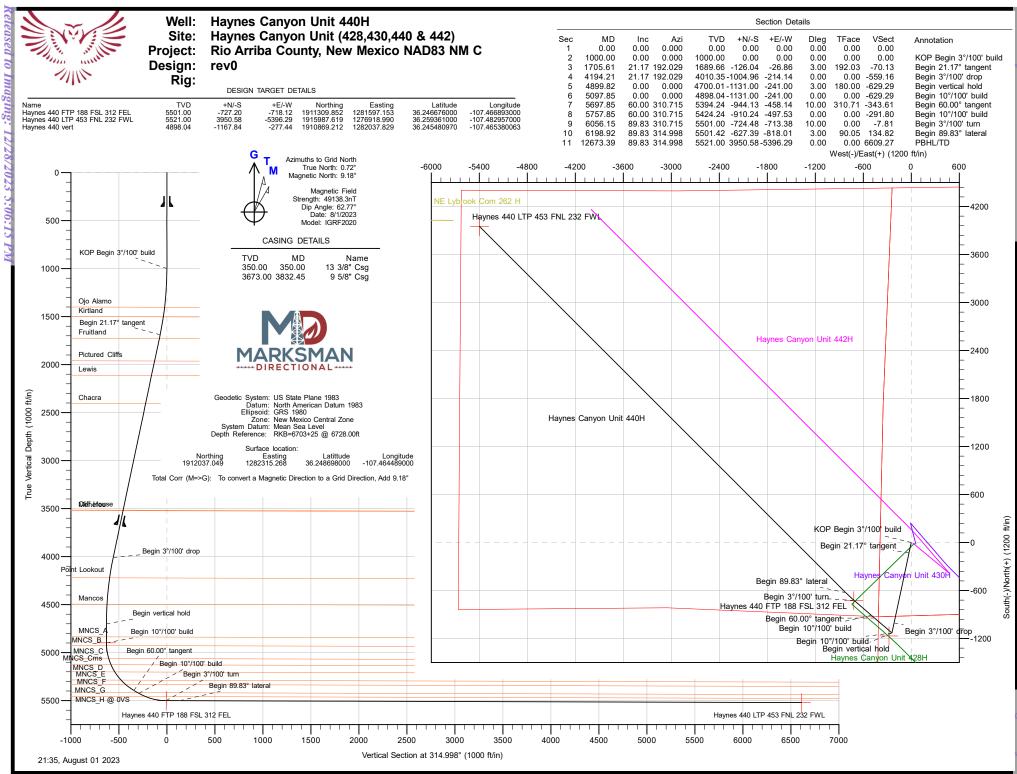
FLUIDS AND SOLIDS CONTROL PROGRAM:

Fluid Measurement: Pumps shall be equipped with stroke counters with displays in the dog-house. Slow pump speed shall be recorded daily and after mudding up, at a minimum, on the drilling report. A Pit Volume Totalizer will be installed and the readout will be displayed in the dog-house. Gas-detecting equipment will be installed at the shakers, and readouts will be available in the dog-house and the in the geologist's work-station (if geologist or mud-logger is on-site). Closed-Loop System: A fully, closed-loop system will be utilized. The system will consist of above-ground piping and above-ground storage tanks and bins. The system will not entail any earthen pits, below-grade storage, or drying pads. All equipment will be disassembled and removed from the site when drilling operations cease. The system will be capable of storing all fluids and generated cuttings and of preventing uncontrolled releases of the same. The system will be operated in an efficient manner to allow the recycling and reuse of as much fluid as possible and to minimimize the amount of fluids and solids that require disposal. Fluid Disposal : Fluids that cannot be reused, recycled, or returned to the supplier will be hauled to and disposed of at an approved disposal site (Industrial Ecosystem, Inc. or Envirotech, Inc.). Solids Disposal : Drilling solids will be stored (until haul-off) on-site in separate containers with no other waste, debris, or garbage products. Waste solids will be hauled to and disposed of at an approved disposal site (Industrial Ecosystem, Inc. or Envirotech, Inc.). Fluid Program: See "Detailed Drilling Plan" section for additional details. Sufficient barite will be on location to weight up mud system to balance maximum anticipated pressure gradient.

DETAILED DRILLING PLAN:

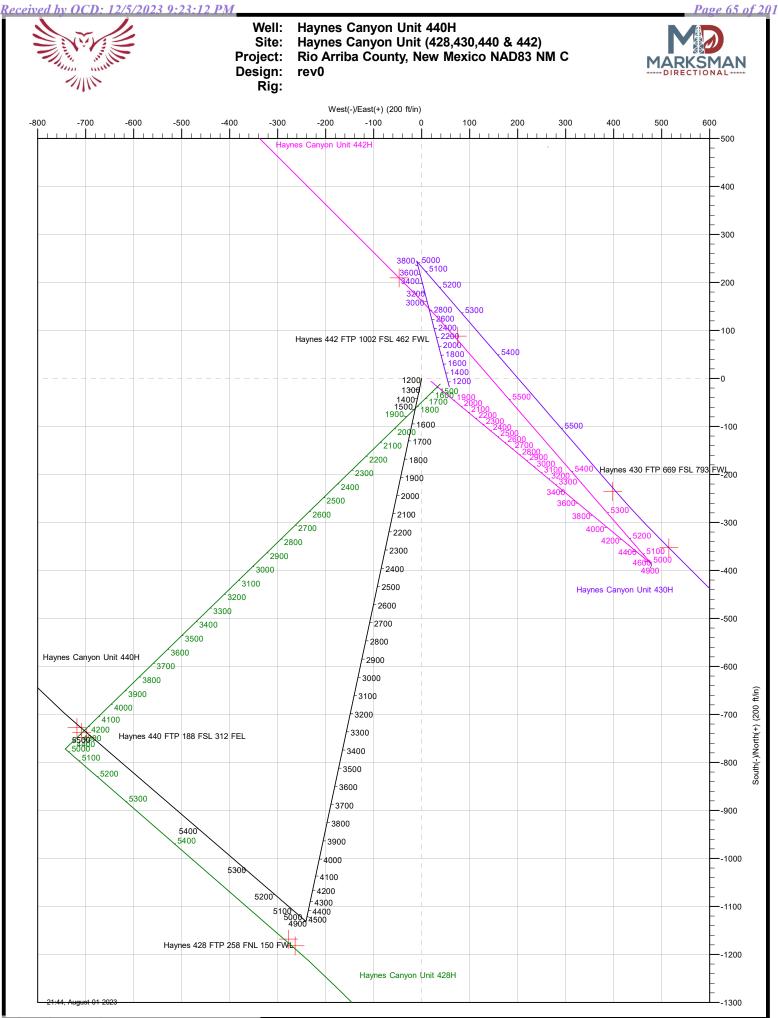
SURFACE: Drill vertically to casing setting depth (plus necessary rathole), run casing, cement casing to surface.

		ft (MD)	to		ft (MD)		Section Length:	
		ft (TVD)	to		ft (TVD) a smaller rig in d		asing Required: drilling rig	350 fi
	Note: Surjuce in	ione may be an	icu, cuscu, unu	cemented with	u sinunci rig in t	avance of the	unning rig.	
Fluid:	Туре	MW (ppg)	FL (mL/30 min)	PV (cp)	YP (lb/100 sqft)	рН		ments
	Fresh Water	8.4	N/C	2 - 8	2 - 12	9.0	Spuc	d mud
Hole Size:		D C						
MWD / Survey:	Mill Tooth or P							
Logging:		actorisativey						
55 5		e 12-/4" bit and	open to 17-1/2'	" if unable to dri	ll with 17-1/2" b	it. Run inclinat	ion survey in 10	00'stations
					g as required. TO			
	below. Monito	r returns durinន្	g cement job and	d note cement v	olume to surface	e. Install cellar a	and wellhead.	
		L	T	T			T	
		14/4 (IL / f 4)	Crada	Com		Descent (see 1)	Tens. Body	Tens. Conn
Casing Specs:	13.375	Wt (lb/ft)	Grade J-55	Conn. BTC	Collapse (psi)	Burst (psi)	(lbs)	(lbs)
Specs Loading	13.375	54.5	J-55	BIC	1,130 153	2,730 791	853,000 116,634	909,000 116,634
Min. S.F.					7.39	3.45	7.31	7.79
WIIII. 5.1 .	Assumptions	Collanse: fully	evacuated casi	na with 8 4 nna	equivalent exte			1.15
	rissumptions.				with 9.5 ppg flu			intermediate
			pg equivalent e	, ,	11.55	ina misiae casin	y white utility	memute
					-			
II Torous (ft lbs).	Minumum	N/A	-		100,000 lbs over Maximum:			
U Torque (ft lbs):	Minumum:	,	Optimum: onnection runni	N/A	wiuximum.	N/A		
asing Summary:								
- ,					om 3 jts, 1 centra	lizer ner 2 its to	surface	
centrunzers.	2 centralizers p				Hole Cap.		Planned TOC	
Cement:	Туре	Weight (nng)	Yield (cuft/sk)	Water (gal/sk)		% Excess	(ft MD)	Total Cmt (sx)
cement.	TYPE III	14.6	1.39	6.686	0.6946	100%	0	364
nnular Capacity	0.6946	cuft/ft		x 17-1/2" hole		Csg capacity	0.8680	ft3/ft
		,			le and the exces	• • •		Cu Ft Slurry
DIUKEL	lergy services.	culturatea cer	nent volumes us	sume guuge no	ie unu the exces.		-	
			D-CD2 .3% BWOC					505.3
		Calcium Chloride 2%	Dispersant/Friction	.25 lbs/sx Cello				
Tail	ASTM Type III Blend			Flake - seepage				
					ement must ach	ieve 500 psi co	mpressive stre	ngth before
	drilling out.							
	anning out							
NTERMEDIATE:	Drill as per dire	ectional plan to	casina settina	depth. run casir	na. cement casin	a to surface.		
NTERMEDIATE:		ectional plan to ft (MD)	casing setting to		ng, cement casin ft (MD)		Section Length:	3,483 fi
NTERMEDIATE:	350			3,833	-	Hole	Section Length: asing Required:	
<u>NTERMEDIATE:</u>	350	ft (MD)	to	3,833	ft (MD)	Hole	-	
NTERMEDIATE:	350	ft (MD)	to	3,833	ft (MD)	Hole	-	
NTERMEDIATE: Fluid:	350	ft (MD)	to to	3,833	ft (MD) ft (TVD)	Hole	asing Required:	
	350 350	ft (MD) ft (TVD)	to to FL (mL/30	3,833 3,673	ft (MD) ft (TVD) YP (lb/100	Hole S Ca	asing Required:	3,833 fi
	350 350 Type LSND (5% KCl)	ft (MD) ft (TVD) MW (ppg)	to to FL (mL/30 min)	3,833 3,673 PV (cp)	ft (MD) ft (TVD) YP (lb/100 sqft)	Hole S Ca	asing Required:	3,833 fi
Fluid: Hole Size:	350 350 Type LSND (5% KCl)	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5	to to FL (mL/30 min) 20	3,833 3,673 PV (cp)	ft (MD) ft (TVD) YP (lb/100 sqft)	Hole S Ca	asing Required:	3,833 fi
Fluid: Hole Size: Bit / Motor:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor	to to FL (mL/30 min) 20	3,833 3,673 PV (cp) 8 - 14	ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14	Hole 5 Cr pH 9.0 - 9.5	asing Required:	3,833 fi
Fluid: Hole Size: Bit / Motor:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4.	to to FL (mL/30 min) 20 0, stage, 0.16 re	3,833 3,673 PV (cp) 8 - 14	ft (MD) ft (TVD) YP (lb/100 sqft)	Hole S Cr PH 9.0 - 9.5 DIFF PSIG	asing Required: Com No	3,833 fi
Fluid: Hole Size: Bit / Motor:	350 350 LSND (5% KCI) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or	to to FL (mL/30 min) 20 0, stage, 0.16 re 19 mm cutters,	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG , TFA = 0.67 sq-ir	ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0.	Hole S Cr 9.0 - 9.5 DIFF PSIG 90 max), jet wi	asing Required: Com No	3,833 fi
Fluid: Hole Size: Bit / Motor: Bit / Motor:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or	to to FL (mL/30 min) 20 0, stage, 0.16 re 19 mm cutters,	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG , TFA = 0.67 sq-ir	ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0.	Hole S Cr 9.0 - 9.5 DIFF PSIG 90 max), jet wi	asing Required: Com No	3,833 fi
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or ith inclination	to to FL (mL/30 min) 20 0, stage, 0.16 re 19 mm cutters, and azimuth sur	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's	ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 h (range 0.65 - 0. at a minimum), C	Hole S Cr 9.0 - 9.5 DIFF PSIG 90 max), jet wi	asing Required: Com No th 6 - 12s	3,833 fi ments OBM
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted abo	to to FL (mL/30 min) 20 0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'; est 13-3/8" casin	ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 o (range 0.65 - 0. at a minimum), G g to	Hole S Cr 9.0 - 9.5 DIFF PSIG 90 max), jet wi 5R optional 1,500	th 6 - 12s	3,833 fi ments OBM
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted abo wing direction	to to FL (mL/30 min) 20 r 0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat-F	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir rvey (every 100'; est 13-3/8" casin nole past casing	ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0.: at a minimum), G g to setting depth). S	PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi 5R optional 1,500 Steer as needed	th 6 - 12s	3,833 fi ments OBM utes.
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted abo wing direction id keep slide len	to to Tel: (mL/30 min) 20 7 0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat-figth < 10', when	3,833 3,673 PV (cp) 8 - 14 vv/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's est 13-3/8" casin possible. Take su	ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0 at a minimum), 0 gto setting depth). 1 urveys every stan	PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi GR optional 1,500 Steer as needed d, at a minimu	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r	3,833 f ments OBM utes. plan. Keep DLS rates of 750
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- wying direction d keep slide len able to control	to to Teleform to to to to to to to to to to to to to t	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG . TFA = 0.67 sq-ir rvey (every 100's est 13-3/8" casin pole past casing possible. Take su	ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0 at a minimum), G g to setting depth), S urveys every stan flow-rate is 650	PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi 5R optional 1,500 Steer as needed d, at a minimu GPM. At TD, co	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r ndition hole an	3,833 f ments OBM utes. plan. Keep DLS rates of 750 d fluid for
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a casing running.	ft (MD) ft (TVD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- wying direction d keep slide len able to control . TOOH. Run cas	to to Televice to the second s	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir rvey (every 100's est 13-3/8" casin pole past casing possible. Take su inimum desired and washing / ci	ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0 at a minimum), G g to setting depth). S urveys every stan flow-rate is 650 rculating as requ	Hole S Cr 9.0 - 9.5 DIFF PSIG 90 max), jet wi 5R optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casi	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r indition hole an ng. ND BOPE. W	3,833 f ments OBM Utes. Pplan. Keep DLS rates of 750 d fluid for 'alk rig to next
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a casing running, well. Perform o	ft (MD) ft (TVD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- wying direction d keep slide len able to control . TOOH. Run cas ff-line cement j	to to Televice to the second s	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir rvey (every 100's est 13-3/8" casin pole past casing possible. Take su inimum desired and washing / ci	ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0 at a minimum), G g to setting depth), S urveys every stan flow-rate is 650	Hole S Cr 9.0 - 9.5 DIFF PSIG 90 max), jet wi 5R optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casi	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r indition hole an ng. ND BOPE. W	3,833 f ments OBM Utes. Pplan. Keep DLS rates of 750 d fluid for 'alk rig to next
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a casing running.	ft (MD) ft (TVD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- wying direction d keep slide len able to control . TOOH. Run cas ff-line cement j	to to Televice to the second s	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir rvey (every 100's est 13-3/8" casin pole past casing possible. Take su inimum desired and washing / ci	ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0 at a minimum), G gto setting depth). S urveys every stan flow-rate is 650 rculating as requ	Hole S Cr 9.0 - 9.5 DIFF PSIG 90 max), jet wi 5R optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casi	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r indition hole an ng. ND BOPE. W	3,833 f ments OBM Utes. Pplan. Keep DLS rates of 750 d fluid for 'alk rig to next
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a casing running, well. Perform o	ft (MD) ft (TVD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- wying direction d keep slide len able to control . TOOH. Run cas ff-line cement j	to to Televice to the second s	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir rvey (every 100's est 13-3/8" casin pole past casing possible. Take su inimum desired and washing / ci	ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0 at a minimum), G gto setting depth). S urveys every stan flow-rate is 650 rculating as requ	Hole S Cr 9.0 - 9.5 DIFF PSIG 90 max), jet wi 5R optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casi	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r ndition hole an ng. ND BOPE. W ement job and n	3,833 f ments OBM utes. aplan. Keep DLS rates of 750 id fluid for 'alk rig to next iote cement
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test: Procedure:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a casing running, well. Perform o	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- owing direction d keep slide len able to control . TOOH. Run cass ff-line cement j ace.	to to Television to the second	3,833 3,673 PV (cp) 8 - 14 vv/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's est 13-3/8" casin possible. Take su inimum desired and washing / ci int as detailed be	ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0.: at a minimum), 0 g to setting depth). 1 urveys every stan flow-rate is 650 reculating as requ- elow. Monitor re	Hole S Cr 90 - 9.5 DIFF PSIG 90 max), jet wi 6R optional 1,500 Steer as needed d, at a minimu GPM. At TD, co ijred. Land casi iturns during ce	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r indition hole an ng. ND BOPE. W ement job and n	3,833 f ments OBM Utes. Pplan. Keep DLS rates of 750 Id fluid for /alk rig to next iote cement Tens. Conn
Fluid: Hole Size: Bit / Motor: Bit / Motor: Logging: Pressure Test: Procedure:	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a casing running, well. Perform o volume to surfa	ft (MD) ft (TVD) ft (TVD) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- owing direction d keep slide len able to control . TOOH. Run cass off-line cement j acce. wt (lb/ft)	to to Teleformer to the second	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's est 13-3/8" casin possible. Take su inimum desired and washing / ci int as detailed be Conn.	ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0. at a minimum), 0 g to setting depth). 1 grow-rate is 650 rculating as requered collapse (psi)	Hole S Cr PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casi iturns during co Burst (psi)	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r indition hole an ng. ND BOPE. W ement job and n Tens. Body (lbs)	3,833 f ments OBM Utes. Palan. Keep DLS rates of 750 Id fluid for /alk rig to next iote cement Tens. Conn (lbs)
Fluid: Hole Size: Bit / Motor: Bit / Motor: Uogging: Pressure Test: Procedure: Casing Specs: Specs	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a casing running, well. Perform o	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- owing direction d keep slide len able to control . TOOH. Run cass ff-line cement j ace.	to to Television to the second	3,833 3,673 PV (cp) 8 - 14 vv/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's est 13-3/8" casin pole past casing possible. Take su inimum desired and washing / ci int as detailed be	ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0. at a minimum), 0 g to g to setting depth). 1 grveys every stan flow-rate is 650 rculating as requered elow. Monitor reference Collapse (psi) 2,020	Hole S PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, co irred. Land casi iturns during co Burst (psi) 3,520	th 6 - 12s psi for 30 minu to keep well on m. Target flow-rr indition hole an ng. ND BOPE. W ement job and n Tens. Body (lbs) 564,000	3,833 fi ments OBM Utes. Palan. Keep DLS rates of 750 d fluid for 'alk rig to next iote cement Tens. Conn (lbs) 453,000
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test: Procedure: Casing Specs: Specs Loading	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a casing running, well. Perform o volume to surfa	ft (MD) ft (TVD) ft (TVD) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- owing direction d keep slide len able to control . TOOH. Run cass off-line cement j acce. wt (lb/ft)	to to Teleformer to the second	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's est 13-3/8" casin possible. Take su inimum desired and washing / ci int as detailed be Conn.	ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0. at a minimum), C g to setting depth). S urveys every stan flow-rate is 650 rculating as requ elow. Monitor re Collapse (psi) 2,020 1,604	Hole S PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, coc ijred. Land casi iturns during co Burst (psi) 3,520 1,380	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r indition hole and n mg. ND BOPE. W ement job and n Tens. Body (lbs) 564,000 215,309	3,833 f ments OBM Utes. plan. Keep DLS rates of 750 of fluid for /alk rig to next ote cement Tens. Conn (lbs) 453,000 215,309
Fluid: Hole Size: Bit / Motor: Bit / Motor: Uogging: Pressure Test: Procedure: Casing Specs: Specs	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo <3 deg/100' an GPM (higher if a casing running, well. Perform o volume to surfa	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- owing direction d keep slide len able to control stifeline cement j ace. Wt (lb/ft) 36.0	to to Television to the second	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's est 13-3/8" casin pole past casing possible. Take su inimum desired and washing / ci int as detailed be Conn. LTC	ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 , 900 GPM, 950 h (range 0.65 - 0 at a minimum), C g to setting depth). 9 g to setting depth). 9 rculating as requesting as requesting collapse (psi) 2,020 1,604 1.26	Hole S PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi 5R optional 1,500 Steer as needed d, at a minimu GPM. At TD, coc iired. Land casi iturns during co Burst (psi) 3,520 1,380 2.55	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r ndition hole an ng. ND BOPE. We ement job and n Tens. Body (lbs) 564,000 215,309 2.62	3,833 fi ments OBM Utes. Palan. Keep DLS rates of 750 d fluid for 'alk rig to next iote cement Tens. Conn (lbs) 453,000
Fluid: Hole Size: Bit / Motor: Bit / Motor: Uogging: Pressure Test: Procedure: Casing Specs: Specs Loading	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo <3 deg/100' an GPM (higher if a casing running, well. Perform o volume to surfa	ft (MD) ft (TVD) MW (ppg) 8.8-9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or ith inclination est (as noted abo wing direction d keep slide len able to control . TOOH. Run cas off-line cement j ace. Wt (lb/ft) 36.0 Collapse: fully	to to Televice to the series of the series o	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's est 13-3/8" casin nole past casing possible. Take su inimum desired and washing / ci int as detailed be Conn. LTC	ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 , 900 GPM, 950 0 (range 0.65 - 0. at a minimum), C gto setting depth). 3 rrveys every stan flow-rate is 650 rculating as requented collapse (psi) 2,020 1,604 1.26 equivalent exter.	Hole S PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi 5R optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casi iturns during co Burst (psi) 3,520 1,380 2.55 rnal pressure g	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r indition hole an ng. ND BOPE. W ement job and n Tens. Body (lbs) 564,000 215,309 2.62 radient	3,833 f ments OBM Utes. plan. Keep DLS rates of 750 dd fluid for falk rig to next rote cement Tens. Conn (lbs) 453,000 215,309 2.10
Fluid: Hole Size: Bit / Motor: Bit / Motor: Uogging: Pressure Test: Procedure: Casing Specs: Specs Loading	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo <3 deg/100' an GPM (higher if a casing running, well. Perform o volume to surfa	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or with inclination est (as noted aboving direction d keep slide len able to control . TOOH. Run cas off-line cement j ace. Wt (lb/ft) 36.0 Collapse: fully Burst: maximu	to to TRL (mL/30 min) 20 c, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat-f gth <10', when return rates). M sing using a CRT a ob. Pump ceme Grade J-55 evacuated casin um anticipated s	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's est 13-3/8" casin nole past casing possible. Take su inimum desired and washing / ci int as detailed be Conn. LTC	ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 , 900 GPM, 950 a (range 0.65 - 0. at a minimum), G gto setting depth). S gto setting depth). S rculating as reques collapse (psi) 2,020 1,604 1.26 equivalent exter with 9.5 ppg flu	Hole S PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi 5R optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casi iturns during co Burst (psi) 3,520 1,380 2.55 rnal pressure g	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r indition hole an ng. ND BOPE. W ement job and n Tens. Body (lbs) 564,000 215,309 2.62 radient	3,833 f ments OBM Jtes. plan. Keep DLS rates of 750 dd fluid for falk rig to next sote cement Tens. Conn (lbs) 453,000 215,309 2.10
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test: Procedure: Casing Specs: Specs Loading	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo <3 deg/100' an GPM (higher if a casing running, well. Perform o volume to surfa	ft (MD) ft (TVD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted abo wing direction d keep slide len able to control . TOOH. Run cas off-line cement j ace. Wt (lb/ft) 36.0 Collapse: fully Burst: maximu hole and 8.4 p	to to Televice to the second s	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir rvey (every 100'; est 13-3/8" casin nole past casing possible. Take su inimum desired and washing / ci int as detailed be Conn. LTC	ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0.: at a minimum), G g to setting depth). S grupys every stan flow-rate is 650 rculating as requ elow. Monitor ref Collapse (psi) 2,020 1,604 1.26 equivalent exter with 9.5 ppg flue gradient	Hole S PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casi iturns during ce Burst (psi) 3,520 1,380 2.55 rnal pressure g iid inside casin	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r indition hole an ng. ND BOPE. W ement job and n Tens. Body (lbs) 564,000 215,309 2.62 radient	3,833 fi ments OBM Jtes. plan. Keep DLS rates of 750 dd fluid for falk rig to next sote cement Tens. Conn (lbs) 453,000 215,309 2.10
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test: Procedure: Casing Specs: Specs Loading Min. S.F.	350 350 LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if, casing running, well. Perform o volume to surfa	ft (MD) ft (TVD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or ith inclination est (as noted aboving direction id keep slide len able to control . TOOH. Run cas off-line cement j ace. Wt (lb/ft) 36.0 Collapse: fully Burst: maximu hole and 8.4 p Tension: buoye	to to Televice to the second s	3,833 3,673 PV (cp) 8 - 14 ev/gal, 1.83 DEG TFA = 0.67 sq-ir rvey (every 100'; est 13-3/8" casin possible. Take su inimum desired and washing / ci int as detailed be Conn. LTC	ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 n (range 0.65 - 0.2 at a minimum), G g to setting depth). S grupys every stan flow-rate is 650 rculating as requ elow. Monitor ref Collapse (psi) 2,020 1,604 1.26 equivalent exter with 9.5 ppg flu e gradient 100,000 lbs over	Hole S PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi 5R optional 1,500 Steer as needed d, at a minimu GPM. At TD, co irred. Land casi irred. Land casi iturns during ce Burst (psi) 3,520 1,380 2.55 rnal pressure g id inside casin -pull	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r indition hole an ng. ND BOPE. W ement job and n Tens. Body (lbs) 564,000 215,309 2.62 radient	3,833 fi ments OBM Utes. plan. Keep DLS rates of 750 dd fluid for 'alk rig to next rote cement Tens. Conn (lbs) 453,000 215,309 2.10
Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test: Procedure: Procedure: Specs Loading Min. S.F.	350 350 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo <3 deg/100'an GPM (higher if a casing running, well. Perform o volume to surfa 9.625 Assumptions: Minumum:	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- wing direction id keep slide len able to control . TOOH. Run cas off-line cement j ace. Wt (lb/ft) 36.0 Collapse: fully Burst: maximu hole and 8.4 p Tension: buoye 3,400	to to Televice to to to to to to to to to to to to to to t	3,833 3,673 PV (cp) 8 -14 ev/gal, 1.83 DEG . TFA = 0.67 sq-ir rvey (every 100's est 13-3/8" casin possible. Take su inimum desired and washing / ci nt as detailed be Conn. LTC mg with 8.4 ppg surface pressure xternal pressure surface pressure xternal pressure 4,530	ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 900 GPM, 950 n (range 0.65 - 0. at a minimum), 0 g to setting depth). 1 urveys every stan flow-rate is 650 rculating as requ elow. Monitor ref Collapse (psi) 2,020 1,604 1.26 equivalent exter. with 9.5 pp flu gradient 100,000 lbs over Maximum:	Hole S PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, co irred. Land casi d, at a minimu GPM. At TD, co irred. Land casi turns during ce Burst (psi) 3,520 1,380 2.55 rnal pressure g irid inside casin -pull 5,660	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r indition hole an ng. ND BOPE. W ement job and n Tens. Body (lbs) 564,000 215,309 2.62 radient g while drilling	3,833 fi ments OBM Utes. plan. Keep DLS rates of 750 dd fluid for 'alk rig to next rote cement Tens. Conn (lbs) 453,000 215,309 2.10
Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test: Procedure: Casing Specs: Specs Loading	350 350 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo <3 deg/100'an GPM (higher if a casing running, well. Perform o volume to surfa 9.625 Assumptions: Minumum:	ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted ab- wing direction id keep slide len able to control . TOOH. Run cas off-line cement j ace. Wt (lb/ft) 36.0 Collapse: fully Burst: maximu hole and 8.4 p Tension: buoye 3,400	to to Televice to to to to to to to to to to to to to to t	3,833 3,673 PV (cp) 8 -14 ev/gal, 1.83 DEG . TFA = 0.67 sq-ir rvey (every 100's est 13-3/8" casin possible. Take su inimum desired and washing / ci nt as detailed be Conn. LTC mg with 8.4 ppg surface pressure xternal pressure surface pressure xternal pressure 4,530	ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 900 GPM, 950 n (range 0.65 - 0. at a minimum), 0 g to setting depth). 1 urveys every stan flow-rate is 650 rculating as requ elow. Monitor ref Collapse (psi) 2,020 1,604 1.26 equivalent exter. with 9.5 pp flu gradient 100,000 lbs over Maximum:	Hole S PH 9.0 - 9.5 DIFF PSIG 90 max), jet wi GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, co irred. Land casi d, at a minimu GPM. At TD, co irred. Land casi turns during ce Burst (psi) 3,520 1,380 2.55 rnal pressure g irid inside casin -pull 5,660	th 6 - 12s psi for 30 minu to keep well on m. Target flow-r indition hole an ng. ND BOPE. W ement job and n Tens. Body (lbs) 564,000 215,309 2.62 radient g while drilling	3,833 fi ments OBM Utes. plan. Keep DLS rates of 750 dd fluid for 'alk rig to next rote cement Tens. Conn (lbs) 453,000 215,309 2.10


Centralizers: 1 per joint in non-vertical hole; 1 per 2-joints in vertical hole

Cer	nent:	11.75" SOLID E	Weight (ppg)	Vield (cuft /sk)	Water (gal/sk)	% Excess	Planned TOC (ft MD)	Total Cmt (sx)	Total Cmt (cu ft)	
	pacer	D-Mud Breaker	8.5		Water (gal/ sk)	70 EXCE35	0	10 bbls		
		90:10 Type								
	Lead	III:POZ	12.5	2.140	12.05	70%	0	802	1,715	
	Tail	Type III	14.6	1.380	6.64	20%	3,333	150	207	
Displace			est bbls							
Annular Cap	acity	0.3627	cuft/ft		x 13-3/8" casing					
		0.3132	cuft/ft	, 5	x 12-1/4" hole ai		9-5/8" 36# ID	8.921		
		0.4341 Calculated cer	cuft/ft nent volumes as	9-5/8" casing v ssume aquae ho	ole and the exces	est shoe jt ft is (onen hole on	44 lv) noted in tab	le		
		calculated cell	nent volumes us	sume gauge no		s (open note on	<i>ly) lioted lii tub</i>			
S	oacer	D-Mud Breaker	SAPP							
		ASTM Type III	D-CSE 1 5.0% BWOC	D-MPA-1 .4% BWOC Fluid Loss & Gas	D-SA 1 1.4% BWOC	D-CD 2 .4% BWOC	Cello Flace LCM .25	D-FP1 0.5% BWOC		
	Lead	90/10 Poz	Strength Enhancer	Migration Control	Na Metasilicate	Dispersant	lb/sx	Defoamer	D-R1 .5% Retarder	
				D-MPA-1 .4% BWOC						
				Fluid Loss & Gas		D-CD 2 .5% BWOC	Cello Flace LCM .25			
	Tail	ASTM Type III Blend		Migration Control		Dispersant	lb/sx		D-R1 .2% Retarder	
		Diake interne	diate Cementin	griogiuili						
		Cement must	achieve 500 nei	compressive st	rength before d	rilling out				
					ted to surface. (chieve 500 psi c	compressive stre	ength before	
PRODUCT	TION:	Drill to TD follo	owing direction	al plan, run cas	ing, cement cas	ing to surface.				
			ft (MD)	to		ft (MD)	Hole	Section Length:	8,840	
		3,673	ft (TVD)	to	5,521	ft (TVD)	C	asing Required:	12,673	
	ĺ				5 400	(() () ()	4 0 0 0	((T (D)	7	
				Estimated KOP:		ft (MD)		ft (TVD) ft (TVD)		
			Estimated Landi			ft (MD) ft (MD)	5,400			
		Estimated Lateral Length: 6,815 ft (MD)								
					1	1		1	7	
						YP (lb/100				
	Fluid:	Туре	MW (ppg)	WPS ppm	нтнр	YP (lb/100 sqft)	ES	OWR	Comment	
1	Fluid:	Туре	MW (ppg)	WPS ppm	нтнр	• •	ES	OWR	Comment WBM as	
		OBM	8.0 - 9.0	120,000 CaCl	NC	sqft) ±6	+300	80:20	WBM as contingency	
		OBM OptiDrill OBM	8.0 - 9.0 system will be b	120,000 CaCl wilt from previo	NC	sqft) ±6 that drying shal	+300 kers are rigged u	80:20 p after the rig (2	WBM as contingency nd set) of	
		OBM OptiDrill OBM shakers. Solids	8.0 - 9.0 system will be b control will bur	120,000 CaCl uilt from previo	NC pus well. Ensure ttings samples o	sqft) ±6 that drying shal ne per tour to c	+300 kers are rigged u heck % ROC. Ad	80:20 p after the rig (2 d diesel and pro	WBM as contingency nd set) of	
		OBM OptiDrill OBM shakers. Solids	8.0 - 9.0 system will be b control will bur	120,000 CaCl uilt from previo	NC	sqft) ±6 that drying shal ne per tour to c	+300 kers are rigged u heck % ROC. Ad	80:20 p after the rig (2 d diesel and pro	WBM as contingency nd set) of	
luids / Solids N	lotes:	OBM OptiDrill OBM shakers. Solids required to ma	8.0 - 9.0 system will be b control will bur	120,000 CaCl uilt from previo	NC pus well. Ensure ttings samples o	sqft) ±6 that drying shal ne per tour to c	+300 kers are rigged u heck % ROC. Ad	80:20 p after the rig (2 d diesel and pro	WBM as contingency nd set) of	
Fluids / Solids N Hole	lotes:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2"	8.0 - 9.0 system will be b control will bur intain mud in p	120,000 CaCl uilt from previo	NC pus well. Ensure ttings samples o	sqft) ±6 that drying shal ne per tour to c	+300 kers are rigged u heck % ROC. Ad	80:20 p after the rig (2 d diesel and pro	WBM as contingency nd set) of	
luids / Solids N Hole Bit / M	lotes: e Size: lotor:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor	120,000 CaCl uilt from previc rn retorts on cut rogram specs. R	NC pus well. Ensure ttings samples o eference Newpa	sqft) ±6 that drying shal ne per tour to c rk's mud progra	+300 kers are rigged u heck % ROC. Ad am for additiona	80:20 p after the rig (2 d diesel and pro al details.	WBM as contingency ind set) of ducts as	
Fluids / Solids N Hole Bit / M	lotes: e Size: lotor:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/	120,000 CaCl uilt from previc rn retorts on cut rogram specs. R 8, 5.0 stage, 0.2	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o	sqft) ±6 that drying shal ne per tour to c rk's mud progra	+300 kers are rigged u heck % ROC. Ad am for additiona	80:20 p after the rig (2 d diesel and pro al details.	WBM as contingency ind set) of ducts as	
iluids / Solids N Hole Bit / M	lotes: e Size: lotor:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breaking	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as res	120,000 CaCl uilt from previc rn retorts on cut rogram specs. R 8, 5.0 stage, 0.2 equired, bottom	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o n tool spaced ~3,	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind th	+300 kers are rigged u heck % ROC. Ad am for additiona L,580 DIFF PSIG e bit.	80:20 p after the rig (2 d diesel and pro al details.	WBM as contingency ind set) of ducts as	
iluids / Solids N Hole Bit / M Bit / M	lotes: e Size: lotor: lotor:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1	120,000 CaCl uilt from previc ro retorts on cut rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o n tool spaced ~3, natrix body, targ	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1	+300 kers are rigged u heck % ROC. Ad am for additiona L,580 DIFF PSIG e bit. .5 sq-in	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o	WBM as contingency nd set) of ducts as	
Fluids / Solids N Hole Bit / M Bit / M	lotes: e Size: lotor: lotor:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR,	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1	120,000 CaCl uilt from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o n tool spaced ~3,	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1	+300 kers are rigged u heck % ROC. Ad am for additiona L,580 DIFF PSIG e bit. .5 sq-in	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o	WBM as contingency nd set) of ducts as	
Fluids / Solids N Hole Bit / M Bit / M MWD / Su	lotes: e Size: lotor: lotor: urvey:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, and d after Landing P	120,000 CaCl uilt from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, r d azimuth (surve 20int)	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o n tool spaced ~3, natrix body, targ	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind th get TFA = 1.0 - 1 pm KOP to Land	+300 kers are rigged u heck % ROC. Ad am for additiona L,580 DIFF PSIG e bit. .5 sq-in	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o	WBM as contingency nd set) of ducts as	
Fluids / Solids N Hole Bit / M Bit / M MWD / Su Log Pressure	lotes: Size: lotor: lotor: urvey: ging: ? Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 77857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, an d after Landing P titre section, no est (as noted abo	120,000 CaCl puilt from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve Point) mud-log or cut pove); pressure te	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, matrix body, targ ey every joint fro tings sampling, est 9-5/8" casing	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1 om KOP to Land no OH WL logs to	+300 kers are rigged u heck % ROC. Ad am for additiona 1,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o urvey every 100' psi for 30 minu	WBM as contingency nd set) of ducts as demand minimum utes.	
Hole Bit / M Bit / M Bit / M MWD / Su Log Pressure	lotes: Size: lotor: lotor: urvey: ging: ? Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 77857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 10 i.inclination, an d after Landing P tire section, no est (as noted abo	120,000 CaCl puilt from previc ro retorts on cut rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve ooint) mud-log or cut pressure te nal plan. Target	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, matrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1 om KOP to Land no OH WL logs to - 700 GPM. Tar	+300 kers are rigged u heck % ROC. Ad am for additiona 1,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o urvey every 100' psi for 30 minu s pressure is 700	WBM as contingency nd set) of ducts as demand minimum utes. 0 - 1,000 psig.	
Hole Bit / M Bit / M Bit / M MWD / Su Log Pressure	lotes: Size: lotor: lotor: urvey: ging: ? Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, MWD with GR, GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, an d after Landing P tire section, no est (as noted abo lowing directio D - 600 ft/hr. Ste	120,000 CaCl mult from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve ooint) mud-log or cut ove); pressure te nal plan. Target er as needed to	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1 om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3	+300 kers are rigged u heck % ROC. Ad am for additiona L,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke	80:20 p after the rig (2 d diesel and pro al details. (or similar); on urvey every 100' psi for 30 minu s pressure is 700 eep slide length	WBM as contingency nd set) of ducts as demand minimum utes. 0 - 1,000 psig. < 10' until KOP	
Hole Bit / M Bit / M Bit / M MWD / Su Log Pressure	lotes: Size: lotor: lotor: urvey: ging: ? Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 50C when feasible.	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 177857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 inclination, and d after Landing P ntire section, no est (as noted abo llowing directio D - 600 ft/hr. Ste Take surveys ever	120,000 CaCl nuilt from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, r d azimuth (surve 20 int) 9 mud-log or cut ove); pressure te nal plan. Target er as needed to ery stand, at a m	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, ist 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confire	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind th get TFA = 1.0 - 1 Im KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe	+300 kers are rigged u heck % ROC. Ad am for additiona 1,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o urvey every 100' psi for 30 minu s pressure is 700 eep slide length - for curve, and Ki	WBM as contingency nd set) of ducts as demand minimum utes. 0 - 1,000 psig. < 10' until KOP OP with	
Hole Bit / M Bit / M Bit / M MWD / Su Log Pressure	lotes: Size: lotor: lotor: urvey: ging: ? Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 50C when feasible. Geology and Er	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 177857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 inclination, and d after Landing P mitre section, no est (as noted abo lowing directio D - 600 ft/hr. Ste Take surveys even ngineering. Drill	120,000 CaCl nuilt from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve Point) o mud-log or cut ove); pressure te nal plan. Target er as needed to ery stand, at a m curve following	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confirn g directional pla	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind th get TFA = 1.0 - 1 om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated l	+300 kers are rigged u heck % ROC. Ad am for additiona t,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR anding target. T	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o urvey every 100' psi for 30 minu s pressure is 700 sep slide length for curve, and Ki ake survey every	WBM as contingency ind set) of ducts as demand minimum utes. 0 - 1,000 psig. < 10' until KOP OP with y joint during	
iluids / Solids N Hole Bit / M Bit / M MWD / Su Log Pressure	lotes: Size: lotor: lotor: urvey: ging: ? Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 50C when feasible. Geology and Er curve. Land cu	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 777857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, an d after Landing P ntire section, no est (as noted abo lowing direction D - 600 ft/hr. Ste Take surveys even ngineering. Drill rve. Continue dr	120,000 CaCl nuilt from previc ro retorts on cut rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve Point) o mud-log or cut ove); pressure te nal plan. Target rer as needed to ery stand, at a m curve following rilling in lateral	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, ist 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confiri g directional pla section, steering	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind th get TFA = 1.0 - 1 om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated l gas needed to k	+300 kers are rigged u heck % ROC. Ad am for additiona t,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR anding target. T eep well on plar	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o urvey every 100' psi for 30 minu s pressure is 700 eep slide length for curve, and Ki "ake survey every n and in the targe	WBM as contingency ind set) of ducts as demand minimum utes. 0 - 1,000 psig. < 10' until KOP OP with y joint during et window.	
iluids / Solids N Hole Bit / M Bit / M MWD / Su Log Pressure	lotes: Size: lotor: lotor: urvey: ging: ? Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er curve. Land cu Keep DLS < 2 do	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 177857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, an d after Landing P ntire section, no est (as noted abo lowing directio) - 600 ft/hr. Ste Take surveys even ngineering. Drill rve. Continue dr eg/100' and keep	120,000 CaCl uilt from previc ror retorts on cut rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, r d azimuth (surve Point) o mud-log or cut ove); pressure te nal plan. Target ier as needed to ery stand, at a m curve following rilling in lateral p slide length < 2	NC pus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla jnimum. Confiri g directional pla section, steering 20', when feasibl	sqft) ±6 that drying shall ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind th get TFA = 1.0 - 1 om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated l gas needed to k e. Take surveys	+300 kers are rigged u heck % ROC. Ad am for additiona 1,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR anding target. T eep well on plar every stand, at a	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o urvey every 100' psi for 30 minu is pressure is 700 eep slide length for curve, and Ki "ake survey every n and in the targe	WBM as contingency ind set) of ducts as demand minimum utes. 0 - 1,000 psig. < 10' until KOP OP with y joint during et window. get rotating	
Hole Bit / M Bit / M Bit / M MWD / Su Log Pressure	lotes: Size: lotor: lotor: urvey: ging: ? Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er curve. Land cu Keep DLS < 2 do parameters / p	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, and d after Landing P ntire section, no est (as noted abo llowing directio 0 - 600 ft/hr. Ste Take surveys even agineering. Drill rve. Continue dr eg/100' and keep performance: floo	120,000 CaCl uilt from previo rogram specs. R (8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve Point) o mud-log or cut powe); pressure te nal plan. Target ver as needed to curve following rilling in lateral p slide length < 2 pow-rate is 650 -	NC bus well. Ensure ttings samples o eference Newpa 33 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 6500 keep well on pla section, steering 20', when feasibl 700 GPM, differ	sqft) ±6 that drying shall ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind th get TFA = 1.0 - 1 om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targen n and updated l gas needed to k e. Take surveys rential is pressu	+300 kers are rigged u heck % ROC. Ad am for additiona L,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and kd t, planned BUR anding target. T eep well on plar every stand, at a re is 700 - 1,00	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o urvey every 100' psi for 30 minu s pressure is 700 eep slide length for curve, and Kr ake survey every a and in the targe a minimum. Targ 0 psig, ROP 500	WBM as contingency ind set) of ducts as demand minimum utes. 0 - 1,000 psig. < 10' until KOP OP with y joint during et window. get rotating - 600 ft/hr,	
Fluids / Solids N Hole Bit / M Bit / M MWD / Su Log Pressure	lotes: Size: lotor: lotor: urvey: ging: ? Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and te Curve. Land cu Keep DLS < 2 do parameters / p torque 38K ft-l	8.0 - 9.0 system will be b control will bur intain mud in p 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 i. inclination, and d after Landing P ntire section, no est (as noted abo lowing directio D - 600 ft/hr. Ste Take surveys eve Take su	120,000 CaCl uilt from previous reported to the previous rogram specs. R (8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve Point) o mud-log or cut powe); pressure te nal plan. Target er as needed to ery stand, at a m curve following curve following curve following o slide length < 2 pow-rate is 650 - ipe MUT). After	NC bus well. Ensure- ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, st 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confir gdirectional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per	sqft) ±6 that drying shall ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind th get TFA = 1.0 - 1 om KOP to Land no OH WL logs to -700 GPM. Tar n. Keep DLS < 3 m landing target n and updated l gas needed to k e. Take surveys sential is pressu form no more to	+300 kers are rigged u heck % ROC. Ad am for additiona L,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR anding target. T eep well on plar every stand, at a re is 700 - 1,00 han one clean-u	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o urvey every 100' psi for 30 minu s pressure is 700 eap slide length for curve, and the targe a minimum. Targ 0 psig, ROP 500 up cycle to cond	WBM as contingency ind set) of ducts as demand minimum utes. 0 - 1,000 psig. < 10' until KOP OP with y joint during et window. get rotating - 600 ft/hr, ition hole for	
Fluids / Solids N Hole Bit / M Bit / M MWD / Su Log Pressure	lotes: Size: lotor: lotor: urvey: ging: ? Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and to Drill to KOP fol Target ROP 500 when feasible. Geology and te Drill to KOP fol Target ROP 500 when feasible. Geology and te curve. Land cu Keep DLS < 2 dd parameters / p torque 38K ft-1 casing running	8.0 - 9.0 system will be b control will bur intain mud in p 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 inclination, and d after Landing P ntire section, no est (as noted abo lowing directio) - 600 ft/hr. Ste Take surveys even ingineering. Drill rve. Continue dr eg/100' and keep performance: fto lbs (MAX drill pi cunless shakers i	120,000 CaCl mult from previous reported to the second rogram specs. R sequired, bottom .9 mm cutters, r d azimuth (surve of azimuth (surve)) of azimuth (surve) of azimut	NC bus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confiri g directional place inimum. Starp 20', when feasibl 700 GPM, differ reaching TD, per nal cleaning nee	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind th get TFA = 1.0 - 1 om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated l gas needed to k e. Take surveys rential is pressu form no more t ded. TOOH & LE	+300 kers are rigged u heck % ROC. Ad am for additiona 1,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR anding target. T eep well on plar every stand, at a re is 700 - 1,00 than one clean-u D drill pipe (ROC	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o urvey every 100' psi for 30 minu is pressure is 700 ep slide length for curve, and Ki for curve, and ki ake survey every n and in the targe a minimum. Targ 0 psig, ROP 500 up cycle to cond DH, if required; s	WBM as contingency ind set) of ducts as demand minimum utes. 0 - 1,000 psig. < 10' until KOP OP with y joint during et window. get rotating - 600 ft/hr, ition hole for hould NOT be	
Fluids / Solids N Hole Bit / M Bit / M MWD / Su Log Pressure	lotes: Size: lotor: lotor: urvey: ging: ? Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NUB OPE and to Drill to KOP fol Target ROP 500 when feasible. Geology and te Drill to KOP fol Target ROP 500 when feasible. Geology and te parameters / p torque 38K ft-1 casing running required with 0	8.0 - 9.0 system will be b control will bur intain mud in p 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, and d after Landing P ntire section, no est (as noted abo lowing directio) - 600 ft/hr. Ste Take surveys even ngineering. Drill rve. Continue dr geg/100' and keep eerformance: flo tubes (MAX drill pi unless shakers i OBM system). W	120,000 CaCl uilt from previc rogram specs. R (8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surva Point) mud-log or cut ove); pressure te nal plan. Target ier as needed to ery stand, at a m curve following rilling in lateral p slide length < 2 pw-rate is 650 - ipe MUT). After ndicate additio (hen pumping h	NC bus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confiri g directional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per nal cleaning nee ole cleaning swe	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind th get TFA = 1.0 - 1 om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated 1 gas needed to k e. Take surveys rential is pressu form no more t ded. TOOH & LET reps, fine LCM p	+300 kers are rigged u heck % ROC. Ad am for additiona 1,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ka t, planned BUR anding target. 1 eep well on plar every stand, at ar re is 700 - 1,00 han one clean-t 0 drill pipe (ROC roduct is to be of roduct is to be of	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o urvey every 100' psi for 30 minu is pressure is 700 exp slide length for curve, and Ki rake survey every and in the targe a minimum. Targ 0 psig, ROP 500 op psig, ROP 500 op psig, ROP 500 op sig, ROP 500 op sig sig sig	WBM as contingency ind set) of ducts as demand minimum utes. 0 - 1,000 psig. < 10' until KOP OP with y joint during et window. get rotating - 600 ft/hr, ition hole for hould NOT be e barite for	
Fluids / Solids N Hole Bit / M Bit / M MWD / Su Log Pressure	lotes: Size: lotor: lotor: urvey: ging: ? Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er curve. Land curve. Keep DLS < 2 de parameters / p torque 38K ft-1 casing running required with 0 sweeps. Run c	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, an d after Landing P titre section, no est (as noted abo lowing directio) - 600 ft/hr. Ste Take surveys even gineering. Drill rve. Continue dr eg/100' and keep eerformance: fto bs (MAX drill pi unless shakers i OBM system). W asing as describe	120,000 CaCl uilt from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve coint) mud-log or cut ove); pressure te nal plan. Target ier as needed to ery stand, at a m curve following rilling in lateral p slide length < 2 pow-rate is 650 - ipe MUT). After ndicate additio (hen pumping h	NC bus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confiri g directional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per nal cleaning nee ole cleaning swe RT for casing rur	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind th get TFA = 1.0 - 1 om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated 1 gas needed to k e. Take surveys tential is pressu form no more t ded. TOOH & LI reps, fine LCM p ming only if need	+300 kers are rigged u heck % ROC. Ad am for additiona 1,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR anding target. 1 eep well on plar every stand, at ar re is 700 - 1,000 han one clean-to o drill pipe (ROC roduct is to be o cessary (should I	80:20 p after the rig (2 d diesel and pro al details. (or similar); on of urvey every 100' psi for 30 minu s pressure is 700 exp slide length for curve, and Ku for curve, and for curve, and for curve, and for c	WBM as contingency ind set) of ducts as demand minimum utes. 0 - 1,000 psig. < 10' until KOP OP with y joint during et window. get rotating -600 ft/hr, ition hole for hould NOT be barite for with OBM).	
Fluids / Solids N Hole Bit / M Bit / M MWD / Su Log Pressure	lotes: Size: lotor: lotor: urvey: ging: ? Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er curve. Land cu Keep DLS <2 dd parameters / p torque 38K ft-l casing running required with (sweeps. Run c	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 . inclination, an d after Landing P titre section, no est (as noted abo lowing directio D - 600 ft/hr. Ste Take surveys eve agineering. Drill rve. Continue df reg/100' and keep gerformance: fto bs (MAX drill pi unless shakers i DBM system). W asing as describut	120,000 CaCl mult from previous rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, rr 4 azimuth (surve coint) 9 mud-log or cut ove); pressure te nal plan. Target rer as needed to ery stand, at a m curve following rilling in lateral p slide length < 2 ow-rate is 650 ow-rate is 650 ow-rate additio then pumping h ed below. Use C unning casing. Sp	NC bus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confiri g directional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per nal cleaning nee ole cleaning swe	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1 om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated l gas needed to k e. Take surveys rential is pressu form no more to ded. TOOH & LC ups, fine LCM p ming only if neo getting the toes	+300 kers are rigged u heck % ROC. Ad am for additiona 1,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ke t, planned BUR anding target. 1 deg/100' and ke t, planned BUR anding target. 1 eep well on plar every stand, at at re is 700 - 1,00 han one clean-u 0 drill pipe (ROC roduct is to be to tessary (should I sleeve as close to	80:20 p after the rig (2 d diesel and pro al details. (or similar); on of urvey every 100' psi for 30 minu s pressure is 700 eep slide length for curve, and Ku a minimum. Targ o psig, ROP 500 up cycle to cond JH, if required; s used -Do not use NOT be required of the required	WBM as contingency ind set) of ducts as demand minimum utes. 0 - 1,000 psig. < 10' until KOP OP with y joint during et window. get rotating - 600 ft/hr, ition hole for should NOT be barite for with OBM). a. Land casing	
Fluids / Solids N Hole Bit / M Bit / M MWD / Su Log Pressure	lotes: Size: lotor: lotor: urvey: ging: ? Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er curve. Land cu Keep DLS < 2 de parameters/ torque 38K ft-l casing running required with (sweeps. Run c	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 i. inclination, and dafter Landing P tire section, no est (as noted abo lowing directio 0 - 600 ft/hr. Ste Take surveys even agineering. Drill rve. Continue dr eg/100' and keer performance: flo lbs (MAX drill pi unless shakers i DBM system). W asing as descributor	120,000 CaCl mult from previce ropretorts on cut rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve obint) or mud-log or cut ove); pressure te nal plan. Target wer as needed to ery stand, at a m curve following rilling in lateral op slide length < 2 ow-rate is 650 ow-rate is 650 ipe MUT). After ndicate additio then pumping h ed below. Use C unning casing. Sp ion sub, fill casing	NC Dus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confiru gdirectional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per nal cleaning nee ole cleaning swe RT for casing rur pace out casing rur	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1 om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated l gas needed to k e. Take surveys rential is pressu form no more t ded. TOOH & LD puning only if nee getting the toes a srequired. Put	+300 cers are rigged u heck % ROC. Ad am for additiona 1,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ka t, planned BUR anding target. T eep well on plar every stand, at a re is 700 - 1,00 than one clean-u o drill pipe (ROC roduct is to be e cessary (should I sleeve as close to imp cement as o	80:20 p after the rig (2 d diesel and pro al details. (or similar); on of urvey every 100' psi for 30 minu s pressure is 700 eep slide length for curve, and Ku a minimum. Targ o psig, ROP 500 up cycle to cond JH, if required; s used -Do not use NOT be required of the required	WBM as contingency ind set) of ducts as demand minimum utes. 0 - 1,000 psig. < 10' until KOP OP with y joint during et window. get rotating - 600 ft/hr, ition hole for should NOT be barite for with OBM). a. Land casing	
Hole Bit / M Bit / M Bit / M MWD / Su Log Pressure	lotes: Size: lotor: lotor: urvey: ging: ? Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er curve. Land cu Keep DLS < 2 de parameters/ torque 38K ft-l casing running required with (sweeps. Run c	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 i. inclination, and dafter Landing P tire section, no est (as noted abo lowing directio 0 - 600 ft/hr. Ste Take surveys even agineering. Drill rve. Continue dr eg/100' and keer performance: flo lbs (MAX drill pi unless shakers i DBM system). W asing as descributor	120,000 CaCl mult from previce ropretorts on cut rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve obint) or mud-log or cut ove); pressure te nal plan. Target wer as needed to ery stand, at a m curve following rilling in lateral op slide length < 2 ow-rate is 650 ow-rate is 650 ipe MUT). After ndicate additio then pumping h ed below. Use C unning casing. Sp ion sub, fill casing	NC bus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confir g directional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per eaching TD, per ole cleaning swe RT for casing rur pace out casing g	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1 om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated l gas needed to k e. Take surveys rential is pressu form no more t ded. TOOH & LD puning only if nee getting the toes a srequired. Put	+300 cers are rigged u heck % ROC. Ad am for additiona 1,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ka t, planned BUR anding target. T eep well on plar every stand, at a re is 700 - 1,00 than one clean-u o drill pipe (ROC roduct is to be e cessary (should I sleeve as close to imp cement as o	80:20 p after the rig (2 d diesel and pro al details. (or similar); on of urvey every 100' psi for 30 minu s pressure is 700 eep slide length for curve, and Ku a minimum. Targ o psig, ROP 500 up cycle to cond JH, if required; s used -Do not use NOT be required of the required	WBM as contingency ind set) of ducts as demand minimum utes. 0 - 1,000 psig. < 10' until KOP OP with y joint during et window. get rotating - 600 ft/hr, ition hole for should NOT be barite for with OBM). a. Land casing	
iluids / Solids N Hole Bit / M Bit / M MWD / Su Log Pressure	lotes: Size: lotor: lotor: urvey: ging: ? Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er curve. Land cu Keep DLS < 2 de parameters/ torque 38K ft-l casing running required with (sweeps. Run c	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 i. inclination, and dafter Landing P tire section, no est (as noted abo lowing directio 0 - 600 ft/hr. Ste Take surveys even agineering. Drill rve. Continue dr eg/100' and keer performance: flo lbs (MAX drill pi unless shakers i DBM system). W asing as descributor	120,000 CaCl mult from previce ropretorts on cut rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve obint) or mud-log or cut ove); pressure te nal plan. Target wer as needed to ery stand, at a m curve following rilling in lateral op slide length < 2 ow-rate is 650 ow-rate is 650 ipe MUT). After ndicate additio then pumping h ed below. Use C unning casing. Sp ion sub, fill casing	NC bus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confir g directional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per eaching TD, per ole cleaning swe RT for casing rur pace out casing g	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1 om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated l gas needed to k e. Take surveys rential is pressu form no more t ded. TOOH & LD puning only if nee getting the toes a srequired. Put	+300 cers are rigged u heck % ROC. Ad am for additiona 1,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ka t, planned BUR anding target. T eep well on plar every stand, at a re is 700 - 1,00 than one clean-u o drill pipe (ROC roduct is to be e cessary (should I sleeve as close to imp cement as o	80:20 p after the rig (2 d diesel and pro al details. (or similar); on of urvey every 100' psi for 30 minu s pressure is 700 eep slide length for curve, and Ku a minimum. Targ o psig, ROP 500 up cycle to cond JH, if required; s used -Do not use NOT be required of the required	WBM as contingency ind set) of ducts as demand minimum utes. 0 - 1,000 psig. < 10' until KOP OP with y joint during et window. get rotating - 600 ft/hr, ition hole for should NOT be barite for with OBM). a. Land casing	
Fluids / Solids N Hole Bit / M Bit / M MWD / Su Log Pressure	lotes: Size: lotor: lotor: urvey: ging: ? Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er curve. Land cu Keep DLS < 2 de parameters/ torque 38K ft-l casing running required with (sweeps. Run c	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 i. inclination, and dafter Landing P tire section, no est (as noted abo lowing directio 0 - 600 ft/hr. Ste Take surveys even agineering. Drill rve. Continue dr eg/100' and keer performance: flo lbs (MAX drill pi unless shakers i DBM system). W asing as descributor	120,000 CaCl mult from previce ropretorts on cut rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve obint) or mud-log or cut ove); pressure te nal plan. Target wer as needed to ery stand, at a m curve following rilling in lateral op slide length < 2 ow-rate is 650 ow-rate is 650 ipe MUT). After ndicate additio then pumping h ed below. Use C unning casing. Sp ion sub, fill casing	NC bus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confir g directional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per eaching TD, per ole cleaning swe RT for casing rur pace out casing g	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1 om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated l gas needed to k e. Take surveys rential is pressu form no more t ded. TOOH & LD puning only if nee getting the toes a srequired. Put	+300 cers are rigged u heck % ROC. Ad am for additiona 1,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ka t, planned BUR anding target. T eep well on plar every stand, at a re is 700 - 1,00 than one clean-u o drill pipe (ROC roduct is to be e cessary (should I sleeve as close to imp cement as o	80:20 p after the rig (2 d diesel and pro al details. (or similar); on of urvey every 100' psi for 30 minu is pressure is 700 eep slide length for curve, and Ku and in the targe a minimum. Targ 0 psig, ROP 500 up cycle to cond DH, if required; s used -Do not use NOT be required b LTP as possible detailed below. I	WBM as contingency ind set) of ducts as demand minimum utes. 0 - 1,000 psig. < 10' until KOP OP with y joint during et window. get rotating - 600 ft/hr, ition hole for should NOT be e barite for with OBM). 2. Land casing Note cement	
Fluids / Solids N Hole Bit / M Bit / M MWD / Su Log Pressure	lotes: Size: Iotor: Irvey: ging: PTest: dure:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er curve. Land cu Keep DLS < 2 de parameters/ torque 38K ft-l casing running required with (sweeps. Run c	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 i. inclination, and dafter Landing P tire section, no est (as noted abo lowing directio 0 - 600 ft/hr. Ste Take surveys even agineering. Drill rve. Continue dr eg/100' and keer performance: flo lbs (MAX drill pi unless shakers i DBM system). W asing as descributor	120,000 CaCl mult from previce ropretorts on cut rogram specs. R 8, 5.0 stage, 0.2 equired, bottom .9 mm cutters, r d azimuth (surve obint) or mud-log or cut ove); pressure te nal plan. Target wer as needed to ery stand, at a m curve following rilling in lateral op slide length < 2 ow-rate is 650 ow-rate is 650 ipe MUT). After ndicate additio then pumping h ed below. Use C unning casing. Sp ion sub, fill casing	NC bus well. Ensure ttings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, est 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confir g directional pla section, steering 20', when feasibl 700 GPM, differ reaching TD, per eaching TD, per ole cleaning swe RT for casing rur pace out casing g	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1 om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated l gas needed to k e. Take surveys rential is pressu form no more t ded. TOOH & LD puning only if nee getting the toes a srequired. Put	+300 cers are rigged u heck % ROC. Ad am for additiona 1,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential i deg/100' and ka t, planned BUR anding target. T eep well on plar every stand, at a re is 700 - 1,00 than one clean-u o drill pipe (ROC roduct is to be e cessary (should I sleeve as close to imp cement as o	80:20 p after the rig (2 d diesel and pro al details. (or similar); on of urvey every 100' psi for 30 minu s pressure is 700 eep slide length for curve, and Ku a minimum. Targ o psig, ROP 500 up cycle to cond JH, if required; s used -Do not use NOT be required of the required	WBM as contingency ind set) of ducts as demand minimum utes. 0 - 1,000 psig. < 10' until KOP, OP with y joint during et window. get rotating - 600 ft/hr, ition hole for hould NOT be barite for with OBM). a. Land casing	

