U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Sundry Print Report 03/05/2024
Well Name: CUTBOW 36 1 FEDERAL COM	Well Location: T19S / R32E / SEC 25 / SESW /	County or Parish/State:
Well Number: 302H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM77054	Unit or CA Name:	Unit or CA Number:
US Well Number: 3002551647	Well Status: Approved Application for Permit to Drill	Operator: AVANT OPERATING LLC

Notice of Intent

Sundry ID: 2768723

-

Type of Submission: Notice of Intent

Date Sundry Submitted: 02/07/2024

Date proposed operation will begin: 03/01/2024

Type of Action: APD Change Time Sundry Submitted: 12:21

Procedure Description: Avant Operating, LLC requests to move the SHL& BHL from what was originally permitted. The SHL will move from 601' FSL & 1408' FWL to 734' FSL & 1508' FWL and the BHL will move from 100' FSL & 1254' FWL to 100' FSL & 1630 FWL. Please see attached updated well plat and directional survey to reflect this change. Avant would also like to request a secondary drilling procedure—If full returns are lost while drilling the 12.25" intermediate hole section, a DV tool will be set @ 3,200' and the attached 2 stage cement design job will be executed.

NOI Attachments

Procedure Description

Cutbow_302H_Sundry_Attachments_20240207122053.pdf

I	Well Name: CUTBOW 36 1 FEDERAL COM	Well Location: T19S / R32E / SEC 25 / SESW /	County or Parish/State: Page 2 of	41
	Well Number: 302H	Type of Well: OIL WELL	Allottee or Tribe Name:	
	Lease Number: NMNM77054	Unit or CA Name:	Unit or CA Number:	
	US Well Number: 3002551647	Well Status: Approved Application for Permit to Drill	Operator: AVANT OPERATING LLC	

Conditions of Approval

Additional

25_16_32_N_Sundry_ID_2768723_Cutbow_36_1_Federal_Com_302H_Lea_NM077054_AVANT_OPERATING_LLC_1 3_22d_1_24_2023_LV_20240229124636.pdf

Cutbow_36_1_Federal_Com_302H_Dr_COA_20240229124636.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: MEGHAN TWELE

Name: AVANT OPERATING LLC

Title: Contract Regulatory Analyst

Street Address: 1515 WYNKOOP ST SUITE 700

City: DENVER

State: CO

State:

Phone: (720) 339-6880

Email address: MTWELE@OUTLOOK.COM

Field

Repi	resenta	ative	Name	

Street Address:

City:

Phone:

Email address:

BLM Point of Contact

BLM POC Name: CODY LAYTON BLM POC Phone: 5752345959 Disposition: Approved Signature: Cody R. Layton Signed on: FEB 07, 2024 12:21 PM

BLM POC Title: Assistant Field Manager Lands & Minerals

BLM POC Email Address: clayton@blm.gov

Zip:

Disposition Date: 03/05/2024

cccircu by 0 cD. 5/5/2024				1 480 5 01
-	UNITED STAT DEPARTMENT OF THE UREAU OF LAND MAN	INTERIOR	0	ORM APPROVED MB No. 1004-0137 ires: October 31, 2021
Do not use th		ORTS ON WELLS to drill or to re-enter an APD) for such proposals.	6. If Indian, Allottee o	r Tribe Name
SUBMIT	IN TRIPLICATE - Other inst	ructions on page 2	7. If Unit of CA/Agree	ement, Name and/or No.
1. Type of Well Oil Well C 2. Name of Operator	Gas Well Other		8. Well Name and No. 9. API Well No.	
3a. Address		3b. Phone No. (include area code)		Exploratory Area
4. Location of Well (Footage, Sec.	, T.,R.,M., or Survey Description		11. Country or Parish,	State
12. 0	CHECK THE APPROPRIATE I	BOX(ES) TO INDICATE NATURE	OF NOTICE, REPORT OR OTH	IER DATA
TYPE OF SUBMISSION		ТҮР	E OF ACTION	
Notice of Intent	Acidize	Deepen Hydraulic Fracturing	Production (Start/Resume) Reclamation	Water Shut-Off Well Integrity
Subsequent Report	Casing Repair	New Construction Plug and Abandon	Recomplete Temporarily Abandon	Other
Final Abandonment Notice	Convert to Injection	n 🗌 Plug Back	Water Disposal	
the proposal is to deepen direc the Bond under which the work completion of the involved ope	tionally or recomplete horizonta k will be perfonned or provide the erations. If the operation results	lly, give subsurface locations and m ne Bond No. on file with BLM/BIA. in a multiple completion or recompl	easured and true vertical depths of Required subsequent reports mu- etion in a new interval, a Form 3	rk and approximate duration thereof. If f all pertinent markers and zones. Attach st be filed within 30 days following 160-4 must be filed once testing has been he operator has detennined that the site

14. I hereby certify that the foregoing is true and correct. Name (<i>Printed/Typed</i>)			
	Title		
Signature	Date		
THE SPACE FOR FEDE	RAL OR STATE O	FICE USE	
Approved by			
	Title		Date
Conditions of approval, if any, are attached. Approval of this notice does not warrant certify that the applicant holds legal or equitable title to those rights in the subject lea which would entitle the applicant to conduct operations thereon.			
Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any any false, fictitious or fraudulent statements or representations as to any matter within		illfully to make to any do	epartment or agency of the United States

(Instructions on page 2)

is ready for final inspection.)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

Additional Information

Location of Well

0. SHL: SESW / 601 FSL / 1409 FWL / TWSP: 19S / RANGE: 32E / SECTION: 25 / LAT: 32.6256983 / LONG: -103.7236868 (TVD: 0 feet, MD: 0 feet) PPP: SWSW / 246 FSL / 1259 FWL / TWSP: 19S / RANGE: 32E / SECTION: 25 / LAT: 32.6247262 / LONG: -103.724169 (TVD: 8850 feet, MD: 8898 feet) PPP: NWNW / 0 FNL / 1254 FWL / TWSP: 19S / RANGE: 32E / SECTION: 36 / LAT: 32.624094 / LONG: -103.72419 (TVD: 8986 feet, MD: 9171 feet) PPP: SWNW / 1320 FNL / 1254 FWL / TWSP: 20S / RANGE: 32E / SECTION: 1 / LAT: 32.606019 / LONG: -103.724249 (TVD: 9000 feet, MD: 15726 feet) BHL: SWSW / 100 FSL / 1254 FWL / TWSP: 20S / RANGE: 32E / SECTION: 1 / LAT: 32.5952738 / LONG: -103.7242869 (TVD: 9000 feet, MD: 19656 feet)

