Received by WCD: \$19/2024 10:48:44 AM U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Sundry Print Report 03/19/2024
Well Name: ROBIN FED COM	Well Location: T20S / R34E / SEC 20 / NWSW /	County or Parish/State:
Well Number: 201H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM13276	Unit or CA Name:	Unit or CA Number:
US Well Number: 3002552588	Well Status: Approved Application for Permit to Drill	Operator: COLGATE OPERATING LLC

Notice of Intent

Sundry ID: 2776511

Type of Submission: Notice of Intent

Date Sundry Submitted: 02/24/2024

Date proposed operation will begin: 03/08/2024

Type of Action: APD Change Time Sundry Submitted: 08:27 52

Procedure Description: 30-025-52588 Colgate respectfully requests to make changes to the Robin Fed Com 201H APD as follows: We would like to change the SHL (*No additional surface disturbance), FTP, LTP and BHL as follows: SHL: *No additional Surface Disturbance From: 1480 FSL & 1315 FWL, Sec 20, 20S, 34E, Unit L To: 1480 FSL & 1285 FWL, Sec 20, 20S, 34E, Unit L, No Changes in lease number FTP: From: 1420 FSL, 990 FWL, Sec 20, 20S, 34E, Unit L To: 100 FSL, 330 FWL, Sec 20, 20S, 34E, Unit M, New Lease number NMNM105821031 LTP: From: 100 FNL, 990 FWL, Sec 17, 20S, 34E, Unit D To: 100 FNL, 330 FWL, Sec 17, 20S, 34E, Unit D To: 100 FNL, 330 FWL, Sec 17, 20S, 34E, Unit D, No changes in lease number I'lease number We also respectfully request to change our drilling plan from 3 string to 4 string as it states in our COAs. Please see revised drilling plan, directional survey, C102, revised location layout plat, batch drilling/OLC procedure, BOPs, Choke diagrams and variances attached.

NOI Attachments

Procedure Description

8923_Robin_Fed_201H_C102_REV_3_20240224080050.pdf

Robin_Fed_201H_drilling_packet_4_string_20240223105001.pdf

ROBIN_FED_201H_PWP0_AC_RPT_20240223104927.pdf

ROBIN_FED_201H_PWP0_SVY_RPT_20240223104927.pdf

8908_ROBIN_FED_COM_WEST_WELL_PAD__20_20S_34E__SURFACE_SITE_20240223104911.pdf

R	eceived by OCD: 3/19/2024 10:48:44 AM Well Name: ROBIN FED COM	Well Location: T20S / R34E / SEC 20 / NWSW /	County or Parish/State: Page 2 of
	Well Number: 201H	Type of Well: OIL WELL	Allottee or Tribe Name:
	Lease Number: NMNM13276	Unit or CA Name:	Unit or CA Number:
	US Well Number: 3002552588	Well Status: Approved Application for Permit to Drill	Operator: COLGATE OPERATING LLC

Conditions of Approval

Additional

SEC20_T20SR34E_ROBIN_FED_AND_FED_COM__Lea_NMNM13276_COLGATE_RESOURCES_11_28_2023_JS_20240318151632.pdf

ROBIN_FED_COM_201H_COAs_20240318151632.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: KANICIA SCHLICHTING

Name: COLGATE OPERATING LLC

Title: Regulatory Specialist

Street Address: 300 N MARIENFELD ST SUITE 1000

City: MIDLAND

State: TX

Phone: (432) 232-2875

Email address: KANICIA.SCHLICHTING@PERMIANRES.COM

Field

Repres	sentative	Name:
Stroot	Address	

City:

Phone:

Email address:

State:

Zip:

Signed on: MAR 18, 2024 09:28 AM

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS BLM POC Phone: 5752342234 Disposition: Approved Signature: Chris Walls BLM POC Title: Petroleum Engineer BLM POC Email Address: cwalls@blm.gov Disposition Date: 03/19/2024

Released to Imaging: 3/19/2024 10:50:20 AM

Received by OCD: 3/19/2024 10:48:44 AM

eceiveu by OCD. 3/19/20	24 10.40.44 AM				ruge 5 0j	
Form 3160-5 (June 2019)	UNITED DEPARTMENT OF BUREAU OF LAND	THE INTERIOR		0	DRM APPROVED MB No. 1004-0137 ires: October 31, 2021	
Do not use	ORY NOTICES AND this form for prope	REPORTS ON WEI osals to drill or to re 60-3 (APD) for such	e-enter an	6. If Indian, Allottee or	Tribe Name	
	IIT IN TRIPLICATE - Oth	ner instructions on page 2		7. If Unit of CA/Agree	ement, Name and/or No.	
1. Type of Well	Gas Well O	ther		8. Well Name and No.		
2. Name of Operator				9. API Well No.		
3a. Address		3b. Phone No. (inc	lude area code)	10. Field and Pool or Exploratory Area		
4. Location of Well (Footage, S	ec., T.,R.,M., or Survey Des	cription)		11. Country or Parish,	State	
1	2. CHECK THE APPROPI	RIATE BOX(ES) TO INDIC	ATE NATURE OF N	OTICE, REPORT OR OTH	IER DATA	
TYPE OF SUBMISSION	I		TYPE OF	ACTION		
Notice of Intent	Acidize Alter Casin	g Deepen Hydrauli		Production (Start/Resume) Reclamation	Water Shut-Off	
Subsequent Report	Casing Rep			Recomplete Femporarily Abandon	Other	
Final Abandonment Noti		_		Water Disposal		
the proposal is to deepen di the Bond under which the v completion of the involved	rectionally or recomplete here ork will be perfonned or properations. If the operation then Notices must be filed of	prizontally, give subsurface l rovide the Bond No. on file v results in a multiple comple	locations and measure with BLM/BIA. Requi tion or recompletion i	ed and true vertical depths o ired subsequent reports mus in a new interval, a Form 31	rk and approximate duration thereof. If f all pertinent markers and zones. Attach st be filed within 30 days following 60-4 must be filed once testing has been he operator has detennined that the site	

14. I hereby certify that the foregoing is true and correct. Name (<i>Printed/Typed</i>)		
	Title	
Signatura	Date	
Signature	Date	
THE SPACE FOR FED	ERAL OR STATE O	FICE USE
Approved by		
	Title	Date
Conditions of approval, if any, are attached. Approval of this notice does not warran certify that the applicant holds legal or equitable title to those rights in the subject lewhich would entitle the applicant to conduct operations thereon.		
Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for ar any false, fictitious or fraudulent statements or representations as to any matter with		illfully to make to any department or agency of the United State

(Instructions on page 2)

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

Additional Information

Additional Remarks

To: 100 FSL, 330 FWL, Sec 20, 20S, 34E, Unit M, New Lease number NMNM105821031

LTP:

From: 100 FNL, 990 FWL, Sec 17, 20S, 34E, Unit D To: 100 FNL, 330 FWL, Sec 17, 20S, 34E, Unit D, No changes in lease number

BHL:

From: 10' FNL & 990 FWL, Sec 17, 20S, 34E, Unit D To: 10 FNL & 330 FWL, Sec 17, 20S, 34E, Unit D, No changes in lease number

We also respectfully request to change our drilling plan from 3 string to 4 string as it states in our COAs.

Please see revised drilling plan, directional survey, C102, revised location layout plat, batch drilling/OLC procedure, BOPs, Choke diagrams and variances attached.

Location of Well

0. SHL: NWSW / 1480 FSL / 1315 FWL / TWSP: 20S / RANGE: 34E / SECTION: 20 / LAT: 32.5553905 / LONG: -103.5867712 (TVD: 0 feet, MD: 0 feet) PPP: NWSW / 1420 FSL / 990 FWL / TWSP: 20S / RANGE: 34E / SECTION: 20 / LAT: 32.5552433 / LONG: -103.587826 (TVD: 11019 feet, MD: 11074 feet) PPP: SWNW / 0 FSL / 990 FWL / TWSP: 20S / RANGE: 34E / SECTION: 20 / LAT: 32.5586176 / LONG: -103.5878099 (TVD: 11176 feet, MD: 12194 feet) PPP: SWNW / 0 FSL / 990 FWL / TWSP: 20S / RANGE: 34E / SECTION: 17 / LAT: 32.5731512 / LONG: -103.5877272 (TVD: 11176 feet, MD: 17481 feet) BHL: NWNW / 10 FNL / 990 FWL / TWSP: 20S / RANGE: 34E / SECTION: 17 / LAT: 32.5803847 / LONG: -103.587686 (TVD: 11176 feet, MD: 20113 feet)

SEC20-T20SR34E_ROBIN FED AND FED COM _Lea_NMNM13276_COLGATE RESOURCES_11-28-2023_JS

13 3/8	surf	ace csg in a	17 1/2 i	inch hole.		Design I	Factors			Surface		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weigh
"A"	54.50		j 55	btc	10.09	1.48	1.54	1,552	4	2.67	2.66	84,584
"B"				btc				0				0
	w/8.4#/g	mud, 30min Sfc Csg Test	t psig: 1,234	Tail Cmt	does not	circ to sfc.	Totals:	1,552				84,584
		nimum Required Cem										
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cp
17 1/2	0.6946	1210	1621	1078	50	9.50	1022	2M				1.56
					Site plat (pip	e racks S or E)	as per 0.0.1.	III.D.4.I. not	round.			
10 3/4		g inside the	13 3/8			<u>Design I</u>				Int 1		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weigh
"A"	45.50		j 55	BTC	4.61	1.18	1.31	3,412	2	2.37	2.05	,
"B"							m . 1	0				0
	w/8.4#/g	mud, 30min Sfc Csg Test		de d'Arren de la constante de la constante	•	6 f	Totals:	3,412				155,24
11.1.	A			ded to achieve a top of	0	ft from su		1552				overlap.
Hole	Annular	1 Stage	1 Stage CuFt Cmt	Min Cu Ft	1 Stage % Excess	Drilling		Req'd				Min Dis
	Valuma			U.ILET	% Excess	Mud Wt	MASP	BOPE				Hole-Cp
Size	Volume	Cmt Sx				40.00	4500	014				0.05
Size 12 1/4	Volume 0.1882	Cmt Sx 530	915	719	27	10.00	1509	2M				0.25
Size 12 1/4 V Tool(s): by stage % :	0.1882					10.00	1509 sum of sx 530	2Μ <u>Σ CuFt</u> 915		1		
Size 12 1/4 O V Tool(s): by stage % : lass 'H' tail cm	0.1882	530 #VALUE!	915 #VALUE!				sum of sx 530	<u>Σ CuFt</u>	a a	Int 2		Σ%exces
Size 12 1/4 O V Tool(s): by stage % : lass 'H' tail cm 8 5/8	0.1882 nt yld > 1.20 casin	530 #VALUE! g inside the	915	719	27	Design Fac	sum of sx 530	<u>Σ CuFt</u> 915	B@s	Int 2 a-B	a-C	Σ%exces 27
Size 12 1/4 0 V Tool(s): by stage % : class 'H' tail cm 8 5/8 Segment	0.1882 nt yld > 1.20 casin #/ft	530 #VALUE!	915 #VALUE! 10 3/4	719	27 Body	<u>Design Fac</u> Collapse	sum of sx 530 ctors Burst	Σ CuFt 915	B@s 4	a-B	a-C 2.85	Σ%exces 27 Weigh
Size 12 1/4 O V Tool(s): by stage % : lass 'H' tail cm 8 5/8	0.1882 nt yld > 1.20 casin	530 #VALUE! g inside the	915 #VALUE!	719	27	Design Fac	sum of sx 530	<u>Σ CuFt</u> 915	B@s 4		a-C 2.85	Σ%exces 27 Weigh
Size 12 1/4 0 V Tool(s): by stage % : lass 'H' tail cm 8 5/8 Segment "A"	0.1882 ht yld > 1.20 casin #/ft 32.00	530 #VALUE! g inside the Grade	915 #VALUE! 10 3/4 p 110	719	27 Body	<u>Design Fac</u> Collapse	sum of sx 530 ctors Burst 1.67	<u>Σ CuFt</u> 915 Length 5,517 0		a-B		Σ%exces 27 Weigh 176,54 0
Size 12 1/4 0 V Tool(s): by stage % : lass 'H' tail cm 8 5/8 Segment "A"	0.1882 ht yld > 1.20 casin #/ft 32.00	530 #VALUE! g inside the Grade mud, 30min Sfc Csg Test	915 #VALUE! 10 3/4 p 110 : psig: 1,500	719	27 Body	<u>Design Fac</u> Collapse	sum of sx 530 ctors Burst 1.67 Totals:	<u>Σ CuFt</u> 915 Length 5,517 0		a-B	2.85	Σ%exces 27 Weigh 176,54 0
Size 12 1/4 0 V Tool(s): by stage % : lass 'H' tail cm 8 5/8 Segment "A"	0.1882 ht yld > 1.20 casin #/ft 32.00	530 #VALUE! g inside the Grade mud, 30min Sfc Csg Test	915 #VALUE! 10 3/4 p 110 : psig: 1,500	719 Coupling mo-fxl	27 Body 5.70	Design Fac Collapse 1.58	sum of sx 530 ctors Burst 1.67 Totals:	Σ CuFt 915 Length 5,517 0 5,517		a-B	2.85	2%exces 27 Weigh 176,54 0 176,54 overlap.
Size 12 1/4 2 V Tool(s): by stage % : lass 'H' tail cm 8 5/8 Segment "A" "B"	0.1882 nt yld > 1.20 casin #/ft 32.00 w/8.4#/g	530 #VALUE! g inside the Grade mud, 30min Sfc Csg Test The cement	915 #VALUE! 10 3/4 p 110 t psig: 1,500 volume(s) are intend	719 Coupling mo-fxl ded to achieve a top of	27 Body 5.70	Design Fac Collapse 1.58 ft from su	sum of sx 530 ctors Burst 1.67 Totals: urface or a	Σ CuFt 915 Length 5,517 0 5,517 3412		a-B	2.85	Σ%exces 27 Weigh 176,54 0 176,54
Size 12 1/4 O V Tool(s): by stage % : lass 'H' tail cm 8 5/8 Segment "A" "B" Hole Size 9 7/8	0.1882 ht yld > 1.20 casin #/ft 32.00 w/8.4#/g Annular Volume 0.1261	530 #VALUE! g inside the Grade mud, 30min Sfc Csg Test The cement 1 Stage	915 #VALUE! 10 3/4 p 110 t psig: 1,500 volume(s) are intend 1 Stage	719 Coupling mo-fxl ded to achieve a top of Min	27 Body 5.70 0 1 Stage	Design Fac Collapse 1.58 ft from su Drilling	sum of sx 530 ctors Burst 1.67 Totals: urface or a Calc	Σ <u>CuFt</u> 915 Length 5,517 0 5,517 3412 Req'd		a-B	2.85	Σ%exces 27 Weigh 176,54 0 176,54 overlap. Min Dis
Size 12 1/4 D V Tool(s): by stage % : lass 'H' tail cm 8 5/8 Segment "A" "B" Hole Size	0.1882 ht yld > 1.20 casin #/ft 32.00 w/8.4#/g Annular Volume 0.1261	530 #VALUE! g inside the Grade mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx	915 #VALUE! 10 3/4 p 110 t psig: 1,500 volume(s) are intend 1 Stage CuFt Cmt 844	719 Coupling mo-fxl ded to achieve a top of Min Cu Ft 724	27 Body 5.70 0 1 Stage % Excess 17	Design Fac Collapse 1.58 ft from su Drilling Mud Wt 9.50	sum of sx 530 ctors Burst 1.67 Totals: irface or a Calc MASP	Σ CuFt 915 Length 5,517 0 5,517 3412 Req'd BOPE		a-B	2.85	2%exces 27 Weigh 176,54 0 176,54 overlap. Min Dis Hole-Cp
Size 12 1/4 O V Tool(s): by stage % : lass 'H' tail cm 8 5/8 Segment "A" "B" Hole Size 9 7/8	0.1882 ht yld > 1.20 casin #/ft 32.00 w/8.4#/g Annular Volume 0.1261	530 #VALUE! g inside the Grade mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx	915 #VALUE! 10 3/4 p 110 t psig: 1,500 volume(s) are intend 1 Stage CuFt Cmt 844	719 Coupling mo-fxl ded to achieve a top of Min Cu Ft	27 Body 5.70 0 1 Stage % Excess 17	Design Fac Collapse 1.58 ft from su Drilling Mud Wt 9.50	sum of sx 530 ctors Burst 1.67 Totals: irface or a Calc MASP	Σ CuFt 915 Length 5,517 0 5,517 3412 Req'd BOPE		a-B	2.85	2%exces 27 Weigh 176,54 0 176,54 overlap. Min Dis Hole-Cp
Size 12 1/4 2 V Tool(s): by stage % : lass 'H' tail cm 8 5/8 Segment "A" "B" Hole Size 9 7/8	0.1882 ht yld > 1.20 casin #/ft 32.00 w/8.4#/g Annular Volume 0.1261 ht yld > 1.35	530 #VALUE! g inside the Grade mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx	915 #VALUE! 10 3/4 p 110 t psig: 1,500 volume(s) are intend 1 Stage CuFt Cmt 844	719 Coupling mo-fxl ded to achieve a top of Min Cu Ft 724	27 Body 5.70 0 1 Stage % Excess 17	Design Fac Collapse 1.58 ft from su Drilling Mud Wt 9.50	sum of sx 530 ctors Burst 1.67 Totals: urface or a Calc MASP 3347	Σ CuFt 915 Length 5,517 0 5,517 3412 Req'd BOPE		a-B	2.85	2%exces 27 Weigh 176,54 0 176,54 overlap. Min Dis Hole-Cp
Size 12 1/4 D V Tool(s): by stage % : lass 'H' tail cm 8 5/8 Segment "A" "B" Hole Size 9 7/8 lass 'C' tail cm	0.1882 ht yld > 1.20 casin #/ft 32.00 w/8.4#/g Annular Volume 0.1261 ht yld > 1.35	530 #VALUE! g inside the Grade mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 490	915 #VALUE! 10 3/4 p 110 t psig: 1,500 volume(s) are intend 1 Stage CuFt Cmt 844	719 Coupling mo-fxl ded to achieve a top of Min Cu Ft 724	27 Body 5.70 0 1 Stage % Excess 17	Design Fac Collapse 1.58 ft from su Drilling Mud Wt 9.50 rement	sum of sx 530 ctors Burst 1.67 Totals: urface or a Calc MASP 3347	Σ CuFt 915 Length 5,517 0 5,517 3412 Req'd BOPE	4	a-B 2.90	2.85	2%exces 27 Weigh 176,54 0 176,54 overlap. Min Dis Hole-Cp
Size 12 1/4 V Tool(s): by stage % : lass 'H' tail cm 8 5/8 Segment "A" "B" Hole Size 9 7/8 lass 'C' tail cm 5 1/2	0.1882 ht yld > 1.20 casin #/ft 32.00 w/8.4#/g Annular Volume 0.1261 ht yld > 1.35 casin	530 #VALUE! g inside the Grade mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 490 g inside the	915 #VALUE! 10 3/4 p 110 t psig: 1,500 volume(s) are intend 1 Stage CuFt Cmt 844	719 Coupling mo-fxl ded to achieve a top of Min Cu Ft 724 Does not meet CFO 25%	27 Body 5.70 0 1 Stage % Excess 17 excess requi	Design Fac Collapse 1.58 ft from su Drilling Mud Wt 9.50 rement Design I	sum of sx 530 ctors Burst 1.67 Totals: irface or a Calc MASP 3347	Σ CuFt 915 Length 5,517 0 5,517 3412 Req'd BOPE 5M	4	a-B 2.90 Prod 1	2.85 a-C	2%exces 27 Weigh 176,54 0 176,54 overlap. Min Dis Hole-Cp 0.63
Size 12 1/4 V Tool(s): by stage % : lass 'H' tail cm 8 5/8 Segment "A" "B" Hole Size 9 7/8 lass 'C' tail cm 5 1/2 Segment	0.1882 ht yld > 1.20 casin #/ft 32.00 w/8.4#/g Annular Volume 0.1261 ht yld > 1.35 casin #/ft	530 #VALUE! g inside the Grade mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 490 g inside the	915 #VALUE! 10 3/4 p 110 t psig: 1,500 volume(s) are intend 1 Stage CuFt Cmt 844	719 Coupling mo-fxl ded to achieve a top of Min Cu Ft 724 Does not meet CFO 25% Coupling	27 Body 5.70 0 1 Stage % Excess 17 excess requi	Design Fac Collapse 1.58 ft from su Drilling Mud Wt 9.50 rement <u>Design I</u> Collapse	sum of sx 530 ctors Burst 1.67 Totals: urface or a Calc MASP 3347 Sactors Burst	Σ CuFt 915 Length 5,517 3412 Req'd BOPE 5M Length 11,642 10,011	4 B@s	a-B 2.90 Prod 1 a-B	2.85 a-C 3.32	2%exces 27 Weigh 176,54 0 176,54 0verlap. Min Dis Hole-Cp 0.63 Weigh 232,84 200,22
Size 12 1/4 V Tool(s): by stage % : lass 'H' tail cm 8 5/8 Segment "A" "B" Hole Size 9 7/8 lass 'C' tail cm 5 1/2 Segment "A"	0.1882 ht yld > 1.20 casin #/ft 32.00 w/8.4#/g Annular Volume 0.1261 ht yld > 1.35 casin #/ft 20.00 20.00	530 #VALUE! g inside the Grade mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 490 g inside the Grade	915 #VALUE! 10 3/4 p 110 t psig: 1,500 volume(s) are intend 1 Stage CuFt Cmt 844 844 844	719 Coupling mo-fxl ded to achieve a top of Min Cu Ft 724 Does not meet CFO 25% Coupling geoconn geoconn	27 Body 5.70 0 1 Stage % Excess 17 excess requi Joint 1.26 ∞	Design Fac Collapse 1.58 ft from su Drilling Mud Wt 9.50 rement <u>Design I</u> Collapse 1.71 1.91	sum of sx 530 ctors Burst 1.67 Totals: urface or a Calc MASP 3347 Sactors Burst 2.36 2.36 Totals:	Σ CuFt 915 Length 5,517 3412 Req'd BOPE 5M Length 11,642 10,011 21,653	4 B@s 2	a-B 2.90 Prod 1 a-B 4.10	2.85 a-C 3.32 3.32	Σ%exce: 27 Weigh 176,54 0 176,54 overlap. Min Dis Hole-Cp 0.63 Weigh 232,84 200,22 433,06
Size 12 1/4 V Tool(s): by stage % : lass 'H' tail cm 8 5/8 Segment "A" "B" Hole Size 9 7/8 lass 'C' tail cm 5 1/2 Segment "A" "B"	0.1882 ht yld > 1.20 casin #/ft 32.00 w/8.4#/g Annular Volume 0.1261 ht yld > 1.35 casin #/ft 20.00 20.00 w/8.4#/g	530 #VALUE! g inside the Grade mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 490 g inside the Grade	915 #VALUE! 10 3/4 p 110 p 110 p 110 volume(s) are intend CuFt Cmt 844 85/8 p 110 p 110 p 110 p 110 p 110 c psig: 2,459 volume(s) are intend	719 Coupling mo-fxl ded to achieve a top of Min Cu Ft 724 Does not meet CFO 25% Coupling geoconn geoconn ded to achieve a top of	27 Body 5.70 0 1 Stage % Excess 17 excess requi 1.26 ∞ 5317	Design Fac Collapse 1.58 ft from su Drilling Mud Wt 9.50 rement <u>Design I</u> Collapse 1.71 1.91 ft from su	sum of sx 530 ctors Burst 1.67 Totals: irface or a Calc MASP 3347 3347 <u>Factors</u> Burst 2.36 2.36 Totals: irface or a	Σ CuFt 915 Length 5,517 0 5,517 3412 Req'd BOPE 5M Length 11,642 10,011 21,653 200	4 B@s 2	a-B 2.90 Prod 1 a-B 4.10	2.85 a-C 3.32 3.32	Σ%exce 27 Weigh 176,54 0 176,54 overlap. Min Dis Hole-Cp 0.63 Weigh 232,84 200,22 433,06 overlap.
Size 12 1/4 V Tool(s): by stage % : lass 'H' tail cm 8 5/8 Segment "A" "B" Hole Size 9 7/8 lass 'C' tail cm 5 1/2 Segment "A" "B"	0.1882 ht yld > 1.20 casin #/ft 32.00 w/8.4#/g Annular Volume 0.1261 ht yld > 1.35 casin #/ft 20.00 20.00 w/8.4#/g Annular	530 #VALUE! g inside the Grade mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 490 g inside the Grade mud, 30min Sfc Csg Test The cement 1 Stage	915 #VALUE! 10 3/4 p 110 t psig: 1,500 volume(s) are intend 844 5/8 p 110 p 110 p 110 p 110 t psig: 2,459 volume(s) are intend t psig: 2,459	719 Coupling mo-fxl ded to achieve a top of Min Cu Ft 724 Does not meet CFO 25% Coupling geoconn geoconn ded to achieve a top of Min	27 Body 5.70 0 1 Stage % Excess 17 excess requi	Design Fac Collapse 1.58 ft from su Drilling Mud Wt 9.50 rement <u>Design I</u> Collapse 1.71 1.91 ft from su Drilling	sum of sx 530 ctors Burst 1.67 Totals: urface or a Calc MASP 3347 Safetors Burst 2.36 2.36 2.36 Totals: urface or a Calc	Σ CuFt 915 Length 5,517 3412 Req'd BOPE 5M Length 11,642 10,011 21,653 200 Req'd	4 B@s 2	a-B 2.90 Prod 1 a-B 4.10	2.85 a-C 3.32 3.32	2%excer 27 Weigh 176,54 0 176,54 overlap. Min Dis Hole-Cp 0.63 Weigh 232,84 200,22 433,06 overlap. Min Dis
Size 12 1/4 V Tool(s): by stage % : lass 'H' tail cm 8 5/8 Segment "A" "B" Hole Size 9 7/8 lass 'C' tail cm 5 1/2 Segment "A" "B"	0.1882 ht yld > 1.20 casin #/ft 32.00 w/8.4#/g Annular Volume 0.1261 ht yld > 1.35 casin #/ft 20.00 20.00 w/8.4#/g	530 #VALUE! g inside the Grade mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 490 g inside the Grade	915 #VALUE! 10 3/4 p 110 p 110 p 110 volume(s) are intend CuFt Cmt 844 85/8 p 110 p 110 p 110 p 110 p 110 c psig: 2,459 volume(s) are intend	719 Coupling mo-fxl ded to achieve a top of Min Cu Ft 724 Does not meet CFO 25% Coupling geoconn geoconn ded to achieve a top of	27 Body 5.70 0 1 Stage % Excess 17 excess requi 1.26 ∞ 5317	Design Fac Collapse 1.58 ft from su Drilling Mud Wt 9.50 rement <u>Design I</u> Collapse 1.71 1.91 ft from su	sum of sx 530 ctors Burst 1.67 Totals: irface or a Calc MASP 3347 3347 <u>Factors</u> Burst 2.36 2.36 Totals: irface or a	Σ CuFt 915 Length 5,517 0 5,517 3412 Req'd BOPE 5M Length 11,642 10,011 21,653 200	4 B@s 2	a-B 2.90 Prod 1 a-B 4.10	2.85 a-C 3.32 3.32	Σ%exce: 27 Weigh 176,54 0 176,54 0verlap. Min Dis Hole-Cp 0.63 Weigh 232,84 200,22 433,06 overlap.