	·		•			1					
Specs	5.500	17.0	P-110	LTC	7,460	10,640	546,000	445,000			
Loading Min. S.F.					2,727 2.74	9,017 1.18	285,906 1.91	285,906 1.56			
WIIII. 3.1 .	Assumptions	Collanse: fully	evacuated casi	na with 9 5 nna		nulus (floating c					
MU Torque (ft lbs): Casing Summary: Casing Summary:	<i>Minumum:</i> Float shoe, floa spaced evenly cannot be plac Float shoe, floa intitiation slee sub (NCS Air-L d	Burst: 8,500 p. fluid with 8.4 y Tension: buoyo 3,470 at collar, 1 jt cas in lateral every 2 eed closer than 3 at collar w/debr eve (WFT RD 8,50 ock 2,500 psi fro	si maximum sur opg equivalent i ed weight in 9.0 Optimum: sing, float collar, 2,000', floatatio 330' to the unit l is catcher, 1 jt c 00 psi), casing to om WFT), casing	face treating pr external pressur ppg fluid with : 4,620 20' marker join n sub at KOP, ca boundary when asing, float colla b KOP with 20'n to surface. The	essure with 10. re gradient 100,000 lbs ove Maximum: t, toe-intitiatic sing to surface. measured perp ar (Weatherford marker joints spa- coe-initiation sl	2 ppg equivaler er-pull 5,780 on sleeve, casing The toe-initiatio endicular to the	to KOP with 20' on sleeve (last-ta well path. uipment) , 20' m teral every ~2,0 uced no closer to	and laden marker joints ike-point) arker joint, to 00', floatation o the unit			
	sleeve and is n the toe sleeve o	oted on the Wel as close to (but i	ll Plan. Drill pas not past) the pla	t the LTP as requ inned LTP as po	iired for necess ssible.	: the LTP is the m ary rat-hole and	l shoe-track leng				
Centralizers:						and as-drilled s					
Cement:	Top of curve to 9-5/8" shoe to	9-5/8" shoe: 1	centralizer per ralizer per 5 joir	5 joints	% Excess	Planned TOC (ft MD)) Total Cmt (sx)	Total Cmt (cr ft)			
Spacer	IntegraGuard Star	11		31.6		0	60 bbls				
Lead	ASTM type I/II	12.4	2.370	13.40	50%	0	560	1,328			
Tail	G:POZ blend	13.3	1.570	7.70	10%	4,696	1,280	2,010			
Displacement	120	est bbls									
Annular Capacity	0.2691	cuft/ft	5-1/2" casing >	(9-5/8" casing (annulus						
	0.2291										
	0.1245	cuft/ft	5-1/2" casing v	vol	est shoe jt ft	100					
	Calculated cer	ment volumes a	ssume gauge ho	le and the exce	s noted in tabl	е					
			Production Blen								
	/ mericun cem	ching Emer a i	roudection bien	IntegraGuard Star							
	S-8 Silica Flour	Avis 616 viscosifier		Plus 3K LCM 15	SS201 Surfactant 1						
Spacer	163.7 lbs/bbl	11.6 lb/bbl	lb/bbl	lb/bbl	gal/bbl						
Lead	ASTM Type I/II	BA90 Bonding Agent 5.0 lb/sx	: Bentonite Viscosifier 8% BWOB	FL24 Fluid Loss .5% BWOB	IntegraGuard GW86 Viscosifier .1% BWOB	5 R7C Retarder .2% BWOB	FP24 Defoamer 0.3% BWOB, Anti- Static .01 lb/sx				
Tail	Туре G 50%	Pozzolan Fly Ash Extender 50%	BA90 Bonding Agent 3.0 lb/sx	Bentonite Viscosifier 4% BWOB	FL24 Fluid Loss .4% BWOB	IntegraGuard GW86 Viscosifier .1% BWOB	R3 Retarder .5% BWOB	FP24 Defoamer .3 BWOB, IntegraSea 0.25 lb/sx			
			ssume gauge ho		ss noted in tabl	е					
	-		nt is not circula								
Note:	19.15.16.15.0 measured alon completed int 19.15.16.7.E a initiation sleev perforation sh	2.1.a and 19.15. Ig the azimuth o erval, as defined and NMAC 19.1 Ve, and the first f	16.15.C.1.b, no f the well or 330 by NMAC 19.15 5.16.7.J, respect take point will b the unit bound	point in the cor of measured perp of 16.7.8, are the tively. In the cas e the top perfor	npleted interva bendicular to the last take point e of this well, the ation. Neither	IMAC19.15.16.1 al shall be closer he azimuth well. t and first take p he last take poin the toe-initiatic the azimuth of th	to the unit bour The boundaries pint, as defined t will be the bot on sleeve nor th	ndary than 10 of the by NMAC tom toe- e top			
EINISH WELL	ND BOP, cap w										
			and cover well (Continue drilling	operations on	subsequent we	ls on pad				
		, so, cap c				a second a second a second					
OMPLETION AND PI		AN:									
Est Lateral Length:											
Est Frac Inform:	-, -	Frac Stages	100 000	bbls slick wate	r	8 720 000	lhs propport				
•					1	0,750,000	lbs proppant				
	Flow back through				t production -	ind storage feet!	tioc				
Production:	Frouucethrou	ign production i	rubing via gas-lii	t into permaner	it production a	ind storage facili	ues				
STIMATED START D											
Drilling:											
Completion:											
Production:	2/14/24										
		-									
epared by: odated:	Alec Bridge Greg Olson	12/20/21 2/20/23									
	Greg Olson	3/27/23									


3/27/23

Greg Olson Greg Olson

v OCD: 12/5/2023 9:23:12 PM

Page 64 of 2

Database: Company: Project: Site: Well: Wellbore: Design:	Rio Arriba Co Haynes Can	sources LLC ounty, New Me yon Unit (428,4 yon Unit 440H	exico NAD83 NM C 430,440 & 442)	Local Co-ordi TVD Reference MD Reference North Referen Survey Calcul	: ce:	Well Haynes Car RKB=6703+25 @ RKB=6703+25 @ Grid Minimum Curvat	⊉ 6728.00ft ⊉ 6728.00ft
Project	Rio Arriba Co	unty, New Mex	kico NAD83 NM C				
Geo Datum:	US State Plane North Americar New Mexico Ce	Datum 1983		System Datum:		Mean Sea Level	
Site	Haynes Cany	on Unit (428,4	30,440 & 442)				
Site Position: From: Position Uncertainty:	Lat/Long	0.00 ft	Northing: Easting: Slot Radius:	1,912,025.2 1,282,353.7 13-3/	55 usft Longit		36.248667000 -107.464358000
Well	Haynes Canyo	on Unit 440H, S	Surf loc: 916 FSL 39	0 FWL Section 03-T23	N-R06W		
Well Position Position Uncertainty	+N/-S +E/-W	0.00 ft 0.00 ft 0.00 ft	Northing: Easting: Wellhead Elev	1,28	2,037.050 usft 2,315.268 usft ft	Latitude: Longitude: Ground Level:	36.248698000 -107.464489000 6,703.00 ft
Grid Convergence:		-0.72 °					
Wellbore	Oriignal Hole	1					
Magnetics	Model Na	ime	Sample Date	Declination (°)		Dip Angle (°)	Field Strength (nT)
	IG	RF2020	8/1/2023		8.46	62.77	49,138.30816237
Design	rev0						
Audit Notes: Version:			Phase:	PLAN	Tie On De	pth:	0.00
Vertical Section:		Depth	From (TVD) (ft)	+N/-S (ft)	+E/-W (ft)		ection (°)
			0.00	0.00	0.00	314	4.998
Plan Survey Tool Pro Depth From (ft)	gram Depth To (ft)	Date 8/1/2 Survey (Welli		Tool Name	Rem	arks	
1 0.00	12,673.14	rev0 (Oriignal	Hole)	MWD OWSG MWD - Sta	ndard		

Released to Imaging: 12/28/2023 5:06:15 PM

Database:	DB Decv0422v16	Local Co-ordinate Reference:	Well Haynes Canyon Unit 440H
Company:	Enduring Resources LLC	TVD Reference:	RKB=6703+25 @ 6728.00ft
Project:	Rio Arriba County, New Mexico NAD83 NM C	MD Reference:	RKB=6703+25 @ 6728.00ft
Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
Well:	Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Oriignal Hole		
Design:	rev0		

Plan Sections

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)	TFO (°)	Target
0.00	0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
1,000.00	0.00	0.000	1,000.00	0.00	0.00	0.00	0.00	0.00	0.00	
1,705.61	21.17	192.029	1,689.66	-126.04	-26.86	3.00	3.00	0.00	192.03	
4,194.21	21.17	192.029	4,010.35	-1,004.96	-214.14	0.00	0.00	0.00	0.00	
4,899.82	0.00	0.000	4,700.01	-1,131.00	-241.00	3.00	-3.00	0.00	180.00	
5,097.85	0.00	0.000	4,898.04	-1,131.00	-241.00	0.00	0.00	0.00	0.00	
5,697.85	60.00	310.715	5,394.24	-944.13	-458.14	10.00	10.00	0.00	310.72	
5,757.85	60.00	310.715	5,424.24	-910.24	-497.53	0.00	0.00	0.00	0.00	
6,056.15	89.83	310.715	5,501.00	-724.48	-713.38	10.00	10.00	0.00	0.00	
6,198.92	89.83	314.998	5,501.42	-627.39	-818.01	3.00	0.00	3.00	90.05	
12,673.39	89.83	314.998	5,521.00	3,950.58	-5,396.29	0.00	0.00	0.00	0.00	Haynes 440 LTP 45

Received by OCD: 12/5/2023 9:23:12 PM

Database:	DB_Decv0422v16	Local Co-ordinate Reference:	Well Haynes Canyon Unit 440H
Company:	Enduring Resources LLC	TVD Reference:	RKB=6703+25 @ 6728.00ft
Project:	Rio Arriba County, New Mexico NAD83 NM C	MD Reference:	RKB=6703+25 @ 6728.00ft
Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
Well:	Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Oriignal Hole		
Design:	rev0		

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
0.00	0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	0.00	0.000	100.00	0.00	0.00	0.00	0.00	0.00	0.00
200.00	0.00	0.000	200.00	0.00	0.00	0.00	0.00	0.00	0.00
300.00	0.00	0.000	300.00	0.00	0.00	0.00	0.00	0.00	0.00
350.00	0.00	0.000	350.00	0.00	0.00	0.00	0.00	0.00	0.00
13 3/8" Csg									
400.00	0.00	0.000	400.00	0.00	0.00	0.00	0.00	0.00	0.00
500.00	0.00	0.000	500.00	0.00	0.00	0.00	0.00	0.00	0.00
600.00	0.00	0.000	600.00	0.00	0.00	0.00	0.00	0.00	0.00
700.00	0.00	0.000	700.00	0.00	0.00	0.00	0.00	0.00	0.00
800.00	0.00	0.000	800.00	0.00	0.00	0.00	0.00	0.00	0.00
900.00	0.00	0.000	900.00	0.00	0.00	0.00	0.00	0.00	0.00
1,000.00	0.00	0.000	1,000.00	0.00	0.00	0.00	0.00	0.00	0.00
	3°/100' build		.,						
1,100.00	3.00	192.029	1,099.95	-2.56	-0.55	-1.42	3.00	3.00	0.00
1,200.00	6.00	192.029	1,199.63	-10.23	-2.18	-5.69	3.00	3.00	0.00
1,300.00	9.00	192.029	1,298.77	-23.00	-4.90	-12.80	3.00	3.00	0.00
1,400.00	12.00	192.029	1,397.08	-40.82	-8.70	-22.71	3.00	3.00	0.00
1,400.00	12.00	192.029	1,397.08	-40.82 -42.04	-8.70 -8.96	-22.71	3.00	3.00	0.00
Ojo Alamo	12.10	132.023	1,702.33	-+2.04	-0.90	-20.09	5.00	3.00	0.00
1,500.00	15.00	192.029	1,494.31	-63.65	-13.56	-35.41	3.00	3.00	0.00
1,508.89	15.00	192.029	1,494.31	-63.65 -65.92	-13.56	-35.41 -36.68	3.00	3.00	0.00
Kirtland	13.27	132.023	1,002.09	-00.92	-14.03	-30.00	5.00	3.00	0.00
1,600.00	18.00	192.029	1,590.18	-91.42	-19.48	-50.87	3.00	3.00	0.00
1,705.61	21.17	192.029	1,689.66	-126.04	-26.86	-70.13	3.00	3.00	0.00
Begin 21.17	-								
1,746.47	21.17	192.029	1,727.77	-140.47	-29.93	-78.16	0.00	0.00	0.00
Fruitland									
1,800.00	21.17	192.029	1,777.69	-159.38	-33.96	-88.68	0.00	0.00	0.00
1,900.00	21.17	192.029	1,870.94	-194.69	-41.49	-108.33	0.00	0.00	0.00
1,998.32	21.17	192.029	1,962.62	-229.42	-48.89	-127.65	0.00	0.00	0.00
Pictured CI	iffs								
2,000.00	21.17	192.029	1,964.19	-230.01	-49.01	-127.98	0.00	0.00	0.00
2,100.00	21.17	192.029	2,057.45	-265.33	-56.54	-147.63	0.00	0.00	0.00
2,159.07	21.17	192.029	2,112.53	-286.19	-60.98	-159.24	0.00	0.00	0.00
Lewis									
2,200.00	21.17	192.029	2,150.70	-300.65	-64.06	-167.28	0.00	0.00	0.00
2,300.00	21.17	192.029	2,243.95	-335.97	-71.59	-186.93	0.00	0.00	0.00
2,400.00	21.17	192.029	2,337.20	-371.28	-79.12	-206.58	0.00	0.00	0.00
2,400.00	21.17	192.029	2,407.34	-397.85	-79.12	-200.38	0.00	0.00	0.00
Chacra	2		_,	001.00	51.75		0.00	0.00	0.00
2,500.00	21.17	192.029	2,430.45	-406.60	-86.64	-226.23	0.00	0.00	0.00
2,600.00	21.17	192.029	2,523.71	-441.92	-94.17	-245.89	0.00	0.00	0.00
2,700.00	21.17	192.029	2,616.96	-477.24	-101.69	-265.54	0.00	0.00	0.00
2.800.00									
2,800.00	21.17 21.17	192.029 192.029	2,710.21 2,803.46	-512.56 -547.87	-109.22 -116.74	-285.19 -304.84	0.00 0.00	0.00 0.00	0.00 0.00
2,900.00	21.17 21.17	192.029	2,803.46 2,896.72	-547.87 -583.19	-116.74 -124.27	-304.84 -324.49	0.00	0.00	0.00
3,100.00	21.17	192.029	2,090.72	-563.19 -618.51	-124.27	-324.49 -344.14	0.00	0.00	0.00
3,200.00	21.17	192.029	3,083.22	-653.83	-139.32	-363.79	0.00	0.00	0.00
,									
3,300.00	21.17	192.029	3,176.47	-689.14	-146.85	-383.44	0.00	0.00	0.00
3,400.00	21.17	192.029	3,269.73	-724.46	-154.37	-403.09	0.00	0.00	0.00
3,500.00	21.17	192.029	3,362.98	-759.78	-161.90	-422.74	0.00	0.00	0.00
3,600.00	21.17	192.029	3,456.23	-795.10	-169.42	-442.39	0.00	0.00	0.00

	Database:	DB Decv0422v16	Local Co-ordinate Reference:	Well Haynes Canyon Unit 440H
			Local oo-oralitate Reference.	
•	Company:	Enduring Resources LLC	TVD Reference:	RKB=6703+25 @ 6728.00ft
F	Project:	Rio Arriba County, New Mexico NAD83 NM C	MD Reference:	RKB=6703+25 @ 6728.00ft
\$	Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
۱	Well:	Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
۱	Wellbore:	Oriignal Hole		
ſ	Design:	rev0		

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
3,664.79	21.17	192.029	3,516.65	-817.98	-174.30	-455.13	0.00	0.00	0.00
Cliff House									
3,670.15	21.17	192.029	3,521.65	-819.87	-174.70	-456.18	0.00	0.00	0.00
Menefee			-,						
3,700.00	21.17	192.029	3,549.48	-830.42	-176.95	-462.05	0.00	0.00	0.00
3,800.00	21.17	192.029	3,642.74	-865.73	-184.48	-481.70	0.00	0.00	0.00
3,832.45 9 5/8" Csg	21.17	192.029	3,673.00	-877.20	-186.92	-488.07	0.00	0.00	0.00
3,900.00	21.17	192.029	3,735.99	-901.05	-192.00	-501.35	0.00	0.00	0.00
	21.17	192.029	3,829.24	-936.37	-199.53	-521.00	0.00	0.00	0.00
4,000.00 4,100.00	21.17	192.029	3,922.49	-971.69	-207.05	-540.65	0.00	0.00	0.00
4,194.21	21.17	192.029	4,010.35	-1,004.96	-214.14	-559.16	0.00	0.00	0.00
Begin 3°/100									
4,200.00	20.99	192.029	4,015.75	-1,007.00	-214.58	-560.30	3.00	-3.00	0.00
4,300.00	17.99	192.029	4,110.01	-1,039.63	-221.53	-578.45	3.00	-3.00	0.00
4,400.00	14.99	192.029	4,205.88	-1,067.40	-227.45	-593.90	3.00	-3.00	0.00
4,415.88	14.52	192.029	4,221.23	-1,071.35	-228.29	-596.10	3.00	-3.00	0.00
4,500.00	11.99	192.029	4,303.11	-1,090.22	-232.31	-606.60	3.00	-3.00	0.00
4,600.00	8.99	192.029	4,401.42	-1,108.03	-236.11	-616.51	3.00	-3.00	0.00
4,695.57	6.13	192.029	4,496.15	-1,120.33	-238.73	-623.35	3.00	-3.00	0.00
Mancos									
4,700.00	5.99	192.029	4,500.56	-1,120.79	-238.82	-623.61	3.00	-3.00	0.00
4,800.00	2.99	192.029	4,600.24	-1,128.45	-240.46	-627.87	3.00	-3.00	0.00
4,899.82	0.00	0.000	4,700.01	-1,131.00	-241.00	-629.29	3.00	-3.00	0.00
5,000.00	0.00	0.000	4,800.19	-1,131.00	-241.00	-629.29	0.00	0.00	0.00
5,035.94	0.00	0.000	4,836.13	-1,131.00	-241.00	-629.29	0.00	0.00	0.00
MNCS_A									
5,097.85	0.00	0.000	4,898.04	-1,131.00	-241.00	-629.29	0.00	0.00	0.00
Begin 10°/10			,	,					
5,100.00	0.22	310.715	4,900.19	-1,131.00	-241.00	-629.29	10.00	10.00	0.00
5,125.95	2.81	310.715	4,926.13	-1,130.55	-241.52	-628.60	10.00	10.00	0.00
MNCS_B	E 00	210 715	4 050 12	1 100 45	242.80	626.02	10.00	10.00	0.00
5,150.00 5,200.00	5.22 10.22	310.715 310.715	4,950.12 4,999.65	-1,129.45 -1,125.08	-242.80 -247.88	-626.93 -620.23	10.00 10.00	10.00 10.00	0.00 0.00
5,250.00	15.22	310.715	5,048.41	-1,117.90	-256.22	-609.26	10.00	10.00	0.00
5,263.30	16.55	310.715	5,061.20	-1,115.53	-258.98	-605.63	10.00	10.00	0.00
MNCS_C									
5,300.00	20.22	310.715	5,096.03	-1,107.98	-267.75	-594.10	10.00	10.00	0.00
5,332.59	23.47	310.715	5,126.27	-1,100.07	-276.94	-582.00	10.00	10.00	0.00
MNCS_Cms 5,350.00	25.22	210 715	5 140 12	1 005 20	202.20	574 05	10.00	10.00	0.00
,	25.22	310.715	5,142.13	-1,095.39	-282.38	-574.85	10.00		0.00
5,400.00 5,417.53	30.22 31.97	310.715 310.715	5,186.38 5,201.39	-1,080.22 -1,074.32	-300.00 -306.86	-551.67 -542.64	10.00 10.00	10.00 10.00	0.00 0.00
5,417.55 MNCS_D	31.97	510.715	5,201.59	-1,074.32	-300.00	-042.04	10.00	10.00	0.00
5,450.00	35.22	310.715	5,228.44	-1,062.60	-320.48	-524.73	10.00	10.00	0.00
5,500.00	40.22	310.715	5,267.98	-1,042.66	-343.65	-494.24	10.00	10.00	0.00
5,524.83	42.70	310.715	5,286.58	-1,031.94	-356.11	-477.85	10.00	10.00	0.00
MNCS_E									
5,550.00	45.22	310.715	5,304.70	-1,020.54	-369.35	-460.42	10.00	10.00	0.00
5,589.78	49.19	310.715	5,331.72	-1,001.50	-391.47	-431.32	10.00	10.00	0.00

Received by OCD: 12/5/2023 9:23:12 PM

Database:	DB_Decv0422v16	Local Co-ordinate Reference:	Well Haynes Canyon Unit 440H
Company:	Enduring Resources LLC	TVD Reference:	RKB=6703+25 @ 6728.00ft
Project:	Rio Arriba County, New Mexico NAD83 NM C	MD Reference:	RKB=6703+25 @ 6728.00ft
Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
Well:	Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Oriignal Hole		
Design:	rev0		

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
MNCS_F									
5,600.00	50.22	310.715	5,338.33	-996.42	-397.38	-423.55	10.00	10.00	0.00
5,650.00	55.22	310.715	5,368.61	-970.48	-427.53	-383.89	10.00	10.00	0.00
5,697.85	60.00	310.715	5,394.24	-944.13	-458.14	-343.61	10.00	10.00	0.00
Begin 60.00°	° tangent								
5,700.00	60.00	310.715	5,395.31	-942.91	-459.55	-341.75	0.00	0.00	0.00
5,743.57	60.00	310.715	5,417.10	-918.30	-488.15	-304.13	0.00	0.00	0.00
MNCS_G									
5,757.85	60.00	310.715	5,424.24	-910.24	-497.53	-291.80	0.00	0.00	0.00
Begin 10°/10	0' build								
5,800.00	64.22	310.715	5,443.95	-885.94	-525.76	-254.65	10.00	10.00	0.00
5,832.71	67.49	310.715	5,457.33	-866.47	-548.38	-224.89	10.00	10.00	0.00
MNCS_H @	0VS								
5,850.00	69.22	310.715	5,463.71	-855.99	-560.56	-208.87	10.00	10.00	0.00
5,900.00	74.22	310.715	5,479.39	-825.03	-596.53	-161.54	10.00	10.00	0.00
5,950.00	79.22	310.715	5,490.88	-793.30	-633.40	-113.03	10.00	10.00	0.00
6,000.00	84.22	310.715	5,498.08	-761.04	-670.89	-63.70	10.00	10.00	0.00
6,050.00	89.22	310.715	5,500.94	-728.49	-708.72	-13.94	10.00	10.00	0.00
6,056.15	89.83	310.715	5,501.00	-724.48	-713.38	-7.81	10.00	10.00	0.00
Begin 3°/100)' turn								
6,100.00	89.83	312.031	5,501.13	-695.49	-746.29	35.95	3.00	0.00	3.00
6,198.92	89.83	314.998	5,501.42	-627.39	-818.01	134.82	3.00	0.00	3.00
Begin 89.83									
6,200.00	89.83	314.998	5,501.43	-626.63	-818.78	135.91	0.00	0.00	0.00
6,300.00	89.83	314.998	5,501.73	-555.92	-889.49	235.91	0.00	0.00	0.00
6,400.00	89.83	314.998	5,502.03	-485.21	-960.20	335.91	0.00	0.00	0.00
6,500.00	89.83	314.998	5,502.33	-414.50	-1,030.92	435.91	0.00	0.00	0.00
6,600.00	89.83	314.998	5,502.64	-343.79	-1,101.63	535.91	0.00	0.00	0.00
6,700.00	89.83	314.998	5,502.94	-273.09	-1,172.34	635.91	0.00	0.00	0.00
6,800.00	89.83	314.998	5,503.24	-202.38	-1,243.05	735.90	0.00	0.00	0.00
6,900.00	89.83	314.998	5,503.54	-131.67	-1,313.77	835.90	0.00	0.00	0.00
7,000.00	89.83	314.998	5,503.85	-60.96	-1,384.48	935.90	0.00	0.00	0.00
7,100.00	89.83	314.998	5,504.15	9.75	-1,455.19	1,035.90	0.00	0.00	0.00
7,200.00	89.83	314.998	5,504.45	80.45	-1,525.90	1,135.90	0.00	0.00	0.00
7,300.00	89.83	314.998	5,504.75	151.16	-1,596.62	1,235.90	0.00	0.00	0.00
7,400.00	89.83	314.998	5,505.05	221.87	-1,667.33	1,335.90	0.00	0.00	0.00
7,500.00	89.83	314.998	5,505.36	292.58	-1,738.04	1,435.90	0.00	0.00	0.00
7,600.00	89.83	314.998	5,505.66	363.29	-1,808.76	1,535.90	0.00	0.00	0.00
7,700.00	89.83	314.998	5,505.96	433.99	-1,879.47	1,635.90	0.00	0.00	0.00
7,800.00	89.83	314.998	5,506.26	504.70	-1,950.18	1,735.90	0.00	0.00	0.00
7,900.00	89.83	314.998	5,506.57	575.41	-2,020.89	1,835.90	0.00	0.00	0.00
8,000.00	89.83	314.998	5,506.87	646.12	-2,091.61	1,935.90	0.00	0.00	0.00
8,100.00	89.83	314.998	5,507.17	716.83	-2,162.32	2,035.90	0.00	0.00	0.00
8,200.00	89.83	314.998	5,507.47	787.53	-2,233.03	2,135.90	0.00	0.00	0.00
8,300.00	89.83	314.998	5,507.78	858.24	-2,303.75	2,235.90	0.00	0.00	0.00
8,400.00	89.83	314.998	5,508.08	928.95	-2,374.46	2,335.90	0.00	0.00	0.00
8,500.00	89.83	314.998	5,508.38	999.66	-2,445.17	2,435.90	0.00	0.00	0.00
8,600.00	89.83	314.998	5,508.68	1,070.37	-2,515.88	2,535.90	0.00	0.00	0.00
8,700.00	89.83	314.998	5,508.99	1,141.07	-2,586.60	2,635.90	0.00	0.00	0.00
8,800.00	89.83	314.998	5,509.29	1,211.78	-2,657.31	2,735.90	0.00	0.00	0.00
8,900.00	89.83	314.998	5,509.59	1,282.49	-2,728.02	2,835.90	0.00	0.00	0.00
9,000.00	89.83	314.998	5,509.89	1,353.20	-2,798.73	2,935.89	0.00	0.00	0.00
9,100.00	89.83	314.998	5,510.20	1,423.91	-2,869.45	3,035.89	0.00	0.00	0.00

Detabases	DB Deeu0420046	Level On andiante Defense	Well Haynes Canyon Unit 440H
Database:	DB_Decv0422v16	Local Co-ordinate Reference:	Well haynes Canyon Unit 440h
Company:	Enduring Resources LLC	TVD Reference:	RKB=6703+25 @ 6728.00ft
Project:	Rio Arriba County, New Mexico NAD83 NM C	MD Reference:	RKB=6703+25 @ 6728.00ft
Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
Well:	Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Oriignal Hole		
Design:	rev0		

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
9,200.00	89.83	314.998	5,510.50	1,494.61	-2,940.16	3,135.89	0.00	0.00	0.00
9,300.00	89.83	314.998	5,510.80	1,565.32	-3,010.87	3,235.89	0.00	0.00	0.00
9,400.00	89.83	314.998	5,511.10	1,636.03	-3,081.59	3,335.89	0.00	0.00	0.00
9,500.00	89.83	314.998	5,511.40	1,706.74	-3,152.30	3,435.89	0.00	0.00	0.00
9,600.00	89.83	314.998	5,511.71	1,777.45	-3,223.01	3,535.89	0.00	0.00	0.00
9,700.00	89.83	314.998	5,512.01	1,848.15	-3,293.72	3,635.89	0.00	0.00	0.00
9,800.00	89.83	314.998	5,512.31	1,918.86	-3,364.44	3,735.89	0.00	0.00	0.00
9,900.00	89.83	314.998	5,512.61	1,989.57	-3,435.15	3,835.89	0.00	0.00	0.00
10,000.00	89.83	314.998	5,512.92	2,060.28	-3,505.86	3,935.89	0.00	0.00	0.00
10,100.00	89.83	314.998	5,513.22	2,130.99	-3,576.57	4,035.89	0.00	0.00	0.00
10,200.00	89.83	314.998	5,513.52	2,201.69	-3,647.29	4,135.89	0.00	0.00	0.00
10,300.00	89.83	314.998	5,513.82	2,272.40	-3,718.00	4,235.89	0.00	0.00	0.00
10,400.00	89.83	314.998	5,514.13	2,343.11	-3,788.71	4,335.89	0.00	0.00	0.00
10,500.00	89.83	314.998	5,514.43	2,413.82	-3,859.43	4,435.89	0.00	0.00	0.00
10,600.00	89.83	314.998	5,514.73	2,484.52	-3,930.14	4,535.89	0.00	0.00	0.00
10,700.00	89.83	314.998	5,515.03	2,555.23	-4,000.85	4,635.89	0.00	0.00	0.00
10,800.00	89.83	314.998	5,515.34	2,625.94	-4,071.56	4,735.89	0.00	0.00	0.00
10,900.00	89.83	314.998	5,515.64	2,696.65	-4,142.28	4,835.89	0.00	0.00	0.00
11,000.00	89.83	314.998	5,515.94	2,767.36	-4,212.99	4,935.89	0.00	0.00	0.00
11,100.00	89.83	314.998	5,516.24	2,838.06	-4,283.70	5,035.89	0.00	0.00	0.00
11,200.00	89.83	314.998	5,516.55	2,908.77	-4,354.41	5,135.88	0.00	0.00	0.00
11,300.00	89.83	314.998	5,516.85	2,979.48	-4,425.13	5,235.88	0.00	0.00	0.00
11,400.00	89.83	314.998	5,517.15	3,050.19	-4,495.84	5,335.88	0.00	0.00	0.00
11,500.00	89.83	314.998	5,517.45	3,120.90	-4,566.55	5,435.88	0.00	0.00	0.00
11,600.00	89.83	314.998	5,517.75	3,191.60	-4,637.27	5,535.88	0.00	0.00	0.00
11,700.00	89.83	314.998	5,518.06	3,262.31	-4,707.98	5,635.88	0.00	0.00	0.00
11,800.00	89.83	314.998	5,518.36	3,333.02	-4,778.69	5,735.88	0.00	0.00	0.00
11,900.00	89.83	314.998	5,518.66	3,403.73	-4,849.40	5,835.88	0.00	0.00	0.00
12,000.00	89.83	314.998	5,518.96	3,474.44	-4,920.12	5,935.88	0.00	0.00	0.00
12,100.00	89.83	314.998	5,519.27	3,545.14	-4,990.83	6,035.88	0.00	0.00	0.00
12,200.00	89.83	314.998	5,519.57	3,615.85	-5,061.54	6,135.88	0.00	0.00	0.00
12,300.00	89.83	314.998	5,519.87	3,686.56	-5,132.25	6,235.88	0.00	0.00	0.00
12,400.00	89.83	314.998	5,520.17	3,757.27	-5,202.97	6,335.88	0.00	0.00	0.00
12,500.00	89.83	314.998	5,520.48	3,827.98	-5,273.68	6,435.88	0.00	0.00	0.00
12,600.00	89.83	314.998	5,520.78	3,898.68	-5,344.39	6,535.88	0.00	0.00	0.00
12,673.39	89.83 12673.39 MD 55	314.998	5,521.00	3,950.58	-5,396.29	6,609.27	0.00	0.00	0.00

Design Targets

Company: Enduring Resources LLC		
	TVD Reference:	RKB=6703+25 @ 6728.00ft
Project: Rio Arriba County, New Mexico	NAD83 NM C MD Reference:	RKB=6703+25 @ 6728.00ft
Site: Haynes Canyon Unit (428,430,4	40 & 442) North Reference:	Grid
Well: Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
Wellbore: Oriignal Hole		
Design: rev0		

Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude
Haynes 440 vert	0.00	0.000	4.898.04	-1.167.84	-277.44	1.910.869.212	1.282.037.829	36.245480970	-107.465380063
- plan misses target - Point			,	,		,,	.,_0_,001.020		
Haynes 440 FTP 188 FS	0.00	0.000	5,501.00	-727.20	-718.12	1,911,309.852	1,281,597.153	36.246676000	-107.466893000
- plan misses target - Point	center by 5.16	6ft at 6057.9	0ft MD (5501	.00 TVD, -723	3.33 N, -714.7	1 E)			
Haynes 440 LTP 453 FN - plan hits target cer - Point		0.000	5,521.00	3,950.58	-5,396.29	1,915,987.619	1,276,918.990	36.259361000	-107.482957000

Casing Points							
	Measured Depth	Vertical Depth			Casing Diameter	Hole Diameter	
	(ft)	(ft)		Name	(")	(")	
	350.00	350.00	13 3/8" Csg		13-3/8	17-1/2	
	3,832.45	3,673.00	9 5/8" Csg		9-5/8	12-1/4	

	Forma	ations	
Ш			

Measured Depth (ft)	Vertical Depth (ft)	Name	Lithology	Dip (°)	Dip Direction (°)
1,405.98	1,402.93	Ojo Alamo		0.17	314.998
1,508.89	1,502.89	Kirtland		0.17	314.998
1,746.47	1,727.77	Fruitland		0.17	314.998
1,998.32	1,962.62	Pictured Cliffs		0.17	314.998
2,159.07	2,112.53	Lewis		0.17	314.998
2,475.22	2,407.34	Chacra		0.17	314.998
3,664.79	3,516.65	Cliff House		0.17	314.998
3,670.15	3,521.65	Menefee		0.17	314.998
4,415.88	4,221.23	Point Lookout		0.17	314.998
4,695.57	4,496.15	Mancos		0.17	314.998
5,035.94	4,836.13	MNCS_A		0.17	314.998
5,125.95	4,926.13	MNCS_B		0.17	314.998
5,263.30	5,061.20	MNCS_C		0.17	314.998
5,332.59	5,126.27	MNCS_Cms		0.17	314.998
5,417.53	5,201.39	MNCS_D		0.17	314.998
5,524.83	5,286.58	MNCS_E		0.17	314.998
5,589.78	5,331.72	MNCS_F		0.17	314.998
5,743.57	5,417.10	MNCS_G		0.17	314.998
5,832.71	5,457.33	MNCS_H @ 0VS		0.17	314.998

Database:	DB_Decv0422v16	Local Co-ordinate Reference:	Well Haynes Canyon Unit 440H
Company:	Enduring Resources LLC	TVD Reference:	RKB=6703+25 @ 6728.00ft
Project:	Rio Arriba County, New Mexico NAD83 NM C	MD Reference:	RKB=6703+25 @ 6728.00ft
Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
Well:	Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Oriignal Hole		
Design:	rev0		

Plan Annotations

Measured	Vertical	Local Coor	dinates	
Depth (ft)	Depth (ft)	+N/-S (ft)	+E/-W (ft)	Comment
1,000.00	1,000.00	0.00	0.00	KOP Begin 3°/100' build
1,705.61	1,689.66	-126.04	-26.86	Begin 21.17° tangent
4,194.21	4,010.35	-1,004.96	-214.14	Begin 3°/100' drop
4,899.82	4,700.01	-1,131.00	-241.00	Begin vertical hold
5,097.85	4,898.04	-1,131.00	-241.00	Begin 10°/100' build
5,697.85	5,394.24	-944.13	-458.14	Begin 60.00° tangent
5,757.85	5,424.24	-910.24	-497.53	Begin 10°/100' build
6,056.15	5,501.00	-724.48	-713.38	Begin 3°/100' turn
6,198.92	5,501.42	-627.39	-818.01	Begin 89.83° lateral
12,673.39	5,521.00	3,950.58	-5,396.29	PBHL/TD @ 12673.39 MD 5521.00 TVD

Database: Company: Project: Site: Well: Wellbore: Design:	Rio Arriba Co Haynes Can	esources LLC ounty, New Me yon Unit (428, yon Unit 440H	exico NAD83 NM C 430,440 & 442)	Local Co-ordin TVD Reference MD Reference North Reference Survey Calcula	: e:	Well Haynes Ca RKB=6703+25 (RKB=6703+25 (Grid Minimum Curva	@ 6728.00ft
Project	Rio Arriba Co	unty, New Me	kico NAD83 NM C				
Geo Datum:	US State Plane North Americar New Mexico Ce	n Datum 1983		System Datum:		Mean Sea Level	
Site	Haynes Cany	on Unit (428,4	30,440 & 442)				
Site Position: From: Position Uncertainty:	Lat/Long	0.00 ft	Northing: Easting: Slot Radius:	1,912,025.28 1,282,353.75 13-3/1	5 usft Longit		36.248667000 -107.464358000
Well	Haynes Canyo	on Unit 440H,	Surf loc: 916 FSL 39	0 FWL Section 03-T23	N-R06W		
Well Position	+N/-S +E/-W	0.00 ft 0.00 ft	Northing: Easting:		,037.050 usft ,315.268 usft	Latitude: Longitude:	36.24869800 -107.46448900
Position Uncertainty Grid Convergence:		0.00 ft -0.72 °	Wellhead Elev	vation:	ft	Ground Level:	6,703.00 ft
Wellbore	Oriignal Hole	;					
Magnetics	Model Na	ame	Sample Date	Declination (°)		Dip Angle (°)	Field Strength (nT)
	IG	RF2020	8/1/2023		8.46	62.77	49,138.30816237
Design	rev0						
Audit Notes:							
Version:			Phase:	PLAN	Tie On De	pth:	0.00
Vertical Section:			From (TVD) (ft)	+N/-S (ft)	+E/-W (ft)		ection (°)
			0.00	0.00	0.00	31	4.998
Plan Survey Tool Pro Depth From (ft)	gram Depth To (ft)	Date 8/1/2		Tool Name	Rem	arke	
(h) 1 0.00	. ,	Survey (Welli rev0 (Oriignal		MWD OWSG MWD - Sta		ainə	

Planning Report - Geographic

Database:	DB_Decv0422v16	Local Co-ordinate Reference:	Well Haynes Canyon Unit 440H
Company:	Enduring Resources LLC	TVD Reference:	RKB=6703+25 @ 6728.00ft
Project:	Rio Arriba County, New Mexico NAD83 NM C	MD Reference:	RKB=6703+25 @ 6728.00ft
Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
Well:	Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Oriignal Hole		
Design:	rev0		

Plan Sections

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)	TFO (°)	Target
0.00	0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
1,000.00	0.00	0.000	1,000.00	0.00	0.00	0.00	0.00	0.00	0.00	
1,705.61	21.17	192.029	1,689.66	-126.04	-26.86	3.00	3.00	0.00	192.03	
4,194.21	21.17	192.029	4,010.35	-1,004.96	-214.14	0.00	0.00	0.00	0.00	
4,899.82	0.00	0.000	4,700.01	-1,131.00	-241.00	3.00	-3.00	0.00	180.00	
5,097.85	0.00	0.000	4,898.04	-1,131.00	-241.00	0.00	0.00	0.00	0.00	
5,697.85	60.00	310.715	5,394.24	-944.13	-458.14	10.00	10.00	0.00	310.72	
5,757.85	60.00	310.715	5,424.24	-910.24	-497.53	0.00	0.00	0.00	0.00	
6,056.15	89.83	310.715	5,501.00	-724.48	-713.38	10.00	10.00	0.00	0.00	
6,198.92	89.83	314.998	5,501.42	-627.39	-818.01	3.00	0.00	3.00	90.05	
12,673.39	89.83	314.998	5,521.00	3,950.58	-5,396.29	0.00	0.00	0.00	0.00	Haynes 440 LTP 4

Released to Imaging: 12/28/2023 5:06:15 PM

Planning Report - Geographic

Database:	DB_Decv0422v16	Local Co-ordinate Reference:	Well Haynes Canyon Unit 440H
Company:	Enduring Resources LLC	TVD Reference:	RKB=6703+25 @ 6728.00ft
Project:	Rio Arriba County, New Mexico NAD83 NM C	MD Reference:	RKB=6703+25 @ 6728.00ft
Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
Well:	Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Oriignal Hole		
Design:	rev0		

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
						. ,			-
0.00 100.00	0.00 0.00	0.000 0.000	0.00 100.00	0.00 0.00	0.00 0.00	1,912,037.050 1,912,037.050	1,282,315.268	36.248698000 36.248698000	-107.464489000 -107.464489000
200.00	0.00	0.000	200.00	0.00	0.00	1,912,037.050	1,282,315.268 1,282,315.268	36.248698000	-107.464489000
300.00	0.00	0.000	300.00	0.00	0.00	1,912,037.050	1,282,315.268	36.248698000	-107.464489000
350.00	0.00	0.000	350.00	0.00	0.00	1,912,037.050	1,282,315.268	36.248698000	-107.464489000
13 3/8" 0		0.000	330.00	0.00	0.00	1,912,007.000	1,202,010.200	30.240030000	-107.404403000
400.00	,sg 0.00	0.000	400.00	0.00	0.00	1,912,037.050	1,282,315.268	36.248698000	-107.464489000
500.00	0.00	0.000	500.00	0.00	0.00	1,912,037.050	1,282,315.268	36.248698000	-107.464489000
600.00	0.00	0.000	600.00	0.00	0.00	1,912,037.050	1,282,315.268	36.248698000	-107.464489000
700.00	0.00	0.000	700.00	0.00	0.00	1,912,037.050	1,282,315.268	36.248698000	-107.464489000
800.00	0.00	0.000	800.00	0.00	0.00	1,912,037.050	1,282,315.268	36.248698000	-107.464489000
900.00	0.00	0.000	900.00	0.00	0.00	1,912,037.050	1,282,315.268	36.248698000	-107.464489000
1,000.00	0.00	0.000	1,000.00	0.00	0.00	1,912,037.050	1,282,315.268	36.248698000	-107.464489000
KOP Bed	gin 3°/100' bui	ld							
1,100.00	3.00	192.029	1,099.95	-2.56	-0.55	1,912,034.490	1,282,314.723	36.248690951	-107.464490741
1,200.00	6.00	192.029	1,199.63	-10.23	-2.18	1,912,026.817	1,282,313.088	36.248669821	-107.464495959
1,300.00	9.00	192.029	1,298.77	-23.00	-4.90	1,912,014.052	1,282,310.368	36.248634670	-107.464504639
1,400.00	12.00	192.029	1,397.08	-40.82	-8.70	1,911,996.231	1,282,306.571	36.248585592	-107.464516758
1,405.98	12.18	192.029	1,402.93	-42.04	-8.96	1,911,995.006	1,282,306.310	36.248582218	-107.464517591
Ojo Alan	10								
1,500.00	15.00	192.029	1,494.31	-63.65	-13.56	1,911,973.402	1,282,301.706	36.248522724	-107.464532282
1,508.89	15.27	192.029	1,502.89	-65.92	-14.05	1,911,971.131	1,282,301.222	36.248516472	-107.464533826
Kirtland									
1,600.00	18.00	192.029	1,590.18	-91.42	-19.48	1,911,945.627	1,282,295.788	36.248446237	-107.464551169
1,705.61	21.17	192.029	1,689.66	-126.04	-26.86	1,911,911.010	1,282,288.411	36.248350907	-107.464574710
Begin 21	.17° tangent								
1,746.47	21.17	192.029	1,727.77	-140.47	-29.93	1,911,896.579	1,282,285.336	36.248311166	-107.464584523
Fruitland	ł								
1,800.00	21.17	192.029	1,777.69	-159.38	-33.96	1,911,877.673	1,282,281.308	36.248259102	-107.464597379
1,900.00	21.17	192.029	1,870.94	-194.69	-41.49	1,911,842.355	1,282,273.782	36.248161842	-107.464621396
1,998.32	21.17	192.029	1,962.62	-229.42	-48.89	1,911,807.632	1,282,266.383	36.248066221	-107.464645008
Pictured									
2,000.00	21.17	192.029	1,964.19	-230.01	-49.01	1,911,807.037	1,282,266.256	36.248064582	-107.464645413
2,100.00	21.17	192.029	2,057.45	-265.33	-56.54	1,911,771.719	1,282,258.730	36.247967323	-107.464669429
2,159.07	21.17	192.029	2,112.53	-286.19	-60.98	1,911,750.858	1,282,254.285	36.247909873	-107.464683615
Lewis									
2,200.00	21.17	192.029	2,150.70	-300.65	-64.06	1,911,736.402	1,282,251.205	36.247870063	-107.464693445
2,300.00	21.17	192.029	2,243.95	-335.97	-71.59	1,911,701.084	1,282,243.679	36.247772803	-107.464717462
2,400.00	21.17	192.029	2,337.20	-371.28	-79.12	1,911,665.766	1,282,236.153	36.247675543	-107.464741478
2,475.22	21.17	192.029	2,407.34	-397.85	-84.78	1,911,639.201	1,282,230.493	36.247602388	-107.464759542
Chacra	04.47	100.000	0 400 45	100.00	00.04		4 000 000 000	00.047570004	107 10 1705 10 1
2,500.00	21.17	192.029	2,430.45	-406.60	-86.64	1,911,630.448	1,282,228.628	36.247578284	-107.464765494
2,600.00	21.17	192.029	2,523.71	-441.92	-94.17	1,911,595.131	1,282,221.102	36.247481024	-107.464789511
2,700.00	21.17	192.029	2,616.96	-477.24 512.56	-101.69	1,911,559.813	1,282,213.576	36.247383764	-107.464813527
2,800.00 2,900.00	21.17 21.17	192.029 192.029	2,710.21 2,803.46	-512.56 -547.87	-109.22 -116.74	1,911,524.495 1,911,489.177	1,282,206.050 1,282,198.525	36.247286504 36.247189245	-107.464837543 -107.464861559
3,000.00	21.17	192.029	2,803.46 2,896.72	-547.87 -583.19	-110.74	1,911,453.859	1,282,190.999	36.247091985	-107.464885575
3,100.00	21.17	192.029	2,890.72	-618.51	-124.27	1,911,418.542	1,282,183.473	36.246994725	-107.464909591
3,200.00	21.17	192.029	3,083.22	-653.83	-139.32	1,911,383.224	1,282,175.947	36.246897465	-107.464933607
3,300.00	21.17	192.029	3,176.47	-689.14	-146.85	1,911,347.906	1,282,168.422	36.246800206	-107.464957622
3,400.00	21.17	192.029	3,269.73	-724.46	-154.37	1,911,312.588	1,282,160.896	36.246702946	-107.464981638
3,500.00	21.17	192.029	3,362.98	-759.78	-161.90	1,911,277.270	1,282,153.370	36.246605686	-107.465005654
3,600.00	21.17	192.029	3,456.23	-795.10	-169.42	1,911,241.953	1,282,145.845	36.246508426	-107.465029670
					-	, ,	, ,		

8/1/2023 9:42:58PM

Planning Report - Geographic

Database:	DB_Decv0422v16	Local Co-ordinate Reference:	Well Haynes Canyon Unit 440H
Company:	Enduring Resources LLC	TVD Reference:	RKB=6703+25 @ 6728.00ft
Project:	Rio Arriba County, New Mexico NAD83 NM C	MD Reference:	RKB=6703+25 @ 6728.00ft
Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
Well:	Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Oriignal Hole		
Design:	rev0		

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
3,664.79		192.029	3,516.65	-817.98	-174.30	1,911,219.070	1,282,140.969	36.246445411	-107.465045229
Cliff Ho		192.029	3,310.03	-017.90	-174.50	1,911,219.070	1,202,140.909	50.240445411	-107.403043229
3,670.15		192.029	3,521.65	-819.87	-174.70	1,911,217.178	1,282,140.565	36.246440200	-107.465046516
Menefee	;								
3,700.00	21.17	192.029	3,549.48	-830.42	-176.95	1,911,206.635	1,282,138.319	36.246411166	-107.465053685
3,800.00		192.029	3,642.74	-865.73	-184.48	1,911,171.317	1,282,130.793	36.246313907	-107.465077701
3,832.45		192.029	3,673.00	-877.20	-186.92	1,911,159.855	1,282,128.351	36.246282342	-107.465085495
9 5/8" C	-	192.029	2 725 00	001.05	-192.00	1,911,135.999	1 000 100 067	26.046046647	107 465101716
3,900.00 4,000.00		192.029	3,735.99 3,829.24	-901.05 -936.37	-192.00	1,911,135.999	1,282,123.267 1,282,115.742	36.246216647 36.246119387	-107.465101716 -107.465125732
4,100.00		192.029	3,922.49	-971.69	-207.05	1,911,065.364	1,282,108.216	36.246022127	-107.465149747
4,194.21		192.029	4,010.35	-1,004.96	-214.14	1,911,032.091	1,282,101.126	36.245930500	-107.465172371
Begin 3	°/100' drop								
4,200.00	20.99	192.029	4,015.75	-1,007.00	-214.58	1,911,030.054	1,282,100.692	36.245924889	-107.465173757
4,300.00		192.029	4,110.01	-1,039.63	-221.53	1,910,997.419	1,282,093.738	36.245835017	-107.465195948
4,400.00		192.029	4,205.88	-1,067.40	-227.45	1,910,969.653	1,282,087.821	36.245758555	-107.465214828
4,415.88		192.029	4,221.23	-1,071.35	-228.29	1,910,965.698	1,282,086.979	36.245747664	-107.465217517
Point Lo 4,500.00		192.029	4,303.11	-1,090.22	-232.31	1,910,946.833	1,282,082.959	36.245695712	-107.465230345
4,600.00		192.029	4,401.42	-1,108.03	-236.11	1,910,929.021	1,282,079.163	36.245646660	-107.465242457
4,695.57		192.029	4,496.15	-1,120.33	-238.73	1,910,916.723	1,282,076.543	36.245612794	-107.465250819
Mancos									
4,700.00	5.99	192.029	4,500.56	-1,120.79	-238.82	1,910,916.266	1,282,076.445	36.245611534	-107.465251130
4,800.00	2.99	192.029	4,600.24	-1,128.45	-240.46	1,910,908.602	1,282,074.812	36.245590430	-107.465256341
4,899.82	0.00	0.000	4,700.01	-1,131.00	-241.00	1,910,906.052	1,282,074.269	36.245583406	-107.465258075
_	ertical hold	0.000	4 000 40	4 404 00	044.00	4 0 4 0 0 0 0 0 5 0	1 000 074 000	00.045500400	
5,000.00 5,035.94		0.000 0.000	4,800.19 4,836.13	-1,131.00 -1,131.00	-241.00 -241.00	1,910,906.052 1,910,906.052	1,282,074.269 1,282,074.269	36.245583406 36.245583406	-107.465258075 -107.465258075
5,035.94 MNCS_/		0.000	4,030.13	-1,131.00	-241.00	1,910,900.052	1,202,074.209	30.243363400	-107.405256075
5,097.85		0.000	4,898.04	-1,131.00	-241.00	1,910,906.052	1,282,074.269	36.245583406	-107.465258075
	0°/100' build		.,	.,		.,	.,,		
5,100.00		310.715	4,900.19	-1,131.00	-241.00	1,910,906.054	1,282,074.266	36.245583413	-107.465258086
5,125.95	2.81	310.715	4,926.13	-1,130.55	-241.52	1,910,906.501	1,282,073.747	36.245584623	-107.465259865
MNCS_E	3								
5,150.00		310.715	4,950.12	-1,129.45	-242.80	1,910,907.599	1,282,072.471	36.245587594	-107.465264237
5,200.00		310.715	4,999.65	-1,125.08	-247.88	1,910,911.976	1,282,067.385	36.245599441	-107.465281669
5,250.00 5,263.30		310.715 310.715	5,048.41 5,061.20	-1,117.90 -1,115.53	-256.22 -258.98	1,910,919.153 1,910,921.526	1,282,059.046 1,282,056.288	36.245618864 36.245625288	-107.465310248 -107.465319702
MNCS_(510.715	3,001.20	-1,110.00	-200.00	1,910,921.020	1,202,000.200	30.243023200	-107.403313702
5,300.00		310.715	5,096.03	-1,107.98	-267.75	1,910,929.074	1,282,047.518	36.245645715	-107.465349759
5,332.59		310.715	5,126.27	-1,100.07	-276.94	1,910,936.984	1,282,038.327	36.245667122	-107.465381258
MNCS_0	Cms								
5,350.00	25.22	310.715	5,142.13	-1,095.39	-282.38	1,910,941.664	1,282,032.888	36.245679790	-107.465399899
5,400.00		310.715	5,186.38	-1,080.22	-300.00	1,910,956.828	1,282,015.268	36.245720830	-107.465460287
5,417.53		310.715	5,201.39	-1,074.32	-306.86	1,910,962.731	1,282,008.408	36.245736808	-107.465483798
MNCS_[210 745	5,228.44	1 062 60	200 40	1 010 074 440	1 201 004 702	26 245769522	107 465520464
5,450.00 5,500.00		310.715 310.715	5,228.44 5,267.98	-1,062.60 -1,042.66	-320.48 -343.65	1,910,974.449 1,910,994.395	1,281,994.792 1,281,971.615	36.245768522 36.245822504	-107.465530464 -107.465609895
5,524.83		310.715	5,286.58	-1,042.00	-356.11	1,911,005.115	1,281,959.158	36.245851519	-107.465652590
MNCS_E		2.5	-,_00.00	.,		.,,	,,		
5,550.00		310.715	5,304.70	-1,020.54	-369.35	1,911,016.512	1,281,945.915	36.245882364	-107.465697977
5,589.78	49.19	310.715	5,331.72	-1,001.50	-391.47	1,911,035.547	1,281,923.797	36.245933881	-107.465773782
MNCS_F	=								

8/1/2023 9:42:58PM

.