20		surface csg in a	24	inch hole.		Design I	Factors			Surface		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	94.00		j 55	btc	12.69	0.85	1.31	1,175	4	2.20	1.48	110,45
"B"			,	btc				0				0
	w	/8.4#/g mud, 30min Sfc Csg Test	psig: 964	Tail Cmt	does not	circ to sfc.	Totals:	1,175				110,45
omparison o		to Minimum Required Cem						, -				
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cp
24	0.9599	1055	1822	1128	62	10.00	960	2M				1.50
					Site plat (pip		as per 0.0.1.		iounu.			
13 3/8		casing inside the	20			Design	Factors		-	Int 1		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weigh
"A"	54.50		j 55	ltc	3.20	0.7	1.37	2,950	2	2.75	1.18	160,77
"B"								0				0
_	w	/8.4#/g mud, 30min Sfc Csg Test	psig: 631				Totals:	2.950				160.77
				nded to achieve a top of	0	ft from su		1175				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cp
17 1/2	0.6946	1675	2972	2430	22	10.50	995	2M				2.06
V Tool(s):	0.0010	1010	2012	2400		10.00	sum of sx	Σ CuFt				Σ%exce
							1675	2972				22
by stage % :		#VALUE!	#VALUE!					2012				
, ,	nt yld > 1.35		#VALUE!					2312				
Class 'C' tail cm						Design Fac			a a	Int 2		
lass 'C' tail cm 9 5/8		casing inside the	#VALUE! 13 3/8	Counting	loint	Design Fac	<u>ctors</u>		B@s	Int 2 a-B	a-C	Weigh
lass 'C' tail cm 9 5/8 Segment	#/ft		13 3/8	Coupling	Joint 2 83	Collapse	<u>ctors</u> Burst	Length	B@s	a-B	a-C 2.97	
lass 'C' tail cm 9 5/8 Segment "A"	#/ft 40.00	casing inside the	13 3/8 j 55	ltc	2.83	Collapse 1.47	ctors Burst 0.86	Length 4,000	2	a-B 1.52	2.97	160,00
lass 'C' tail cm 9 5/8 Segment	#/ft 40.00 40.00	casing inside the Grade	13 3/8 j 55 hcl 80			Collapse	<u>ctors</u> Burst 0.86 1.25	Length 4,000 603		a-B		160,00 24,12
lass 'C' tail cm 9 5/8 Segment "A"	#/ft 40.00 40.00	casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test	13 3/8 j 55 hcl 80 :psig: 1,020	ltc ltc	2.83 34.88	Collapse 1.47 2.11	ctors Burst 0.86 1.25 Totals:	Length 4,000 603 4,603	2	a-B 1.52	2.97 4.25	160,00 24,12 184,12
9 5/8 Segment "A" "B"	#/ft 40.00 40.00 w	casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement	13 3/8 j 55 hcl 80 •psig: 1,020 volume(s) are inter	ltc ltc nded to achieve a top of	2.83 34.88 2450	Collapse 1.47 2.11 ft from su	ctors Burst 0.86 1.25 Totals: Inface or a	Length 4,000 603 4,603 500	2	a-B 1.52	2.97 4.25	160,00 24,12 184,12 overlap.
9 5/8 Segment "A" "B" Hole	#/ft 40.00 40.00 w Annular	Casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 Stage	13 3/8 j 55 hcl 80 volume(s) are inter 1 Stage	Itc Itc nded to achieve a top of Min	2.83 34.88 2450 1 Stage	Collapse 1.47 2.11 ft from su Drilling	Ctors Burst 0.86 1.25 Totals: Inface or a Calc	Length 4,000 603 4,603 500 Req'd	2	a-B 1.52	2.97 4.25	160,00 24,12 184,12 overlap. Min Dis
Jass 'C' tail on 9 5/8 Segment "A" "B" Hole Size	#/ft 40.00 40.00 w Annular Volume	casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx	13 3/8 j 55 hcl 80 : psig: 1,020 volume(s) are inter 1 Stage CuFt Cmt	Itc Itc nded to achieve a top of Min Cu Ft	2.83 34.88 2450 1 Stage % Excess	Collapse 1.47 2.11 ft from su Drilling Mud Wt	Ctors Burst 0.86 1.25 Totals: Inface or a Calc MASP	Length 4,000 603 4,603 500 Req'd BOPE	2	a-B 1.52	2.97 4.25	160,00 24,12 184,12 overlap. Min Dis Hole-Cp
lass 'C' tail cm 9 5/8 Segment "A" "B" Hole	#/ft 40.00 40.00 w Annular	casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 390	13 3/8 j 55 hcl 80 : psig: 1,020 volume(s) are inter 1 Stage CuFt Cmt 595	Itc Itc nded to achieve a top of Min	2.83 34.88 2450 1 Stage	Collapse 1.47 2.11 ft from su Drilling	Ctors Burst 0.86 1.25 Totals: rface or a Calc MASP 2602	Length 4,000 603 4,603 500 Req'd BOPE 3M	2	a-B 1.52	2.97 4.25	160,00 24,12 (184,12 overlap. Min Dis Hole-Cp 0.81
9 5/8 Segment "A" "B" Hole Size 12 1/4	#/ft 40.00 40.00 w Annular Volume 0.3132	casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 390 Setting Depths for D V Too	13 3/8 j 55 hcl 80 volume(s) are inter 1 Stage CuFt Cmt 595 bl(s): 3200	Itc Itc nded to achieve a top of Min Cu Ft	2.83 34.88 2450 1 Stage % Excess	Collapse 1.47 2.11 ft from su Drilling Mud Wt	ctors Burst 0.86 1.25 Totals: rface or a Calc MASP 2602 sum of sx	Length 4,000 603 4,603 500 Req'd BOPE 3M Σ.CuFt	2	a-B 1.52	2.97 4.25	160,00 24,12(184,12 overlap. Min Dis Hole-Cp 0.81 Σ%exces
9 5/8 Segment "A" "B" Hole Size 12 1/4 % exces	#/ft 40.00 40.00 w Annular Volume 0.3132 s cmt by sta	casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 390 Setting Depths for D V Too uge: 35	13 3/8 j 55 hcl 80 : psig: 1,020 volume(s) are inter 1 Stage CuFt Cmt 595	Itc Itc nded to achieve a top of Min Cu Ft	2.83 34.88 2450 1 Stage % Excess	Collapse 1.47 2.11 ft from su Drilling Mud Wt	Ctors Burst 0.86 1.25 Totals: rface or a Calc MASP 2602	Length 4,000 603 4,603 500 Req'd BOPE 3M	2	a-B 1.52	2.97 4.25	160,00 24,12 (184,12 overlap. Min Dis Hole-Cp 0.81
9 5/8 Segment "A" "B" Hole Size 12 1/4 % excess class 'C' tail on	#/ft 40.00 40.00 w Annular Volume 0.3132 s cmt by statist yld > 1.35	casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 390 Setting Depths for D V Too uge: 35	13 3/8 j 55 hcl 80 rpsig: 1,020 volume(s) are inter 1 Stage CuFt Cmt 595 bl(s): 3200 538	Itc Itc nded to achieve a top of Min Cu Ft	2.83 34.88 2450 1 Stage % Excess	Collapse 1.47 2.11 ft from su Drilling Mud Wt	ctors Burst 0.86 1.25 Totals: rface or a Calc MASP 2602 sum of sx	Length 4,000 603 4,603 500 Req'd BOPE 3M Σ.CuFt	2	a-B 1.52	2.97 4.25	160,00 24,12(184,12 overlap. Min Dis Hole-Cp 0.81 Σ%exces
Segment "A" "B" Hole Size 12 1/4 % excess class 'C' tail cn burst Frac Gran	#/ft 40.00 40.00 w Annular Volume 0.3132 s cmt by sta t tyld > 1.35 dient(s) for	casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 390 Setting Depths for D V Too ige: 35 Segment(s): A, B, C, D = 0.99	13 3/8 j 55 hcl 80 volume(s) are inter 1 Stage CuFt Cmt 595 bl(s): 3200 538 , b, c, d All > 0.70,	Itc Itc nded to achieve a top of Min Cu Ft	2.83 34.88 2450 1 Stage % Excess	Collapse 1.47 2.11 ft from su Drilling Mud Wt 8.40	Ctors Burst 0.86 1.25 Totals: Irface or a Calc MASP 2602 sum of sx 1290	Length 4,000 603 4,603 500 Req'd BOPE 3M Σ.CuFt	2	a-B 1.52 2.21	2.97 4.25	160,00 24,12(184,12 overlap. Min Dis Hole-Cp 0.81 Σ%exces
9 5/8 Segment "A" "B" Hole Size 12 1/4 % excess class 'C' tail on burst Frac Grav	#/ft 40.00 40.00 w Annular Volume 0.3132 s cmt by stat it yld > 1.35 dijent(s) for y	casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 390 Setting Depths for D V Too ige: 35 Segment(s): A, B, C, D = 0.99 casing inside the	13 3/8 j 55 hcl 80 rpsig: 1,020 volume(s) are inter 1 Stage CuFt Cmt 595 bl(s): 3200 538	Itc Itc Itc Itc Min Cu Ft 699	2.83 34.88 2450 1 Stage % Excess -15	Collapse 1.47 2.11 ft from su Drilling Mud Wt 8.40 Design	Ctors Burst 0.86 1.25 Totals: Inface or a Calc MASP 2602 sum of sx 1290	Length 4,000 603 4,603 500 Req'd BOPE 3M ∑ CuFt 2251	23	a-B 1.52 2.21	2.97 4.25	Min Dis Hole-Cp 0.81 Σ%exces 222
9 5/8 Segment "A" "B" Hole Size 12 1/4 % excess class 'C' tail on fourst Frac Grau 5 1/2 Segment	#/ft 40.00 40.00 w Annular Volume 0.3132 s cmt by stat tt yld > 1.35 dient(s) for #/ft	casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 390 Setting Depths for D V Too ige: 35 Segment(s): A, B, C, D = 0.99	13 3/8 j 55 hcl 80 volume(s) are inter 1 Stage CuFt Cmt 595 bl(s): 3200 538 , b, c, d All > 0.70, 9 5/8	Itc Itc nded to achieve a top of Min Cu Ft 699 Coupling	2.83 34.88 2450 1 Stage % Excess -15	Collapse 1.47 2.11 ft from su Drilling Mud Wt 8.40 <u>Design I</u> Collapse	ctors Burst 0.86 1.25 Totals: rface or a Calc MASP 2602 sum of sx 1290 Factors Burst	Length 4,000 603 4,603 500 Req'd BOPE 3M Σ CuFt 2251	2 3 B@s	a-B 1.52 2.21 Prod 1 a-B	2.97 4.25 a-C	160,00 24,120 184,12 overlap. Min Dis Hole-Cp 0.81 Σ%exces 222
