Sundry Print Repor

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Well Number: 531H

Well Name: MARWARI21-16 STATE Well Location: T25S / R32E / SEC 21 / County or Parish/State:

SESW /

FED COM

Type of Well: OIL WELL Allottee or Tribe Name:

Lease Number: NMLC0062300 **Unit or CA Name: Unit or CA Number:**

US Well Number: 3002551825 Well Status: Approved Application for **Operator: DEVON ENERGY**

Permit to Drill

PRODUCTION COMPANY LP

Notice of Intent

Sundry ID: 2766952

Type of Submission: Notice of Intent Type of Action: APD Change

Date Sundry Submitted: 12/20/2023 Time Sundry Submitted: 02:09

Date proposed operation will begin: 12/20/2023

Procedure Description: Devon Energy Production Co., L.P. (Devon) respectfully requests to change the well name, SHL, BHL, and depth on the subject well. Please see attached revised C102, drill plan (break test variance included), and directional plan. Permitted Well name: VAN DOO DAH 28-33 FED COM 333H Proposed Well name: MARWARI 21-16 STATE FED COM 531H Permitted SHL: SESW 200 FSL, 1540 FWL, 21-25S-32E Proposed SHL: SESW 500 FSL, 1580 FWL, 21-25S-32E Permitted BHL: SESW 20 FSL, 2070 FWL, 33-25S-32E Proposed BHL: NWNW 20 FNL, 660 FWL, 16-25S-32E Permitted TVD/MD: 11899/22108 - [97903] WC-025 G-08 S253235G; LWR BONE SPRIN Proposed TVD/MD: 9286/19747 - [96715] WC-025 G-05 S253209L; BONE SPRING New leases have been added since approved APD and notification has been given. US Well Number: 30-025-51825

NOI Attachments

Procedure Description

WA017743656_MARWARI_21_16_STATE_FED_COM_531H_WL_R1_20231220140912.pdf

13.375_54.50_J55_SEAH_20231220125738.pdf

MARWARI_21_16_STATE_FED_COM_531H__20231220125738.pdf

break_test_variance_BOP_20231220125738.pdf

MARWARI_21_16_STATE_FED_COM_531H__Directional_Plan_12_19_23_20231220125738.pdf

5.5in_x_17.00lb_P110EC_DWC_C_IS_PLUS___5_23_2023_20231220125738.pdf

9.625_40lb_J55_SeAH_20231220125738.pdf

eived by OCD: 1/25/2024 9:06:23 AM Well Name: MARWAR121-16 STATE

FED COM

Well Location: T25S / R32E / SEC 21 /

County or Parish/State:

Well Number: 531H Type of Well: OIL WELL **Allottee or Tribe Name:**

Page 2 of

Lease Number: NMLC0062300

Unit or CA Name:

SESW /

Unit or CA Number:

US Well Number: 3002551825

Well Status: Approved Application for Permit to Drill

Operator: DEVON ENERGY PRODUCTION COMPANY LP

Signed on: DEC 20, 2023 02:09 PM

Conditions of Approval

Additional

Sundry_ID_2766952_20240119102433.pdf

Sundry_ID_2766940_COA_20240119102433.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: SHAYDA OMOUMI

Name: DEVON ENERGY PRODUCTION COMPANY LP

Title: Regulatory Compliance Associate 3 Street Address: 333 W SHERIDAN AVE

City: OKLAHOMA CITY State: OK

Phone: (405) 235-3611

Email address: SHAYDA.OMOUMI@DVN.COM

Field

Representative Name:

Street Address:

City:

State:

Zip:

Phone:

Email address:

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS

BLM POC Phone: 5752342234

Disposition: Approved

Signature: Chris Walls

BLM POC Title: Petroleum Engineer

BLM POC Email Address: cwalls@blm.gov

Disposition Date: 01/25/2024

Page 2 of 2

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

District IV

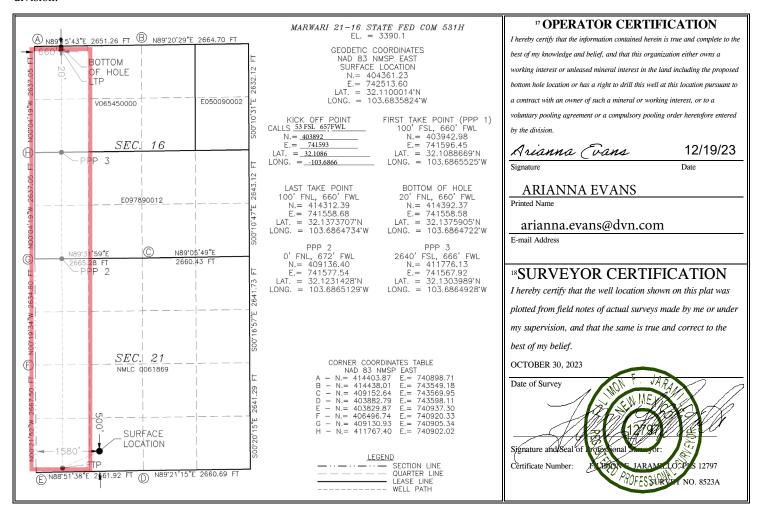
State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

,, === = 0 011101, 11, 2 1101121102 2 = 10111101, 1 = 111					
¹ API Numbe	er ² Pool Code	² Pool Code Pool Name			
30-025-51825	96715	WC-025 G-05 S253209L; BONE SPRING			
⁴ Property Code	⁵ Pr	coperty Name	⁶ Well Number		
331685	MARWARI 21-	MARWARI 21-16 STATE FED COM			
⁷ OGRID No.	8 O _l	perator Name	⁹ Elevation		
6137	DEVON ENERGY PRO	DDUCTION COMPANY, L.P.	3390.1		


¹⁰ Surface Location

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
N	21	25 S	32 E		500	SOUTH	1580	WEST	LEA
" Pottom Hole Location If Different From Surface									

Bottom Hole Location If Different From Surface

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
D	16	25 S	23 E		20	NORTH	660	WEST	LEA
12 Dedicated Acres	3 Joint	or Infill 14	Consolidation	1 Code	¹⁵ Order No.				
320									

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Intent	: _x_	As Dril	led											
API#	30-025-5	1825												
Oper DEV	rator Nar	ne: IERGY P	RODUC	CTION	N	Proper MARV	-			STAT	ΈF	ED C	OM	Well Number 531H
Kick C	Off Point	(KOP)												
UL	Section	Township	Range	Lot	Feet	Fr	om N	/S	Feet		From	n E/W	County	
М	21	25S	32E		53		OUTH		657		WES	БТ		LEA
22.108					-103.6866								NAD	83
	ake Poin													
UL M	Section 21	Township 25S	Range 32E	Lot	Feet 100		om Na OUT		Feet 660		From	n E/W ST	County LEA	
Latitu 32.1	ode 08866	9			Longitu 103.6	olde 186552	25						NAD 83	
Last T	ake Poin	t (LTP)	Range	Lot	Feet	From N	I/S	Feet		From	E/W	Count	:y	
D	21	25S	32E		100	NORT	ГН	660		WES	Т	LEA		
32.1	137370	7			103.6	186473	34					NAD 83		
ls this	well the	defining v	vell for th	e Horiz	zontal Sp	pacing U	Init?		N					
ls this	well an i	infill well?		Υ										
	l is yes pl ng Unit.	ease provi	de API if	availak	ole, Opei	rator Na	me a	nd v	vell n	umber	for [Definir	ng well fo	r Horizontal
API#														
Ope	rator Nar	ne:	<u> </u>			Proper	ty Na	ame	:					Well Number
DEV		GY PRODU	ICTION							TATE F	ED C	OM		233Y