Planning Report - Geographic

Database:	DB_Decv0422v16	Local Co-ordinate Reference:	Well Haynes Canyon Unit 440H
Company:	Enduring Resources LLC	TVD Reference:	RKB=6703+25 @ 6728.00ft
Project:	Rio Arriba County, New Mexico NAD83 NM C	MD Reference:	RKB=6703+25 @ 6728.00ft
Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
Well:	Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Oriignal Hole		
Design:	rev0		

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
						4 044 040 022	4 004 047 000		-
5,600.00 5,650.00		310.715 310.715	5,338.33 5,368.61	-996.42 -970.48	-397.38 -427.53	1,911,040.633 1,911,066.575	1,281,917.886 1,281,887.743	36.245947647 36.246017856	-107.465794038 -107.465897349
5,697.85		310.715	5,394.24	-970.48	-427.55	1,911,092.921	1,281,857.129	36.246089161	-107.466002272
	0.00° tangent	510.715	3,334.24	-344.13	-400.14	1,311,032.321	1,201,007.129	30.240003101	-107.400002272
5,700.00	-	310.715	5,395.31	-942.91	-459.55	1,911,094.137	1,281,855.715	36.246092453	-107.466007116
5,743.57		310.715	5,417.10	-918.30	-488.15	1,911,118.750	1,281,827.115	36.246159067	-107.466105136
MNCS_C			-,			.,	.,,		
5,757.85		310.715	5,424.24	-910.24	-497.53	1,911,126.815	1,281,817.744	36.246180894	-107.466137255
	0°/100' build		,						
5,800.00		310.715	5,443.95	-885.94	-525.76	1,911,151.112	1,281,789.511	36.246246652	-107.466234016
5,832.71	67.49	310.715	5,457.33	-866.47	-548.38	1,911,170.580	1,281,766.889	36.246299342	-107.466311549
MNCS_H	H @ 0VS								
5,850.00	69.22	310.715	5,463.71	-855.99	-560.56	1,911,181.060	1,281,754.711	36.246327707	-107.466353288
5,900.00	74.22	310.715	5,479.39	-825.03	-596.53	1,911,212.019	1,281,718.738	36.246411493	-107.466476579
5,950.00		310.715	5,490.88	-793.30	-633.40	1,911,243.751	1,281,681.866	36.246497374	-107.466602952
6,000.00		310.715	5,498.08	-761.04	-670.89	1,911,276.015	1,281,644.375	36.246584694	-107.466731445
6,050.00		310.715	5,500.94	-728.49	-708.72	1,911,308.566	1,281,606.551	36.246672791	-107.466861080
6,056.15		310.715	5,501.00	-724.48	-713.38	1,911,312.575	1,281,601.892	36.246683642	-107.466877047
-	°/100' turn	040.004	5 504 40	005 40	740.00	1 011 011 550	4 004 500 005	00.040700440	407 40000004
6,100.00		312.031	5,501.13	-695.49	-746.29	1,911,341.559	1,281,568.985	36.246762112	-107.466989861
6,198.92		314.998	5,501.42	-627.39	-818.01	1,911,409.658	1,281,497.260	36.246946670	-107.467235959
6,200.00	9.83° lateral 89.83	314.998	5,501.43	-626.63	-818.78	1,911,410.425	1,281,496.493	36.246948751	-107.467238593
6,300.00		314.998	5,501.43	-555.92	-889.49	1,911,481.133	1,281,490.493	36.247140510	-107.467481371
6,400.00		314.998	5,502.03	-485.21	-960.20	1,911,551.841	1,281,355.067	36.247332269	-107.467724150
6,500.00		314.998	5,502.33	-414.50	-1,030.92	1,911,622.548	1,281,284.355	36.247524027	-107.467966930
6,600.00		314.998	5,502.64	-343.79	-1,101.63	1,911,693.256	1,281,213.642	36.247715785	-107.468209712
6,700.00	89.83	314.998	5,502.94	-273.09	-1,172.34	1,911,763.964	1,281,142.930	36.247907542	-107.468452494
6,800.00	89.83	314.998	5,503.24	-202.38	-1,243.05	1,911,834.672	1,281,072.217	36.248099299	-107.468695278
6,900.00	89.83	314.998	5,503.54	-131.67	-1,313.77	1,911,905.380	1,281,001.504	36.248291055	-107.468938063
7,000.00		314.998	5,503.85	-60.96	-1,384.48	1,911,976.088	1,280,930.792	36.248482810	-107.469180849
7,100.00		314.998	5,504.15	9.75	-1,455.19	1,912,046.795	1,280,860.079	36.248674565	-107.469423637
7,200.00		314.998	5,504.45	80.45	-1,525.90	1,912,117.503	1,280,789.367	36.248866320	-107.469666425
7,300.00		314.998	5,504.75	151.16	-1,596.62	1,912,188.211	1,280,718.654	36.249058074	-107.469909215
7,400.00		314.998	5,505.05	221.87	-1,667.33	1,912,258.919	1,280,647.941	36.249249828	-107.470152006
7,500.00 7,600.00		314.998 314.998	5,505.36 5,505.66	292.58 363.29	-1,738.04 -1,808.76	1,912,329.627 1,912,400.335	1,280,577.229 1,280,506.516	36.249441581 36.249633333	-107.470394798 -107.470637591
7,700.00		314.998	5,505.00	433.99	-1,879.47	1,912,400.335	1,280,435.804	36.249825085	-107.470880386
7,800.00		314.998	5,506.26	504.70	-1,950.18	1,912,541.750	1,280,365.091	36.250016836	-107.471123182
7,900.00		314.998	5,506.57	575.41	-2,020.89	1,912,612.458	1,280,294.378	36.250208587	-107.471365978
8,000.00		314.998	5,506.87	646.12	-2,091.61	1,912,683.166	1,280,223.666	36.250400338	-107.471608775
8,100.00	89.83	314.998	5,507.17	716.83	-2,162.32	1,912,753.874	1,280,152.953	36.250592088	-107.471851575
8,200.00	89.83	314.998	5,507.47	787.53	-2,233.03	1,912,824.581	1,280,082.241	36.250783837	-107.472094375
8,300.00	89.83	314.998	5,507.78	858.24	-2,303.75	1,912,895.289	1,280,011.528	36.250975586	-107.472337177
8,400.00		314.998	5,508.08	928.95	-2,374.46	1,912,965.997	1,279,940.816	36.251167334	-107.472579979
8,500.00		314.998	5,508.38	999.66	-2,445.17	1,913,036.705	1,279,870.103	36.251359082	-107.472822783
8,600.00		314.998	5,508.68	1,070.37	-2,515.88	1,913,107.413	1,279,799.390	36.251550829	-107.473065589
8,700.00		314.998	5,508.99	1,141.07	-2,586.60	1,913,178.121	1,279,728.678	36.251742576	-107.473308395
8,800.00 8,900.00		314.998 314.998	5,509.29 5,509.59	1,211.78 1 282 49	-2,657.31 -2 728 02	1,913,248.828	1,279,657.965	36.251934322 36.252126068	-107.473551203 -107.473794011
8,900.00 9,000.00		314.998	5,509.59 5,509.89	1,282.49 1,353.20	-2,728.02 -2,798.73	1,913,319.536 1,913,390.244	1,279,587.253 1,279,516.540	36.252317813	-107.474036821
9,100.00		314.998	5,510.20	1,423.91	-2,869.45	1,913,460.952	1,279,445.827	36.252509558	-107.474279632
9,200.00		314.998	5,510.50	1,494.61	-2,940.16	1,913,531.660	1,279,375.115	36.252701302	-107.474522445
9,300.00		314.998	5,510.80	1,565.32	-3,010.87	1,913,602.368	1,279,304.402	36.252893045	-107.474765258

8/1/2023 9:42:58PM

COMPASS 5000.16 Build 96

Planning Report - Geographic

Database: Company:	DB_Decv0422v16 Enduring Resources LLC	Local Co-ordinate Reference: TVD Reference:	Well Haynes Canyon Unit 440H RKB=6703+25 @ 6728.00ft
Project:	Rio Arriba County, New Mexico NAD83 NM C	MD Reference:	RKB=6703+25 @ 6728.00ft
Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
Well:	Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Oriignal Hole		
Design:	rev0		

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
						. ,	. ,		-
9,400.00	89.83	314.998	5,511.10	1,636.03	-3,081.59	1,913,673.075	1,279,233.690	36.253084788	-107.475008073
9,500.00	89.83	314.998	5,511.40	1,706.74	-3,152.30	1,913,743.783	1,279,162.977	36.253276531	-107.475250888
9,600.00	89.83	314.998	5,511.71	1,777.45	-3,223.01	1,913,814.491	1,279,092.264	36.253468273	-107.475493706
9,700.00	89.83	314.998	5,512.01	1,848.15	-3,293.72	1,913,885.199	1,279,021.552	36.253660014	-107.475736524
9,800.00	89.83	314.998	5,512.31	1,918.86	-3,364.44	1,913,955.907	1,278,950.839	36.253851755	-107.475979343
9,900.00	89.83	314.998	5,512.61	1,989.57	-3,435.15	1,914,026.615	1,278,880.127	36.254043496	-107.476222164
10,000.00	89.83	314.998	5,512.92	2,060.28	-3,505.86	1,914,097.322	1,278,809.414	36.254235236	-107.476464985
10,100.00	89.83	314.998	5,513.22	2,130.99	-3,576.57	1,914,168.030	1,278,738.701	36.254426975	-107.476707808
10,200.00	89.83	314.998	5,513.52	2,201.69	-3,647.29	1,914,238.738	1,278,667.989	36.254618714	-107.476950633
10,300.00	89.83	314.998	5,513.82	2,272.40	-3,718.00	1,914,309.446	1,278,597.276	36.254810453	-107.477193458
10,400.00	89.83	314.998	5,514.13	2,343.11	-3,788.71	1,914,380.154	1,278,526.564	36.255002191	-107.477436284
10,500.00	89.83	314.998	5,514.43	2,413.82	-3,859.43	1,914,450.862	1,278,455.851	36.255193928	-107.477679112
10,600.00	89.83	314.998	5,514.73	2,484.52	-3,930.14	1,914,521.569	1,278,385.138	36.255385665	-107.477921941
10,700.00	89.83	314.998	5,515.03	2,555.23	-4,000.85	1,914,592.277	1,278,314.426	36.255577401	-107.478164771
10,800.00	89.83	314.998	5,515.34	2,625.94	-4,071.56	1,914,662.985	1,278,243.713	36.255769137	-107.478407602
10,900.00	89.83	314.998	5,515.64	2,696.65	-4,142.28	1,914,733.693	1,278,173.001	36.255960872	-107.478650435
11,000.00	89.83	314.998	5,515.94	2,767.36	-4,212.99	1,914,804.401	1,278,102.288	36.256152607	-107.478893268
11,100.00	89.83	314.998	5,516.24	2,838.06	-4,283.70	1,914,875.108	1,278,031.576	36.256344341	-107.479136103
11,200.00	89.83	314.998	5,516.55	2,908.77	-4,354.41	1,914,945.816	1,277,960.863	36.256536075	-107.479378939
11,300.00	89.83	314.998	5,516.85	2,979.48	-4,425.13	1,915,016.524	1,277,890.150	36.256727808	-107.479621776
11,400.00	89.83	314.998	5,517.15	3,050.19	-4,495.84	1,915,087.232	1,277,819.438	36.256919540	-107.479864615
11,500.00	89.83	314.998	5,517.45	3,120.90	-4,566.55	1,915,157.940	1,277,748.725	36.257111273	-107.480107454
11,600.00	89.83	314.998	5,517.75	3,191.60	-4,637.27	1,915,228.648	1,277,678.013	36.257303004	-107.480350295
11,700.00	89.83	314.998	5,518.06	3,262.31	-4,707.98	1,915,299.355	1,277,607.300	36.257494735	-107.480593137
11,800.00	89.83	314.998	5,518.36	3,333.02	-4,778.69	1,915,370.063	1,277,536.587	36.257686466	-107.480835980
11,900.00	89.83	314.998	5,518.66	3,403.73	-4,849.40	1,915,440.771	1,277,465.875	36.257878196	-107.481078825
12,000.00	89.83	314.998	5,518.96	3,474.44	-4,920.12	1,915,511.479	1,277,395.162	36.258069925	-107.481321670
12,100.00	89.83	314.998	5,519.27	3,545.14	-4,990.83	1,915,582.187	1,277,324.450	36.258261654	-107.481564517
12,200.00	89.83	314.998	5,519.57	3,615.85	-5,061.54	1,915,652.895	1,277,253.737	36.258453383	-107.481807365
12,300.00	89.83	314.998	5,519.87	3,686.56	-5,132.25	1,915,723.602	1,277,183.024	36.258645111	-107.482050214
12,400.00	89.83	314.998	5,520.17	3,757.27	-5,202.97	1,915,794.310	1,277,112.312	36.258836838	-107.482293064
12,500.00	89.83	314.998	5,520.48	3,827.98	-5,273.68	1,915,865.018	1,277,041.599	36.259028565	-107.482535915
12,600.00	89.83	314.998	5,520.78	3,898.68	-5,344.39	1,915,935.726	1,276,970.887	36.259220292	-107.482778768
12,673.39	89.83	314.998	5,521.00	3,950.58	-5,396.29	1,915,987.619	1,276,918.990	36.259361000	-107.482957000
PBHL/TC	0 @ 12673.39	MD 5521.00	rvd						

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude
Haynes 440 vert - plan misses target - Point	0.00 center by 51.8	0.000 32ft at 5097.8	4,898.04 85ft MD (489	-1,167.84 8.05 TVD, -11	-277.44 31.00 N, -241	1,910,869.212 1.00 E)	1,282,037.829	36.245480970	-107.465380063
Haynes 440 FTP 188 FS - plan misses target - Point		0.000 Sft at 6057.90	5,501.00 Oft MD (5501	-727.20 .00 TVD, -723	-718.12 3.33 N, -714.7	1,911,309.852 1 E)	1,281,597.153	36.246676000	-107.466893000
Haynes 440 LTP 453 FN - plan hits target cer - Point		0.000	5,521.00	3,950.58	-5,396.29	1,915,987.619	1,276,918.990	36.259361000	-107.482957000

8/1/2023 9:42:58PM

Planning Report - Geographic

Database:	DB Decv0422v16	Local Co-ordinate Reference:	Well Haynes Canyon Unit 440H
Database.	=	Local Co-ordinate Reference.	Weir haynes Canyon Onit 44011
Company:	Enduring Resources LLC	TVD Reference:	RKB=6703+25 @ 6728.00ft
Project:	Rio Arriba County, New Mexico NAD83 NM C	MD Reference:	RKB=6703+25 @ 6728.00ft
Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
Well:	Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Oriignal Hole		
Design:	rev0		
Casing Points			

Measured Depth (ft)	Vertical Depth (ft)		Name	Casing Diameter (")	Hole Diameter (")	
350.00	350.00	13 3/8" Csg		13-3/8	17-1/2	
3,832.45	3,673.00	9 5/8" Csg		9-5/8	12-1/4	

Formations

lations						
	Measured Depth (ft)	Vertical Depth (ft)	Name	Lithology	Dip (°)	Dip Direction (°)
	1,405.98	1,402.93	Ojo Alamo		0.17	314.998
	1,508.89	1,502.89	Kirtland		0.17	314.998
	1,746.47	1,727.77	Fruitland		0.17	314.998
	1,998.32	1,962.62	Pictured Cliffs		0.17	314.998
	2,159.07	2,112.53	Lewis		0.17	314.998
	2,475.22	2,407.34	Chacra		0.17	314.998
	3,664.79	3,516.65	Cliff House		0.17	314.998
	3,670.15	3,521.65	Menefee		0.17	314.998
	4,415.88	4,221.23	Point Lookout		0.17	314.998
	4,695.57	4,496.15	Mancos		0.17	314.998
	5,035.94	4,836.13	MNCS_A		0.17	314.998
	5,125.95	4,926.13	MNCS_B		0.17	314.998
	5,263.30	5,061.20	MNCS_C		0.17	314.998
	5,332.59	5,126.27	MNCS_Cms		0.17	314.998
	5,417.53	5,201.39	MNCS_D		0.17	314.998
	5,524.83	5,286.58	MNCS_E		0.17	314.998
	5,589.78	5,331.72	MNCS_F		0.17	314.998
	5,743.57	5,417.10	MNCS_G		0.17	314.998
	5,832.71	5,457.33	MNCS_H @ 0VS		0.17	314.998

Plan Annotations

Measured	Vertical	Local Coor	dinates	
Depth (ft)	Depth (ft)	+N/-S (ft)	+E/-W (ft)	Comment
1,000.00	1,000.00	0.00	0.00	KOP Begin 3°/100' build
1,705.61	1,689.66	-126.04	-26.86	Begin 21.17° tangent
4,194.21	4,010.35	-1,004.96	-214.14	Begin 3°/100' drop
4,899.82	4,700.01	-1,131.00	-241.00	Begin vertical hold
5,097.85	4,898.04	-1,131.00	-241.00	Begin 10°/100' build
5,697.85	5,394.24	-944.13	-458.14	Begin 60.00° tangent
5,757.85	5,424.24	-910.24	-497.53	Begin 10°/100' build
6,056.15	5,501.00	-724.48	-713.38	Begin 3°/100' turn
6,198.92	5,501.42	-627.39	-818.01	Begin 89.83° lateral
12,673.39	5,521.00	3,950.58	-5,396.29	PBHL/TD @ 12673.39 MD 5521.00 TVD

WELL NAME: Haynes Canyon Unit 440H

OBJECTIVE:	Drill, comple	Drill, complete, and equip single lateral in the Mancos-H formation								
API Number:	Not yet assigned	Not yet assigned								
AFE Number:	Not yet assigned	Not yet assigned								
ER Well Number:	Not yet assigned	lot yet assigned								
State:	New Mexico	New Mexico								
County:	Rio Arriba						Target (TVD)			
Surface Elev.:	6,703	ft ASL (GL)	6,728	ft ASL (KB)			Curve BUR			
Surface Location:	3-23-6	Sec-Twn- Rng	916	ft FSL	390	ft FWL	POE (MD)			
BH Location:	4-23-6	Sec-Twn- Rng	453	ft FNL	232	ft FWL	TD (MD)			
Driving Directions:	FROM THE IN	TERSECTION OF U	IS HWY 550	& US HWY 64 IN B	LOOMFIELD,	NM:	Lat Len (ft)			

> South on US Hwy 550 for 53.8 miles to MM 97.6; Left (North) on CR #379 (State Hwy 403) for 1.3 miles to fork; Right (North) remaining on CR #379 for 1.5 miles to location access on left; Haynes Canyon Unit 428H Pad. From East to West 430H, 428H, 442H, 440H).

QUICK REFERENCE

350 ft

3,833 ft

5,100 ft

4,900 ft

5,466 ft

5,858 ft

12,673 ft

6,815 ft

10 °/100 ft

WELL CONSTRUCTION SUMMARY:

	Hole (in)	TD MD (ft)	Csg (in)	Csg (lb/ft)	Csg (grade)	Csg (conn)	Csg Top (ft)	Csg Bot (ft)
Surface	17.500	350	13.375	54.5	J-55	BTC	0	350
Intermediate	12.250	3,833	9.625	36.0	J-55	LTC	0	3,833
Production	8.500	12,673	5.500	17.0	P-110	LTC	0	12,673

CEMENT PROPERTIES SUMMARY:

						TOC (ft		
	Туре	Wt (ppg)	Yd (cuft/sk)	Wtr (gal/sk)	% Excess	MD)	Total (sx)	Cu Ft Slurry
Surface	TYPE III	14.6	1.39	6.686	100%	0	364	505
Inter. (Lead)	0:10 Type III:P	12.5	2.14	12.05	70%	0	802	1,715
Inter. (Tail)	Type III	14.6	1.38	6.64	20%	3333	150	207
Prod. (Lead)	ASTM type I/II	12.4	2.370	13.4	50%	0	560	1,328
Prod. (Tail)	G:POZ blend	13.3	1.570	7.7	10%	4696	1280	2,010

COMPLETION / PRODUCTION SUMMARY:

Frac: 6715

Flowback: Flow back through production tubing as pressures allow

Production: Produce through production tubing via gas-lift into permanent production and storage facilities

Tops TVD (ft KB) 1,403 Ojo Alamo Kirtland 1,503 Fruitland 1,728 Pictured Cliffs 1,963 Lewis 2,113 Chacra 2.408 Cliff House 3,518 Menefee 3,523 Point Lookout 4,223 4,498 Mancos Gallup (MNCS_A) 4,838 MNCS_B 4,928 MNCS_C 5,063 MNCS_Cms 5,128 MNCS_D 5,203 MNCS_E 5,288 5,333 MNCS F MNCS_G 5,418 MNCS_H 5,458 MNCS_I 0 FTP TARGET 5,466

MD (ft KB)

1,406

1,509

1,746

1,998

2,159

2,475

3,665

3,670

4,416

4,696

5,036

5,126

5,263

5,333

5,418

5,525

5,590

5,744

5,833

0

5,858

12,673

PROJECTED LTP

5,521

AFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400093966

Operator Name: ENDURING RESOURCES LLC

Well Name: HAYNES CANYON UNIT

Well Type: OIL WELL

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

HCU_440_Existing_Roads_09282023_20230928134905.pdf

Existing Road Purpose: ACCESS

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? NO

Section 3 - Location of Existing Wells

Existing Wells Map? YES Attach Well map:

Well Name: HAYNES CANYON UNIT

Well Number: 440H

HCU_440_Wells_Within_1Mile_08222023_20230917203417.pdf

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description:

Production Facilities map:

Haynes_Canyon_Unit_440_Facility_and_Rig_Layout_Rev_A_20230917203511.pdf Haynes_Canyon_Unit_440_Facility_Completions_Layout_Rev_A_20230917203511.pdf Haynes_Canyon_Unit_440_Facility_Layout_Rev_A_20230917203511.pdf Haynes_Canyon_Unit_440_Proposed_Reclamation_Rev_A_20230924193850.pdf

Section 5 - Location and Types of Water Supply

Water Source Ta	able		
Water source type: GW WELL			
Water source use type:	DUST CONT	ROL	
	SURFACE C/	ASING	
	INTERMEDIATE/PRODUCTIO CASING		
Source latitude: 36.069826			Source longitude: -107.04718

Source latitude: 36.069826

Source datum: NAD83

Water source permit type: WATER WELL

TRUCKING Water source transport method:

Source land ownership: PRIVATE

Source transportation land ownership: PRIVATE	
Water source volume (barrels): 17558	Source volume (acre-feet): 2.26310499
Source volume (gal): 737436	

Received by OCD: 12/5/2023 9:23:12 PM Page 84 of 201 **Operator Name: ENDURING RESOURCES LLC** Well Name: HAYNES CANYON UNIT Well Number: 440H Water source type: GW WELL SURFACE CASING Water source use type: INTERMEDIATE/PRODUCTION CASING **ICE ROAD CONSTRUCTION &** MAINTENANCE Source latitude: 36.359802 Source longitude: -107.81031 Source datum: NAD83 Water source permit type: WATER WELL Water source transport method: TRUCKING Source land ownership: STATE Source transportation land ownership: STATE Water source volume (barrels): 17558 Source volume (acre-feet): 2.26310499 Source volume (gal): 737436 Water source type: RECYCLED Water source use type: STIMULATION Source longitude: -107.576013 Source latitude: 36.143567 Source datum: NAD83 Water source permit type: WATER WELL TRUCKING Water source transport method: Source land ownership: STATE Source transportation land ownership: STATE Water source volume (barrels): 447760 Source volume (acre-feet): 57.71317281 Source volume (gal): 18805920

eceived by OCD: 12/5/2023 9:23:12 PM	r	Page 85 of 20.
Operator Name: ENDURING RESOL	JRCES LLC	
Well Name: HAYNES CANYON UNIT	T	Well Number: 440H
Water source type: RECYCLED		
Water source use type:	STIMULATION	
Source latitude: 36.205932		Source longitude: -107.741568
Source datum: NAD83		
Water source permit type:	WATER WELL	
Water source transport method:	TRUCKING	
Source land ownership: FEDERA	L	
Source transportation land owner	rship: FEDERAL	
Water source volume (barrels): 44	47760	Source volume (acre-feet): 57.71317281
Source volume (gal): 18805920		
Water source type: RECYCLED		
Water source use type:	STIMULATION	
Source latitude: 36.210181		Source longitude: -107.488712
Source datum: NAD83		
Water source permit type:	WATER WELL	
Water source transport method:	TRUCKING	
Source land ownership: FEDERA	L	
Source transportation land owner	rship: FEDERAL	
Water source volume (barrels): 44	47760	Source volume (acre-feet): 57.71317281
Source volume (gal): 18805920		
Water source type: RECYCLED		
Water source use type:	STIMULATION	
Source latitude: 36.117342		Source longitude: -107.488712
Source datum: NAD83		
Water source permit type:	WATER WELL	
Water source transport method:	TRUCKING	

.

Operator Name: ENDURING RESOL	IRCESLIC	
Well Name: HAYNES CANYON UNIT		II Number: 440H
Source land ownership: FEDERAL	-	
Source transportation land owner	ship: FEDERAL	
Water source volume (barrels): 44	7760	Source volume (acre-feet): 57.71317281
Source volume (gal): 18805920		
Water source type: RECYCLED		
Water source use type:	STIMULATION	
Source latitude: 36.310147		Source longitude: -107.651626
Source datum: NAD83		
Water source permit type:	WATER WELL	
Water source transport method:	TRUCKING	
Source land ownership: FEDERAL	_	
· · · · · · · · · · · · · · · · · · ·		
Source transportation land owner	ship: FEDERAL	
Water source volume (barrels): 44	7760	Source volume (acre-feet): 57.71317281
Source volume (gal): 18805920		
Vater source and transportation ICU_440_Water_Transportation_0822 Vater source comments: New water well? N	2023_20230917203559.pd	f
New Water Well I	nfo	
Well latitude:	Well Longitude:	Well datum:
Well target aquifer:		
Well target aquifer: Est. depth to top of aquifer(ft):	Est thickne	ess of aquifer:
	Est thickne	ess of aquifer:
Est. depth to top of aquifer(ft):	Est thickne	ess of aquifer:
Est. depth to top of aquifer(ft): Aquifer comments:	Est thickne Well casing t	
Est. depth to top of aquifer(ft): Aquifer comments: Aquifer documentation:	Well casing t	
Est. depth to top of aquifer(ft): Aquifer comments: Aquifer documentation: Vell depth (ft):	Well casing t	type: inside diameter (in.):

•

Well Name: HAYNES CANYON UNIT

Well Number: 440H

Page 87 of 201

Grout material:

Casing length (ft.):

Well Production type:

Casing top depth (ft.): Completion Method:

Grout depth:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Using any construction materials: YES

Construction Materials description: Reference attached SUPO chapter 8 (construction materials)

Construction Materials source location

MaterialSourceLocationMap_191022_20230917203628.pdf

Section 7 - Methods for Handling

Waste type: DRILLING

Waste content description: Reference attached Enduring Resources Surface Use Plan of Operations Chapter 9 (Methods for Handling Waste).

Amount of waste: 12000 barrels

Waste disposal frequency : Weekly

Safe containment description: Drilling fluids would be stored onsite in above-ground storage tanks. Upon termination of drilling operations, the drilling fluids would be recycled and transferred to other permitted closed-loop systems or disposed of at one of the locations specified in the SUPO section 9. **Safe containmant attachment:**

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE FACILITY

Disposal type description:

Disposal location description: Approved commercial disposal facility or land farm

Waste type: FLOWBACK

Waste content description: Reference attached Enduring Resources Surface Use Plan of Operations Chapter 9 (Methods for Handling Waste). Section 9 (Flowback). Flowback transported off location will consist of approximately 1000 bbls of produced water per day for approximately 14 days. **Amount of waste:** 1000 barrels

Waste disposal frequency : Daily

Safe containment description: Reference attached Enduring Resources Surface Use Plan of Operations Chapter 9 (Methods for Handling Waste). Section 9 (Flowback). Flowback transported off location will consist of approximately 1000 bbls of produced water per day for approximately 14 days. **Safe containmant attachment:**

Waste disposal type: RECYCLE

Disposal location ownership: OTHER

Disposal type description:

Well Name: HAYNES CANYON UNIT

Well Number: 440H

Disposal location description: Produced water from flowback will be stored, treated, and recycled at any of Enduring's approved water recycling facilities. Containments are constructed, lined, and monitored per regulatory requirements. Flowback would be disposed of at one of the disposal wells listed in Section 9 of the SUPO.

Waste type: SEWAGE

Waste content description: Reference attached Enduring Resources Surface Use Plan of Operations Chapter 9 (Methods for Handling Waste).

Amount of waste: 500 gallons

Waste disposal frequency : Weekly

Safe containment description: Toilets would be provided and maintained as needed. See SUPO chapter 9 for reference

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE FACILITY Disposal type description:

Disposal location description: Commercial facilities disposal

Waste type: GARBAGE

Waste content description: Reference attached Enduring Resources Surface Use Plan of Operations Chapter 9 (Methods for Handling Waste). Amount of waste: 1500 pounds

Amount of waste: 1500 pounds

Waste disposal frequency : Weekly

Safe containment description: All garbage and trash would be placed in enclosed metal trash containers. The trash and garbage would be hauled off site and dumped in an approved landfill, as needed. See SUPO, Section 9.

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIALDisposal location ownership: PRIVATEFACILITYDisposal type description:

Disposal location description: Approved landfill

Waste type: PRODUCED WATER

Waste content description: Reference attached Enduring Resources Surface Use Plan of Operations Chapter 9 (Methods for Handling Waste).

Amount of waste: 11000 barrels

Waste disposal frequency : Weekly

Safe containment description: Drilling fluids would be stored onsite in above-ground storage tanks. See SUPO section 9, Drilling Fluids **Safe containmant attachment:**

Waste disposal type: OFF-LEASE INJECTION Disposal location ownership: PRIVATE

Disposal type description:

Disposal location description: Commercial UIC, See SUPO Chapter 9 disposal locations

Well Name: HAYNES CANYON UNIT

Well Number: 440H

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? N

Description of cuttings location

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area volume (cu. yd.)

Cuttings area depth (ft.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary

Are you requesting any Ancillary Facilities?: N Ancillary Facilities

Comments:

Section 9 - Well Site

Well Site Layout Diagram:

Haynes_Canyon_Unit_440_Facility_Layout_Rev_A_20230917203707.pdf HCU_440H_Topsoil_and_Cut_20230924195701.pdf **Comments:**

Operator Name: ENDURING RESOURCES LLC

Well Number: 440H

Page 90 of 201

Section 10 - Plans for Surface

Type of disturbance: No New Surface Disturbance Multiple Well Pad Name: Haynes Canyon Unit

Multiple Well Pad Number: 414H

Recontouring

Haynes_Canyon_Unit_440H_Proposed_Reclamation_Rev_A_20230917203727.pdf

Drainage/Erosion control construction: REFERENCE ATTACHED ENDURING RESOURCES SURFACE RECLAMATION PLAN CHAPTER 10 AND THE CONSTRUCTION PLATS. Drainage/Erosion control reclamation: REFERENCE ATTACHED ENDURING RESOURCES SURFACE RECLAMATION PLAN CHAPTER 10 AND THE CONSTRUCTION PLATS.

Well pad proposed disturbance (acres):	Well pad interim reclamation (acres): 0	Well pad long term disturbance (acres): 0
Road proposed disturbance (acres):	Road interim reclamation (acres): 0	Road long term disturbance (acres): 0
Powerline proposed disturbance (acres):	Powerline interim reclamation (acres):	(acres): 0
Pipeline proposed disturbance (acres):	Pipeline interim reclamation (acres): 0	Pipeline long term disturbance (acres): 0
Other proposed disturbance (acres):	Other interim reclamation (acres): 0	Other long term disturbance (acres): 0
Total proposed disturbance: 0	Total interim reclamation: 0	Total long term disturbance: 0

Disturbance Comments:

Reconstruction method: REFERENCE ATTACHED ENDURING RESOURCES SURFACE RECLAMATION PLAN CHAPTER 4 (TECHNIQUES FOR SUCCESSFUL REVEGETATION), 4.4. Topsoil redistribution: REFERENCE ATTACHED ENDURING RESOURCES SURFACE RECLAMATION PLAN CHAPTER 3 (TECHNIQUES FOR SUCCESSFUL REVEGETATION), 4.3. Soil treatment: REFERENCE ATTACHED ENDURING RESOURCES SURFACE RECLAMATION PLAN CHAPTER 3 (TECHNIQUES FOR SUCCESSFUL REVEGETATION), 4.7. Existing Vegetation at the well pad: The existing well is void of vegetation.

Existing Vegetation at the well pad

Existing Vegetation Community at the road: N/A

- Existing Vegetation Community at the road
- Existing Vegetation Community at the pipeline: N/A
- Existing Vegetation Community at the pipeline

Existing Vegetation Community at other disturbances: N/A

Existing Vegetation Community at other disturbances

Non native seed used? N

Non native seed description:

Operator Name: ENDURING RESOURCES LLC

Well Name: HAYNES CANYON UNIT

Well Number: 440H

Seedling transplant description: Will seedlings be transplanted for this project? N

Seedling transplant description

Will seed be harvested for use in site reclamation? N Seed harvest description: Seed harvest description attachment:

Seed

Seed Table

Seed type: PERENNIAL GRASS Seed name: Blue grama Source name: Southwest Seed, Inc. Source phone: (970)565-8722 Seed cultivar: VNS Seed use location: WELL PAD PLS pounds per acre: 2 Seed type: FORB Seed name: Blue flax Source name: Southwest Seed, Inc. Source phone: (970)565-8722 Seed cultivar: VNS Seed use location: WELL PAD PLS pounds per acre: 0 Seed type: PERENNIAL GRASS Seed name: Sand dropseed Source name: Southwest Seed, Inc. Source phone: (970)565-8722 Seed cultivar: VNS Seed use location: WELL PAD PLS pounds per acre: 0

Proposed seeding season: AUTUMN

Seed source: COMMERCIAL

Seed source: COMMERCIAL

Source address: 13514 Rd. 29, Dolores, CO 81323

Source address: 13514 Rd. 29, Dolores, CO 81323

Proposed seeding season: AUTUMN Seed source: COMMERCIAL

Source address: 13514 Rd. 29, Dolores, CO 81323

Proposed seeding season: AUTUMN

Well Name: HAYNES CANYON UNIT

Well Number: 440H

Seed source: COMMERCIAL

Source address: 13514 Rd. 29, Dolores, CO 81323

Proposed seeding season: AUTUMN Seed source: COMMERCIAL

Source address: 13514 Rd. 29, Dolores, CO 81323

Proposed seeding season: AUTUMN Seed source: COMMERCIAL

Source address: 13514 Rd. 29, Dolores, CO 81323

Proposed seeding season: AUTUMN Seed source: COMMERCIAL

Source address: 13514 Rd. 29, Dolores, CO 81323

Proposed seeding season: AUTUMN Seed source: COMMERCIAL

Source address: 13514 Rd. 29, Dolores, CO 81323

Seed type: SHRUB
Seed name: Fourwing saltbrush
Source name: Southwest Seed, Inc.
Source phone: (970)565-8722
Seed cultivar: VNS
Seed use location: WELL PAD
PLS pounds per acre: 2
Seed type: PERENNIAL GRASS
Seed name: Bottle brush squirreltail
Source name: Southwest Seed, Inc.
Source phone: (970)565-8722
Seed cultivar: VNS
Seed use location: WELL PAD
PLS pounds per acre: 3
Seed type: SHRUB
Seed name: Winterfat
Source name: Southwest Seed, Inc.
Source phone: (970)565-8722
Seed cultivar: VNS
Seed use location: WELL PAD
PLS pounds per acre: 2
Seed type: PERENNIAL GRASS
Seed name: Indian ricegrass
Source name: Southwest Seed, Inc.

Source phone: (970)565-8722

Seed cultivar: VNS

Seed use location: WELL PAD

PLS pounds per acre: 4

Seed type: PERENNIAL GRASS Seed name: Western wheatgrass

Source name: Southwest Seed, Inc.

Source phone: (970)565-8722

Seed cultivar: VNS

Seed use location: WELL PAD

 PLS pounds per acre: 4
 Proposed seeding season: AUTUMN

 Seed type: FORB
 Seed source: COMMERCIAL

 Seed name: Rocky Mountain bee plant
 Source name: Southwest Seed, Inc.

 Source address: 13514 Rd. 29, Dolores, CO 81323

Source phone: (970)565-8722

Seed cultivar: VNS

Seed use location: WELL PAD

PLS pounds per acre: 0

Proposed seeding season: AUTUMN

	Seed S	ummary		
Seed Type		Pounds/Acre		
S⊦	IRUB	4		
FC	DRB	0		
PE	RENNIAL GRASS	13		

Total pounds/Acre: 17

Seed reclamation

Operator C	Contact/Responsible Official
-------------------	------------------------------

First Name: Theresa	Last Name: Ancell
Phone: (970)749-0124	Email: tancell@enduringresources.com

Seedbed prep: REFERENCE ATTACHED ENDURING RESOURCES SURFACE RECLAMATION PLAN CHAPTER 4 (TECHNIQUES FOR SUCCESSFUL REVEGETATION), 4.6. Seed BMP: REFERENCE ATTACHED ENDURING RESOURCES SURFACE RECLAMATION PLAN CHAPTER 3 (TECHNIQUES FOR SUCCESSFUL REVEGETATION), 4.7. Seed method: REFERENCE ATTACHED ENDURING RESOURCES SURFACE RECLAMATION PLAN CHAPTER 3 (TECHNIQUES FOR SUCCESSFUL REVEGETATION), 4.8. Existing invasive species? N

Existing invasive species treatment description:

Existing invasive species treatment

Weed treatment plan description: N/A

Weed treatment plan

Monitoring plan description: N/A

Monitoring plan

Success standards: N/A

Pit closure description: N/A

Pit closure attachment:

Operator Name: ENDURING RESOURCES LLC

Well Name: HAYNES CANYON UNIT

Well Number: 440H

Section 11 - Surface

Disturbance type: WELL PAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Use APD as ROW?

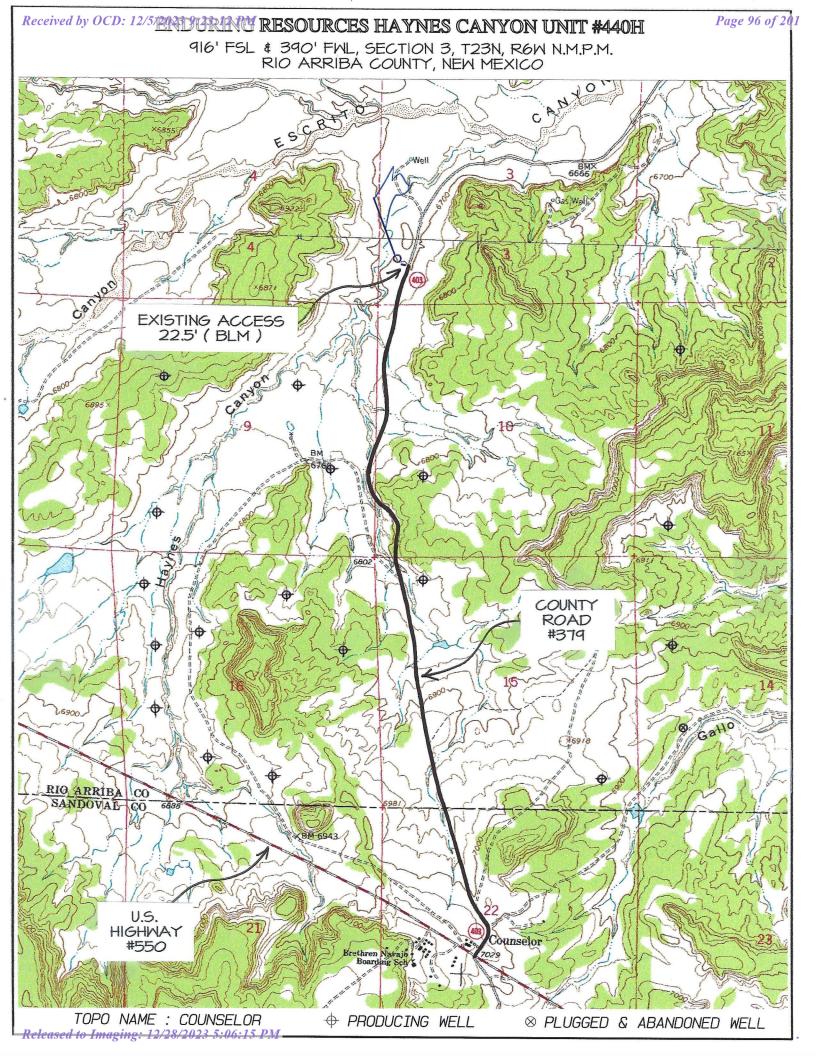
Section 12 - Other

Right of Way needed? N ROW Type(s):

ROW

SUPO Additional Information:

Use a previously conducted onsite? Y


Previous Onsite information: Onsite held June 27, 2023.

Other SUPO

Well Name: HAYNES CANYON UNIT

Well Number: 440H

HCU_440_RD.Maint.Pln_Final_20230912_20230917210015.pdf HCU_440_Onsite_Notes_20230924195138.pdf HCU_440_RecPlan_Final_20230912_20230924195147.pdf HCU_440H_SUPO_Final_20230928_20230928134441.pdf

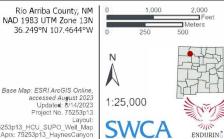
Directions from the Intersection of US Hwy 550 & US Hwy 64

in Bloomfield, NM to Enduring Resources, LLC Haynes Canyon Unit #440H

916' FSL & 390' FWL, Section 3, T23N, R6W, N.M.P.M., Rio Arriba County, NM

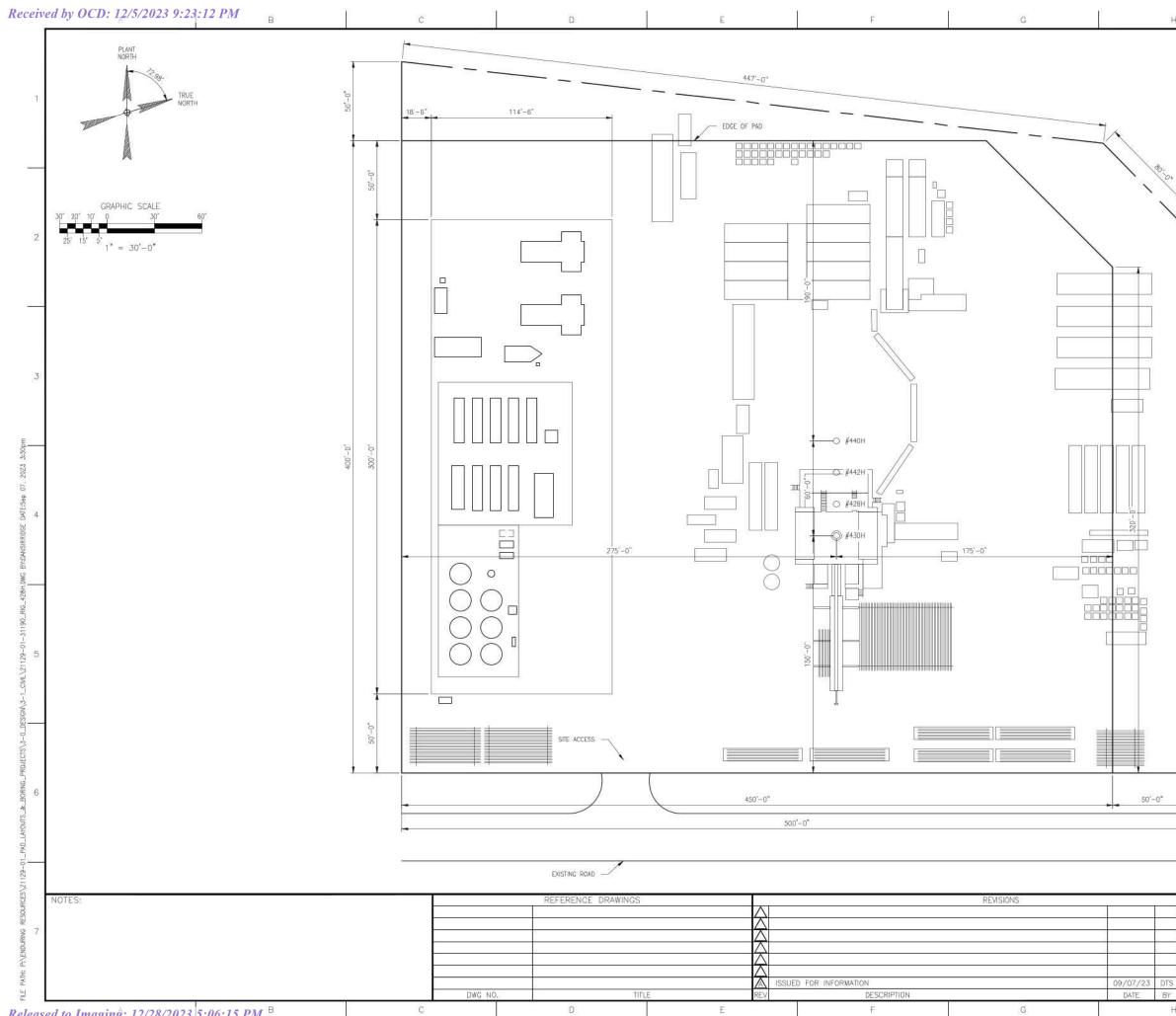
Latitude 36.248698°N Longitude -107.464489°W Datum: NAD1983

From the intersection of US Hwy 550 & US Hwy 64 in Bloomfield, NM, travel Southerly on US Hwy 550 for 53.8 miles to Mile Marker 97.6

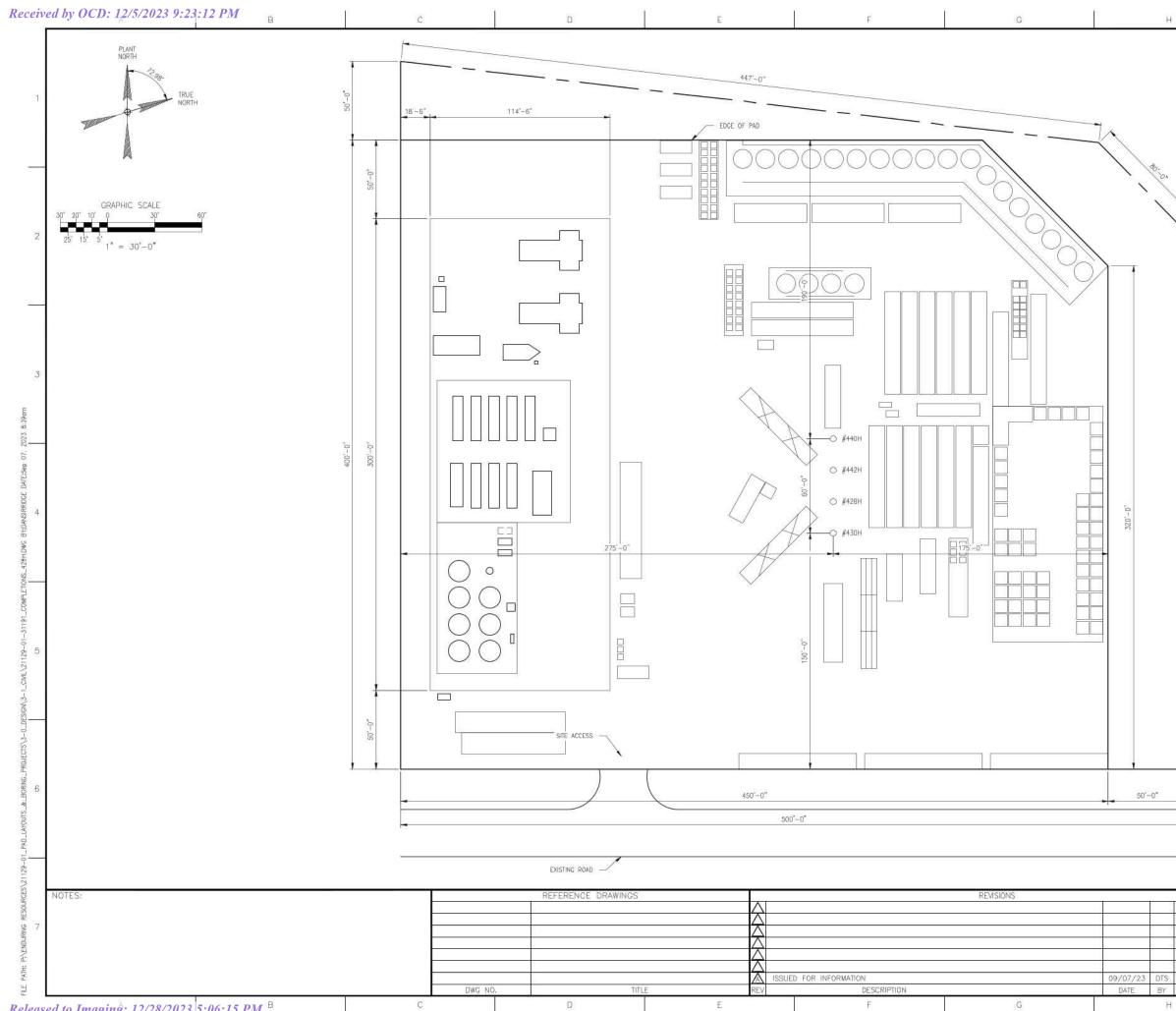

Go Left (Northerly) on County Road #379 (aka State Highway #403) for 1.5 miles to fork in roadway;

Go Right (Northerly) which is straight remaining on County Road #379 (aka State Highway #403) for 1.4 miles to existing access road on left-hand side which continues for 22.5' to Enduring Haynes Canyon Unit #440H staked location.

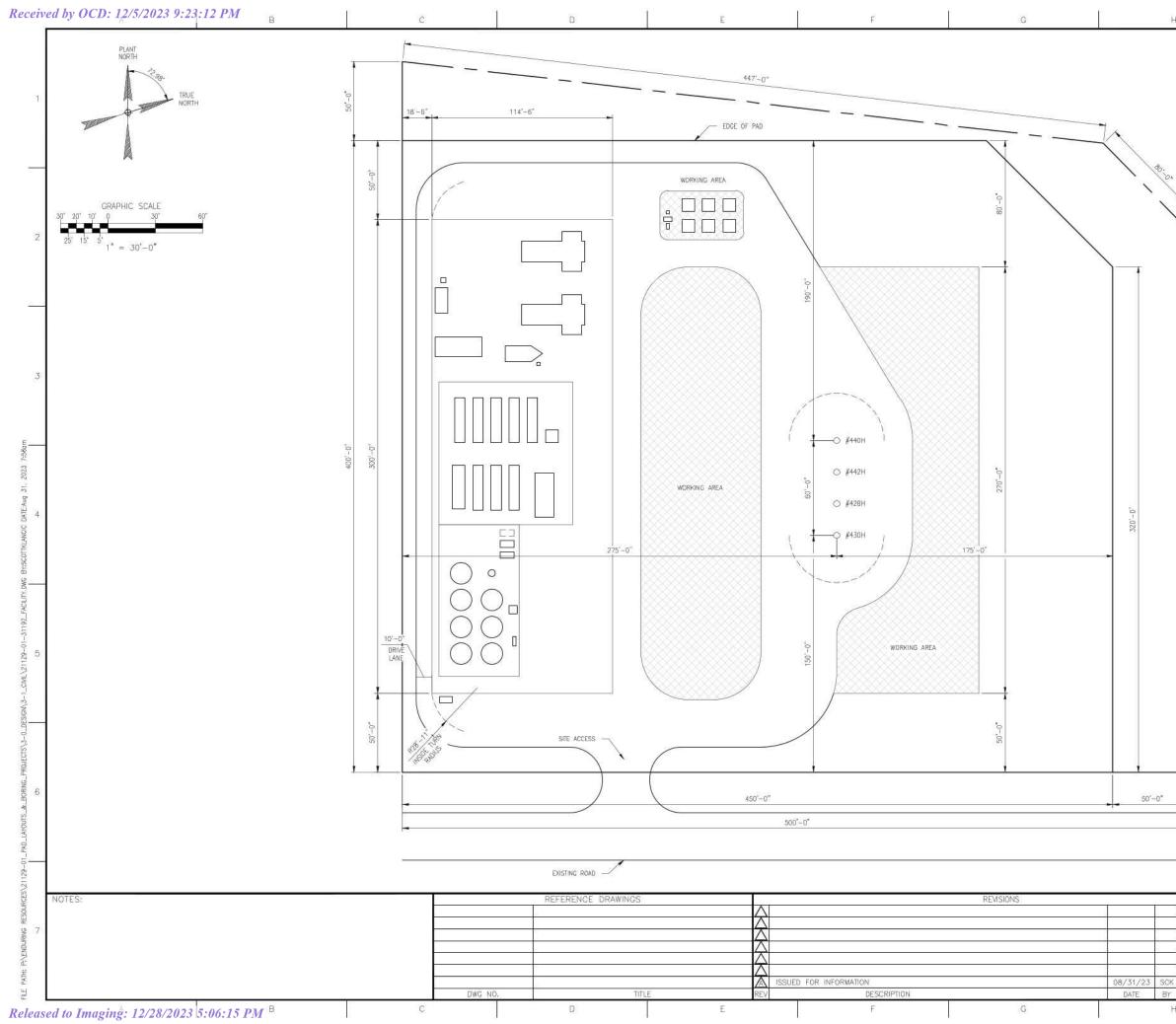
HCU 428H Project | Wells Within 1 Mile Wellpad OSE Points of Diverson 1 Mile Buffer Oil and Gas Well Status Active Cancelled A Wells Within 1 Mile Within Map Extent 0 New **OSE Points of Diversion** 2 Active O&G 12 5 Plugged (site released) \oplus Cancelled O&G 2 0 Released to Imaging: 12/28/2023 5:06:15 PM 2


Plugged (site released) O&G

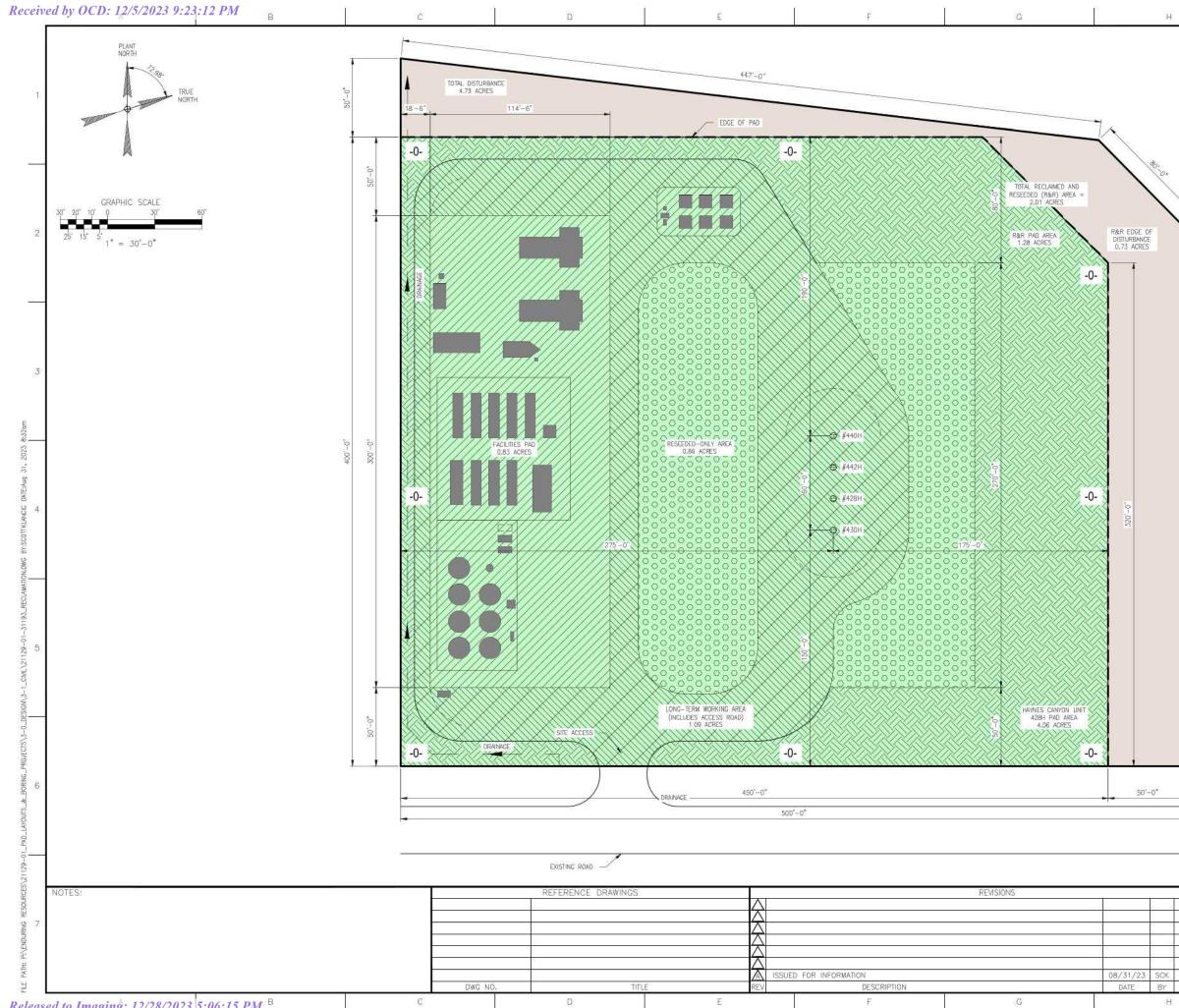
RESOURCES, LLC


Layout: 75253p13_HCU_SUPO_Well_Map Aprx: 75253p13_HaynesCanyon

13

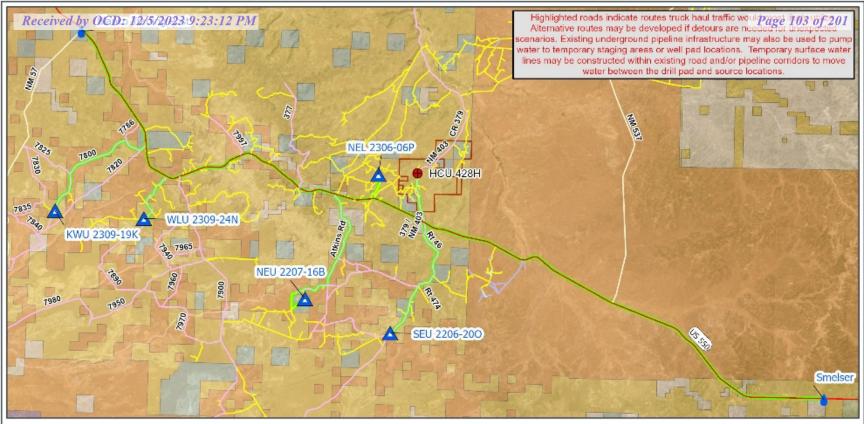

D

Н		ĩ		9	Page 99 of	201
					1	
8.						-
\sum					2	
l I					-	2
	- EDGE OF DISTUREIANCE				3	
r						
					-	-
341'-D"					4	
l						2
					5	
Ĩ					_	-
-					6	
-						<u></u>
		IALKER	2	Turn		
		HAYNE	s During resource IS canyon unit 4 LITY AND RIG LAYC	S 128H	7	
TS SCK - BY CHK END	BBS SCALE G APR	: (FORMATTED 22X34) 1"=30'-0"	DRAWING	G NO.)1—31190		
н		1	I	ل		•