9 5/8 Segment "A" "B" Hole Size 12 1/4 % excess lass 'C' tail cn turst Frac Grav 5 1/2 Segment "A"	#/ft 40.00 40.00 w Annular Volume 0.3132 s cmt by sta tt yld > 1.35 dient(s) for #/ft 20.00	casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 390 Setting Depths for D V Too ige: 35 Segment(s): A, B, C, D = 0.99 casing inside the Grade	13 3/8 j 55 hcl 80 volume(s) are inter 1 Stage CuFt Cmt 595 ol(s): 3200 538 , b, c, d All > 0.70, 9 5/8 hcp 110	Itc Itc Itc Itc Itc Itc Itc Itc Itc Itc	2.83 34.88 2450 1 Stage % Excess -15	Collapse 1.47 2.11 ft from su Drilling Mud Wt 8.40 <u>Design</u> Collapse 2.66	ctors Burst 0.86 1.25 Totals: rface or a Calc MASP 2602 sum of sx 1290 Factors Burst 3.13	Length 4,000 603 4,603 500 Req'd BOPE 3M ∑CuFt 2251	2 3 B@s 3	a-B 1.52 2.21 Prod 1 a-B 5.52	2.97 4.25 a-C 4.69	160,00 24,120 184,12 overlap. Min Dis Hole-Cp 0.81 Σ%exces 222 Weigh 180,64
9 5/8 Segment "A" "B" Hole Size 12 1/4 % excess class 'C' tail on fourst Frac Grau 5 1/2 Segment	#/ft 40.00 40.00 w Annular Volume 0.3132 s cmt by sta tt yld > 1.35 dient(s) for #/ft 20.00 20.00	casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 390 Setting Depths for D V Too oge: 35 Segment(s): A, B, C, D = 0.99 casing inside the Grade	13 3/8 j 55 hcl 80 volume(s) are inter 1 Stage CuFt Cmt 595 ol(s): 3200 538 , b, c, d All > 0.70, 9 5/8 hcp 110 hcp 110	Itc Itc nded to achieve a top of Min Cu Ft 699 Coupling	2.83 34.88 2450 1 Stage % Excess -15 Joint 3.81	Collapse 1.47 2.11 ft from su Drilling Mud Wt 8.40 <u>Design I</u> Collapse	ctors Burst 0.86 1.25 Totals: rface or a Calc MASP 2602 Sum of sx 1290	Length 4,000 603 4,603 500 Req'd BOPE 3M Σ CuFt 2251	2 3 B@s	a-B 1.52 2.21 Prod 1 a-B	2.97 4.25 a-C	160,00 24,120 184,12 overlap. Min Dis Hole-Cp 0.81 Σ%exces 222 Weigh 180,64 214,74
9 5/8 Segment "A" "B" Hole Size 12 1/4 % excess lass 'C' tail cn turst Frac Grau 5 1/2 Segment "A"	#/ft 40.00 40.00 w Annular Volume 0.3132 s cmt by sta tt yld > 1.35 dient(s) for #/ft 20.00 20.00	casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 390 Setting Depths for D V Too ige: 35 Segment(s): A, B, C, D = 0.99 casing inside the Grade	13 3/8 j 55 hcl 80 :psig: 1,020 volume(s) are inter 1 Stage CuFt Cmt 595 b(s): 3200 538 ,b,c,d All > 0.70, 9 5/8 hcp 110 hcp 110 ipsig: 1,980	Itc Itc Itc Itc Itc Itc Itc Itc Itc Itc	2.83 34.88 2450 1 Stage % Excess -15 Joint 3.81 ∞	Collapse 1.47 2.11 ft from su Drilling Mud Wt 8.40 Design I Collapse 2.66 2.66	Ctors Burst 0.86 1.25 Totals: Inface or a Calc MASP 2602 Sum of sx 1290 Factors Burst 3.13 3.13 Totals:	Length 4,000 603 4,603 500 Req'd BOPE 3M ∑ CuFt 2251 2251 200 200 200 200 200 200 200 200 200 20	2 3 B@s 3	a-B 1.52 2.21 Prod 1 a-B 5.52	2.97 4.25 a-C 4.69 4.69	160,00 24,120 184,12 overlap. Min Dis Hole-Cp 0.81 Σ%exces 222 Weigh 180,64 214,74 395,38
9 5/8 Segment "A" "B" Hole Size 12 1/4 % excess class 'C' tail on burst Frac Grav 5 1/2 Segment "A" "B"	#/ft 40.00 w Annular Volume 0.3132 s cmt by sta ti yld > 1.35 dient(s) for #/ft 20.00 20.00	casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 390 Setting Depths for D V Too (ge: 35 Segment(s): A, B, C, D = 0.99 casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement	13 3/8 j 55 hcl 80 volume(s) are inter 1 Stage CuFt Cmt 595 bl(s): 3200 538 , b, c, d All > 0.70, 9 5/8 hcp 110 hcp 110 hcp 110 volume(s) are inter	Itc Itc Itc Itc Itc Itc Itc Itc Itc Itc	2.83 34.88 2450 1 Stage % Excess -15 Joint 3.81 ∞ 4403	Collapse 1.47 2.11 ft from su Drilling Mud Wt 8.40 <u>Design I</u> Collapse 2.66 2.66 ft from su	Ctors Burst 0.86 1.25 Totals: Inface or a Calc MASP 2602 sum of sx 1290 Factors Burst 3.13 3.13 Totals: Inface or a	Length 4,000 603 4,603 500 Req'd BOPE 3M Σ.CuFt 2251 Length 9,032 10,737 19,769 200	2 3 B@s 3	a-B 1.52 2.21 Prod 1 a-B 5.52	2.97 4.25 a-C 4.69 4.69	160,00 24,120 184,12 overlap. Min Dis Hole-Cp 0.81 <u>Σ%excee</u> 222 Weigh 180,64 180,64 214,74 395,38 overlap.
P 5/8 P 5/8 Segment "A" "B" Hole Size 12 1/4 % exces class 'C' tail cn burst Frac Gra 5 1/2 Segment "A" "B" Hole	#/ft 40.00 40.00 w Annular Volume 0.3132 s cmt by sta ti yld > 1.35 dient(s) for #/ft 20.00 20.00 w Annular	casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 390 Setting Depths for D V Too (ge: 35 Segment(s): A, B, C, D = 0.99 casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 Stage	13 3/8 j 55 hcl 80 volume(s) are inter 1 Stage CuFt Cmt 595 538 (b, c, d All > 0.70, 9 5/8 hcp 110 hcp 110 is psig: 1,980 volume(s) are inter 1 Stage	Itc Itc Itc Itc Itc Itc Itc Itc Itc Itc	2.83 34.88 2450 1 Stage % Excess -15 Joint 3.81 ∞ 4403 1 Stage	Collapse 1.47 2.11 ft from su Drilling Mud Wt 8.40 <u>Design I</u> Collapse 2.66 2.66 ft from su Drilling	Ctors Burst 0.86 1.25 Totals: Inface or a Calc MASP 2602 sum of sx 1290 Factors Burst 3.13 3.13 Totals: Inface or a Calc	Length 4,000 603 4,603 500 Req'd BOPE 3M ∑ CuFt 2251 2251 2251 200 200 Req'd 8,032 10,737 19,769 200 Req'd	2 3 B@s 3	a-B 1.52 2.21 Prod 1 a-B 5.52	2.97 4.25 a-C 4.69 4.69	160,00 24,120 184,12 overlap. Min Dis Hole-Cp 0.81 Σ%exces 222 Weigh 180,64 214,74 395,38 overlap. Min Dis
9 5/8 Segment "A" "B" Hole Size 12 1/4 % excess lass 'C' tail cru urst Frac Grav 5 1/2 Segment "A" "B" Hole Size	#/ft 40.00 40.00 w Annular Volume 0.3132 s cmt by sta t tyld > 1.35 dient(s) for 20.00 20.00 w Annular Volume	casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 390 Setting Depths for D V Too (ge: 35 Segment(s): A, B, C, D = 0.99 casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx	13 3/8 j 55 hcl 80 volume(s) are inter 1 Stage CuFt Cmt 595 bl(s): 3200 538 , b, c, d All > 0.70, 9 5/8 hcp 110 hcp 110 hcp 110 is psig: 1,980 volume(s) are inter 1 Stage CuFt Cmt	Itc Itc Itc Itc Itc Itc Itc Itc Itc Itc	2.83 34.88 2450 1 Stage % Excess -15 Joint 3.81 ∞ 4403 1 Stage % Excess	Collapse 1.47 2.11 ft from su Drilling Mud Wt 8.40 Design I Collapse 2.66 2.66 ft from su Drilling Mud Wt	Ctors Burst 0.86 1.25 Totals: Inface or a Calc MASP 2602 sum of sx 1290 Factors Burst 3.13 3.13 Totals: Inface or a	Length 4,000 603 4,603 500 Req'd BOPE 3M Σ.CuFt 2251 Length 9,032 10,737 19,769 200	2 3 B@s 3	a-B 1.52 2.21 Prod 1 a-B 5.52	2.97 4.25 a-C 4.69 4.69	160,00 24,120 184,12 overlap. Min Dis Hole-Cp 0.81 Σ%exces 222 Weigh 180,64 214,74 395,38 overlap. Min Dis Hole-Cp
9 5/8 Segment "A" "B" Hole Size 12 1/4 % excess lass 'C' tail cn urst Frac Grav 5 1/2 Segment "A" "B" Hole	#/ft 40.00 40.00 w Annular Volume 0.3132 s cmt by sta tt yld > 1.35 dient(s) for 20.00 20.00 w Annular Volume 0.2526	casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 390 Setting Depths for D V Too ige: 35 Segment(s): A, B, C, D = 0.99 casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 3595	13 3/8 j 55 hcl 80 volume(s) are inter 1 Stage CuFt Cmt 595 538 (b, c, d All > 0.70, 9 5/8 hcp 110 hcp 110 is psig: 1,980 volume(s) are inter 1 Stage	Itc Itc Itc Itc Itc Itc Itc Itc Itc Itc	2.83 34.88 2450 1 Stage % Excess -15 Joint 3.81 ∞ 4403 1 Stage	Collapse 1.47 2.11 ft from su Drilling Mud Wt 8.40 <u>Design I</u> Collapse 2.66 2.66 ft from su Drilling	Ctors Burst 0.86 1.25 Totals: Inface or a Calc MASP 2602 sum of sx 1290 Factors Burst 3.13 3.13 Totals: Inface or a Calc	Length 4,000 603 4,603 500 Req'd BOPE 3M ∑ CuFt 2251 2251 2251 200 200 Req'd 8,032 10,737 19,769 200 Req'd	2 3 B@s 3	a-B 1.52 2.21 Prod 1 a-B 5.52	2.97 4.25 a-C 4.69 4.69	160,00 24,12 184,12 overlap. Min Di Hole-Cj 0.81 ∑%exce 222 Weigl 180,64 214,72 395,33 overlap. Min Di