KZ 06/29/2018

<u>13-3/8"</u> <u>54.50#</u> <u>.380</u> <u>J-55</u>

Dimensions (Nominal)

Outside Diameter	13.375	in.
Wall	0.380	in.
Inside Diameter	12.615	in.
Drift	12.459	in.
Weight, T&C	54.500	lbs/ft
Weight, PE	52.790	lbs/ft

Performance Ratings, Minimum

Collapse, PE	1130	psi
Internal Yields Pressure		
PE	2730	psi
STC	2730	PSI
ВТС	2730	psi
Yield Strength, Pipe Body	853	1000 lbs
Joint Strength, STC	514	1000 lbs
Joint Strength, BTC	909	1000 lbs

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

by OCD: 1/25/2024 9:06:23 AM

Connection Data Sheet

OD (in.)	WEIGHT (lbs./ft.)	WALL (in.)	GRADE	DRIFT (in.)	RBW%	CONNECTION
5.500	Nominal: 17.00 Plain End: 16.89	0.304	VST P110 EC	4.767	87.5	DWC/C-IS PLUS

PIPE PROPERTIES		
Nominal OD	5.500	in.
Nominal ID	4.892	in.
Nominal Area	4.962	sq.in.
Grade Type	API 5CT	
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Tensile Strength	135	ksi
Yield Strength	620	klb
Ultimate Strength	670	klb
Min. Internal Yield	12,090	psi
High Collapse	8,840	psi

CONNECTION PROPERTIES		
Connection Type	Semi-Premium T&	С
Connection OD (nom)	6.300	in.
Connection ID (nom)	4.892	in.
Make-Up Loss	4.125	in.
Coupling Length	9.250	in.
Critical Cross Section	4.962	sq.in.
Tension Efficiency	100.0%	of pipe
Compression Efficiency	100.0%	of pipe
Internal Pressure Efficiency	100.0%	of pipe
External Pressure Efficiency	100.0%	of pipe

CONNECTION PERFORMANCES		
Yield Strength	620	klb
Parting Load	670	klb
Compression Rating	620	klb
Min. Internal Yield	12,090	psi
High Collapse	8,840	psi
Maximum Uniaxial Bend Rating	104.2	°/100 ft
Ref String Length w 1.4 Design Factor	26,050	ft

FIELD TORQUE VALUES		
Min. Make-up Torque	13,400	ft.lbs
Opti. Make-up Torque	14,350	ft.lbs
Max. Make-up Torque	15,300	ft.lbs
Min. Shoulder Torque	1,340	ft.lbs
Max. Shoulder Torque	10,720	ft.lbs
Max. Delta Turn	0.200	Turns
Max Operational Torque	17,200	ft.lbs
Maximum Torsional Value (MTV)	18,920	ft.lbs

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

05/23/2023 4:15 PM

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042 Phone: 713-479-3200

Fax: 713-479-3234
VAM USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u>
Tech Support E-mail: tech.support@vam-usa.com

DWC Connection Data Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- 10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.
- 12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

05/23/2023 4:15 PM

9.625" 40# .395" J-55

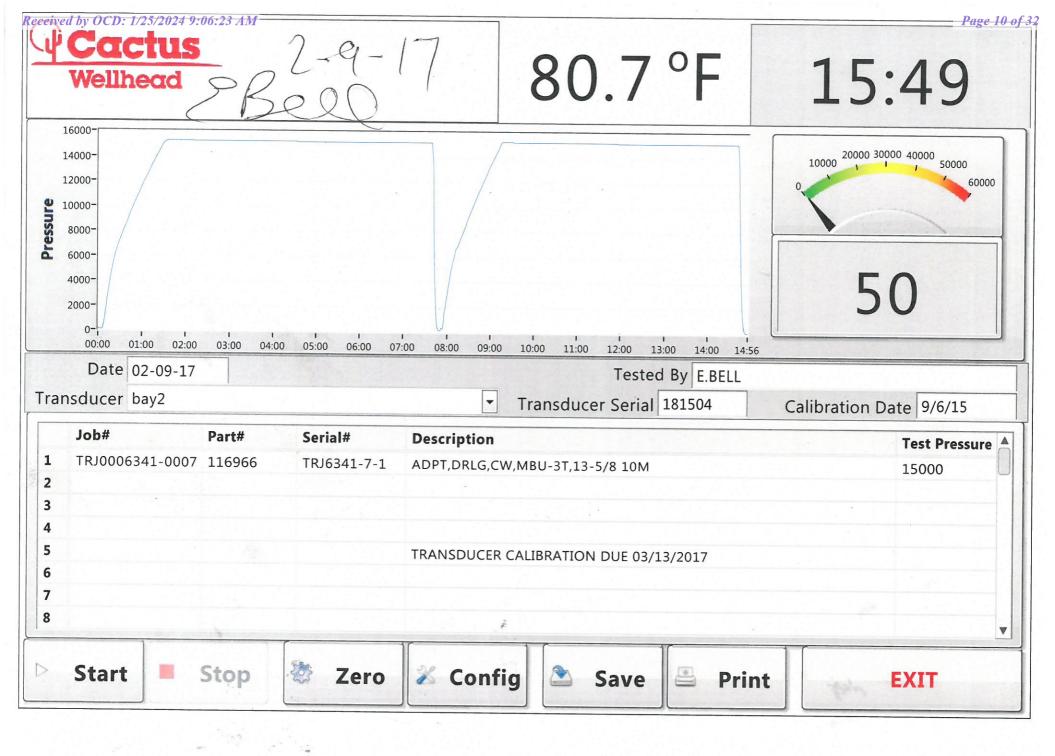
Dimensions (Nominal)

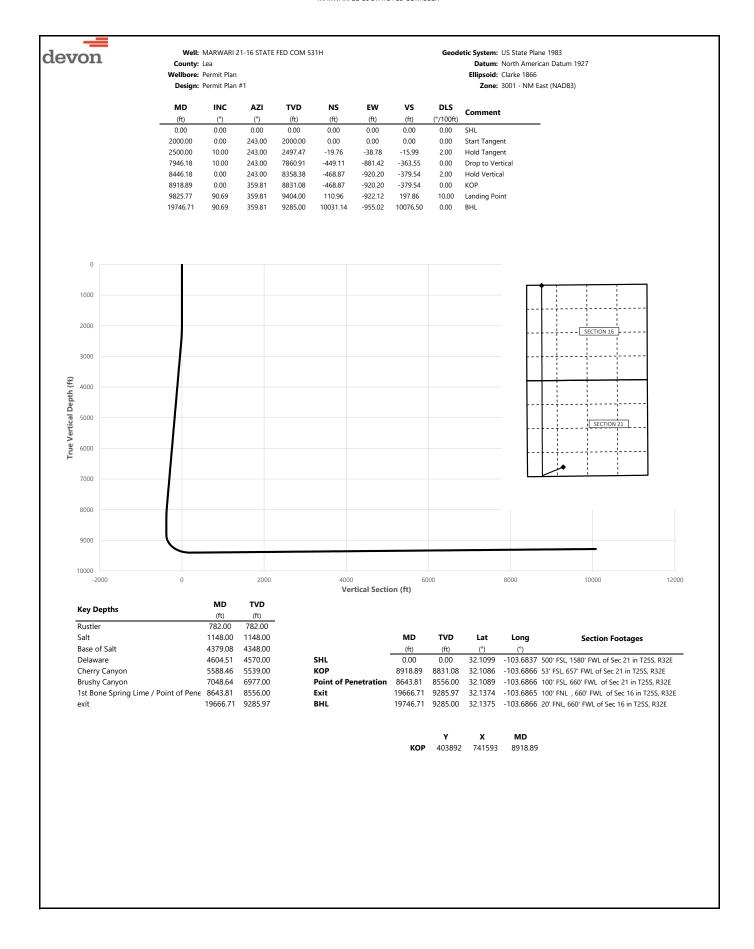
BTC

9.625	in.
0.395	in.
8.835	in.
8.750	in.
40.000	lbs./ft.
	lbs./ft.
36.370	105./11.
2570	psi
3950	psi
3950	psi
3950	psi
630	1000 lbs.
452	1000 lbs.
520	1000 lbs.
	0.395 8.835 8.750 40.000 38.970 2570 3950 3950 3950 3950 452

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

714


1000 lbs.