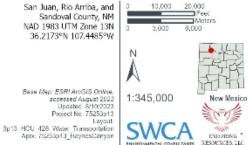
D

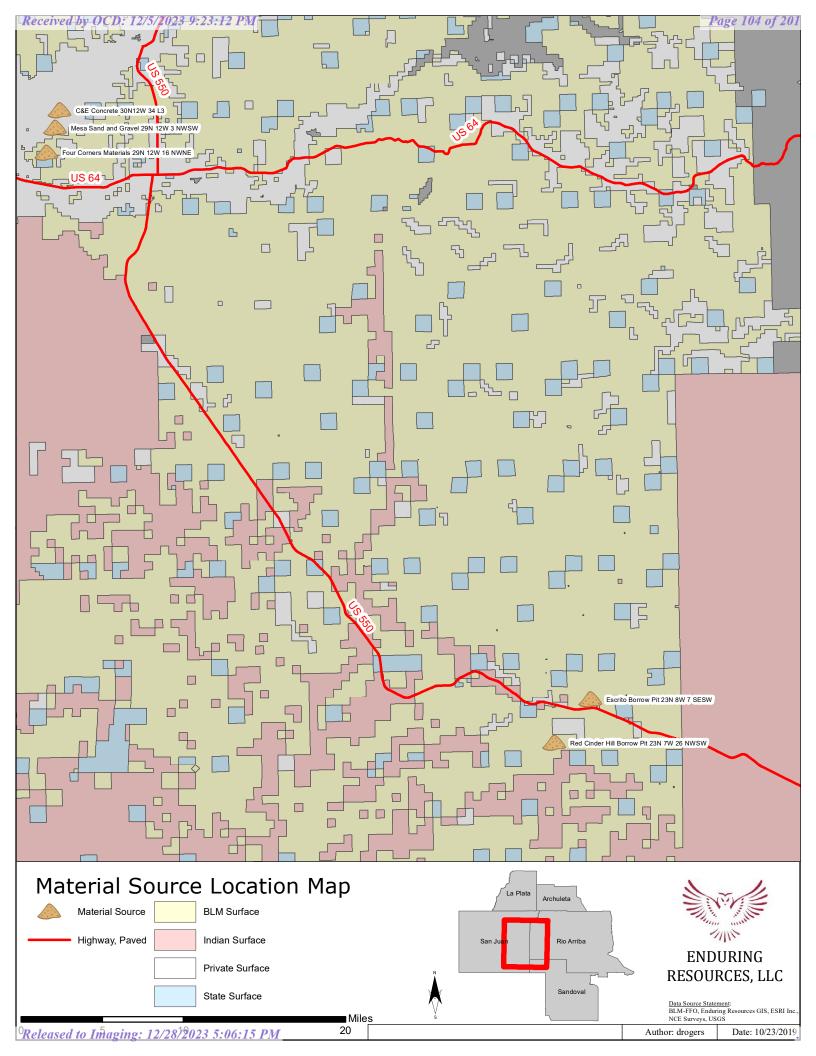
Н	31) 52	1		Page 100	of 201
					1
0.					
$\langle \rangle$					
					2
ĺ					
~	EDGE OF DISTURBANG	CE			3
Í					
341'-D"	E.				
					4
					<u></u>
1					
					5
i					
					
	ł				6
					<u></u>
		HALKER		Time	
		ENGINEERED SOLUTIONS ENDL HAYNES	JRING RESOURCES CANYON UNIT 428H		7
	– BBS SC	FACILITY AN (FORMATTED 22X34) 1"=30'-0"	D COMPLETIONS LAYO DRAWING NO. 21129-01-31		
H		1		ل	•

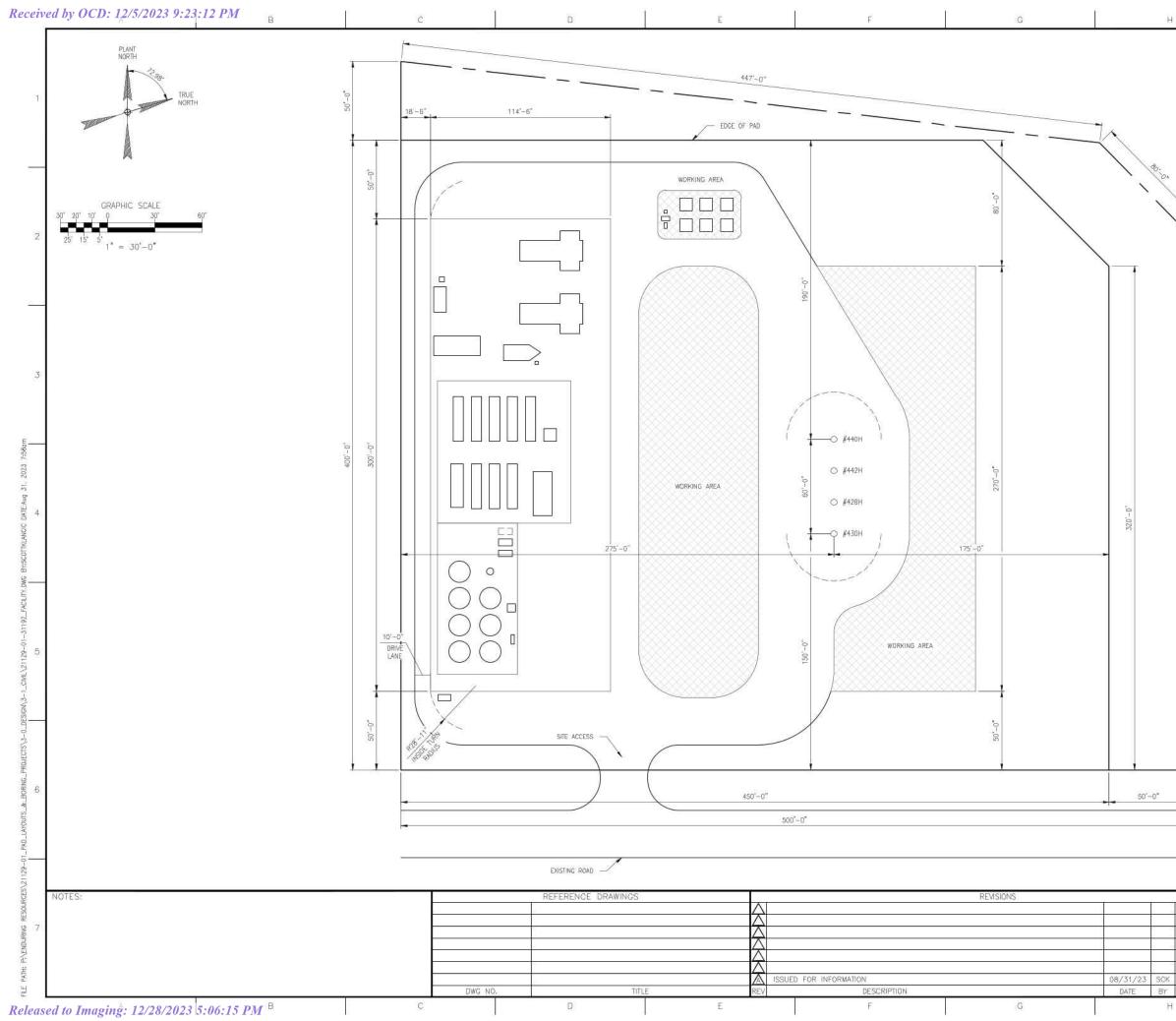

н		ĩ	Ĭ	J Pag	ge 101 of 201
					1
De.					
$\langle \rangle$					
γ	•				2
1					
	EDGE OF DISTURBANCE				3
۲ ۱					
Ĩ					
341'0"	-				4
I					
*					
1					5
ľ					
	ļ				
	-				6
-					
			- Miles	Ching	
		ENDI HAYNES	JRING RESOURCES CANYON UNIT 428H ACILITY LAYOUT		7
	- BBS SCA		DRAWING NO. 21129-01-3		
Н		1		J	٠

D

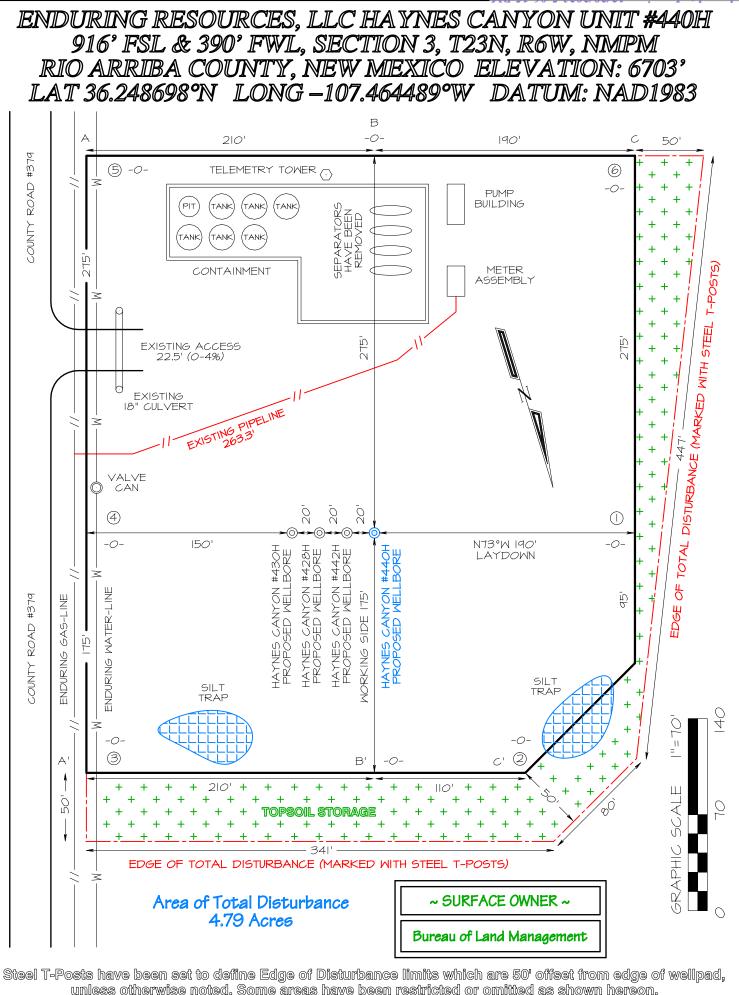
		1
		2
EDCE DISTUR)F EANCE	3
341'-D*	LEGEND. e wellhead	
341	EQUIPMENT FACILITIES PAD 0.83 ACRES	4
	LONG-TERM WORKING AREA (INCLUDES ACCESS ROAD) 1.09 ACRES RESEEDED-ONLY AREA 0.86 ACRES HAYNES CANYON UNIT 428H PAD AREA	5
	4.06 ACRES TOTAL DISTURBANCE 4.79 ACRES RECLAIMED AND RESEEDED (R&R) AREA = 2.01 ACRES	
-	R&R PAD AREA = 1.28 ACRES R&R EDGE OF DISTURBANCE 0.73 ACRES	6
-	HALKER	
DTS – BBS	ENGINEERED SOLUTIONS ENDURING RESOURCES HAYNES CANYON UNIT 428H PROPOSED RECLAMATION	7
CHK ENG APR	SCALE: (FDRMATED 22X34) DRAWING NO. 1"=30'-0" 21129-01-31193 J	2


1


HCU 428H Project | Water Transportation

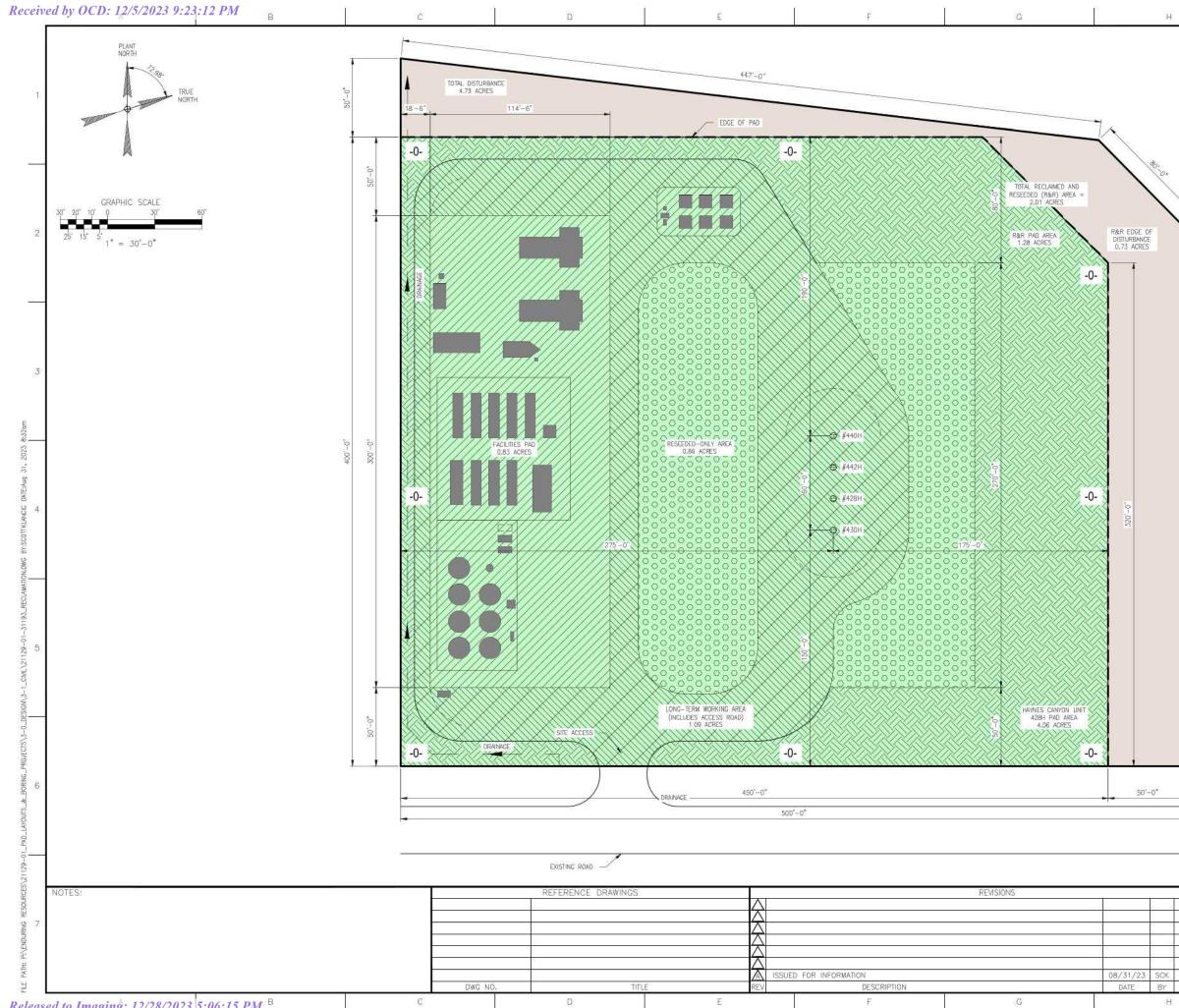


Unit Boundary



PHYDRONIMENTAL CONFLETANTS

Н		ĩ		Page 105	of 201
					1
0.					
\searrow	Ŧ				2
					.2
Î					
	EDGE OF DISTURBANC	Έ			3
I					
0°					4
I					<u></u>
1					
					5
l					
_	÷.				6
					<u></u>
		HALKER ENGINEERED SOLUTIONS		CT-DE	7
		HAYNES	RING RESOURCES CANYON UNIT 428H CILITY LAYOUT		15
	- BBS SC NG APR	ALE: (FORMATTED 22X34) 1"=30"-0"	DRAWING NO. 21129-01-31	192 🛕	
	70 *				-


		6703'	67131			· ·		67031	67131	B-B_			:	6703	181	A - A		
						· · · ·	•					•	•			· · ·	HC	ENDUI 91 RIO
EDWARDS SURVE NTRACTOR SHOUL S OR PIPELINES ON							· · · ·					•	· · · · ·			•	HORIZONTAL SCALE	RING RE 16° FSL & ARRIBA
YING, INC. IS NOT I D CONTACT ONE-C. V WELLPAD AND/OF													· · · · ·				SCALE "=60'	ENDURING RESOURCES, 916' FSL & 390' FWL, RIO ARRIBA COUNTY,
EDWARDS SURVEYING, INC. IS NOT LIABLE FOR LOCATION OF UNDERGROUND UTILITIES OR PIPELINES. CONTRACTOR SHOULD CONTACT ONE-CALL FOR LOCATION OF ANY MARKED OR UNMARKED UNDERGROUND UTILITIES OR PIPELINES ON WELLPAD AND/OR ACCESS ROAD AT LEAST TWO WORKING DAYS PRIOR TO CONSTRUCTION.					C,						C,					· · · · · · · · · · · · · · · · · · ·	60'	NDURING RESOURCES, LLC HAYNES 916' FSL & 390' FWL, SECTION 3, T2 RIO ARRIBA COUNTY, NEW MEXICO
ROUND UTILITIES OR PIPELINES D OR UNMARKED UNDERGROU ORKING DAYS PRIOR TO CONST					λ/L				W		/L	· · · · · · · · · · · · · · · · · · ·					1	CANYON 23N, R6W, ELEVATI
or Pipelines. Underground or to constructio				· · · · · ·									· · · · ·				VERTICAL SCALE	CANYON UNIT #440H 23N, R6W, NMIPM ELEVATION: 6703°
N.				- - - - - - - - - - - - - - - - - - -									-				CALE "=30'	₩4401HI 1 103°
																· · · ·	Ņ	

MA 21:90:2 2202/82/21 :Snignml of besoeles

Received by OCD: 12/5/2023 9:23:12 PM

102 fo 201 ogod

ſ

D

		1
<		
\mathbf{i}		2
EDG	E OF JRBANCE	3
	LEGEND.	_
341 [°] – D"		4
	FACILITIES FAD 0.83 ACRES	<u> </u>
	HAYNES CANYON UNIT 428H PAD AREA	5
	TOTAL DISTURBANCE 4 79 ACRES RECLAIMED AND RESEEDED (R&R) AREA = 2.01 ACRES	-
	R&R PAD AREA = 1.28 ACRES R&R EDGE OF DISTURBANCE 0.73 ACRES	6
_		<u> </u>
	ENDURING RESOURCES HAYNES CANYON UNIT 428H PROPOSED RECLAMATION	7
DTS – BES CHK ENG APR	SCALE: (FORMATTED 22X34) DRAWING NO. 1"=30'-0" 21129-01-31193 A	7

1

Page 108 of 201

ROAD MAINTENANCE PLAN

<u>Haynes Canyon Unit (HCU) 428H-Four Well Site Reoccupation Project</u> <u>HCU 428H, 430H, HCU440H, HCU442H HCU</u>

September 2023

ENDURING RESOURCES IV, LLC

200 Energy Court Farmington, New Mexico 87401 Phone: (505) 636-9720

1. INTRODUCTION

Enduring Resources IV, LLC (Enduring) is providing this Road Maintenance Plan (Plan) to the Bureau of Land Management Farmington Field Office (BLM-FFO) as part of the Surface Use Plan of Operations (SUPO) for the Haynes Canyon Unit (HCU) Four Well (428H, 430H, 440H, 442H) Oil and Natural Gas Project (HCU 428H Project). The existing 22.5-foot road addressed in this Plan was previously permitted and constructed under the Applications for Permit to Drill (APD) for the HCU 414H. The coordinates for the access road is as follows:

- Start: N 72⁰ 39'25W
- End: N 72⁰ 37'03W

The road maintenance procedures provided in this Plan meet the standards established in The Gold Book: Surface Operating Standards and Guidelines for Oil and Gas Exploration and Development and BLM Manual 9113. Per the HCU 428H Project APD's, Enduring will be responsible for road maintenance associated with the aforementioned wells. This responsibility will continue until Enduring transfers the permit or abandons the project and obtains a Final Abandonment Notice or relinquishment from the BLM-FFO. Refer to the SUPO or Conditions of Approval (COAs) attached to the approved APDs for any upgrades to existing roads.

2. ROAD INSPECTIONS

Enduring Representatives will formally inspect the road biannually, in the spring and fall, to assess the condition of the road. The formal road inspection will be recorded on a Road Inspection Form (blank form attached to this Plan). Completed Road Inspection Forms will be kept on file at Enduring and can be provided to the BLM-FFO, if requested.

Additionally, outside of the formal inspection period, Enduring Representatives driving to/from the project area will assess the condition of the road and notify the Enduring Construction Supervisor if maintenance is needed.

Road maintenance activities will be documented at Enduring and can be provided to the BLM-FFO, if requested.

3. ROAD MAINTENANCE

The following maintenance may be performed on an as needed basis:

- Water control structures (such as culverts, ditches, and silt traps) and/or cattle guards may be cleaned. If this occurs, the soil/sediment material will be spread on area roads or locations.
- Bar ditches may be pulled.
- Low water crossings and drainage dips may be cleared and/or repaired.
- Crowning may be repaired.
- Litter may be collected.
- Noxious weeds may be treated or controlled following the BLM-FFO noxious weed guidelines.
- The access road may be bladed.

ROAD INSPECTION FORM

Road Name:	County:
Date:	Time:
Weather:	
Inspector(s):	
Road Surface Type:	

Road Condition Inspection Items	Road Condition					
Koad Condition Inspection Items	Good	Poor	Comment			
Water Control Structure(s)						
Low Water Crossing(s)						
Road Crowning/Ruts/Potholes						
Road Surfacing						
Cattle Guard(s)						
Litter						
Noxious Weeds Within/Adjacent to Roadway						
Vegetation Within Roadway						

Additional Site Specific Inspection Notes:

. . .

. .

Onsite Notes for Enduring Resources IV, LLC's Proposed Haynes Canyon Unit 428H Pad

Will be located on an **existing** location. The APD's on said location have expired.

Onsite Date: June 27, 2023

Attendees	
NAME	ORGANIZATION
Harley Davis	BLM NRS
Gary Smith	BLM-FFO NRS
Jason Meininger	Division of Conservation Archaeology (DCA)
Jason Edwards	NCE Surveys
Johnny Stinson	Enduring Resources
Lena Wilson	Enduring Resources
Casey Haga	Enduring Resources

Notes that require change in plats are identified in **Red**.

Notes that Enduring needs to answer and consider are in Blue.

<u>Please review all onsite notes and reply to the entire group if there are</u> <u>changes, mistakes, or additional notes I may have missed. If there are replies</u> <u>with changes, I will update these notes with them accordingly. If you have</u> <u>questions or concerns, please contact me at:</u>

(970)-769-8814 or at chaga@enduringresources.com

ENDURING RESOURCES IV, LLC

200 Energy Court Farmington, New Mexico 87401 Phone: (505) 636-9720

Project Name: Haynes Canyon Unit 428H, 430H, 440H, and 442H

On/Off lease: On Lease

Surface: BLM	Mineral: Federal
Surface: DEM	Winicial. Fuucial

Onsite Notes

Project Scope and Region

- ▲ These wells are being proposed on an existing location that has two expired APDs. The wells were never drilled however the pad, road, and pipe were all constructed. The facilities were also constructed and then partially reallocated to another location (some facilities remain). The SUPO needs to reflect that this "disturbance" exists but written in a level of detail as a new project since we currently hold no active APD to the location.
- Region dominated by sagebrush shrublands. Ephemeral wash adjacent to the western edge of the existing well pad. Location sits within a canyon surrounded by small mesas with sandstone outcrops.

Access Road

 Well pad is located adjacent to county road 379 with existing access onto location. Reestablish/improve.

Well Pad

• Well pad is existing but we don't hold active APD. The well pad was interim reclaimed but never fully reclaimed. We will permit the original footprint as seen in the plats.

Well Connect Pipeline

- Whiptail has existing pipe to location and the GL Trunk Line B Survey is to this location if needed.
- Need to plan layflat route.
- Need to survey layflat route.

Topsoil Storage

• Mulch vegetation into topsoil then strip and windrow along perimeter of location within the EOD.

Production Facilities

- Facilities are/will be located on the southwestern end of location.
- This location will serve as a remote facility to the HCU 432H location as well.

Facilities Color

Juniper Green

<u>Seed Mix</u>

Sagebrush seed mix

Other Notes

None

SURFACE RECLAMATION PLAN

Haynes Canyon Unit (HCU) 428H-Four Well-Site Reoccupation Project

<u>HCU 428H, HCU 430H, HCU 440H, HCU 442H</u>

SEPTEMBER 2023

ENDURING RESOURCES IV, LLC

200 Energy Court

Farmington, New Mexico 87401

Phone: (505) 636-9720

.

TABLE OF CONTENTS

1. INTRODUCTION1				
Table 1. Project Information	1			
2. PROJECT DESCRIPTION	2			
2.1. Location	2			
2.2. Surface Disturbance	2			
Table 2. Surface Disturbance Associated with the Project	2			
2.3. Pre-Disturbance On-Site/ Site Visit Meeting	3			
3. SITE CONDITIONS	1			
3.1. Vegetation Community	1			
3.2. Project Area Photographs	1			
4. RECLAMATION TECHNIQUES FOR SUCCESSFUL REVEGETATION	1			
4.1. Interim Reclamation	1			
4.2. Vegetation and Site Clearing	1			
4.3. Topsoil Stripping, Storage, and Replacement	1			
4.4. Recontouring	1			
4.5. Water Management/Erosion Control Features	1			
4.6. Seedbed Preparation	2			
4.7. Soil Amendments	2			
4.8. Seeding	2			
Table 4. BLM Farmington Field Office Sagebrush Community Seed Mix	2			
4.9. Noxious and Invasive Weed Control	3			
5. MONITORING REQUIREMENTS	1			
5.1. Initial Monitoring and Reporting	1			
5.2. Annual Monitoring and Reporting	1			
5.3. Long-Term Monitoring	1			
5.4. Reclamation Attainment	1			
Table 5. Reclamation Goal for Sagebrush Community	1			
6. REFERENCES	1			
APPENDIX A. ONSITE NOXIOUS WEED FORM	1			

LIST OF APPENDICES

Appendix A. Onsite Noxious Weed Form

LIST OF FIGURES

Photograph taken from the center of the well pad; view facing north	5
Photograph taken from the center of the well pad; view facing south	5
Photograph taken from the center of the well pad; view facing east.	6
Photograph taken from the center of the well pad; view facing west.	6

LIST OF TABLES

Table 1. Project Information	.1
Table 2. Surface Disturbance Associated with the Project	.2
Table 3. Project Area Photographs	.5

1. INTRODUCTION

This Surface Reclamation Plan (Plan) has been prepared for the Bureau of Land Management (BLM) Farmington Field Office (FFO) to support the Surface Use Plan of Operations (SUPO) for the Haynes Canyon Unit (HCU) 428H-Four Well-Site Reoccupation Project HCU 428H, HCU 430H, HCU 440H, HCU 442H (HCU 482H Project). Following the guidance provided in Appendix A (SUPO Procedure) of the *Farmington Field Office Bare Soil Reclamation Procedures* (Procedures) (BLM 2013), this Plan will be used to re-establish vegetation and control New Mexico Department of Agriculture (NMDA)–listed Class A and Class B noxious weeds (NMDA 2020) within the project area. Information associated with the project is provided in Table 1.

Table 1. Project Information

Applicant:	Enduring Resources IV, LLC	
Project Name:	Haynes Canyon Unit (HCU) 428H-Four Well-Site Reoccupation Project	
Project Features:	 Reoccupation of existing HCU 414H well pad and facilities Four proposed oil and gas wells (HCU 428H, HCU 430H, HCU 440H, HCU 442H) 	
Lease Number(s):	NMNM-028733	
Unit Number:	NMNM-142111X	
Land Manager(s):	BLM-FFO	
Mineral Manager(s):	BLM-FFO	
Associated Authorization Applications, Pending:	4 APDs	

Enduring may submit a request to the BLM-FFO to revise this reclamation plan at any time during the life of the project in accordance with page The Gold Book: Surface Operating Standards and Guidelines for Oil and Gas Exploration and Development (BLM and U.S. Forest Service 2007). Enduring would include justification for the revision request.

The Enduring contact person for this reclamation plan is:

Theresa Ancell Regulatory Manager Enduring Resources IV, LLC 200 Energy Court Farmington, New Mexico 87401 505-636-9720

2. PROJECT DESCRIPTION

2.1. Location

The project area is in Rio Arriba County, New Mexico, approximately 60 miles south-southeast of Bloomfield, New Mexico. The project area can be accessed as follows:

- From Bloomfield (intersection of U.S. Highway 550 and U.S. Highway 64), travel south on U.S. Highway 550 for approximately 53.8 miles.
- Turn left on County Road 379 (State Highway 403) and continue for 1.5 miles.
- Turn right, remaining on County Road 379 for 1.4 miles.
- The access road is on the left side of the road and continues for 22.5 feet to the well pad.

The project area is located on lands managed by the BLM FFO. The legal location is provided below.

2.1.1. Well Pad

BLM-managed surface

Enduring would utilize the existing 4.79-acre HCU 414H well pad located in the SW¹/₄SW¹/₄ of Section 3, Township (T) 23 North (N), Range 6 West (W), New Mexico Principal Meridian (NMPM).

2.1.2. Access Road

Enduring will utilize an existing 22.5-foot-long access road. No new surface disturbance is anticipated.

2.2. Surface Disturbance

Enduring proposes to utilize the existing HCU 414H well pad, existing access road and existing pipeline/utilities corridor for the proposed HCU 428H four well project; no new surface disturbances are anticipated. During construction, the project working area would be lightly "skimmed" and cleared of vegetation and topsoil would be stored in designated areas. During interim reclamation, approximately 3.71 acres will be reclaimed. The remaining 1.09 acres of the project area will remain disturbed throughout the life of the project and will be reclaimed during final reclamation, when the project is abandoned.

Based on the amount of surface disturbance, Vegetation Reclamation Procedure B applies to this project (BLM 2013). Vegetation Reclamation Procedure B is described further in the Procedures (BLM 2013). Surface disturbance is summarized in Table 2 below.

Table 2. Surface Disturbance Associated with the Project

Project Feature	Summarized Description	Landowner/ Land Manager	Existing Surface Disturbance (acres)	Interim Reclamation (acres)	Final Reclamation (acres)
Access Road	Existing, preauthorized	BLM	0.01	NA	0.01

Project Feature	Summarized Description	Landowner/ Land Manager	Existing Surface Disturbance (acres)	Interim Reclamation (acres)	Final Reclamation (acres)
Well pad	Existing, Preauthorized The well pad measures approximately 500' × 450'	BLM	4.79	3.71	1.08
Total [†]		BLM	4.80	3.71	1.09

[†] Totals may vary due to rounding discrepancies.

2.3. Pre-Disturbance On-Site/ Site Visit Meeting

A pre-disturbance on-site meeting for the project was held with representatives from the BLM-FFO, Enduring, and SWCA Environmental Consultants (SWCA) on June 27, 2023. The BLM-FFO invited stakeholders and interested parties to the meeting. Aside from those listed, no private citizens or other groups attended.

3. SITE CONDITIONS

The project area topography is fairly level. The elevation of the project area ranges from approximately 6,690 to 6,710 feet above mean sea level. Two soil types are mapped within the project area: Blancot-Notal association and Gypsiorthids-Badland-Stumble complex (Natural Resources Conservation Service 2023). Based on the climatic records for Lybrook, New Mexico (Station No. 295290), this area has an average annual maximum temperature of 61.1 degrees Fahrenheit and an average annual minimum temperature of 34.9 degrees Fahrenheit. The average annual rainfall is 10.8 inches, with the majority occurring between July and September. The average annual total snowfall is 25.3 inches, which largely occurs between October and April (Western Regional Climate Center 2023). Soil testing may be conducted prior to reclamation activities, if requested by the BLM.

3.1. Vegetation Community

Reclamation standards are based on eight BLM FFO-designated vegetation communities that are outlined in the Farmington Field Office Bare Soil Reclamation Procedures (BLM 2013). During the on-site meeting on June 27, 2023, the BLM determined that the sagebrush community would best describe the project area prior to previous disturbances. Dominate species in the surrounding area include sagebrush (*Artemisia tridentata*), blue grama (*Bouteloua gracilis*), and fourwing saltbush (*Atriplex canescens*). Existing disturbances within the project area include the NELCA 176H well pad, an access road, and livestock grazing. There was no indication of current recreational activity.

During the pre-disturbance on-site meeting, SWCA and Enduring personnel conducted a noxious weed survey for New Mexico Department of Agriculture (NMDA)–listed Class A and Class B noxious weeds in the project area. No NMDA-listed noxious weed species were identified within the project area.

Please refer to the onsite noxious weed form in Appendix A for details.

3.2. Project Area Photographs

Photographs of the project area to be reclaimed are provided in Table 3.

.

Table 3. Project Area Photographs

Photograph Description	Photograph
Photograph taken from the center of the well pad; view facing north.	
Photograph taken from the center of the well pad; view facing south.	<image/>

.

Photograph Description	Photograph
Photograph taken from the center of the well pad; view facing east.	
Photograph taken from the center of the well pad; view facing west.	

4. RECLAMATION TECHNIQUES FOR SUCCESSFUL REVEGETATION

The BLM FFO will be notified at least 48 hours prior to the start of reclamation activities. Final facility layouts and placement were determined at the formal BLM facility on-site meeting with the BLM FFO.

4.1. Interim Reclamation

Interim reclamation will take place within 120 days of final construction. This phase will occur following the construction, drilling, and completion phases of the project. Areas that will be reclaimed during interim reclamation are described in Section 2.2.

4.2. Vegetation and Site Clearing

If present, trees and brush 3 inches in diameter or greater at ground level will be cut and stacked for wood gatherers. All other trees and brush will be mowed or mulched at ground level. Stumps and root balls will be hauled to an approved disposal site or stockpiled at the edge of the well pad and buried in the cut slopes of the well pad during interim reclamation. Any slash and brush will be chipped, shredded, or mulched, and incorporated into the topsoil for later use in interim reclamation. Vegetation that has re-established within the interim reclaimed portions of the disturbance area will be mulched and incorporated into the topsoil as additional organic matter.

4.3. Topsoil Stripping, Storage, and Replacement

The upper 6 inches of topsoil (if available) will be stripped following vegetation mulching. Topsoil would not be mixed with the underlying subsoil horizons and would be stockpiled as a berm/windrow along the interior perimeter of the construction buffer zone. Topsoil and sub-surface soils will be replaced in the proper order, prior to final seedbed preparation. Topsoil will be spread evenly over sub-soils upon completion of recontouring operations and prior to final seedbed preparation. Redistribution of topsoil shall not be done when the ground or topsoil is wet. Vehicle/equipment traffic will not be allowed to cross topsoil stockpiles. If topsoil is stored for a length of time such that nutrients are depleted from the topsoil, amendments would be added to the topsoil as advised by the Enduring environmental scientist or appropriate agent/contractor.

4.4. Recontouring

All disturbed areas related to the project area will be recontoured to blend with the surrounding landscape, emphasizing restoration of the existing drainage patterns and landforms to pre-construction condition to the extent practicable. Within areas that require recontouring, the surface will be recontoured to match pre-disturbance conditions (particularly drainage patterns) or to blend with the surrounding landform as closely as possible.

The well pad will be contoured to blend with the surrounding landforms, removing signs of cut/fill slopes. The fill slope on the northern sides of the location and stockpiled berm just northeast of the fill slope will be pushed (dozer)/excavated (excavator)/or carried (belly scraper) and placed within the cut slope on the southern sides of the location. Natural rolling contours will be implemented to break up the surface and aid in removing signs of the well pad once vegetation establishes.

4.5. Water Management/Erosion Control Features

The BLM-FFO and the Enduring would work in collaboration to develop site-specific erosion control or water management features and to identify installation locations. Potential erosion control or water management features that may be used include (but are not limited to) water bars or rolling dips for roads, sediment basins or sediment traps, check dams, silt fencing, bellholes upstream of culverts, outlet protection for culverts, erosion control blankets, straw bales, and straw wattles.

As determined during the on-site visit on June 27, 2023, the following water management/erosion control features would be implemented during construction of the project:

• Diversions will be constructed as needed.

During interim reclamation, areas of the project that are not needed for long-term operations and maintenance will be recontoured to reestablish disturbed terrain and blend into the surrounding landscape. The natural drainage network would be reestablished as practicable with necessary diversions around the long-term project footprint.

4.6. Seedbed Preparation

For cut-and-fill slopes, initial seedbed preparation would consist of pushing (dozer)/excavating (excavator)/hauling (belly scraper) the unneeded fill slope material and placing it within the cut slopes. Natural rolling contours would be implemented to break up the surface and aid in removing signs of the sharp well pad corners once vegetation establishes. Emphasis would be placed on restoration of the existing drainage patterns and landforms to preconstruction conditions, to the extent practicable.

Within areas that would be reseeded, stockpiled topsoil would be evenly redistributed prior to final seedbed preparation. Seedbed preparation within compacted areas would include ripping to a minimum depth of 18 inches and spacing furrows 2 feet apart. Ripping would be conducted perpendicularly in two phases, where practicable. If large clumps/clods result from the ripping process, disking would be conducted perpendicular to slopes in order to provide terracing and minimize runoff and erosion. Final seedbed preparation would consist of raking or harrowing the spread topsoil prior to seeding to promote a firm (but not compacted) seedbed without surface crusting. Seedbed preparation may not be necessary for topsoil storage piles or other areas of temporary seeding.

4.7. Soil Amendments

Soil amendments would be added to the topsoil, if needed, as advised by the Enduring environmental scientist or appropriate surface management agency. During the onsite meeting, no soil amendments were identified for use during reclamation.

4.8. Seeding

Table 4 lists BLM FFO's sagebrush seed pick list was identified as suitable for the project area. The seed pick list components are listed in Table 5.

Common Name	Scientific Name	Pure live Seed lbs/acre ¹
Fourwing saltbush	Atriplex canescens	2.0
Winterfat	Krascheninnikovia lanata	2.0
Sand dropseed	Sporobolus cryptandrus	0.5
Western wheatgrass	Pascopyrum smithii	4.0
Indian ricegrass	Achnatherum hymenoides	4.0
Blue grama	Bouteloua gracilis	2.5
Bottle brush squirreltail	Elymus elymoides	3.0
Blue flax	Linum lewisii	0.25
Rocky Mountain bee plant	Cleome Serrulata	0.25

Table 4. BLM Farmington	Field Office Sagebrush	Community Seed Mix

¹Based on 60 PLS per square foot, drill seeded; double this rate (120 PLS per square foot) if broadcast or hydro-seeded.

Seeding will occur immediately following recontouring and seedbed preparation. A disc-type seed drill with two boxes for various seed sizes will be utilized for seeding the disturbed areas of the site. Enduring or its reclamation subcontractor will ensure that perennial grasses and shrubs are planted at the appropriate depth. Intermediate-size seeds (such as wheatgrasses and shrubs) will be planted at a depth of 0.5-inch, larger seeds (such as Indian ricegrass) will be planted at a depth of 1 to 2 inches, and small seeds (such as sand dropseed) will be planted at a depth of 0.25 inch. In situations where differing planting depths are not practicable with the equipment being used, the entire mix will be planted no deeper than 0.25 inch. A drag, packer, or roller will follow the seeder to ensure uniform seed coverage and adequate compaction. Seeding will be run perpendicular to slopes in order to minimize runoff and erosion.

Drill seeding may be used on well-packed and stable soils on gentler slopes and where tractors and drills can safely operate. Where drill seeding is not practical, the contractor will hand broadcast seed using a "*cyclone*" hand seeder or similar broadcast seeder. Galleta seed may also be broadcast; due to the light fluffy nature of this seed, it does not seed well through a drill seeder. Broadcast application of seed requires a doubling of the drill-seeding rate. The seed will then be raked into the ground so that the seed is planted no deeper than 0.25 inch below the surface.

Upon completion of seeding, straw mulch will be spread across the reclaimed area and crimped into the soil. This will promote site stabilization and slightly increase moisture retention.

4.9. Noxious and Invasive Weed Control

Should any noxious or invasive weeds be documented within the project area following the completion of reclamation activities, Enduring will follow the guidance outlined in their Pesticide Use Proposal approved by the BLM FFO. Enduring will submit all required documentation for weed treatments associated with the proposed project; this includes chemical and manual weed removal. Enduring will submit a Pesticide Use Report quarterly and annually or when requested by the BLM-FFO Authorized Officer or the BLM-FFO Noxious Weed Specialist.

5. MONITORING REQUIREMENTS

Reclamation monitoring is required to document attainment of the vegetation percent cover standard and reclamation success. The monitoring and reporting methods described below will apply to both interim and final reclamation. Monitoring and reporting requirements remain in effect as long as the permit, grant, or authorization is in force, and until all associated facilities and infrastructure are abandoned by BLM procedure and a FAN and/or relinquishment is issued. The vegetation percent cover referenced below is described in detail in Section 5.4 (Reclamation Attainment).

5.1. Initial Monitoring and Reporting

Monitoring sites will be established by the BLM FFO, in collaboration with Enduring, during the required earthwork and/or seeding inspections. Initial monitoring tasks will be conducted by the BLM FFO. The BLM FFO will submit the initial monitoring reports to Enduring within 60 days of conducting the initial monitoring tasks.

5.2. Annual Monitoring and Reporting

Enduring will perform annual monitoring starting 2 calendar years after BLM FFO's approval of earthwork and/or seeding. Annual monitoring will continue until the vegetation percent cover standard has been attained. Annual monitoring reports will be submitted to the BLM FFO by December 31 of the year monitored.

5.3. Long-Term Monitoring

After the required percent revegetation standard has been attained, Enduring will begin long-term monitoring. This includes, every fifth year after attainment as determined by the BLM FFO, Enduring will monitor the site at all established photo points to ensure the site remains productive and stable. Enduring will submit the monitoring report to the BLM by December 31 of the year monitored.

5.4. Reclamation Attainment

Per the Procedures (BLM 2013), the following foliar percent cover standards listed in Table 5 must be attained for reclamation to be considered successful.

Functional Group	Percent (%) Foliar Cover	Common Species
Trees/Shrubs/ Grasses/ Forbs	≥ 35	Utah juniper, Piñon pine; big sagebrush, four-wing saltbush, antelope bitterbrush, alkali sacaton, Western wheatgrass, Indian ricegrass, galleta, sand dropseed, scarlet globemallow, wooly Indian wheat, fleabane, Penstemon spp., buckwheat, threadleaf groundsel.
Invasive/undesirables 10% allowed toward meeting standard of 35%	≤ 10	Plants that have the potential to become a dominant species on a site where its presence is a detriment to revegetation efforts or the native plant community. Examples of invasive species include cheatgrass, Russian thistle, halogeton.

Table 5. Reclamation Goal for Sagebrush Community

When vegetation meets the attainment standards listed in Table 4 and as required by the BLM-FFO Bare Soil Reclamation Procedure, Enduring may request BLM-FFO concurrence that vegetation percent cover standards have been attained any time after 2 calendar years of completion of earthwork and seeding. Enduring will submit a final abandonment notice (FAN), identifying that revegetation standards have been attained. The BLM-FFO will reply to the operator to confirm concurrence (or not) with a rationale for the determination within 60 days of receiving the

request. If the revegetation standards are not being attained, Enduring and the BLM-FFO will analyze the issues that may have contributed to vegetation reclamation failure or lack of meaningful progress. Remedial actions will be developed collaboratively if vegetation percent cover standards are not being attained. Details regarding this process can be found in the Procedures (BLM 2013).

6. REFERENCES

- Bureau of Land Management (BLM). 2013. Farmington Field Office Bare Soil Reclamation Procedures. Available at: http://www.emnrd.state.nm.us/MMD/AML/documents/FFOBareSoilReclamationProcedures2-1-13.pdf. Accessed July 2023.
- Bureau of Land Management (BLM) and U.S. Forest Service. 2007. Surface Operating Standards and Guidelines for Oil and Gas Exploration and Development. BLM/WO/ST-06/021+307/REV 07. Bureau of Land Management. Denver, Colorado. 84 pp.
- Natural Resources Conservation Service. 2023. Web Soil Survey. Available at: <u>https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx</u>. Accessed July 2023.
- New Mexico Department of Agriculture (NMDA). 2020. Memo: New Mexico Noxious Weed List Update. Available at: <u>https://nmdeptag.nmsu.edu/apr/noxious-weeds.html.</u> Accessed July 2023.
- Western Regional Climate Center. 2023. New Mexico Climate Summaries: Lybrook, New Mexico (295290). Available at: https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?nm5290. Accessed July 2023.

APPENDIX A. ONSITE NOXIOUS WEED FORM

Onsite Noxious Weed Form

If noxious weeds are found during the onsite, fill out form and submit to FFO weed coordinator Operator <u>Enduring</u> Well Name and Number <u>Haynes</u> Location: Township, Range, Section Surveyor(s) (angon 428/+ Date 202

Location of Project NAD 83 Decimal Degrees 4. 1296"N 4635 107

Class A Noxio	us Weed – C	Check Box i	if Found
----------------------	-------------	-------------	----------

Chubb II HOARdub II Chub Don II I Cultu				
Alfombrilla	Diffuse knapweed	Hydrilla	Purple starthistle	Yellow toadflax
Black henbane	Dyer's woad	Leafy spurge	Ravenna grass	
Camelthorm	Eurasian watermilfoil	Oxeye daise	Scotch thistle	
Canada thistle	Giant salvinia	Parrotfeather	Spotted knapweed	
Dalmation toadflax	Hoary cress	Purple loosestrife	Yellow starthistle	

Class B Noxious Weed - Check Box if Found

African rue	Perennial pepperweed	Russian knapweed	Tree of heaven
Chicory	Musk thistle	Poison hemlock	
Halogeton	Malta starthistle	Teasel	

Comments:

sign and date

sign and date

6/27/23 **FFO Representative:** Operator Representative <

38

SURFACE USE PLAN OF OPERATIONS

Haynes Canyon Unit (HCU) 428H-Four Well-Site Reoccupation Project

<u>HCU 428H, HCU 430H, HCU 440H, HCU 442H</u>

SEPTEMBER 2023

ENDURING RESOURCES IV, LLC

200 Energy Court Farmington, New Mexico 87401 Phone: (505) 636-9720

.

TABLE OF CONTENTS

1.	INTRODUCTION1
2.	PROJECT DESCRIPTION
3.	Well SITE CONSTRUCTION AND LAYOUT
4.	PROPOSED NEW OR RECONSTRUCTED ACCESS ROAD(S)
5.	LOCATION OF EXISTING WELLS
6.	WATER USE AND APPLICATIONS
7.	LOCATIONS AND TYPES OF WATER SUPPLY
8.	CONSTRUCTION MATERIALS
9.	METHODS FOR HANDLING WASTE
10.	PLANS FOR SURFACE RECLAMATION
11.	SURFACE OWNERSHIP
12.	OTHER INFORMATION
APPE	NDIX A. SURVEY PLATS
	NDIX B. EXISTING WELLS WITHIN 1 MILEB
	NDIX C. WATER TRANSPORTATION MAPC
APPE	NDIX D. CONSTRUCTION MATERIALS MAPD
Appe	NDIX E. WELL PAD LAYOUT DIAGRAMS

1. INTRODUCTION

1.1. Purpose and Intent

The purpose of the Proposed Project is to allow Enduring Resources IV, LLC's (Enduring) reasonable access to public lands to develop federal minerals administered by the Bureau of Land Management's (BLM's) Farmington Field Office (FFO) and New Mexico Oil Conservation Division (NMOCD) for Enduring's valid mineral lease (NMNM-028733) within the Haynes Canyon Unit (NMNM-142111).

The need for the Proposed Project is BLM's requirement to respond to Enduring's Application for Permit to Drill (APD). Per Onshore Oil and Gas Operating Regulations (43 Code of Federal Regulations [CFR] 3160); the Mineral Leasing Act (MLA) of 1920, as amended (30 United States Code [USC] 181 et seq); and the Federal Land Policy and Management Act of 1976 (43 USC 1701 et seq.).

In accordance with Onshore Oil and Gas Order No. 1 (43 CFR 3160), this Surface Use Plan of Operations (SUPO) has been prepared for Enduring's proposed Haynes Canyon Unit (HCU) 428H-Four Well-Site Reoccupation Project HCU 428H, HCU 430H, HCU 440H, HCU 442H (HCU 428H Project). The project as proposed would provide for the drilling, development, transportation, operation, and maintenance of the HCU 428H Project.

The proposed action is not known to cross or impact any U.S. Army Corps of Engineers (USACE) jurisdictional Waters of the U.S. (WOUS).

The information is provided to the surface management agency to give an accurate account of the proposed action for National Environmental Policy Act (NEPA) disclosure. This SUPO details only the proposed action, any alternatives considered in detail are described in the associated Environmental Analysis (EA) document.

Enduring will comply with all applicable laws, regulations, Onshore Orders, Conditions of Approval (COA) attached to the approved APDs, and this SUPO. No additional surface disturbance beyond that authorized by the approved APDs will be initiated without prior approval by the Authorized Officer (AO).

Enduring Resource IV, LLC (Enduring) may submit a request to the BLM-FFO to revise this SUPO at any time during the life of the project in accordance with The Gold Book: Surface Operating Standards and Guidelines for Oil and Gas Exploration and Development (BLM and U.S. Forest Service 2007). Enduring would include justification for the revision request.

The Enduring representative for this reclamation plan is: Theresa Ancell Regulatory Manager Enduring Resources IV, LLC 200 Energy Court Farmington, New Mexico 87401 505-636-9720

2. PROJECT DESCRIPTION

Table 2.1. Project Information				
Applicant:	Enduring Resources IV, LLC			
Project Name:	Haynes Canyon Unit (HCU) 428H-Four Well-Site Reoccupation Project HCU 428H, HCU 430H, HCU 440H, HCU 442H (HCU 428H Project)			
Project Features:	One well pad with four wells and (production facilities if present), access road corridor, co-located well tie pipeline, and utility corridor.			
Lease Number(s): NMNM-028733, New BLM System MLRS # NMNM105770949				
Land Manager(s): BLM-FFO				
Mineral Manager(s): BLM-FFO				

Table 2.1. Project Information

Infrastructure proposed to be constructed, operated, subsequently interim reclaimed, and eventually fully reclaimed as part of the HCU 428H Project would be located on lease, located on BLM-FFO administered lands with Federal minerals. The project would be permitted, built, and operated per lease authority for the term of the proposed wells served in Enduring's surface lease (NMNM-028733, New BLM System MLRS # NMNM105770949) within the HCU (NMNM-142111).

The HCU 428H Project would be constructed within existing disturbance associated with previously permitted but un-drilled and developed HCU 414H well. The existing well pad, access road, and pipeline/utility corridor for the HCU 414H were permitted and constructed by a previous operator, WPX, however, the well was subsequently never drilled.

Existing on-lease infrastructure includes:

The 4.79-acre existing well pad proposed to be utilized for the HCU 428H Project well pad is irregularly shaped measuring approximately 500-foot by 450-foot at its longest sides which includes an irregular construction buffer zone/edge of disturbance (EOD) of 50 feet.

One existing 22.5-foot-long by 30-foot-wide access road corridor would be utilized to accommodate access for construction, drilling, completion, and long-term operation of the wells mentioned above; no new access road or upgrades are proposed.

The proposed wells would connect to the existing pipeline/utilities infrastructure on the existing HCU 414H well pad; no new pipeline/utility infrastructure corridors are proposed.

Separate permitting not associated with the HCU 428H proposed action, the HCU 432H proposed project located north of the proposed HCU 428H would include a 3383.8 pipeline/utilities corridor connecting HCU 432H to HCU 428H facilities and infrastructure.

Proposed HCU 428H Project infrastructure includes:

• The well pad would accommodate the development of four wells to produce Federal minerals within Enduring's HCU (NMNM-142111).

2.1. Location

The HCU 428H Project is in the Southwest ¼ of Southwest ¼ of Section 3, Township 23 North, Range 6 West, New Mexico Principal Meridian (NMPM), 903 Feet from the south and 429 feet from the west line in Rio Arriba County, New Mexico.

See the existing road map and written directions in the survey plat package in Appendix A. Directions are from the intersection of US Hwy 550 and US Hwy 64 in Bloomfield, New Mexico.

3. Well site Construction and Layout

Drilling of the proposed HCU 428H Project would require utilizing a 4.79-acre existing well pad. This entire area would be utilized during construction, setting of production equipment, drilling, and completion phases. The Surface Hole Locations for the four wells associated with the HCU 428H Project are located below in Table 3.1.

Well flag	Footages	Latitude (NAD 83)	Longitude (NAD 83)
HCU 428H	903' FSL, 429' FWL	36.248667°N	-107.464358°W
HCU 430H	897' FSL, 448' FWL	36.248652°N	-107.464293°W
HCU 440H	916' FSL, 390' FWL	36.248698°N	-107.464489°W
HCU 442H	910' FSL, 409' FWL	36.248682°N	-107.464423°W

Table 3.1. Surface Hole Locations

During construction, the existing well pad would be leveled to provide adequate space and a level working surface for vehicles and equipment. Excavated materials from cuts are used to fill portions of the well pad to level the surface. The approximate cuts, fills, and well pad orientation are shown on the cut/fill worksheet and cross-section diagrams in the survey plats found in Appendix A.

See Appendix E for the proposed Well Pad Facility Diagram showing the long-term well pad layout, areas to be reclaimed, and anticipated utilization of existing disturbance acreage; Well Pad Drilling Diagrams showing the location and orientation of the drill rig; and the Well Pad Completion Diagram, showing the location and orientation of the completion equipment.

3.1. 3.1 Production Facilities

Current plans include collocating facilities for the proposed HCU 428H and HCU 432H projects. Due to existing infrastructure present at the HCU 428H project location, current plans are for collocated production facilities to exist only at the HCU 428H project location. Existing production facilities for the HCU 428H Project are currently located on the north end of the well pad. However, due to the changing nature of projects, each project is being proposed with separate facilities to account for the potential changes in drilling sequence and schedule. Potential facilities on location may include but are not limited to (including facilities that may occur through the life of the four wells) and Temporary equipment during drilling, completion, and flowback operations may be placed anywhere within the permitted location. During road construction, production-associated equipment would be delivered and left within the permitted area until construction is complete.

3.2. Best Practices and Mitigation Measures

Topsoil removal, storage, and protection are described in detail in the associated Surface Reclamation Plan.

4. PROPOSED NEW OR RECONSTRUCTED ACCESS ROAD(S)

During the June 27, 2023, onsite visit, it was determined by the operator and surface managing agency that County Road 379 (CR 379) and 22.5 feet of existing access road corridor would be utilized to access the proposed project location.

Upon approval, CR 379 and the project access road will be maintained, upgraded, or reconstructed to meet anticipated traffic volumes and all-weather access needs.

Any site-specific stipulations, design features, and Best /Management Practices (BMPs) discussed to be implemented on this section of the existing roadway are listed below (4.2 Best Practices and Mitigation Measures) and in Enduring's Road Maintenance Plan. See the construction plats in Appendix A for the access road length and location from existing established roads.

4.1. 4.2 Best Practices and Mitigation Measures

- A. Enduring will construct, improve, and maintain roads in accordance with The Gold Book: Surface Operating Standards and Guidelines for Oil and Gas Exploration and Development. Enduring will defer to the county or the Roads Committee, when formed, for maintenance determinations for any existing County Roads or roads that are considered collector roads, utilized for the project. See Enduring's associated Road Maintenance Plan for more details.
- B. Any pre-existing water management and erosion control structures will be inspected and maintained to accommodate long-term stormwater control.
- C. If found to be necessary, additional water management features such as water bars, rolling dips, or culverts will be installed within the existing roadway if found to be necessary for maintaining a safe stable roadway allowing all-weather access.
- D. No construction or routine maintenance activities will be performed during periods when the soil is too wet to adequately support construction equipment. If equipment creates ruts deeper than six inches, the soil will be deemed too wet for construction or maintenance.
- E. Before any soil disturbing road or well pad construction-related activities, if present and warranted, the project area including the proposed access road and pipeline/utility corridor would be cleared of trees and vegetation. A compact track loader with a mulching attachment will mulch and incorporate all trees that measure less than 3 inches in diameter at ground level (if present) and slash/brush into the topsoil. A woodcutting crew will clear all trees three inches or greater at ground level (if present) with chainsaws. The mean height of any stump will not exceed one-half its diameter and in no case exceed six inches on the uphill side. Tree trunks (left whole) and large limbs will be stacked and made available to the public unless stipulated otherwise by the AO.
- F. Material will be imported only if necessary to establish a safe all-weather roadway. Once the roadway has been established, the driving surface may be capped if needed and deemed economically viable. Sandstone from a nearby permitted location would be the preferred surfacing material and would be laid approximately 8-12 inches thick.
- G. Maintenance of existing roads will be restricted to the existing disturbed footprint; no new surface disturbance will be created. Maintenance will continue until wells accessed by the existing roadway have been Plugged and Abandoned (P&A) and a Final Abandonment Notice (FAN) has been approved.
- H. During interim reclamation, once drilling and completion phases are complete for all wells on location, the roadway will be reduced in size to a 14-foot-wide running surface with 0 pullouts, and appropriate water/erosion control on each side of the roadway. The roadway will measure approximately 22 feet wide from the bottom of the borrow ditch to the bottom of the barrow ditch assuming a 24-inch lift on the road with 2:1 shoulder to the bottom of the ditch (silt traps, culvert bell holes, and turnout ditches will extend beyond this). All remaining disturbed areas within the 30-foot access road corridor and exterior to borrow ditches and back slopes anticipated to be needed for long-term maintenance will be reseeded in efforts to reduce erosion. Any established cut and fill slopes (including any Temporary Use Areas (TUAS) used for cut and fill) will be reseeded only to preserve safe and stable slopes.
- I. There are no steep slopes, side slopes, or large wash crossings requiring the need for additional TUAs beyond the 30-foot access road corridor.