Carlsbad Field Office

.

Released to Imaging: 3/19/2024 10:50:20 AM

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	COLGATE OPERATING LLC
WELL NAME & NO.:	ROBIN FED COM 201H
SURFACE HOLE FOOTAGE:	1480'/S & 1285'/W
BOTTOM HOLE FOOTAGE	10'/N & 330'/W
LOCATION:	Section 20, T.20 S., R.34 E., NMP
COUNTY:	Lea County, New Mexico

COA

H2S	• Yes	C No	
Potash	C None	C Secretary	• R-111-P
Cave/Karst Potential	💽 Low	C Medium	C High
Cave/Karst Potential	Critical		
Variance	C None	• Flex Hose	C Other
Wellhead	C Conventional	Multibowl	C Both
Wellhead Variance	C Diverter		
Other	4 String	Capitan Reef	□ WIPP
Other	□ Fluid Filled	Pilot Hole	Open Annulus
Cementing	Contingency	EchoMeter	Primary Cement
	Cement Squeeze		Squeeze
Special Requirements	Water Disposal	COM	🗖 Unit
Special Requirements	Batch Sundry		
Special Requirements	Break Testing	☑ Offline	Casing
Variance		Cementing	Clearance

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated AT SPUD. As a result, the Hydrogen Sulfide area must meet 43 CFR part 3170 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

Primary Casing Design:

 The 13-3/8 inch surface casing shall be set at approximately 1590 feet per BLM Geologist (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. The surface hole shall be 17 1/2 inch in diameter.

- a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>24 hours in the Potash Area</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 10-3/4 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, potash or capitan reef.
 - In <u>R111 Potash Areas</u> if cement does not circulate to surface on the first two salt protection casing strings, the cement on the 3rd casing salt string must come to surface.
- 3. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, potash or capitan reef. Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.
- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 50 feet on top of Capitan Reef top or 500 feet into the previous casing, whichever is greater. If cement does not circulate see B.1.a, c-d above.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, potash or capitan reef.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the **13-3/8** inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000** (**5M**) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in Onshore Order 1 and 2.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

(Note: For a minimum 5M BOPE or less (Utilizing a 10M BOPE system) BOPE Break Testing Variance

• BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer

must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)

- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (**575-706-2779**) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-689-5981 Lea County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per Onshore Oil and Gas Order No. 2.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Contact the BLM prior to the commencement of any offline cementing procedure.

Casing Clearance:

Operator casing variance is approved for the utilization of 10-3/4 inch intermediate casing in a 12 ¹/₄ inch intermediate hole.

Operator shall clean up cycles until wellbore is clear of cuttings and any large debris, ensure cutting sizes are adequate "coffee ground or less" before cementing.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Eddy County

EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,

BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822

Lea CountyCall the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43 CFR part 3170 Subpart 3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive

strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 <u>hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.

- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal

or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)

- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

•

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

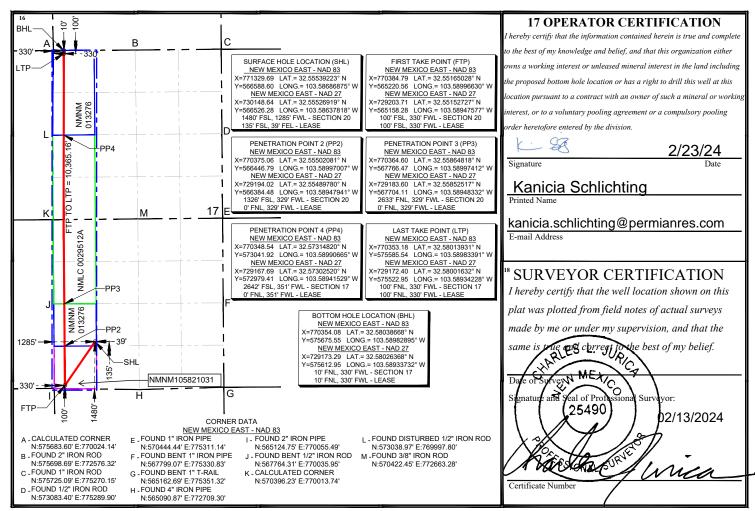
JS 3/18/2024

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 <u>District II</u> 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 <u>District III</u>

1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV

1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505


Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

	PI Number 5-5258													
4 Property C					5 Property		6 Well Number							
33539	0				ROBIN I	FED				201H				
7 OGRID N	No.				8 Operator	Name				9 Elevation				
371449				Colga	ate Operating, LL	С				3657.73'				
					¹⁰ Surface	Location								
UL or lot no.	Section	Townshi	p Range	Lot Idn	Feet from the	North/South line	Feet from the	East/We	st line	County				
L	20	20-S	34-Е		1480'	SOUTH	1285'	WES	Т	LEA				
			" Bo	ttom Ho	le Location I	f Different Fro	m Surface			-				
UL or lot no.	Section	Townshi	p Range	Lot Idn	Feet from the	North/South line	Feet from the	East/We	st line	County				
D	17	20-S	34-E		10'	NORTH	330'	WES	Т	LEA				
12 Dedicated Acres	i 13 Joint o	or Infill	14 Consolidation	Code 15 C	Order No.									
320														

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Released to Imaging: 3/19/2024 10:50:20 AM

Permian Resources - Robin Fed 201H

1. Geologic Formations

Formation	Lithology	Elevation	TVD	Target
Rustler	Sandstone	2161	1527	No
Top of Salt	Salt	2051	1637	No
Yates	Anhydrite/Shale	301	3387	No
Seven Rivers	Limestone	NP	NP	No
Capitan	Sandstone	66	3622	No
Delaware Sands	Sandstone	-1879	5567	No
Brushy Canyon	Sandstone	-3119	6807	No
Bone Spring Lime	Limestone/Shale	-4849	8537	No
1st Bone Spring Sand	Sandstone/Limestone/Shale	-5824	9512	No
2nd Bone Spring Sand	Sandstone/Limestone/Shale	-6399	10087	No
3rd Bone Spring Sand	Sandstone/Limestone/Shale	-7159	10847	No
Wolfcamp	Shale	-7407	11095	Yes

2. Blowout Prevention

BOP installed and tested before drilling	Size?	Min. Required WP	Ту	/pe	x	Tested to:
			Annular		х	2500 psi
			Blind Ram		х	
12.25	13-5/8"	5M	Pipe	Ram	х	5000 psi
			Double	e Ram		5000 psi
			Other*			
	13-5/8"		Anr	nular	х	2500 psi
		5M	Blind Ram		х	
9.875			5M	5/8" 5M	Pipe	Ram
			Double	e Ram		5000 psi
			Other*			
			Anr	nular	х	2500 psi
	13-5/8"		Blind	Ram	х	
7.875		5M	Pipe Ram		х	5000 psi
			Double Ram			5000 psr
			Other*			

Equipment: BOPE with working pressure ratings in excess of anticipated maximum surface pressure will be utilized for well control from drill out of surface casing to TMD. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. All BOPE connections shall be flanged, welded or clamped. All choke lines shall be straight unless targeted with running tees or tee blocks are used, and choke lines shall be anchored to prevent whip and reduce vibrations. All valves in the choke line & the choke manifold shall be full opening as to not cause restrictions and to allow for straight fluid paths to minimize potential erosion. All gauges utilized in the well control system shall be of a type designed for drilling fluid service. A top drive inside BOP valve will be utilized at all times. Subs equipped with full opening valves sized to fit the drill pipe and collars will be available on the rig floor in the open position. The key to operate said valve equipped subs will be on the rig floor at all times. The accumulator system will have sufficient capacity to open the HCR and close all three sets of rams plus the annular preventer while retaining at least 300 psi above precharge on the closing manifold (accumulator system shall be capable of doing so without using the closing unit pumps). The fluid reservoir capacity will be double the usable fluid volume of the accumulator system capacity, and the fluid level will be maintained at the manufacturer's recommended level. Prior to connecting the closing unit to the BOP stack, an accumulator precharge pressure test shall be performed to ensure the precharge pressure is within 100 psi of the desired precharge pressure (only nitrogen gas will be used to precharge). Two independent power sources will be made available at all times to power the closing unit pumps so that the pumps can automatically start when the closing valve manifold pressure has decreased to the preset level. Closing unit pumps will be sized to allow opening of HCR and closing of annular preventer on 5" drill pipe achieving at least 200 psi above precharge pressure with the accumulator system isolated from service in less than two minutes. A valve shall be installed in the closing line as close to the annular preventer as possible to act as a locking device; the valve shall be maintained in the open position and shall be closed only when the power source for the accumulator system is inoperative. Remote controls capable of opening and closing all preventers & the HCR shall be readily accessible to the driller; master controls with the same capability will be operable at the accumulator. The wellhead will be a multibowl speed head allowing for hangoff of intermediate casing & isolation of the 133/8 x 95/8 annulus without breaking the connection between the BOP & wellhead to install an additional casing head. A wear bushing will be installed & inspected frequently to guard against internal wear to wellhead. VBRs (variablebore rams) will be run in upper rambody of BOP stack to provide redundancy to annular preventer while RIH w/ production casing;

Requesting Variance? YES

Variance request: Break testing, flex hose, and offline cement variances, see attachments in section 8. Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order II requirements. The BOP test shall be performed before drilling out of the surface casing shoe and will occur at a minimum: a. when initially installed b. whenever any seal subject to test pressure is broken c. following related repairs d. at 30 day intervals e. checked daily as to mechanical operating conditions. The ram type preventer(s) will be tested using a test plug to 250 psi (low) and 5,000 psi (high) (casinghead WP) with a test plug upon its installation onto the 13 surface casing. If a test plug is not used, the ram type preventer(s) shall be tested to 70% of the minimum internal yield pressure of the casing. The annular type preventer(s) shall be tested to 3500 psi. Pressure will be maintained for at least 10 minutes or until provisions of the test are met, whichever is longer. A Sundry Notice (Form 3160 5), along with a copy of the BOP test report, shall be submitted to the local BLM office within 5 working days following the test. If the bleed line is connected into the buffer tank (header), all BOP equipment including the buffer tank and associated valves will be rated at the required BOP pressure. The BLM office will be provided with a minimum of four (4) hours notice of BOP testing to allow witnessing. The BOP Configuration, choke manifold layout, and accumulator system, will be in compliance with Onshore Order 2 for a 5,000 psi system. A remote accumulator and a multi-bowl system will be used, please see attachment in section 8 for multi-bowl procedure. Pressures, capacities, and specific placement and use of the manual and/or hydraulic controls, accumulator controls, bleed lines, etc., will be identified at the time of the BLM 'witnessed BOP test. Any remote controls will be capable of both opening and closing all preventers and shall be readily accessible.

Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checked will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP), choke lines, and choke manifold. See attached schematics.

Choke Diagram Attachment: 5M Choke Manifold BOP Diagram Attachment: BOP Schematics

3. Casing

String	Hole Size	Casing Size	Top	Bottom	Top TVD	Bottom TVD	Length	Grade	Weight	Connection	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
Surface	17.5	13.375	0	1552	0	1552	1552	J55	54.5	BTC	1.47	1.91	Dry	4.92	Dry	4.62
Intermediate 1	12.25	10.75	0	3412	0	3412	3412	J55	45.5	BTC	6.82	3.65	Dry	4.16	Dry	4.07
Intermediate 2	9.875	8.625	0	5517	0	5517	5517	P110 HS	32	MO-FXL	4.58	2.27	Dry	2.85	Dry	4.14
Production	7.875	5.5	0	11696	0	11176	11696	P110RY	20	GeoConn	1.91	1.99	Dry	1.98	Dry	1.98
Production	7.875	5.5	11696	21706	11176	11176	10010	P110RY	20	GeoConn	1.91	1.99	Dry	1.98	Dry	1.98
								BLM Mi	n Safe	ety Factor	1.125	1		1.6		1.6

Non API casing spec sheets and casing design assumptions attached.

4. Cement

String	Lead/Tail	Top MD	Bottom MD	Quanity (sx)	Yield	Density	Cu Ft	Excess %	Cement Type	Additives
Surface	Tail	0	1552	1210	1.34	14.8	1620	50%	Class C	Accelerator
										EconoCem-HLC + 5% Salt +
Intermediate 1	Lead	0	2720	380	1.88	12.9	700	50%	Class C	5% Kol-Seal
Intermediate 1	Tail	2720	3412	150	1.34	14.8	200	50%	Class C	Retarder
										EconoCem-HLC + 5% Salt +
Intermediate 2	Lead	0	4410	350	1.88	12.9	650	50%	Class C	5% Kol-Seal
Intermediate 2	Tail	4410	5517	140	1.33	14.8	180	25%	Class C	Salt
										POZ, Extender, Fluid Loss,
Production	Lead	5017	10946	590	2.41	11.5	1410	40%	Class H	Dispersant, Retarder
										POZ, Extender, Fluid Loss,
Production	Tail	10946	21706	1360	1.73	12.5	2340	25%	Class H	Dispersant, Retarder

If losses are encountered while drilling intermediate 2 a stage tool will be added and cement will be adjusted accordingly.

5. Circulating Medium

Mud System Type: Closed

Will an air or gas system be used: No

Describe what will be on location to control well or mitigate oter conditions: Sufficient quantities of mud materials will be on the well site at all times for the purpose of assuring well control and maintaining wellbore integrity. Surface interval will employ fresh water mud. The intermediate hole will utilize a saturated brine fluid to inhibit salt washout. The production hole will employ brine based and oil base fluid to inhibit formation reactivity and of the appropriate density to maintain well control.

Describe the mud monitoring system utilized: Centrifuge separation system. Open tank monitoring with EDR will be used for drilling fluids and return volumes. Open tank monitoring will be used for cement and cuttings return volumes. Mud properties will be monitored at least every 24 hours using industry accepted mud check practices.