.

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OI ERATOR STRAME.	Avant Operating LLC
	NMNM077054
	Section 25, T.19 S., R.32 E., NMPM
COUNTY:	Lea County, New Mexico

WELL NAME & NO.:	Cutbow 36 1 Federal Com 302H
SURFACE HOLE FOOTAGE:	734'/S & 1508'/W
BOTTOM HOLE FOOTAGE	100'/S & 1630'/W
ATS/API ID:	30-025-51647
APD ID:	10400089084
Sundry ID:	2768723

COA

H2S	Yes 🔻		
Potash	Secretary 🔽		
Cave/Karst Potential	Low		
Cave/Karst Potential	Critical		
Variance	C None	E Flex Hose	C Other
Wellhead	Diverter	-	
Other	✓ 4 String	Capitan Reef Int 2	□WIPP
Other	Pilot Hole None	Open Annulus	
Cementing	Contingency Squeeze	Echo-Meter None	Primary Cement Squeeze None
Special Requirements	□ Water Disposal/Injection	COM	🗖 Unit
Special Requirements	□ Batch Sundry		
Special Requirements Variance	□ Break Testing	Cementing	Casing Clearance

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Delware and Bone Springs** formation. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

Surface casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 1. The 20 inch surface casing shall be set at approximately 1175 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. The surface hole shall be 24 inch in diameter.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>24 hours in the Potash Area</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 2. The minimum required fill of cement behind the 13-3/8 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, potash or capitan reef. Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.
 - In Secretary Potash Areas if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.

3. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

Option 1 (Single Stage):

Cement should tie-back at least 50 feet on top of Capitan Reef top or 500 feet into the previous casing, whichever is greater. If cement does not circulate see B.1.a, c-d above.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, potash or capitan reef.

Option 2:

Operator has proposed a DV tool(s), the depth may be adjusted as long as the cement is changed proportionally. The DV tool(s) may be cancelled if cement circulates to surface on the first stage.

DV tool(s) shall be set a minimum of 50' below previous shoe and a minimum of 200' above current shoe. Operator shall contact the BLM if DV tool(s) depth cannot be set in this range. If an ECP is used, it is to be set a minimum of 50' below the shoe to provide cement across the shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

In Capitan Reef a DV tool shall be set a maximum of 200' above the top of Capitan Reef.

- a. First stage to DV tool(s): Cement to circulate. If cement does not circulate off the DV tool(s), contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool(s):
 - Cement should tie-back at least 50 feet on top of Capitan Reef top or 500 feet into the previous casing, whichever is greater. Operator shall provide method of verification.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, potash or capitan reef.
- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be tested to **1500** psi. A Diverter system is approved as a variance to drill the **13-3/8** inch intermediate casing section in a **20** inch hole.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the **13-3/8** inch intermediate casing shoe shall be **3000 (3M)** psi.
- c. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the **9-5/8** inch intermediate casing shoe shall be **5000 (5M)** psi.

Option 2:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be tested to **1500** psi. A Diverter system is approved as a variance to drill the **13-3/8** inch intermediate casing section in a **20** inch hole.
- b. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the 13-3/8 inch intermediate casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the intermediate casing shoe shall be 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in Onshore Order 1 and 2.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - \boxtimes Eddy County
 - Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

🛛 Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24</u> <u>hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.

- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

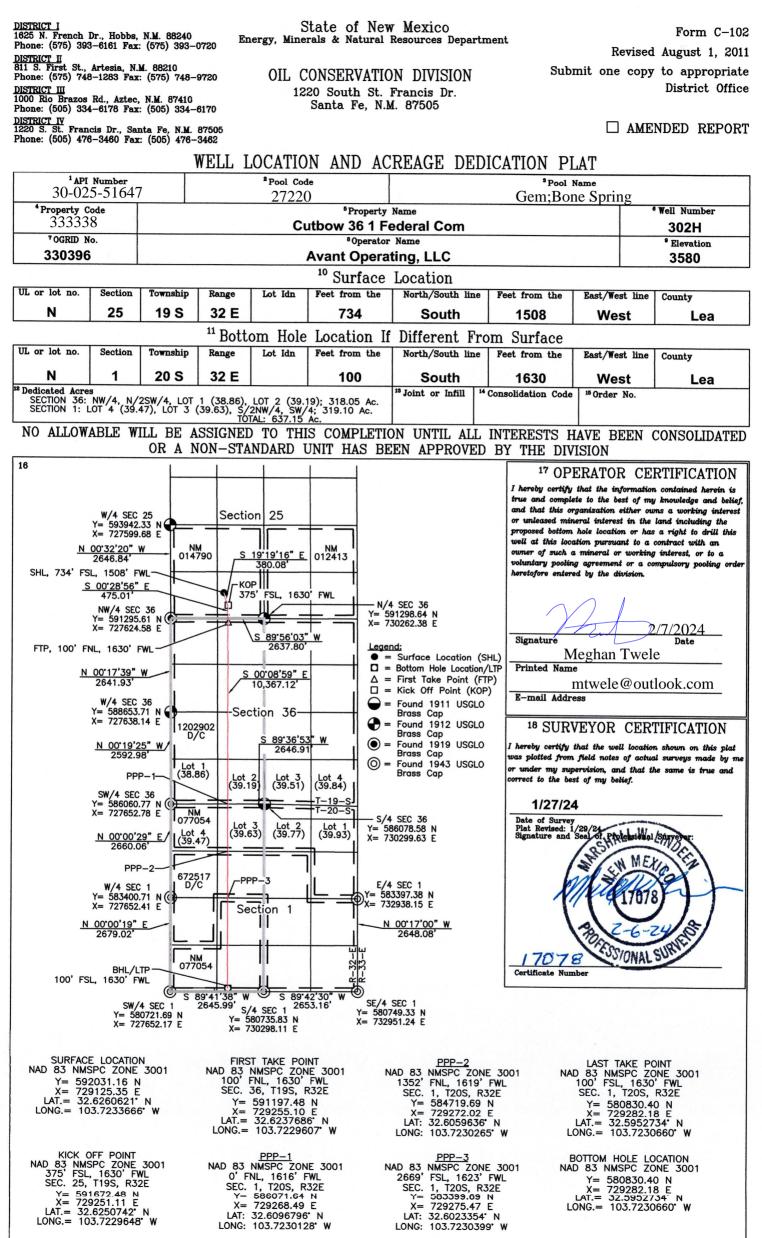
- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
 - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
 - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - e. The results of the test shall be reported to the appropriate BLM office.
 - f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
 - g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to