Section 2 - Blowout Preventer Testing Procedure

Variance Request

Devon Energy requests to only test BOP connection breaks after drilling out of surface casing and while skidding between wells which conforms to API Standard 53 and industry standards. This test will include the Top Pipe Rams, HCR, Kill Line Check Valve, QDC (quick disconnect to wellhead) and Shell of the 10M BOPE to 5M for 10 minutes. If a break to the flex hose that runs to the choke manifold is required due to repositioning from a skid, the HCR will remain open during the shell test to include that additional break. The variance only pertains to intermediate hole-sections and no deeper than the Bone Springs Formation where 5M BOP tests are required. The initial BOP test will follow OOGO2.III.A.2.i, and subsequent tests following a skid will only test connections that are broken. The annular preventer will be tested to 100% working pressure. This variance will meet or exceed OOGO2.III.A.2.i per the following: Devon Energy will perform a full BOP test per OOGO2.III.A.2.i before drilling out of the intermediate casing string(s) and starting the production hole, before starting any hole section that requires a 10M test, before the expiration of the allotted 14-days for 5M intermediate batch drilling or when the drilling rig is fully mobilized to a new well pad, whichever is sooner. We will utilize a 200' TVD tolerance between intermediate shoes as the cutoff for a full BOP test. The BLM will be contacted 4hrs prior to a BOPE test. The BLM will be notified if and when a well control event is encountered. Break test will be a 14 day interval and not a 30 day full BOPE test interval. If in the event break testing is not utilized, then a full BOPE test would be conducted.

- 1. Well Control Response:
- 1. Primary barrier remains fluid
- 2. In the event of an influx due to being underbalanced and after a realized gain or flow, the order of closing BOPE is as follows:
 - a) Annular first
 - b) If annular were to not hold, Upper pipe rams second (which were tested on the skid BOP test)
 - c) If the Upper Pipe Rams were to not hold, Lower Pipe Rams would be third

Well: MARWARI 21-16 STATE FED COM 531H

County: Lea Wellbore: Permit Plan Design: Permit Plan #1 Geodetic System: US State Plane 1983

Datum: North American Datum 1927 **Ellipsoid:** Clarke 1866

Zone: 3001 - NM East (NAD83)

MD	INC	AZI	TVD	NS	EW	vs	DLS	
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	SHL
100.00	0.00	243.00	100.00	0.00	0.00	0.00	0.00	
200.00	0.00	243.00	200.00	0.00	0.00	0.00	0.00	
300.00	0.00	243.00	300.00	0.00	0.00	0.00	0.00	
400.00	0.00	243.00	400.00	0.00	0.00	0.00	0.00	
500.00	0.00	243.00	500.00	0.00	0.00	0.00	0.00	
600.00	0.00	243.00	600.00	0.00	0.00	0.00	0.00	
700.00	0.00	243.00	700.00	0.00	0.00	0.00	0.00	
782.00	0.00	243.00	782.00	0.00	0.00	0.00	0.00	Rustler
800.00		243.00	800.00	0.00	0.00	0.00	0.00	Rustiei
	0.00							
900.00	0.00	243.00	900.00 1000.00	0.00	0.00	0.00	0.00	
1000.00	0.00	243.00		0.00	0.00	0.00	0.00	
1100.00	0.00	243.00	1100.00	0.00	0.00	0.00	0.00	
1148.00	0.00	243.00	1148.00	0.00	0.00	0.00	0.00	Salt
1200.00	0.00	243.00	1200.00	0.00	0.00	0.00	0.00	
1300.00	0.00	243.00	1300.00	0.00	0.00	0.00	0.00	
1400.00	0.00	243.00	1400.00	0.00	0.00	0.00	0.00	
1500.00	0.00	243.00	1500.00	0.00	0.00	0.00	0.00	
1600.00	0.00	243.00	1600.00	0.00	0.00	0.00	0.00	
1700.00	0.00	243.00	1700.00	0.00	0.00	0.00	0.00	
1800.00	0.00	243.00	1800.00	0.00	0.00	0.00	0.00	
1900.00	0.00	243.00	1900.00	0.00	0.00	0.00	0.00	
2000.00	0.00	243.00	2000.00	0.00	0.00	0.00	0.00	Start Tangent
2100.00	2.00	243.00	2099.98	-0.79	-1.55	-0.64	2.00	
2200.00	4.00	243.00	2199.84	-3.17	-6.22	-2.56	2.00	
2300.00	6.00	243.00	2299.45	-7.12	-13.98	-5.77	2.00	
2400.00	8.00	243.00	2398.70	-12.66	-24.84	-10.25	2.00	
2500.00	10.00	243.00	2497.47	-19.76	-38.78	-15.99	2.00	Hold Tangent
2600.00	10.00	243.00	2595.95	-27.64	-54.25	-22.38	0.00	g
2700.00	10.00	243.00	2694.43	-35.53	-69.72	-28.76	0.00	
2800.00	10.00	243.00	2792.91	-43.41	-85.20	-35.14	0.00	
2900.00	10.00	243.00	2891.39	-51.29	-100.67	-41.52	0.00	
		243.00	2989.87			-41.32 -47.90		
3000.00	10.00			-59.18	-116.14		0.00	
3100.00	10.00	243.00	3088.35	-67.06	-131.61	-54.28	0.00	
3200.00	10.00	243.00	3186.83	-74.94	-147.08	-60.67	0.00	
3300.00	10.00	243.00	3285.31	-82.83	-162.56	-67.05	0.00	
3400.00	10.00	243.00	3383.79	-90.71	-178.03	-73.43	0.00	
3500.00	10.00	243.00	3482.27	-98.59	-193.50	-79.81	0.00	
3600.00	10.00	243.00	3580.75	-106.48	-208.97	-86.19	0.00	
3700.00	10.00	243.00	3679.23	-114.36	-224.44	-92.57	0.00	
3800.00	10.00	243.00	3777.72	-122.24	-239.92	-98.96	0.00	
3900.00	10.00	243.00	3876.20	-130.13	-255.39	-105.34	0.00	
4000.00	10.00	243.00	3974.68	-138.01	-270.86	-111.72	0.00	
4100.00	10.00	243.00	4073.16	-145.90	-286.33	-118.10	0.00	
4200.00	10.00	243.00	4171.64	-153.78	-301.81	-124.48	0.00	
4300.00	10.00	243.00	4270.12	-161.66	-317.28	-130.86	0.00	
4379.08	10.00	243.00	4348.00	-167.90	-329.51	-135.91	0.00	Base of Salt
4400.00	10.00	243.00	4368.60	-169.55	-332.75	-137.24	0.00	
4500.00	10.00	243.00	4467.08	-177.43	-348.22	-143.63	0.00	
4600.00	10.00	243.00	4565.56	-185.31	-363.69	-150.01	0.00	
1604.51	10.00	243.00	4570.00	-185.67	-364.39	-150.30	0.00	Delaware
1700.00	10.00	243.00	4664.04	-103.07	-304.39	-156.39	0.00	Sounde
1800.00	10.00	243.00	4762.52	-193.20		-156.39	0.00	
					-394.64 410.11			
1900.00	10.00	243.00	4861.00	-208.96	-410.11	-169.15	0.00	
5000.00	10.00	243.00	4959.48	-216.85	-425.58	-175.53	0.00	
5100.00	10.00	243.00	5057.97	-224.73	-441.05	-181.92	0.00	
5200.00	10.00	243.00	5156.45	-232.61	-456.53	-188.30	0.00	
5300.00	10.00	243.00	5254.93	-240.50	-472.00	-194.68	0.00	
5400.00	10.00	243.00	5353.41	-248.38	-487.47	-201.06	0.00	
5500.00	10.00	243.00	5451.89	-256.26	-502.94	-207.44	0.00	
5588.46	10.00	243.00	5539.00	-263.24	-516.63	-213.09	0.00	Cherry Canyon
5600.00	10.00	243.00	5550.37	-264.15	-518.41	-213.82	0.00	
5700.00	10.00	243.00	5648.85	-272.03	-533.89	-220.21	0.00	
5800.00	10.00	243.00	5747.33	-279.91	-549.36	-226.59	0.00	
5900.00	10.00	243.00	5845.81	-287.80	-564.83	-232.97	0.00	
5000.00	10.00	243.00	5944.29	-295.68	-580.30	-239.35	0.00	
6100.00	10.00	243.00	6042.77	-303.57	-595.78	-245.73	0.00	
5200.00	10.00	243.00	6141.25	-311.45	-611.25	-252.11	0.00	
5300.00	10.00	243.00	6239.73	-319.33	-626.72	-258.50	0.00	
	. 5.00	5.00					0.00	
6400.00	10.00	243.00	6338.22	-327.22	-642.19	-264.88	0.00	