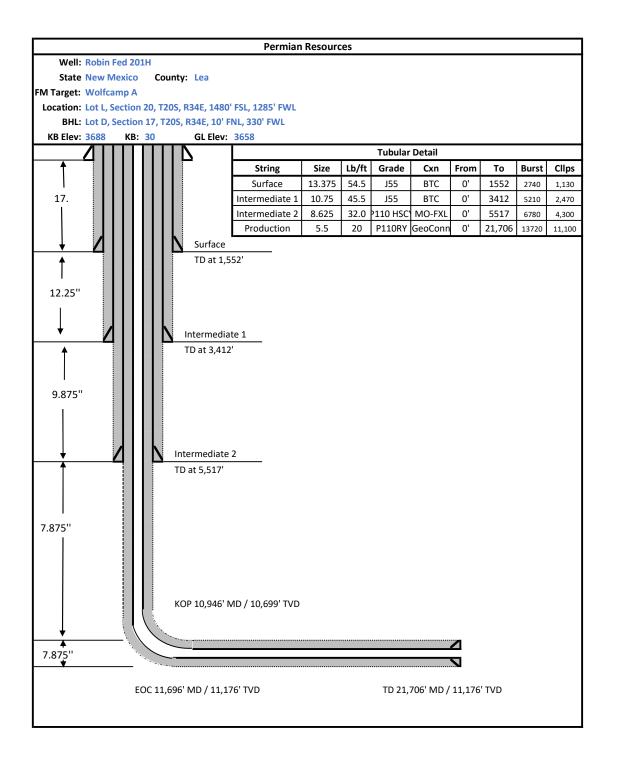
Cuttings Volume: 10720 Cu Ft

Circulating Medium Table						
Top Depth	Bottom Depth	Mud Type	Min Weight	Max Weight		
0	1552	Spud Mud	8.6	9.5		
1552	3412	Salt Saturated	10	10		
3412	5517	Water Base Mud	8.6	9.5		
5517	11696	Brine	9	10		
11696	21706	OBM	9	10		

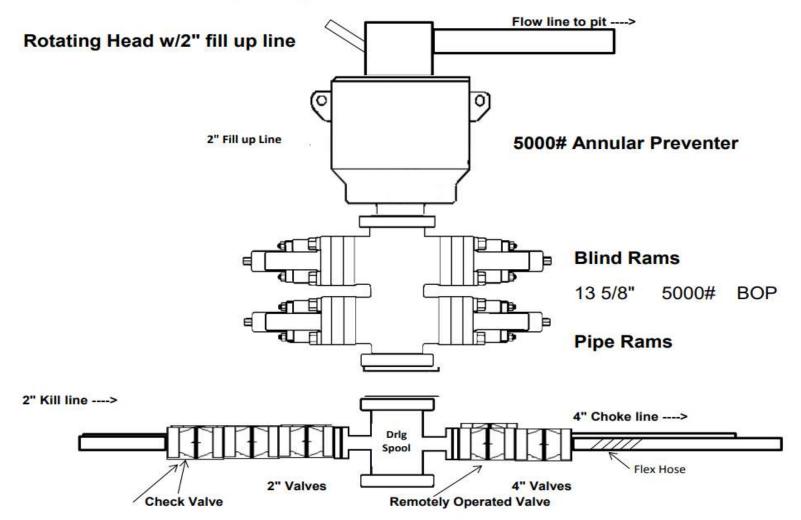
6. Test, Logging, Coring

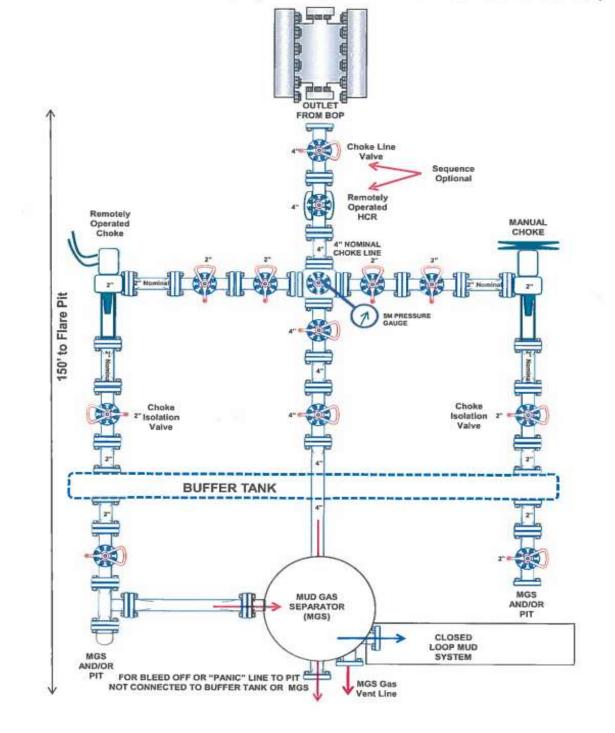
List of production tests including testing procedures, equipment and safety measures: Will utilize MWD/LWD (Gamma Ray logging) from intermediate hole to TD of the well. List of open and cased hole logs run in the well: DIRECTIONAL SURVEY,GAMMA RAY LOG, Coring operation description for the well: N/A

7. Pressure


Anticipated Bottom Hole Pressure	5820	psi
Anticipated Surface Pressure	3353	psi
Anticipated Bottom Hole Temperature	166	°F
Anticipated Abnormal pressure, temp, or geo hazards	No	

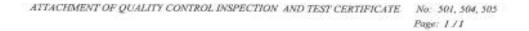
8. Waste Management


Waste Type:	Drilling				
Waste content description:	Fresh water based drilling fluid				
Amount of waste:	1500 bbls				
Waste disposal frequency:	Weekly (after drilling all surfaces)				
Safe containment description:	Steel tanks with plastic-lined containment berms				
Waste disposal type:	Haul to commercial facility				
Disposal location ownership:	Commercial				
Waste Type:	Grey Water & Human Waste				
Waste content description:	Grey Water/Human Waste				
Amount of waste:	5000 gallons				
Waste disposal frequency:	Weekly				
Safe containment description:	Approved waste storage tanks with containment				
Waste disposal type:	Haul to commercial facility				
Disposal location ownership:	Commercial				
Waste Type:	Garbage				
Waste content description:	General trash/garbage				
Amount of waste:	5000 lbs				
Waste disposal frequency:	Weekly				
Safe containment description:	Enclosed trash trailer				
Waste disposal type:	Haul to commercial facility				
Disposal location ownership:	Commercial				
Waste Type:	Drilling				
Waste content description:	Drill Cuttings				
Amount of waste:	10720 Cu Ft				
Waste disposal frequency:	Per well				
Safe containment description:	Steel tanks				
Waste disposal type:	Haul to commercial facility				
Disposal location ownership:	Commercial				
Waste Type:	Drilling				
Waste content description:	Brine water based drilling fluid				
Amount of waste:	1500 bbls				
Waste disposal frequency:	Monthly				
Safe containment description:	Steel tanks with plastic-lined containment berms				
Waste disposal type:	Haul to commercial facility				
Disposal location ownership:	Commercial				


9. Other Information

Well Plan and AC Report: attached Batching Drilling Procedure: attached WBD: attached Flex Hose Specs: attached Offline Cementing Procedure: attached Break Testing Procedure: attached

5,000 psi BOP Schematic


5M Choke Manifold Equipment (WITH MGS + CLOSED LOOP)

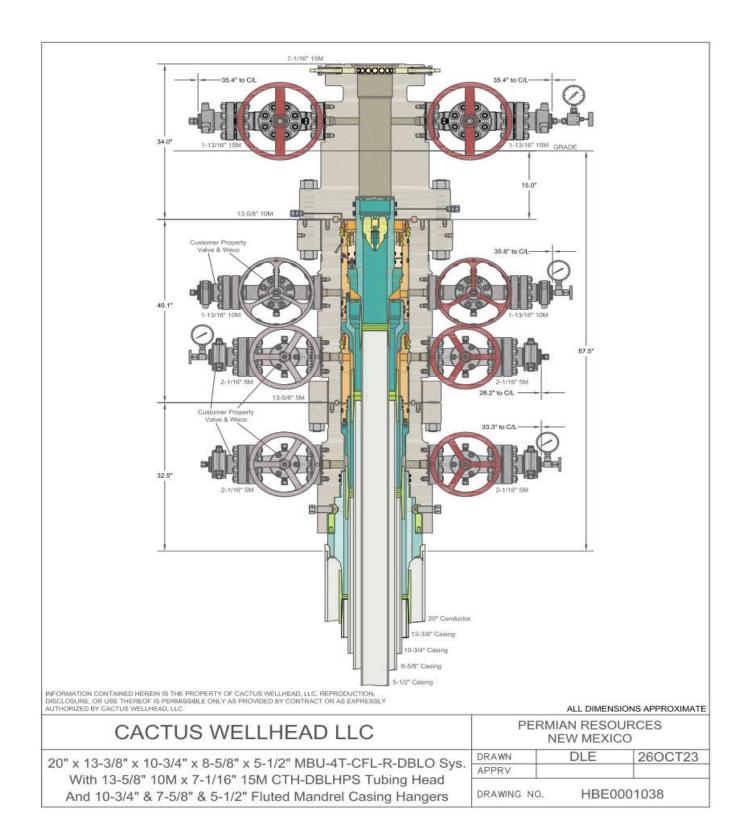
ONTITECH RUBBER	No:QC-DB- 210/ 2014			
1	Page:	9/113		

	ATE	CERT.	Nto	504			
PURCHASER:	ContiTech	Oil & Marine C	Corp.	P.O. N	P.O. Nº: 4500		9
CONTITECH RUBBER orde	HOSE TYPE:	3° 10		Choke and	Kill Hose		
HOSE SERIAL Nº.	NOMINAL / AC	TUAL LENGT	TH:	10,67 m / 10,77 m			
W.P. 68,9 MPa	10000 psi	T.P. 103,4	MPa 15	5000 pel	Duration:	60	min
Ť 10 mm = 10 y	Min.	See attachm	ent. (1 pa	ge)			
→ 10 mm = 20 1 COUPLINGS	MPa Type	Seria	N°	6	Quelity	Heat	Nº
	Туре	Seria 9251	9254		ouelity SI 4130	Heat #	
COUPLINGS	Type with	- 15.07		Als			IN
COUPLINGS 3° coupling 4 1/16° 10K API b.w. Not Designed	Type with Flange end d For Well To	9251		Als	51 4130 51 4130 AJ	A0578	3N X8 C
COUPLINGS 3° coupling v 4 1/15° 10K API b.w Not Designed All metal parts are flawless WE CERTIFY THAT THE AB	Type with Flange end d For Well To s ove Hose Has Be	9251 esting	9254		SI 4130 SI 4130 AJ Temp	A0578 03560 PI Spec 16 erature rat	3N X8 C te:"B"
COUPLINGS 3° coupling v 4 1/16° 10K API b.w. Not Designed All metal parts are flawless	Type with Flange end d For Well To s OVE HOSE HAS BE IE TESTED AS ABO MTY. We hereby of of the above Purc ed standards, codes	9251 EEN MANUFACTUR	9254 ED IN ACCOR CTORY RESU Retensiequip nat these from and meet the n	All All RDANCE WIT JLT. mett supplies slegu preet slegu preet	SI 4130 SI 4130 AJ Temp In THE TERMS t by us are in o were fabricated	A0578 03560 PI Spec 16 erature rate of THE ORDER	IN IS C C te:"B" R tested in

Contribute Modern Industrial KT., Industrial at 10:14 8728 Earlysel (H 4701 PO Aux 102 Earlyse), Hurger) Presex call \$7.088 (27) (Fico Hdl 80.568 (28) (a national shall be added to be a been called a structure of the control of the analysis of the control of the added to be added t

GH 421-22 40	Control Manager
RD +21-30 -00	01120
81. +1853. mar	01+20 01+10
90 1+21-11 HB-1 10	105750
N +21,18 %	把1 注册
12 NO112 DO 1013	01=00
Telester School	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
80 921-26 90	OB150 TOTHE-1020 alles
8. +1957 - had	188154
24 +21,28 PC	eerad
L P1939- Hot	DEFAE 1
31 +21-36 MC	104:55
L +1861- bde	1001 20
N +21.35 PC	100:28
1064 bar	100120
Mallan to Thills	
TITLETTE	
70 20 30 40	50 180 78 zib 90 100
9:83:8014: 29:50 7252:67255:67256 25	
PL DESIGN ALL AND	

.



ONTITECH RUBBER	No:QC-DB- 210/ 2014			
Industrial Kft.	Page:	15/113		
	ContiTe	ch		

Hose Data Sheet

CRI Order No.	538236
Customer	ContiTech Oil & Marine Corp.
Customer Order No	4500409859
Item No.	1
Hose Type	Flexible Hose
Standard	API SPEC 16 C
Inside dia in inches	3
Length	35 ft
Type of coupling one end	FLANGE 4.1/16" 10K API SPEC 6A TYPE 6BX FLANGE CAW BX156 R.GR.SOUR
Type of coupling other end	FLANGE 4.1/16* 10K API SPEC 6A TYPE 6BX FLANGE C/W BX155 R.GR.SOUR
H2S service NACE MR0175	Yes
Working Pressure	10 000 psi
Design Pressure	10 000 psi
Test Pressure	15 000 psi
Safety Factor	2,25
Marking	USUAL PHOENIX
Cover	NOT FIRE RESISTANT
Outside protection	St.steel outer wrap
Internal stripwound tube	No
Lining	OIL + GAS RESISTANT SOUR
Safety clamp	No
Lifting collar	No
Element C	No
Safety chain	No
Safety wire rope	No
Max.design temperature [°C]	100
Min.design temperature [°C]	-20
Min. Bend Radius operating [m]	0,90
Min. Bend Radius storage (m)	0,90
Electrical continuity	The Hose is electrically continuous
Type of packing	WOODEN CRATE ISPM-15

Printed: TIRETECH2/CsontosG - 2014.03.10 15:22:17

Permian Resources Casing Design Criteria

A sundry will be requested if any lesser grade or different size casing is substituted. All casing will be centralized as specified in On Shore Order II. Casing will be tested as specified in On Shore Order II.

Casing Design Assumptions:

Surface

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

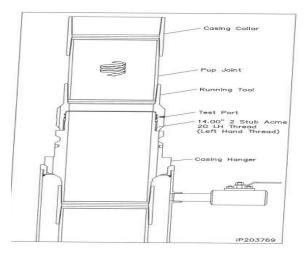
Intermediate I

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.

- (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate or Intermediate II

- 1) Burst Design Loads
 - a) Gas Kick Profile
 - Internal: Load profile based on influx encountered in lateral portion of wellbore with a maximum influx volume of 150 bbl and a kick intensity of 1.5 ppg using maximum anticipated MW of 9.9 ppg.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
- a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the deepest TVD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

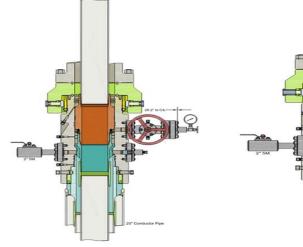

Production

- 1) Burst Design Loads
 - a) Injection Down Casing
 - (1) Internal: Surface pressure plus injection fluid gradient.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test (Drilling)
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - c) Casing Pressure Test (Production)
 - (1) Internal: The design pressure test should be the greater of the planned test pressure prior to simulation down the casing, the regulatory test pressure, and the expected gas lift system pressure. The design test fluid should be the fluid associated with the pressure test having the greatest pressure.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - d) Tubing Leak
 - (1) Internal: SITP plus a packer fluid gradient to the top of packer.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
 - b) Full Evacuation
 - (1) Internal: Full void pipe.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

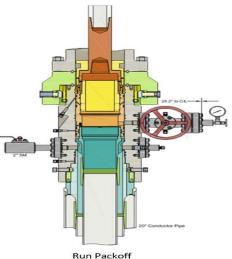
Permian Resources Multi-Well Pad Batch Drilling & Off Line Cement Procedure

<u>Surface Casing</u> - PR intends to Batch set and offline cement all surface casing to a depth approved in the APD. Surface Holes will be batch drilled by a big rig. Appropriate notifications will be made prior to spudding the well, running, and cementing casing and prior to skidding to the rig to the next well on pad.

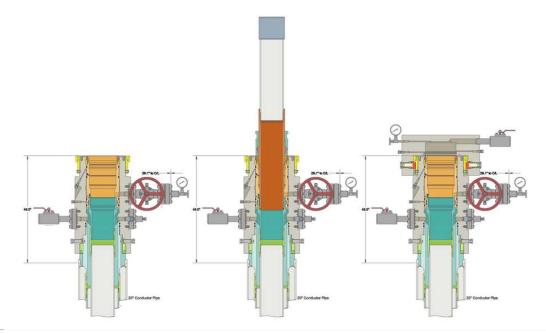
- 1. Drill Surface hole to Approved Depth with Surface Preset Rig and perform wellbore cleanup cycles. Trip out and rack back drilling BHA.
- 2. Run casing with Cactus Multibowl system, with baseplate supported by Conductor.
- 3. Circulate 1.5 csg capacity.
- 4. Flow test Confirm well is static.
- 5. Install cap flange.
- 6. Skid rig to next well on pad
- 7. Remove cap flange (confirm well is static before removal)
 - a) If well is not static use the casing outlet valves to kill well
 - b) Drillers method will be used in well control event
 - c) High pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - d) Kill mud will be circulated once influx is circulated out of hole
 - e) Confirm well is static and remove cap flange to start offline cement operations
- 8. Install offline cement tool.
- 9. Rig up cementers.
- 10. Circulate bottoms up with cement truck
- 11. Commence planned cement job, take returns through the annulus wellhead valve
- 12. After plug is bumped confirm floats hold and well is static
- 13. Perform green cement casing test.
 - a) Test Surface casing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst.
- 14. Rig down cementers and equipment
- 15. Install night cap with pressure gauge to monitor.



<u>Intermediate 1 Casing</u> – PR intends to Batch set all intermediate 1 casing strings to a depth approved in the APD, typically set into end of salts. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.


Rig will remove the nightcap and install and test BOPE (testing will be performed on the first Intermediate 1 as per requested break testing variance).

Install wear bushing then drill out 20" shoe-track.


- 1. Drill Intermediate 1 hole to approved casing point. Trip out of hole with BHA to run Casing.
- 2. Remove wear bushing then run and land Intermediate 1 casing with mandrel hanger in wellhead.
- 3. Flow test Confirm well is static.
- 4. Set Annular packoff and pressure test. Test to 5k.
- 5. Install BPV, Nipple down BOP and install cap flange.
- 6. Skid rig to next well on pad
- 7. Remove cap flange (confirm well is static before removal)
 - a) If well is not static use the casing outlet valves to kill well
 - b) Drillers method will be used in well control event
 - c) High pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - d) Kill mud will be circulated once influx is circulated out of hole
 - e) Confirm well is static and remove cap flange to start offline cement operations
- 8. Install offline cement tool.
- 9. Rig up cementers.
- 10. Circulate bottoms up with cement truck
- 11. Commence planned cement job, take returns through the annulus wellhead valve
- 12. After plug is bumped confirm floats hold and well is static
- 13. Perform green cement casing test.
 - a) Test casing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst.
- 14. Rig down cementers and equipment
- 15. Install night cap with pressure gauge to monitor.

Run Intermediate Casing Land Intermediate Casing on Mandrel Hanger Cement Intermediate Casing Retrieve Running Tool

Test Upper and Lower Seals Engage Lockring Retrieve Running Tool

<u>Intermediate 2 Casing</u> – PR intends to Batch set all Intermediate 2 casing strings to a depth approved in the APD, typically set into Captain past losses. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

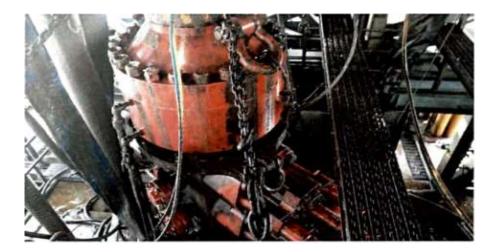
- 1. Rig will remove the nightcap and install and test BOPE (testing will be performed on the first Intermediate 2 as per requested break testing variance).
- 2. Install wear bushing then drill out Intermediate 1 shoe-track.
- 3. Drill Intermediate 2 hole to approved casing point. Trip out of hole with BHA to run Casing.
- 4. Remove wear bushing then run and land Intermediate 2 casing with mandrel hanger in wellhead.
- 5. Flow test Confirm well is static.
- 6. Set Annular packoff and pressure test. Test to 5k.
- 7. Install BPV, Nipple down BOP and install cap flange.
- 8. Skid rig to next well on pad
- 9. Remove cap flange (confirm well is static before removal)
 - a) If well is not static use the casing outlet valves to kill well
 - b) Drillers method will be used in well control event
 - c) High pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - d) Kill mud will be circulated once influx is circulated out of hole
 - e) Confirm well is static and remove cap flange to start offline cement operations
- 10. Install offline cement tool.
- 11. Rig up cementers.
- 12. Circulate bottoms up with cement truck
- 13. Commence planned cement job, take returns through the annulus wellhead valve
- 14. After plug is bumped confirm floats hold and well is static
- 15. Perform green cement casing test.
 - a) Test casing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst.
- 16. Rig down cementers and equipment
- 17. Install night cap with pressure gauge to monitor.

<u>Production Casing</u> – PR intends to Batch set all Production casings. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

- 1. Rig will remove the nightcap and install and test BOPE.
- 2. Install wear bushing then drill Intermediate shoe-track.
- 3. Drill Vertical hole to KOP Trip out for Curve BHA.
- 4. Drill Curve, landing in production interval Trip for Lateral BHA.
- 5. Drill Lateral / Production hole to Permitted BHL, perform cleanup cycles and trip out to run Production Casing.
- 6. Remove wear bushing then run Production casing to TD landing casing mandrel in wellhead.
- 7. Cement Production string to surface with floats holding.

Permian Resources BOP Break Testing Variance Procedure

Subject: Request for a Variance Allowing break Testing of the Blowout Preventer Equipment (BOPE). Permian Resources requests a variance to ONLY test broken pressure seals on the BOPE and function test BOP when skidding a drilling rig between multiple wells on a pad.


Background

Title 43 CFR 3172, Drilling Operations, Sections 6.b.9.iv states that the BOP test must be performed whenever any seal subject to test pressure is broken. The current interpretation of the Bureau of Land Management (BLM) requires a complete BOP test and not just a test of the affected component. 43 CFR 3172.13, Variances from minimum standards states, "An operator may request the authorized officer to approve a variance from any of the minimum standards prescribed in §§ 3172.6 through 3172.12. All such requests shall be submitted in writing to the appropriate authorized officer and provide information as to the circumstances which warrant approval of the variance(s) requested and the proposed alternative methods by which the related minimum standard(s) are to be satisfied. The authorized officer, after considering all relevant factors, if appropriate, may approve the requested variance(s) if it is determined that the proposed alternative(s) meet or exceed the objectives of the applicable minimum standard(s).". Permian Resources feels the break testing the BOPE is such a situation. Therefore, as per 43 CFR 3172.13, Permian Resources submits this request for the variance.

Supporting Documentation

The language used in 43 CFR 3172 became effective on December 19, 1988 and has remained the standard for regulating BLM onshore drilling operations for over 30 years. During this time, there have been significant changes in drilling technology. The BLM continues to use the variance request process to allow for the use of modern technology and acceptable engineering practices that have arisen since 43 CFR 3172 was originally released. The Permian Resources drilling rig fleet has many modern upgrades that allow the intact BOP stack to be moved between well slots on a multi-well pad, as well as, wellhead designs that incorporate quick connects facilitating release of the BOP from the wellhead without breaking any BOP stack components apart. These technologies have been used extensively offshore, and other regulators, API, and many operators around the world have endorsed break testing as safe and reliable.

Figure 1: Winch System attached to BOP Stack

Figure 2: BOP Winch System

American Petroleum Institute (API) standards, specification and recommended practices are considered the industry standard and are consistently utilized and referenced by the industry. 43 CFR 3172 recognizes API recommended Practices (RP) 53 in its original development. API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth Edition, December 2018, Annex C, Table C.4) recognizes break testing as an acceptable practice. Specifically, API Standard 53, Section 5.3.7.1 states "A pressure test of the pressure containing component shall be performed following the disconnection or repair, limited to the affected component." See Table C.4 below for reference.