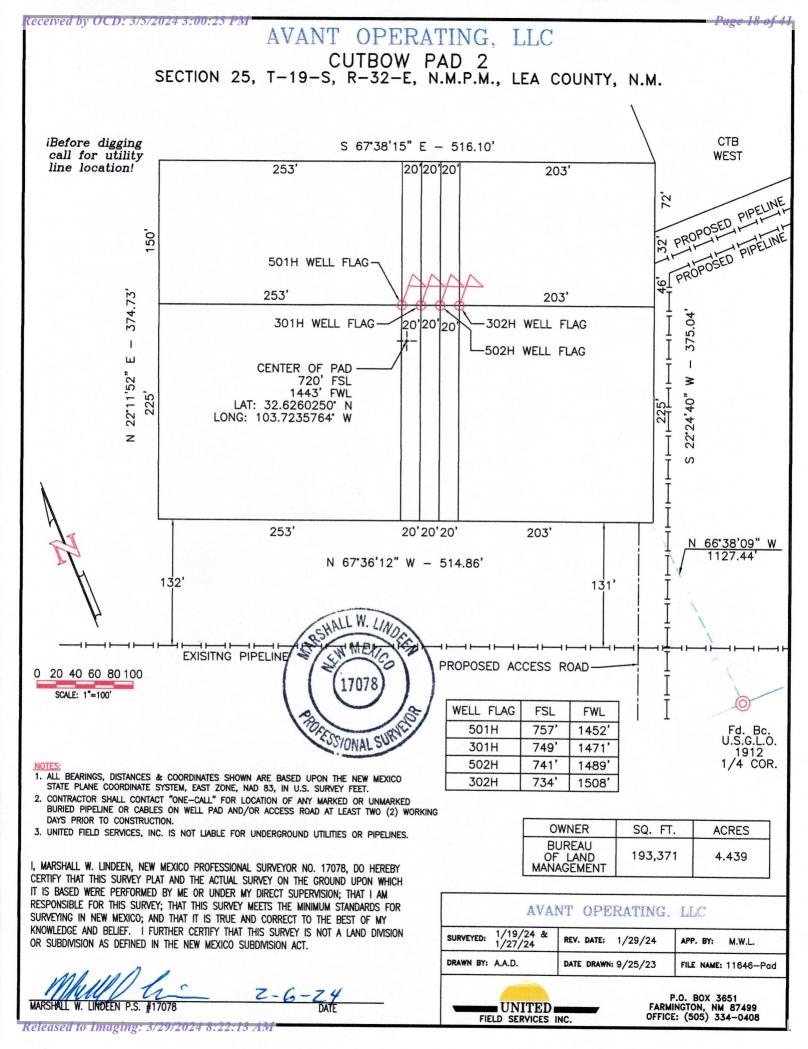
the test at full stack pressure.

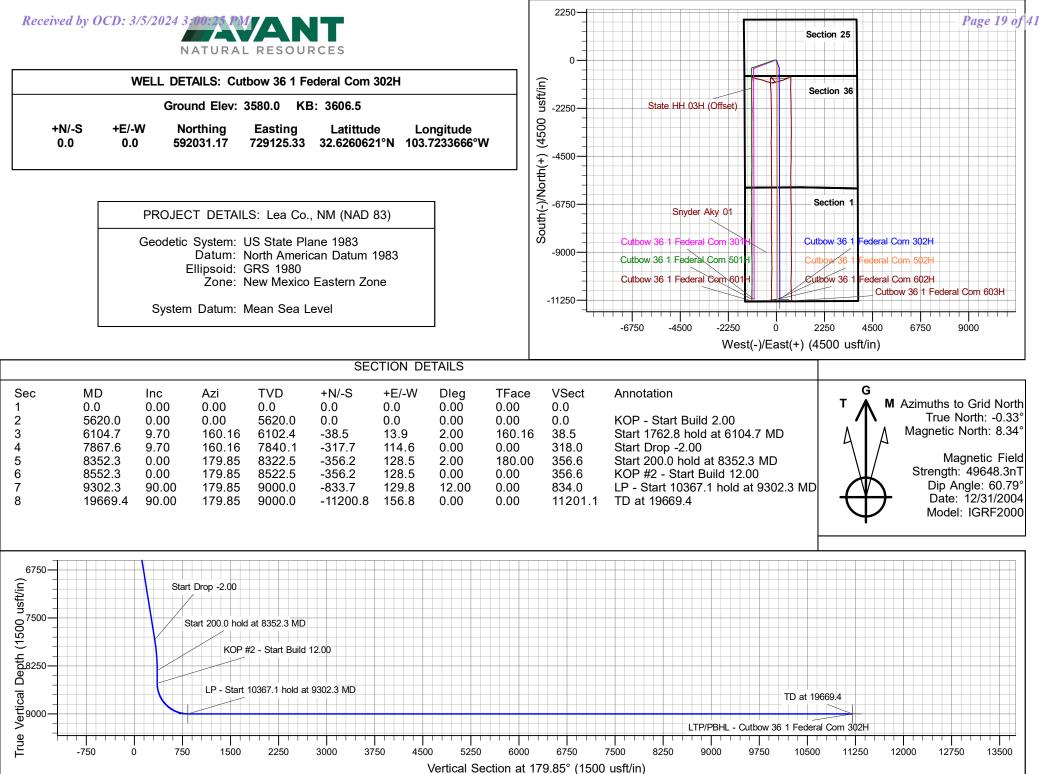
h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD


Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS


All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.


Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

LVO 2/29/2024

Released to Imaging: 3/29/2024 8:22:13 AM

Avant Operating, LLC

Lea Co., NM (NAD 83) Cutbow 36 1 Federal Com Pad 2 Cutbow 36 1 Federal Com 302H

ОН

Plan: Plan 0.2

Standard Planning Report

07 February, 2024

Planning Report

Database: Company: Project: Site: Well: Wellbore: Design:	Avant (Lea Co Cutbow	000.16 Single Dperating, LLC v., NM (NAD 8 v 36 1 Federal v 36 1 Federal 2	C 3) I Com Pad 2		TVD Refer MD Refere North Ref	ence:		Well Cutbow 36 WELL @ 3606. WELL @ 3606. Grid Minimum Curva	5usft (3606.5) 5usft (3606.5)	n 302H
Project	Lea Co.	, NM (NAD 83	3)							
Map System: Geo Datum: Map Zone:	North Am	Plane 1983 erican Datum ico Eastern Zo			System Dat	tum:	Me	ean Sea Level		
Site	Cutbow	36 1 Federal	Com Pad 2							
Site Position: From: Position Uncertain	Map t y:	0.0	North Eastir usft Slot R	-	729,	898.24 usft 027.52 usft 3-3/16 "	Latitude: Longitude:			32.6256983°N 103.7236868°W
Well	Cutbow	36 1 Federal (Com 302H							
Well Position Position Uncertaint Grid Convergence:		0 0).0 usft Ea	orthing: asting: ellhead Elevat	tion:	592,031.17 729,125.33	usft Lor	tude: gitude: und Level:		32.6260621°N 103.7233666°W 3,580.0 usft
Wellbore	OH									
Magnetics	Мос	del Name IGRF2000		e Date	Declina (°)		Dip A (°	-	(Strength nT) 648.30223727
				.2/01/2001					,	
Design Audit Notes: Version:	Plan 0.2	2	Phas	e: f	PLAN	Tie	e On Depth:		0.0	
Vertical Section:		0	Depth From (T (usft) 0.0	VD)	+N/-S (usft) 0.0	(u	5/-W I sft) 0.0		rection (°) 79.85	
Plan Survey Tool F Depth From (usft) 1 0.0	Depth (usf	То	2/7/2024 • (Wellbore) 2 (OH)		Tool Name B001Mb_MWI OWSG MWD		Remarks			
Plan Sections										
Measured Depth Inc (usft)	lination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0 5,620.0 6,104.7 7,867.6 8,352.3 8,552.3 9,302.3	0.00 0.00 9.70 9.70 0.00 0.00 90.00	0.00 0.00 160.16 160.16 179.85 179.85 179.85	0.0 5,620.0 6,102.4 7,840.1 8,322.5 8,522.5 9,000.0	0.0 0.0 -38.5 -317.7 -356.2 -356.2 -833.7	0.0 0.0 13.9 114.6 128.5 128.5 129.8	0.00 0.00 2.00 0.00 2.00 0.00 12.00	0.00 0.00 2.00 0.00 -2.00 0.00 12.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 160.16 0.00 180.00 0.00	FTP - Cutbow 36 1 Fe
9,302.3 19,669.4	90.00 90.00	179.85	9,000.0 9,000.0	-033.7 -11,200.8	129.8	0.00	0.00	0.00		LTP/PBHL - Cutbow 3