- J. Due to the short nature of the proposed roadway and lack of foreseen drainage concerns, no new culverts are anticipated to be needed. If culverts exist or are found to be needed to maintain a safe and stable roadway, they would be installed during construction and/or interim reclamation. There are no pullouts necessary for the proposed access road due to its short nature and full sight distance from the new access road takeoff to the well pad.
- K. There are no Army Corps of Engineers designated Waters of the United States impacted by the proposed access road. No low water crossings would be required associated with the proposed action.
- L. The existing access road does not cross any existing fence lines.
- M. Enduring would maximize the use of native material within the project area to reduce or eliminate the need to haul in foreign material. This includes the use of sandstone surfacing material as opposed to foreign rock in this area. However, foreign materials such as pit run, gravel, road base, rip-rap cobblestone, and large boulders may be imported and used for reasons such as but not limited to elevating roadways, low water crossings, road surfacing, erosion control, culvert and cattle guard installations, natural barricade, surface replacement, and spot repairs. A map of potential borrowing sites where Enduring may obtain material can be found in Appendix D. The material sources have been labeled with the operator's name (if applicable) and legal location to the quarter-quarter. Material excavated during the establishment of silt traps and erosion control may also be used in construction project features.
- N. BMPs for dust abatement will be utilized along the roads to reduce fugitive dust during construction, drilling, completion, and any other heavy traffic activities during the life of the project. Water application using a rearspraying truck or other suitable means will be the primary method of dust suppression. If it is found to be necessary to apply commercial dust mitigation materials such as magnesium chloride, organic-based compounds, or polymer compounds; Enduring will seek approval from the appropriate surface managing agency. These dust mitigation measures may also be included as COAs attached to the approved APDs.
- O. The final reclamation of the proposed access road is discussed in the associated Surface Reclamation Plan.
- P. Topsoil removal, storage, and protection are described in detail in the associated Surface Reclamation Plan.

5. LOCATION OF EXISTING WELLS

Water wells and oil and gas wells (plugged and abandoned, active, and proposed) within a one-mile radius of the HCU 428H Project are depicted in Appendix B. There are 2 water wells, 14 oil and gas wells (plugged and abandoned, active, or proposed) within a one-mile radius of the proposed well pad location.

6. WATER USE AND APPLICATIONS

Please see Appendix C for the water transportation map identifying the locations of the supply wells.

During construction, freshwater sources would be used for the drill point and concrete casing. Fresh water would be used to dampen native soils as fill material is placed in lifts. This would promote adequate compaction on the fill slopes of the access road and well pad, as well as control fugitive dust.

During initial drilling, and post completion drill out operations, construction activities, dust abatement, pad and road improvements; Enduring estimates using a consolidated 17,558 bbls of fresh water. This is inclusive for the four proposed wells for HCU 428H project.

The estimates are general and predicted using average past water volume usage for similar activities. Variables that can significantly affect these volumes include but are not limited to, soil type, grain size, grain shape, recent weather events, relative humidity, time of year, and soil moisture holding capacity.

Fresh water is additionally used on an as-needed basis for dampening native soils to maximum dry density using American Society for Testing and Materials (ASTM) standards to achieve acceptable engineered compaction, dust

suppression along dirt roadways during drilling, completion, and any other operations where heavy traffic may be anticipated. The total amount applied during these activities is all dependent upon, but not limited to, the length of the dirt road, weather conditions, relative humidity, density of traffic, and duration of traffic.

During completion operations, Enduring predicts using a consolidated 447,760 bbls of non-potable brine water from a non-potable formation, produced water, and recycled water. This is inclusive for the four HCU 428H project wells. Sources of these fluids and the process of recycling are discussed further below.

During completion operations, Enduring would use non-potable water from a non-potable water-bearing formation. Enduring may also utilize produced water gathered from their existing wells within the Mancos Gallup area. Produced water may be gathered and delivered to the HCU 482H Project via existing underground pipeline infrastructure and trucks. Produced water gathered at Shiprock San Juan, LLC's 4-1 CDP may also be tracked and used during completion operations. Flowback water from completion operations will be recycled for reuse. These non-potable sources will be gathered, stored, treated, and recycled at any of Enduring's Water Recycling Facilities.

Enduring filters and separates water contained within their recycling facilities in three phases. Phase one includes the retention of water within a 750 bbl water leg that separates 100-micron oil droplets and sediment/particles. Phase two, downstream of the water leg, water passes through a large coalesquer filter with estimated 30-micron oil droplet removal capabilities. The final phase of filtration before entering the containment includes passing through two filter pots in parallel containing bag or cartridge filters. These filters can vary in micron filtration sizing dictated by the solids recovered, likely, a range between 10-50 microns. Enduring will size bag or cartridge filters as necessary during operations. The average Entrada water supply well total dissolved solids (TDS) are 10,000+.

Flowback water from completion activities will be recycled and returned to an Enduring water recycling facility for reuse. Flowback water may contain solids, oil, and produced water when immediately returned from the wellbore. Before the water leaves the completion location, it will pass through the permanent facilities on location if built and commissioned or pass through a temporary treatment facility on location. Treatment will remove oil and solids before leaving the location. Flowback water may additionally pass through the permanent water treatment facility at the containment location before entering the containment if necessary. Flowback water within containment after treatment and filtration may contain a mixture of produced water and supply water from the Entrada Formation used for the stimulation process.

Enduring will fill and store water in all their water recycling containments and Above-Ground Storage Tanks (ASTs) for anticipated use during drilling and completion activities. Filling containments and ASTs via Entrada supply wells will begin no later than four to five working weeks before drilling and completion activities commence unless supplementary sources are used in addition thereto. Enduring provides all stimulation fluid properties and additives through the Frac Focus site established for reporting to State and Federal Agencies. See Frac Focus for stimulation fluid components.

7. LOCATIONS AND TYPES OF WATER SUPPLY

Fresh water would be obtained from the following location(s):

5.3. Smelser (POD No. RG06855)

The Smelser Well is located in the northeast ¼ of the northeast ¼ of Section 9, Township 21, North Range 2 West, NMPM. The well is located at Latitude 36.069826° North and Longitude -107.04718° West. This source is located on private lands. Transportation from source will be via truck.

5.4. Blanco Trading Post (POD No. SJ02105)

The Blanco Trading Post Well is located in the southwest ¹/₄ of the northeast ¹/₄ of Section 32, Township 25 North, Range 9 West, NMPM. The well is located at Latitude 36.359802° North and Longitude - 107.810310° West. This source is located on State of New Mexico lands managed by the New Mexico State Lands Office (NMSLO). Transportation from source will be via truck.

Non-Potable water would be obtained from the following location(s):

Enduring Resources NEU 2207-16B Water Recycling Facility

The NEU 2207-16B Water Recycling Facility is located in the Northwest ¼ of the Northeast ¼ of Section 16, Township 22 North, Range 9 West, NMPM. The supply well is located at Latitude 36.143567° North and Longitude -107.576013° West. This water recycling Facility is located on State of New Mexico lands managed by the NMSLO. Transportation from the source would be via truck unless alternate methods are otherwise permitted.

Enduring Resources WLU 2309-24N Water Recycling Facility

The WLU 2309-24N Water Recycling Facility is located in the Southeast ¹/₄ of the Southwest ¹/₄ and Southwest ¹/₄ of the Southeast ¹/₄ of Section 24, Township 23 North, Range 9 West, NMPM. The supply well is located at Latitude 36.205932° North and Longitude -107.741568° West. This water recycling Facility is located on public lands managed by the BLM-FFO. Transportation from the source would be via truck unless alternate methods are otherwise permitted.

Enduring Resources KWU 2309-19K Water Recycling Facility

The KWU 2309-19K Water Recycling Facility is located in the Northeast ¼ of the Southwest ¼ of Section 19, Township 23 North, Range 9 West, NMPM. The supply well is located at Latitude 36.210181° North and Longitude -107.831776° West. This water recycling Facility is located on public lands managed by the BLM-FFO. Transportation from the source would be via truck unless alternate methods are otherwise permitted.

Enduring Resources SEU 2206-200 Water Recycling Facility

The SEU 2206-200 Water Recycling Facility is located in the Southwest ¼ of the Southeast ¼ of Section 20, Township 22 North, Range 6 West, NMPM. The supply well is located at Latitude 36.117342° North and Longitude -107.488712° West. This water supply well is located on public lands managed by the BLM-FFO. Transportation from the source would be via truck unless alternate methods are otherwise permitted.

Enduring Resources NEL 2306-06P Water Recycling Facility

The NELC 2306-06P Water Recycling Facility is located in the South ½ of Section 14, Township 22 North, Range 8 West, NMPM. The supply well is located at Latitude 36.310147° North and Longitude -107.651626° West. This water supply well is located on public lands managed by the BLM-FFO. Transportation from the source would be via truck unless alternate methods are otherwise permitted.

8. CONSTRUCTION MATERIALS

- A. Enduring will maximize the use of native material within the proposed project area to reduce or eliminate the need to haul in foreign material.
- B. All surface infrastructure would be constructed utilizing native borrow within the permitted area to create a balanced working surface. Surfacing material or fill material, such as sandstone, gravel, pit run, or road base would be used if needed and economically viable and obtained from an approved location.
- C. Material may be imported and used for any of the following reasons; low water crossings (pit run and road base), road surfacing (road base, gravel, or sandstone), erosion control (riprap cobblestone), barricades (boulders), under and surrounding equipment (gravel), and filling soft or muddy areas (sandstone, pit run, road base, or gravel).
- D. A map of borrow pit locations where Enduring may obtain material can be found in Appendix D. The borrow pits are labeled with the operating company name if applicable and the legal location of the quarter-quarter.
- E. Range ponds are not currently proposed to be constructed for the construction of the HCU 428H Project.

9. METHODS FOR HANDLING WASTE

A. Cuttings:

- Drilling operations will utilize a closed-loop system. Drilling of the horizontal laterals will be accomplished with water-based mud. Oil-based mud could be used contingent on the formation properties encountered.
- All cuttings will be placed in roll-off bins and hauled to a commercial disposal facility or land farm. Enduring will follow Onshore Oil and Gas Order No. 1 regarding the placement, operation, and removal of closed-loop systems. No blow pit will be used.
- Closed-loop tanks will be adequately sized for the containment of all fluids.
- B. Drilling Fluids:
 - Drilling fluids will be stored onsite in above-ground storage tanks. Upon termination of drilling operations, the drilling fluids will be recycled and transferred to other permitted closed-loop systems or disposed of at a designated facility.
- C. Spills:
 - Any spills of non-freshwater fluids will be immediately cleaned up and removed to an approved disposal site.
- D. Sewage
 - Portable toilets will be provided and maintained as needed during construction.
- E. Garbage and other waste material
 - All garbage and trash will be placed in enclosed metal trash containers. The trash and garbage will be hauled off-site and dumped in an approved landfill, as needed.
- F. Hazardous Waste
 - No chemicals subject to reporting under Superfund Amendments and Reauthorization Act Title III in an
 amount equal to or greater than 10,000 pounds will be used, produced, stored, transported, or disposed of
 annually in association with the drilling, testing, or completion of these wells.
 - No extremely hazardous substances, as defined in 40 CFR 355, in threshold planning quantities will be used, produced, stored, transported, or disposed of annually in association with the drilling, testing, or completing of these wells.
 - All fluids (i.e., scrubber cleaners) used during the washing of production equipment will be properly disposed of to avoid ground contamination or hazards to livestock or wildlife.
- G. Flowback:
 - Flowback transported off location/through temporary flowback equipment will consist of approximately 1,000 bbls of produced water per day per well for approximately 14 days. After this flow-back period, production will be sent to the permanent facility for processing.
 - Flowback fluid will be gathered, recycled, and reused as described in Section 5. If there are no foreseeable drilling and completion operations, flow back will be disposed of at one of the disposal wells listed below.
- H. Produced water will be hauled by truck and/or if permitted, transported through below-grade or surface pipeline infrastructure to any of Enduring's water recycling facilities. Produced water may be gathered and used in future drilling and completion operations as an alternative disposal method.
- I. Enduring will dispose of produced water at the following facilities:
 - Disposal 001, API 30-045-26862, operated by Basin Disposal Inc., located in the Southeast ¼ of the Northwest ¼, Section 3, Township 29 North, Range 11 West.
 - Sunco Disposal 001, API 30-045-28653, operated by Agua Moss, LLC, located in the Southwest ¼ of the Northwest ¼, Section 2, Township 29 North, Range 12 West.

- Pretty Lady 30 11 34 001, API 30-045-30922, operated by Agua Moss, LLC, located in the Northwest ¼ of the Southeast ¼, Section 34, Township 30 North, Range 11 West.
- NE Lybrook SWD 001, API 30-039-31378, operated by Enduring Resources IV, LLC, located in the Northwest ¼ of the Southeast ¼ of Section 13, Township 23 North, Range 7 West.
- W Lybrook 2309 24N SWD 001, API 30-045-38292, operated by Enduring Resources IV, LLC, located in the Southeast ¹/₄ of the Southwest ¹/₄ of Section 24, Township 23 North, Range 9 West.

10. PLANS FOR SURFACE RECLAMATION

A Surface Reclamation Plan for the HCU 428H Project has been provided as a separate document. The projectassociated Surface Reclamation Plan was prepared in accordance with Onshore Oil and Gas Order No. 1 and the BLM Bare Soil Reclamation Procedures.

The Surface Reclamation plan addresses:

- Configuration of the reshaped topography;
- Drainage systems;
- Segregation of spoil material;
- Surface disturbances;
- Backfill requirements;
- Redistribution of topsoil;
- Soil treatments;
- Seeding or other steps to reestablish vegetation;
- Weed control;
- and practices necessary to reclaim all disturbed areas.

11. SURFACE OWNERSHIP

The project is located on public lands managed by the BLM-FFO

Bureau of Land Management Farmington Field Office 6251 College Boulevard, Suite A Farmington, New Mexico 87402 (505) 564-7600

12. OTHER INFORMATION

- A. Enduring's appointed construction contractors will call New Mexico One-Call (or equivalent) to identify the location of any marked or unmarked pipelines or cables located in proximity to the proposed HCU 428H Project or any other areas proposed to have ground disturbances at least two working days before ground disturbance.
- B. The construction phase of the project will commence upon receipt of an approved APD. The BLM-FFO will be notified via phone or email at least 48 hours before the start of construction activities associated with the project.
- C. All activities associated with the construction, use/operation, maintenance, and abandonment or termination of the HCU 428H Project will be limited to areas approved in the APDs.

- D. The project area has been surveyed by the Division of Conservation Archeology (DCA). The cultural survey report has been submitted directly to the surface managing agencies. Cultural mitigation, monitoring, and implementation of site protection barriers will occur if stipulated in the COAs attached to the approved APDs.
- E. Per BLM at the June 27, 2023 onsite, a biological survey would not be required as no new surface is permitted or anticipated disturbance resultant of project approval and implementation. Any necessary protection of flora and fauna, Special Status Species (SSS), wildlife, migratory birds, water resources, and air resources will occur if stipulated in the COAs attached to the approved APDs or stipulations in the Right-of-Way (ROW) grants.
- F. Construction and maintenance activities will cease if soil or road surfaces become saturated to the extent that construction equipment is unable to stay within the project area and/or when activities cause irreparable harm to roads, soils, or streams.
- G. All BLM-FFO general COAs will apply to this proposed action.

Appendix A. SURVEY PLATS

.

Receiperto: OCD: 12/5/2023 9:23:12 PM 1625 N. French Drive, Hobbs, NM 88240 Phone: (575) 393–6161 Fax: (575) 393–0720

2619.03 ' (M)

J., 86, 52, 0N

È

2624.54

21, 90, 72,

8

(REC)

2626.80

°25 E

N01

(REC)

2626.80 '

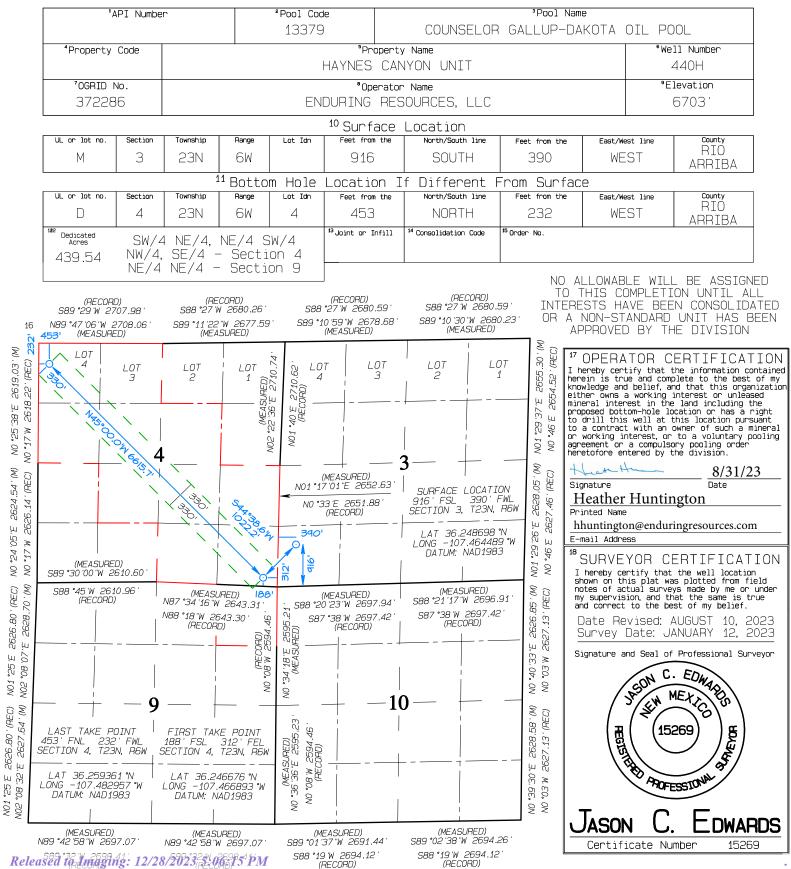
μ

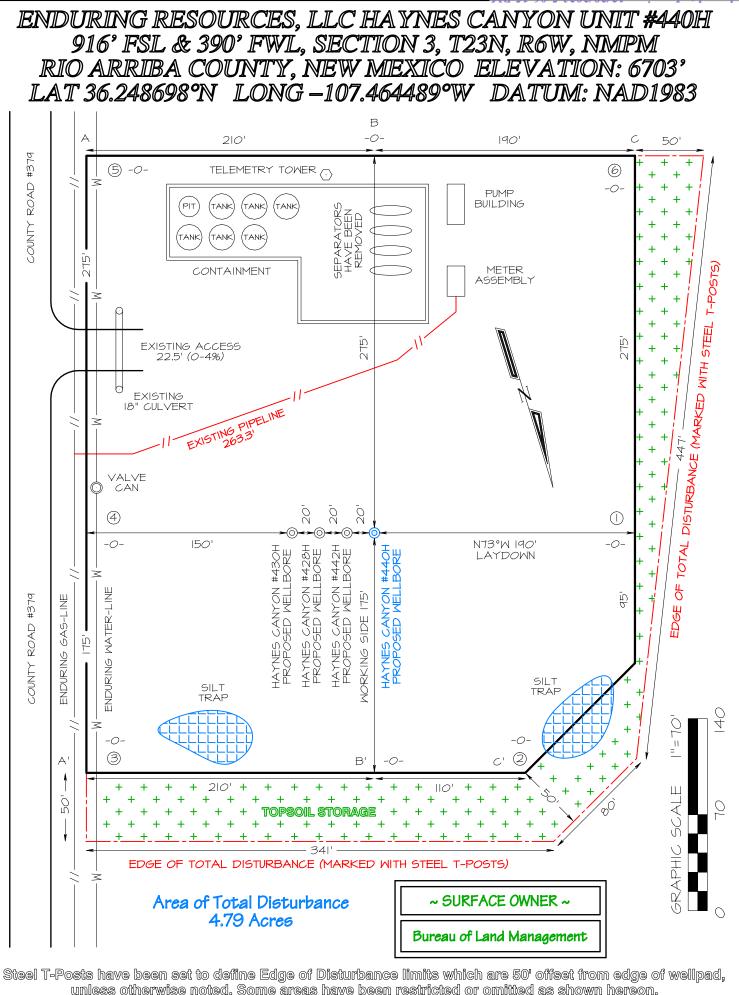
шĸ

, 70N , 20N

District II 811 S. First Street, Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334–6178 Fax: (505) 334–6170 District IV 1220 S. St. Francis Drive, Santa Fe, NM 87505 Phone: (505) 476–3460 Fax: (505) 476–3462

State of New Mexico Energy, Minerals & Natural Resources Department Revised August 1, 2011


Submit one copy to Appropriate District Office


AMENDED REPORT

OIL CONSERVATION DIVISION

1220 South St. Francis Drive Santa Fe, NM 87505

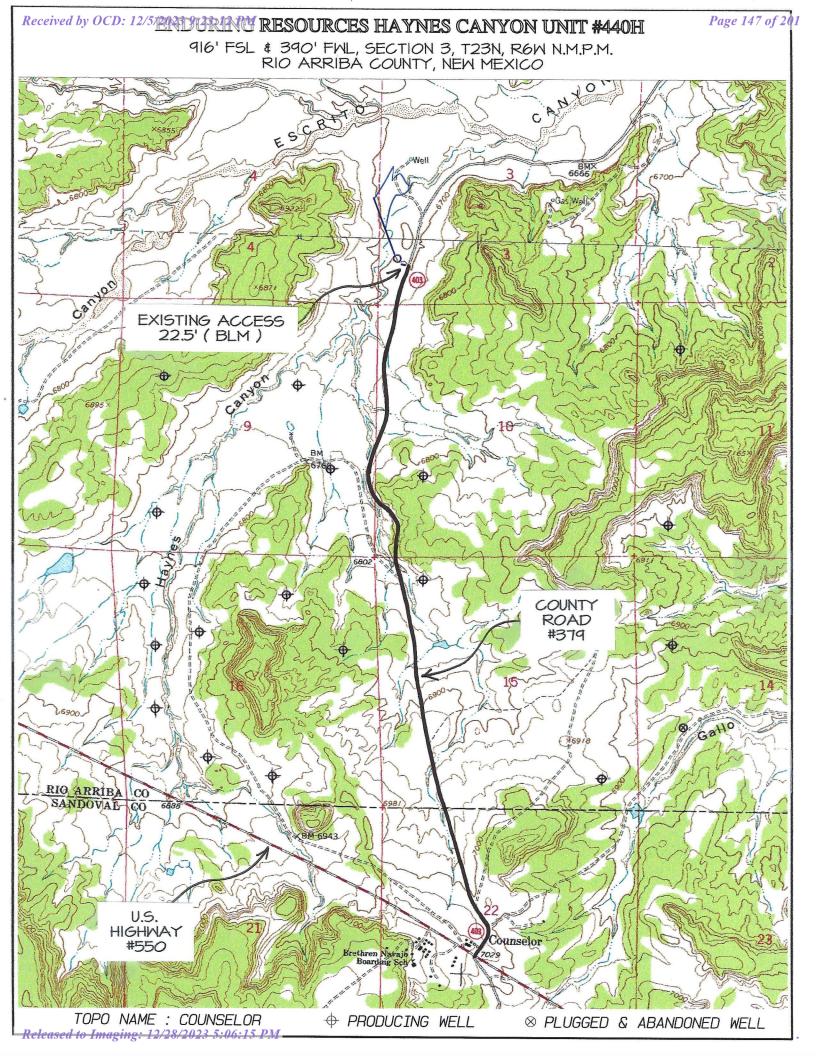
WELL LOCATION AND ACREAGE DEDICATION PLAT

		6703'	67131			· ·		67031	67131	B-B-			:	6703	181	$\rightarrow - \rightarrow$		
						· · · ·	· · · ·					•	•			· · ·	HC	ENDUI 91 RIO
EDWARDS SURVE NTRACTOR SHOUL S OR PIPELINES ON							· · · ·					•	· · · · ·			•	HORIZONTAL SCALE	RING RE 16° FSL & ARRIBA
YING, INC. IS NOT I D CONTACT ONE-C. V WELLPAD AND/OF													· · · · ·			• • • • • • •	SCALE "=60'	ENDURING RESOURCES, 916' FSL & 390' FWL, RIO ARRIBA COUNTY,
EDWARDS SURVEYING, INC. IS NOT LIABLE FOR LOCATION OF UNDERGROUND UTILITIES OR PIPELINES. CONTRACTOR SHOULD CONTACT ONE-CALL FOR LOCATION OF ANY MARKED OR UNMARKED UNDERGROUND UTILITIES OR PIPELINES ON WELLPAD AND/OR ACCESS ROAD AT LEAST TWO WORKING DAYS PRIOR TO CONSTRUCTION.					C,						C,					· · · · · · · · · · · · · · · · · · ·	50' C ,	NDURING RESOURCES, LLC HAYNES 916' FSL & 390' FWL, SECTION 3, T2 RIO ARRIBA COUNTY, NEW MEXICO
ROUND UTILITIES OR PIPELINES D OR UNMARKED UNDERGROU ORKING DAYS PRIOR TO CONST				· · · · · · · · · · · · · · · · · · ·	λ/L				W		/L	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	٦7	CANYON 23N, R6W, ELEVATI
or Pipelines. Underground or to construction				· · · · · · · · · · · · · · · · · · ·											· · · · ·		VERTICAL SCALE	CANYON UNIT #440H 23N, R6W, NMIPM ELEVATION: 6703'
N.													-				CALE "=30'	₩4401HI 1 103°
																	, V	

MA 21:90:2 2202/82/21 :Snignml of besoeles

Received by OCD: 12/5/2023 9:23:12 PM

102 to 241 9304


ſ

Received by OCD: 12/5/2023 9:23:12 PM

ENDURING RESOURCES, LLC HAYNES CANYON UNIT #440H EXISTING ACCESS ROAD SURVEY LOCATED IN SW/4 SW/4 OF SECTION 3, T23N, R6W, NMPM RIO ARRIBA COUNTY. NEW MEXICO FOUND FOUND FOUND 1964 BLM 1964 BLM 1964 BLM BRASS CAP BRASS CAP BRASS CAP 588°27'W 2680.59' (RECORD) 588°27'W 2680.59' (RECORD) : KINEMATIC GPS SURVEY 3TANED FROM SATELLITES N JANUARY 12, 2023 FROM 2E STATION POSITIONED IN OF SECTION 9, T23N, R6M 35 34 589°10'30"W 2680.23' (MEASURED) 34 34 589°10'59"W 2678.68' (MEASURED) 33 T24N 2 3 T23N 3 4 З NOI°29'37"E 2655.30' (MEASURED) BEARING (MEASURED) LOT KINEMATIC GF TAINED FROM LOT (RECORD Lot LOT (RECORD 2 3 4 REAL-TIME KINEMAT SOLUTION OBTAINED F TRACKED ON JANUAR? A REFERENCE STATIO SWA4 NWV4 OF SECTIO ĥ BASIS 2654.52' NOI°40'E 2710.62' 2710.74 NO°46Ē Щ NO2°22'36' FOUND 1964 BLM ・ふら CAP 1964 BLM BRASS CAP FOUND 2 3 BRASS З 4 (MEASURED, ENDURING HAYNES CANYON UNIT #440H 916' FSL, 390' FWL, SECTION 3, T23N, R6W (MEASURED) 10°46'E 2627.46' (RECORD) (RECORD) A CHART N41°04'50"W 247.54 T CONSTRUCTION BEGINS, OR IS ADVISED TO CALL FOR LOCATION OF ANY UNMARKED PIPELINES OF 000|=|TIE TO SW CORNER SECTION 3 S37°44'14"W 937.27' 2000 PRO, 2628.05 ACCESS ROAD SURVEY @ STA 0+22.5 T ON EDGE OF EXISTING WELLPAD 2651.88' 2652.63' Ŧ N72°37'03"W 22.50' PLAT NOTE R UNMARKED THE AREA OF Ш BEGIN ACCESS ROAD SURVEY @ STA 0+00 POINT ON EDGE OF COUNTY ROAD #379 °29'26"E ÀLF NO°33'E ∃,,10,11,10N \subset 0000 SC TIE FROM SOUTH 1/4 CORNER SECTION 3 N72°39'25"W 2201.79' CONTRACTOR γN <u>0</u> ONE-CALL ß SRAPHIC Z BEFORE MARKED З 2 ЗЩ 3 4 З CABL 10 588°21'17"W 2696.91' (MEASURED) 588°20'23"W 2697.94' (MEASURED) \bigcirc 10 q 587°38'W 2697.42' (RECORD) 10 587°38'W 2697.42' (RECORD) FOUND FOUND 1964 BLM FOUND EDWARDS 1964 BLM BRASS CAP JASON 1964 BLM С. BRASS CAP BRASS CAP MEXICO (JEM ~ SURFACE OWNERSHIP ~ Bureau of Land Management Sch EYOR REGISTER / 15269 0+00 TO 0+22.5 22.5 FT / I.4 RODS APOFESSIONAL CHECKED BY: JCE \mathbb{N} SOURCES COURT NM 87401 Land Surveyor: Jason C. Edwards DRAWN BY: EDO I, Jason C. Edwards, a registered Professional Surveyor RESOURC Mailing Address: under the laws of the State of New Mexico, hereby Post Office Box 6612 certify that this plat was prepared from field notes Farmington, NM 87499 ENDURING RES 200 ENERGY (FARMINGTON, 1 of an actual survey meeting the minimum requirements for: Æ **Business Address:** the standards for easement surveys and is true and of FILENAME: 2363MAPI 111 East Pinon Street correct to the best of my knowledge and belief. Prepared Farmington, NM 87402 . 4 OF 6 (505) 486-1695 (Office) SON DWARDS Date: August 10, 2023 ncesurveys@comcast.net SURVEYS, INC SHEET Jason C. Edwards. P.L.S#15269 New Mexico L.S.

Page 146 of 201

Released to Imaging: 12/28/2023 5:06:15 PM

Directions from the Intersection of US Hwy 550 & US Hwy 64

in Bloomfield, NM to Enduring Resources, LLC Haynes Canyon Unit #440H

916' FSL & 390' FWL, Section 3, T23N, R6W, N.M.P.M., Rio Arriba County, NM

Latitude 36.248698°N Longitude -107.464489°W Datum: NAD1983

From the intersection of US Hwy 550 & US Hwy 64 in Bloomfield, NM, travel Southerly on US Hwy 550 for 53.8 miles to Mile Marker 97.6

Go Left (Northerly) on County Road #379 (aka State Highway #403) for 1.5 miles to fork in roadway;

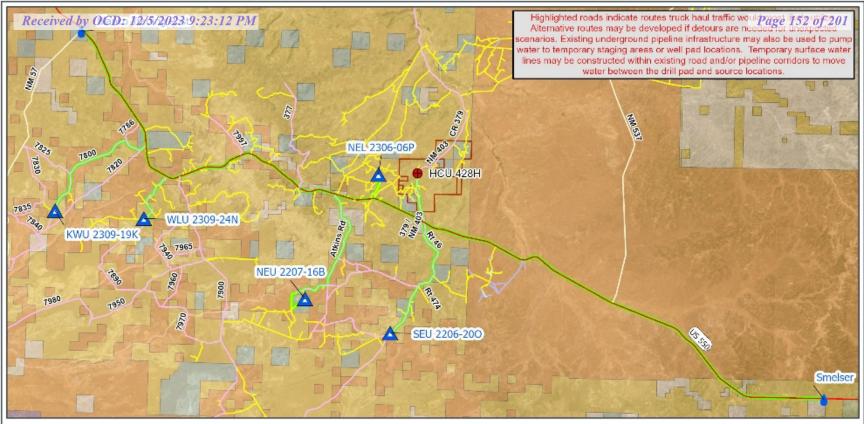
Go Right (Northerly) which is straight remaining on County Road #379 (aka State Highway #403) for 1.4 miles to existing access road on left-hand side which continues for 22.5' to Enduring Haynes Canyon Unit #440H staked location.

Appendix B. EXISTING WELLS WITHIN 1 MILE

.

Wellpad OSE Points of Diverson 1 Mile Buffer Oil and Gas Well Status Active 3 Cancelled

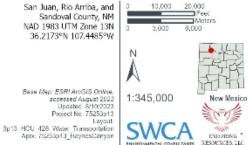
\odot	Cancelled	Wells	Within 1 Mile	Within Map Extent
0	New	OSE Points of Diversion	2	2
-		Active O&G	5	12
\oplus	Plugged (site released)	Cancelled O&G		2
R	eleased to Imaging: 12/28	/2023 5:06:15	PM	2
	0.0	Plugged (site released) O&G		13


A LOW AND A CONTRACT OF A LOW AND A	5.00 - Million	A DECEMBER OF THE OWNER	STATES AND A STATES AND
Rio Arriba County, NM	0	1,000	2,000 Fee
NAD 1983 UTM Zone 13N 36.249°N 107.4644°W	0	250	Meters 500
Base Map: ESRI ArcGIS Online, accessed August 2023 Updateit €1/4/2023 Project No. 75253p13 Layout:	N 1:25	,000	
5253p13 HCU SUPO Well Map			-1111

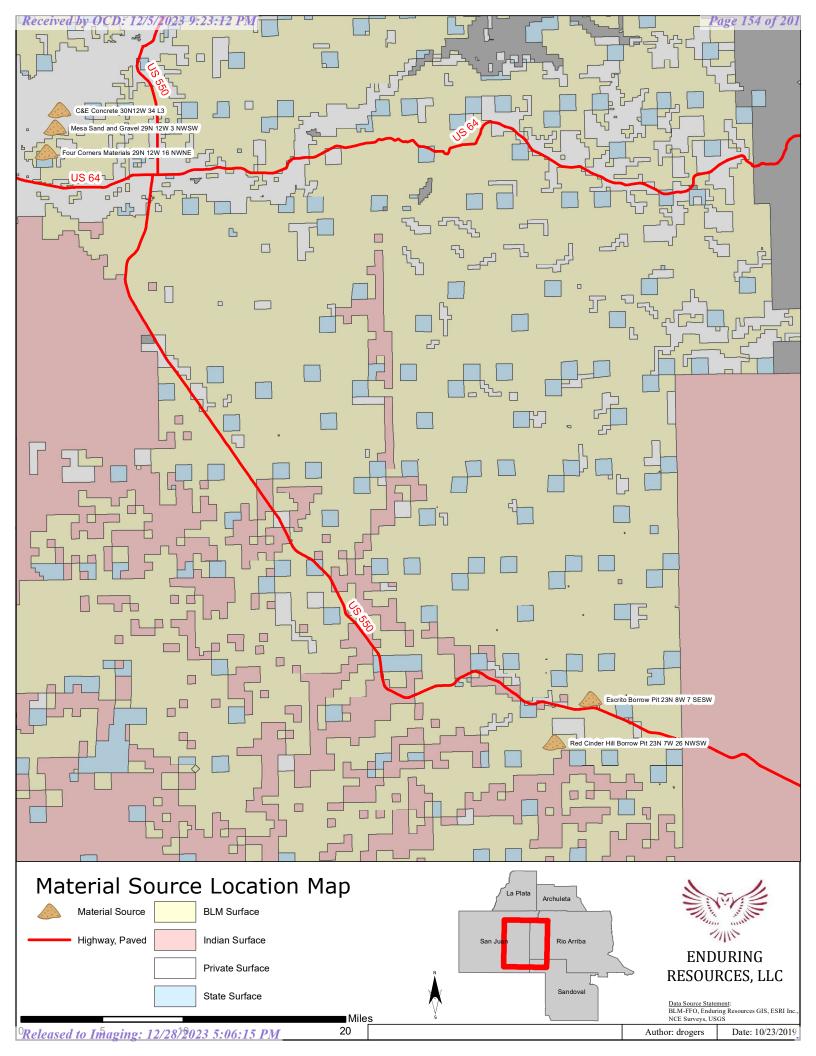
75253p13_HCU_SUPO_Well_Map Aprx: 75253p13_HaynesCanyon

ENDURING RESOURCES, LLC

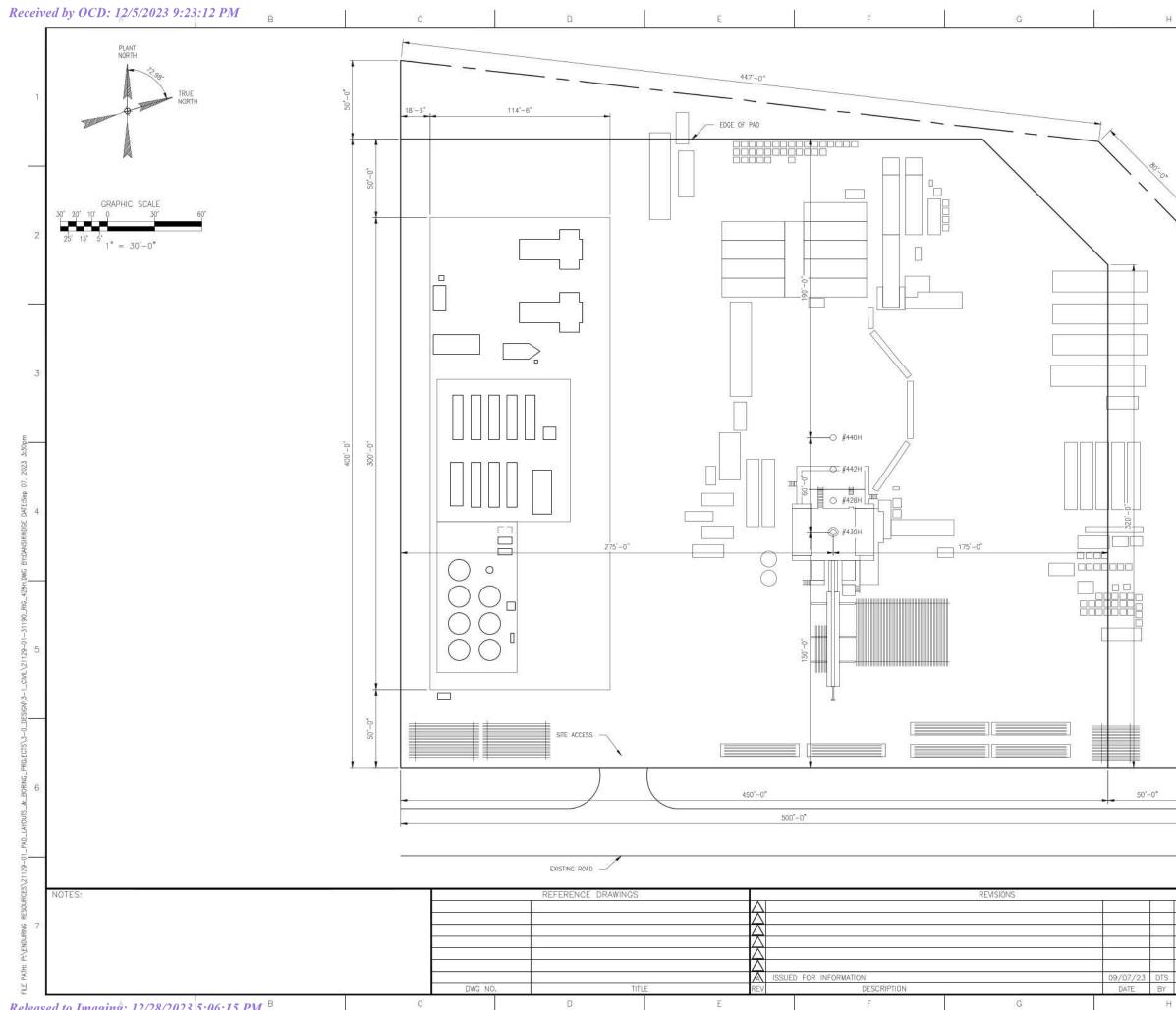
Appendix C. WATER TRANSPORTATION MAP


.

HCU 428H Project | Water Transportation

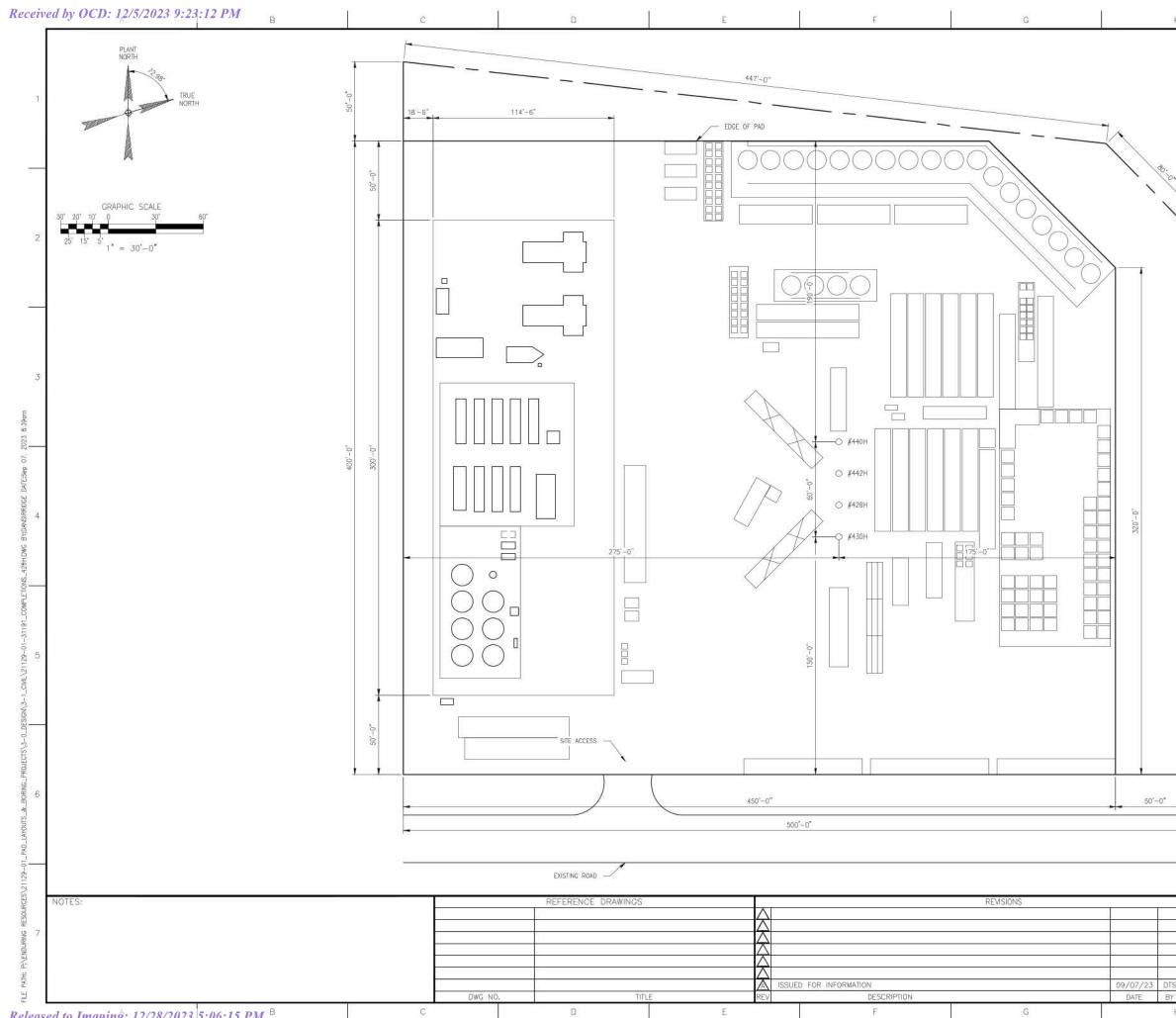

Unit Boundary

PHYDRONIMENTAL CONFLETANTS


Appendix D. CONSTRUCTION MATERIALS MAP

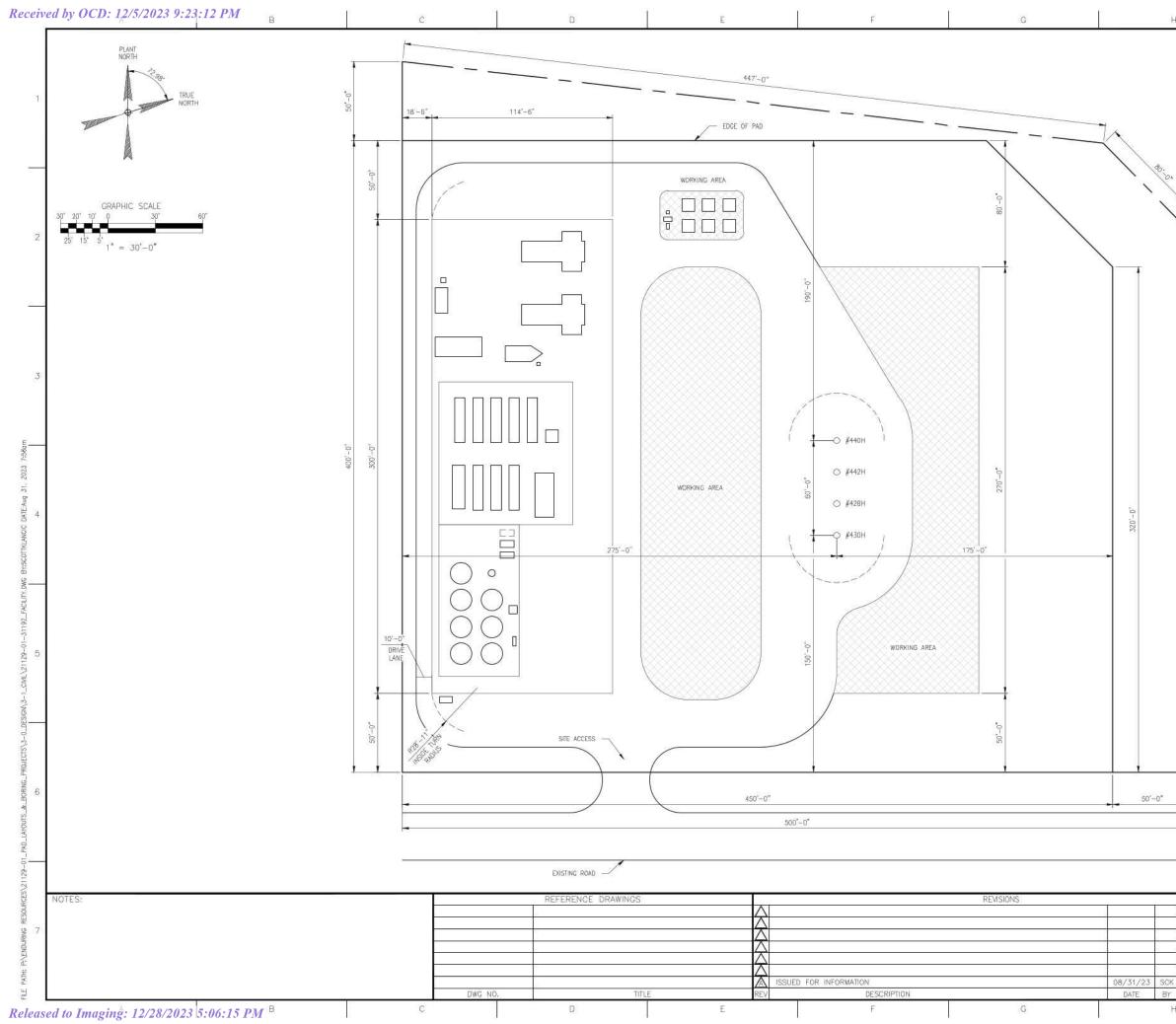
.

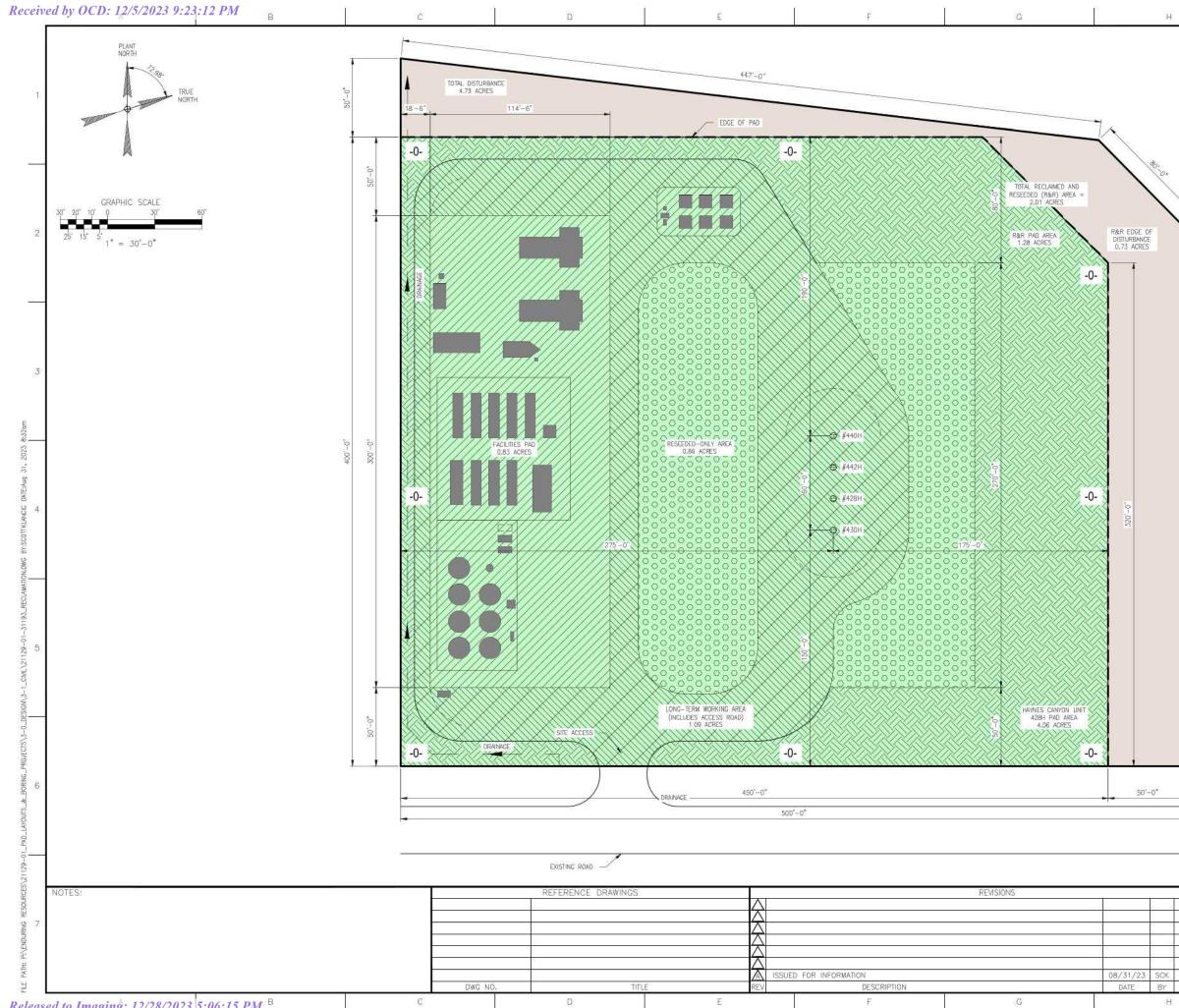
Appendix E. WELL PAD LAYOUT DIAGRAMS


.

Released to Imaging: 12/28/2023 5:06:15 PM ^B

D


H		1		Page 156	of 201
					1
0.					
\searrow					2
l l					
	- EDGE OF				
	- EDGE OF DISTURBANCE				3
i.					
341'-0"					4
1					<u>, 29</u>
					5
1					
					. 55
					~
					6
					<u></u>
	H		1110	CON	-
		ENDU HAYNES	RING RESOURCES CANYON UNIT 428H (AND RIG LAYOUT	-3116- 	7
ITS SCK – BY CHK ENG	BBS SCALE: APR	(FORMATTED 22X34) 1"=30'-0"	DRAWING NO. 21129-01-3	1190 <u>/A</u>	2
Н		1	1	Ļ	•


Released to Imaging: 12/28/2023 5:06:15 PM ^B

D

Н	ŝ	ĩ	1	Page 157 a	of 201
					1
De.					
$\langle \rangle$					
γ^{\geq}					2
ľ					
	EDGE DISTUR	OF FLANCE			3
۲ ا					
Ĩ					
	- Q				
l	341'-D"				4
l					<u></u>
					5
					5
ĺ					
_					6
-					
					<u>0 - 10</u> 1
		HALKER ENGINEERED SOLUTIONS		No. of the second se	7
		HAYNE	DURING RESOURCES S CANYON UNIT 428H ND COMPLETIONS LAYO	DUT	7
	- BBS ENG APR	SCALE: (FORMATTED 22X34) 1"=30'-0"	DRAWING NO. 21129-01-31	and a state of the	
Н		1		ل	•

Н	i. S	ĵ		Bage 1	58 of 201
					1
00					
$\langle \rangle$	0				
					2
t T					
	EDCE DISTU	OF REANCE			3
I					
					_
ļ	341'-D"				
ľ	341				4
1					
					5
1					
Ĩ					
-					6
		ENGINEERED SOLUTION	S DURING RESOURCES	No.	7
		HAYNE	S CANYON UNIT 42 FACILITY LAYOUT		
CK DTS BY CHK H	- BBS ENG APR	SCALE: (FORMATTED 22X34) 1"=30'-0" 1	DRAWING 21129-01	NO. 1-31192 J	▲
	10				-

Released to Imaging: 12/28/2023 5:06:15 PM ^B

D

			1
		-	
\geq		(å	2
	EDCE OF		
	DISTURBANCE	8	3
	LEGEND.	-	
341'-D"		5	4
	FACILITIES PA	AD WORKING AREA (INCLUDES ACCESS RDAD)	
	1.09 ACRES	NLY AREA	5
	HAVNES CAN 4.06 ACRES TOTAL DISTUR 4.79 ACRES	YYON UNIT 428H PAD AREA	5
	RECLAIMED AND RESEED	DED (R&R) AREA = 2.01 ACRES	0
		DF DISTURBANCE	6
-		-	100
		ESOURCES	7
NTE	ENDURING RI HAYNES CANYON PROPOSED RE	N UNIT 428H ECLAMATION	
	BBS SCALE: (FORMATTED 22X34) APR 1"=30'-0"	DRAWING ND. 21129-01-31193	

1

Page 159 of 201

WAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Submission Date: 09/29/2023

Page 160 of 201

12/05/2023

PWD Data Report

Operator Name: ENDURING RESOURCES LLC

Well Name: HAYNES CANYON UNIT

Well Type: OIL WELL

APD ID: 10400093966

Well Number: 440H Well Work Type: Drill

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined

Would you like to utilize Lined Pit PWD options? N Produced Water Disposal (PWD) Location: PWD surface owner: Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit Pit liner description: **Pit liner manufacturers** Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule Lined pit reclamation description: Lined pit reclamation Leak detection system description: Leak detection system

PWD disturbance (acres):

Operator Name: ENDURING RESOURCES LLC

Well Name: HAYNES CANYON UNIT

Well Number: 440H

<u>Page 161 of 201</u>

Lined pit Monitor description:

Lined pit Monitor

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information

Section 3 - Unlined

Would you like to utilize Unlined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD disturbance (acres):

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule

Unlined pit reclamation description:

Unlined pit reclamation

Unlined pit Monitor description:

Unlined pit Monitor

Do you propose to put the produced water to beneficial use?

Beneficial use user

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic

State

Unlined Produced Water Pit Estimated

Unlined pit: do you have a reclamation bond for the pit?

Operator Name: ENDURING RESOURCES LLC

Well Name: HAYNES CANYON UNIT

Well Number: 440H

PWD disturbance (acres):

Injection well name:

Injection well API number:

Is the reclamation	bond a rider	under the	BLM bond?
--------------------	--------------	-----------	-----------

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information

Section 4 -

Would you like to utilize Injection PWD options? N

Produced Water Disposal (PWD) Location:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

PWD surface owner:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection

Underground Injection Control (UIC) Permit?

UIC Permit

Section 5 - Surface

Would you like to utilize Surface Discharge PWD options? N

 Produced Water Disposal (PWD) Location:

 PWD surface owner:
 PWD disturbance (acres):

 Surface discharge PWD discharge volume (bbl/day):
 PWD disturbance (acres):

 Surface Discharge NPDES Permit?
 Surface Discharge NPDES Permit attachment:

 Surface Discharge site facilities information:
 Surface discharge site facilities map:

 Section 6 Section 6

Would you like to utilize Other PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner:

Other PWD discharge volume (bbl/day):

PWD disturbance (acres):

Operator Name: ENDURING RESOURCES LLC

Well Name: HAYNES CANYON UNIT

Well Number: 440H

Other PWD type description:

Other PWD type

Have other regulatory requirements been met?