	Pressure Test-Low	Pressure Test—High Pressure					
Component to be Pressure Tested	Pressure Test—Low Pressure* psig (MPa)	Change Out of Component, Elastomer, or Ring Gasket	No Change Out of Component, Elastomer, or Ring Gasket				
Annular preventer*	250 to 350 (1.72 to 2.41)	RWP of annular preventer	MASP or 70% annular RWP, whichever is lower.				
Fixed pipe, variable bore, blind, and BSR preventers ^{ac}	250 to 350 (1.72 to 2.41)	RWP of ram preventer or wellhead system, whichever is lower	ЧТI				
Choke and kill line and BOP side outlet valves below ram preventers (both sides)	250 to 350 (1.72 to 2 41)	RWP of side outlet valve or wellhead system, whichever is lower	ПР				
Choke manifold—upstream of chokes*	250 to 350 (1.72 to 2.41)	RWP of ram preventers or wellhead system, whichever is lower	ITP				
Choke manifold—downstream of chokes*	250 to 350 (1.72 to 2.41)	RWP of valve(s), line(s), or M whichever is lower	ASP for the well program,				
Kelly, kelly valves, drill pipe safety valves, IBOPs	250 to 350 (1.72 to 2.41)	MASP for the well program					
No visible leaks. The pressure shall remain stable Annular(s) and VBR(s) shall be pre For pad drilling operations, moving pressure-controlling connections For surface offshore operations, th	ssure tested on the largest and sm. from one wellhead to another within when the integray of a pressure set ie ram BOPs shall be pressure test land operations, the ram BOPs sha	vessure shall not decrease below the allest OD drill pipe to be used in well in the 21 days, pressure testing is req al is broken. ted with the ram locks engaged and ill be pressure tested with the ram lo	program. wred for pressure-containing an the closing and locking pressure				

The Bureau of Safety and Environmental Enforcement (BSEE), Department of Interior, has also utilized the API standards, specification and best practices in the development of its offshore oil and gas regulations and incorporates them by reference within its regulations.

Break testing has been approved by the BLM in the past with other operators based on the detailed information provided in this document.

Permian Resources feels break testing and our current procedures meet the intent of 43 CFR 3172 and often exceed it. There has been no evidence that break testing results in more components failing than seen on full BOP tests. Permian Resources internal standards require complete BOPE tests more often than that of 43 CFR 3172 (every 21 days). In addition to function testing the annular, pipe rams and blind rams after each BOP nipple up, Permian Resources performs a choke drill with the rig crew prior to drilling out every casing shoe. This is additional training for the rig crew that exceeds the requirements of 43 CFR 3172.

Procedures

1) Permian Resources will use this document for our break testing plan for New Mexico Delaware Basin. The summary below will be referenced in the APD or Sundry Notice and receive approval prior to implementing this variance.

2) Permian Resources will perform BOP break testing on multi-wells pads where multiple intermediate sections can be drilled and cased within the 21-day BOP test window.

a)A full BOP test will be conducted on the first well on the pad.

b)The first intermediate hole section drilled on the pad will be the deepest. All the remaining hole sections will be the same formation depth or shallower.

c) A full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.

d) A full BOP test will be required prior to drilling any production hole.

3) After performing a complete BOP test on the first well, the intermediate hole section will be drilled and cased, two breaks would be made on the BOP equipment.

a) Between the HCV valve and choke line connection

b)Between the BOP quick connect and the wellhead

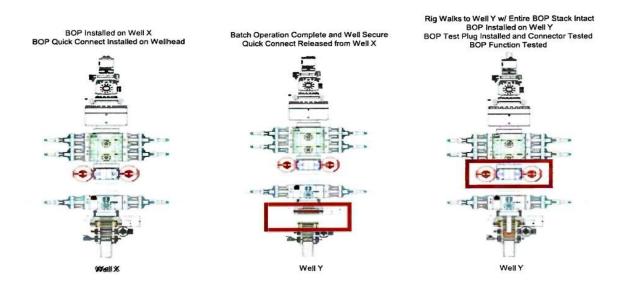
4) The BOP is then lifted and removed from the wellhead by a hydraulic system.

5) After skidding to the next well, the BOP is moved to the wellhead by the same hydraulic system and installed.

6) The connections mentioned in 3a and 3b will then be reconnected.

7) Install test plug into the wellhead using test joint or drill pipe.

8) A shell test is performed against the upper pipe rams testing the two breaks.


9) The shell test will consist of a 250 psi low test and a high test to the value submitted in the APD or Sundry (e.g. 5,000 psi or 10,000psi).

10) Function tests will be performed on the following components: lower pipe rams, blind rams, and annular.

11) For a multi-well pad the same two breaks on the BOP would be made and on the next wells and steps 4 through 10 would be repeated.

12) A second break test would only be done if the intermediate hole section being drilled could not be completed within the 21 day BOP test window.

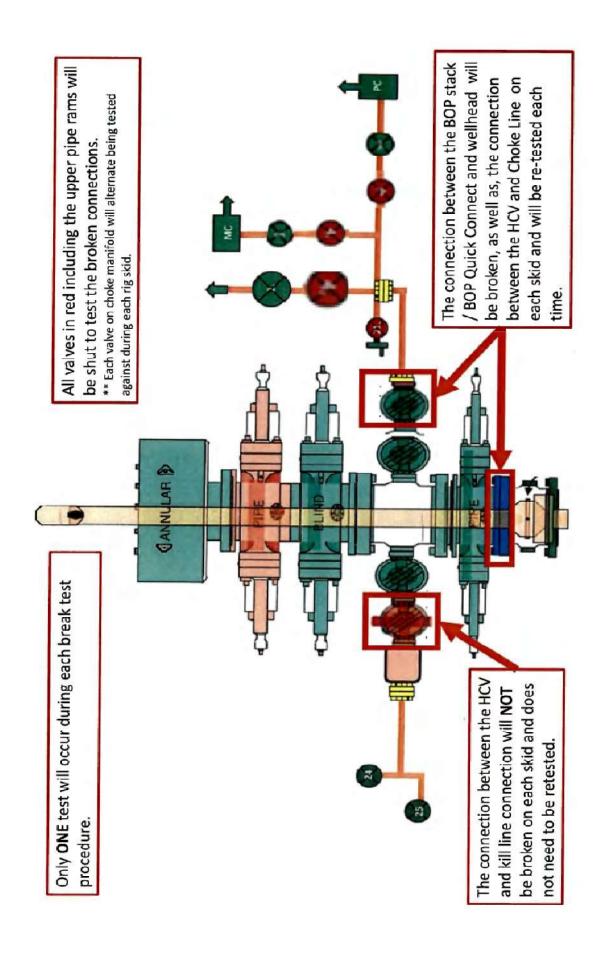
Note: Picture below highlights BOP components that will be tested during batch operations

Summary

A variance is requested to ONLY test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API Standard 53 states, that for pad drilling operations, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken.

The BOP will be secured by a hydraulic carrier or cradle. The BLM will be contacted if a Well Control

event occurs prior to the commencement of a BOPE Break Testing operation.


Based on public data and the supporting documentation submitted herein to the BLM, we will request permission to ONLY retest broken pressure seals if the following conditions are met:

1) After a full BOP test is conducted on the first well on the pad.

2) The first intermediate hole section drilled on the pad will be the deepest. All the remaining hole sections will be the same depth or shallower.

3) A full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.

4) A full BOP test will be required prior to drilling the production hole.

•

etal One Corp.				MO-EXI 8	-5/8 32 (
etai One Corp.	MO-FXI	-						
Metal One	to Dias Darky DMD D44010		CDS#	47.68 kg/m 46.34 kg/m 8.94 mm 201.19 mm ² 198.02 mm ² 198.02 mm 219.08 mm 201.19 mm - - 219.08 mm 201.19 mm 97.71 mm 3686 mm ² 69 % 2" per ft) TPI TPI 5,087 kN 66.83 MPa 29.66 MPa of S.M.Y.S.) of S.M.Y.S.) of S.M.Y.S.) of Collapse Strength 4,300psi 18,400 N-m 20,200 N-m				
Metal One					P110HSCY MinYS125ksi Min95%WT 8-Sep-21 S.I. P110HSCY 125 ksi 219.08 mm 47.68 kg/m 46.34 kg/m 201.19 mm 5,902 mm² 198.02 mm 201.19 mm 5,902 mm² 198.02 mm 201.19 mm 97.71 mm 3686 mm² 69 % "per ft.) PI 5,087 kN 66.83 MPa 29.66 MPa of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) Collapse Strength			
			Data					
	Connection Dat	MO-FXL CDS# P110HSC MinYS125ksi Min95%WT Connection Data Sheet Date 8-Sep-2 Geometry Imperial S.I. Pipe Body P110HSCY P110HSCY Grade *1 P110HSCY P110HSCY MinYS *1 125 ksi 125 Pipe OD (D) 8 5/8 in 219.08 Weight 32.00 Ib/ft 47.68 Ib Actual weight 31.10 46.34 Ib Wall Thickness (t) 0.352 in 219.08 Pipe ID (d) 7.921 in 201.19 Pipe body cross section 9.149 in² 5,902 r Drift Dia. 7.796 in 198.02 r - - - - - Connection Box OD (W) 8.625 in 219.08 PIN ID 7.921 in 201.19 in Make up Loss 3.847 in 97.71 Box Critical Area 5.853		<i>F</i> 21				
		Imperia	<u>11</u>	<u>S.I.</u>				
MO-FXL			lb/ft					
					mm			
		_						
			in ²		mm ²			
	Drift Dia.	7.796	in	198.02	mm			
	-	-	-	-	-			
	Connection							
		0.005	1.00	240.00				
$\uparrow \longleftrightarrow$								
80								
crit								
are								
			5 TPI					
	Invumber of Threads		5	TPI				
Make up	• d		5	TPI				
	Performance	s for Pipe Body		TPI				
up C	 Performance Performance Properties S.M.Y.S. *1 		_		kN			
loss	 Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 	1,144	kips	5,087 66.83	MPa			
up C	d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1	1,144 9,690 4,300	kips psi psi	5,087 66.83 29.66	MPa MPa			
loss Pin	Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec	1,144 9,690 4,300 ified Minimum YIE	kips psi psi ELD Stre	5,087 66.83 29.66 ngth of Pipe bo	MPa MPa dy			
Pin criti	 d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spection M.I.Y.P. = Minimized 	1,144 9,690 4,300 ified Minimum YIE mum Internal Yiek	kips psi psi ELD Stre	5,087 66.83 29.66 ngth of Pipe body re of Pipe body	MPa MPa dy			
Pin criti	 d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Mining *1: BMP P110HSCY: MinYS 	1,144 9,690 4,300 ified Minimum YIE mum Internal Yiek 5125ksi, Min95%V	kips psi psi ELD Stre d Pressu VT, Colla	5,087 66.83 29.66 ngth of Pipe body re of Pipe body	MPa MPa dy			
Pin criti	 d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spection M.I.Y.P. = Minitian *1: BMP P110HSCY: MinYS Performance Properties 	1,144 9,690 4,300 ified Minimum YIE mum Internal Yiek 6125ksi, Min95%V 5 for Connectio	kips psi psi ELD Stre d Pressu VT, Colla	5,087 66.83 29.66 ngth of Pipe body re of Pipe body spse Strength 4,	MPa MPa dy ,300psi			
Pin criti	 d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spection M.I.Y.P. = Minitian *1: BMP P110HSCY: MinYS Performance Properties Tensile Yield load 	1,144 9,690 4,300 ified Minimum YIE mum Internal Yiek 5125ksi, Min95%V 5 for Connectio 789 kips	kips psi psi ELD Stre d Pressu VT, Colla n (69%	5,087 66.83 29.66 ngth of Pipe body re of Pipe body upse Strength 4, of S.M.Y.S.)	MPa MPa dy ,300psi			
Pin criti	 d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spection M.I.Y.P. = Minitive *1: BMP P110HSCY: MinYS Performance Properties Tensile Yield load Min. Compression Yield 	1,144 9,690 4,300 ified Minimum YIE mum Internal Yiek 5125ksi, Min95%V 5 for Connectio 789 kips 789 kips	kips psi psi ELD Stre d Pressu VT, Colla n (69% (69%	5,087 66.83 29.66 ngth of Pipe body upse Strength 4, of S.M.Y.S.)	MPa MPa dy ,300psi			
Pin criti	 d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spection M.I.Y.P. = Minitive *1: BMP P110HSCY: MinYS Performance Properties Tensile Yield load Min. Compression Yield 	1,144 9,690 4,300 ified Minimum YIE mum Internal Yiek 5125ksi, Min95%V 5 for Connectio 789 kips 789 kips	kips psi psi ELD Stre d Pressu VT, Colla n (69% (69% (70%	5,087 66.83 29.66 ngth of Pipe body of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.)	MPa MPa dy ,300psi			
Pin criti	 d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spector M.I.Y.P. = Minitive *1: BMP P110HSCY: MinYS Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure 	1,144 9,690 4,300 ified Minimum YIE mum Internal Yiek 5125ksi, Min95%V 5 for Connectio 789 kips 789 kips	kips psi DStre d Pressu VT, Colla n (69% (69% (70% 100% (5,087 66.83 29.66 ngth of Pipe body apse Strength 4, of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.)	MPa MPa dy ,300psi			
Pin criti	 d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spector M.I.Y.P. = Minitive *1: BMP P110HSCY: MinYS Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure 	1,144 9,690 4,300 ified Minimum YIE mum Internal Yiek 5125ksi, Min95%V 5 for Connectio 789 kips 789 kips	kips psi DStre d Pressu VT, Colla n (69% (69% (70% 100% (5,087 66.83 29.66 ngth of Pipe body apse Strength 4, of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.)	MPa MPa dy ,300psi			
Pin criti	 d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spection Miller S.M.Y.S.= Minite *1: BMP P110HSCY: MinYS Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque 	1,144 9,690 4,300 ified Minimum YIE mum Internal Yiek 5125ksi, Min95%V 5 for Connectio 789 kips 789 kips	kips psi DStre d Pressu VT, Colla n (69% (69% (70% 100% (5,087 66.83 29.66 ngth of Pipe body apse Strength 4, of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.)	MPa MPa dy ,300psi			
Pin criti	 d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spection M.I.Y.P. = Minite *1: BMP P110HSCY: MinYS Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) 	1,144 9,690 4,300 ified Minimum YIE mum Internal Yiek 5125ksi, Min95%V 5 for Connectio 789 kips 789 kips	kips psi DStre d Pressu VT, Colla n (69% (69% (70% 100% (5,087 66.83 29.66 ngth of Pipe body npse Strength 4, of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St 9	MPa MPa dy ,300psi			
Pin criti	 d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spection Miller S.M.Y.S.= Minite *1: BMP P110HSCY: MinYS Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque 	1,144 9,690 4,300 ified Minimum YIE mum Internal Yiek 5125ksi, Min95%V 5 for Connectio 789 kips 789 kips 6,780 psi	kips psi ELD Stre d Pressu VT, Colla n (69% (70% 100% (2	5,087 66.83 29.66 ngth of Pipe body npse Strength 4, of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St 9	MPa MPa dy ,300psi trength			
Pin criti	 d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spection Min. Y.P. = Minite *1: BMP P110HSCY: MinYS Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) 	1,144 9,690 4,300 ified Minimum YIE mum Internal Yiek 5125ksi, Min95%V 5 for Connectio 789 kips 6,780 psi 6,780 psi 13,600 14,900 16,200	kips psi ELD Stre d Pressu VT, Colla n (<u>69%</u> (<u>69%</u> (<u>70%</u>) 100% (<u>2</u> ft-lb ft-lb	5,087 66.83 29.66 ngth of Pipe body npse Strength 4, of S.M.Y.S.) of S.M.Y.S.) of Collapse St 9 18,400 20,200 21,900	MPa MPa dy ,300psi trength N-m			
Pin criti	 d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spection Mine S.M.Y.S.= Spection *1: BMP P110HSCY: MinYS Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) 	1,144 9,690 4,300 ified Minimum YIE mum Internal Yiek 5125ksi, Min95%V 5 for Connectio 789 kips 789 kips 6,780 psi (6,780 psi (13,600 14,900	kips psi ELD Stre d Pressu VT, Colla n (69% (70% 100% (2 ft-lb	5,087 66.83 29.66 ngth of Pipe body npse Strength 4, of S.M.Y.S.) of S.M.Y.S.) of Collapse St 9 18,400 20,200 21,900	MPa MPa dy ,300psi trength N-m N-m			

•

ipe Body: SeAH P110RY(SMYS Coupling: P110CY (SM Connection Da metry be Body ade *1 TYS be OD (D) eight all Thickness (t) be ID (d) ft Dia.	MYS110ksi)	Date Rev. ial ksi	29-3 <u>S.I</u> SeAH P110RY	6.050 P110CY Sep-21 0				
Connection Da metry be Body ade "1 IYS be OD (D) eight all Thickness (t) be ID (d) ft Dia.	ta Sheet Imper SeAH P110RY 110 5.500	Rev.	SeAH P110RY	0				
metry pe Body ade "1 IYS pe OD (D) eight all Thickness (t) pe ID (d) ft Dia.	Imper SeAH P110RY 110 5.500	ial -	SeAH P110RY	•				
be Body ade *1 IYS be OD (D) eight all Thickness (t) be ID (d) ft Dia.	SeAH P110RY 110 5.500	-	SeAH P110RY	<u>.</u>				
ade *1 IYS ee OD (D) eight all Thickness (t) ee ID (d) ft Dia.	SeAH P110RY 110 5.500	-	SeAH P110RY	-				
IYS e OD (D) eight all Thickness (t) be ID (d) ft Dia.	110 5.500	- ksi		SAAH P110PV				
e OD (D) eight all Thickness (t) e ID (d) ft Dia.	5.500	ksi						
eight all Thickness (t) be ID (d) ft Dia.			110	ksi				
all Thickness (t) e ID (d) ft Dia.	20.00	in	139.70	mm				
e ID (d) ft Dia.		lb/ft	29.80	kg/m				
ft Dia.	0.361	in	9.17	mm				
	4.778	in	121.36	mm				
prestion	4.653	in	118.19	mm				
upling SMYS	110	kei.	110	kei.				
upling OD (Wsc1)	6.050	ksi	153.67	ksi				
		in		mm				
				mm				
				2				
				mm"				
	6.00	in ²		mm ²				
read Taper								
mber of Threads		5	TPI					
M.Y.S.		kips	2,852	kN				
				MPa MPa				
				mea				
Pipe: SeAH P110RY (SMYS1)			ody					
rformance Properties for			y: 95% of Nom wall					
. Connection Joint Strength	1	100%	y: 95% of Nom wall of S.M.Y.S.					
Connection Joint Strength Compression Yield	1	00%	of S.M.Y.S.					
a. Connection Joint Strength a. Compression Yield ernal Pressure	1	100% 100% 100% of M.I.V	y: 95% of Nom wall of S.M.Y.S. of S.M.Y.S. Y.P.					
Connection Joint Strength Compression Yield	1	00%	y: 95% of Nom wall of S.M.Y.S. of S.M.Y.S. Y.P.					
Connection Joint Strength Compression Yield ernal Pressure x. DLS (deg. /100ft) commended Torque	1	100% 100% 100% of M.I.\ 100% of Colla 2	y: 95% of Nom wall of S.M.Y.S. of S.M.Y.S. Y.P. pse Strength >90					
Connection Joint Strength Compression Yield ernal Pressure x. DLS (deg. /100ft) commended Torque Min.	1 1 1 1 14,600	100% 100% of M.I.V 100% of Colla 20% of Colla 30% ft-lb	y: 95% of Nom wall of S.M.Y.S. of S.M.Y.S. Y.P. pse Strength >90 19,700	N-m				
Connection Joint Strength Compression Yield ernal Pressure x. DLS (deg. /100ft) Commended Torque Min. Opti.	14,600 16,200	100% 100% of M.I.V 100% of Colla 100% of Colla 100% ft-lb	y: 95% of Nom wall of S.M.Y.S. of S.M.Y.S. Y.P. pse Strength >90 19,700 21,900	N-m				
Connection Joint Strength Compression Yield ernal Pressure x. DLS (deg. /100ft) commended Torque Min.	1 1 1 1 14,600	100% 100% of M.I.V 100% of Colla 20% of Colla 30% ft-lb	y: 95% of Nom wall of S.M.Y.S. of S.M.Y.S. Y.P. pse Strength >90 19,700					
	upling Length (NL) ke up Loss e Critical Area x Critical Area read Taper mber of Threads ormance formance Properties for A.Y.S. .Y.P. *1 lapse Strength Note S.M.Y.S.= Sp M.I.Y.P. = Mi	upling Length (NL) 8.350 ke up Loss 4.125 e Critical Area 5.83 x Critical Area 6.00 read Taper mber of Threads mmance Imperial rformance Properties for Pipe Body M.Y.S. 641 .Y.P. *1 13,720 Ilapse Strength 11,100 Note S.M.Y.S.= Specified Minimum YIELD S M.I.Y.P. Minimum Internal Yield Pre	upling Length (NL) 8.350 in ke up Loss 4.125 in e Critical Area 5.83 in ² x Critical Area 6.00 in ² read Taper 1 / 16 (2000) mber of Threads 5 ormance Imperial rformance Properties for Pipe Body AY.S. 641 V.P. *1 13,720 Iapse Strength 11.100 Note S.M.Y.S.=	upling Length (NL) 8.350 in 212.09 ke up Loss 4.125 in 104.78 e Critical Area 5.83 in ² 3,760 x Critical Area 6.00 in ² 3,874 read Taper 1 / 16 (3/4* per ft) mber of Threads 5 TPI ormance Imperial S.I S.I formance Properties for Pipe Body 4.12.0 psi 94.62 Mays Strength 11,100 psi 76.55 1				

NEW MEXICO (SP) LEA

ROBIN PROJECT ROBIN FED 201H

OWB PWP0

Anticollision Report

22 February, 2024

Anticollision Report

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well ROBIN FED 201H
Project:	(SP) LEA	TVD Reference:	KB @ 3684.0usft
Reference Site:	ROBIN PROJECT	MD Reference:	KB @ 3684.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	ROBIN FED 201H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum
		-	
Reference	PWP0		

Filter type:	NO GLOBAL FILTER: Using user defined selection & filter	ring criteria	
Interpolation Method:	Stations	Error Model:	ISCWSA
Depth Range:	Unlimited	Scan Method:	Closest Approach 3D
Results Limited by:	Maximum centre distance of 800.0usft	Error Surface:	Pedal Curve
Warning Levels Evaluation	ated at: 2.00 Sigma	Casing Method:	Not applied

Survey Tool Pr	ogram	Date 2/22/2024		
From (usft)	To (usft)	Survey (Wellbore)	Tool Name	Description
	0.0 21,667.0) PWP0 (OWB)	MWD	OWSG_Rev2_ MWD - Standard

Summary

1.