2/7/2024 10:37:15AM

Planning Report

Database:	EDM 5000.16 Single User Db	Local Co-ordinate Reference:	Well Cutbow 36 1 Federal Com 302H
Company:	Avant Operating, LLC	TVD Reference:	WELL @ 3606.5usft (3606.5)
Project:	Lea Co., NM (NAD 83)	MD Reference:	WELL @ 3606.5usft (3606.5)
Site:	Cutbow 36 1 Federal Com Pad 2	North Reference:	Grid
Well:	Cutbow 36 1 Federal Com 302H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan 0.2		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,200.0	0.00	0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00
2,300.0	0.00	0.00	2,300.0	0.0	0.0	0.0	0.00	0.00	0.00
2,400.0	0.00	0.00	2,400.0	0.0	0.0	0.0	0.00	0.00	0.00
	0.00	0.00	2,500.0	0.0	0.0		0.00	0.00	0.00
2,500.0			,			0.0			
2,600.0	0.00	0.00	2,600.0	0.0	0.0	0.0	0.00	0.00	0.00
2,700.0	0.00	0.00	2,700.0	0.0	0.0	0.0	0.00	0.00	0.00
2,800.0	0.00	0.00	2,800.0	0.0	0.0	0.0	0.00	0.00	0.00
2,900.0	0.00	0.00	2,900.0	0.0	0.0	0.0	0.00	0.00	0.00
3,000.0	0.00	0.00	3,000.0	0.0	0.0	0.0	0.00	0.00	0.00
3,100.0	0.00	0.00	3,100.0	0.0	0.0	0.0	0.00	0.00	0.00
3,200.0	0.00	0.00	3,200.0	0.0	0.0	0.0	0.00	0.00	0.00
3,300.0	0.00	0.00	3,300.0	0.0	0.0	0.0	0.00	0.00	0.00
3,400.0	0.00	0.00	3,400.0	0.0	0.0	0.0	0.00	0.00	0.00
3,500.0	0.00	0.00	3,500.0	0.0	0.0	0.0	0.00	0.00	0.00
3,600.0	0.00	0.00	3,600.0	0.0	0.0	0.0	0.00	0.00	0.00
3,700.0	0.00	0.00	3,700.0	0.0	0.0	0.0	0.00	0.00	0.00
3,800.0	0.00	0.00	3,800.0	0.0	0.0	0.0	0.00	0.00	0.00
3,900.0	0.00	0.00	3,900.0	0.0	0.0	0.0	0.00	0.00	0.00
4,000.0	0.00	0.00	4,000.0	0.0	0.0	0.0	0.00	0.00	0.00
4,100.0	0.00	0.00	4,100.0	0.0	0.0	0.0	0.00	0.00	0.00
4,200.0	0.00	0.00	4,200.0	0.0	0.0	0.0	0.00	0.00	0.00
4,200.0	0.00	0.00	4,200.0	0.0	0.0	0.0	0.00	0.00	0.00
4,400.0	0.00	0.00	4,400.0	0.0	0.0	0.0	0.00	0.00	0.00
4,500.0	0.00	0.00	4,500.0	0.0	0.0	0.0	0.00	0.00	0.00
4,600.0	0.00	0.00	4,600.0	0.0	0.0	0.0	0.00	0.00	0.00
4,700.0	0.00	0.00	4,700.0	0.0	0.0	0.0	0.00	0.00	0.00
4,800.0	0.00	0.00	4,800.0	0.0	0.0	0.0	0.00	0.00	0.00
4,900.0	0.00	0.00	4,900.0	0.0	0.0	0.0	0.00	0.00	0.00
5.000.0	0.00	0.00	5,000.0	0.0	0.0	0.0	0.00	0.00	0.00
5,100.0	0.00	0.00	5,100.0	0.0	0.0	0.0	0.00	0.00	0.00
5,200.0	0.00	0.00	5,200.0	0.0	0.0	0.0	0.00	0.00	0.00
5,300.0	0.00								
	0.00	0.00	5,300.0	0.0	0.0	0.0	0.00	0.00	0.00

2/7/2024 10:37:15AM

Page 3

COMPASS 5000.16 Build 96

Planning Report

Database:	EDM 5000.16 Single User Db	Local Co-ordinate Reference:	Well Cutbow 36 1 Federal Com 302H
Company:	Avant Operating, LLC	TVD Reference:	WELL @ 3606.5usft (3606.5)
Project:	Lea Co., NM (NAD 83)	MD Reference:	WELL @ 3606.5usft (3606.5)
Site:	Cutbow 36 1 Federal Com Pad 2	North Reference:	Grid
Well:	Cutbow 36 1 Federal Com 302H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan 0.2		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,400.0	0.00	0.00	5,400.0	0.0	0.0	0.0	0.00	0.00	0.00
5,500.0	0.00	0.00	5,500.0	0.0	0.0	0.0	0.00	0.00	0.00
5,600.0	0.00	0.00	5,600.0	0.0	0.0	0.0	0.00	0.00	0.00
5,620.0	0.00	0.00	5,620.0	0.0	0.0	0.0	0.00	0.00	0.00
KOP - Start		0.00	5,020.0	0.0	0.0	0.0	0.00	0.00	0.00
5,700.0	1.60	160.16	5,700.0	-1.1	0.4	1.1	2.00	2.00	0.00
5,800.0	3.60	160.16	5,799.9	-5.3	1.9	5.3	2.00	2.00	0.00
5,900.0	5.60	160.16	5,899.6	-12.9	4.6	12.9	2.00	2.00	0.00
6,000.0	7.60	160.16	5,998.9	-23.7	8.5	23.7	2.00	2.00	0.00
6,100.0	9.60	160.16	6,097.8	-37.7	13.6	37.8	2.00	2.00	0.00
6,104.7	9.70	160.16	6,102.4	-38.5	13.9	38.5	2.00	2.00	0.00
	hold at 6104.7 M								
6,200.0	9.70	160.16	6,196.3	-53.6	19.3	53.6	0.00	0.00	0.00
6,300.0	9.70	160.16	6,294.9	-69.4	25.0	69.5	0.00	0.00	0.00
6,400.0	9.70	160.16	6,393.5	-85.3	30.8	85.3	0.00	0.00	0.00
6,500.0	9.70	160.16	6,492.0	-101.1	36.5	101.2	0.00	0.00	0.00
6,600.0	9.70	160.16	6,590.6	-116.9	42.2	117.0	0.00	0.00	0.00
6,700.0	9.70	160.16	6,689.2	-132.8	47.9	132.9	0.00	0.00	0.00
6,800.0	9.70	160.16	6,787.8	-148.6	53.6	148.8	0.00	0.00	0.00
6,900.0	9.70	160.16	6,886.3	-164.5	59.3	164.6	0.00	0.00	0.00
7,000.0	9.70	160.16	6.984.9	-180.3	65.0	180.5	0.00	0.00	0.00
7,100.0	9.70	160.16	7,083.5	-196.1	70.8	196.3	0.00	0.00	0.00
7,200.0	9.70	160.16	7,182.0	-212.0	76.5	212.2	0.00	0.00	0.00
7,300.0	9.70	160.16	7,280.6	-227.8	82.2	228.0	0.00	0.00	0.00
7,400.0	9.70	160.16	7,379.2	-243.7	87.9	243.9	0.00	0.00	0.00
7,500.0	9.70	160.16	7,477.8	-259.5	93.6	259.8	0.00	0.00	0.00
7,600.0	9.70	160.16	7,576.3	-275.4	99.3	275.6	0.00	0.00	0.00
7,700.0	9.70	160.16	7,674.9	-291.2	105.0	291.5	0.00	0.00	0.00
7,800.0	9.70	160.16	7,773.5	-307.0	110.8	307.3	0.00	0.00	0.00
7,867.6	9.70	160.16	7,840.1	-317.7	114.6	318.0	0.00	0.00	0.00
Start Drop -									
7,900.0	9.05	160.16	7,872.1	-322.7	116.4	323.0	2.00	-2.00	0.00
8,000.0	7.05	160.16	7,971.1	-335.9	121.2	336.2	2.00	-2.00	0.00
8,100.0	5.05	160.16	8,070.5	-345.8	124.7	346.1	2.00	-2.00	0.00
8,200.0	3.05	160.16	8,170.3	-352.4	127.1	352.7	2.00	-2.00	0.00
8,300.0	1.05	160.16	8,270.2	-355.8	128.3	356.1	2.00	-2.00	0.00
8,352.3	0.00	179.85	8,322.5	-356.2	128.5	356.6	2.00	-2.00	0.00
Start 200.0 h	nold at 8352.3 MI	D							
8,400.0	0.00	0.00	8,370.2	-356.2	128.5	356.6	0.00	0.00	0.00
8,500.0	0.00	0.00	8,470.2	-356.2	128.5	356.6	0.00	0.00	0.00
8,552.3	0.00	0.00	8,522.5	-356.2	128.5	356.6	0.00	0.00	0.00
	art Build 12.00								
8,600.0	5.72	179.85	8,570.1	-358.6	128.5	358.9	12.00	12.00	0.00
8,700.0	17.72	179.85	8,667.9	-378.9	128.6	379.2	12.00	12.00	0.00
8,800.0	29.72	179.85	8,759.2	-419.0	128.7	419.4	12.00	12.00	0.00
8,900.0	41.72	179.85	8,840.3	-477.3	128.8	477.6	12.00	12.00	0.00
9,000.0	53.72	179.85	8,907.4	-551.2	129.0	551.5	12.00	12.00	0.00
9,100.0	65.72	179.85	8,957.8	-637.4	129.2	637.7	12.00	12.00	0.00
9,200.0	77.72	179.85	8,989.1	-732.1	129.5	732.5	12.00	12.00	0.00
9,300.0	89.72	179.85	9,000.0	-831.4	129.8	831.7	12.00	12.00	0.00
9,302.3	90.00	179.85	9,000.0	-833.7	129.8	834.0	12.00	12.00	0.00
LP - Start 10	367.1 hold at 93	02.3 MD - FTP -	Cutbow 36 1 Fe	ederal Com 302	н				
9,400.0	90.00	179.85	9,000.0	-931.4	130.0	931.7	0.00	0.00	0.00