Other regulatory requirements

WAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400093966 Operator Name: ENDURING RESOURCES LLC Well Name: HAYNES CANYON UNIT Well Type: OIL WELL

Submission Date: 09/29/2023

ALL STREET, ST

Well Number: 440H Well Work Type: Drill Highlighted data reflects the most recent changes <u>Show Final Text</u>

Bond Info Data

Bond

Federal/Indian APD: FED

BLM Bond number:

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information

12/05/2023

Receiperto: OCD: 12/5/2023 9:23:12 PM 1625 N. French Drive, Hobbs, NM 88240 Phone: (575) 393–6161 Fax: (575) 393–0720

2619.03 (M)

J., 86, 52, 0N

È

2624.54

21, 90, 72,

8

(REC)

2626.80

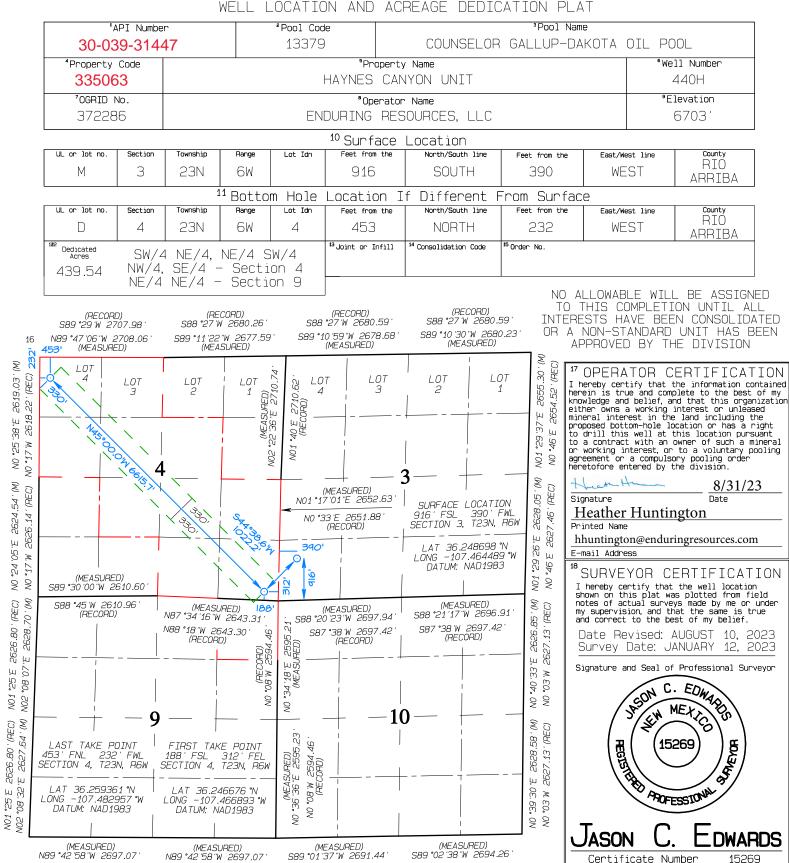
°25 E

N01

(REC)

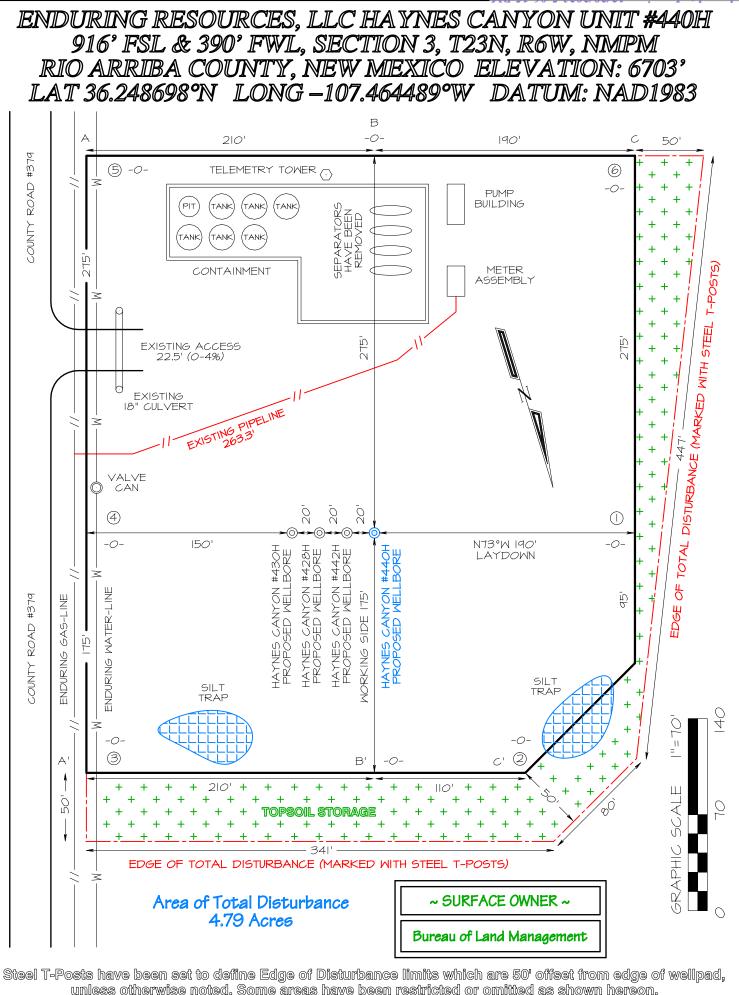
2626.80 '

District II 811 S. First Street, Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334–6178 Fax: (505) 334–6170 District IV 1220 S. St. Francis Drive, Santa Fe, NM 87505 Phone: (505) 476–3460 Fax: (505) 476–3462


State of New Mexico Energy, Minerals & Natural Resources Department Revised August 1, 2011

Submit one copy to Appropriate District Office

OIL CONSERVATION DIVISION

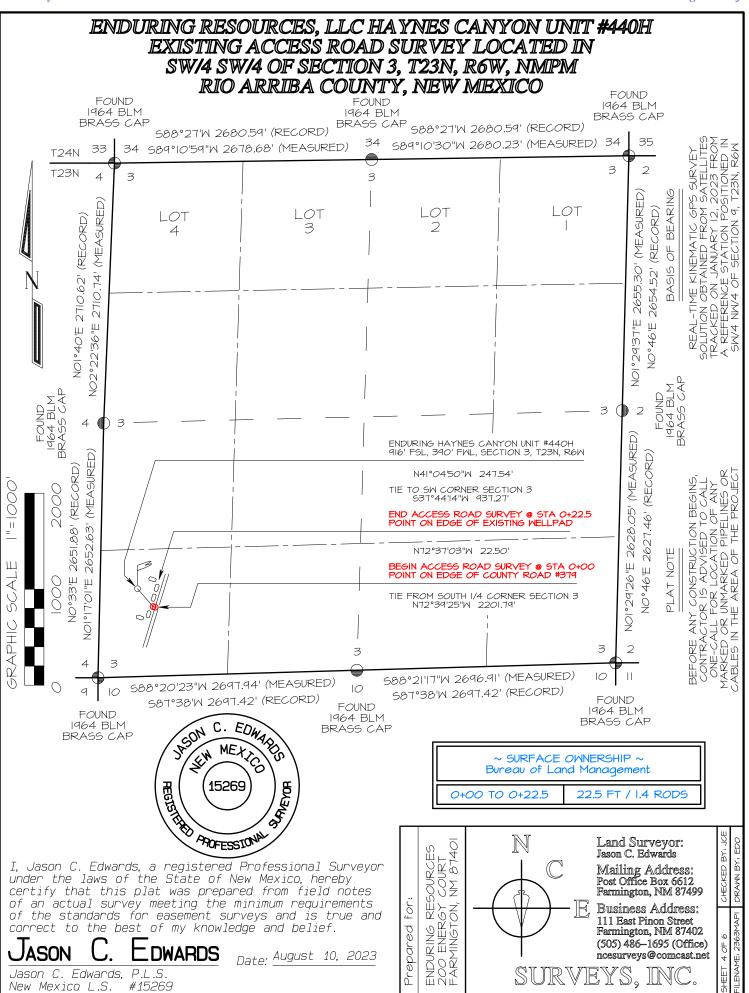

1220 South St. Francis Drive Santa Fe, NM 87505

AMENDED REPORT

Released in imaging: 12/28/2023 5 06 15 PM

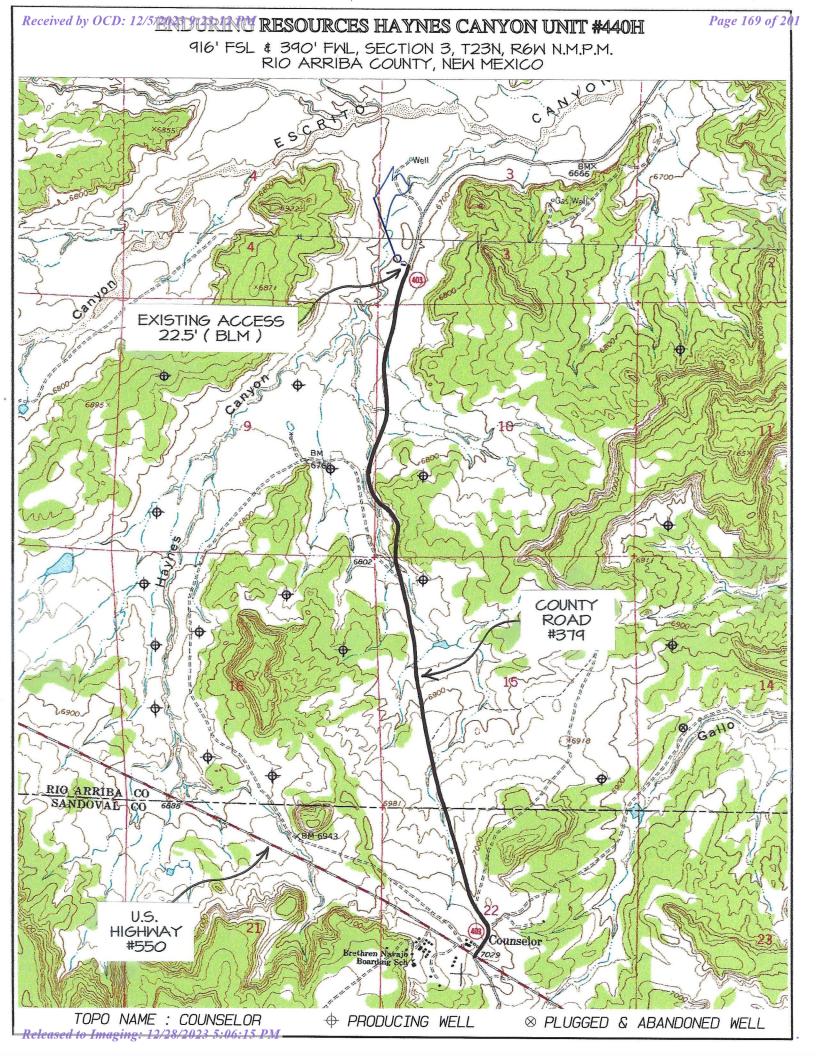
S88 °19 W 2694.12 (RECORD)

	-	R PIPELINES.	ROUND UTILITIES OR PIPELINES	EDWARDS SURVEYING, INC. IS NOT LIABLE FOR LOCATION OF UNDERGROUND UTILITIES OR PIPELINES. CONTRACTOR SHOULD CONTACT ONE-CALL FOR LOCATION OF ANY MARKED OR UNMARKED UNDERGROUND UTILITIES OR PIPELINES ON WELL PAD AND/OR ACCESS ROAD AT LEAST TWO WORKING DAYS PRIOR TO CONSTRUCTION	EYING, INC. IS NOT	EDWARDS SURVI	_ 3	
· · ·								
		· · · ·				· · · ·		-Eb99
								6703
								18170
· · · · · · · · · · · · · · · · · · ·			- - - - - - - - - - - - - - - -		- - - - - - - - - - - - -			C - C
			NL I	C,				
			· · · · · ·		· · · ·	· · · ·		
								-Eb99
								6703
								18170
								B-B
			νL	C,				
· · · ·	· · · · · · · · · · · · · · · · · · ·						- - - - - - - - - - -	
								6693
							-	6703
								18170
· · · · · · · · · · · · · · · · · · ·	· · · ·					· · · ·		A - A'
"= <i>30</i> '		VERTICAL SCALE	1	/"=60' C,		HORIZONTAL SCALE	НО	
	44401HI 1 03°	CANYON UNIT #440H 23N, R6W, NMIPM ELEVATION: 6703"	CANYON 23N, R6W, ELEVATI	LLC HA YNES , SECTION 3, 1 NEW MEXICO	ENDURING RESOURCES, 916' FSL & 390' FWL, RIO ARRIBA COUNTY,	ARRIBA	ENDUI 91 RIO 1	


MA 21:30:2 2202/82/21 :gnigaml of besoels R

Received by OCD: 12/5/2023 9:23:12 PM

102 fo 791 9304


ſ

Received by OCD: 12/5/2023 9:23:12 PM

Released to Imaging: 12/28/2023 5:06:15 PM

Page 168 of 201

Directions from the Intersection of US Hwy 550 & US Hwy 64

in Bloomfield, NM to Enduring Resources, LLC Haynes Canyon Unit #440H

916' FSL & 390' FWL, Section 3, T23N, R6W, N.M.P.M., Rio Arriba County, NM

Latitude 36.248698°N Longitude -107.464489°W Datum: NAD1983

From the intersection of US Hwy 550 & US Hwy 64 in Bloomfield, NM, travel Southerly on US Hwy 550 for 53.8 miles to Mile Marker 97.6

Go Left (Northerly) on County Road #379 (aka State Highway #403) for 1.5 miles to fork in roadway;

Go Right (Northerly) which is straight remaining on County Road #379 (aka State Highway #403) for 1.4 miles to existing access road on left-hand side which continues for 22.5' to Enduring Haynes Canyon Unit #440H staked location.

State of New Mexico Energy, Minerals and Natural Resources Department

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit Electronically Via E-permitting

Date: 12/5/2023

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

<u>Section 1 – Plan Description</u> <u>Effective May 25, 2021</u>

_____OGRID: _372286_

I. Operator: Enduring Resources IV, LLC_

II. Type: \square Original \square Amendment due to \square 19.15.27.9.D(6)(a) NMAC \square 19.15.27.9.D(6)(b) NMAC \square Other.

If Other, please describe: _____

III. Well(s): Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water
Haynes Canyon Unit 428H	pending	Sec. 3, T23N, R6W	UL:M SHL: 903' FSL & 429' FWL	279	1304	373
Haynes Canyon Unit 430H	pending	Sec. 3, T23N, R6W	UL:M SHL: 897' FSL & 448' FWL	279	1304	373
Haynes Canyon Unit 440H	pending	Sec. 3, T23N, R6W	UL:M SHL: 916' FSL & 390' FWL	279	1304	373
Haynes Canyon Unit 442H	pending	Sec. 3, T23N, R6W	UL:M SHL: 910' FSL & 409' FWL	279	1304	373

IV. Central Delivery Point Name: <u>Haynes Canyon 428 CDP</u> [See 19.15.27.9(D)(1) NMAC]

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	Spud Date	TD Reached Date	Completion Commencement Date	Initial Flow Back Date	First Production Date
Haynes Canyon Unit 428H	pending	5/1/2024	5/20/2024	6/10/2024	7/8/2024	7/10/2024
Haynes Canyon Unit 430H	pending	5/13/2024	5/25/2024	6/10/2024	7/8/2024	7/10/2024
Haynes Canyon Unit 440H	pending	5/24/2024	6/4/2024	6/10/2024	7/9/2024	7/11/2024
Haynes Canyon Unit 442H	pending	6/1/2024	6/8/2024	6/10/2024	7/9/2024	7/11/2024

VI. Separation Equipment: 🛛 Attach a complete description of how Operator will size separation equipment to optimize gas capture.

VII. Operational Practices: \boxtimes Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

VIII. Best Management Practices: 🖂 Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

 \boxtimes Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \Box Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \boxtimes will \square will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \boxtimes does \square does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

□ Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \Box Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \boxtimes Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \Box Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. \Box Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (**b**) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (**h**) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Huat Hum
Printed Name: Heather Huntington
Title: Regulatory Agent
E-mail Address: hhuntington@enduringresources.com
Date: 12/5/2023
Phone: 505-636-9751
OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)
Approved By:
Title:
nue.
Approval Date:
Approval Date:

Attachments:

Separation Equipment: Below is a complete description of how Operator will size separation equipment to optimize gas capture.

Description of how separation equipment will be sized to optimize gas capture:

Well separation equipment is sized to have appropriate residence time and vapor space to remove gas particles on the micron scale per typical engineering calculations and/or operational experience. Furthermore, a sales scrubber downstream of the well separators is planned in order to capture any additional liquids if present. All gas is routed to end users or the sales pipeline under normal operating conditions.

Operational & Best Management Practices: Below is a complete description of the actions the Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC. Additionally, below is a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Drilling Operations:

Enduring Resources will minimize venting by:

- Gas will only be vented to the atmosphere to avoid risk of immediate or substantial adverse impact to employee safety, public health, and the environment.
- If utilized, flare stacks shall be located at a minimum of 100 feet from the nearest surface hole location

Completion Operations:

Enduring Resources will minimize venting by:

- Separator operation will commence as soon as technically feasible.
- Gas will route immediately to a collection system or applied to other beneficial use, such as a fuel source for onsite equipment.
- During initial flowback and if technically feasible, flaring shall occur rather than venting.
- If natural gas does not meet pipeline standards, gas will be vented or flared. A gas analysis will be performed twice weekly until standards are met (for up to 60 days). This is not anticipated to occur.
- If required, all venting and flaring of natural gas during flowback operations shall be performed in compliance with Subsections B, C and D of <u>19.15.27.8</u> NMAC.

Production Operations:

Enduring Resources will minimize venting by:

- Shutting in the wells if the pipeline is not available. No flaring of high pressure gas will occur.
- Utilizing gas for equipment fuel, heater fuel, and artificial lift when allowable.
- Capturing low pressure gas via a gas capture system when allowable.

In General:

- All venting and flaring from drilling, flowback and operation phases shall be reported in compliance with Subsection G of <u>19.15.27.8</u> NMAC.
- If utilized, flare stacks shall be located at a minimum of 100 feet from the nearest surface hole location and 100 ft from the permanent facility storage tanks.

Flowback Strategy

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on <u>Gas Transporter</u> system at that time. Based on current information, it is <u>Operator's</u> belief the system can take this gas upon completion of the well(s).

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and nonpipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

.

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - \circ Only a portion of gas is consumed operating the generator, remainder of gas will be flared
 - Compressed Natural Gas On lease
 - Gas flared would be minimal, but might be uneconomical to operate when gas volume declines
- NGL Removal On lease
 - o Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines
- Power generation for grid;
- Liquids removal on lease;
- Reinjection for underground storage;
- Reinjection for temporary storage;
- Reinjection for enhanced oil recovery;
- Fuel cell production; and
- Other alternative beneficial uses approved by the division.

ENDURING RESOURCES IV, LLC 6300 S SYRACUSE WAY, SUITE 525 CENTENNIAL, COLORADO 80211

DRILLING PLAN:

Drill, complete, and equip single lateral in the Mancos-H formation

WELL INFORMATION:

Name:	Haynes Canyon Unit 440H					
API Number:	Not yet assigned					
AFE Number:	Not yet assigned					
ER Well Number:	Not yet assigned					
State:	New Mexico					
County:	Rio Arriba					
Surface Elevation:	6,703 ft ASL (GL)	6,728	ft ASL (KB)			
Surface Location:	3-23-6 Sec-Twn-Rng	916	ft FSL	390	ft FWL	
	36.248698 °N latitude	107.464489	° W longitude		(NAD 83)	
BH Location:	4-23-6 Sec-Twn-Rng	453	ft FNL	232	ft FWL	
	36.259361 °N latitude	107.482957	° W longitude		(NAD 83)	
Driving Directions:	FROM THE INTERSECTION OF US	HWY 550 & U	S HWY 64 IN BLOO	MFIELD, NM:		
	South on US Hwy 550 for 53.8 n	niles to MM 97	.6; Left (North) on	CR #379 (Stat	te Hwy 403) for 1.3 r	niles to fork;

South on US Hwy 550 for 53.8 miles to MM 97.6; Left (North) on CR #379 (State Hwy 403) for 1.3 miles to fork; Right (North) remaining on CR #379 for 1.5 miles to location access on left; Haynes Canyon Unit 428H Pad. From East to West 430H, 428H, 442H, 440H).

GEOLOGIC AND RESERVOIR INFORMATION:

Prog

Formation Tops	TVD (ft ASL)	TVD (ft KB)	MD (ft KB)	O/G/W	Pressure
Ojo Alamo	5,325	1,403	1,406	W	normal
Kirtland	5,225	1,503	1,509	W	normal
Fruitland	5,000	1,728	1,746	G, W	sub
Pictured Cliffs	4,765	1,963	1,998	G, W	sub
Lewis	4,615	2,113	2,159	G, W	normal
Chacra	4,320	2,408	2,475	G, W	normal
CliffHouse	3,210	3,518	3,665	G, W	sub
Menefee	3,205	3,523	3,670	G, W	normal
Point Lookout	2,505	4,223	4,416	G, W	normal
Mancos	2,230	4,498	4,696	0,G	sub (~0.38
Gallup (MNCS_A)	1,890	4,838	5,036	0,G	sub (~0.38
MNCS_B	1,800	4,928	5,126	0,G	sub (~0.38
MNCS_C	1,665	5,063	5,263	0,G	sub (~0.38
MNCS_Cms	1,600	5,128	5,333	0,G	sub (~0.38
MNCS_D	1,525	5,203	5,418	0,G	sub (~0.38
MNCS_E	1,440	5,288	5,525	0,G	sub (~0.38
MNCS_F	1,395	5,333	5,590	0,G	sub (~0.38
MNCS_G	1,310	5,418	5,744	0,G	sub (~0.38
MNCS_H	1,270	5,458	5,833	0,G	sub (~0.38
MNCS_I	0	0	0	0,G	sub (~0.38
FTP TARGET	1,262	5,466	5,858	0,G	sub (~0.38
PROJECTED LTP	1,207	5,521	12,673	0,G	sub (~0.38

Surface: Nacimiento

Oil & Gas Zones: Several gas bearing zones will be encountered; target formation is the Gallup

Pressure: Normal (0.43 psi/ft) or sub-normal pressure gradients anticipated in all formations	
---	--

	Max. pressure gradient:	0.43	psi/ft	Evacuated hole gradient:	0.22	psi/ft
	Maximum anticipated BH pressure	, assumin	g maximur	n pressure gradient:	2,380	psi
	Maximum anticipated surface pres	ssure, assu	ming parti	ally evacuated hole:	1,170	psi
Temperature:	Maximum anticipated BHT is 125 $^\circ$	F or less				

H₂S INFORMATION:

H₂ S Zones: Encountering hydrogen-sulfide bearing zones is NOT anticipated.

Safety: Sensors and alarms will be placed in the substructure, on the rig floor, above the pits, and at the shakers.

LOGGING, CORING, AND TESTING:

 Mud Logs:
 None planned; remote geo-steering from drill out of 9-5/8" casing to TD; gas detection from drillout of 13-3/8" casing to TD.

 MWD/LWD:
 Gamma Ray from drillout of 13-3/8" casing to TD

 Open Hole Logs:
 None planned

 Testing:
 None planned

 Coring:
 None planned

Cased Hole Logs: CBL on 5-1/2" casing from deepest free-fall depth to surface

DRILLING RIG INFORMATION:

Contractor: Aztec

Rig No.:	1000		
Draw Works:	E80 AC 1,500 hp		
Mast:	Hyduke Triple (136 ft, 600,000 lbs, 10 lines)		
Top Drive:	NOV IDS-350PE (350 ton)		
Prime Movers:	4 - GE Jenbacher Natural Gas Generator		
Pumps:	2 - RS F-1600 (7,500 psi)		
BOPE 1:	Cameron single & double gate rams (13-5/8", 3,000 psi)		
BOPE 2:	Cameron annular (13-5/8", 5,000 psi)		
Choke	Cameron (4", 10,000 psi)		
KB-GL (ft):	25		
Note:	Actual drilling rig may vary depending on availability at time the well is scheduled to be d	rilled.	
STATE AND FEDERAL	NOTIFICATIONS	BLM	State

Construction and	BLM is to be notified minimum of 48 hours prior to start of construction or reclamation.		
Reclamation :	Grazing permittee is to be notified 10 days in advance.	(505) 564-7600	
Spud	BLM and state are to be notified minimum of 24 hours prior to spud.	(505) 564-7750	(505) 334-6178
BOP	BLM is to be notified minimum of 24 hours prior to BOPE testing.	(505) 564-7750	see note
Casing / cementing	BLM and state are to be notified minimum of 24 hours prior to running casing and		
	cementing.	(505) 564-7750	(505) 334-6178
Plugging	BLM and state are to be notified minimum of 24 hours prior to plugging ops.	(505) 564-7750	see note
	All notifications are to be recorded in the WellView report with time, date, name or		
	number that notifications were made to.		
	Note: Monica Keuhling with the OCD requests state notifications 24 hrs in advance for spue	d, BOP tests, casing	g & cementing
	and any plugging be given to her in both phone message and email: (505) 320-0243, monic	a.keuhling@emnr	d.nm.gov
BOPE REQUIREMENT	S:		
	See attached diagram for details regarding BOPE specifications and configuration.		

- 1) Rig will be equipped with upper and lower kelly cocks with handles available.
- 2)
- Inside BOP and TIW valves will be available to use on all sizes and threads of drill pipe used while drilling the well.
- 2) BOP accumulator will have enough capacity to open the HCR valve, close all rams and annular preventer, and retain minimum of 200 psi above precharge on the closing manifold without the use of closing pumps. The fluid reservoir capacity shall be at least double the usable fluid volume of the accumulator system capacity, and the fluid level shall be maintained at manufacturer's recommendation. There will be two additional sources of power for the closing pumps (electric and air). Sufficient nitrogen bottles will be available and will be recharged when pressure falls below manufacturer's recommended minimum.
- 3)

BOP testing shall be conducted (a) when initially installed, (b) whenever any seal is broken or repaired, (c) if the time since the previous test exceeds 30 days. Tests will be conducted using a test plug. BOP ram preventers will be tested to 3,000 psig for 10 minutes, and the annular preventer will be tested to 1,500 psi for 10 minutes. Ram and annular preventers will be tested to 250 psi for 5 minutes. Additionally, BOP and casing strings will be tested to .22 psi/ft or 1,500 psi, whichever is greater but not exceeding 70% of yield strength of the casing, for 30 minutes, prior to drilling out 13-3/8" and 9-5/8" casing. Rams and hydraulically operated remote choke line valve will be function tested daily at a minimum.

- 4) Remote valve for BOP rams, HCR, and choke shall be placed in a location that is readily available to the driller. The remote BOP valve shall be capable of closing and opening the rams.
- 5) Manual locking devices (hand wheels) shall be initialled on rams. A valve will be installed on the annular preventer's closing line as close as possible to the preventer to act as a locking device. The valve will be maintained in the open position and shall only be closed when the there is no power to the accumulator.

FLUIDS AND SOLIDS CONTROL PROGRAM:

Fluid Measurement: Pumps shall be equipped with stroke counters with displays in the dog-house. Slow pump speed shall be recorded daily and after mudding up, at a minimum, on the drilling report. A Pit Volume Totalizer will be installed and the readout will be displayed in the dog-house. Gas-detecting equipment will be installed at the shakers, and readouts will be available in the dog-house and the in the geologist's work-station (if geologist or mud-logger is on-site). Closed-Loop System: A fully, closed-loop system will be utilized. The system will consist of above-ground piping and above-ground storage tanks and bins. The system will not entail any earthen pits, below-grade storage, or drying pads. All equipment will be disassembled and removed from the site when drilling operations cease. The system will be capable of storing all fluids and generated cuttings and of preventing uncontrolled releases of the same. The system will be operated in an efficient manner to allow the recycling and reuse of as much fluid as possible and to minimimize the amount of fluids and solids that require disposal. Fluid Disposal : Fluids that cannot be reused, recycled, or returned to the supplier will be hauled to and disposed of at an approved disposal site (Industrial Ecosystem, Inc. or Envirotech, Inc.). Solids Disposal : Drilling solids will be stored (until haul-off) on-site in separate containers with no other waste, debris, or garbage products. Waste solids will be hauled to and disposed of at an approved disposal site (Industrial Ecosystem, Inc. or Envirotech, Inc.). Fluid Program: See "Detailed Drilling Plan" section for additional details. Sufficient barite will be on location to weight up mud system to balance maximum anticipated pressure gradient.

DETAILED DRILLING PLAN:

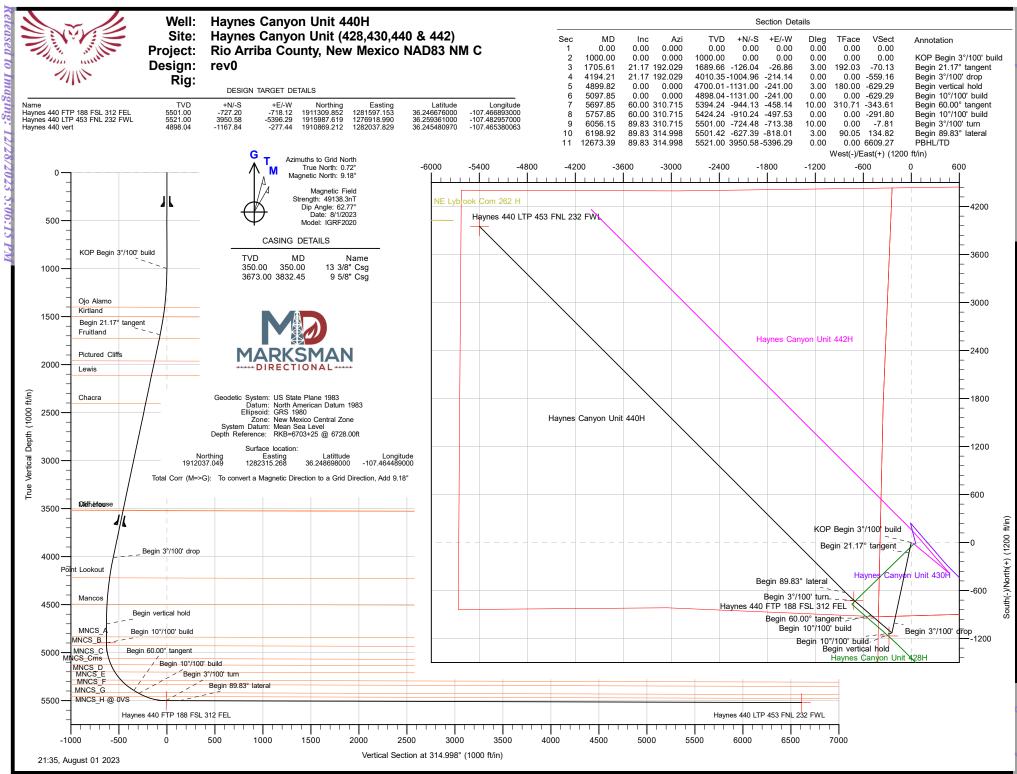
SURFACE: Drill vertically to casing setting depth (plus necessary rathole), run casing, cement casing to surface.

.

		A (MD)	**	250	A (MD)		a shi su I su shis.	2504
		ft (MD) ft (TVD)	to to		ft (MD) ft (TVD)		Section Length: Asing Required:	350 f 350 f
	-				a smaller rig in a		• ·	3301
	T		FL (mL/30	D (()	YP (lb/100			
Fluid:	Type Fresh Water	MW (ppg) 8.4	min) N/C	PV (cp) 2 - 8	sqft) 2 - 12	рН 9.0		nents mud
Hole Size:		0.4	N/C	2-0	2-12	5.0	Spuu	muu
	Mill Tooth or P	DC. no motor						
-	No MWD, devia							
Logging:		,						
Procedure:	Drill to TD. Use	e 12-/4" bit and	open to 17-1/2"	if unable to dri	ll with 17-1/2" b	it. Run inclinat	ion survey in 10	0'stations
					g as required. TO olume to surface			as detailed
Casing Specs:		Wt (lb/ft)	Grade	Conn.	Collapse (psi)	Burst (psi)	Tens. Body (lbs)	Tens. Conn (Ibs)
Specs	13.375	54.5	J-55	BTC	1,130	2,730	853,000	909,000
Loading					153	791	116,634	116,634
Min. S.F.					7.39	3.45	7.31	7.79
5 ,	<i>Make-up as per</i> Float shoe, 1 jt	Tension: buoye N/A r API Buttress Co casing, float col	Optimum: onnection runni Ilar, casing to su	ppg fluid with 2 N/A ng procedure. rface	100,000 lbs over Maximum:	N/A		
Centralizers:	2 centralizers p	er jt stop-bande	ed 10' from each	collar on botto	-	lizer per 2 jts to		
	_				Hole Cap.		Planned TOC	
Cement:	Туре	• • • • •	Yield (cuft/sk)		(cuft/ft) 0.6946	% Excess	(ft MD)	Total Cmt (sx
	T7/D 5 111							
	TYPE III	14.6	1.39	6.686		100%	0	364
Drake E	0.6946 Thergy Services: ASTM Type III Blend	cuft/ft <i>Calculated cen</i> Calcium Chloride 2% BWOC Accelerator	13-3/8" casing nent volumes as D-CD2 .3% BWOC Dispersant/Friction reducer	x 17-1/2" hole (sume gauge ho .25 lbs/sx Cello Flake - seepage	annulus le and the exces	Csg capacity s noted in table	0.8680	ft3/ft Cu Ft Slurry 505.3
Drake E Tail	0.6946 Energy Services: ASTM Type III Blend Notify COGCC & drilling out.	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen	13-3/8" casing ment volumes as D-CD2 .3% BWOC Dispersant/Friction reducer it is not circulate	x 17-1/2" hole (ssume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface. Ce	annulus le and the exces ement must ach	Csg capacity s noted in table ieve 500 psi co	0.8680	ft3/ft Cu Ft Slurry 505.3
Drake E Tail	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per dire	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen	13-3/8" casing ment volumes as D-CD2 .3% BWOC Dispersant/Friction reducer at is not circulate	x 17-1/2" hole (ssume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface. Co depth, run casin	annulus le and the exces ement must ach ng, cement casin	Csg capacity s noted in table ieve 500 psi co g to surface.	0.8680	ft3/ft Cu Ft Slurry 505.3 ngth before
Drake E Tail	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per dire 350	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen ectional plan to ft (MD)	13-3/8" casing ment volumes as D-CD2 .3% BWOC Dispersant/Friction reducer at is not circulate casing setting of to	x 17-1/2" hole (ssume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface. Co depth, run casir. 3,833	annulus le and the exces ement must ach ng, cement casin ft (MD)	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S	0.8680 mpressive strer	ft3/ft Cu Ft Slurry 505.3 ngth before 3,483 f
Drake E Tail	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per dire 350	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen	13-3/8" casing ment volumes as D-CD2 .3% BWOC Dispersant/Friction reducer at is not circulate	x 17-1/2" hole (ssume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface. Co depth, run casir. 3,833	annulus le and the exces ement must ach ng, cement casin	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S	0.8680	ft3/ft Cu Ft Slurry 505.3 ngth before 3,483
Drake E Tail	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per dire 350	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen ectional plan to ft (MD)	13-3/8" casing ment volumes as D-CD2 .3% BWOC Dispersant/Friction reducer at is not circulate casing setting of to	x 17-1/2" hole (ssume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface. Co depth, run casir. 3,833	annulus le and the exces ement must ach ng, cement casin ft (MD)	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S	0.8680 mpressive strer	ft3/ft Cu Ft Slurry 505.3 ngth before
Drake E Tail	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per dire 350	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen ectional plan to ft (MD)	13-3/8" casing ment volumes as D-CD2 .3% BWOC Dispersant/Friction reducer it is not circulate ocasing setting of to to	x 17-1/2" hole (ssume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface. Co depth, run casir. 3,833	annulus le and the exces ement must ach ig, cement casin ft (MD) ft (TVD)	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S	0.8680 mpressive strer	ft3/ft Cu Ft Slurry 505.3 ngth before 3,483 1 3,833 1
Drake E Tail TERMEDIATE:	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per dire 350 350	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen ectional plan to ft (MD) ft (TVD)	13-3/8" casing ment volumes as D-CD2 .3% BWOC Dispersant/Friction reducer it is not circulate casing setting of to to to	x 17-1/2" hole c ssume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface . Co depth, run casin 3,833 3,673	annulus le and the exces ement must ach ig, cement casin ft (MD) ft (TVD) YP (Ib/100	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca	0.8680 mpressive strer section Length: asing Required: Comn	ft3/ft Cu Ft Slurry 505.3 ngth before 3,483 1 3,833 1
Drake E Tail <u>TERMEDIATE:</u>	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per dire 350 350 Type LSND (5% KCl)	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen ectional plan to ft (MD) ft (TVD) MW (ppg)	13-3/8" casing ment volumes as D-CD2.3% BWOC Dispersant/Friction reducer it is not circulate casing setting of to to FL (mL/30 min)	x 17-1/2" hole c ssume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface . Co depth, run casim 3,833 3,673 PV (cp)	annulus le and the exces ement must ach ng, cement casin ft (MD) ft (TVD) YP (lb/100 sqft)	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca pH	0.8680 mpressive strer section Length: asing Required: Comn	ft3/ft Cu Ft Slurry 505.3 Igth before 3,483 3,833
Drake E Tail <u>TERMEDIATE:</u> Fluid: Hole Size:	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per dire 350 350 Type LSND (5% KCl)	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen ectional plan to ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5	13-3/8" casing ment volumes as D-CD2.3% BWOC Dispersant/Friction reducer it is not circulate casing setting of to to FL (mL/30 min) 20	x 17-1/2" hole c ssume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface . Co depth, run casim 3,833 3,673 PV (cp)	annulus le and the exces ement must ach ng, cement casin ft (MD) ft (TVD) YP (lb/100 sqft)	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca pH	0.8680 mpressive strer section Length: asing Required: Comn	ft3/ft Cu Ft Slurry 505.3 Igth before 3,483 3,833
Drake E Tail <u>TERMEDIATE:</u> Fluid: Hole Size: Bit / Motor:	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per dire 350 350 Type LSND (5% KCl) 12-1/4"	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen ectional plan to ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor	13-3/8" casing ment volumes as D-CD2.3% BWOC Dispersant/Friction reducer it is not circulate casing setting of to to FL (mL/30 min) 20	x 17-1/2" hole (ssume gauge ho -25 lbs/sx Cello Flake - seepage ed to surface. Co depth, run casir 3,833 3,673 PV (cp) 8 - 14	annulus le and the exces ement must ach eg, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca pH 9.0 - 9.5	0.8680 mpressive strer section Length: asing Required: Comn	ft3/ft Cu Ft Slurry 505.3 Igth before 3,483 3,833
Drake E Tail <u>TERMEDIATE:</u> Fluid: Hole Size: Bit / Motor:	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per dire 350 350 350 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen ectional plan to ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4.	13-3/8" casing ment volumes as D-CD2.3% BWOC Dispersant/Friction reducer it is not circulate casing setting of to to FL (mL/30 min) 20 0, stage, 0.16 re	x 17-1/2" hole (ssume gauge ho -25 lbs/sx Cello Flake - seepage ed to surface. Co depth, run casin 3,833 3,673 PV (cp) 8 - 14 v/gal, 1.83 DEG	annulus le and the exces ement must ach eg, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca pH 9.0 - 9.5	0.8680 mpressive strer ection Length: asing Required: Comn No C	ft3/ft Cu Ft Slurry 505.3 Igth before 3,483 3,833
Drake E Tail TERMEDIATE: Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey:	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per direc 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w	cuft/ft Calculated ceri Calcium Chloride 2% BWOC Accelerator & BLM if cemen ectional plan to ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8,4. DC w/16 mm or	13-3/8" casing ment volumes as D-CD2.3% BWOC Dispersant/Friction reducer it is not circulate casing setting of to to FL (mL/30 min) 20 0, stage, 0.16 re 19 mm cutters,	x 17-1/2" hole of ssume gauge ho -25 lbs/sx Cello Flake - seepage ed to surface. Co depth, run casin 3,833 3,673 PV (cp) 8 - 14 v/gal, 1.83 DEG TFA = 0.67 sq-ir	annulus le and the exces ement must ach eg, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 900 GPM, 950 o (range 0.65 - 0.	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca pH 9.0 - 9.5	0.8680 mpressive strer ection Length: asing Required: Comn No C	ft3/ft Cu Ft Slurry 505.3 Igth before 3,483 3,833
Drake E Tail TERMEDIATE: Fluid: Hole Size: Bit / Motor: Bit / Motor: Bit / Motor: MWD / Survey: Logging:	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per direc 350 350 I2-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen ectional plan to ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination a	13-3/8" casing ment volumes as D-CD2 .3% BWOC Dispersant/Friction reducer it is not circulate casing setting of to to to FL (mL/30 min) 20 0, stage, 0.16 re 19 mm cutters, and azimuth sur	x 17-1/2" hole c sume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface. Co depth, run casiri 3,833 3,673 PV (cp) 8 - 14 v/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'a	annulus le and the exces ement must ach fg, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 (range 0.65 - 0. at a minimum), G	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet will GR optional	0.8680 mpressive strer section Length: asing Required: Comn No C	ft3/ft Cu Ft Slurry 505.3 ngth before <u>3,483 1</u> 3,833 1 nents DBM
Drake E Tail I <u>TERMEDIATE:</u> Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per direc 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen ectional plan too ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or ith inclination ac	13-3/8" casing ment volumes as D-CD2.3% BWOC Dispersant/Friction reducer it is not circulate casing setting of to to to FL (mL/30 min) 20 0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te	x 17-1/2" hole c ssume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface. Co depth, run casin 3,833 3,673 PV (cp) 8 - 14 v/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'a st 13-3/8" casin	annulus le and the exces ement must ach fg, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 o (range 0.65 - 0. at a minimum), G gto	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GR optional 1,500	0.8680 mpressive strer section Length: asing Required: Comm No C th 6 - 12s	ft3/ft Cu Ft Slurry 505.3 Igth before 3,483 f 3,833 f nents DBM
Drake E Tail TERMEDIATE: Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per dire 350 350 12-1/4" 12-1/4" 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen & Calcium Chloride 2% BWOC Accelerator & BLM if cemen ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination a cest (as noted abo	13-3/8" casing ment volumes as D-CD2.3% BWOC Dispersant/Friction reducer it is not circulate casing setting e to to to FL (mL/30 min) 20 0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat-h	x 17-1/2" hole c sume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface . Co depth, run casim 3,833 3,673 PV (cp) 8 - 14 v/gal, 1.83 DEG TFA = 0.67 sq-im vey (every 100'a st 13-3/8" casin nole past casing	annulus le and the exces ement must ach fg, cement casim ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 900 GPM, 950 o (range 0.65 - 0. at a minimum), 0 gto setting depth). 1	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GR optional 1,500 Steer as needed	0.8680 mpressive strer section Length: asing Required: Comm No C th 6 - 12s psi for 30 minu to keep well on	ft3/ft Cu Ft Slurry 505.3 Igth before 3,483 1 3,833 1 nents DBM tes.
Drake E Tail TERMEDIATE: Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per dire 350 350 12-1/4" 12-1/4" 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100'an	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen ectional plan to ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination a est (as noted abo owing directions d keep slide len	13-3/8" casing ment volumes as D-CD2.3% BWOC Dispersant/Friction reducer it is not circulate casing setting of to to to FL (mL/30 min) 20 0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat-h gth < 10', when	x 17-1/2" hole c ssume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface . Co depth, run casirr 3,833 3,673 PV (cp) 8 - 14 v/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'a st 13-3/8" casin possible. Take su	annulus le and the exces ement must ach fg, cement casim ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 900 GPM, 950 6 (range 0.65 - 0. at a minimum), 0 gto setting depth). 1 urveys every stan	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GR optional 1,500 Steer as needed d, at a minimur	0.8680 mpressive strer section Length: asing Required: Comm No C th 6 - 12s psi for 30 minu to keep well on m. Target flow-ra	ft3/ft Cu Ft Slurry 505.3 Igth before 3,483 i 3,833 i nents DBM tes. plan. Keep DL ates of 750
Drake E Tail TERMEDIATE: Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per dire 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen ectional plan to ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination a est (as noted abo owing directions d keep slide len able to control	13-3/8" casing ment volumes as D-CD2.3% BWOC Dispersant/Friction reducer it is not circulate casing setting of to to to FL (mL/30 min) 20 0, stage, 0.16 re 19 mm cutters, and azimuth sur pove); pressure te al plan (20' rat-f gth < 10', when return rates). Mi	x 17-1/2" hole c ssume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface . Co depth, run casir, 3,833 3,673 PV (cp) 8 - 14 v/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100's st 13-3/8" casin possible. Take so nimum desired	annulus le and the exces ement must ach ng, cement casim ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 at a minimum), o gto setting depth). 1 urveys every stan flow-rate is 650	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit 5R optional 1,500 Steer as needed d, at a minimur GPM. At TD, co	0.8680 mpressive strer section Length: asing Required: Comm No C th 6 - 12s psi for 30 minu to keep well on m. Target flow-ra ndition hole and	ft3/ft Cu Ft Slurry 505.3 Igth before 3,483 3,833 3,833 DBM tes. plan. Keep DL ates of 750 d fluid for
Drake E Tail TERMEDIATE: Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per dire 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a casing running.	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen & BLM if cemen ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted abo wying direction d keep slide len able to control u.	13-3/8" casing ment volumes as D-CD2.3% BWOC Dispersant/Friction reducer it is not circulate casing setting of to to FL (mL/30 min) 20 0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat-f gth < 10', when return rates). Mi ing using a CRT a	x 17-1/2" hole c ssume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface. Co depth, run casir, 3,833 3,673 PV (cp) 8 - 14 V/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'a st 13-3/8" casin possible. Take su nimum desired and washing / ci	annulus le and the exces ement must ach eg, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 900 GPM, 950 (range 0.65 - 0. at a minimum), G gto setting depth). 3 urveys every stan flow-rate is 650 rculating as requ	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casin	0.8680 mpressive strer iection Length: asing Required: Comm No C th 6 - 12s psi for 30 minu to keep well on m. Target flow-ra ndition hole and ng. ND BOPE. With	ft3/ft Cu Ft Slurry 505.3 Igth before 3,483 3,833 ments DBM tes. plan. Keep DL ates of 750 d fluid for alk rig to next
Drake E Tail TERMEDIATE: Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per dire 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo <3 deg/100' an GPM (higher if a casing running, well. Perform o	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen & BLM if cemen ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted abo owing direction; d keep slide len able to control u. TOOH. Run cas off-line cement j	13-3/8" casing ment volumes as D-CD2.3% BWOC Dispersant/Friction reducer it is not circulate casing setting of to to FL (mL/30 min) 20 0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat-f gth < 10', when return rates). Mi ing using a CRT a	x 17-1/2" hole c ssume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface. Co depth, run casir, 3,833 3,673 PV (cp) 8 - 14 V/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'a st 13-3/8" casin possible. Take su nimum desired and washing / ci	annulus le and the exces ement must ach ng, cement casim ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 at a minimum), o gto setting depth). 1 urveys every stan flow-rate is 650	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casin	0.8680 mpressive strer iection Length: asing Required: Comm No C th 6 - 12s psi for 30 minu to keep well on m. Target flow-ra ndition hole and ng. ND BOPE. With	ft3/ft Cu Ft Slurry 505.3 Igth before 3,483 3,833 3,833 nents DBM tes. plan. Keep DL ates of 750 d fluid for alk rig to next
Drake E Tail TERMEDIATE: Fluid: Hole Size: Bit / Motor: Bit / Motor: WWD / Survey: Logging: Pressure Test:	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per dire 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a casing running.	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen & BLM if cemen ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted abo owing direction; d keep slide len able to control u. TOOH. Run cas off-line cement j	13-3/8" casing ment volumes as D-CD2.3% BWOC Dispersant/Friction reducer it is not circulate casing setting of to to FL (mL/30 min) 20 0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat-f gth < 10', when return rates). Mi ing using a CRT a	x 17-1/2" hole c ssume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface. Co depth, run casir, 3,833 3,673 PV (cp) 8 - 14 V/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'a st 13-3/8" casin possible. Take su nimum desired and washing / ci	annulus le and the exces ement must ach eg, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 900 GPM, 950 (range 0.65 - 0. at a minimum), G gto setting depth). : urveys every stan flow-rate is 650 rculating as requ	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casin	0.8680 mpressive strer iection Length: asing Required: Comm No C th 6 - 12s psi for 30 minu to keep well on m. Target flow-ra ndition hole and ng. ND BOPE. With	ft3/ft Cu Ft Slurry 505.3 Igth before 3,483 3,833 3,833 nents DBM tes. plan. Keep DL ates of 750 d fluid for alk rig to next
Drake E Tail TERMEDIATE: Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test:	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per dire 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo <3 deg/100' an GPM (higher if a casing running, well. Perform o	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen & BLM if cemen ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination est (as noted abo owing direction; d keep slide len able to control u. TOOH. Run cas off-line cement j	13-3/8" casing ment volumes as D-CD2.3% BWOC Dispersant/Friction reducer it is not circulate casing setting of to to FL (mL/30 min) 20 0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat-f gth < 10', when return rates). Mi ing using a CRT a	x 17-1/2" hole c ssume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface. Co depth, run casir, 3,833 3,673 PV (cp) 8 - 14 V/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'a st 13-3/8" casin possible. Take su nimum desired and washing / ci	annulus le and the exces ement must ach eg, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 900 GPM, 950 (range 0.65 - 0. at a minimum), G gto setting depth). : urveys every stan flow-rate is 650 rculating as requ	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GR optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casin	0.8680 mpressive strer iection Length: asing Required: Comm No C th 6 - 12s psi for 30 minu to keep well on m. Target flow-ra ndition hole and ng. ND BOPE. Wa ment job and no	ft3/ft Cu Ft Slurry 505.3 Igth before 3,483 3,833 nents DBM tes. plan. Keep DL ates of 750 d fluid for alk rig to next ote cement
Drake E Tail TERMEDIATE: Fluid: Hole Size: Bit / Motor: Bit / Motor: Bit / Motor: WWD / Survey: Logging: Pressure Test: Procedure:	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per dire 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo <3 deg/100' an GPM (higher if a casing running, well. Perform o	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen ectional plan to ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination ; est (as noted abo wying direction; d keep slide len able to control u. TOOH. Run cas iff-line cement j ace.	13-3/8" casing ment volumes as D-CD2.3% BWOC Dispersant/Friction reducer it is not circulated casing setting of to to FL (mL/30 min) 20 0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat-f gth < 10', when return rates). Mi ing using a CRT a ob. Pump ceme	x 17-1/2" hole c ssume gauge ho -25 lbs/sx Cello Flake - seepage ed to surface. Co depth, run casirr 3,833 3,673 PV (cp) 8 - 14 V/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'a st 13-3/8" casin possible. Take su nimum desired and washing / ci nt as detailed be	annulus le and the exces ement must ach og, cement casim ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 of (range 0.65 - 0. at a minimum), of gto setting depth). 1 urveys every stan flow-rate is 650 reculating as required.	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit 5R optional 1,500 Steer as needed d, at a minimur GPM. At TD, co iired. Land casin turns during ce	0.8680 mpressive strer iection Length: asing Required: Comm No C th 6 - 12s psi for 30 minu to keep well on m. Target flow-ra ndition hole and ng. ND BOPE. Wa ment job and no Tens. Body	ft3/ft Cu Ft Slurry 505.3 Igth before 3,483 3,833 3,833 ments DBM tes. plan. Keep DL ates of 750 d fluid for alk rig to next ote cement Tens. Conn
Tail Tail TERMEDIATE: Fluid: Hole Size: Bit / Motor: Bit / Motor: Bit / Motor: Pressure Test: Procedure: Casing Specs:	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per dire 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey W None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a casing running, well. Perform o volume to surfa	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen ectional plan to ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination a est (as noted abo wying direction d keep slide len able to control u . TOOH. Run cas off-line cement j ace. Wt (lb/ft)	13-3/8" casing ment volumes as D-CD2.3% BWOC Dispersant/Friction reducer it is not circulated casing setting of to to FL (mL/30 min) 20	x 17-1/2" hole e ssume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface. Co depth, run casir 3,833 3,673 PV (cp) 8 - 14 V/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'a st 13-3/8" casin possible. Take su nimum desired and washing / ci nt as detailed be Conn.	annulus le and the exces ement must ach og, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 y 900 GPM, 950 (range 0.65 - 0. at a minimum), G gto setting depth), 3 urveys every stan flow-rate is 650 reculating as requ clow. Monitor ref Collapse (psi)	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GPM optional 1,500 Steer as needed d, at a minimu GPM. At TD, co iired. Land casin turns during ce Burst (psi)	0.8680 mpressive strer iection Length: asing Required: Comm No C th 6 - 12s psi for 30 minu to keep well on m. Target flow-ra ndition hole and ng. ND BOPE. Wa ment job and no Tens. Body (lbs)	ft3/ft Cu Ft Slurry 505.3 Igth before 3,483 3,833 ments DBM tes. plan. Keep DL ates of 750 d fluid for alk rig to next ote cement Tens. Conn (lbs)
Tail Tail TERMEDIATE: Fluid: Hole Size: Bit / Motor: Bit / Motor: Bit / Motor: Pressure Test: Procedure: Casing Specs: Specs	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per dire 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo <3 deg/100' an GPM (higher if a casing running, well. Perform o	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen ectional plan to ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination ; est (as noted abo wying direction; d keep slide len able to control u. TOOH. Run cas iff-line cement j ace.	13-3/8" casing ment volumes as D-CD2.3% BWOC Dispersant/Friction reducer it is not circulated casing setting of to to FL (mL/30 min) 20 0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat-f gth < 10', when return rates). Mi ing using a CRT a ob. Pump ceme	x 17-1/2" hole c ssume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface. Co depth, run casirr 3,833 3,673 PV (cp) 8 - 14 V/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'a st 13-3/8" casin possible. Take su nimum desired and washing / ci nt as detailed be	annulus le and the exces ement must ach eg, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 y 900 GPM, 950 the (range 0.65 - 0. at a minimum), of g to setting depth). 1 grveys every stan flow-rate is 650 reculating as requered elow. Monitor reference Collapse (psi) 2,020	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GR optional 1,500 Steer as needed d, at a minimur GPM. At TD, co irired. Land casir turns during ce Burst (psi) 3,520	0.8680 mpressive strer Section Length: asing Required: Comm No C th 6 - 12s psi for 30 minu to keep well on m. Target flow-ra ndition hole and ng. ND BOPE. Wa ment job and no Tens. Body (lbs) 564,000	ft3/ft Cu Ft Slurry 505.3 agth before 3,483 3,833 agth before 3,833 before before tes. plan. Keep DL ates of 750 d fluid for alk rig to next ote cement Tens. Conn (lbs) 453,000
Tail Tail TERMEDIATE: Fluid: Hole Size: Bit / Motor: Bit / Motor: WWD / Survey: Logging: Pressure Test: Procedure: Casing Specs: Specs Loading	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per dire 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey W None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a casing running, well. Perform o volume to surfa	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen ectional plan to ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination a est (as noted abo wying direction d keep slide len able to control u . TOOH. Run cas off-line cement j ace. Wt (lb/ft)	13-3/8" casing ment volumes as D-CD2.3% BWOC Dispersant/Friction reducer it is not circulated casing setting of to to FL (mL/30 min) 20	x 17-1/2" hole e ssume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface. Co depth, run casir 3,833 3,673 PV (cp) 8 - 14 V/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'a st 13-3/8" casin possible. Take su nimum desired and washing / ci nt as detailed be Conn.	annulus le and the exces ement must ach org, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 y 900 GPM, 950 the (range 0.65 - 0. at a minimum), or g to setting depth). 1 urveys every stan flow-rate is 650 rcculating as required elow. Monitor res Collapse (psi) 2,020 1,604	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GR optional 1,500 Steer as needed d, at a minimur GPM. At TD, co ijred. Land casin turns during ce Burst (psi) 3,520 1,380	0.8680 mpressive strer section Length: asing Required: Comm No C th 6 - 12s psi for 30 minu to keep well on m. Target flow-ra ndition hole and no is, ND BOPE. Wa ment job and no Tens. Body (lbs) 564,000 215,309	ft3/ft Cu Ft Slurry 505.3 agth before 3,483 3,833 3,833 ments DBM tes. plan. Keep DL ates of 750 d fluid for alk rig to next ote cement Tens. Conn (lbs) 453,000 215,309
Tail Tail TERMEDIATE: Fluid: Hole Size: Bit / Motor: Bit / Motor: Bit / Motor: Pressure Test: Procedure: Casing Specs: Specs	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per direc 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a casing running. well. Perform o volume to surface	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen ectional plan to ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination rith inclination rith est (as noted abo owing direction able to control in . TOOH. Run cas off-line cement j ace. Wt (lb/ft) 36.0	13-3/8" casing ment volumes as D-CD2.3% BWOC Dispersant/Friction reducer it is not circulate casing setting of to to to fL (mL/30 min) 20 o, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat-f gth < 10', when return rates). Mii ing using a CRT a ob. Pump ceme Grade J-55	x 17-1/2" hole c ssume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface. Co depth, run casin 3,833 3,673 PV (cp) 8 - 14 v/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'a st 13-3/8" casin nole past casing possible. Take ss nimum desired and washing / ci nt as detailed be Conn. LTC	annulus le and the exces ement must ach eg, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 900 GPM, 950 (range 0.65 - 0. at a minimum), G gto setting depth). gto setting depth. gto gto setting depth. gto gto setting depth. gto gto setting depth. gto gto gto setting depth. gto gto gto gto gto gto gto gto gto gto	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit 3R optional 1,500 Steer as needed d, at a minimu GPM. At TD, co ijred. Land casin turns during ce Burst (psi) 3,520 1,380 2.55	0.8680 mpressive strer section Length: asing Required: Comm No C th 6 - 12s psi for 30 minu to keep well on m. Target flow-ra ndition hole and ng. ND BOPE. Wa ment job and no Tens. Body (lbs) 564,000 215,309 2.62	ft3/ft Cu Ft Slurry 505.3 agth before 3,483 3,833 agth before 3,833 before before tes. plan. Keep DL ates of 750 d fluid for alk rig to next ote cement Tens. Conn (lbs) 453,000
Tail Tail TERMEDIATE: Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test: Procedure: Procedure:	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per direc 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a casing running. well. Perform o volume to surface	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen ectional plan too ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or ith inclination a est (as noted abo owing directional d keep slide len able to control i . TOOH. Run cas off-line cement j ace. Wt (lb/ft) 36.0 Collapse: fully	13-3/8" casing nent volumes as D-CD2.3% BWOC Dispersant/Friction reducer it is not circulate casing setting e to to to fL (mL/30 min) 20 . 0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat-h gth < 10', when	x 17-1/2" hole c ssume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface. Co depth, run casin 3,833 3,673 PV (cp) 8 - 14 v/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'a st 13-3/8" casin possible. Take su nimum desired and washing / ci nt as detailed be Conn. LTC	annulus le and the excess ement must ach eg, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 , 900 GPM, 950 a (range 0.65 - 0. at a minimum), G gto setting depth). 1 Jrveys every stan flow-rate is 650 rculaing as requ elow. Monitor res Collapse (psi) 2,020 1,604 1.26 equivalent exte	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit 5R optional 1,500 Steer as needed d, at a minimur GPM. At TD, co iired. Land casin turns during ce Burst (psi) 3,520 1,380 2.55 rnal pressure gr	0.8680 mpressive strer section Length: asing Required: Comm No C th 6 - 12s psi for 30 minu to keep well on m. Target flow-ra ndition hole and mg. ND BOPE. Wa ment job and no Tens. Body (lbs) 564,000 215,309 2.62 radient	ft3/ft Cu Ft Slurry 505.3 igth before 3,483 3,833 inents DBM tes. plan. Keep DL ates of 750 d fluid for alk rig to next ote cement Tens. Conn (lbs) 453,000 215,309 2.10
Tail Tail TERMEDIATE: Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test: Procedure: Procedure:	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per direc 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a casing running. well. Perform o volume to surface	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen ectional plan to ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination a est (as noted abo owing directions id keep slide len able to control i . TOOH. Run cas off-line cement j ace. Wt (lb/ft) 36.0 Collapse: fully Burst: maximu	13-3/8" casing ment volumes as D-CD2.3% BWOC Dispersant/Friction reducer it is not circulate to to to FL (mL/30 min) 20 0, stage, 0.16 re 19 mm cutters, and azimuth sur ove); pressure te al plan (20' rat-f gth < 10', when return rates). Mi ing using a CRT a ob. Pump ceme Grade J-55 evacuated casin m anticipated s	x 17-1/2" hole c ssume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface. Co depth, run casin 3,833 3,673 PV (cp) 8 - 14 v/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'a st 13-3/8" casin possible. Take su nimum desired and washing / ci nit as detailed be <u>Conn.</u> LTC	annulus le and the excess ement must ach eg, cement casim ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 900 GPM, 950 o (range 0.65 - 0. at a minimum), G gto setting depth). 1 urveys every stam flow-rate is 650 rculating as requ elow. Monitor re Collapse (psi) 2,020 1,604 1.26 equivalent exte with 9.5 ppg flu	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit 5R optional 1,500 Steer as needed d, at a minimur GPM. At TD, co iired. Land casin turns during ce Burst (psi) 3,520 1,380 2.55 rnal pressure gr	0.8680 mpressive strer section Length: asing Required: Comm No C th 6 - 12s psi for 30 minu to keep well on m. Target flow-ra ndition hole and mg. ND BOPE. Wa ment job and no Tens. Body (lbs) 564,000 215,309 2.62 radient	ft3/ft Cu Ft Slurry 505.3 igth before 3,483 3,833 inents DBM tes. plan. Keep DL ates of 750 d fluid for alk rig to next ote cement Tens. Conn (lbs) 453,000 215,309 2.10
Tail Tail TERMEDIATE: Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test: Procedure: Procedure:	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per direc 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if a casing running. well. Perform o volume to surface	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen ectional plan too ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination : est (as noted abo owing directions id keep slide len able to control i . TOOH. Run cas off-line cement j ace. Wt (lb/ft) 36.0 Collapse: fully Burst: maximu hole and 8.4 pj	13-3/8" casing ment volumes as D-CD2.3% BWOC Dispersant/Friction reducer it is not circulate casing setting e to to to FL (mL/30 min) 20	x 17-1/2" hole c x 17-1/2" hole c ssume gauge ho 25 lbs/sx Cello Flake - seepage ed to surface. Co depth, run casin 3,833 3,673 PV (cp) 8 - 14 v/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'a st 13-3/8" casin possible. Take su nimum desired and washing / ci nt as detailed be Conn. LTC bg with 8.4 ppg surface pressure cternal pressure	annulus le and the excess ement must ach eg, cement casim ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 900 GPM, 950 o (range 0.65 - 0. at a minimum), 0 g to setting depth). 1 urveys every stan flow-rate is 650 rculating as requ elow. Monitor re Collapse (psi) 2,020 1,604 1.26 equivalent exte with 9.5 ppg flu gradient	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GPM. At TD, co irred. Land casin turns during ce Burst (psi) 3,520 1,380 2.55 rnal pressure gr	0.8680 mpressive strer section Length: asing Required: Comm No C th 6 - 12s psi for 30 minu to keep well on m. Target flow-ra ndition hole and mg. ND BOPE. Wa ment job and no Tens. Body (lbs) 564,000 215,309 2.62 radient	ft3/ft Cu Ft Slurry 505.3 Igth before 3,483 f 3,833 f 3,835 f
Tail ITERMEDIATE: Fluid: Hole Size: Bit / Motor: Bit / Motor: Casing Specs: Specs Loading Min. S.F.	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per direc 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if; casing running, well. Perform o volume to surfa 9.625 Assumptions:	cuft/ft Calculated cen Calcium Chloride 2% BWOC Accelerator & BLM if cemen ectional plan too ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8, 4. DC w/16 mm or rith inclination : est (as noted abo owing directions d keep slide len able to control i . TOOH. Run cas fff-line cement j ace. Wt (lb/ft) 36.0 Collapse: fully Burst: maximu hole and 8.4 pj Tension: buoye	13-3/8" casing ment volumes as D-CD2 3% BWOC Dispersant/Friction reducer it is not circulate casing setting of to to to FL (mL/30 min) 20	x 17-1/2" hole e ssume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface. Co depth, run casin 3,833 3,673 PV (cp) 8 - 14 v/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'a st 13-3/8" casin possible. Take su nimum desired and washing / ci nt as detailed be <u>Conn.</u> LTC g with 8.4 ppg surface pressure sternal pressure sternal pressure	annulus le and the excess ement must ach eg, cement casim ft (MD) ft (TVD) YP (lb/100 sqft) 8 - 14 900 GPM, 950 0 (range 0.65 - 0. at a minimum), 0 gto setting depth). 1 urveys every stan flow-rate is 650 reulating as requ elow. Monitor re Collapse (psi) 2,020 1,604 1.26 equivalent exte with 9.5 ppg flu gradient 100,000 lbs over	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GPM at TD, co irred. Land casin turns during ce Burst (psi) 3,520 1,380 2.55 rnal pressure gn id inside casing -pull	0.8680 mpressive strer section Length: asing Required: Comm No C th 6 - 12s psi for 30 minu to keep well on m. Target flow-ra ndition hole and mg. ND BOPE. Wa ment job and no Tens. Body (lbs) 564,000 215,309 2.62 radient	ft3/ft Cu Ft Slurry 505.3 Igth before 3,483 f 3,833 f 3,835 f
Tail Tail Tail TERMEDIATE: Fluid: Hole Size: Bit / Motor: Bit / Motor: MWD / Survey: Logging: Pressure Test: Procedure: Procedure: Specs Loading	0.6946 inergy Services: ASTM Type III Blend Notify COGCC & drilling out. Drill as per direc 350 350 Type LSND (5% KCl) 12-1/4" 12-1/4" PDC bi MOTOR: NOV 0 BIT: 6-BLADE PI MWD Survey w None NU BOPE and te Drill to TD follo < 3 deg/100' an GPM (higher if; casing running; well. Perform o volume to surfa 9.625 Assumptions: Minumum:	cuft/ft Calculated cen Calculated cen BWOC Accelerator & BLM if cemen ectional plan to ft (MD) ft (TVD) MW (ppg) 8.8 - 9.5 t w/mud motor 87840 - 7/8,4. DC w/16 mm or rith inclination a est (as noted abo wing directions d keep slide len able to control 1 . TOOH. Run cas off-line cement j ace. Wt (lb/ft) 36.0 Collapse: fully Burst: maximul hole and 8.4 pj Tension: buoye 3,400	13-3/8" casing ment volumes as D-CD2.3% BWOC Dispersant/Friction reducer it is not circulate casing setting of to to to FL (mL/30 min) 20	x 17-1/2" hole c sume gauge ho .25 lbs/sx Cello Flake - seepage ed to surface. Co depth, run casin 3,833 3,673 PV (cp) 8 - 14 v/gal, 1.83 DEG TFA = 0.67 sq-ir vey (every 100'a st 13-3/8" casin nioue past casing possible. Take su nimum desired and washing / ci nt as detailed be <u>Conn.</u> LTC	annulus le and the excess ement must ach eg, cement casin ft (MD) ft (TVD) YP (Ib/100 sqft) 8 - 14 900 GPM, 950 ft (range 0.65 - 0. at a minimum), 0 g to setting depth). 1 grveys every stam flow-rate is 650 reculating as requ elow. Monitor ref Collapse (psi) 2,020 1,604 1.26 equivalent exte with 9.5 ppg flu gradient 100,000 Ibs over Maximum:	Csg capacity s noted in table ieve 500 psi co g to surface. Hole S Ca pH 9.0 - 9.5 DIFF PSIG 90 max), jet wit GR optional 1,500 Steer as needed d, at a minimur GPM. At TD, co irired. Land casir turns during ce Burst (psi) 3,520 1,380 2.55 rnal pressure gr id inside casir 5,660	0.8680 mpressive strer section Length: asing Required: Comm No C th 6 - 12s psi for 30 minu to keep well on m. Target flow-ra ndition hole and ndition hole and ng. ND BOPE. Wa ment job and no Tens. Body (lbs) 564,000 215,309 2.62 radient g while drilling j	ft3/ft Cu Ft Slurry 505.3 igth before 3,483 f 3,833 f 3,833 f a,833 f a,835 f