Well: MARWARI 21-16 STATE FED COM 531H

County: Lea
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927 **Ellipsoid:** Clarke 1866

	Design: Permit Plan #1						Zone: 3001 - NM East (NAD83)			
MD (ft)	INC (°)	AZI (°)	TVD (ft)	NS (ft)	EW (ft)	VS (ft)	DLS (°/100ft)	Comment		
6500.00	10.00	243.00	6436.70	-335.10	-657.66	-271.26	0.00			
6600.00	10.00	243.00	6535.18	-342.98	-673.14	-277.64	0.00			
6700.00	10.00	243.00	6633.66	-350.87	-688.61	-284.02	0.00			
6800.00	10.00	243.00	6732.14	-358.75	-704.08	-290.40	0.00			
6900.00 7000.00	10.00 10.00	243.00 243.00	6830.62 6929.10	-366.63 -374.52	-719.55 -735.02	-296.79 -303.17	0.00			
7000.00	10.00	243.00	6977.00	-374.32	-742.55	-305.17	0.00	Brushy Canyon		
7100.00	10.00	243.00	7027.58	-382.40	-750.50	-309.55	0.00	stastly cutiyon		
7200.00	10.00	243.00	7126.06	-390.28	-765.97	-315.93	0.00			
7300.00	10.00	243.00	7224.54	-398.17	-781.44	-322.31	0.00			
7400.00	10.00	243.00	7323.02	-406.05	-796.91	-328.69	0.00			
7500.00	10.00	243.00	7421.50	-413.93	-812.39	-335.07	0.00			
7600.00 7700.00	10.00	243.00	7519.99	-421.82 420.70	-827.86	-341.46 -347.84	0.00			
7800.00	10.00 10.00	243.00 243.00	7618.47 7716.95	-429.70 -437.58	-843.33 -858.80	-347.84	0.00			
7900.00	10.00	243.00	7815.43	-445.47	-874.27	-360.60	0.00			
7946.18	10.00	243.00	7860.91	-449.11	-881.42	-363.55	0.00	Drop to Vertical		
8000.00	8.92	243.00	7913.99	-453.12	-889.30	-366.80	2.00	'		
8100.00	6.92	243.00	8013.03	-459.38	-901.59	-371.86	2.00			
8200.00	4.92	243.00	8112.49	-464.07	-910.78	-375.66	2.00			
8300.00	2.92	243.00	8212.25	-467.17	-916.88	-378.17	2.00			
8400.00	0.92	243.00 243.00	8312.19	-468.70	-919.87	-379.40 -379.54	2.00 2.00	Hold Vortical		
8446.18 8500.00	0.00	359.81	8358.38 8412.19	-468.87 -468.87	-920.20 -920.20	-379.54 -379.54	0.00	Hold Vertical		
8600.00	0.00	359.81	8512.19	-468.87	-920.20	-379.54	0.00			
8643.81	0.00	359.81	8556.00	-468.87	-920.20	-379.54	0.00	1st Bone Spring Lime / Point of Penetration		
8700.00	0.00	359.81	8612.19	-468.87	-920.20	-379.54	0.00			
8800.00	0.00	359.81	8712.19	-468.87	-920.20	-379.54	0.00			
8900.00	0.00	359.81	8812.19	-468.87	-920.20	-379.54	0.00			
8918.89	0.00	359.81	8831.08	-468.87	-920.20	-379.54	0.00	KOP		
9000.00 9100.00	8.11 18.11	359.81 359.81	8911.92 9009.19	-463.13 -440.48	-920.22 -920.29	-373.83 -351.27	10.00 10.00			
9200.00	28.11	359.81	9101.05	-440.48	-920.29	-331.27	10.00			
9300.00	38.11	359.81	9184.70	-346.72	-920.61	-257.91	10.00			
9400.00	48.11	359.81	9257.61	-278.47	-920.83	-189.94	10.00			
9500.00	58.11	359.81	9317.57	-198.59	-921.10	-110.40	10.00			
9600.00	68.11	359.81	9362.73	-109.52	-921.39	-21.70	10.00			
9700.00	78.11	359.81	9391.75	-13.95	-921.71	73.47	10.00			
9800.00	88.11	359.81	9403.73	85.20	-922.04 022.12	172.21	10.00	Landing Daint		
9825.77 9900.00	90.69 90.69	359.81 359.81	9404.00 9403.11	110.96 185.19	-922.12 -922.37	197.86 271.78	10.00 0.00	Landing Point		
10000.00	90.69	359.81	9401.91	285.18	-922.70	371.35	0.00			
10100.00	90.69	359.81	9400.71	385.18	-923.03	470.93	0.00			
10200.00	90.69	359.81	9399.51	485.17	-923.37	570.50	0.00			
10300.00	90.69	359.81	9398.31	585.16	-923.70	670.07	0.00			
10400.00	90.69	359.81	9397.11	685.15	-924.03	769.65	0.00			
10500.00	90.69	359.81	9395.91	785.14	-924.36	869.22	0.00			
10600.00 10700.00	90.69 90.69	359.81 359.81	9394.71 9393.52	885.14 985.13	-924.69 -925.03	968.79 1068.37	0.00			
10800.00	90.69	359.81	9392.32	1085.12	-925.36	1167.94	0.00			
10900.00	90.69	359.81	9391.12	1185.11	-925.69	1267.51	0.00			
11000.00	90.69	359.81	9389.92	1285.11	-926.02	1367.09	0.00			
11100.00	90.69	359.81	9388.72	1385.10	-926.36	1466.66	0.00			
11200.00	90.69	359.81	9387.52	1485.09	-926.69	1566.23	0.00			
11300.00	90.69	359.81 359.81	9386.32	1585.08	-927.02 927.25	1665.81	0.00			
11400.00 11500.00	90.69 90.69	359.81	9385.12 9383.92	1685.07 1785.07	-927.35 -927.68	1765.38 1864.96	0.00			
11600.00	90.69	359.81	9382.72	1885.06	-928.02	1964.53	0.00			
11700.00	90.69	359.81	9381.52	1985.05	-928.35	2064.10	0.00			
11800.00	90.69	359.81	9380.32	2085.04	-928.68	2163.68	0.00			
11900.00	90.69	359.81	9379.12	2185.04	-929.01	2263.25	0.00			
12000.00	90.69	359.81	9377.92	2285.03	-929.34	2362.82	0.00			
12100.00	90.69	359.81	9376.72	2385.02	-929.68	2462.40	0.00			
12200.00 12300.00	90.69 90.69	359.81 359.81	9375.52 9374.33	2485.01 2585.01	-930.01 -930.34	2561.97 2661.54	0.00			
12400.00	90.69	359.81	9373.13	2685.00	-930.54 -930.67	2761.12	0.00			
12500.00	90.69	359.81	9371.93	2784.99	-931.00	2860.69	0.00			
12600.00	90.69	359.81	9370.73	2884.98	-931.34	2960.27	0.00			
12700.00	90.69	359.81	9369.53	2984.97	-931.67	3059.84	0.00			
12800.00	90.69	359.81	9368.33	3084.97	-932.00	3159.41	0.00			