2/7/2024 10:37:15AM

Page 4

COMPASS 5000.16 Build 96

.

Planning Report

EDM 5000.16 Single User Db Well Cutbow 36 1 Federal Com 302H Database: Local Co-ordinate Reference: Company: Avant Operating, LLC TVD Reference: WELL @ 3606.5usft (3606.5) Project: Lea Co., NM (NAD 83) MD Reference: WELL @ 3606.5usft (3606.5) Site: Cutbow 36 1 Federal Com Pad 2 North Reference: Grid Well: Cutbow 36 1 Federal Com 302H Survey Calculation Method: Minimum Curvature Wellbore: OH Design: Plan 0.2

Planned Survey

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
9,800.0 90.00 179.85 9,000.0 -1,331.4 131.1 1,331.7 0.00 0.00 9,900.0 90.00 179.85 9,000.0 -1,431.4 131.3 1,431.7 0.00 0.00 10,000.0 90.00 179.85 9,000.0 -1,531.4 131.6 1,531.7 0.00 0.00 10,100.0 90.00 179.85 9,000.0 -1,631.4 131.8 1,631.7 0.00 0.00 10,200.0 90.00 179.85 9,000.0 -1,731.4 132.1 1,731.7 0.00 0.00 10,300.0 90.00 179.85 9,000.0 -1,831.4 132.4 1,831.7 0.00 0.00 10,400.0 90.00 179.85 9,000.0 -1,931.4 132.6 1,931.7 0.00 0.00 10,600.0 90.00 179.85 9,000.0 -2,031.4 132.9 2,031.7 0.00 0.00 10,600.0 90.00 179.85 9,000.0 -2,231.4 133.4 <t< td=""><td>0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00</td></t<>	0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
10,200.0 90.00 179.85 9,000.0 -1,731.4 132.1 1,731.7 0.00 0.00 10,300.0 90.00 179.85 9,000.0 -1,831.4 132.4 1,831.7 0.00 0.00 10,400.0 90.00 179.85 9,000.0 -1,931.4 132.6 1,931.7 0.00 0.00 10,500.0 90.00 179.85 9,000.0 -2,031.4 132.9 2,031.7 0.00 0.00 10,600.0 90.00 179.85 9,000.0 -2,131.4 133.1 2,131.7 0.00 0.00 10,700.0 90.00 179.85 9,000.0 -2,231.4 133.4 2,231.7 0.00 0.00 10,800.0 90.00 179.85 9,000.0 -2,331.4 133.7 2,331.7 0.00 0.00 10,900.0 90.00 179.85 9,000.0 -2,431.4 133.9 2,431.7 0.00 0.00	0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
10,300.0 90.00 179.85 9,000.0 -1,831.4 132.4 1,831.7 0.00 0.00 10,400.0 90.00 179.85 9,000.0 -1,931.4 132.6 1,931.7 0.00 0.00 10,500.0 90.00 179.85 9,000.0 -2,031.4 132.9 2,031.7 0.00 0.00 10,600.0 90.00 179.85 9,000.0 -2,131.4 133.1 2,131.7 0.00 0.00 10,700.0 90.00 179.85 9,000.0 -2,231.4 133.4 2,231.7 0.00 0.00 10,800.0 90.00 179.85 9,000.0 -2,331.4 133.7 2,331.7 0.00 0.00 10,900.0 90.00 179.85 9,000.0 -2,331.4 133.7 2,331.7 0.00 0.00 10,900.0 90.00 179.85 9,000.0 -2,431.4 133.9 2,431.7 0.00 0.00	0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
10,400.0 90.00 179.85 9,000.0 -1,931.4 132.6 1,931.7 0.00 0.00 10,500.0 90.00 179.85 9,000.0 -2,031.4 132.9 2,031.7 0.00 0.00 10,600.0 90.00 179.85 9,000.0 -2,131.4 133.1 2,131.7 0.00 0.00 10,700.0 90.00 179.85 9,000.0 -2,231.4 133.4 2,231.7 0.00 0.00 10,800.0 90.00 179.85 9,000.0 -2,331.4 133.7 2,331.7 0.00 0.00 10,900.0 90.00 179.85 9,000.0 -2,431.4 133.9 2,431.7 0.00 0.00	0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
10,500.0 90.00 179.85 9,000.0 -2,031.4 132.9 2,031.7 0.00 0.00 10,600.0 90.00 179.85 9,000.0 -2,131.4 133.1 2,131.7 0.00 0.00 10,700.0 90.00 179.85 9,000.0 -2,231.4 133.4 2,231.7 0.00 0.00 10,800.0 90.00 179.85 9,000.0 -2,231.4 133.7 2,331.7 0.00 0.00 10,900.0 90.00 179.85 9,000.0 -2,431.4 133.9 2,431.7 0.00 0.00	0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
10,500.0 90.00 179.85 9,000.0 -2,031.4 132.9 2,031.7 0.00 0.00 10,600.0 90.00 179.85 9,000.0 -2,131.4 133.1 2,131.7 0.00 0.00 10,700.0 90.00 179.85 9,000.0 -2,231.4 133.4 2,231.7 0.00 0.00 10,800.0 90.00 179.85 9,000.0 -2,231.4 133.7 2,331.7 0.00 0.00 10,900.0 90.00 179.85 9,000.0 -2,431.4 133.9 2,431.7 0.00 0.00	0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
10,600.0 90.00 179.85 9,000.0 -2,131.4 133.1 2,131.7 0.00 0.00 10,700.0 90.00 179.85 9,000.0 -2,231.4 133.4 2,231.7 0.00 0.00 10,800.0 90.00 179.85 9,000.0 -2,331.4 133.7 2,331.7 0.00 0.00 10,900.0 90.00 179.85 9,000.0 -2,431.4 133.9 2,431.7 0.00 0.00	0 0.00 0 0.00 0 0.00 0 0.00
10,700.0 90.00 179.85 9,000.0 -2,231.4 133.4 2,231.7 0.00 0.00 10,800.0 90.00 179.85 9,000.0 -2,331.4 133.7 2,331.7 0.00 0.00 10,900.0 90.00 179.85 9,000.0 -2,431.4 133.9 2,431.7 0.00 0.00	0.00 0.00 0.00
10,800.0 90.00 179.85 9,000.0 -2,331.4 133.7 2,331.7 0.00 0.00 10,900.0 90.00 179.85 9,000.0 -2,431.4 133.9 2,431.7 0.00 0.00	0.00 0.00
10,900.0 90.00 179.85 9,000.0 -2,431.4 133.9 2,431.7 0.00 0.00	0.00
11,000.0 90.00 179.85 9,000.0 -2,531.4 134.2 2,531.7 0.00 0.00 11,100.0 90.00 179.85 9,000.0 -2,631.3 134.5 2,631.7 0.00 0.00	
11,200.0 90.00 179.85 9,000.0 -2,731.3 134.7 2,731.7 0.00 0.00 11,300.0 90.00 179.85 9,000.0 -2,831.3 135.0 2,831.7 0.00 0.00	
11,400.0 90.00 179.85 9,000.0 -2,931.3 135.2 2,931.7 0.00 0.00	
11,500.0 90.00 179.85 9,000.0 -3,031.3 135.5 3,031.7 0.00 0.00	
11,600.0 90.00 179.85 9,000.0 -3,131.3 135.8 3,131.7 0.00 0.00	
11,700.0 90.00 179.85 9,000.0 -3,231.3 136.0 3,231.7 0.00 0.00	0.00
11,800.0 90.00 179.85 9,000.0 -3,331.3 136.3 3,331.7 0.00 0.00	0.00
11,900.0 90.00 179.85 9,000.0 -3,431.3 136.5 3,431.7 0.00 0.00	0.00
12,000.0 90.00 179.85 9,000.0 -3,531.3 136.8 3,531.7 0.00 0.00	
12,100.0 90.00 179.85 9,000.0 -3,631.3 137.1 3,631.7 0.00 0.00	
12,200.0 90.00 179.85 9,000.0 -3,731.3 137.3 3,731.7 0.00 0.00	
12,300.0 90.00 179.85 9,000.0 -3,831.3 137.6 3,831.7 0.00 0.00	
12,400.0 90.00 179.85 9,000.0 -3,931.3 137.9 3,931.7 0.00 0.00	
12,500.0 90.00 179.85 9,000.0 -4,031.3 138.1 4,031.7 0.00 0.00	
12,600.0 90.00 179.85 9,000.0 -4,131.3 138.4 4,131.7 0.00 0.00 12,700.0 90.00 179.85 9,000.0 -4,231.3 138.6 4,231.7 0.00 0.00	
12,700.0 90.00 179.85 9,000.0 -4,231.3 138.6 4,231.7 0.00 0.00 12,800.0 90.00 179.85 9,000.0 -4,331.3 138.9 4,331.7 0.00 0.00	
12,900.0 90.00 179.85 9,000.0 -4,431.3 139.2 4,431.7 0.00 0.00	
13,000.0 90.00 179.85 9,000.0 -4,531.3 139.4 4,531.7 0.00 0.00	
13,100.0 90.00 179.85 9,000.0 -4,631.3 139.7 4,631.7 0.00 0.00	
13,200.0 90.00 179.85 9,000.0 -4,731.3 139.9 4,731.7 0.00 0.00	
13,300.0 90.00 179.85 9,000.0 -4,831.3 140.2 4,831.7 0.00 0.00	0.00
13,400.0 90.00 179.85 9,000.0 -4,931.3 140.5 4,931.7 0.00 0.00	0.00
13,500.0 90.00 179.85 9,000.0 -5,031.3 140.7 5,031.7 0.00 0.00	
13,600.0 90.00 179.85 9,000.0 -5,131.3 141.0 5,131.7 0.00 0.00	
13,700.0 90.00 179.85 9,000.0 -5,231.3 141.2 5,231.7 0.00 0.00	
13,800.0 90.00 179.85 9,000.0 -5,331.3 141.5 5,331.7 0.00 0.00	
13,900.0 90.00 179.85 9,000.0 -5,431.3 141.8 5,431.7 0.00 0.00	0.00
13,900.0 90.00 179.85 9,000.0 -5,431.3 141.8 5,431.7 0.00 0.00 14,000.0 90.00 179.85 9,000.0 -5,531.3 142.0 5,531.7 0.00 0.00	
14,00.0 90.00 179.85 9,000.0 -5,531.3 142.0 5,531.7 0.00 0.00 14,100.0 90.00 179.85 9,000.0 -5,631.3 142.3 5,631.7 0.00 0.00	
14,100.0 90.00 179.85 9,000.0 -5,731.3 142.5 5,731.7 0.00 0.00 14,200.0 90.00 179.85 9,000.0 -5,731.3 142.6 5,731.7 0.00 0.00	
14,200.0 90.00 179.85 9,000.0 -5,831.3 142.8 5,831.7 0.00 0.00	
14,400.0 90.00 179.85 9,000.0 -5,931.3 143.1 5,931.7 0.00 0.00	
14,500.0 90.00 179.85 9,000.0 -6,031.3 143.3 6,031.7 0.00 0.00	
14,600.0 90.00 179.85 9,000.0 -6,131.3 143.6 6,131.7 0.00 0.00	
14,700.0 90.00 179.85 9,000.0 -6,231.3 143.9 6,231.7 0.00 0.00	
14,800.0 90.00 179.85 9,000.0 -6,331.3 144.1 6,331.7 0.00 0.00	0.00