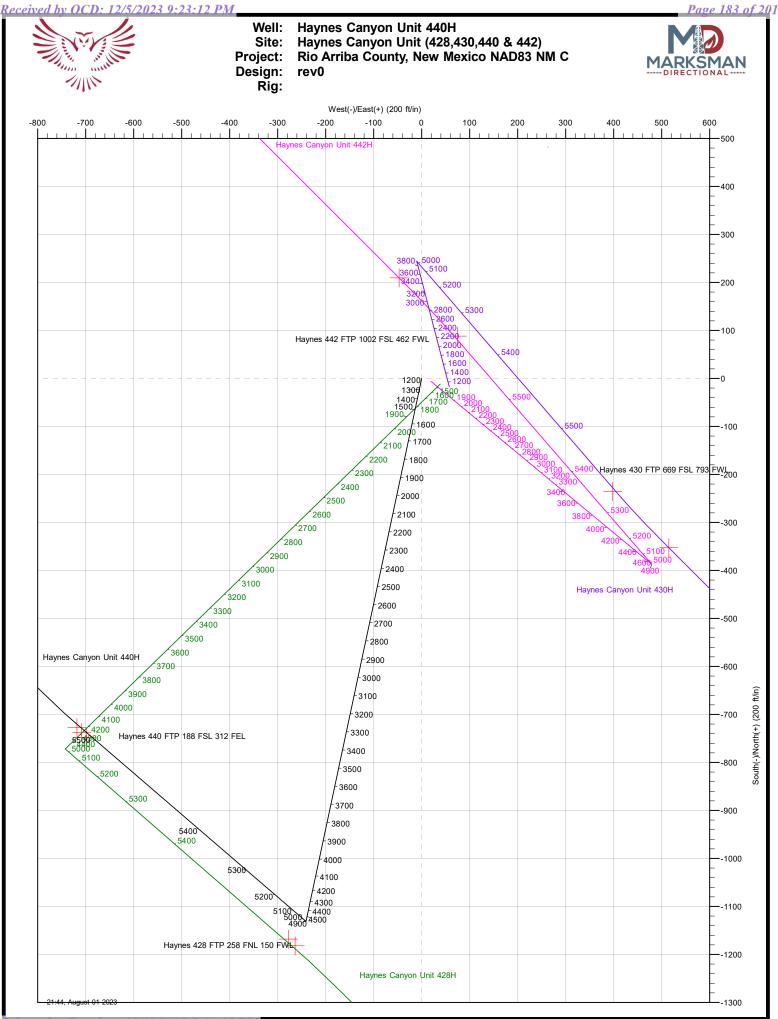
Casing Summary: Float shoe, 1 jt casing, float collar, casing to surface (FLOAT EQUIPMENT FROM WEATHERFORD) Centralizers: 1 per joint in non-vertical hole; 1 per 2-joints in vertical hole

•


		(floating) to KC	DP ; 1 centralizer	per 3 jts (floati		t & 1 centralize entralizers from		and the second	9-5/8" x
1	Cement:	Туре	Weight (ppg)	Yield (cuft/sk)	Water (gal/sk)	% Excess	Planned TOC (ft MD)	Total Cmt (sx)	Total Cmt (cu ft)
age 1	Spacer	D-Mud Breaker 90:10 Type	8.5	2.1.10	12.05	70%	0	10 bbls	4 745
	Lead Tail	III:POZ Type III	12.5 14.6	2.140 1.380	12.05 6.64	70% 20%	0 3,333	802 150	1,715 207
Disn	lacement	293	-	1.560	0.04	20%	3,333	150	207
	Capacity	0.3627	cuft/ft	9-5/8" casina >	: 13-3/8" casing	annulus			1
		0.3132 0.4341	cuft/ft cuft/ft nent volumes as	9-5/8" casing > 9-5/8" casing v	12-1/4" hole ai vol	nnulus est shoe jt ft	9-5/8" 36# ID 44 ly) noted in tab		
	Spacer	D-Mud Breaker	SAPP	D-MPA-1 .4% BWOC					
	Lead	ASTM Type III 90/10 Poz	D-CSE 1 5.0% BWOC Strength Enhancer	Migration Control D-MPA-1 .4% BWOC	D-SA 1 1.4% BWOC Na Metasilicate	Dispersant	lb/sx	D-FP1 0.5% BWOC Defoamer	D-R1 .5% Retarder
	Tail	ASTM Type III Blend Drake Interme	diate Cementing	Fluid Loss & Gas Migration Control g Program		D-CD 2 .5% BWOC Dispersant	Cello Flace LCM .25 lb/sx		D-R1 .2% Retarder
- RADA		Notify NMOCD drilling out.	achieve 500 psi) & BLM if ceme	nt is not circula	ted to surface. (Cement must a	chieve 500 psi o	compressive stre	ength before
PROD			owing direction		<u>.</u> .		Hala	Contion Longth.	9.940
			ft (MD)	to	-	ft (MD)		Section Length:	-
		3,673	ft (TVD)	to	5,521	ft (TVD)	Ľ	asing Required:	12,673
				stimated KOP:	E 100	ft (MD)	4 900	ft (TVD)	1
			Estimated Landi			ft (MD)		ft (TVD)	-
				ateral Length:		ft (MD)	5,400		-
			Estimatea	uterui Lengtii.	0,015				
									-
	Fluid:	Туре	MW (ppg)	WPS ppm	нтнр	YP (lb/100 sqft)	ES	OWR	Comment
	Fluid:	Type OBM	MW (ppg) 8.0 - 9.0	WPS ppm 120,000 CaCl	HTHP NC	• •	ES +300	OWR 80:20	WBM as
	ids Notes:	OBM OptiDrill OBM shakers. Solids required to ma		120,000 CaCl uilt from previo n retorts on cut	NC pus well. Ensure t tings samples o	sqft) ±6 that drying shal ne per tour to c	+300 kers are rigged u heck % ROC. Ad	80:20 p after the rig (2 d diesel and pro	WBM as contingency nd set) of
	ids Notes: Hole Size:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2"	8.0 - 9.0 system will be b control will bur iintain mud in p	120,000 CaCl uilt from previo n retorts on cut	NC pus well. Ensure t tings samples o	sqft) ±6 that drying shal ne per tour to c	+300 kers are rigged u heck % ROC. Ad	80:20 p after the rig (2 d diesel and pro	WBM as contingency nd set) of
Bit	ids Notes: Hole Size: : / Motor:	OptiDrill OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor	120,000 CaCl uilt from previc n retorts on cut rogram specs. R	NC us well. Ensure tings samples o eference Newpa	sqft) ±6 that drying shal ne per tour to c rk's mud progra	+300 kers are rigged u heck % ROC. Ad am for additiona	80:20 p after the rig (2 d diesel and pro al details.	WBM as contingency nd set) of ducts as
Bit	ids Notes: Hole Size: : / Motor:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breaking	8.0 - 9.0 system will be b control will bur iintain mud in p	120,000 CaCl uilt from previc rogram specs. R 8, 5.0 stage, 0.2	NC rus well. Ensure tings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3,	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind th	+300 kers are rigged u heck % ROC. Ad am for additiona L,580 DIFF PSIG e bit.	80:20 p after the rig (2 d diesel and pro al details.	WBM as contingency nd set) of ducts as
Bit Bit MWD	ids Notes: Hole Size: Motor: Motor:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV 0 friction breakin BIT: 5-BLADE P MWD with GR, before KOP and	8.0 - 9.0 system will be b control will bur aintain mud in p w/mud motor 077857 - 6.5" 7// ng device(s) as re DC w/16 mm - 1 , inclination, and d after Landing P	120,000 CaCl uilt from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, r d azimuth (surve 'oint)	NC vus well. Ensure trings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind th get TFA = 1.0 - 1 pm KOP to Land	+300 kers are rigged u heck % ROC. Ad am for additiona L,580 DIFF PSIG e bit. .5 sq-in	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o	WBM as contingency nd set) of ducts as
Bit Bit MWD	ids Notes: Hole Size: (Motor: (Motor: (Survey: Logging:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 i inclination, and d after Landing P ntire section, no	120,000 CaCl uilt from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, r d azimuth (surve toint) mud-log or cut	NC sus well. Ensure tings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling,	sqft) ±6 that drying shall ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind th get TFA = 1.0 - 1 m KOP to Land no OH WL logs	+300 kers are rigged u heck % ROC. Ad am for additiona for additiona L,580 DIFF PSIG e bit. .5 sq-in ing Point and su	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o	WBM as contingency nd set) of ducts as demand
Bit Bit MWD Pres	ids Notes: Hole Size: / Motor: / Motor: / Survey: Logging: ssure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV friction breaki BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t	8.0 - 9.0 system will be b control will bur aintain mud in p w/mud motor 077857 - 6.5" 7// ng device(s) as re DC w/16 mm - 1 , inclination, and d after Landing P	120,000 CaCl uilt from previc on retorts on cut rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, r 4 azimuth (surve toint) mud-log or cut pove); pressure te	NC us well. Ensure tings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, st 9-5/8" casing	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind th get TFA = 1.0 - 1 om KOP to Land no OH WL logs to	+300 kers are rigged u heck % ROC. Ad am for addition: 1,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o urvey every 100' psi for 30 minu	WBM as contingency nd set) of ducts as demand minimum
Bit Bit MWD Pres	ids Notes: Hole Size: / Motor: / Motor: / Survey: Logging: ssure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breaki BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/. ng device(s) as re DC w/16 mm - 1 , inclination, and d after Landing P ntire section, no est (as noted abo	120,000 CaCl uilt from previc on retorts on cut rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, r d azimuth (surve oint) mud-log or cut pove); pressure te nal plan. Target	NC nus well. Ensure tings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, st 9-5/8" casing flow-rate is 650	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1 om KOP to Land no OH WL logs to - 700 GPM. Tar	+300 kers are rigged u heck % ROC. Ad am for addition: .,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o urvey every 100' psi for 30 minu	WBM as contingency nd set) of ducts as demand minimum utes. 0 - 1,000 psig.
Bit Bit MWD Pres	ids Notes: Hole Size: / Motor: / Motor: / Survey: Logging: ssure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breaki BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible.	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 177857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 d after Landing P ntire section, no est (as noted abo llowing directio D - 600 ft/hr. Ste Take surveys ever	120,000 CaCl uilt from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, r d azimuth (surve 'oint) mud-log or cut ove); pressure te nal plan. Target er as needed to ery stand, at a m	NC us well. Ensure tings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, st 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confirm	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind th get TFA = 1.0 - 1 Im KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe	+300 kers are rigged u heck % ROC. Ad am for additiona t,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential deg/100' and ke t, planned BUR	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o urvey every 100' psi for 30 minu is pressure is 700 cep slide length - for curve, and K0	WBM as contingency nd set) of ducts as demand minimum utes. < 10' until KOF OP with
Bit Bit MWD Pres	ids Notes: Hole Size: / Motor: / Motor: / Survey: Logging: ssure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breaki BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 777857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 d after Landing P ntire section, no est (as noted abo llowing directio D - 600 ft/hr. Ste Take surveys even ngineering. Drill	120,000 CaCl uilt from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, r d azimuth (surve 'oint) mud-log or cut ove); pressure te nal plan. Target er as needed to ery stand, at a m curve following	NC rus well. Ensure tings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, st 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confiru directional pla	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind th get TFA = 1.0 - 1 om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated l	+300 kers are rigged u heck % ROC. Ad am for additiona t,580 DIFF PSIG e bit. 5 sq-in ing Point and su 1,500 get differential deg/100' and ku t, planned BUR anding target. 1	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o urvey every 100' psi for 30 minu is pressure is 700 eep slide length for curve, and Ki Take survey every	WBM as contingency nd set) of ducts as demand minimum rtes. < 10' until KOF OP with / joint during
Bit Bit MWD Pres	ids Notes: Hole Size: / Motor: / Motor: / Survey: Logging: ssure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er curve. Land cu	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 77857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 , inclination, and d after Landing P nest (as noted abo llowing direction D - 600 ft/hr. Ster Take surveys even ngineering. Drill rve. Continue dr	120,000 CaCl uilt from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, r d azimuth (surve roint) mud-log or cut pove); pressure te nal plan. Target er as needed to ery stand, at a m curve following iilling in lateral	NC us well. Ensure tings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, st 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confiri directional pla section, steering	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind th get TFA = 1.0 - 1 om KOP to Land no OH WL logs to -700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated l gas needed to k	+300 kers are rigged u heck % ROC. Ad am for additiona 1,580 DIFF PSIG e bit. 5 sq-in ing Point and su 1,500 get differential deg/100' and ku t, planned BUR anding target. T eep well on plar	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o urvey every 100' psi for 30 minu is pressure is 700 eep slide length for curve, and Ki Take survey every n and in the targe	WBM as contingency nd set) of ducts as demand minimum ttes. > 1,000 psig. < 10' until KOF OP with / joint during et window.
Bit Bit MWD Pres	ids Notes: Hole Size: / Motor: / Motor: / Survey: Logging: ssure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er curve. Land cu Keep DLS < 2 do	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/3 ng device(s) as re DC w/16 mm - 1 , inclination, and d after Landing P ntire section, no est (as noted abo llowing direction 0 - 600 ft/hr. Ste Take surveys even ngineering. Drill rve. Continue dr eg/100' and keep	120,000 CaCl uilt from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, r d azimuth (surve toint) mud-log or cut pove); pressure te nal plan. Target er as needed to ry stand, at a m curve following filling in lateral p slide length < 2	NC us well. Ensure tings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targe ey every joint from tings sampling, st 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confiring directional pla section, steering 20', when feasibl	sqft) ±6 that drying shall ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind th get TFA = 1.0 - 1 om KOP to Land no OH WL logs to -700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated l gas needed to k e. Take surveys	+300 kers are rigged u heck % ROC. Ad am for additiona 1,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential deg/100' and ku t, planned BUR anding target. T eep well on plar every stand, at a	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o urvey every 100' psi for 30 minu is pressure is 700 eep slide length for curve, and Ki Take survey every n and in the targe	WBM as contingency nd set) of ducts as demand minimum ites. > 1,000 psig. < 10' until KOP OP with r joint during et window. get rotating
Bit Bit MWD Pres	ids Notes: Hole Size: / Motor: / Motor: / Survey: Logging: ssure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV (0 friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er curve. Land cu Keep DLS < 2 di parameters / p	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 , inclination, and d after Landing P ntire section, no est (as noted abo llowing directio 0 - 600 ft/hr. Stee Take surveys even agineering. Drill rve. Continue dr eg/100' and keep performance: floo	120,000 CaCl uilt from previo retorts on cut rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, r d azimuth (surve toint) mud-log or cut power; pressure te nal plan. Target er as needed to cry stand, at a m curve following filling in lateral o slide length < 2 pw-rate is 650 -	NC sus well. Ensure of trings samples of eference Newpa 3 rev/gal, 1.83 of tool spaced ~3, natrix body, target ey every joint from tings sampling, st 9-5/8" casing flow-rate is 6500 keep well on plation inimum. Confirm directional plation section, steering 10', when feasibli 700 GPM, differ	sqft) ±6 that drying shall ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind th get TFA = 1.0 - 1 om KOP to Land no OH WL logs to -700 GPM. Tar n. Keep DLS < 3 m landing targen n and updated l gas needed to k e. Take surveys rential is pressu	+300 kers are rigged u heck % ROC. Ad am for addition: .5 sq-in ing Point and su 1,500 get differential deg/100'and kc t, planned BUR anding target. 1 eep well on plar every stand, at a re is 700 - 1,00	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o urvey every 100' psi for 30 minu is pressure is 700 eep slide length for curve, and Kr Take survey every a nd in the targe a minimum. Targ 0 psig, ROP 500	WBM as contingency nd set) of ducts as demand minimum rtes. > -1,000 psig. <10' until KOP DP with / joint during et window. get rotating - 600 ft/hr,
Bit Bit MWD Pres	ids Notes: Hole Size: / Motor: / Motor: / Survey: Logging: ssure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er curve. Land cu Keep DLS < 2 di parameters / p torque 38K ft-1	8.0 - 9.0 system will be b control will bur intain mud in p 077857 - 6.5" 7// ng device(s) as re DC w/16 mm - 1 inclination, and d after Landing P ntire section, no est (as noted abo llowing direction 0 - 600 ft/hr. Ste Take surveys eve gaineering. Drill rve. Continue dr eg/100' and keep berformance: fto lbs (MAX drill pi	120,000 CaCl uilt from previo retorts on cut rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, r d azimuth (surve oint) mud-log or cut bye); pressure te nal plan. Target er as needed to curve following illing in lateral o slide length < 2 ow-rate is 650 - pe MUT). After	NC nus well. Ensure tings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, st 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confir gdirectional pla section, steering 10', when feasibl 700 GPM, differ reaching TD, per	sqft) ±6 that drying shall ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1 om KOP to Land no OH WL logs to -700 GPM. Tar n. Keep DLS < 3 m landing targe and updated l gas needed to ki e. Take surveys sential is pressu form no more t	+300 kers are rigged u heck % ROC. Ad am for additions 1,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential deg/100' and ke t, planned BUR anding target. 1 eep well on plar every stand, at a re is 700 - 1,00 han one clean-u	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o urvey every 100' psi for 30 minu is pressure is 700 eep slide length for curve, and Ku lake survey every and in the targo a minimum. Targ 0 psig, ROP 500 up cycle to cond	WBM as contingency nd set) of ducts as demand demand demand ites.) - 1,000 psig. < 10' until KOP DP with / joint during et window. set rotating - 600 ft/hr, ition hole for
Bit Bit MWD Pres	ids Notes: Hole Size: / Motor: / Motor: / Survey: Logging: ssure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV friction breaki BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er curve. Land cu Keep DLS < 2 di parameters / p torque 38K ft-l casing running required with	8.0 - 9.0 system will be b control will bur intain mud in p 077857 - 6.5" 7/. ng device(s) as re DC w/16 mm - 1 , inclination, and d after Landing P ntire section, no est (as noted abc llowing directio D - 600 ft/hr. Ste Take surveys even ngineering. Drill rve. Continue dr ege/100' and keep eerformance: flo lbs (MAX drill pi ; unless shakers in OBM system). W	120,000 CaCl uilt from previo rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, r d azimuth (surve oint) mud-log or cut ove); pressure te nal plan. Target er as needed to ry stand, at a m curve following illing in lateral o slide length < 2 ow-rate is 650 - pe MUT). After ndicate additio hen pumping h	NC nus well. Ensure tings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targe ey every joint fro tings sampling, ist 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confiri g directional pla section, steering c0', when feasibl 700 GPM, differ reaching TD, per nal cleaning nee ple cleaning swe	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind th get TFA = 1.0 - 1 om KOP to Land no OH WL logs to -700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated 1 gas needed to k e. Take surveys rential is pressu form no more t ded. TOOH & LET reps, fine LCM p	+300 kers are rigged u heck % ROC. Ad am for addition: 1,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential deg/100' and ki t, planned BUR anding target. 1 eep well on plar every stand, at ar re is 700 - 1,00 han one clean-t 0 drill pipe (ROC roduct is to be	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o urvey every 100' psi for 30 minu is pressure is 700 eep slide length for curve, and Ki for curve, and ki o psig, ROP 500 up cycle to cond DH, if required; s used -Do not use	WBM as contingency nd set) of ducts as demand demand demand rites. > 1,000 psig. < 10' until KOP OP with y joint during et window. get rotating - 600 ft/hr, ition hole for hould NOT be barite for
Bit Bit MWD Pres	ids Notes: Hole Size: / Motor: / Motor: / Survey: Logging: ssure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakin BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er curve. Land cu Keep DLS < 2 dd parameters / p torque 38K ft-l casing running required with 0 sweeps. Run co	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/, ng device(s) as re DC w/16 mm - 1 d after Landing P titre section, no est (as noted abc llowing directio 0 - 600 ft/hr. Ste Take surveys even gineering. Drill rve. Continue d reg/100' and keep gerformance: floc bs (MAX drill pi unless shakers i OBM system). W asing as described	120,000 CaCl uilt from previo rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, r d azimuth (surve or); pressure te nal plan. Target er as needed to ry stand, at a m curve following tilling in lateral o slide length < 2 o slide	NC nus well. Ensure trings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, st 9-5/8" casing flow-rate is 650 keep well on pla inimum. Confiri gdirectional pla section, steering c0', when feasibl 700 GPM, differ reaching TD, per nal cleaning nee ole cleaning swe RT for casing rur	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind th get TFA = 1.0 - 1 om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated 1 gas needed to ke e. Take surveys total is pressu form no more total ded. TOOH & LI teps, fine LCM p uning only if needed	+300 kers are rigged u heck % ROC. Ad am for addition: 1,580 DIFF PSIG e bit. 5 sq-in ing Point and su 1,500 get differential deg/100' and ke t, planned BUR anding target. 1 eep well on plar every stand, at ar re is 700 - 1,00 han one clean-to o drill pipe (ROC roduct is to be to cessary (should literation)	80:20 p after the rig (2 d diesel and pro al details. (or similar); on of urvey every 100' psi for 30 minu is pressure is 700 eep slide length for curve, and Ku for curve, and for curve, and for curve, and for curve, and for cur	WBM as contingency nd set) of ducts as demand demand demand demand rites. 0 - 1,000 psig. < 10' until KOP DP with joint during et window. get rotating - 600 ft/hr, ition hole for hould NOT be barite for with OBM).
Bit Bit MWD Pres	ids Notes: Hole Size: / Motor: / Motor: / Survey: Logging: ssure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakii BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er curve. Land cu Keep DLS < 2 di parameters / p torque 38K ft- casing running required with u sweeps. Run c	8.0 - 9.0 system will be b control will bur intain mud in p 077857 - 6.5" 7/. ng device(s) as re DC w/16 mm - 1 , inclination, and d after Landing P ntire section, no est (as noted abc llowing directio D - 600 ft/hr. Ste Take surveys even ngineering. Drill rve. Continue dr ege/100' and keep eerformance: flo lbs (MAX drill pi ; unless shakers in OBM system). W	120,000 CaCl uilt from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, r d azimuth (surve roint) mud-log or cut ove); pressure te nal plan. Target er as needed to ery stand, at a m curve following filling in lateral o slide length < 2 ow-rate is 650 - pe MUT). After ndicate additio hen pumping h ed below. Use C mining casing. Sp on sub, fill casin	NC us well. Ensure tings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, flow-rate is 650 keep well on pla inimum. Confiru directional pla section, steering to', when feasibl 700 GPM, differ reaching TD, pea cleaning nee ole cleaning nee ole cleaning swe RT for casing rur bace out casing fun-	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1 om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated l gas needed to k e. Take surveys rential is pressu form no more t ded. TOOH & LD puning only if nee getting the toes a srequired. Put	+300 kers are rigged u heck % ROC. Ad am for additions 1,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential deg/100' and ke t, planned BUR anding target. 1 deg well on plar every stand, at 30 han one clean-to drill pipe (ROC roduct is to be is cessary (should is sleeve as close to imp cement as 4	80:20 p after the rig (2 d diesel and pro al details. (or similar); on of urvey every 100' psi for 30 minu is pressure is 700 eep slide length for curve, and Ku for curve, and Ku a minimum. Targ 0 psig, ROP 500 up cycle to cond 0 ph, if required; s used -Do not use NOT be required of LTP as possible	WBM as contingency nd set) of ducts as demand demand demand ites. 0 - 1,000 psig. < 10' until KOP OP with / joint during et window. get rotating - 600 ft/hr, ition hole for hould NOT be barite for with OBM). . Land casing
Bit Bit MWD Pres	ids Notes: Hole Size: / Motor: / Motor: / Survey: Logging: ssure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakii BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er curve. Land cu Keep DLS < 2 di parameters / p torque 38K ft- casing running required with u sweeps. Run c	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 , inclination, and dafter Landing P ntire section, no est (as noted abo llowing directio D - 600 ft/hr. Ste Take surveys even ngineering. Drill rve. Continue dr eg/100' and keerg performance: flo lbs (MAX drill pi unless shakers i OBM system). W asing as describut torque when ru	120,000 CaCl uilt from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, r d azimuth (surve roint) mud-log or cut ove); pressure te nal plan. Target er as needed to ery stand, at a m curve following filling in lateral o slide length < 2 ow-rate is 650 - pe MUT). After ndicate additio hen pumping h ed below. Use C mining casing. Sp on sub, fill casin	NC us well. Ensure tings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, flow-rate is 650 keep well on pla inimum. Confiru directional pla section, steering to', when feasibl 700 GPM, differ reaching TD, pea cleaning nee ole cleaning nee ole cleaning swe RT for casing rur bace out casing fun-	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1 om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated l gas needed to k e. Take surveys rential is pressu form no more t ded. TOOH & LD puning only if nee getting the toes a srequired. Put	+300 kers are rigged u heck % ROC. Ad am for additions 1,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential deg/100' and ke t, planned BUR anding target. 1 deg well on plar every stand, at 30 han one clean-to drill pipe (ROC roduct is to be is cessary (should is sleeve as close to imp cement as 4	80:20 p after the rig (2 d diesel and pro al details. (or similar); on o urvey every 100' psi for 30 minu is pressure is 700 eep slide length for curve, and Ku for curve, and Ku for curve, and Ku for curve, and Ku a minimum. Targ 0 psig, ROP 500 up cycle to cond DH, if required; s used -Do not use NOT be required b LTP as possible detailed below. I	WBM as contingency nd set) of ducts as demand minimum rtes. > -1,000 psig. < 10' until KOP DP with / joint during te window. get rotating - 600 ft/hr, ition hole for hould NOT be barle for with OBM). . Land casing Note cement
Bit Bit MWD Pres. Pr	ids Notes: Hole Size: / Motor: / Motor: / Survey: Logging: ssure Test:	OBM OptiDrill OBM shakers. Solids required to ma 8-1/2" 8-1/2" PDC bit MOTOR: NOV C friction breakii BIT: 5-BLADE P MWD with GR, before KOP and GR MWD for er NU BOPE and t Drill to KOP fol Target ROP 500 when feasible. Geology and Er curve. Land cu Keep DLS < 2 di parameters / p torque 38K ft- casing running required with u sweeps. Run c	8.0 - 9.0 system will be b control will bur intain mud in p w/mud motor 077857 - 6.5" 7/ ng device(s) as re DC w/16 mm - 1 , inclination, and dafter Landing P ntire section, no est (as noted abo llowing directio D - 600 ft/hr. Ste Take surveys even ngineering. Drill rve. Continue dr eg/100' and keerg performance: flo lbs (MAX drill pi unless shakers i OBM system). W asing as describut torque when ru	120,000 CaCl uilt from previc rogram specs. R 8, 5.0 stage, 0.2 equired, bottom 9 mm cutters, r d azimuth (surve roint) mud-log or cut ove); pressure te nal plan. Target er as needed to ery stand, at a m curve following filling in lateral o slide length < 2 ow-rate is 650 - pe MUT). After ndicate additio hen pumping h ed below. Use C mining casing. Sp on sub, fill casin	NC us well. Ensure tings samples o eference Newpa 3 rev/gal, 1.83 o tool spaced ~3, natrix body, targ ey every joint fro tings sampling, flow-rate is 650 keep well on pla inimum. Confiru directional pla section, steering to', when feasibl 700 GPM, differ reaching TD, pea cleaning nee ole cleaning nee ole cleaning swe RT for casing rur bace out casing fun-	sqft) ±6 that drying shal ne per tour to c rk's mud progra deg, 750 GPM, 1 000' behind the get TFA = 1.0 - 1 om KOP to Land no OH WL logs to - 700 GPM. Tar n. Keep DLS < 3 m landing targe n and updated l gas needed to k e. Take surveys rential is pressu form no more t ded. TOOH & LD puning only if nee getting the toes a srequired. Put	+300 kers are rigged u heck % ROC. Ad am for additions 1,580 DIFF PSIG e bit. .5 sq-in ing Point and su 1,500 get differential deg/100' and ke t, planned BUR anding target. 1 deg well on plar every stand, at 30 han one clean-to drill pipe (ROC roduct is to be is cessary (should is sleeve as close to imp cement as 4	80:20 p after the rig (2 d diesel and pro al details. (or similar); on of urvey every 100' psi for 30 minu is pressure is 700 eep slide length for curve, and Ku for curve, and Ku a minimum. Targ 0 psig, ROP 500 up cycle to cond 0 ph, if required; s used -Do not use NOT be required of LTP as possible	WBM as contingency nd set) of ducts as demand minimum ites. 0 - 1,000 psig. < 10' until KOP OP with / joint during et window. get rotating - 600 ft/hr, ition hole for hould NOT be barite for with OBM). Land casing

•

Space	5 500	17.0	D 110	LTC	7 460	10.640	E46.000	445.000
Specs Loading	5.500	17.0	P-110	LTC	7,460 2,727	10,640 9,017	546,000 285,906	445,000 285,906
Min. S.F.					2,727	1.18	1.91	1.56
MU Torque (ft lbs): Casing Summary:	Minumum: Float shoe, floa spaced evenly	Burst: 8,500 p. fluid with 8.4 f Tension: buoye 3,470 at collar, 1 jt cas in lateral every 2	evacuated casin si maximum sur, opg equivalent e ed weight in 9.0 Optimum: sing, float collar, 2,000', floatation 30' to the unit b	face treating pr external pressur ppg fluid with 2 4,620 20' marker join n sub at KOP, ca	essure with 10. e gradient 100,000 lbs ove Maximum: t, toe-intitiatio sing to surface.	2 ppg equivaler r-pull 5,780 n sleeve, casing The toe-initiatic	at mud weight s to KOP with 20 on sleeve (last-ta	and laden
Casing Summary: Centralizers:	intitiation slee sub (NCS Air-Lu boundary thar Wellbore path sleeve and is n the toe sleeve Centralizer con	eve (WFT RD 8,50 ock 2,500 psi fro a 300' measured must be no clos oted on the Wei as close to (but i unt and placem	is catcher, 1 it ca 20 psi), casing to 20 mWFT), casing perpendicular t ser than 600' fro 11 Plan. Drill pass inot past) the plan ent may be adju- the state of the second the second second second second second the second second second second second second second second second second second second second second second second second	KOP with 20' m to surface. The t o the East or W m the parallel le t the LTP as requ nned LTP as pos	arker joints spa oe-initiation sl est lease lines fo ase lines. Note: ired for necess ssible.	aced evenly in la eeve shall be pla or a East-West azi the LTP is the m ary rat-hole and and as-drilled su	teral every ~2,0 ced no closer to imuth drilled w aximum depth I shoe-track len	00', floatation o the unit rellbore. of the toe
			centralizer per				,	
	9-5/8" shoe to	surface: 1 cent	ralizer per 5 join	its		Planned TOC	1	Total Cmt (c
Cement:	Туре	Weight (ppg)	Yield (cuft/sk)	Water (gal/sk)	% Excess	(ft MD)	Total Cmt (sx)	
Spacer	IntegraGuard Star	11		31.6		0	60 bbls	
Lead	ASTM type I/II	12.4	2.370	13.40	50%	0	560	1,328
Tail	G:POZ blend	13.3	1.570	7.70	10%	4,696	1,280	2,010
Displacement	120	est bbls				-		
	0.2291 cuft/ft 5-1/2" casing x 8-1/2" hole annulus 0.1245 cuft/ft 5-1/2" casing vol est shoe jt ft 100 Calculated cement volumes assume gauge hole and the excess noted in table American Cementing Liner & Production Blend IntegraGuard Star							
Spacer	S-8 Silica Flour 163.7 lbs/bbl	Avis 616 viscosifier 11.6 lb/bbl	FP24 Defoamer .5 Ib/bbl	Plus 3K LCM 15 lb/bbl	SS201 Surfactant 1 gal/bbl IntegraGuard GW86		FP24 Defoamer	
Lead	ASTM Type I/II	BA90 Bonding Agent 5.0 lb/sx	Bentonite Viscosifier 8% BWOB	FL24 Fluid Loss .5% BWOB	Viscosifier .1% BWOB	R7C Retarder .2% BWOB	0.3% BWOB, Anti- Static .01 lb/sx	
Tail	Type G 50%	Pozzolan Fly Ash Extender 50%	BA90 Bonding Agent 3.0 lb/sx	Bentonite Viscosifier 4% BWOB	FL24 Fluid Loss .4% BWOB	IntegraGuard GW86 Viscosifier .1% BWOB	R3 Retarder .5% BWOB	FP24 Defoamer .3 BWOB, IntegraSe 0.25 lb/sx
Note:	Notify NMOCC This well will n 19.15.16.15.0 measured alon completed int 19.15.16.7.E a initiation sleev perforation sh	b & BLM if ceme not be considere 2.1.a and 19.15. og the azimuth o erval, as defined and NMAC 19.1 ve, and the first f	ssume gauge ho nt is not circula d an unorthodo 16.15.C.1.b, no f the well or 330 by NMAC 19.15 5.16.7.J, respect take point will b the unit boundat of the well.	ted to surface. x well location a point in the cor ' measured perp 16.7.B, are the cively. In the cas e the top perfor	as definted by N npleted interva iendicular to th e last take point e of this well, th ation. Neither f	MAC19.15.16.1 I shall be closer e azimuth well. and first take po te last take point the toe-initiatio	to the unit bou The boundaries bint, as defined t will be the bot on sleeve nor th	ndary than 10 s of the by NMAC tom toe- i e top
FINISH WELL: Procedure:			and cover well. C	Continue drilling	operations on	<mark>subsequent wel</mark>	ls on pad.	
COMPLETION AND PF Est Lateral Length:	RODUCTION PI 6,715							
Est Frac Inform:	28	Frac Stages	108,000	bbls slick wate	r	8,730,000	lbs proppant	
			n tubing as press tubing via gas-lif		t production a	nd storage facili	ties	
STIMATED START D	ATES:							
Drilling: Completion:	11/1/23 12/31/23							


ES

12/31/23	
2/14/24	
Alec Bridge	12/20/21
Greg Olson	2/20/23
Greg Olson	3/27/23
	Alec Bridge Greg Olson

v OCD: 12/5/2023 9:23:12 PM

age 182 of 2

.400							
Database: Company: Project: Site: Well: Wellbore: Design:	DB_Decv0422\ Enduring Reso Rio Arriba Cour Haynes Canyo Haynes Canyo Oriignal Hole rev0	urces LLC nty, New Me n Unit (428,4	xico NAD83 NM C 430,440 & 442)	Local Co-ordin TVD Reference MD Reference North Referen Survey Calcul	ce:	Well Haynes C RKB=6703+25 RKB=6703+25 Grid Minimum Curva	@ 6728.00ft
Project	Rio Arriba Count	ty, New Mex	kico NAD83 NM C				
Geo Datum:	US State Plane 1 North American D New Mexico Cent	atum 1983		System Datum:		Mean Sea Level	
Site	Haynes Canyon	Unit (428,4	30,440 & 442)				
Site Position: From: Position Uncertainty:	Lat/Long (0.00 ft	Northing: Easting: Slot Radius:	1,912,025.28 1,282,353.79 13-3/	5 usft Longit		36.2486670 -107.4643580
Well	Haynes Canyon	Unit 440H, S	Surf loc: 916 FSL 39	0 FWL Section 03-T23	N-R06W		
Well Position	+N/-S +E/-W	0.00 ft 0.00 ft	Northing: Easting:		2,037.050 usft 2,315.268 usft	Latitude: Longitude:	36.2486980 -107.4644890
Position Uncertainty Grid Convergence:		0.00 ft -0.72 °	Wellhead Elev	vation:	ft	Ground Level:	6,703.00 ft
Wellbore	Oriignal Hole						
Magnetics	Model Name	e	Sample Date	Declination (°)		Dip Angle (°)	Field Strength (nT)
	IGRF	2020	8/1/2023		8.46	62.77	49,138.30816237
Design	rev0						
Audit Notes:							
Version:			Phase:	PLAN	Tie On Dep	oth:	0.00
Vertical Section:		Depth I	From (TVD) (ft)	+N/-S (ft)	+E/-W (ft)	Di	rection (°)
			0.00	0.00	0.00	3	14.998
Plan Survey Tool Pro Depth From (ft)	Depth To	Date 8/1/2 urvey (Welli		Tool Name	Rem	arks	
1 0.00	12,673.14 re	ev0 (Oriignal	Hole)	MWD OWSG MWD - Sta			

.

Database:	DB Decv0422v16	Local Co-ordinate Reference:	Well Haynes Canyon Unit 440H
Company:	Enduring Resources LLC	TVD Reference:	RKB=6703+25 @ 6728.00ft
Project:	Rio Arriba County, New Mexico NAD83 NM C	MD Reference:	RKB=6703+25 @ 6728.00ft
Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
Well:	Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Oriignal Hole		
Design:	rev0		

Plan Sections

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)	TFO (°)	Target
0.00	0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
1,000.00	0.00	0.000	1,000.00	0.00	0.00	0.00	0.00	0.00	0.00	
1,705.61	21.17	192.029	1,689.66	-126.04	-26.86	3.00	3.00	0.00	192.03	
4,194.21	21.17	192.029	4,010.35	-1,004.96	-214.14	0.00	0.00	0.00	0.00	
4,899.82	0.00	0.000	4,700.01	-1,131.00	-241.00	3.00	-3.00	0.00	180.00	
5,097.85	0.00	0.000	4,898.04	-1,131.00	-241.00	0.00	0.00	0.00	0.00	
5,697.85	60.00	310.715	5,394.24	-944.13	-458.14	10.00	10.00	0.00	310.72	
5,757.85	60.00	310.715	5,424.24	-910.24	-497.53	0.00	0.00	0.00	0.00	
6,056.15	89.83	310.715	5,501.00	-724.48	-713.38	10.00	10.00	0.00	0.00	
6,198.92	89.83	314.998	5,501.42	-627.39	-818.01	3.00	0.00	3.00	90.05	
12,673.39	89.83	314.998	5,521.00	3,950.58	-5,396.29	0.00	0.00	0.00	0.00 H	laynes 440 LTP 453

Database:	DB_Decv0422v16	Local Co-ordinate Reference:	Well Haynes Canyon Unit 440H
Company:	Enduring Resources LLC	TVD Reference:	RKB=6703+25 @ 6728.00ft
Project:	Rio Arriba County, New Mexico NAD83 NM C	MD Reference:	RKB=6703+25 @ 6728.00ft
Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
Well:	Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Oriignal Hole		
Design:	rev0		

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
0.00	0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	0.00	0.000	100.00	0.00	0.00	0.00	0.00	0.00	0.00
200.00	0.00	0.000	200.00	0.00	0.00	0.00	0.00	0.00	0.00
300.00	0.00	0.000	300.00	0.00	0.00	0.00	0.00	0.00	0.00
350.00	0.00	0.000	350.00	0.00	0.00	0.00	0.00	0.00	0.00
13 3/8" Csg									
400.00	0.00	0.000	400.00	0.00	0.00	0.00	0.00	0.00	0.00
500.00	0.00	0.000	500.00	0.00	0.00	0.00	0.00	0.00	0.00
600.00	0.00	0.000	600.00	0.00	0.00	0.00	0.00	0.00	0.00
700.00	0.00	0.000	700.00	0.00	0.00	0.00	0.00	0.00	0.00
800.00	0.00	0.000	800.00	0.00	0.00	0.00	0.00	0.00	0.00
900.00	0.00	0.000	900.00	0.00	0.00	0.00	0.00	0.00	0.00
1,000.00	0.00	0.000	1,000.00	0.00	0.00	0.00	0.00	0.00	0.00
	3°/100' build		,		5.00				2.00
1,100.00	3.00	192.029	1,099.95	-2.56	-0.55	-1.42	3.00	3.00	0.00
1,200.00	6.00	192.029	1,199.63	-10.23	-2.18	-5.69	3.00	3.00	0.00
1,300.00	9.00	192.029	1,298.77	-23.00	-4.90	-12.80	3.00	3.00	0.00
1,400.00	12.00	192.029	1.397.08	-40.82	-8.70	-22.71	3.00	3.00	0.00
1,405.98	12.00	192.029	1,402.93	-40.82	-8.96	-22.71	3.00	3.00	0.00
Ojo Alamo	12.10	102.020	1,102.00	12.04	-0.00	20.00	0.00	0.00	0.00
1,500.00	15.00	192.029	1,494.31	-63.65	-13.56	-35.41	3.00	3.00	0.00
1,508.89	15.27	192.029	1,502.89	-65.92	-14.05	-36.68	3.00	3.00	0.00
Kirtland			.,			50.00	0.00	0.00	0.00
1,600.00	18.00	192.029	1,590.18	-91.42	-19.48	-50.87	3.00	3.00	0.00
	21.17	192.029	1,689.66		-26.86	-70.13	3.00	3.00	0.00
1,705.61		192.029	1,009.00	-126.04	-20.00	-70.13	3.00	3.00	0.00
Begin 21.17 1,746.47	21.17	192.029	1,727.77	-140.47	-29.93	-78.16	0.00	0.00	0.00
	21.17	192.029	1,121.11	-140.47	-29.93	-70.10	0.00	0.00	0.00
Fruitland 1,800.00	01 17	192.029	1,777.69	-159.38	-33.96	-88.68	0.00	0.00	0.00
1,800.00	21.17 21.17	192.029	1,777.69	-159.38 -194.69	-33.96 -41.49	-88.68 -108.33	0.00	0.00	0.00
1,998.32	21.17	192.029	1,870.94	-194.69	-41.49	-106.33	0.00	0.00	0.00
Pictured Cli		102.020	1,002.02	220.72	+0.00	127.00	0.00	0.00	0.00
2,000.00	21.17	192.029	1,964.19	-230.01	-49.01	-127.98	0.00	0.00	0.00
2,100.00	21.17	192.029	2,057.45	-265.33	-56.54	-147.63	0.00	0.00	0.00
2,159.07	21.17	192.029	2,112.53	-286.19	-60.98	-159.24	0.00	0.00	0.00
Lewis	o.t. 1=	100 000	0.450.70	000.05	0.1.05	407.00	0.00	0.00	0.00
2,200.00	21.17	192.029	2,150.70	-300.65	-64.06	-167.28	0.00	0.00	0.00
2,300.00	21.17	192.029	2,243.95	-335.97	-71.59	-186.93	0.00	0.00	0.00
2,400.00	21.17	192.029	2,337.20	-371.28	-79.12	-206.58	0.00	0.00	0.00
2,475.22	21.17	192.029	2,407.34	-397.85	-84.78	-221.36	0.00	0.00	0.00
Chacra									
2,500.00	21.17	192.029	2,430.45	-406.60	-86.64	-226.23	0.00	0.00	0.00
2,600.00	21.17	192.029	2,523.71	-441.92	-94.17	-245.89	0.00	0.00	0.00
2,700.00	21.17	192.029	2,616.96	-477.24	-101.69	-265.54	0.00	0.00	0.00
2,800.00	21.17	192.029	2,710.21	-512.56	-109.22	-285.19	0.00	0.00	0.00
2,900.00	21.17	192.029	2,803.46	-547.87	-116.74	-304.84	0.00	0.00	0.00
3,000.00	21.17	192.029	2,896.72	-583.19	-124.27	-324.49	0.00	0.00	0.00
3,100.00	21.17	192.029	2,989.97	-618.51	-131.80	-344.14	0.00	0.00	0.00
3,200.00	21.17	192.029	3,083.22	-653.83	-139.32	-363.79	0.00	0.00	0.00
3,300.00	21.17	192.029	3,176.47	-689.14	-146.85	-383.44	0.00	0.00	0.00
3,400.00	21.17	192.029	3,269.73	-724.46	-154.37	-403.09	0.00	0.00	0.00
3,500.00	21.17	192.029	3,362.98	-759.78	-161.90	-422.74	0.00	0.00	0.00
3,600.00	21.17	192.029	3,456.23	-795.10	-169.42	-442.39	0.00	0.00	0.00

8/1/2023 9:42:34PM

Database:	DB_Decv0422v16	Local Co-ordinate Reference:	Well Haynes Canyon Unit 440H
Company:	Enduring Resources LLC	TVD Reference:	RKB=6703+25 @ 6728.00ft
Project:	Rio Arriba County, New Mexico NAD83 NM C	MD Reference:	RKB=6703+25 @ 6728.00ft
Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
Well:	Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Oriignal Hole		
Design:	rev0		

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
3,664.79	21.17	192.029	3,516.65	-817.98	-174.30	-455.13	0.00	0.00	0.00
Cliff House									
3,670.15	21.17	192.029	3,521.65	-819.87	-174.70	-456.18	0.00	0.00	0.00
Menefee									
3,700.00	21.17	192.029	3,549.48	-830.42	-176.95	-462.05	0.00	0.00	0.00
3,800.00 3,832.45	21.17 21.17	192.029 192.029	3,642.74 3,673.00	-865.73 -877.20	-184.48 -186.92	-481.70 -488.07	0.00 0.00	0.00 0.00	0.00 0.00
9 5/8" Csg	21.17	192.029	3,073.00	-077.20	-100.92	-400.07	0.00	0.00	0.00
3,900.00	21.17	192.029	3,735.99	-901.05	-192.00	-501.35	0.00	0.00	0.00
4,000.00	21.17	192.029	3,829.24	-936.37	-199.53	-521.00	0.00	0.00	0.00
4,100.00	21.17	192.029	3,922.49	-971.69	-207.05	-540.65	0.00	0.00	0.00
4,194.21	21.17	192.029	4,010.35	-1,004.96	-214.14	-559.16	0.00	0.00	0.00
Begin 3°/100'									
4,200.00	20.99	192.029	4,015.75	-1,007.00	-214.58	-560.30	3.00	-3.00	0.00
4,300.00	17.99	192.029	4,110.01	-1,039.63	-221.53	-578.45	3.00	-3.00	0.00
4,400.00	14.99	192.029	4,205.88	-1,067.40	-227.45	-593.90	3.00	-3.00	0.00
4,415.88	14.52	192.029	4,221.23	-1,071.35	-228.29	-596.10	3.00	-3.00	0.00
Point Lookou 4,500.00	11.99	192.029	4,303.11	-1,090.22	-232.31	-606.60	3.00	-3.00	0.00
4,600.00	8.99	192.029	4,303.11	-1,108.03	-236.11	-616.51	3.00	-3.00	0.00
4,695.57	6.13	192.029	4,496.15	-1,120.33	-238.73	-623.35	3.00	-3.00	0.00
Mancos									
4,700.00	5.99	192.029	4,500.56	-1,120.79	-238.82	-623.61	3.00	-3.00	0.00
4,800.00	2.99	192.029	4,600.24	-1,128.45	-240.46	-627.87	3.00	-3.00	0.00
4,899.82	0.00	0.000	4,700.01	-1,131.00	-241.00	-629.29	3.00	-3.00	0.00
Begin vertica		0.000	4,800.19	1 121 00	244.00	600.00	0.00	0.00	0.00
5,000.00 5,035.94	0.00 0.00	0.000 0.000	4,800.19 4,836.13	-1,131.00 -1,131.00	-241.00 -241.00	-629.29 -629.29	0.00 0.00	0.00 0.00	0.00 0.00
MNCS_A	0.00	0.000	.,	.,	211.00	020.20	0.00	0.00	0.00
5,097.85	0.00	0.000	4,898.04	-1,131.00	-241.00	-629.29	0.00	0.00	0.00
Begin 10°/100		0.000	4,030.04	-1,131.00	-241.00	-023.23	0.00	0.00	0.00
5,100.00	0.22	310.715	4,900.19	-1,131.00	-241.00	-629.29	10.00	10.00	0.00
5,125.95	2.81	310.715	4,926.13	-1,130.55	-241.52	-628.60	10.00	10.00	0.00
MNCS_B									
5,150.00	5.22	310.715	4,950.12	-1,129.45	-242.80	-626.93	10.00	10.00	0.00
5,200.00	10.22	310.715	4,999.65	-1,125.08	-247.88	-620.23	10.00	10.00	0.00
5,250.00	15.22	310.715	5,048.41	-1,117.90	-256.22	-609.26	10.00	10.00	0.00
5,263.30	16.55	310.715	5,061.20	-1,115.53	-258.98	-605.63	10.00	10.00	0.00
MNCS_C 5,300.00	20.22	310.715	5,096.03	-1,107.98	-267.75	-594.10	10.00	10.00	0.00
5,332.59	23.47	310.715	5,126.27	-1,100.07	-276.94	-582.00	10.00	10.00	0.00
MNCS_Cms									
5,350.00	25.22	310.715	5,142.13	-1,095.39	-282.38	-574.85	10.00	10.00	0.00
5,400.00	30.22	310.715	5,186.38	-1,080.22	-300.00	-551.67	10.00	10.00	0.00
5,417.53	31.97	310.715	5,201.39	-1,074.32	-306.86	-542.64	10.00	10.00	0.00
MNCS_D									
5,450.00	35.22	310.715	5,228.44	-1,062.60	-320.48	-524.73	10.00	10.00	0.00
5,500.00 5,524.83	40.22 42.70	310.715 310.715	5,267.98 5,286.58	-1,042.66 -1,031.94	-343.65 -356.11	-494.24 -477.85	10.00 10.00	10.00 10.00	0.00 0.00
MNCS_E	12.10	0.0.710	0,200.00	.,	000.11		10.00	10.00	0.00
5,550.00	45.22	310.715	5,304.70	-1,020.54	-369.35	-460.42	10.00	10.00	0.00
5,550.00 5,589.78	45.22 49.19	310.715	5,304.70 5,331.72	-1,020.54 -1,001.50	-369.35 -391.47	-460.42 -431.32	10.00	10.00	0.00

8/1/2023 9:42:34PM

.