Well: MARWARI 21-16 STATE FED COM 531H

County: Lea Wellbore: Permit Plan Design: Permit Plan #1 **Geodetic System:** US State Plane 1983 **Datum:** North American Datum 1927

Ellipsoid: Clarke 1866

Zone: 3001 - NM East (NAD83)

	Design.	Permit Plar	1 # 1					Zone: 3001 - NM East (NAD83)
MD	INC	AZI	TVD	NS	EW	vs	DLS	
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
12900.00	90.69	359.81	9367.13	3184.96	-932.33	3258.99	0.00	
13000.00	90.69	359.81	9365.93	3284.95	-932.67	3358.56	0.00	
13100.00	90.69	359.81	9364.73	3384.94	-933.00	3458.13	0.00	
13200.00	90.69	359.81	9363.53	3484.94	-933.33	3557.71	0.00	
13300.00	90.69	359.81	9362.33	3584.93	-933.66	3657.28	0.00	
13400.00	90.69	359.81	9361.13	3684.92	-933.99	3756.85	0.00	
13500.00	90.69	359.81	9359.93	3784.91	-934.33	3856.43	0.00	
13600.00	90.69	359.81	9358.73	3884.90	-934.66	3956.00	0.00	
13700.00	90.69	359.81	9357.53	3984.90	-934.99	4055.58	0.00	
13800.00	90.69	359.81	9356.34	4084.89	-935.32	4155.15	0.00	
13900.00	90.69	359.81	9355.14	4184.88	-935.65	4254.72	0.00	
14000.00	90.69	359.81	9353.94	4284.87	-935.99	4354.30	0.00	
14100.00	90.69	359.81	9352.74	4384.87	-936.32	4453.87	0.00	
14200.00	90.69	359.81	9351.54	4484.86	-936.65	4553.44	0.00	
14300.00	90.69	359.81	9350.34	4584.85	-936.98	4653.02	0.00	
14400.00				4684.84				
	90.69	359.81	9349.14		-937.32	4752.59	0.00	
14500.00	90.69	359.81	9347.94	4784.83	-937.65	4852.16	0.00	
14600.00	90.69	359.81	9346.74	4884.83	-937.98	4951.74	0.00	
14700.00	90.69	359.81	9345.54	4984.82	-938.31	5051.31	0.00	
14800.00	90.69	359.81	9344.34	5084.81	-938.64	5150.88	0.00	
14900.00	90.69	359.81	9343.14	5184.80	-938.98	5250.46	0.00	
15000.00	90.69	359.81	9341.94	5284.80	-939.31	5350.03	0.00	
15100.00	90.69	359.81	9340.74	5384.79	-939.64	5449.61	0.00	
15200.00	90.69	359.81	9339.54	5484.78	-939.97	5549.18	0.00	
15300.00	90.69	359.81	9338.35	5584.77	-940.30	5648.75	0.00	
15400.00	90.69	359.81	9337.15	5684.76	-940.64	5748.33	0.00	
15500.00	90.69	359.81	9335.95	5784.76	-940.97	5847.90	0.00	
15600.00	90.69	359.81	9334.75	5884.75	-941.30	5947.47	0.00	
15700.00	90.69	359.81	9333.55	5984.74	-941.63	6047.05	0.00	
15800.00	90.69	359.81	9332.35	6084.73	-941.96	6146.62	0.00	
15900.00	90.69	359.81	9331.15	6184.73	-942.30	6246.19	0.00	
16000.00	90.69	359.81	9329.95	6284.72	-942.63	6345.77	0.00	
16100.00	90.69	359.81	9328.75	6384.71	-942.96	6445.34	0.00	
16200.00	90.69	359.81	9327.55	6484.70	-943.29	6544.92	0.00	
16300.00	90.69	359.81	9326.35	6584.70	-943.63	6644.49	0.00	
16400.00	90.69	359.81	9325.15	6684.69	-943.96	6744.06	0.00	
16500.00	90.69	359.81	9323.95	6784.68	-944.29	6843.64	0.00	
16600.00	90.69	359.81	9322.75	6884.67	-944.62	6943.21	0.00	
16700.00	90.69	359.81	9321.55	6984.66	-944.95	7042.78	0.00	
16800.00	90.69	359.81	9320.35	7084.66	-945.29	7142.36	0.00	
16900.00	90.69	359.81	9319.16	7184.65	-945.62	7241.93	0.00	
17000.00	90.69	359.81	9317.96	7284.64	-945.95	7341.50	0.00	
17100.00	90.69	359.81	9316.76	7384.63	-946.28	7441.08	0.00	
17200.00	90.69	359.81	9315.56	7484.63	-946.61	7540.65	0.00	
17300.00	90.69	359.81	9314.36	7584.62	-946.95	7640.22	0.00	
17400.00	90.69	359.81	9313.16	7684.61	-947.28	7739.80	0.00	
17500.00	90.69	359.81	9311.96	7784.60	-947.61	7839.37	0.00	
17600.00	90.69	359.81	9310.76	7884.59	-947.94	7938.95	0.00	
17700.00	90.69	359.81	9309.56	7984.59	-948.28	8038.52	0.00	
17800.00	90.69	359.81	9308.36	8084.58	-948.61	8138.09	0.00	
17900.00	90.69	359.81	9307.16	8184.57	-948.94	8237.67	0.00	
18000.00	90.69	359.81	9305.96	8284.56	-949.27	8337.24	0.00	
18100.00	90.69	359.81	9304.76	8384.56	-949.60	8436.81	0.00	
18200.00	90.69	359.81	9303.56	8484.55	-949.94	8536.39	0.00	
18300.00	90.69	359.81	9302.36	8584.54	-950.27	8635.96	0.00	
18400.00	90.69	359.81	9301.17	8684.53	-950.60	8735.53	0.00	
18500.00	90.69	359.81	9299.97	8784.52	-950.93	8835.11	0.00	
18600.00	90.69	359.81	9298.77	8884.52	-951.26	8934.68	0.00	
18700.00	90.69	359.81	9297.57	8984.51	-951.60	9034.26	0.00	
18800.00	90.69	359.81	9296.37	9084.50	-951.93	9133.83	0.00	
18900.00	90.69	359.81	9296.37	9184.49	-951.93 -952.26	9233.40	0.00	
19000.00	90.69		9293.17	9184.49				
		359.81			-952.59	9332.98	0.00	
19100.00	90.69	359.81	9292.77	9384.48	-952.92	9432.55	0.00	
19200.00	90.69	359.81	9291.57	9484.47	-953.26	9532.12	0.00	
19300.00	90.69	359.81	9290.37	9584.46	-953.59	9631.70	0.00	
19400.00	90.69	359.81	9289.17	9684.46	-953.92	9731.27	0.00	
19500.00	90.69	359.81	9287.97	9784.45	-954.25	9830.84	0.00	
19600.00	90.69	359.81	9286.77	9884.44	-954.59	9930.42	0.00	
	90.69	359.81	9285.97	9951.15	-954.81	9996.85	0.00	exit
19666.71 19700.00	90.69	359.81	9285.57	9984.43	-954.92	10029.99	0.00	