Site Name Offset Well - Wellbore - Design	Reference Measured Depth (usft)	Offset Measured Depth (usft)	Dista Between Centres (usft)	ance Between Ellipses (usft)	Separation Factor	Warning
BATMAN						
BATMAN FED COM 126H - OWB - Plan 1 09-19-23 BATMAN FED COM 133H - OWB - AWP BATMAN FED COM 133H - OWB - Plan 3 BATMAN FED COM 133H - OWB - PWP0 BATMAN FED COM 134H - OWB - AWP BATMAN FED COM 134H - OWB - Plan 1 SINAGUA 18 FED 2 - OWB - AWP						Out of range Out of range Out of range Out of range Out of range Out of range Out of range
ROBIN PROJECT						
ROBIN FED 131H - OWB - PWP0 ROBIN FED 131H - OWB - PWP0 ROBIN FED 133H - OWB - PWP0	2,000.0 2,100.0	1,999.0 2,099.0	30.0 31.0	15.9 16.2		CC, ES SF Out of range
ROBIN FED 202H - OWB - PWP0 ROBIN FED 202H - OWB - PWP0 ROBIN FED COM 132H - OWB - PWP0 ROBIN FED COM 132H - OWB - PWP0	2,000.0 2,100.0 2,000.0 2,100.0	1,999.0 2,098.0 2,000.0 2,099.5	60.0 61.8 60.0 61.4	45.9 47.0 45.9 46.5	4.169 4.240	CC, ES

Offeet D	esian RC	DBIN PRO	JECT -	ROBIN FE	D 131H	- OWB - P\	NP0							
Onset D	corgin.												Offset Site Error:	0.0 usft
Survey Prog Refer	gram: 0-l	MWD Off	set	Semi N	lajor Axis		Offset Wellb	ore Centre	Dist	Rule Assig	gned:		Offset Well Error:	0.0 usft
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Öffset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
0.0	0.0	0.0	0.0	0.0	0.0	90.73	-0.4	30.0	30.0					
100.0	100.0	99.0	99.0	0.3	0.3	90.73	-0.4	30.0	30.0	29.5	0.53	56.835		
200.0	200.0	199.0	199.0	0.6	0.6	90.73	-0.4	30.0	30.0	28.8	1.24	24.120		
300.0	300.0	299.0	299.0	1.0	1.0	90.73	-0.4	30.0	30.0	28.0	1.96	15.301		
400.0	400.0	399.0	399.0	1.3	1.3	90.73	-0.4	30.0	30.0	27.3	2.68	11.204		
500.0	500.0	499.0	499.0	1.7	1.7	90.73	-0.4	30.0	30.0	26.6	3.39	8.838		
600.0	600.0	599.0	599.0	2.1	2.1	90.73	-0.4	30.0	30.0	25.9	4.11	7.297		
700.0	700.0	699.0	699.0	2.4	2.4	90.73	-0.4	30.0	30.0	25.2	4.83	6.213		
800.0	800.0	799.0	799.0	2.8	2.8	90.73	-0.4	30.0	30.0	24.5	5.55	5.410		
900.0	900.0	899.0	899.0	3.1	3.1	90.73	-0.4	30.0	30.0	23.7	6.26	4.791		
1,000.0	1,000.0	999.0	999.0	3.5	3.5	90.73	-0.4	30.0	30.0	23.0	6.98	4.299		

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

2/22/2024 6:51:27AM

Anticollision Report

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well ROBIN FED 201H
Project:	(SP) LEA	TVD Reference:	KB @ 3684.0usft
Reference Site:	ROBIN PROJECT	MD Reference:	KB @ 3684.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	ROBIN FED 201H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Offset Design: ROBIN PROJECT - ROBIN FED 131H - OWB - PWP0

				ROBIN FE									Offset Site Error:	0.0 us
Survey Pro	gram: 0-	MWD	t	Semi t			Offeret Marine	oro Contro	D'	Rule Assi	gned:		Offset Well Error:	0.0 us
Refei Measured	rence Vertical	Off Measured			lajor Axis Offset	Highside	Offset Wellb		Dis Between	ance Between	Minimum	Separation	Warning	
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft)	+E/-W (usft)	Centres (usft)	Ellipses (usft)	Separation (usft)		· ·	
1,100.0	1,100.0	1,099.0	1,099.0	3.8	3.8	90.73	-0.4	30.0	30.0	22.3	7.70	3.898		
1,200.0	1,200.0	1,199.0	1,199.0	4.2	4.2	90.73	-0.4	30.0	30.0	21.6	8.41	3.566		
1,300.0	1,300.0	1,299.0	1,299.0	4.6	4.6	90.73	-0.4	30.0	30.0	20.9	9.13	3.286		
1,400.0	1,400.0	1,399.0	1,399.0	4.9	4.9	90.73	-0.4	30.0	30.0	20.2	9.85	3.047		
1,500.0	1,500.0	1,499.0	1,499.0	5.3	5.3	90.73	-0.4	30.0	30.0	19.4	10.56	2.840		
1,600.0	1,600.0	1,599.0	1,599.0	5.6	5.6	90.73	-0.4	30.0	30.0	18.7	11.28	2.660		
1,700.0	1,700.0	1,699.0	1,699.0	6.0	6.0	90.73	-0.4	30.0	30.0	18.0	12.00	2.501		
1,800.0	1,800.0	1,799.0	1,799.0	6.4	6.4	90.73	-0.4	30.0	30.0	17.3	12.71	2.360		
1,900.0	1,900.0	1,899.0	1,899.0	6.7	6.7	90.73	-0.4	30.0	30.0	16.6	13.43	2.234		
2,000.0	2,000.0	1,999.0	1,999.0	7.1	7.1	90.73	-0.4	30.0	30.0	15.9	14.15	2.120 CC	, ES	
2,100.0	2,100.0	2,099.0	2,099.0	7.4	7.4	-126.57	-0.4	30.0	31.0	16.2	14.85	2.088 SF		
2,200.0	2,100.0	2,035.0	2,198.8	7.7	7.8	-133.53	-0.4	30.0	34.4	18.9	15.53	2.214		
2,300.0	2,299.5	2,298.5	2,298.5	8.1	8.1	-142.33	-0.4	30.0	40.9	24.7	16.22	2.521		
2,400.0	2,398.7	2,397.7	2,397.7	8.4	8.5	-150.60	-0.4	30.0	51.1	34.2	16.91	3.022		
2,500.0	2,497.5	2,496.5	2,496.5	8.8	8.9	-157.24	-0.4	30.0	65.2	47.6	17.60	3.705		
0.000.0	0 505 0	0 500 5	0.500.4	0.1	0.0	104 44	0.0	00.0	00.4	00.0	40.07	4 404		
2,600.0	2,595.6	2,596.5	2,596.4	9.1	9.2	-161.44	-2.0	29.9	82.1	63.8	18.27	4.494		
2,700.0	2,693.1	2,696.9	2,696.7	9.5	9.5	-163.27	-7.1	29.5	100.2	81.3	18.92	5.296		
2,800.0	2,789.6	2,797.7	2,797.2	9.9	9.9	-163.73	-15.8	28.9	119.3	99.8	19.57	6.096		
2,900.0	2,885.3	2,898.8	2,897.5	10.3	10.2	-163.37	-28.0	28.1	139.4	119.1	20.23	6.889		
3,000.0	2,980.4	3,000.5	2,997.9	10.7	10.5	-162.41	-43.9	27.0	158.7	137.8	20.89	7.596		
3,100.0	3,075.5	3,102.9	3,098.4	11.2	10.9	-160.76	-63.4	25.7	175.7	154.1	21.57	8.146		
3,200.0	3,170.6	3,205.7	3,198.6	11.7	11.3	-158.54	-86.7	24.1	190.6	168.3	22.28	8.556		
3,300.0	3,265.7	3,306.3	3,295.9	12.2	11.6	-156.02	-112.3	22.3	204.0	181.0	23.04	8.853		
3,400.0	3,360.8	3,405.1	3,391.2	12.7	12.0	-153.77	-137.8	20.6	217.5	193.7	23.84	9.123		
3,500.0	3,455.9	3,503.8	3,486.6	13.2	12.4	-151.79	-163.3	18.8	231.3	206.7	24.66	9.379		
3,600.0	3,551.0	3,602.5	3,582.0	13.7	12.8	-150.04	-188.8	17.0	245.4	219.9	25.50	9.621		
3,700.0	3,646.1	3,701.3	3,677.4	14.2	13.2	-148.47	-214.3	15.3	259.6	233.3	26.36	9.848		
3,800.0	3,741.2	3,800.0	3,772.7	14.7	13.7	-147.07	-239.8	13.5	200.0	246.8	27.24	10.061		
3,900.0	3,836.3	3,898.8	3,868.1	15.3	14.1	-145.80	-265.3	11.8	288.6	260.5	28.13	10.261		
4,000.0	3,931.4	3,997.5	3,963.5	15.8	14.5	-144.66	-290.8	10.0	303.3	274.3	29.03	10.447		
4,100.0	4,026.5	4,096.3	4,058.9	16.4	15.0	-143.63	-316.3	8.3	318.1	288.2	29.95	10.621		
4,200.0	4,121.6	4,195.0	4,154.3	16.9	15.4	-142.68	-341.8	6.5	333.0	302.1	30.88	10.783		
4,300.0	4,216.7	4,293.7	4,249.6	17.5	15.9	-141.82	-367.3	4.8	348.0	316.2	31.83	10.934		
4,400.0 4,500.0	4,311.9 4,407.0	4,392.5 4,491.2	4,345.0 4,440.4	18.0 18.6	16.4 16.8	-141.03 -140.30	-392.8 -418.3	3.0 1.3	363.0 378.1	330.3 344.4	32.78 33.74	11.076 11.208		
4,300.0	4,407.0	4,431.2	4,440.4	10.0	10.0	-140.50	-410.5	1.5	570.1	544.4	55.74	11.200		
4,600.0	4,502.1	4,590.0	4,535.8	19.2	17.3	-139.63	-443.8	-0.5	393.3	358.6	34.71	11.332		
4,700.0	4,597.2	4,688.7	4,631.1	19.7	17.8	-139.01	-469.3	-2.2	408.5	372.8	35.69	11.447		
4,800.0	4,692.3	4,787.5	4,726.5	20.3	18.3	-138.43	-494.7	-4.0	423.8	387.1	36.67	11.556		
4,900.0	4,787.4	4,886.2	4,821.9	20.9	18.8	-137.89	-520.2	-5.7	439.1	401.4	37.66	11.658		
5,000.0	4,882.5	4,984.9	4,917.3	21.5	19.3	-137.39	-545.7	-7.5	454.4	415.7	38.66	11.754		
5,100.0	4,977.6	5,083.7	5,012.7	22.1	19.7	-136.92	-571.2	-9.2	469.8	430.1	39.66	11.843		
5,200.0	5,072.7	5,182.4	5,108.0	22.6	20.2	-136.48	-596.7	-11.0	485.2	444.5	40.67	11.928		
5,300.0	5,167.8	5,281.2	5,203.4	23.2	20.7	-136.07	-622.2	-12.8	500.6	458.9	41.69	12.008		
5,400.0	5,262.9	5,379.9	5,298.8	23.8	21.2	-135.68	-647.7	-14.5	516.0	473.3	42.71	12.083		
5,500.0	5,358.0	5,478.6	5,394.2	24.4	21.7	-135.32	-673.2	-16.3	531.5	487.8	43.73	12.154		
5,600.0	5,453.1	5,577.4	5,489.5	25.0	22.2	-134.97	-698.7	-18.0	547.0	502.2	44.75	12.221		
5,700.0	5,548.2	5,676.1	5,584.9	25.6	22.7	-134.65	-724.2	-19.8	562.5	516.7	45.79	12.285		
5,800.0	5,643.3	5,774.9	5,680.3	26.2	23.2	-134.34	-749.7	-21.5	578.0	531.2	46.82	12.345		
5,900.0	5,738.4	5,873.6	5,775.7	26.8	23.8	-134.05	-775.2	-23.3	593.5	545.7	47.86	12.402		
6,000.0	5,833.5	5,972.4	5,871.1	27.4	24.3	-133.77	-800.7	-25.0	609.1	560.2	48.90	12.456		
6,100.0	5,928.6	6,071.1	5,966.4	28.0	24.8	-133.51	-826.2	-26.8	624.6	574.7	49.94	12.508		
			6,061.8	28.6	25.3			-28.5	640.2	589.2	50.98			

2/22/2024 6:51:27AM

Page 3

Anticollision Report

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well ROBIN FED 201H
Project:	(SP) LEA	TVD Reference:	KB @ 3684.0usft
Reference Site:	ROBIN PROJECT	MD Reference:	KB @ 3684.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	ROBIN FED 201H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Offset Design: ROBIN PROJECT - ROBIN FED 131H - OWB - PWP0

Offset De	esign:RC	JBIN PRO	JECI -	ROBIN FE	D 131H	- OWB - P	WP0						Offset Site Error:	0.0 usft
Survey Prog Refer	gram: 0- rence	MWD Offs	set	Semi N	lajor Axis		Offset Wellb	ore Centre	Dist	Rule Assig	gned:		Offset Well Error:	0.0 usft
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
6,300.0	6,118.9	6,268.6	6,157.2	29.2	25.8	-133.02	-877.2	-30.3	655.8	603.8	52.03	12.604		
6,400.0	6,214.0	6,367.3	6,252.6	29.8	26.3	-132.79	-902.7	-32.0	671.4	618.3	53.08	12.648		
6,500.0	6,309.1	6,466.1	6,347.9	30.4	26.8	-132.57	-928.2	-33.8	687.0	632.9	54.13	12.691		
6,600.0	6,404.2	6,564.8	6,443.3	31.0	27.4	-132.37	-953.7	-35.5	702.6	647.4	55.19	12.731		
6,700.0	6,499.3	6,663.6	6,538.7	31.6	27.9	-132.17	-979.2	-37.3	718.2	662.0	56.24	12.770		
6,800.0	6,594.4	6,762.3	6,634.1	32.2	28.4	-131.98	-1,004.7	-39.0	733.9	676.6	57.30	12.807		
6,900.0	6,689.5	6,861.0	6,729.5	32.8	28.9	-131.80	-1,030.2	-40.8	749.5	691.1	58.36	12.842		
6,919.2	6,707.8	6,880.0	6,747.8	32.9	29.0	-131.76	-1,035.1	-41.1	752.5	693.9	58.57	12.849		
7,000.0	6,784.8	6,959.8	6,824.9	33.4	29.4	-131.68	-1,055.7	-42.6	764.8	705.3	59.43	12.869		
7,100.0	6,880.6	7,058.7	6,920.4	33.9	30.0	-131.49	-1,081.2	-44.3	778.9	718.4	60.49	12.876		
7,200.0	6,976.8	7,157.7	7,016.1	34.5	30.5	-131.21	-1,106.8	-46.1	792.0	730.4	61.56	12.864		

Anticollision Report

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well ROBIN FED 201H
Project:	(SP) LEA	TVD Reference:	KB @ 3684.0usft
Reference Site:	ROBIN PROJECT	MD Reference:	KB @ 3684.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	ROBIN FED 201H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Offset Design: ROBIN PROJECT - ROBIN FED 202H - OWB - PWP0

Offset D	esign:R	JBIN PRO	JECT -	ROBIN FE	D 202H	- OWB - P\	WP0						Offset Site Error:	0.0 usft
Survey Pro Refe	gram: 0-	MWD								Rule Assig	gned:		Offset Well Error:	0.0 usft
Refer Measured	Vertical	Off Measured	set Vertical		Aajor Axis Offset	Highside	Offset Wellb	ore Centre	Dist Between	tance Between	-	Separation	Warning	
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft)	+E/-W (usft)	Centres (usft)	Ellipses (usft)	Separation (usft)		Warning	
0.0	0.0	0.0	0.0	0.0	0.0	90.73	-0.8	60.0	60.0	(/	(****)			
100.0	100.0	99.0	99.0	0.3	0.3	90.73	-0.8	60.0	60.0	59.5	0.53	113.670		
200.0	200.0	199.0	199.0	0.6	0.6	90.73	-0.8	60.0	60.0	58.8	1.24	48.239		
300.0	300.0	299.0	299.0	1.0	1.0	90.73	-0.8	60.0	60.0	58.0	1.96	30.602		
400.0	400.0	399.0	399.0	1.3	1.3	90.73	-0.8	60.0	60.0	57.3	2.68	22.408		
500.0	500.0	499.0	499.0	1.7	1.7	90.73	-0.8	60.0	60.0	56.6	3.39	17.676		
600.0	600.0	599.0	599.0	2.1	2.1	90.73	-0.8	60.0	60.0	55.9	4.11	14.594		
700.0	700.0	699.0	699.0	2.4	2.4	90.73	-0.8	60.0	60.0	55.2	4.83	12.427		
800.0	800.0	799.0	799.0	2.8	2.8	90.73	-0.8	60.0	60.0	54.5	5.55	10.820		
900.0	900.0	899.0	899.0	3.1	3.1	90.73	-0.8	60.0	60.0	53.7	6.26	9.582		
1,000.0	1,000.0	999.0	999.0	3.5	3.5	90.73	-0.8	60.0	60.0	53.0	6.98	8.597		
1,100.0	1,100.0	1,099.0	1,099.0	3.8	3.8	90.73	-0.8	60.0	60.0	52.3	7.70	7.796		
1,200.0	1,200.0	1,199.0	1,199.0	4.2	4.2	90.73	-0.8	60.0	60.0	51.6	8.41	7.132		
1,300.0	1,300.0	1,299.0	1,299.0	4.6	4.6	90.73	-0.8	60.0	60.0	50.9	9.13	6.572		
1,400.0	1,400.0	1,399.0	1,399.0	4.9	4.9	90.73	-0.8	60.0	60.0	50.2	9.85	6.094		
1,500.0	1,500.0	1,499.0	1,499.0	5.3	5.3	90.73	-0.8	60.0	60.0	49.4	10.56	5.680		
1,600.0	1,600.0	1,599.0	1,599.0	5.6	5.6	90.73	-0.8	60.0	60.0	48.7	11.28	5.319		
1,700.0	1,700.0	1,699.0	1,699.0	6.0	6.0	90.73	-0.8	60.0	60.0	48.0	12.00	5.001		
1,800.0	1,800.0	1,799.0	1,799.0	6.4	6.4	90.73	-0.8	60.0	60.0	47.3	12.71	4.719		
1,900.0	1,900.0	1,899.0	1,899.0	6.7	6.7	90.73	-0.8	60.0	60.0	46.6	13.43	4.467		
2,000.0	2,000.0	1,999.0	1,999.0	7.1	7.1	90.73	-0.8	60.0	60.0	45.9	14.15	4.241 CC	C, ES	
2,100.0	2,100.0	2,098.0	2,097.9	7.4	7.4	-123.85	-2.2	60.8	61.8	47.0	14.83	4.169 SF		
2,200.0	2,199.8	2,196.7	2,196.6	7.7	7.7	-123.65	-6.7	63.2	67.2	51.8	15.47	4.346		
2,300.0	2,299.5	2,295.1	2,294.6	8.1	8.1	-123.34	-14.1	67.3	76.3	60.2	16.11	4.733		
2,400.0	2,398.7	2,392.9	2,391.7	8.4	8.4	-122.98	-24.4	72.8	88.9	72.1	16.76	5.304		
2,500.0	2,497.5	2,490.0	2,487.6	8.8	8.7	-122.60	-37.5	80.0	105.1	87.7	17.41	6.035		
2,600.0	2,595.6	2,586.1	2,582.0	9.1	9.1	-122.21	-53.3	88.5	124.8	106.7	18.07	6.903		
2,700.0	2,693.1	2,681.1	2,674.7	9.5	9.4	-121.83	-71.6	98.5	147.9	129.1	18.75	7.888		
2,800.0	2,789.6	2,775.7	2,766.3	9.9	9.8	-121.47	-92.4	109.8	174.3	154.9	19.45	8.964		
2,900.0	2,885.3	2,871.5	2,858.8	10.3	10.2	-121.70	-114.2	121.6	202.9	182.7	20.21	10.043		
3,000.0	2,980.4	2,967.0	2,951.0	10.7	10.6	-122.64	-135.9	133.4	232.5	211.5	20.99	11.074		
3,100.0	3,075.5	3,062.4	3,043.2	11.2	11.0	-123.37	-157.6	145.2	262.0	240.3	21.79	12.023		
3,200.0	3,170.6	3,157.9	3,135.5	11.7	11.4	-123.94	-179.3	157.0	291.7	269.0	22.62	12.896		
3,300.0	3,265.7	3,253.4	3,227.7	12.2	11.8	-124.42	-201.0	168.8	321.3	297.8	23.46	13.698		
3,400.0 3,500.0	3,360.8 3,455.9	3,348.9 3,444.3	3,319.9 3,412.1	12.7 13.2	12.3 12.7	-124.81 -125.14	-222.7 -244.4	180.6 192.4	351.0 380.6	326.6 355.4	24.31 25.18	14.436 15.117		
3,600.0	3,551.0	3,539.8	3,504.4	13.7	13.2	-125.42	-266.1	204.2	410.3	384.2	26.06	15.745		
3,700.0	3,646.1 3,741.2	3,635.3 3,730.8	3,596.6 3,688.8	14.2 14.7	13.6	-125.67 -125.88	-287.8 -309.6	216.0	440.0	413.0 441.8	26.95 27.85	16.325 16.863		
3,800.0 3,900.0	3,741.2	3,730.8 3,826.2		14.7	14.1 14.5	-125.88 -126.07	-309.6 -331.3	227.8 239.6	469.7	441.8 470.6	27.85 28.76	16.863		
3,900.0 4,000.0	3,836.3	3,826.2 3,921.7	3,781.0 3,873.3	15.3	14.5 15.0	-126.07 -126.24	-331.3 -353.0	239.6 251.4	499.4 529.1	470.6 499.4	28.76 29.68	17.361 17.824		
4,100.0	4,026.5	4,017.2	3,965.5	16.4	15.5	-126.39	-374.7	263.2	558.8	528.2	30.61	18.254		
4,200.0	4,121.6	4,112.7	4,057.7	16.9	16.0	-126.52	-396.4	275.0	588.5	556.9	31.55	18.655		
4,300.0	4,216.7	4,208.1	4,149.9	17.5	16.4	-126.64	-418.1	286.8	618.2	585.7	32.49	19.030		
4,400.0	4,311.9	4,303.6	4,242.1	18.0 18.6	16.9 17.4	-126.75	-439.8	298.6	647.9 677.6	614.5 643.2	33.43	19.380		
4,500.0	4,407.0	4,399.1	4,334.4	18.6	17.4	-126.85	-461.5	310.4	677.6	643.2	34.38	19.707		
4,600.0	4,502.1	4,494.6	4,426.6	19.2	17.9	-126.95	-483.3	322.2	707.3	672.0	35.34	20.014		
4,700.0	4,597.2	4,590.1	4,518.8	19.7	18.4	-127.03	-505.0	334.0	737.1	700.8	36.30	20.303		
4,800.0	4,692.3	4,685.5	4,611.0	20.3	18.9	-127.11	-526.7	345.8	766.8	729.5	37.27	20.574		
4,900.0	4,787.4	4,781.0	4,703.3	20.9	19.4	-127.18	-548.4	357.6	796.5	758.3	38.24	20.830		