Database:	DB_Decv0422v16	Local Co-ordinate Reference:	Well Haynes Canyon Unit 440H
Company:	Enduring Resources LLC	TVD Reference:	RKB=6703+25 @ 6728.00ft
Project:	Rio Arriba County, New Mexico NAD83 NM C	MD Reference:	RKB=6703+25 @ 6728.00ft
Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
Well:	Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Oriignal Hole		
Design:	rev0		

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
MNCS_F									
5,600.00	50.22	310.715	5,338.33	-996.42	-397.38	-423.55	10.00	10.00	0.00
5,650.00	55.22	310.715	5,368.61	-970.48	-427.53	-383.89	10.00	10.00	0.00
5,697.85	60.00	310.715	5,394.24	-944.13	-458.14	-343.61	10.00	10.00	0.00
Begin 60.00°	' tangent								
5,700.00	60.00	310.715	5,395.31	-942.91	-459.55	-341.75	0.00	0.00	0.00
5,743.57	60.00	310.715	5,417.10	-918.30	-488.15	-304.13	0.00	0.00	0.00
MNCS_G									
5,757.85	60.00	310.715	5,424.24	-910.24	-497.53	-291.80	0.00	0.00	0.00
Begin 10°/10	0' build								
5,800.00	64.22	310.715	5,443.95	-885.94	-525.76	-254.65	10.00	10.00	0.00
5,832.71	67.49	310.715	5,457.33	-866.47	-548.38	-224.89	10.00	10.00	0.00
MNCS_H @	0VS								
5,850.00	69.22	310.715	5,463.71	-855.99	-560.56	-208.87	10.00	10.00	0.00
5,900.00	74.22	310.715	5,479.39	-825.03	-596.53	-208.87 -161.54	10.00	10.00	0.00
5,950.00	79.22	310.715	5,490.88	-793.30	-633.40	-113.03	10.00	10.00	0.00
6,000.00	84.22	310.715	5,498.08	-761.04	-670.89	-63.70	10.00	10.00	0.00
6,050.00	89.22	310.715	5,500.94	-728.49	-708.72	-13.94	10.00	10.00	0.00
6,056.15	89.83	310.715	5.501.00	-724.48	-713.38	-7.81	10.00	10.00	0.00
Begin 3°/100		310.715	5,501.00	-724.40	-715.50	-7.01	10.00	10.00	0.00
6,100.00	89.83	312.031	5,501.13	-695.49	-746.29	35.95	3.00	0.00	3.00
6,198.92	89.83	314.998	5,501.42	-627.39	-818.01	134.82	3.00	0.00	3.00
Begin 89.83°			- ,						
6,200.00	89.83	314.998	5,501.43	-626.63	-818.78	135.91	0.00	0.00	0.00
6,300.00	89.83	314.998	5,501.73	-555.92	-889.49	235.91	0.00	0.00	0.00
6,400.00	89.83	314.998	5,502.03	-485.21	-960.20	335.91	0.00	0.00	0.00
6,500.00	89.83	314.998	5,502.33	-414.50	-1,030.92	435.91	0.00	0.00	0.00
6,600.00	89.83	314.998	5,502.64	-343.79	-1,101.63	535.91	0.00	0.00	0.00
6,700.00	89.83	314.998	5,502.94	-273.09	-1,172.34	635.91	0.00	0.00	0.00
6,800.00	89.83	314.998	5,503.24	-202.38	-1,243.05	735.90	0.00	0.00	0.00
6,900.00	89.83	314.998	5,503.54	-131.67	-1,313.77	835.90	0.00	0.00	0.00
7,000.00	89.83	314.998	5,503.85	-60.96	-1,384.48	935.90	0.00	0.00	0.00
7,100.00	89.83	314.998	5,504.15	9.75	-1,455.19	1,035.90	0.00	0.00	0.00
7,200.00	89.83	314.998	5,504.45	80.45	-1,525.90	1,135.90	0.00	0.00	0.00
7,300.00	89.83	314.998	5,504.75	151.16	-1,596.62	1,235.90	0.00	0.00	0.00
7,400.00	89.83	314.998	5,505.05	221.87	-1,667.33	1,335.90	0.00	0.00	0.00
7,500.00	89.83	314.998	5,505.36	292.58	-1,738.04	1,435.90	0.00	0.00	0.00
7,600.00	89.83	314.998	5,505.66	363.29	-1,808.76	1,535.90	0.00	0.00	0.00
7,700.00	89.83	314.998	5,505.96	433.99	-1,879.47	1,635.90	0.00	0.00	0.00
7,800.00	89.83	314.998	5,506.26	504.70	-1,950.18	1,735.90	0.00	0.00	0.00
7,900.00	89.83	314.998	5,506.57	575.41	-2,020.89	1,835.90	0.00	0.00	0.00
8,000.00	89.83	314.998	5,506.87	646.12	-2,091.61	1,935.90	0.00	0.00	0.00
8,100.00	89.83	314.998	5,507.17	716.83	-2,162.32	2,035.90	0.00	0.00	0.00
8,200.00	89.83	314.998	5,507.47	787.53	-2,233.03	2,135.90	0.00	0.00	0.00
8,300.00	89.83	314.998	5,507.78	858.24	-2,303.75	2,235.90	0.00	0.00	0.00
8,400.00	89.83	314.998	5,508.08	928.95	-2,374.46	2,335.90	0.00	0.00	0.00
8,500.00	89.83	314.998	5,508.38	999.66	-2,445.17	2,435.90	0.00	0.00	0.00
8,600.00	89.83	314.998	5,508.68	1,070.37	-2,515.88	2,535.90	0.00	0.00	0.00
8,700.00	89.83	314.998	5,508.99	1,141.07	-2,586.60	2,635.90	0.00	0.00	0.00
8,800.00	89.83	314.998	5,509.29	1,211.78	-2,657.31	2,735.90	0.00	0.00	0.00
8,900.00	89.83	314.998	5,509.59	1,282.49	-2,728.02	2,835.90	0.00	0.00	0.00
9,000.00	89.83	314.998	5,509.89	1,353.20	-2,798.73	2,935.89	0.00	0.00	0.00
9,100.00	89.83	314.998	5,510.20	1,423.91	-2,869.45	3,035.89	0.00	0.00	0.00

8/1/2023 9:42:34PM

Database:	DB_Decv0422v16	Local Co-ordinate Reference:	Well Haynes Canyon Unit 440H
Company:	Enduring Resources LLC	TVD Reference:	RKB=6703+25 @ 6728.00ft
Project:	Rio Arriba County, New Mexico NAD83 NM C	MD Reference:	RKB=6703+25 @ 6728.00ft
Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
Well:	Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Oriignal Hole		
Design:	rev0		

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
9,200.00 9,300.00	89.83 89.83	314.998 314.998	5,510.50 5,510.80	1,494.61 1,565.32	-2,940.16 -3,010.87	3,135.89 3,235.89	0.00 0.00	0.00 0.00	0.00 0.00
9,400.00	89.83	314.998	5.511.10	1,636.03	-3,081.59	3,335.89	0.00	0.00	0.00
9,500.00	89.83	314.998	5,511.40	1,706.74	-3,152.30	3,435.89	0.00	0.00	0.00
9.600.00	89.83	314.998	5.511.71	1,777.45	-3.223.01	3,535.89	0.00	0.00	0.00
9,700.00	89.83	314.998	5,512.01	1,848.15	-3,223.01	3,635.89	0.00	0.00	0.00
9,800.00	89.83	314.998	5,512.31	1,918.86	-3,364.44	3,735.89	0.00	0.00	0.00
9,900.00	89.83	314.998	5,512.61	1,989.57	-3,435.15	3,835.89	0.00	0.00	0.00
10,000.00	89.83	314.998	5,512.01	2,060.28	-3,435.15	3,935.89	0.00	0.00	0.00
10,100.00	89.83	314.998	5,513.22	2,000.28	-3,505.80	4,035.89	0.00	0.00	0.00
10,200.00	89.83	314.998	5,513.52	2,130.99	-3,647.29	4,035.89	0.00	0.00	0.00
10,300.00	89.83	314.998	5,513.82	2,201.09	-3,047.29	4,135.89	0.00	0.00	0.00
10,400.00	89.83	314.998	5,514.13	2,343.11	-3,788.71	4,335.89	0.00	0.00	0.00
10,500.00	89.83	314.998	5,514.43	2,413.82	-3,859.43	4,435.89	0.00	0.00	0.00
10,600.00	89.83	314.998	5,514.73	2,484.52	-3,930.14	4,535.89	0.00	0.00	0.00
10,700.00	89.83	314.998	5,515.03	2,555.23	-4,000.85	4,635.89	0.00	0.00	0.00
10,800.00	89.83	314.998	5,515.34	2,625.94	-4,071.56	4,735.89	0.00	0.00	0.00
10,900.00	89.83	314.998	5,515.64	2,696.65	-4,142.28	4,835.89	0.00	0.00	0.00
11,000.00	89.83	314.998	5,515.94	2,767.36	-4,212.99	4,935.89	0.00	0.00	0.00
11,100.00	89.83	314.998	5,516.24	2,838.06	-4,283.70	5,035.89	0.00	0.00	0.00
11,200.00	89.83	314.998	5,516.55	2,908.77	-4,354.41	5,135.88	0.00	0.00	0.00
11,300.00	89.83	314.998	5,516.85	2,979.48	-4,425.13	5,235.88	0.00	0.00	0.00
11,400.00	89.83	314.998	5,517.15	3,050.19	-4,495.84	5,335.88	0.00	0.00	0.00
11,500.00	89.83	314.998	5,517.45	3,120.90	-4,566.55	5,435.88	0.00	0.00	0.00
11,600.00	89.83	314.998	5,517.75	3,191.60	-4,637.27	5,535.88	0.00	0.00	0.00
11,700.00	89.83	314.998	5,518.06	3,262.31	-4,707.98	5,635.88	0.00	0.00	0.00
11,800.00	89.83	314.998	5,518.36	3,333.02	-4,778.69	5,735.88	0.00	0.00	0.00
11,900.00	89.83	314.998	5,518.66	3,403.73	-4,849.40	5,835.88	0.00	0.00	0.00
12,000.00	89.83	314.998	5,518.96	3,474.44	-4,920.12	5,935.88	0.00	0.00	0.00
12,100.00	89.83	314.998	5,519.27	3,545.14	-4,990.83	6,035.88	0.00	0.00	0.00
12,200.00	89.83	314.998	5,519.57	3,615.85	-5,061.54	6,135.88	0.00	0.00	0.00
12,300.00	89.83	314.998	5,519.87	3,686.56	-5,132.25	6,235.88	0.00	0.00	0.00
12,400.00	89.83	314.998	5,520.17	3,757.27	-5,202.97	6,335.88	0.00	0.00	0.00
12,500.00	89.83	314.998	5,520.48	3,827.98	-5,273.68	6,435.88	0.00	0.00	0.00
12,600.00	89.83	314.998	5,520.78	3,898.68	-5,344.39	6,535.88	0.00	0.00	0.00
12,673.39	89.83	314.998	5,521.00	3,950.58	-5,396.29	6,609.27	0.00	0.00	0.00

Database: Company: Project:	DB_Decv0422v16 Enduring Resources LLC Rio Arriba County, New Mexico NAD83 NM C	Local Co-ordinate Reference: TVD Reference: MD Reference:	Well Haynes Canyon Unit 440H RKB=6703+25 @ 6728.00ft RKB=6703+25 @ 6728.00ft
Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
Well: Wellbore:	Haynes Canyon Unit 440H Oriignal Hole	Survey Calculation Method:	Minimum Curvature
Design:	rev0		
Design Targets			

Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude
Haynes 440 vert - plan misses target - Point	0.00 center by 51.8	0.000 82ft at 5097.3	4,898.04 85ft MD (489	-1,167.84 8.05 TVD, -11	-277.44 I31.00 N, -247	1,910,869.212 1.00 E)	1,282,037.829	36.245480970	-107.465380063
Haynes 440 FTP 188 FS - plan misses target - Point		0.000 oft at 6057.9	5,501.00 0ft MD (5501	-727.20 .00 TVD, -723	-718.12 3.33 N, -714.7	1,911,309.852 '1 E)	1,281,597.153	36.246676000	-107.466893000
Haynes 440 LTP 453 FN - plan hits target cer - Point		0.000	5,521.00	3,950.58	-5,396.29	1,915,987.619	1,276,918.990	36.259361000	-107.482957000

Casing	Points

Measur Depti (ft)		Name	Casing Diameter ('')	Hole Diameter ('')
35	0.00 350.00	13 3/8" Csg	13-3/8	17-1/2
3,83	2.45 3,673.00	9 5/8" Csg	9-5/8	12-1/4

```
Formations
```

Measu Dept (ft)		Name	Lithology	Dip (°)	Dip Direction (°)
1,40	5.98 1,402.93	Ojo Alamo		0.17	314.998
1,50	8.89 1,502.89	Kirtland		0.17	314.998
1,74	6.47 1,727.77	′ Fruitland		0.17	314.998
1,99	8.32 1,962.62	Pictured Cliffs		0.17	314.998
2,15	9.07 2,112.53	B Lewis		0.17	314.998
2,47	5.22 2,407.34	Chacra		0.17	314.998
3,66	4.79 3,516.65	Cliff House		0.17	314.998
3,67	0.15 3,521.65	Menefee		0.17	314.998
4,41	5.88 4,221.23	Point Lookout		0.17	314.998
4,69	5.57 4,496.15	Mancos		0.17	314.998
5,03	5.94 4,836.13	MNCS_A		0.17	314.998
5,12	4,926.13	MNCS_B		0.17	314.998
5,26	5,061.20	MNCS_C		0.17	314.998
5,33	2.59 5,126.27	MNCS_Cms		0.17	314.998
5,41	7.53 5,201.39	MNCS_D		0.17	314.998
5,52	4.83 5,286.58	MNCS_E		0.17	314.998
5,58	9.78 5,331.72	MNCS_F		0.17	314.998
5,74	3.57 5,417.10	MNCS_G		0.17	314.998
5,83	2.71 5,457.33	MNCS_H @ 0VS		0.17	314.998

Database:	DB_Decv0422v16	Local Co-ordinate Reference:	Well Haynes Canyon Unit 440H
Company:	Enduring Resources LLC	TVD Reference:	RKB=6703+25 @ 6728.00ft
Project:	Rio Arriba County, New Mexico NAD83 NM C	MD Reference:	RKB=6703+25 @ 6728.00ft
Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
Well:	Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Oriignal Hole		
Design:	rev0		

Plan Annotations

Measured	Vertical	Local Coor	dinates		
Depth (ft)	Depth (ft)	+N/-S (ft)	+E/-W (ft)	Comment	
1,000.00	1,000.00	0.00	0.00	KOP Begin 3°/100' build	
1,705.61	1,689.66	-126.04	-26.86	Begin 21.17° tangent	
4,194.21	4,010.35	-1,004.96	-214.14	Begin 3°/100' drop	
4,899.82	4,700.01	-1,131.00	-241.00	Begin vertical hold	
5,097.85	4,898.04	-1,131.00	-241.00	Begin 10°/100' build	
5,697.85	5,394.24	-944.13	-458.14	Begin 60.00° tangent	
5,757.85	5,424.24	-910.24	-497.53	Begin 10°/100' build	
6,056.15	5,501.00	-724.48	-713.38	Begin 3°/100' turn	
6,198.92	5,501.42	-627.39	-818.01	Begin 89.83° lateral	
12,673.39	5,521.00	3,950.58	-5,396.29	PBHL/TD @ 12673.39 MD 5521.00 TVD	

Planning Report - Geographic

Database: Company: Project: Site: Well: Wellbore: Design:	Rio Arriba Co Haynes Can	sources LLC ounty, New Me yon Unit (428, yon Unit 440H	exico NAD83 NM C 430,440 & 442)	TVD Reference MD Reference North Reference	e:	Well Haynes C RKB=6703+25 RKB=6703+25 Grid Minimum Curv	@ 6728.00ft	
Project	Rio Arriba Co	unty, New Me	kico NAD83 NM C					
Geo Datum:	US State Plane North Americar New Mexico Ce	n Datum 1983		System Datum	:	Mean Sea Level		
Site	Haynes Cany	on Unit (428,4	30,440 & 442)					
Site Position: From: Position Uncertainty:	Lat/Long	0.00 ft	Northing: Easting: Slot Radius:	1,912,025.2 1,282,353.7 13-3	Editida			36.24866700 -107.46435800
Well	Haynes Canyo	on Unit 440H,	Surf loc: 916 FSL 39	0 FWL Section 03-T2	3N-R06W			
Well Position	+N/-S +E/-W	0.00 ft 0.00 ft	Northing: Easting:	1,28	2,037.050 usft 32,315.268 usft	Latitude: Longitude:		36.24869800 -107.46448900
Position Uncertainty Grid Convergence:		0.00 ft -0.72 °	Wellhead Ele	vation:	ft	Ground Level:		6,703.00 ft
Wellbore	Oriignal Hole	•						
Magnetics	Model Na	ame	Sample Date	Declination (°)	1	Dip Angle (°)	Field Stro (nT)	-
	IG	RF2020	8/1/2023		8.46	62.77	49,138	.30816237
Design	rev0							
Audit Notes: Version:			Phase:	PLAN	Tie On Dep	oth:	0.00	
Vertical Section:		Depth	From (TVD) (ft)	+N/-S (ft)	+E/-W (ft)	Di	rection (°)	
			0.00	0.00	0.00	3	14.998	
Plan Survey Tool Pro Depth From (ft)	gram Depth To (ft)	Date 8/1/2 Survey (Well	2023 bore)	Tool Name	Rema	ırks		
1 0.00	12,673.14	rev0 (Oriigna	Hole)	MWD OWSG MWD - S	iandard			

Planning Report - Geographic

Database:	DB_Decv0422v16	Local Co-ordinate Reference:	Well Haynes Canyon Unit 440H
Company:	Enduring Resources LLC	TVD Reference:	RKB=6703+25 @ 6728.00ft
Project:	Rio Arriba County, New Mexico NAD83 NM C	MD Reference:	RKB=6703+25 @ 6728.00ft
Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
Well:	Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Oriignal Hole		
Design:	rev0		

Plan Sections

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)	TFO (°)	Target
0.00	0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
1,000.00	0.00	0.000	1,000.00	0.00	0.00	0.00	0.00	0.00	0.00	
1,705.61	21.17	192.029	1,689.66	-126.04	-26.86	3.00	3.00	0.00	192.03	
4,194.21	21.17	192.029	4,010.35	-1,004.96	-214.14	0.00	0.00	0.00	0.00	
4,899.82	0.00	0.000	4,700.01	-1,131.00	-241.00	3.00	-3.00	0.00	180.00	
5,097.85	0.00	0.000	4,898.04	-1,131.00	-241.00	0.00	0.00	0.00	0.00	
5,697.85	60.00	310.715	5,394.24	-944.13	-458.14	10.00	10.00	0.00	310.72	
5,757.85	60.00	310.715	5,424.24	-910.24	-497.53	0.00	0.00	0.00	0.00	
6,056.15	89.83	310.715	5,501.00	-724.48	-713.38	10.00	10.00	0.00	0.00	
6,198.92	89.83	314.998	5,501.42	-627.39	-818.01	3.00	0.00	3.00	90.05	
12,673.39	89.83	314.998	5,521.00	3,950.58	-5,396.29	0.00	0.00	0.00	0.00 H	laynes 440 LTP 4

Planning Report - Geographic

Database:	DB_Decv0422v16	Local Co-ordinate Reference:	Well Haynes Canyon Unit 440H
Company:	Enduring Resources LLC	TVD Reference:	RKB=6703+25 @ 6728.00ft
Project:	Rio Arriba County, New Mexico NAD83 NM C	MD Reference:	RKB=6703+25 @ 6728.00ft
Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
Well:	Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Oriignal Hole		
Design:	rev0		

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
0.00	0.00	0.000	0.00	0.00	0.00	1,912,037.050	1,282,315.268	36.248698000	-107.464489000
100.00		0.000	100.00	0.00	0.00	1,912,037.050	1,282,315.268	36.248698000	-107.464489000
200.00	0.00	0.000	200.00	0.00	0.00	1,912,037.050	1,282,315.268	36.248698000	-107.464489000
300.00		0.000	300.00	0.00	0.00	1,912,037.050	1,282,315.268	36.248698000	-107.464489000
350.00		0.000	350.00	0.00	0.00	1,912,037.050	1,282,315.268	36.248698000	-107.464489000
13 3/8" (•	0.000	100.00	0.00	0.00	4 040 007 050	4 000 045 000	00.04000000	407 404400000
400.00 500.00		0.000 0.000	400.00 500.00	0.00 0.00	0.00 0.00	1,912,037.050 1,912,037.050	1,282,315.268 1,282,315.268	36.248698000 36.248698000	-107.464489000 -107.464489000
600.00		0.000	600.00	0.00	0.00	1,912,037.050	1,282,315.268	36.248698000	-107.464489000
700.00		0.000	700.00	0.00	0.00	1,912,037.050	1,282,315.268	36.248698000	-107.464489000
800.00		0.000	800.00	0.00	0.00	1,912,037.050	1,282,315.268	36.248698000	-107.464489000
900.00		0.000	900.00	0.00	0.00	1,912,037.050	1,282,315.268	36.248698000	-107.464489000
1,000.00	0.00	0.000	1,000.00	0.00	0.00	1,912,037.050	1,282,315.268	36.248698000	-107.464489000
KOP Be	gin 3°/100' bui	ld							
1,100.00		192.029	1,099.95	-2.56	-0.55	1,912,034.490	1,282,314.723	36.248690951	-107.464490741
1,200.00		192.029	1,199.63	-10.23	-2.18	1,912,026.817	1,282,313.088	36.248669821	-107.464495959
1,300.00		192.029	1,298.77	-23.00	-4.90	1,912,014.052	1,282,310.368	36.248634670	-107.464504639
1,400.00 1,405.98		192.029 192.029	1,397.08 1,402.93	-40.82 -42.04	-8.70 -8.96	1,911,996.231 1,911,995.006	1,282,306.571 1,282,306.310	36.248585592 36.248582218	-107.464516758 -107.464517591
Ojo Alan		192.029	1,402.95	-42.04	-0.90	1,911,995.000	1,202,300.310	30.240302210	-107.404517591
1,500.00		192.029	1,494.31	-63.65	-13.56	1,911,973.402	1,282,301.706	36.248522724	-107.464532282
1,508.89		192.029	1,502.89	-65.92	-14.05	1,911,971.131	1,282,301.222	36.248516472	-107.464533826
Kirtland			,			,- ,	, - ,		
1,600.00		192.029	1,590.18	-91.42	-19.48	1,911,945.627	1,282,295.788	36.248446237	-107.464551169
1,705.61	21.17	192.029	1,689.66	-126.04	-26.86	1,911,911.010	1,282,288.411	36.248350907	-107.464574710
Begin 21	1.17° tangent								
1,746.47		192.029	1,727.77	-140.47	-29.93	1,911,896.579	1,282,285.336	36.248311166	-107.464584523
Fruitland									
1,800.00		192.029	1,777.69	-159.38	-33.96	1,911,877.673	1,282,281.308	36.248259102	-107.464597379
1,900.00 1,998.32		192.029 192.029	1,870.94 1,962.62	-194.69 -229.42	-41.49 -48.89	1,911,842.355 1,911,807.632	1,282,273.782 1,282,266.383	36.248161842 36.248066221	-107.464621396 -107.464645008
Pictured		132.023	1,302.02	-223.42	-40.05	1,911,007.002	1,202,200.303	30.240000221	-107.404040000
2,000.00		192.029	1,964.19	-230.01	-49.01	1,911,807.037	1,282,266.256	36.248064582	-107.464645413
2,100.00		192.029	2,057.45	-265.33	-56.54	1,911,771.719	1,282,258.730	36.247967323	-107.464669429
2,159.07	21.17	192.029	2,112.53	-286.19	-60.98	1,911,750.858	1,282,254.285	36.247909873	-107.464683615
Lewis									
2,200.00	21.17	192.029	2,150.70	-300.65	-64.06	1,911,736.402	1,282,251.205	36.247870063	-107.464693445
2,300.00		192.029	2,243.95	-335.97	-71.59	1,911,701.084	1,282,243.679	36.247772803	-107.464717462
2,400.00		192.029	2,337.20	-371.28	-79.12	1,911,665.766	1,282,236.153	36.247675543	-107.464741478
2,475.22	21.17	192.029	2,407.34	-397.85	-84.78	1,911,639.201	1,282,230.493	36.247602388	-107.464759542
Chacra	04.47	102.020	2 420 45	406.60	96.64	1 011 620 449	1 000 000 600	26.047570004	107 464765404
2,500.00 2,600.00		192.029 192.029	2,430.45 2,523.71	-406.60 -441.92	-86.64 -94.17	1,911,630.448 1,911,595.131	1,282,228.628 1,282,221.102	36.247578284 36.247481024	-107.464765494 -107.464789511
2,700.00		192.029	2,616.96	-477.24	-101.69	1,911,559.813	1,282,213.576	36.247383764	-107.464813527
2,800.00		192.029	2,710.21	-512.56	-109.22	1,911,524.495	1,282,206.050	36.247286504	-107.464837543
2,900.00		192.029	2,803.46	-547.87	-116.74	1,911,489.177	1,282,198.525	36.247189245	-107.464861559
3,000.00		192.029	2,896.72	-583.19	-124.27	1,911,453.859	1,282,190.999	36.247091985	-107.464885575
3,100.00		192.029	2,989.97	-618.51	-131.80	1,911,418.542	1,282,183.473	36.246994725	-107.464909591
3,200.00		192.029	3,083.22	-653.83	-139.32	1,911,383.224	1,282,175.947	36.246897465	-107.464933607
3,300.00		192.029	3,176.47	-689.14	-146.85	1,911,347.906	1,282,168.422	36.246800206	-107.464957622
3,400.00		192.029	3,269.73	-724.46	-154.37	1,911,312.588	1,282,160.896	36.246702946	-107.464981638
3,500.00 3,600.00		192.029 192.029	3,362.98 3,456.23	-759.78 -795.10	-161.90 -169.42	1,911,277.270 1,911,241.953	1,282,153.370 1,282,145.845	36.246605686 36.246508426	-107.465005654 -107.465029670
3,000.00	21.17	132.023	0,700.20	-130.10	-103.42	1,311,241.300	1,202,140.040	00.270000420	-107.+03023070

Planning Report - Geographic

Database:	DB_Decv0422v16	Local Co-ordinate Reference:	Well Haynes Canyon Unit 440H
Company:	Enduring Resources LLC	TVD Reference:	RKB=6703+25 @ 6728.00ft
Project:	Rio Arriba County, New Mexico NAD83 NM C	MD Reference:	RKB=6703+25 @ 6728.00ft
Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
Well:	Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Oriignal Hole		
Design:	rev0		

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
3,664.79		192.029	3,516.65	-817.98	-174.30	1,911,219.070	1,282,140.969	36.246445411	-107.465045229
Cliff Ho		102.020	0,010.00	011.00	11 1.00	1,011,210.010	1,202,110.000	00.210110111	101.100010220
3,670.15	21.17	192.029	3,521.65	-819.87	-174.70	1,911,217.178	1,282,140.565	36.246440200	-107.465046516
Menefee									
3,700.00 3,800.00		192.029 192.029	3,549.48 3,642.74	-830.42 -865.73	-176.95 -184.48	1,911,206.635 1,911,171.317	1,282,138.319 1,282,130.793	36.246411166 36.246313907	-107.465053685 -107.465077701
3,832.45		192.029	3,673.00	-877.20	-186.92	1,911,159.855	1,282,128.351	36.246282342	-107.465085495
9 5/8" C									
3,900.00		192.029	3,735.99	-901.05	-192.00	1,911,135.999	1,282,123.267	36.246216647	-107.465101716
4,000.00		192.029	3,829.24	-936.37	-199.53	1,911,100.682	1,282,115.742	36.246119387	-107.465125732
4,100.00 4,194.21		192.029 192.029	3,922.49 4,010.35	-971.69 -1,004.96	-207.05 -214.14	1,911,065.364 1,911,032.091	1,282,108.216 1,282,101.126	36.246022127 36.245930500	-107.465149747 -107.465172371
	°/100' drop	102.020	4,010.00	-1,004.00	-217.17	1,011,002.001	1,202,101.120	00.24000000	107.400172071
4,200.00		192.029	4,015.75	-1,007.00	-214.58	1,911,030.054	1,282,100.692	36.245924889	-107.465173757
4,300.00		192.029	4,110.01	-1,039.63	-221.53	1,910,997.419	1,282,093.738	36.245835017	-107.465195948
4,400.00		192.029	4,205.88	-1,067.40	-227.45	1,910,969.653	1,282,087.821	36.245758555	-107.465214828
4,415.88		192.029	4,221.23	-1,071.35	-228.29	1,910,965.698	1,282,086.979	36.245747664	-107.465217517
Point Lo 4,500.00		192.029	4,303.11	-1,090.22	-232.31	1,910,946.833	1,282,082.959	36.245695712	-107.465230345
4,600.00		192.029	4,401.42	-1,108.03	-236.11	1,910,929.021	1,282,079.163	36.245646660	-107.465242457
4,695.57	6.13	192.029	4,496.15	-1,120.33	-238.73	1,910,916.723	1,282,076.543	36.245612794	-107.465250819
Mancos									
4,700.00		192.029	4,500.56	-1,120.79	-238.82	1,910,916.266	1,282,076.445	36.245611534	-107.465251130
4,800.00 4,899.82		192.029 0.000	4,600.24 4,700.01	-1,128.45 -1,131.00	-240.46 -241.00	1,910,908.602 1,910,906.052	1,282,074.812 1,282,074.269	36.245590430 36.245583406	-107.465256341 -107.465258075
	ertical hold	0.000	4,700.01	-1,101.00	-2-11.00	1,010,000.002	1,202,014.200	00.240000400	107.400200070
5,000.00		0.000	4,800.19	-1,131.00	-241.00	1,910,906.052	1,282,074.269	36.245583406	-107.465258075
5,035.94	0.00	0.000	4,836.13	-1,131.00	-241.00	1,910,906.052	1,282,074.269	36.245583406	-107.465258075
MNCS_									
5,097.85		0.000	4,898.04	-1,131.00	-241.00	1,910,906.052	1,282,074.269	36.245583406	-107.465258075
5,100.00	0°/100' build 0.22	310.715	4,900.19	-1,131.00	-241.00	1,910,906.054	1,282,074.266	36.245583413	-107.465258086
5,125.95		310.715	4,926.13	-1,130.55	-241.52	1,910,906.501	1,282,073.747	36.245584623	-107.465259865
MNCS_I	В								
5,150.00	5.22	310.715	4,950.12	-1,129.45	-242.80	1,910,907.599	1,282,072.471	36.245587594	-107.465264237
5,200.00		310.715	4,999.65	-1,125.08	-247.88	1,910,911.976	1,282,067.385	36.245599441	-107.465281669
5,250.00 5,263.30		310.715 310.715	5,048.41 5,061.20	-1,117.90 -1,115.53	-256.22 -258.98	1,910,919.153 1,910,921.526	1,282,059.046 1,282,056.288	36.245618864 36.245625288	-107.465310248 -107.465319702
5,203.30 MNCS_0		510.715	3,001.20	-1,115.55	-200.30	1,310,321.320	1,202,000.200	00.270020200	-107.+00019702
5,300.00		310.715	5,096.03	-1,107.98	-267.75	1,910,929.074	1,282,047.518	36.245645715	-107.465349759
5,332.59	23.47	310.715	5,126.27	-1,100.07	-276.94	1,910,936.984	1,282,038.327	36.245667122	-107.465381258
MNCS_									
5,350.00		310.715	5,142.13	-1,095.39	-282.38	1,910,941.664	1,282,032.888	36.245679790	-107.465399899
5,400.00 5,417.53		310.715 310.715	5,186.38 5,201.39	-1,080.22 -1,074.32	-300.00 -306.86	1,910,956.828 1,910,962.731	1,282,015.268 1,282,008.408	36.245720830 36.245736808	-107.465460287 -107.465483798
MNCS_I		0.0.110	0,201.00	.,	000.00	.,	.,_0_,000.100	00.2.0100000	
5,450.00		310.715	5,228.44	-1,062.60	-320.48	1,910,974.449	1,281,994.792	36.245768522	-107.465530464
5,500.00		310.715	5,267.98	-1,042.66	-343.65	1,910,994.395	1,281,971.615	36.245822504	-107.465609895
5,524.83		310.715	5,286.58	-1,031.94	-356.11	1,911,005.115	1,281,959.158	36.245851519	-107.465652590
5,550.00		310.715	5,304.70	-1,020.54	-369.35	1,911,016.512	1,281,945.915	36.245882364	-107.465697977
5,589.78		310.715	5,304.70	-1,020.54	-309.35	1,911,035.547	1,281,923.797	36.245933881	-107.465773782
MNCS_I									
									_

Planning Report - Geographic

Database:	DB_Decv0422v16	Local Co-ordinate Reference:	Well Haynes Canyon Unit 440H
Company:	Enduring Resources LLC	TVD Reference:	RKB=6703+25 @ 6728.00ft
Project:	Rio Arriba County, New Mexico NAD83 NM C	MD Reference:	RKB=6703+25 @ 6728.00ft
Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
Well:	Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Oriignal Hole		
Design:	rev0		

Planned Survey

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
5,600.00	50.22	310.715	5,338.33	-996.42	-397.38	1,911,040.633	1,281,917.886	36.245947647	-107.465794038
5,650.00		310.715	5,368.61	-970.48	-427.53	1,911,066.575	1,281,887.743	36.246017856	-107.465897349
5,697.85		310.715	5,394.24	-944.13	-458.14	1,911,092.921	1,281,857.129	36.246089161	-107.466002272
	0.00° tangent								
5,700.00		310.715	5,395.31	-942.91	-459.55	1,911,094.137	1,281,855.715	36.246092453	-107.466007116
5,743.57	60.00	310.715	5,417.10	-918.30	-488.15	1,911,118.750	1,281,827.115	36.246159067	-107.466105136
MNCS_									
5,757.85	60.00	310.715	5,424.24	-910.24	-497.53	1,911,126.815	1,281,817.744	36.246180894	-107.466137255
-	0°/100' build								
5,800.00		310.715	5,443.95	-885.94	-525.76	1,911,151.112	1,281,789.511	36.246246652	-107.466234016
5,832.71		310.715	5,457.33	-866.47	-548.38	1,911,170.580	1,281,766.889	36.246299342	-107.466311549
_	H@0VS	040 745	5 400 74	055.00	500 50		4 004 754 744	00.040007707	407 400050000
5,850.00		310.715	5,463.71	-855.99	-560.56	1,911,181.060	1,281,754.711	36.246327707	-107.466353288
5,900.00 5,950.00		310.715 310.715	5,479.39 5,490.88	-825.03 -793.30	-596.53 -633.40	1,911,212.019 1,911,243.751	1,281,718.738 1,281,681.866	36.246411493 36.246497374	-107.466476579 -107.466602952
6,000.00		310.715	5,490.88 5,498.08	-761.04	-670.89	1,911,276.015	1,281,644.375	36.246584694	-107.466731445
6,050.00		310.715	5,500.94	-728.49	-708.72	1,911,308.566	1,281,606.551	36.246672791	-107.466861080
6,056.15		310.715	5,501.00	-724.48	-713.38	1,911,312.575	1,281,601.892	36.246683642	-107.466877047
	°/100' turn	010.710	0,001.00	-124.40	-110.00	1,011,012.070	1,201,001.002	00.240000042	-107.400017047
6,100.00		312.031	5,501.13	-695.49	-746.29	1,911,341.559	1,281,568.985	36.246762112	-107.466989861
6,198.92		314.998	5,501.42	-627.39	-818.01	1,911,409.658	1,281,497.260	36.246946670	-107.467235959
	9.83° lateral	0111000	0,001112	021100	010101	1,011,100.000	.,201,101.200	0012 100 1001 0	1011101200000
6,200.00		314.998	5,501.43	-626.63	-818.78	1,911,410.425	1,281,496.493	36.246948751	-107.467238593
6,300.00		314.998	5,501.73	-555.92	-889.49	1,911,481.133	1,281,425.780	36.247140510	-107.467481371
6,400.00		314.998	5,502.03	-485.21	-960.20	1,911,551.841	1,281,355.067	36.247332269	-107.467724150
6,500.00	89.83	314.998	5,502.33	-414.50	-1,030.92	1,911,622.548	1,281,284.355	36.247524027	-107.467966930
6,600.00	89.83	314.998	5,502.64	-343.79	-1,101.63	1,911,693.256	1,281,213.642	36.247715785	-107.468209712
6,700.00	89.83	314.998	5,502.94	-273.09	-1,172.34	1,911,763.964	1,281,142.930	36.247907542	-107.468452494
6,800.00		314.998	5,503.24	-202.38	-1,243.05	1,911,834.672	1,281,072.217	36.248099299	-107.468695278
6,900.00		314.998	5,503.54	-131.67	-1,313.77	1,911,905.380	1,281,001.504	36.248291055	-107.468938063
7,000.00		314.998	5,503.85	-60.96	-1,384.48	1,911,976.088	1,280,930.792	36.248482810	-107.469180849
7,100.00		314.998	5,504.15	9.75	-1,455.19	1,912,046.795	1,280,860.079	36.248674565	-107.469423637
7,200.00		314.998	5,504.45	80.45	-1,525.90	1,912,117.503	1,280,789.367	36.248866320	-107.469666425
7,300.00		314.998	5,504.75	151.16	-1,596.62	1,912,188.211	1,280,718.654	36.249058074	-107.469909215
7,400.00 7,500.00		314.998 314.998	5,505.05 5,505.36	221.87 292.58	-1,667.33 -1,738.04	1,912,258.919 1,912,329.627	1,280,647.941 1,280,577.229	36.249249828 36.249441581	-107.470152006 -107.470394798
7,600.00		314.998	5,505.66	363.29	-1,808.76	1,912,400.335	1,280,506.516	36.249633333	-107.470637591
7,700.00		314.998	5,505.96	433.99	-1,879.47	1,912,471.042	1,280,435.804	36.249825085	-107.470880386
7,800.00		314.998	5,506.26	504.70	-1,950.18	1,912,541.750	1,280,365.091	36.250016836	-107.471123182
7,900.00		314.998	5,506.57	575.41	-2,020.89	1,912,612.458	1,280,294.378	36.250208587	-107.471365978
8,000.00		314.998	5,506.87	646.12	-2,091.61	1,912,683.166	1,280,223.666	36.250400338	-107.471608775
8,100.00	89.83	314.998	5,507.17	716.83	-2,162.32	1,912,753.874	1,280,152.953	36.250592088	-107.471851575
8,200.00	89.83	314.998	5,507.47	787.53	-2,233.03	1,912,824.581	1,280,082.241	36.250783837	-107.472094375
8,300.00	89.83	314.998	5,507.78	858.24	-2,303.75	1,912,895.289	1,280,011.528	36.250975586	-107.472337177
8,400.00	89.83	314.998	5,508.08	928.95	-2,374.46	1,912,965.997	1,279,940.816	36.251167334	-107.472579979
8,500.00		314.998	5,508.38	999.66	-2,445.17	1,913,036.705	1,279,870.103	36.251359082	-107.472822783
8,600.00		314.998	5,508.68	1,070.37	-2,515.88	1,913,107.413	1,279,799.390	36.251550829	-107.473065589
8,700.00		314.998	5,508.99	1,141.07	-2,586.60	1,913,178.121	1,279,728.678	36.251742576	-107.473308395
8,800.00		314.998	5,509.29	1,211.78	-2,657.31	1,913,248.828	1,279,657.965	36.251934322	-107.473551203
8,900.00		314.998	5,509.59	1,282.49	-2,728.02	1,913,319.536	1,279,587.253	36.252126068	-107.473794011
9,000.00 9,100.00		314.998	5,509.89 5,510,20	1,353.20	-2,798.73	1,913,390.244	1,279,516.540	36.252317813	-107.474036821
9,100.00		314.998 314.998	5,510.20 5,510.50	1,423.91 1,494.61	-2,869.45 -2,940.16	1,913,460.952 1,913,531.660	1,279,445.827 1,279,375.115	36.252509558 36.252701302	-107.474279632 -107.474522445
9,200.00		314.998 314.998	5,510.50 5,510.80	1,494.61	-2,940.16 -3,010.87	1,913,602.368	1,279,304.402	36.252893045	-107.474765258
5,000.00	00.00	011.000	0,010.00	1,000.02	0,010.01	1,010,002.000	.,2,0,004.402	00.202000040	101.174700200

Planning Report - Geographic

Database:	DB_Decv0422v16	Local Co-ordinate Reference:	Well Haynes Canyon Unit 440H
Company:	Enduring Resources LLC	TVD Reference:	RKB=6703+25 @ 6728.00ft
Project:	Rio Arriba County, New Mexico NAD83 NM C	MD Reference:	RKB=6703+25 @ 6728.00ft
Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
Well:	Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Oriignal Hole		
Design:	rev0		

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
9,400.00	89.83	314.998	5,511.10	1.636.03	-3,081.59	1,913,673.075	1,279,233.690	36.253084788	-107.475008073
9,500.00	89.83	314.998	5,511.10	1,706.74	-3,152.30	1,913,743.783	1,279,162.977	36.253276531	-107.475250888
9,600.00	89.83	314.998	5,511.71	1,777.45	-3,223.01	1,913,814.491	1,279,092.264	36.253468273	-107.475493706
9,700.00	89.83	314.998	5,512.01	1,848.15	-3,223.01	1,913,885.199	1,279,092.204	36.253660014	-107.475736524
9,800.00	89.83	314.998	5,512.01	1,918.86	-3,364.44	1,913,955.907	1,278,950.839	36.253851755	-107.475979343
9,900.00	89.83	314.998	5,512.51	1,989.57	-3,304.44	1,914,026.615	1,278,880.127	36.254043496	-107.476222164
10,000.00	89.83	314.998	5,512.01	2,060.28	-3,505.86	1,914,020.015	1,278,809.414	36.254235236	-107.476464985
10,000.00	89.83	314.998	5,512.92	2,000.28	-3,505.80	1,914,168.030	1,278,738.701	36.254426975	-107.476707808
10,200.00	89.83	314.998	5,513.22	2,130.99	-3,647.29	1,914,238.738	1,278,667.989	36.254618714	-107.476950633
10,200.00	89.83	314.998	5,513.82	2,201.09	-3,718.00	1,914,309.446	1,278,597.276	36.254810453	-107.477193458
10,300.00	89.83	314.998	5,513.82	2,272.40	-3,788.71	1,914,309.440	1,278,526.564	36.255002191	-107.477436284
10,400.00	89.83	314.998	5,514.13	2,343.11	-3,859.43	1,914,450.862	1,278,455.851	36.255193928	-107.477679112
10,600.00	89.83	314.998	5,514.43	2,413.62	-3,839.43		1,278,385.138	36.255385665	-107.477921941
10,800.00	89.83	314.998	5,514.73	2,464.52	-3,930.14 -4,000.85	1,914,521.569 1,914,592.277	1,278,314.426	36.255577401	-107.477921941
10,700.00	89.83	314.998	5,515.03	2,555.25 2,625.94	-4,000.85 -4,071.56	1,914,662.985	1,278,243.713	36.255769137	-107.478407602
,			,	,	,	, ,	, ,		-107.478650435
10,900.00	89.83	314.998	5,515.64	2,696.65	-4,142.28	1,914,733.693	1,278,173.001	36.255960872	
11,000.00	89.83	314.998	5,515.94	2,767.36	-4,212.99	1,914,804.401	1,278,102.288	36.256152607	-107.478893268
11,100.00	89.83	314.998	5,516.24	2,838.06	-4,283.70	1,914,875.108	1,278,031.576	36.256344341	-107.479136103
11,200.00	89.83	314.998	5,516.55	2,908.77	-4,354.41	1,914,945.816	1,277,960.863	36.256536075	-107.479378939
11,300.00	89.83	314.998	5,516.85	2,979.48	-4,425.13	1,915,016.524	1,277,890.150	36.256727808	-107.479621776
11,400.00	89.83	314.998	5,517.15	3,050.19	-4,495.84	1,915,087.232	1,277,819.438	36.256919540	-107.479864615
11,500.00	89.83	314.998	5,517.45	3,120.90	-4,566.55	1,915,157.940	1,277,748.725	36.257111273	-107.480107454
11,600.00	89.83	314.998	5,517.75	3,191.60	-4,637.27	1,915,228.648	1,277,678.013	36.257303004	-107.480350295
11,700.00	89.83	314.998	5,518.06	3,262.31	-4,707.98	1,915,299.355	1,277,607.300	36.257494735	-107.480593137
11,800.00	89.83	314.998	5,518.36	3,333.02	-4,778.69	1,915,370.063	1,277,536.587	36.257686466	-107.480835980
11,900.00	89.83	314.998	5,518.66	3,403.73	-4,849.40	1,915,440.771	1,277,465.875	36.257878196	-107.481078825
12,000.00	89.83	314.998	5,518.96	3,474.44	-4,920.12	1,915,511.479	1,277,395.162	36.258069925	-107.481321670
12,100.00	89.83	314.998	5,519.27	3,545.14	-4,990.83	1,915,582.187	1,277,324.450	36.258261654	-107.481564517
12,200.00	89.83	314.998	5,519.57	3,615.85	-5,061.54	1,915,652.895	1,277,253.737	36.258453383	-107.481807365
12,300.00	89.83	314.998	5,519.87	3,686.56	-5,132.25	1,915,723.602	1,277,183.024	36.258645111	-107.482050214
12,400.00	89.83	314.998	5,520.17	3,757.27	-5,202.97	1,915,794.310	1,277,112.312	36.258836838	-107.482293064
12,500.00	89.83	314.998	5,520.48	3,827.98	-5,273.68	1,915,865.018	1,277,041.599	36.259028565	-107.482535915
12,600.00	89.83	314.998	5,520.78	3,898.68	-5,344.39	1,915,935.726	1,276,970.887	36.259220292	-107.482778768
12,673.39	89.83	314.998	5,521.00	3,950.58	-5,396.29	1,915,987.619	1,276,918.990	36.259361000	-107.482957000
PBHL/TC	0 @ 12673.39	MD 5521.00	TVD						

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude
Haynes 440 vert - plan misses target - Point	0.00 center by 51.8	0.000 82ft at 5097.8	4,898.04 35ft MD (489	-1,167.84 8.05 TVD, -11	-277.44 I31.00 N, -241	1,910,869.212 I.00 E)	1,282,037.829	36.245480970	-107.465380063
Haynes 440 FTP 188 FS - plan misses target - Point		0.000 oft at 6057.90	5,501.00 Oft MD (5501	-727.20 .00 TVD, -723	-718.12 3.33 N, -714.7	1,911,309.852 1 E)	1,281,597.153	36.246676000	-107.466893000
Haynes 440 LTP 453 FN - plan hits target cer - Point		0.000	5,521.00	3,950.58	-5,396.29	1,915,987.619	1,276,918.990	36.259361000	-107.482957000

Planning Report - Geographic

Database:	DB Decv0422v16	Local Co-ordinate Reference:	Well Haynes Canyon Unit 440H
	-	Local Co-orumate Reference.	
Company:	Enduring Resources LLC	TVD Reference:	RKB=6703+25 @ 6728.00ft
Project:	Rio Arriba County, New Mexico NAD83 NM C	MD Reference:	RKB=6703+25 @ 6728.00ft
Site:	Haynes Canyon Unit (428,430,440 & 442)	North Reference:	Grid
Well:	Haynes Canyon Unit 440H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Oriignal Hole		
Design:	rev0		
Casing Points			

Measured Depth	Vertical Depth			Casing Diameter	Hole Diameter	
(ft)	(ft)		Name	(")	(")	
350.00	350.00	13 3/8" Csg		13-3/8	17-1/2	
3,832.45	3,673.00	9 5/8" Csg		9-5/8	12-1/4	

Formations

Formations						
	Measured Depth (ft)	Vertical Depth (ft)	Name	Lithology	Dip (°)	Dip Direction (°)
	1,405.98	1,402.93	Ojo Alamo		0.17	314.998
	1,508.89	1,502.89	Kirtland		0.17	314.998
	1,746.47	1,727.77	Fruitland		0.17	314.998
	1,998.32	1,962.62	Pictured Cliffs		0.17	314.998
	2,159.07	2,112.53	Lewis		0.17	314.998
	2,475.22	2,407.34	Chacra		0.17	314.998
	3,664.79	3,516.65	Cliff House		0.17	314.998
	3,670.15	3,521.65	Menefee		0.17	314.998
	4,415.88	4,221.23	Point Lookout		0.17	314.998
	4,695.57	4,496.15	Mancos		0.17	314.998
	5,035.94	4,836.13	MNCS_A		0.17	314.998
	5,125.95	4,926.13	MNCS_B		0.17	314.998
	5,263.30	5,061.20	MNCS_C		0.17	314.998
	5,332.59	5,126.27	MNCS_Cms		0.17	314.998
	5,417.53	5,201.39	MNCS_D		0.17	314.998
	5,524.83	5,286.58	MNCS_E		0.17	314.998
	5,589.78	5,331.72	MNCS_F		0.17	314.998
	5,743.57	5,417.10	MNCS_G		0.17	314.998
	5,832.71	5,457.33	MNCS_H @ 0VS		0.17	314.998
	5,832.71	5,457.33	MNCS_H @ 0VS		0.17	314.998

Plan Annotations

Measured	Vertical	Local Coordinates		
Depth (ft)	Depth (ft)	+N/-S (ft)	+E/-W (ft)	Comment
1,000.00	1,000.00	0.00	0.00	KOP Begin 3°/100' build
1,705.61	1,689.66	-126.04	-26.86	Begin 21.17° tangent
4,194.21	4,010.35	-1,004.96	-214.14	Begin 3°/100' drop
4,899.82	4,700.01	-1,131.00	-241.00	Begin vertical hold
5,097.85	4,898.04	-1,131.00	-241.00	Begin 10°/100' build
5,697.85	5,394.24	-944.13	-458.14	Begin 60.00° tangent
5,757.85	5,424.24	-910.24	-497.53	Begin 10°/100' build
6,056.15	5,501.00	-724.48	-713.38	Begin 3°/100' turn
6,198.92	5,501.42	-627.39	-818.01	Begin 89.83° lateral
12,673.39	5,521.00	3,950.58	-5,396.29	PBHL/TD @ 12673.39 MD 5521.00 TVD

VELL NAME: Haynes Canyon Unit 440H

OBJECTIVE:	Drill, compl	lete, and equip sin	ngle latera	l in the Mancos-	H formation		QUIC
API Number:	Not yet assigr	ned					Sur TD (MD)
AFE Number:	Not yet assigr	ned					Int TD (MD)
/ell Number:	Not yet assigr	ned					KOP (MD)
State:	New Mexico						KOP (TVD)
County:	Rio Arriba						Target (TVD)
Surface Elev.:	6,703	ft ASL (GL)	6,728	ft ASL (KB)			Curve BUR
rface Location:	3-23-6	Sec-Twn- Rng	916	ft FSL	390	ft FWL	POE (MD)
BH Location:	4-23-6	Sec-Twn- Rng	453	ft FNL	232	ft FWL	TD (MD)
Directions:	FROM THE II	NTERSECTION OF U	S HWY 550	& US HWY 64 IN E	BLOOMFIELD,	NM:	Lat Len (ft)

> South on US Hwy 550 for 53.8 miles to MM 97.6; Left (North) on CR #379 (State Hwy 403) for 1.3 miles to fork; Right (North) remaining on CR #379 for 1.5 miles to location access on left; Haynes Canyon Unit 428H Pad. From East to West 430H, 428H, 442H, 440H).

QUICK REFERENCE

350 ft

3,833 ft

5,100 ft

4,900 ft

5,466 ft

5,858 ft

12,673 ft

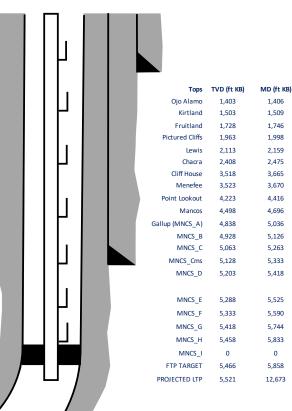
6,815 ft

10 °/100 ft

CONSTRUCTION SUMMARY:

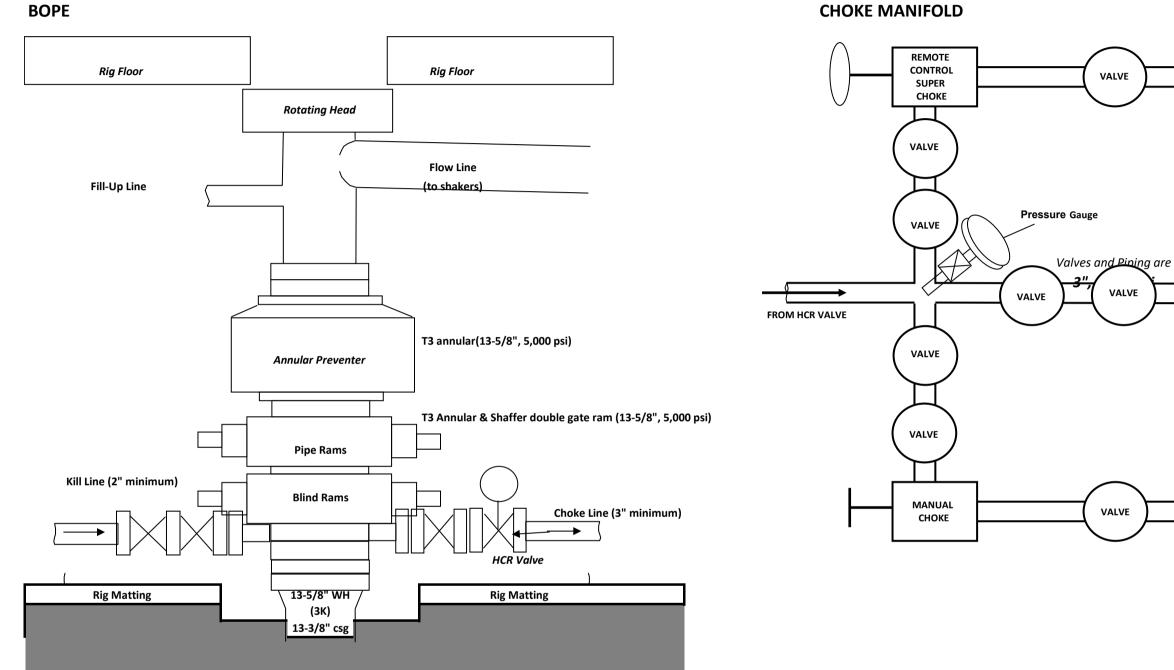
	Hole (in)	TD MD (ft)	Csg (in)	Csg (lb/ft)	Csg (grade)	Csg (conn)	Csg Top (ft)	Csg Bot (ft)
Surface	17.500	350	13.375	54.5	J-55	BTC	0	350
ntermediate	12.250	3,833	9.625	36.0	J-55	LTC	0	3,833
Production	8.500	12,673	5.500	17.0	P-110	LTC	0	12,673

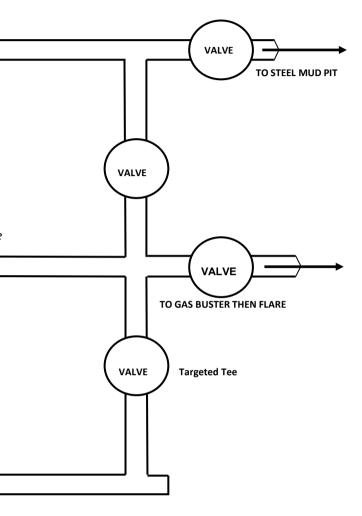
NT PROPERTIES SUMMARY:


						TOC (ft		
	Туре	Wt (ppg)	Yd (cuft/sk)	Wtr (gal/sk)	% Excess	MD)	Total (sx)	Cu Ft Slurry
Surface	TYPE III	14.6	1.39	6.686	100%	0	364	505
Inter. (Lead)	0:10 Type III:P	12.5	2.14	12.05	70%	0	802	1,715
Inter. (Tail)	Type III	14.6	1.38	6.64	20%	3333	150	207
Prod. (Lead)	ASTM type I/II	12.4	2.370	13.4	50%	0	560	1,328
Prod. (Tail)	G:POZ blend	13.3	1.570	7.7	10%	4696	1280	2,010

LETION / PRODUCTION SUMMARY:

Frac: 6715


Flowback: Flow back through production tubing as pressures allow


Production: Produce through production tubing via gas-lift into permanent production and storage facilities

BOPE & CHOKE MANIFOLD DIAGRAMS

NOTE: EXACT BOPE AND CHOKE CONFIRGURATION AND COMPONENTS MAY DIFFER FROM WHAT IS DEPICTED IN THE DIGRAMS BELOW DEPENDING ON THE RIG AND ITS ASSOCIATED EQUIPMENT. RAM PREVENTERS, ANNULAR PREVENTERS, AND CHOKE MANIFOLD AND COMPONENTS WILL BE RATED TO 3,000 PSI MINIMUM.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
ENDURING RESOURCES, LLC	372286
6300 S Syracuse Way, Suite 525	Action Number:
Centennial, CO 80111	291553
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
ward.rikala	Notify OCD 24 hours prior to casing & cement	12/28/2023
ward.rikala	Will require a File As Drilled C-102 and a Directional Survey with the C-104	12/28/2023
ward.rikala	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string	12/28/2023
ward.rikala	Cement is required to circulate on both surface and intermediate1 strings of casing	12/28/2023
ward.rikala	If cement does not circulate on any string, a CBL is required for that string of casing	12/28/2023
ward.rikala	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system	12/28/2023

CONDITIONS

Action 291553