devon

Well: MARWARI 21-16 STATE FED COM 531H

County: Lea
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927

Ellipsoid: Clarke 1866
Zone: 3001 - NM East (NAD83)

INC MD AZI TVD NS EW ٧S DLS Comment (°) (ft) (ft) (ft) (ft) (°/100ft) 19746.71 0.00 BHL 90.69 9285.00 10031.14 -955.02 359.81 10076.50

MARWARI 21-16 STATE FED COM 531H

1. Geologic Formations

TVD of target	9286	Pilot hole depth	N/A
ID at TD: 19747		Deepest expected fresh water	

Basin

Dasin	_		
	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	782		
Salt	1148		
Base of Salt	4348		
Delaware	4570		
Cherry Canyon	5539		
Brushy Canyon	6977		
1st Bone Spring Lime	8556		

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program (Primary Design)

		Wt			Casing	Interval	Casing Interval	
Hole Size	ole Size Csg. Size (PPF)		Grade	Conn	From (MD)	To (MD)	From (TVD)	To (TVD)
17 1/2	13 3/8	54 1/2	J-55	ВТС	0	807	0	807
12 1/4	9 5/8	40	J-55	ВТС	0	8819	0	8819
8 3/4	5 1/2	17	P110	DWC/C-IS PLUS	0	19747	0	9286

[•]All casing strings will be tested in accordance with 43 CFR 3172. Must have table for contingency casing.

3. Cementing Program (Primary Design)

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures.

Casing	# Sks	TOC	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	623	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	1237	Surf	13.0	2.3	2nd State: Bradenhead Squeeze - Lead: Class C Cement + additives
Int I	513	7048	13.2	1.44	Tail: Class H / C + additives
Production	44	8419	9	3.27	Lead: Class H /C + additives
Froduction	2089	8919	13.2	1.44	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Prod	10%

4. Pressure Control Equipment (Three String Design)

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		✓	Tested to:
			Anı	Annular		50% of rated working pressure
Int 1	13-5/8"	5M	Bline	d Ram	X	
IIIt I	13-3/6	JIVI	Pipe	Ram		5M
			Double Ram		X	5IVI
			Other*			1
	13-5/8"	5M	Annular (5M)		X	50% of rated working pressure
Don't all a			Blind Ram		X	
Production			Pipe Ram			574
			Double Ram		X	5M
			Other*			1
			Annul	ar (5M)		
		Blind Ram		d Ram		
			Pipe Ram Double Ram			1
						1
			Other*]
N A variance is requested for	the use of a	a diverter or	the surface	casing. See	attached for s	chematic.
Y A variance is requested to 1	un a 5 M ai	nnular on a	10M system			

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, C	Logging, Coring and Testing						
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the						
X	Completion Report and sbumitted to the BLM.						
	No logs are planned based on well control or offset log information.						
	Drill stem test? If yes, explain.						
	Coring? If yes, explain.						

Additional logs planned		Interval		
	Resistivity	Int. shoe to KOP		
	Density	Int. shoe to KOP		
X	CBL	Production casing		
X	Mud log	Intermediate shoe to TD		
	PEX			

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	5070
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of 43 CFR 3176. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

measured va	measured values and formations will be provided to the BLW.				
N	H2S is present				
Y	H2S plan attached.				

MARWARI 21-16 STATE FED COM 531H

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (43 CFR 3172, all COAs and NMOCD regulations).
- 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachme	nts
X	Directional Plan
	Other, describe