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

2/22/2024 6:51:27AM

Page 5

Anticollision Report

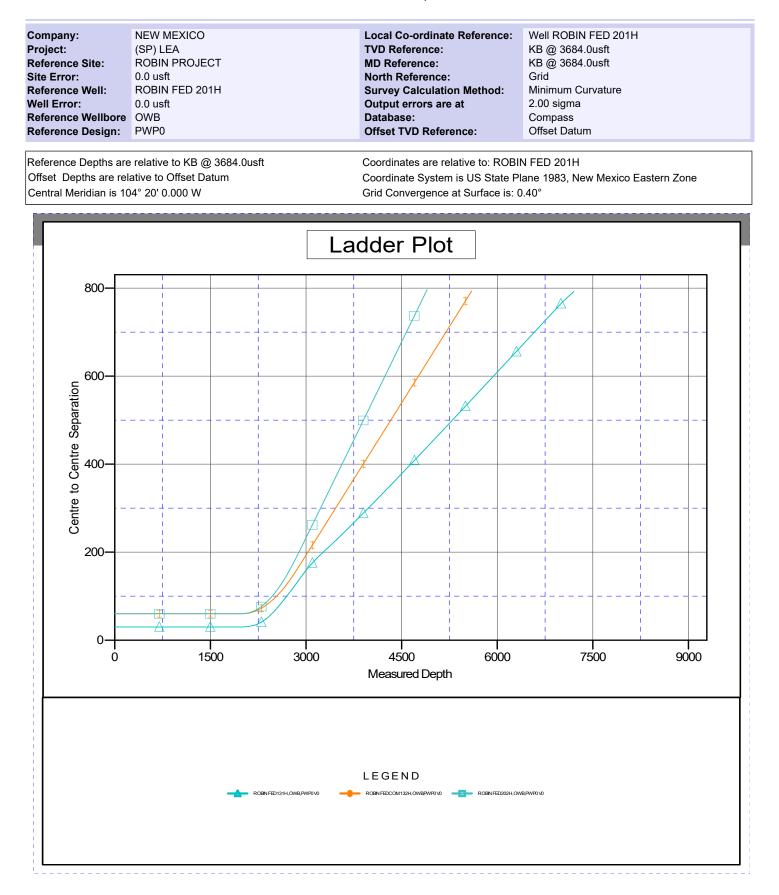
Company:	NEW MEXICO	Local Co-ordinate Reference:	Well ROBIN FED 201H
Project:	(SP) LEA	TVD Reference:	KB @ 3684.0usft
Reference Site:	ROBIN PROJECT	MD Reference:	KB @ 3684.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	ROBIN FED 201H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Offset Design: ROBIN PROJECT - ROBIN FED COM 132H - OWB - PWP0

rvey Pro		MWD	ot	Cam! I			Offset Wellb	oro Contro	D'	Rule Assig	gned:	(Offset Well Error:	0.0 เ
	rence Vertical Depth (usft)	Off Measured Depth (usft)		(usft)	laior Axis Offset (usft)	Highside Toolface	+N/-S (usft)	ore Centre +E/-W (usft)	Dist Between Centres (usft)	ance Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
(usit) 0.0	(usit) 0.0	(usit) 0.0	(USII) 0.0	(usit) 0.0	(usit) 0.0	(°) 90.73	-0.8	60.0	(USII) 60.0	(usit)	(usit)			
100.0	100.0	100.0	100.0	0.3	0.3	90.73	-0.8	60.0	60.0	59.5	0.53	113.102		
200.0	200.0	200.0	200.0	0.6	0.6	90.73	-0.8	60.0	60.0	58.8	1.25	48.101		
300.0	300.0	300.0	300.0	1.0	1.0	90.73	-0.8	60.0	60.0	58.0	1.20	30.546		
400.0	400.0	400.0	400.0	1.0	1.3	90.73	-0.8	60.0	60.0	57.3	2.68	22.378		
400.0 500.0	500.0	500.0	400.0 500.0	1.5	1.5	90.73	-0.8	60.0	60.0	56.6	3.40	17.657		
600.0	600.0	600.0	600.0	2.1	2.1	90.73	-0.8	60.0	60.0	55.9	4.12	14.581		
700.0	700.0	700.0	700.0	2.4	2.4	90.73	-0.8	60.0	60.0	55.2	4.83	12.418		
800.0	800.0	800.0	800.0	2.8	2.8	90.73	-0.8	60.0	60.0	54.5	5.55	10.813		
900.0	900.0	900.0	900.0	3.1	3.1	90.73	-0.8	60.0	60.0	53.7	6.27	9.576		
1,000.0	1,000.0	1,000.0	1,000.0	3.5	3.5	90.73	-0.8	60.0	60.0	53.0	6.98	8.593		
1,100.0	1,100.0	1,100.0	1,100.0	3.8	3.8	90.73	-0.8	60.0	60.0	52.3	7.70	7.793		
1,200.0	1,200.0	1,200.0	1,200.0	4.2	4.2	90.73	-0.8	60.0	60.0	51.6	8.42	7.129		
1,300.0	1,300.0	1,300.0	1,300.0	4.6	4.6	90.73	-0.8	60.0	60.0	50.9	9.13	6.569		
1,400.0	1,400.0	1,400.0	1,400.0	4.9	4.9	90.73	-0.8	60.0	60.0	50.2	9.85	6.091		
1,500.0	1,500.0	1,500.0	1,500.0	5.3	5.3	90.73	-0.8	60.0	60.0	49.4	10.57	5.678		
1,600.0	1,600.0	1,600.0	1,600.0	5.6	5.6	90.73	-0.8	60.0	60.0	48.7	11.28	5.317		
1,700.0	1,700.0	1,700.0	1,700.0	6.0	6.0	90.73	-0.8	60.0	60.0	48.0	12.00	5.000		
1,800.0	1,800.0	1,800.0	1,800.0	6.4	6.4	90.73	-0.8	60.0	60.0	47.3	12.72	4.718		
1,900.0	1,900.0	1,900.0	1,900.0	6.7	6.7	90.73	-0.8	60.0	60.0	46.6	13.44	4.466		
2,000.0	2,000.0	2,000.0	2,000.0	7.1	7.1	90.73	-0.8	60.0	60.0	45.9	14.15	4.240 CC,	ES	
2,100.0	2,100.0	2,099.5	2,099.5	7.4	7.4	-123.66	-2.4	60.4	61.4	46.5	14.83	4.138 SF		
2,200.0	2,199.8	2,198.9	2,198.7	7.7	7.7	-122.98	-7.5	61.5	65.5	50.0	15.48	4.232		
2,300.0	2,299.5	2,298.0	2,297.5	8.1	8.1	-122.01	-15.9	63.4	72.4	56.3	16.13	4.489		
2,400.0	2,398.7	2,396.8	2,395.6	8.4	8.4	-120.91	-27.5	66.0	82.1	65.3	16.79	4.887		
2,500.0	2,497.5	2,495.2	2,492.7	8.8	8.7	-119.80	-42.4	69.4	94.5	77.0	17.46	5.410		
2,600.0	2,595.6	2,593.0	2,588.8	9.1	9.1	-118.76	-60.4	73.4	109.6	91.4	18.14	6.040		
2,700.0	2,693.1	2,690.1	2,683.5	9.5	9.4	-117.80	-81.5	78.2	127.4	108.6	18.85	6.761		
2,800.0	2,789.6	2,787.1	2,777.3	9.9	9.8	-117.02	-105.4	83.6	147.8	128.2	19.58	7.549		
2,900.0	2,885.3	2,884.6	2,871.5	10.3	10.2	-117.17	-130.0	89.1	170.0	149.6	20.36	8.347		
3,000.0	2,980.4	2,981.9	2,965.5	10.7	10.6	-118.06	-154.6	94.6	192.9	171.8	21.17	9.112		
3,100.0	3,075.5	3,079.2	3,059.5	11.2	11.0	-118.77	-179.1	100.2	216.0	193.9	22.01	9.813		
3,200.0	3,170.6	3,176.5	3,153.4	11.7	11.5	-119.34	-203.7	105.7	239.0	216.1	22.86	10.454		
3,300.0	3,265.7	3,273.8	3,247.4	12.2	11.9	-119.81	-228.2	111.2	262.0	238.3	23.73	11.042		
3,400.0	3,360.8	3,371.1	3,341.4	12.7	12.3	-120.21	-252.8	116.8	285.1	260.5	24.62	11.581		
3,500.0	3,455.9	3,468.4	3,435.3	13.2	12.8	-120.54	-277.4	122.3	308.2	282.7	25.52	12.075		
3,600.0	3,551.0	3,565.6	3,529.3	13.7	13.2	-120.83	-301.9	127.8	331.3	304.8	26.44	12.530		
3,700.0	3,646.1	3,662.9	3,623.3	14.2	13.7	-121.08	-326.5	133.4	354.4	327.0	27.37	12.949		
3,800.0	3,741.2	3,760.2	3,717.3	14.7	14.2	-121.30	-351.1	138.9	377.4	349.1	28.30	13.335		
3,900.0	3,836.3	3,857.5	3,811.2	15.3	14.6	-121.50	-375.6	144.4	400.6	371.3	29.25	13.692		
4,000.0	3,931.4	3,954.8	3,905.2	15.8	15.1	-121.67	-400.2	149.9	423.7	393.4	30.21	14.023		
4,100.0	4,026.5	4,052.1	3,999.2	16.4	15.6	-121.82	-424.8	155.5	446.8	415.6	31.18	14.330		
4,200.0	4,121.6	4,149.4	4,093.1	16.9	16.1	-121.96	-449.3	161.0	469.9	437.7	32.15	14.615		
4,300.0	4,216.7	4,246.6	4,187.1	17.5	16.6	-122.09	-473.9	166.5	493.0	459.9	33.13	14.880		
4,400.0	4,311.9	4,343.9	4,281.1	18.0	17.1	-122.21	-498.5	172.1	516.1	482.0	34.12	15.128		
4,500.0	4,407.0	4,441.2	4,375.1	18.6	17.6	-122.31	-523.0	177.6	539.2	504.1	35.11	15.359		
4,600.0	4,502.1	4,538.5	4,469.0	19.2	18.0	-122.41	-547.6	183.1	562.3	526.2	36.11	15.575		
4,700.0	4,597.2	4,635.8	4,563.0	19.7	18.5	-122.50	-572.1	188.7	585.5	548.4	37.11	15.777		
4,800.0	4,692.3	4,733.1	4,657.0	20.3	19.0	-122.58	-596.7	194.2	608.6	570.5	38.11	15.968		
4,900.0	4,787.4	4,830.4	4,750.9	20.9	19.5	-122.66	-621.3	199.7	631.7	592.6	39.12	16.146		
5,000.0	4,882.5	4,927.7	4,844.9	21.5	20.0	-122.73	-645.8	205.3	654.8	614.7	40.14	16.314		
5,100.0	4,977.6	5,024.9	4,938.9	22.1	20.6	-122.80	-670.4	210.8	678.0	636.8	41.16	16.473		

2/22/2024 6:51:27AM

Anticollision Report


Company:	NEW MEXICO	Local Co-ordinate Reference:	Well ROBIN FED 201H
Project:	(SP) LEA	TVD Reference:	KB @ 3684.0usft
Reference Site:	ROBIN PROJECT	MD Reference:	KB @ 3684.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	ROBIN FED 201H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Offset Design: ROBIN PROJECT - ROBIN FED COM 132H - OWB - PWP0	
--	--

Offset Design: ROBIN PROJECT - ROBIN FED COM 132H - OWB - PWP0										Offset Site Error:	0.0 usft			
Refer	Reference Offset Semi Major Axis Offset Wellbore Centre Distance								Offset Well Error: Warning	0.0 usft				
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft)	+E/-W (usft)	Centres (usft)	Ellipses (usft)	Separation (usft)	-	Warning	
5,200.0	5,072.7	5,122.2	5,032.9	22.6	21.1	-122.86	-695.0	216.3	701.1	658.9	42.18	16.623		
5,300.0	5,167.8	5,219.5	5,126.8	23.2	21.6	-122.92	-719.5	221.9	724.2	681.0	43.20	16.764		
5,400.0	5,262.9	5,316.8	5,220.8	23.8	22.1	-122.97	-744.1	227.4	747.3	703.1	44.23	16.898		
5,500.0	5,358.0	5,414.1	5,314.8	24.4	22.6	-123.02	-768.7	232.9	770.5	725.2	45.26	17.025		
5,600.0	5,453.1	5,511.4	5,408.7	25.0	23.1	-123.07	-793.2	238.5	793.6	747.3	46.29	17.145		

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Anticollision Report


CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

2/22/2024 6:51:27AM

Anticollision Report

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well ROBIN FED 201H
Project:	(SP) LEA	TVD Reference:	KB @ 3684.0usft
Reference Site:	ROBIN PROJECT	MD Reference:	KB @ 3684.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	ROBIN FED 201H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Reference Depths are relative to KB @ 3684.0usft Offset Depths are relative to Offset Datum Central Meridian is 104° 20' 0.000 W Coordinates are relative to: ROBIN FED 201H Coordinate System is US State Plane 1983, New Mexico Eastern Zone Grid Convergence at Surface is: 0.40°

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

2/22/2024 6:51:27AM

NEW MEXICO

(SP) LEA ROBIN PROJECT ROBIN FED 201H

OWB

Plan: PWP0

Standard Planning Report - Geographic

22 February, 2024

Planning Report - Geographic

Database: Company: Project: Site: Well: Well: Wellbore: Design:	NE (SF RC				TVD Refe MD Refe North Re			Well ROBIN Ff KB @ 3684.0u KB @ 3684.0u Grid Minimum Curv	isft	
Project	(SP) LEA								
Map System: Geo Datum: Map Zone:	North	tate Plane 198 American Dat Mexico Easter	um 1983		System D	atum:	M	ean Sea Level		
Site	RO	BIN PROJECT								
Site Position: From: Position Unce		1 ар 0.0	North Easti usft Slot I	•	773,9	35.84 usft 996.49 usft 3-3/16 "	Latitude: Longitude:			32° 33' 4.851 N 103° 34' 41.691 W
Well	ROE	IN FED 201H								
Well Position Position Unce Grid Converge	-	N	0.0 usft E a	orthing: asting: /ellhead Elev	vation:	566,588.60 771,329.69	usft Loi	itude: ngitude: ound Level:		32° 33' 19.412 N 103° 35' 12.727 W 3,658.0 usft
Wellbore	OW	/B								
Magnetics	Ν	lodel Name	Sampl	e Date	Declina (°)		Dip A (°		Field St (n	
		IGRF20051	0 12	2/31/2009		7.78		60.55	48,989	.99053353
Design	PW	D 0								
Audit Notes: Version:			Phas	se: I	PROTOTYPE	Tie	e On Depth:		0.0	
Vertical Section	on:	[Depth From (T (usft) 0.0	'VD)	+N/-S (usft) 0.0	(u:	/ -W sft) .0		ection (°) 3.87	
						-				
Plan Survey T Depth Fro	om De	pth To	e 2/22/2024		Tool Name		Demerika			
(usft) 1		usft) Surve			MWD		Remarks			
I	0.0 2	1,007.01 001	0 (000)			2_ MWD - St	ar			
Plan Sections										
Measured Depth I (usft)	nclinatior (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.0	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,000.0	0.0			0.0	0.0	0.00	0.00	0.00	0.00	
2,900.0	18.0			-115.4	-79.7 795 5	2.00	2.00	0.00	214.63	
6,919.2 8,719.2	18.0 0.0			-1,137.3 -1,368.0	-785.5 -944.9	0.00 1.00	0.00 -1.00	0.00 0.00	0.00 180.00	
0,119.2				-1,368.0 -1,368.0	-944.9 -944.9	0.00	0.00	0.00	0.00	
10 939 /										
10,939.4 11,689.4	0.0 90.0			-890.6	-946.3	12.00	12.00	-0.02	359.83	

2/22/2024 6:50:42AM

Released to Imaging: 3/19/2024 10:50:20 AM

Planning Report - Geographic

Database:	Compass	Local Co-ordinate Reference:	Well ROBIN FED 201H
Company:	NEW MEXICO	TVD Reference:	KB @ 3684.0usft
Project:	(SP) LEA	MD Reference:	KB @ 3684.0usft
Site:	ROBIN PROJECT	North Reference:	Grid
Well:	ROBIN FED 201H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	PWP0		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
0.0		0.00	0.0	0.0	0.0	566,588.60	771,329.69	32° 33' 19.412 N	103° 35' 12.727 W
100.0	0.00	0.00	100.0	0.0	0.0	566,588.60	771,329.69	32° 33' 19.412 N	103° 35' 12.727 W
200.0	0.00	0.00	200.0	0.0	0.0	566,588.60	771,329.69	32° 33' 19.412 N	103° 35' 12.727 W
300.0	0.00	0.00	300.0	0.0	0.0	566,588.60	771,329.69	32° 33' 19.412 N	103° 35' 12.727 W
400.0	0.00	0.00	400.0	0.0	0.0	566,588.60	771,329.69	32° 33' 19.412 N	103° 35' 12.727 W
500.0	0.00	0.00	500.0	0.0	0.0	566,588.60	771,329.69	32° 33' 19.412 N	103° 35' 12.727 W
600.0	0.00	0.00	600.0	0.0	0.0	566,588.60	771,329.69	32° 33' 19.412 N	103° 35' 12.727 W
700.0	0.00	0.00	700.0	0.0	0.0	566,588.60	771,329.69	32° 33' 19.412 N	103° 35' 12.727 W
800.0	0.00	0.00	800.0	0.0	0.0	566,588.60	771,329.69	32° 33' 19.412 N	103° 35' 12.727 W
900.0	0.00	0.00	900.0	0.0	0.0	566,588.60	771,329.69	32° 33' 19.412 N	103° 35' 12.727 W
1,000.0	0.00	0.00	1,000.0	0.0	0.0	566,588.60	771,329.69	32° 33' 19.412 N	103° 35' 12.727 W
1,100.0	0.00	0.00	1,100.0	0.0	0.0	566,588.60	771,329.69	32° 33' 19.412 N	103° 35' 12.727 W
1,200.0	0.00	0.00	1,200.0	0.0	0.0	566,588.60	771,329.69	32° 33' 19.412 N	103° 35' 12.727 W
1,300.0	0.00	0.00	1,300.0	0.0	0.0	566,588.60	771,329.69	32° 33' 19.412 N	103° 35' 12.727 W
1,400.0	0.00	0.00	1,400.0	0.0	0.0	566,588.60	771,329.69	32° 33' 19.412 N	103° 35' 12.727 W
1,500.0	0.00	0.00	1,500.0	0.0	0.0	566,588.60	771,329.69	32° 33' 19.412 N	103° 35' 12.727 W
1,600.0	0.00	0.00	1,600.0	0.0	0.0	566,588.60	771,329.69	32° 33' 19.412 N	103° 35' 12.727 W
1,700.0	0.00	0.00	1,700.0	0.0	0.0	566,588.60	771,329.69	32° 33' 19.412 N	103° 35' 12.727 W
1,800.0	0.00	0.00	1,800.0	0.0	0.0	566,588.60	771,329.69	32° 33' 19.412 N	103° 35' 12.727 W
1,900.0	0.00	0.00	1,900.0	0.0	0.0	566,588.60	771,329.69	32° 33' 19.412 N	103° 35' 12.727 W
2,000.0	0.00	0.00	2,000.0	0.0	0.0	566,588.60	771,329.69	32° 33' 19.412 N	103° 35' 12.727 W
	uild 2.00								
2,100.0		214.63	2,100.0	-1.4	-1.0	566,587.17	771,328.70	32° 33' 19.398 N	103° 35' 12.739 W
2,200.0		214.63	2,199.8	-5.7	-4.0	566,582.86	771,325.72	32° 33' 19.355 N	103° 35' 12.774 W
2,300.0	6.00	214.63	2,299.5	-12.9	-8.9	566,575.69	771,320.77	32° 33' 19.285 N	103° 35' 12.833 W
2,400.0	8.00	214.63	2,398.7	-22.9	-15.8	566,565.66	771,313.84	32° 33' 19.186 N	103° 35' 12.914 W
2,500.0		214.63	2,497.5	-35.8	-24.7	566,552.79	771,304.95	32° 33' 19.059 N	103° 35' 13.019 W
2,600.0	12.00	214.63	2,595.6	-51.5	-35.6	566,537.09	771,294.11	32° 33' 18.905 N	103° 35' 13.147 W
2,700.0	14.00	214.63	2,693.1	-70.0	-48.4	566,518.58	771,281.33	32° 33' 18.723 N	103° 35' 13.298 W
2,800.0 2,900.0	16.00 18.00	214.63 214.63	2,789.6 2,885.3	-91.3 -115.4	-63.1 -79.7	566,497.29 566,473.23	771,266.62 771,250.00	32° 33' 18.513 N 32° 33' 18.276 N	103° 35' 13.472 W 103° 35' 13.668 W
-)19.2 hold at			-115.4	-19.1	500,475.25	771,230.00	JZ JJ 10.270 N	103 33 13.000 W
3,000.0		214.63	2,980.4	-140.8	-97.2	566,447.81	771,232.44	32° 33' 18.026 N	103° 35' 13.875 W
3,100.0	18.00	214.63	3,075.5	-166.2	-114.8	566,422.38	771,214.88	32° 33' 17.775 N	103° 35' 14.082 W
3,200.0	18.00	214.63	3,170.6	-191.6	-132.4	566,396.96	771,197.32	32° 33' 17.525 N	103° 35' 14.290 W
3,300.0	18.00	214.63	3,265.7	-217.1	-149.9	566,371.53	771,179.76	32° 33' 17.275 N	103° 35' 14.497 W
3,400.0	18.00	214.63	3,360.8	-242.5	-167.5	566,346.10	771,162.19	32° 33' 17.024 N	103° 35' 14.704 W
3,500.0	18.00	214.63	3,455.9	-267.9	-185.1	566,320.68	771,144.63	32° 33' 16.774 N	103° 35' 14.911 W
3,600.0	18.00	214.63	3,551.0	-293.4	-202.6	566,295.25	771,127.07	32° 33' 16.523 N	103° 35' 15.119 W
3,700.0	18.00	214.63	3,646.1	-318.8	-220.2	566,269.82	771,109.51	32° 33' 16.273 N	103° 35' 15.326 W
3,800.0	18.00	214.63	3,741.2	-344.2	-237.7	566,244.40	771,091.95	32° 33' 16.023 N	103° 35' 15.533 W
3,900.0	18.00	214.63	3,836.3	-369.6	-255.3	566,218.97	771,074.38	32° 33' 15.772 N	103° 35' 15.740 W
4,000.0		214.63	3,931.4	-395.1	-272.9	566,193.54	771,056.82	32° 33' 15.522 N	103° 35' 15.948 W
4,100.0	18.00	214.63	4,026.5	-420.5	-290.4	566,168.12	771,039.26	32° 33' 15.272 N	103° 35' 16.155 W
4,200.0	18.00	214.63	4,121.6	-445.9	-308.0	566,142.69	771,021.70	32° 33' 15.021 N	103° 35' 16.362 W
4,300.0		214.63	4,216.7	-471.3	-325.6	566,117.27	771,004.14	32° 33' 14.771 N	103° 35' 16.570 W
4,400.0		214.63	4,311.9	-496.8	-343.1	566,091.84	770,986.57	32° 33' 14.520 N	103° 35' 16.777 W
4,500.0		214.63	4,407.0	-522.2	-360.7	566,066.41	770,969.01	32° 33' 14.270 N	103° 35' 16.984 W
4,600.0		214.63	4,502.1	-547.6	-378.2	566,040.99	770,951.45	32° 33' 14.020 N	103° 35' 17.191 W
4,700.0		214.63	4,597.2	-573.0	-395.8	566,015.56	770,933.89	32° 33' 13.769 N	103° 35' 17.399 W
4,800.0		214.63	4,692.3	-598.5	-413.4	565,990.13	770,916.33	32° 33' 13.519 N	103° 35' 17.606 W
4,900.0		214.63	4,787.4	-623.9	-430.9	565,964.71	770,898.77	32° 33' 13.269 N	103° 35' 17.813 W
5,000.0		214.63	4,882.5	-649.3	-448.5	565,939.28	770,881.20	32° 33' 13.018 N	103° 35' 18.020 W
5,100.0	18.00	214.63	4,977.6	-674.7	-466.0	565,913.86	770,863.64	32° 33' 12.768 N	103° 35' 18.228 W