Marwari 21-16 State Fed Com 531H

13 3/8	sur	face csg in a	17 1/2 i	inch hole.		<u>Design</u> l	Factors			Surface		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weigh
"A"	54.50		j 55	btc	17.02	2.63	0.57	920	7	0.95	4.96	50,140
"B"				btc				0				0
	w/8.4#/	g mud, 30min Sfc Csg Test	psig: 1,500	Tail Cmt	does not	circ to sfc.	Totals:	920				50,140
comparison o	f Proposed to Mi	nimum Required Ceme	ent Volumes									
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cp
17 1/2	0.6946	623	897	639	40	9.00	2870	3M				1.56
urst Frac Grad	ient(s) for Segme	nt(s) A, B = , b All > 0.	70, OK.									
			·									
9 5/8		ng inside the	13 3/8			Design I				Int 1		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weigh
"A"	40.00		j 55	btc	2.10	0.53	0.78	8,819	1	1.31	0.90	
"B"								0				0
	w/8.4#/	g mud, 30min Sfc Csg Test					Totals:	8,819				352,76
	_			led to achieve a top of	0	ft from su		920				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cp
12 1/4	0.3132	513	739	2808	-74	10.50	3022	5M				0.81
D V Tool(s):			6977				sum of sx	Σ CuFt				Σ%exces
												28
by stage % : lass 'C' tail cm		28 nt(s): A, B, C, D = 0.45, b	28 o, c, d <0.70 a Proble	em!!			1750	3584				20
by stage % : Class 'C' tail cm Burst Frac Grad Tail cmt	ient(s) for Segme	nt(s): A, B, C, D = 0.45, b	o, c, d <0.70 a Proble	em!!		Decima Fo		3584		Drod 1		
by stage % : Class 'C' tail cm Burst Frac Grad Tail cmt 5 1/2	ient(s) for Segmen	nt(s): A, B, C, D = 0.45, b			loint	Design Fac	ctors		P.O.	Prod 1	2.0	
by stage %: Class 'C' tail cm Burst Frac Grad Tail cmt 5 1/2 Segment	ient(s) for Segmen	nt(s): A, B, C, D = 0.45, b	9 5/8	Coupling	Joint 2.46	Collapse	ctors Burst	Length	B@s	а-В	a-C	Weigh
by stage %: Class 'C' tail cm Burst Frac Grad Tail cmt 5 1/2 Segment "A"	ient(s) for Segmen	nt(s): A, B, C, D = 0.45, b	o, c, d <0.70 a Proble		Joint 3.46		ctors	Length 19,747	B@s 2		a-C 2.48	Weigh 335,69
by stage %: class 'C' tail cm Burst Frac Grad Tail cmt 5 1/2 Segment "A" "B"	ient(s) for Segmen	nt(s): A, B, C, D = 0.45, b	9 5/8	Coupling		Collapse	ctors Burst	Length 19,747 0		а-В		Weigh 335,69
by stage %: Class 'C' tail cm Burst Frac Grad Tail cmt 5 1/2 Segment "A" "B" "C"	ient(s) for Segmen	nt(s): A, B, C, D = 0.45, b	9 5/8	Coupling dwc/c is+		Collapse	ctors Burst	Length 19,747 0		а-В		Weigh 335,69
by stage %: class 'C' tail cm Burst Frac Grad Tail cmt 5 1/2 Segment "A" "B"	casir #/ft 17.00	nt(s): A, B, C, D = 0.45, b g inside the Grade	95/8 p 110	Coupling		Collapse	ctors Burst 2.1	Length 19,747 0 0		а-В		Weigh 335,69 0 0
by stage %: Class 'C' tail cm Burst Frac Grad Tail cmt 5 1/2 Segment "A" "B" "C"	casir #/ft 17.00	nt(s): A, B, C, D = 0.45, b ng inside the Grade	95/8 p 110	Coupling dwc/c is+	3.46	Collapse 1.48	Ctors Burst 2.1 Totals:	Length 19,747 0 0 0 19,747		а-В		Weigh 335,69 0 0 0 335,69
by stage %: class 'C' tail cm durst Frac Grad Tail cmt 5 1/2 Segment "A" "B" "C" "D"	casin #/ft 17.00	ng inside the Grade /g mud, 30min Sfc Csg Test The cement v	95/8 p 110 psig: 2,043 volume(s) are intended	Coupling dwc/c is+	3.46	Collapse 1.48 ft from su	Ctors Burst 2.1 Totals:	Length 19,747 0 0 0 19,747 200		а-В		Weigh 335,69 0 0 0 335,69 overlap.
by stage %: Class 'C' tail cm Burst Frac Grad Tail cmt 5 1/2 Segment "A" "B" "C" "D"	casir #/ft 17.00 w/8.4#/	nt(s): A, B, C, D = 0.45, E ng inside the Grade (g mud, 30min Sfc Csg Test The cement w 1 Stage	95/8 p 110 spsig: 2,043 volume(s) are intend	Coupling dwc/c is+ 0 led to achieve a top of	3.46 8619 1 Stage	Collapse 1.48 ft from su Drilling	Ctors Burst 2.1 Totals: rface or a Calc	Length 19,747 0 0 0 19,747 200 Req'd		а-В		Weigh 335,69 0 0 335,69 overlap.
by stage %: Class 'C' tail cm Burst Frac Grad Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size	casir #/ft 17.00 w/8.4#/	ng inside the Grade (g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx	95/8 p 110 spsig: 2,043 volume(s) are intended 1 Stage CuFt Cmt	Coupling dwc/c is+ 0 led to achieve a top of Min Cu Ft	3.46 8619 1 Stage % Excess	ft from su Drilling Mud Wt	Ctors Burst 2.1 Totals:	Length 19,747 0 0 0 19,747 200		а-В		Weigh 335,69 0 0 335,69 overlap. Min Dis
by stage %: Class 'C' tail cm Burst Frac Grad Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 8 3/4	casir #/ft 17.00 w/8.4#/ Annular Volume 0.2526	nt(s): A, B, C, D = 0.45, E ng inside the Grade (g mud, 30min Sfc Csg Test The cement w 1 Stage	95/8 p 110 spsig: 2,043 volume(s) are intend	Coupling dwc/c is+ 0 led to achieve a top of	3.46 8619 1 Stage	Collapse 1.48 ft from su Drilling	Ctors Burst 2.1 Totals: rface or a Calc	Length 19,747 0 0 0 19,747 200 Req'd		а-В		Weigh 335,69 0 0 335,69 overlap.
by stage %: class 'C' tail cm Burst Frac Grad Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 8 3/4	casir #/ft 17.00 w/8.4#/ Annular Volume 0.2526	ng inside the Grade (g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx	95/8 p 110 spsig: 2,043 volume(s) are intended 1 Stage CuFt Cmt	Coupling dwc/c is+ 0 led to achieve a top of Min Cu Ft	3.46 8619 1 Stage % Excess	ft from su Drilling Mud Wt	Ctors Burst 2.1 Totals: rface or a Calc	Length 19,747 0 0 0 19,747 200 Req'd		а-В		Weigh 335,69 0 0 335,69 overlap. Min Dis
by stage %: Class 'C' tail cm Burst Frac Grad Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size	casir #/ft 17.00 w/8.4#/ Annular Volume 0.2526	ng inside the Grade (g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx	95/8 p 110 spsig: 2,043 volume(s) are intended 1 Stage CuFt Cmt	Coupling dwc/c is+ 0 led to achieve a top of Min Cu Ft	3.46 8619 1 Stage % Excess	ft from su Drilling Mud Wt	Ctors Burst 2.1 Totals: rface or a Calc	Length 19,747 0 0 0 19,747 200 Req'd		а-В		Weigh 335,69 0 0 335,69 overlap. Min Dis
by stage %: Class 'C' tail cm Burst Frac Grad Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 8 3/4 Class 'C' tail cm	casir #/ft 17.00 w/8.4#/ Annular Volume 0.2526	ng inside the Grade (g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx	95/8 p 110 spsig: 2,043 volume(s) are intended 1 Stage CuFt Cmt	Coupling dwc/c is+ 0 led to achieve a top of Min Cu Ft	3.46 8619 1 Stage % Excess	ft from su Drilling Mud Wt	Totals: rface or a Calc MASP	Length 19,747 0 0 0 19,747 200 Req'd	2	а-В	2.48	Weigh 335,69 0 0 335,69 overlap. Min Dis
by stage %: Class 'C' tail cm Burst Frac Grad Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 8 3/4 Class 'C' tail cm #N/A 0 Segment	casir #/ft 17.00 w/8.4#/ Annular Volume 0.2526	ng inside the Grade (g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx	95/8 p 110 spsig: 2,043 volume(s) are intend 1 Stage CuFt Cmt 3152	Coupling dwc/c is+ 0 led to achieve a top of Min Cu Ft 2813 Coupling	3.46 8619 1 Stage % Excess	ft from su Drilling Mud Wt 10.50	Totals: rface or a Calc MASP	Length 19,747 0 0 19,747 200 Req'd BOPE	2	a-B 3.52	2.48	Weigh 335,69 0 0 335,69 overlap. Min Dis Hole-Cp 1.35
by stage %: Class 'C' tail cm Burst Frac Grad Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 8 3/4 Class 'C' tail cm #N/A 0 Segment "A"	casir #/ft 17.00 w/8.4#/ Annular Volume 0.2526 t yld > 1.35	ng inside the Grade (g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 2133	95/8 p 110 spsig: 2,043 volume(s) are intend 1 Stage CuFt Cmt 3152	Coupling dwc/c is+ 0 led to achieve a top of Min Cu Ft 2813 Coupling 0.00	3.46 8619 1 Stage % Excess 12	ft from su Drilling Mud Wt 10.50	Totals: rface or a Calc MASP	Length 19,747 0 0 0 19,747 200 Req'd BOPE	2	a-B 3.52	2.48	Weigh 335,69 0 0 335,69 overlap. Min Dis Hole-Cp 1.35
by stage %: Class 'C' tail cm Burst Frac Grad Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 8 3/4 Class 'C' tail cm #N/A 0 Segment	casir #/ft 17.00 w/8.4#/ Annular Volume 0.2526 t yld > 1.35	ng inside the Grade Grade /g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 2133	95/8 p 110 95/8 p 110 psig: 2,043 volume(s) are intend 1 Stage CuFt Cmt 3152	Coupling dwc/c is+ 0 led to achieve a top of Min Cu Ft 2813 Coupling	3.46 8619 1 Stage % Excess 12	ft from su Drilling Mud Wt 10.50	Totals: rface or a Calc MASP	Length 19,747 0 0 0 19,747 200 Req'd BOPE Length 0 0	2	a-B 3.52	2.48	Weigh 335,69 0 0 335,69 overlap. Min Dis Hole-Cp 1.35
by stage %: class 'C' tail cm surst Frac Grad Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 8 3/4 class 'C' tail cm #N/A 0 Segment "A"	casir #/ft 17.00 w/8.4#/ Annular Volume 0.2526 t yld > 1.35	nt(s): A, B, C, D = 0.45, b Ing inside the Grade If g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 2133 Grade	95/8 p 110 95/8 p 110 psig: 2,043 volume(s) are intend 1 Stage CuFt Cmt 3152 51/2	Coupling dwc/c is+ 0 led to achieve a top of Min Cu Ft 2813 Coupling 0.00 0.00	3.46 8619 1 Stage % Excess 12 #N/A	ft from su Drilling Mud Wt 10.50	Totals: rface or a Calc MASP Factors Burst Totals:	Length 19,747 0 0 19,747 200 Req'd BOPE Length 0 0	2	a-B 3.52	2.48	Weigh 335,69 0 0 335,69 overlap. Min Dis Hole-Cp 1.35
by stage %: Class 'C' tail cm Burst Frac Grad Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 8 3/4 Class 'C' tail cm #N/A 0 Segment "A" "B" ""B" ""B"	casir #/ft 17.00 w/8.4#/ Annular Volume 0.2526 t yld > 1.35 #/ft	nt(s): A, B, C, D = 0.45, b ng inside the Grade 'g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 2133 Grade	95/8 p 110 spsig: 2,043 volume(s) are intend 1 Stage CuFt Cmt 3152 5 1/2	Coupling dwc/c is+ 0 led to achieve a top of Min Cu Ft 2813 Coupling 0.00 0.00 his csg, TOC intended	3.46 8619 1 Stage % Excess 12 #N/A	ft from su Drilling Mud Wt 10.50 Design I Collapse	Totals: rface or a Calc MASP Factors Burst Totals: rface or a	Length 19,747 0 0 19,747 200 Req'd BOPE Length 0 0 4N/A	2	a-B 3.52	2.48	Weight 335,69 0 0 0 335,69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
by stage %: class 'C' tail cm turst Frac Grad Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 8 3/4 Class 'C' tail cm #N/A 0 Segment "A" "B" "Hole "B" "B" "B" "B" "B" "B" "B" "B" "B" "B	casir #/ft 17.00 w/8.4#/ Annular Volume 0.2526 tyld > 1.35	nt(s): A, B, C, D = 0.45, b ng inside the Grade /g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 2133 Grade /g mud, 30min Sfc Csg Test Cmt vol ca 1 Stage	95/8 p 110 95/8 p 110 spsig: 2,043 volume(s) are intend 1 Stage CuFt Cmt 3152 51/2 spsig: alc below includes the stage of the stage	Coupling dwc/c is+ 0 led to achieve a top of Min Cu Ft 2813 Coupling 0.00 0.00 his csg, TOC intended Min	3.46 8619 1 Stage % Excess 12 #N/A #N/A	ft from su Drilling Mud Wt 10.50 Design I Collapse	Totals: rface or a Calc MASP Totals: rfactors Burst Totals: rfactors Calc	Length 19,747 0 0 19,747 200 Req'd BOPE Length 0 0 #N/A Req'd	2	a-B 3.52	2.48	Weight 335,695 0 0 0 335,695 overlap. Min Dis Hole-Cp 1.35 Weigh 0 0 overlap. Min Dis
by stage %: class 'C' tail cm turst Frac Grad Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 8 3/4 class 'C' tail cm #N/A 0 Segment "A" "B" """ "B" """ """ "" "" "" "" "" ""	casir #/ft 17.00 w/8.4#/ Annular Volume 0.2526 t yld > 1.35 #/ft	nt(s): A, B, C, D = 0.45, b ng inside the Grade 'g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 2133 Grade	95/8 p 110 spsig: 2,043 volume(s) are intend 1 Stage CuFt Cmt 3152 5 1/2	Coupling dwc/c is+ 0 led to achieve a top of Min Cu Ft 2813 Coupling 0.00 0.00 his csg, TOC intended	3.46 8619 1 Stage % Excess 12 #N/A	ft from su Drilling Mud Wt 10.50 Design I Collapse	Totals: rface or a Calc MASP Factors Burst Totals: rface or a	Length 19,747 0 0 19,747 200 Req'd BOPE Length 0 0 4N/A	2	a-B 3.52	2.48	Weight 335,69 0 0 0 335,69 overlap. Min Dis Hole-Cp 1.35