2/22/2024 6:50:42AM

Released to Imaging: 3/19/2024 10:50:20 AM

Planning Report - Geographic

Database:	Compass	Local Co-ordinate Reference:	Well ROBIN FED 201H
Company:	NEW MEXICO	TVD Reference:	KB @ 3684.0usft
Project:	(SP) LEA	MD Reference:	KB @ 3684.0usft
Site:	ROBIN PROJECT	North Reference:	Grid
Well:	ROBIN FED 201H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	PWP0		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
. ,									-
5,200.0		214.63	5,072.7	-700.2	-483.6	565,888.43	770,846.08	32° 33' 12.517 N	103° 35' 18.435 W
5,300.0		214.63	5,167.8	-725.6	-501.2	565,863.00	770,828.52	32° 33' 12.267 N 32° 33' 12.017 N	103° 35' 18.642 W 103° 35' 18.849 W
5,400.0 5,500.0		214.63 214.63	5,262.9 5,358.0	-751.0 -776.5	-518.7 -536.3	565,837.58 565,812.15	770,810.96 770,793.39	32° 33' 11.766 N	103° 35' 19.057 W
5,600.0 5,700.0		214.63 214.63	5,453.1 5,548.2	-801.9 -827.3	-553.9 -571.4	565,786.72 565,761.30	770,775.83 770,758.27	32° 33' 11.516 N 32° 33' 11.266 N	103° 35' 19.264 W 103° 35' 19.471 W
5,800.0		214.03	5,643.3	-852.7	-589.0	565,735.87	770,740.71	32° 33' 11.015 N	103° 35' 19.471 W
5,900.0		214.03	5,738.4	-878.2	-606.5	565,710.44	770,723.15	32° 33' 10.765 N	103° 35' 19.886 W
6,000.0		214.03	5,833.5	-903.6	-624.1	565,685.02	770,705.59	32° 33' 10.515 N	103° 35' 20.093 W
6,100.0		214.63	5,928.6	-929.0	-641.7	565,659.59	770,688.02	32° 33' 10.264 N	103° 35' 20.300 W
6,200.0		214.63	6,023.8	-954.4	-659.2	565,634.17	770,670.46	32° 33' 10.014 N	103° 35' 20.507 W
6,300.0		214.63	6,118.9	-979.9	-676.8	565,608.74	770,652.90	32° 33' 9.763 N	103° 35' 20.715 W
6,400.0		214.63	6,214.0	-1,005.3	-694.3	565,583.31	770,635.34	32° 33' 9.513 N	103° 35' 20.922 W
6,500.0		214.63	6,309.1	-1,030.7	-711.9	565,557.89	770,617.78	32° 33' 9.263 N	103° 35' 21.129 W
6,600.0		214.63	6,404.2	-1,056.1	-729.5	565,532.46	770,600.21	32° 33' 9.012 N	103° 35' 21.336 W
6,700.0		214.63	6,499.3	-1,081.6	-747.0	565,507.03	770,582.65	32° 33' 8.762 N	103° 35' 21.544 W
6,800.0		214.63	6,594.4	-1,107.0	-764.6	565,481.61	770,565.09	32° 33' 8.512 N	103° 35' 21.751 W
6,900.0		214.63	6,689.5	-1,132.4	-782.2	565,456.18	770,547.53	32° 33' 8.261 N	103° 35' 21.958 W
6,919.2	18.00	214.63	6,707.8	-1,137.3	-785.5	565,451.30	770,544.16	32° 33' 8.213 N	103° 35' 21.998 W
Start D	rop -1.00								
7,000.0	17.19	214.63	6,784.8	-1,157.4	-799.4	565,431.20	770,530.28	32° 33' 8.015 N	103° 35' 22.162 W
7,100.0	16.19	214.63	6,880.6	-1,181.0	-815.7	565,407.57	770,513.95	32° 33' 7.783 N	103° 35' 22.354 W
7,200.0	15.19	214.63	6,976.8	-1,203.3	-831.1	565,385.32	770,498.58	32° 33' 7.563 N	103° 35' 22.536 W
7,300.0		214.63	7,073.6	-1,224.2	-845.5	565,364.45	770,484.17	32° 33' 7.358 N	103° 35' 22.706 W
7,400.0		214.63	7,170.7	-1,243.6	-859.0	565,344.97	770,470.72	32° 33' 7.166 N	103° 35' 22.865 W
7,500.0		214.63	7,268.3	-1,261.7	-871.5	565,326.89	770,458.23	32° 33' 6.988 N	103° 35' 23.012 W
7,600.0		214.63	7,366.2	-1,278.4	-883.0	565,310.22	770,446.71	32° 33' 6.824 N	103° 35' 23.148 W
7,700.0		214.63	7,464.5	-1,293.6	-893.5	565,294.95	770,436.17	32° 33' 6.674 N	103° 35' 23.272 W
7,800.0		214.63	7,563.0	-1,307.5	-903.1	565,281.10	770,426.60	32° 33' 6.537 N	103° 35' 23.385 W
7,900.0		214.63	7,661.9	-1,319.9	-911.7	565,268.67	770,418.01	32° 33' 6.415 N	103° 35' 23.487 W
8,000.0		214.63	7,761.0	-1,330.9	-919.3	565,257.65	770,410.41	32° 33' 6.306 N	103° 35' 23.576 W
8,100.0		214.63	7,860.3	-1,340.5	-925.9	565,248.07	770,403.78	32° 33' 6.212 N	103° 35' 23.654 W
8,200.0		214.63 214.63	7,959.8	-1,348.7	-931.5	565,239.91	770,398.15	32° 33' 6.132 N 32° 33' 6.065 N	103° 35' 23.721 W
8,300.0 8,400.0		214.63	8,059.5 8,159.3	-1,355.4 -1,360.7	-936.2 -939.8	565,233.18 565,227.88	770,393.50 770,389.84	32° 33' 6.013 N	103° 35' 23.776 W 103° 35' 23.819 W
8,400.0		214.03	8,259.1	-1,364.6	-939.8	565,224.01	770,389.84	32° 33' 5.975 N	103° 35' 23.819 W
8,600.0		214.03	8,359.1	-1,367.0	-944.2	565,221.58	770,385.49	32° 33' 5.951 N	103° 35' 23.870 W
8,700.0		214.63	8,459.1	-1,368.0	-944.9	565,220.59	770,384.81	32° 33' 5.941 N	103° 35' 23.878 W
8,719.2		0.00	8,478.3	-1,368.0	-944.9	565,220.56	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W
-	220.2 hold a		-	.,					
8,800.0		0.00	8,559.1	-1,368.0	-944.9	565,220.56	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W
8,900.0			8,659.1	-1,368.0	-944.9	565,220.56	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W
9,000.0		0.00	8,759.1	-1,368.0	-944.9	565,220.56	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W
9,100.0	0.00	0.00	8,859.1	-1,368.0	-944.9	565,220.56	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W
9,200.0		0.00	8,959.1	-1,368.0	-944.9	565,220.56	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W
9,300.0	0.00	0.00	9,059.1	-1,368.0	-944.9	565,220.56	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W
9,400.0	0.00	0.00	9,159.1	-1,368.0	-944.9	565,220.56	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W
9,500.0	0.00	0.00	9,259.1	-1,368.0	-944.9	565,220.56	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W
9,600.0		0.00	9,359.1	-1,368.0	-944.9	565,220.56	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W
9,700.0		0.00	9,459.1	-1,368.0	-944.9	565,220.56	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W
9,800.0		0.00	9,559.1	-1,368.0	-944.9	565,220.56	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W
9,900.0		0.00	9,659.1	-1,368.0	-944.9	565,220.56	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W
10,000.0		0.00	9,759.1	-1,368.0	-944.9	565,220.56	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W
10,100.0	0.00	0.00	9,859.1	-1,368.0	-944.9	565,220.56	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W

2/22/2024 6:50:42AM

Planning Report - Geographic

Database:	Compass	Local Co-ordinate Reference:	Well ROBIN FED 201H
Company:	NEW MEXICO	TVD Reference:	KB @ 3684.0usft
Project:	(SP) LEA	MD Reference:	KB @ 3684.0usft
Site:	ROBIN PROJECT	North Reference:	Grid
Well:	ROBIN FED 201H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	PWP0		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
10,200.0		0.00	9,959.1	-1,368.0	-944.9	565,220.56	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W
10,200.0		0.00	10,059.1	-1,368.0	-944.9	565,220.56	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W
10,400.0	0.00	0.00	10,159.1	-1,368.0	-944.9	565,220.56	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W
10,500.0		0.00	10,259.1	-1,368.0	-944.9	565,220.56	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W
10,600.0		0.00	10,359.1	-1,368.0	-944.9	565,220.56	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W
10,700.0		0.00	10,459.1	-1,368.0	-944.9	565,220.56	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W
10,800.0		0.00	10,559.1	-1,368.0	-944.9	565,220.56	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W
10,900.0		0.00	10,659.1	-1,368.0	-944.9	565,220.56	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W
10,939.4		0.00	10,698.5	-1,368.0	-944.9	565,220.56	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W
	LS 12.00 TF		-,	,		,	-,		
10,950.0		359.83	10,709.1	-1,367.9	-944.9	565,220.68	770,384.79	32° 33' 5.942 N	103° 35' 23.879 W
10,975.0	4.27	359.83	10,734.1	-1,366.7	-944.9	565,221.89	770,384.78	32° 33' 5.954 N	103° 35' 23.879 W
11,000.0		359.83	10,758.9	-1,364.2	-944.9	565,224.40	770,384.78	32° 33' 5.979 N	103° 35' 23.878 W
11,025.0	10.27	359.83	10,783.6	-1,360.4	-944.9	565,228.21	770,384.76	32° 33' 6.017 N	103° 35' 23.878 W
11,050.0	13.27	359.83	10,808.1	-1,355.3	-944.9	565,233.31	770,384.75	32° 33' 6.067 N	103° 35' 23.878 W
11,075.0	16.27	359.83	10,832.3	-1,348.9	-945.0	565,239.69	770,384.73	32° 33' 6.130 N	103° 35' 23.878 W
11,100.0		359.83	10,856.1	-1,341.3	-945.0	565,247.32	770,384.71	32° 33' 6.206 N	103° 35' 23.877 W
11,125.0		359.83	10,879.5	-1,332.4	-945.0	565,256.18	770,384.68	32° 33' 6.293 N	103° 35' 23.877 W
11,150.0		359.83	10,902.3	-1,322.3	-945.0	565,266.26	770,384.65	32° 33' 6.393 N	103° 35' 23.876 W
11,175.0		359.83	10,924.6	-1,311.1	-945.1	565,277.52	770,384.62	32° 33' 6.505 N	103° 35' 23.876 W
11,200.0		359.83	10,946.3	-1,298.7	-945.1	565,289.93	770,384.58	32° 33' 6.627 N	103° 35' 23.875 W
11,225.0		359.83	10,967.4	-1,285.1	-945.1	565,303.46	770,384.54	32° 33' 6.761 N	103° 35' 23.875 W
11,250.0		359.83	10,987.6	-1,270.5	-945.2	565,318.07	770,384.50	32° 33' 6.906 N	103° 35' 23.874 W
11,275.0		359.83	11,007.1	-1,254.9	-945.2	565,333.72	770,384.45	32° 33' 7.061 N	103° 35' 23.873 W
11,300.0		359.83	11,025.8	-1,238.2	-945.3	565,350.38	770,384.41	32° 33' 7.226 N	103° 35' 23.872 W
11,325.0 11,350.0		359.83 359.83	11,043.5 11,060.3	-1,220.6 -1,202.1	-945.3 -945.4	565,367.98 565,386.49	770,384.35 770,384.30	32° 33' 7.400 N 32° 33' 7.583 N	103° 35' 23.872 W 103° 35' 23.871 W
11,375.0		359.83	11,000.3	-1,202.1	-945.4 -945.4	565,405.85	770,384.24	32° 33' 7.774 N	103° 35' 23.871 W
11,400.0		359.83	11,090.9	-1,162.6	-945.5	565,426.02	770,384.18	32° 33' 7.974 N	103° 35' 23.869 W
11,425.0		359.83	11,104.6	-1,141.7	-945.6	565,446.93	770,384.12	32° 33' 8.181 N	103° 35' 23.868 W
11,450.0		359.83	11,117.2	-1,120.1	-945.6	565,468.52	770,384.06	32° 33' 8.395 N	103° 35' 23.867 W
11,475.0		359.83	11,128.6	-1,097.9	-945.7	565,490.75	770,383.99	32° 33' 8.615 N	103° 35' 23.866 W
11,500.0		359.83	11,138.9	-1,075.1	-945.8	565,513.55	770,383.93	32° 33' 8.840 N	103° 35' 23.865 W
11,525.0	70.27	359.83	11,147.9	-1,051.8	-945.8	565,536.85	770,383.86	32° 33' 9.071 N	103° 35' 23.864 W
11,550.0	73.27	359.83	11,155.8	-1,028.0	-945.9	565,560.59	770,383.79	32° 33' 9.306 N	103° 35' 23.863 W
11,575.0		359.83	11,162.3	-1,003.9	-946.0	565,584.71	770,383.72	32° 33' 9.544 N	103° 35' 23.861 W
11,600.0		359.83	11,167.6	-979.5	-946.0	565,609.14	770,383.65	32° 33' 9.786 N	103° 35' 23.860 W
11,625.0		359.83	11,171.6	-954.8	-946.1	565,633.81	770,383.57	32° 33' 10.030 N	103° 35' 23.859 W
11,650.0		359.83	11,174.3	-929.9	-946.2	565,658.66	770,383.50	32° 33' 10.276 N	103° 35' 23.858 W
11,675.0		359.83	11,175.7	-905.0	-946.3	565,683.62	770,383.43	32° 33' 10.523 N	103° 35' 23.857 W
11,689.4	90.00	359.83	11,176.0	-890.6	-946.3	565,698.02	770,383.38	32° 33' 10.665 N	103° 35' 23.856 W
	977.6 hold a			000.0	040.0		770 000 05	20% 221 40 770 N	4000 051 00 050 101
11,700.0		359.83	11,176.0	-880.0	-946.3	565,708.62	770,383.35	32° 33' 10.770 N 32° 33' 11.760 N	103° 35' 23.856 W
11,800.0 11,900.0		359.83 359.83	11,176.0 11,176.0	-780.0 -680.0	-946.6 -946.9	565,808.62	770,383.06 770,382.77		103° 35' 23.851 W
12,000.0		359.83	11,176.0	-580.0	-940.9 -947.2	565,908.62 566,008.62	770,382.47	32° 33' 12.749 N 32° 33' 13.739 N	103° 35' 23.846 W 103° 35' 23.841 W
12,000.0		359.83	11,176.0	-380.0	-947.2 -947.5	566,108.62	770,382.18	32° 33' 14.728 N	103° 35' 23.841 W 103° 35' 23.837 W
12,200.0		359.83	11,176.0	-480.0	-947.8	566,208.62	770,381.88	32° 33' 15.718 N	103° 35' 23.837 W
12,300.0		359.83	11,176.0	-280.0	-948.1	566,308.61	770,381.59	32° 33' 16.707 N	103° 35' 23.827 W
12,400.0		359.83	11,176.0	-180.0	-948.4	566,408.61	770,381.30	32° 33' 17.697 N	103° 35' 23.822 W
12,500.0		359.83	11,176.0	-80.0	-948.7	566,508.61	770,381.00	32° 33' 18.686 N	103° 35' 23.818 W
12,600.0		359.83	11,176.0	20.0	-949.0	566,608.61	770,380.71	32° 33' 19.676 N	103° 35' 23.813 W
12,700.0		359.83	11,176.0	120.0	-949.3	566,708.61	770,380.42	32° 33' 20.665 N	103° 35' 23.808 W
12,800.0		359.83	11,176.0	220.0	-949.6	566,808.61	770,380.12	32° 33' 21.655 N	103° 35' 23.804 W

2/22/2024 6:50:42AM

Planning Report - Geographic

Database:	Compass	Local Co-ordinate Reference:	Well ROBIN FED 201H
Company:	NEW MEXICO	TVD Reference:	KB @ 3684.0usft
Project:	(SP) LEA	MD Reference:	KB @ 3684.0usft
Site:	ROBIN PROJECT	North Reference:	Grid
Well:	ROBIN FED 201H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	PWP0		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
10,000,0									_
12,900.0 13,000.0		359.83 359.83	11,176.0 11,176.0	320.0 420.0	-949.9 -950.2	566,908.61 567,008.61	770,379.83 770,379.54	32° 33' 22.644 N 32° 33' 23.634 N	103° 35' 23.799 W 103° 35' 23.794 W
13,100.0		359.83	11,176.0	420.0 520.0	-950.2	567,108.61	770,379.24	32° 33' 24.623 N	103° 35' 23.789 W
13,200.0		359.83	11,176.0	620.0	-950.7	567,208.61	770,378.95	32° 33' 25.613 N	103° 35' 23.785 W
13,300.0		359.83	11,176.0	720.0	-951.0	567,308.61	770,378.65	32° 33' 26.602 N	103° 35' 23.780 W
13,400.0		359.83	11,176.0	820.0	-951.3	567,408.61	770,378.36	32° 33' 27.592 N	103° 35' 23.775 W
13,500.0		359.83	11,176.0	920.0	-951.6	567,508.61	770,378.07	32° 33' 28.581 N	103° 35' 23.771 W
13,600.0		359.83	11,176.0	1,020.0	-951.9	567,608.61	770,377.77	32° 33' 29.571 N	103° 35' 23.766 W
13,700.0	90.00	359.83	11,176.0	1,120.0	-952.2	567,708.61	770,377.48	32° 33' 30.560 N	103° 35' 23.761 W
13,800.0	90.00	359.83	11,176.0	1,220.0	-952.5	567,808.61	770,377.19	32° 33' 31.550 N	103° 35' 23.756 W
13,900.0	90.00	359.83	11,176.0	1,320.0	-952.8	567,908.61	770,376.89	32° 33' 32.539 N	103° 35' 23.752 W
14,000.0		359.83	11,176.0	1,420.0	-953.1	568,008.61	770,376.60	32° 33' 33.529 N	103° 35' 23.747 W
14,100.0		359.83	11,176.0	1,520.0	-953.4	568,108.61	770,376.30	32° 33' 34.518 N	103° 35' 23.742 W
14,200.0		359.83	11,176.0	1,620.0	-953.7	568,208.61	770,376.01	32° 33' 35.507 N	103° 35' 23.737 W
14,300.0		359.83	11,176.0	1,720.0	-954.0	568,308.61	770,375.72	32° 33' 36.497 N	103° 35' 23.733 W
14,400.0		359.83	11,176.0	1,820.0	-954.3	568,408.61	770,375.42	32° 33' 37.486 N	103° 35' 23.728 W
14,500.0		359.83	11,176.0	1,920.0	-954.6	568,508.61	770,375.13	32° 33' 38.476 N	103° 35' 23.723 W
14,600.0		359.83	11,176.0	2,020.0	-954.9	568,608.60	770,374.84	32° 33' 39.465 N	103° 35' 23.719 W
14,700.0 14,800.0		359.83 359.83	11,176.0 11,176.0	2,120.0	-955.1 -955.4	568,708.60 568,808.60	770,374.54 770,374.25	32° 33' 40.455 N 32° 33' 41.444 N	103° 35' 23.714 W 103° 35' 23.709 W
14,800.0		359.83	11,176.0	2,220.0 2,320.0	-955.4 -955.7	568,908.60	770,373.95	32° 33' 42.434 N	103° 35' 23.709 W
15,000.0		359.83	11,176.0	2,320.0	-956.0	569,008.60	770,373.66	32° 33' 43.423 N	103° 35' 23.704 W
15,100.0		359.83	11,176.0	2,520.0	-956.3	569,108.60	770,373.37	32° 33' 44.413 N	103° 35' 23.695 W
15,200.0		359.83	11,176.0	2,620.0	-956.6	569,208.60	770,373.07	32° 33' 45.402 N	103° 35' 23.690 W
15,300.0		359.83	11,176.0	2,720.0	-956.9	569,308.60	770,372.78	32° 33' 46.392 N	103° 35' 23.685 W
15,400.0		359.83	11,176.0	2,820.0	-957.2	569,408.60	770,372.49	32° 33' 47.381 N	103° 35' 23.681 W
15,500.0	90.00	359.83	11,176.0	2,920.0	-957.5	569,508.60	770,372.19	32° 33' 48.371 N	103° 35' 23.676 W
15,600.0	90.00	359.83	11,176.0	3,020.0	-957.8	569,608.60	770,371.90	32° 33' 49.360 N	103° 35' 23.671 W
15,700.0	90.00	359.83	11,176.0	3,120.0	-958.1	569,708.60	770,371.60	32° 33' 50.350 N	103° 35' 23.667 W
15,800.0		359.83	11,176.0	3,220.0	-958.4	569,808.60	770,371.31	32° 33' 51.339 N	103° 35' 23.662 W
15,900.0		359.83	11,176.0	3,320.0	-958.7	569,908.60	770,371.02	32° 33' 52.329 N	103° 35' 23.657 W
16,000.0		359.83	11,176.0	3,420.0	-959.0	570,008.60	770,370.72	32° 33' 53.318 N	103° 35' 23.652 W
16,100.0		359.83	11,176.0	3,520.0	-959.3	570,108.60	770,370.43	32° 33' 54.308 N	103° 35' 23.648 W
16,200.0		359.83	11,176.0	3,620.0	-959.6	570,208.60	770,370.14	32° 33' 55.297 N	103° 35' 23.643 W
16,300.0 16,400.0		359.83 359.83	11,176.0 11,176.0	3,720.0 3,820.0	-959.8 -960.1	570,308.60 570,408.60	770,369.84 770,369.55	32° 33' 56.287 N 32° 33' 57.276 N	103° 35' 23.638 W 103° 35' 23.633 W
16,500.0		359.83	11,176.0	3,820.0	-960.1 -960.4	570,508.60	770,369.25	32° 33' 58.266 N	103° 35' 23.633 W
16,600.0		359.83	11,176.0	4,020.0	-960.7	570,608.60	770,368.96	32° 33' 59.255 N	103° 35' 23.624 W
16,700.0		359.83	11,176.0	4,120.0	-961.0	570,708.60	770,368.67	32° 34' 0.245 N	103° 35' 23.619 W
16,800.0		359.83	11,176.0	4,220.0	-961.3	570,808.60	770,368.37	32° 34' 1.234 N	103° 35' 23.614 W
16,900.0		359.83	11,176.0	4,320.0	-961.6	570,908.59	770,368.08	32° 34' 2.224 N	103° 35' 23.610 W
17,000.0		359.83	11,176.0	4,420.0	-961.9	571,008.59	770,367.79	32° 34' 3.213 N	103° 35' 23.605 W
17,100.0	90.00	359.83	11,176.0	4,520.0	-962.2	571,108.59	770,367.49	32° 34' 4.203 N	103° 35' 23.600 W
17,200.0	90.00	359.83	11,176.0	4,620.0	-962.5	571,208.59	770,367.20	32° 34' 5.192 N	103° 35' 23.596 W
17,300.0	90.00	359.83	11,176.0	4,720.0	-962.8	571,308.59	770,366.90	32° 34' 6.182 N	103° 35' 23.591 W
17,400.0		359.83	11,176.0	4,820.0	-963.1	571,408.59	770,366.61	32° 34' 7.171 N	103° 35' 23.586 W
17,500.0		359.83	11,176.0	4,920.0	-963.4	571,508.59	770,366.32	32° 34' 8.160 N	103° 35' 23.581 W
17,600.0		359.83	11,176.0	5,020.0	-963.7	571,608.59	770,366.02	32° 34' 9.150 N	103° 35' 23.577 W
17,700.0		359.83	11,176.0	5,120.0	-964.0	571,708.59	770,365.73	32° 34' 10.139 N	103° 35' 23.572 W
17,800.0		359.83	11,176.0	5,220.0	-964.3	571,808.59	770,365.44	32° 34' 11.129 N	103° 35' 23.567 W
17,900.0		359.83	11,176.0	5,320.0	-964.5	571,908.59	770,365.14	32° 34' 12.118 N	103° 35' 23.562 W
18,000.0		359.83	11,176.0 11,176.0	5,420.0	-964.8	572,008.59	770,364.85 770,364.55	32° 34' 13.108 N 32° 34' 14.097 N	103° 35' 23.558 W
18,100.0 18,200.0		359.83 359.83	11,176.0 11,176.0	5,520.0	-965.1 -965.4	572,108.59 572,208.59	770,364.55 770,364.26	32° 34' 14.097 N 32° 34' 15.087 N	103° 35' 23.553 W 103° 35' 23.548 W
18,200.0		359.83	11,176.0	5,620.0 5,720.0	-965.4 -965.7	572,208.59 572,308.59	770,363.97	32 34 15.087 N 32° 34' 16.076 N	103 35 23.548 W 103° 35' 23.544 W
10,500.0	90.00	339.03	11,170.0	5,720.0	-303.7	512,500.59	110,303.81	52 04 10.070 N	100 00 20.044 88

2/22/2024 6:50:42AM

Released to Imaging: 3/19/2024 10:50:20 AM

Page 6

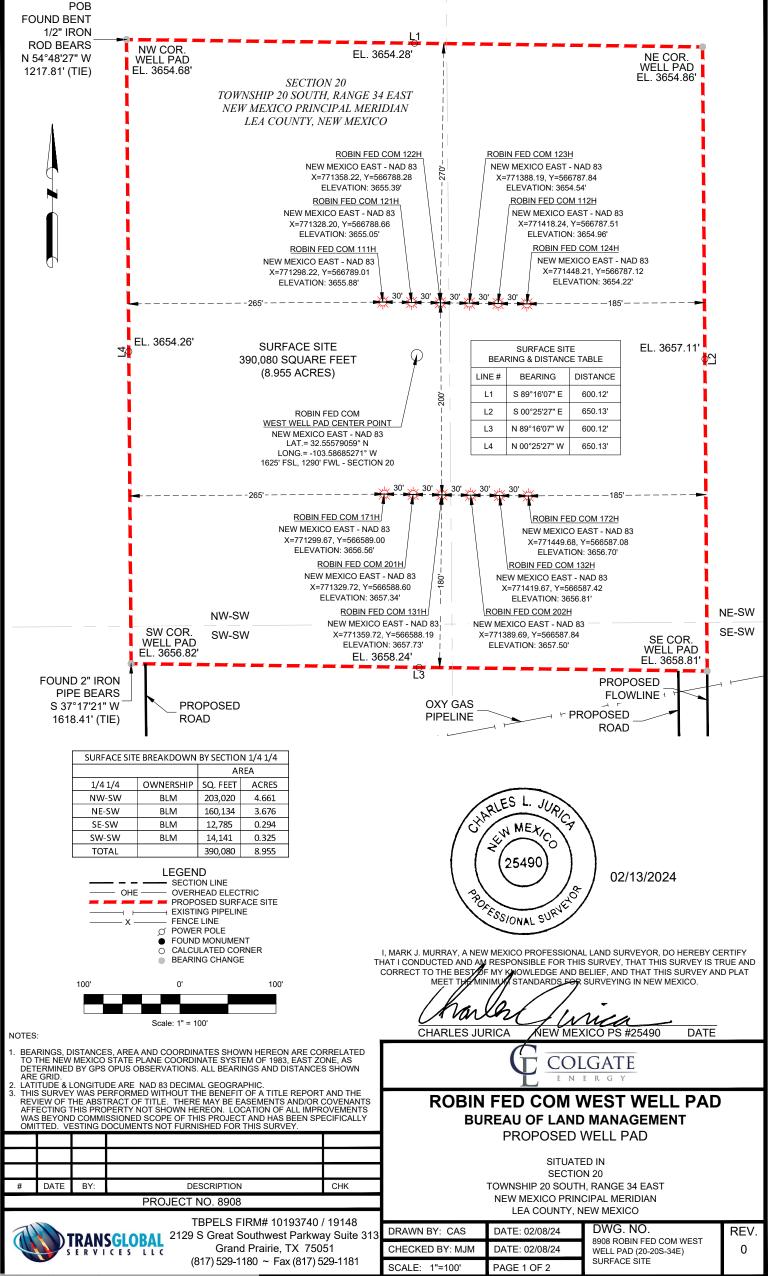
Planning Report - Geographic

Database:	Compass	Local Co-ordinate Reference:	Well ROBIN FED 201H
Company:	NEW MEXICO	TVD Reference:	KB @ 3684.0usft
Project:	(SP) LEA	MD Reference:	KB @ 3684.0usft
Site:	ROBIN PROJECT	North Reference:	Grid
Well:	ROBIN FED 201H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	PWP0		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
18,400.0		359.83	11,176.0	5,820.0	-966.0	572,408.59	770.363.67	32° 34' 17.066 N	103° 35' 23.539 W
18,400.0		359.83	11,176.0	5,820.0	-966.3	572,508.59	770,363.38	32° 34' 18.055 N	103° 35' 23.539 W
18,600.0		359.83	11,176.0	5,920.0 6,020.0	-966.6	572,608.59	770,363.09	32° 34' 19.045 N	103° 35' 23.529 W
18,700.0		359.83	11,176.0	6,120.0	-966.9	572,708.59	770,362.79	32° 34' 20.034 N	103° 35' 23.525 W
18,800.0		359.83	11,176.0	6,220.0	-967.2	572,808.59	770,362.50	32° 34' 20.034 N 32° 34' 21.024 N	103° 35' 23.525 W
18,900.0		359.83	11,176.0	6,320.0	-967.2	572,908.59	770,362.20	32° 34' 22.013 N	103° 35' 23.520 W
19,000.0		359.83	11,176.0	6,420.0	-967.8	573,008.59	770,361.91	32° 34' 23.003 N	103° 35' 23.510 W
19,000.0		359.83	11,176.0	6,520.0	-968.1	573,108.59	770,361.62	32° 34' 23.992 N	103° 35' 23.506 W
19,100.0		359.83	11,176.0	6,620.0	-968.4	573,208.58	770,361.32	32° 34' 24.982 N	103° 35' 23.500 W
19,200.0		359.83	11,176.0	6,720.0	-908.4 -968.7	573,308.58	770,361.03	32° 34' 25.971 N	103° 35' 23.496 W
19,400.0		359.83	11,176.0	6,820.0	-969.0	573,408.58	770,360.74	32° 34' 26.961 N	103° 35' 23.490 W
19,500.0		359.83	11,176.0	6,920.0	-969.2	573,508.58	770,360.44	32° 34' 27.950 N	103° 35' 23.487 W
19,600.0		359.83	11,176.0	7,020.0	-969.5	573,608.58	770,360.15	32° 34' 28.940 N	103° 35' 23.482 W
19,700.0		359.83	11,176.0	7,120.0	-969.8	573.708.58	770,359.85	32° 34' 29.929 N	103° 35' 23.477 W
19,800.0		359.83	11,176.0	7,220.0	-970.1	573,808.58	770,359.56	32° 34' 30.919 N	103° 35' 23.473 W
19,900.0		359.83	11,176.0	7,320.0	-970.4	573,908.58	770,359.27	32° 34' 31.908 N	103° 35' 23.468 W
20,000.0		359.83	11,176.0	7,420.0	-970.7	574,008.58	770,358.97	32° 34' 32.898 N	103° 35' 23.463 W
20,100.0		359.83	11,176.0	7,520.0	-971.0	574,108.58	770,358.68	32° 34' 33.887 N	103° 35' 23.458 W
20,200.0		359.83	11,176.0	7,620.0	-971.3	574,208.58	770,358.39	32° 34' 34.877 N	103° 35' 23.454 W
20,300.0		359.83	11,176.0	7,720.0	-971.6	574,308.58	770,358.09	32° 34' 35.866 N	103° 35' 23.449 W
20,400.0		359.83	11,176.0	7,820.0	-971.9	574,408.58	770,357.80	32° 34' 36.856 N	103° 35' 23.444 W
20,500.0		359.83	11,176.0	7,920.0	-972.2	574,508.58	770,357.51	32° 34' 37.845 N	103° 35' 23.439 W
20,600.0		359.83	11,176.0	8,020.0	-972.5	574,608.58	770,357.21	32° 34' 38.835 N	103° 35' 23.435 W
20,700.0	90.00	359.83	11,176.0	8,120.0	-972.8	574,708.58	770,356.92	32° 34' 39.824 N	103° 35' 23.430 W
20,800.0	90.00	359.83	11,176.0	8,220.0	-973.1	574,808.58	770,356.62	32° 34' 40.813 N	103° 35' 23.425 W
20,900.0	90.00	359.83	11,176.0	8,320.0	-973.4	574,908.58	770,356.33	32° 34' 41.803 N	103° 35' 23.421 W
21,000.0	90.00	359.83	11,176.0	8,420.0	-973.7	575,008.58	770,356.04	32° 34' 42.792 N	103° 35' 23.416 W
21,100.0	90.00	359.83	11,176.0	8,520.0	-973.9	575,108.58	770,355.74	32° 34' 43.782 N	103° 35' 23.411 W
21,200.0	90.00	359.83	11,176.0	8,620.0	-974.2	575,208.58	770,355.45	32° 34' 44.771 N	103° 35' 23.406 W
21,300.0	90.00	359.83	11,176.0	8,720.0	-974.5	575,308.58	770,355.16	32° 34' 45.761 N	103° 35' 23.402 W
21,400.0	90.00	359.83	11,176.0	8,820.0	-974.8	575,408.58	770,354.86	32° 34' 46.750 N	103° 35' 23.397 W
21,500.0	90.00	359.83	11,176.0	8,920.0	-975.1	575,508.58	770,354.57	32° 34' 47.740 N	103° 35' 23.392 W
21,600.0	90.00	359.83	11,176.0	9,020.0	-975.4	575,608.57	770,354.27	32° 34' 48.729 N	103° 35' 23.387 W
21,667.0	90.00	359.83	11,176.0	9,086.9	-975.6	575,675.55	770,354.08	32° 34' 49.392 N	103° 35' 23.384 W
TD at 2	1667.0								

Design T	argets
----------	--------


Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
FTP-ROBIN FED 201 - plan misses targe - Point	0.00 t center by		11,176.0 t 11315.2us	-1,368.0 sft MD (11036	-944.9 6.7 TVD, -12	565,220.56 27.6 N, -945.3 E)	770,384.79	32° 33' 5.941 N	103° 35' 23.879 W
BHL-ROBIN FED 201 - plan hits target ce - Point	0.00 enter	0.00	11,176.0	9,086.9	-975.6	575,675.55	770,354.08	32° 34' 49.392 N	103° 35' 23.384 W
LTP-ROBIN FED 201I - plan misses targe - Point	0.00 t center by		11,176.0 1577.0usft	8,996.9 MD (11176.0	-976.5 TVD, 8996.	575,585.54 9 N, -975.3 E)	770,353.18	32° 34' 48.502 N	103° 35' 23.402 W

2/22/2024 6:50:42AM

Planning Report - Geographic

Database: Company: Project: Site: Well: Wellbore:	Compass NEW MEXICO (SP) LEA ROBIN PROJECT ROBIN FED 201H OWB	Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method:	Well ROBIN FED 201H KB @ 3684.0usft KB @ 3684.0usft Grid Minimum Curvature
Design: Plan Annotations	PWP0		

C	asured Depth (usft)	Vertical Depth (usft)	Local Coord +N/-S (usft)	dinates +E/-W (usft)	Comment
	2,000.0	2,000.0	0.0	0.0	Start Build 2.00
	2,900.0	2,885.3	-115.4	-79.7	Start 4019.2 hold at 2900.0 MD
	6,919.2	6,707.8	-1,137.3	-785.5	Start Drop -1.00
	8,719.2	8,478.3	-1,368.0	-944.9	Start 2220.2 hold at 8719.2 MD
1	10,939.4	10,698.5	-1,368.0	-944.9	Start DLS 12.00 TFO 359.83
	11,689.4	11,176.0	-890.6	-946.3	Start 9977.6 hold at 11689.4 MD
2	21,667.0	11,176.0	9,086.9	-975.6	TD at 21667.0

keleased to Imaging: 3/19/2024 10:50:20 AM

EXHIBIT "A"

METES AND BOUNDS DESCRIPTION

BEING A PROPOSED SURFACE SITE SITUATED IN SECTION 20, TOWNSHIP 20 SOUTH, RANGE 34 EAST, NEW MEXICO PRINCIPAL MERIDIAN, LEA COUNTY, NEW MEXICO. SAID SURFACE SITE BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BEGINNING AT A POINT, IN SAID SECTION 20, FROM WHICH A BENT 1/2" IRON ROD FOUND FOR THE WEST QUARTER CORNER OF SAID SECTION 20 BEARS N 54°48'27" W, A DISTANCE OF 1217.81 FEET (TIE). SAID POINT OF BEGINNING HAVING A NEW MEXICO STATE PLANE COORDINATES OF 1983, EAST ZONE, VALUE OF N:567062.45, E:771031.17 FEET FOR REFERENCE;

THENCE S 89°16'07" E, A DISTANCE OF 600.12 FEET TO A POINT; THENCE S 00°25'27" E, A DISTANCE OF 650.13 FEET TO A POINT; THENCE N 89°16'07" W, A DISTANCE OF 600.12 FEET TO A POINT, FROM WHICH A 2" IRON PIPE FOUND FOR THE SOUTHWEST CORNER OF SAID SECTION 20 BEARS S 37°17'21" W, A DISTANCE OF 1618.41 FEET (TIE);

THENCE N 00°25'27" W, A DISTANCE OF 650.13 FEET TO THE POINT OF BEGINNING.

SAID SURFACE SITE CONTAINING A TOTAL OF 390,080 SQUARE FEET OR 8.955 ACRES IN SAID SECTION 20.

NOTES	5:					hane whether				
TO DET ARE 2. LAT	THE NÉW TERMINED E GRID. TTUDE & I	MEXICO BY GPS	STATE PLANE O OPUS OBSERV	OORDINATES SHOWN HEREON AI COORDINATE SYSTEM OF 1983, E/ ATIONS. ALL BEARINGS AND DIST 3 DECIMAL GEOGRAPHIC.	AST ZONE, AS ANCES SHOWN	COLEGONAL EURVEN				
3. THIS REV AFF WAS	 LATITUDE & LONGITUDE ARE NAD 83 DECIMAL GEOGRAPHIC. THIS SURVEY WAS PERFORMED WITHOUT THE BENEFIT OF A TITLE REPORT AND THE REVIEW OF THE ABSTRACT OF TITLE. THERE MAY BE EASEMENTS AND/OR COVENANTS AFFECTING THIS PROPERTY NOT SHOWN HEREON. LOCATION OF ALL IMPROVEMENTS WAS BEYOND COMMISSIONED SCOPE OF THIS PROJECT AND HAS BEEN SPECIFICALLY OMITTED. VESTING DOCUMENTS NOT FURNISHED FOR THIS SURVEY. 				ROBIN FED COM WEST WELL PAD BUREAU OF LAND MANAGEMENT PROPOSED WELL PAD					
							SITUAT			
#	DATE	BY:		DESCRIPTION	СНК		SECTIO TOWNSHIP 20 SOUT			
	-		PRO	JECT NO. 8908			NEW MEXICO PRIN LEA COUNTY, I			
			CLODAL	TBPELS FIRM# 10193 2129 S Great Southwest Pa		DRAWN BY: CAS	DATE: 02/08/24	DWG. NO.	REV.	
	s v			Grand Prairie, TX	75051	CHECKED BY: MJM	DATE: 02/08/24	8908 ROBIN FED COM WEST WELL PAD (20-20S-34E)	0	
				(817) 529-1180 ~ Fax (8	317) 529-1181	SCALE: 1"=100'	PAGE 2 OF 2	SURFACE SITE		

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
COLGATE OPERATING, LLC	371449
300 North Marienfeld Street	Action Number:
Midland, TX 79701	324641
	Action Type:
	[C-103] NOI Change of Plans (C-103A)
	·

CONDITIONS

Created By		Condition Date
pkautz	None	3/19/2024

Page 62 of 62

.

Action 324641