Carlsbad Field Office 1/19/2024

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: Devon Energy Production Company LP

LEASE NO.: NMLC0062300

LOCATION: Section 21, T.25 S., R.32 E., NMPM COUNTY: Lea County, New Mexico

WELL NAME & NO.: | Marwari 21-16 State Fed Com 531H

SURFACE HOLE FOOTAGE: 500'/S & 1580'/W **BOTTOM HOLE FOOTAGE** 20'/N & 660'/W **ATS/API ID:** 3002551825

APD ID: | 10400065101 Sundry ID: | 2766952

COA

H2S	Yes		
Potash	None T		
Cave/Karst	Low		
Potential			
Cave/Karst	☐ Critical		
Potential			
Variance	None	Flex Hose	C Other
Wellhead	Conventional and Multibov	vI 🔽	
Other	□4 String	Capitan Reef	□WIPP
		None	
		_	
Other	Pilot Hole	Open Annulus	
	None 🔻		
Cementing	Contingency Squeeze	Echo-Meter	Primary Cement
	None ▼	Int 1	Squeeze
	_		None -
Special	□ Water	☑ COM	□ Unit
Requirements	Disposal/Injection		
Special	☐ Batch Sundry		
Requirements			
Special	✓ Break Testing	□ Offline	☐ Casing
Requirements		Cementing	Clearance
Variance			

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Delaware** formation. As a result, the Hydrogen Sulfide area must meet **43 CFR part 3170 Subpart 3176** requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- 1. The 13-3/8 inch surface casing shall be set at approximately 920 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. The surface hole shall be 17 1/2 inch in diameter.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above.

Option 2:

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- a. First stage: Operator will cement with intent to reach the top of the Brushy Canyon at 6977' (513 sxs Class H/C+ additives).
- b. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified. (Squeeze 1237 sxs Class C)

Operator has proposed to pump down 13-3/8" X 9-5/8" annulus after primary cementing stage. Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus Or operator shall run a CBL from TD of the 9-5/8" casing to surface after the second stage BH to verify TOC.

Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must run one CBL per Well Pad.

If cement does not reach surface, the next casing string must come to surface.

Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string.
 Operator shall provide method of verification.
 Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2.

Option 1:

a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi. Annular which shall be tested to 3500 (70% Working Pressure) psi.

b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 9-5/8 inch intermediate casing shoe shall be 5000 (5M) psi.

Option 2:

Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the 13-3/8 inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR part 3170 Subpart 3171
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

BOPE Break Testing Variance (Approved)

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-689-5981 Lea County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR part 3170 Subpart 3172.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

✓ Lea County
Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator

can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test
 - d. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-

- off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.
- C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

LVO 1/19/2024

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 307666

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	307666
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By		Condition Date
pkautz	None	2/15/2024