2/7/2024 10:37:15AM

Page 5

COMPASS 5000.16 Build 96

Planning Report

EDM 5000.16 Single User Db	Local Co-ordinate Reference:	Well Cutbow 36 1 Federal Com 302H
Avant Operating, LLC	TVD Reference:	WELL @ 3606.5usft (3606.5)
Lea Co., NM (NAD 83)	MD Reference:	WELL @ 3606.5usft (3606.5)
Cutbow 36 1 Federal Com Pad 2	North Reference:	Grid
Cutbow 36 1 Federal Com 302H	Survey Calculation Method:	Minimum Curvature
ОН		
Plan 0.2		
	Avant Operating, LLC Lea Co., NM (NAD 83) Cutbow 36 1 Federal Com Pad 2 Cutbow 36 1 Federal Com 302H OH	Avant Operating, LLC TVD Reference: Lea Co., NM (NAD 83) MD Reference: Cutbow 36 1 Federal Com Pad 2 North Reference: Cutbow 36 1 Federal Com 302H Survey Calculation Method: OH OH

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
14,900.0	90.00	179.85	9,000.0	-6,431.3	144.4	6,431.7	0.00	0.00	0.0
15,000.0	90.00	179.85	9,000.0	-6,531.3	144.6	6,531.7	0.00	0.00	0.0
15,100.0	90.00	179.85	9,000.0	-6,631.3	144.9	6,631.7	0.00	0.00	0.0
15,200.0	90.00	179.85	9,000.0	-6,731.3	145.2	6,731.7	0.00	0.00	0.0
15,300.0	90.00	179.85	9,000.0	-6,831.3	145.4	6,831.7	0.00	0.00	0.0
		179.85							0.0
15,400.0	90.00		9,000.0	-6,931.3	145.7	6,931.7	0.00	0.00	
15,500.0	90.00	179.85	9,000.0	-7,031.3	146.0	7,031.7	0.00	0.00	0.0
15,600.0	90.00	179.85	9,000.0	-7,131.3	146.2	7,131.7	0.00	0.00	0.0
15,700.0	90.00	179.85	9,000.0	-7,231.3	146.5	7,231.7	0.00	0.00	0.0
15,800.0	90.00	179.85	9,000.0	-7,331.3	146.7	7,331.7	0.00	0.00	0.0
15,900.0	90.00	179.85	9,000.0	-7,431.3	147.0	7,431.7	0.00	0.00	0.0
16,000.0	90.00	179.85	9,000.0	-7,531.3	147.3	7,531.7	0.00	0.00	0.0
16,100.0	90.00	179.85	9,000.0	-7,631.3	147.5	7,631.7	0.00	0.00	0.0
16,200.0	90.00	179.85	9,000.0	-7,731.3	147.8	7,731.7	0.00	0.00	0.0
16,300.0	90.00	179.85	9,000.0	-7,831.3	148.0	7,831.7	0.00	0.00	0.0
16,400.0	90.00	179.85	9,000.0	-7,931.3	148.3	7,931.7	0.00	0.00	0.0
16,500.0	90.00	179.85	9,000.0	-8,031.3	148.6	8,031.7	0.00	0.00	0.0
16,600.0	90.00	179.85	9,000.0	-8,131.3	148.8	8,131.7	0.00	0.00	0.0
16,700.0	90.00	179.85	9,000.0	-8,231.3	149.1	8,231.7	0.00	0.00	0.0
16,800.0	90.00	179.85	9,000.0	-8,331.3	149.3	8,331.7	0.00	0.00	0.0
16,900.0	90.00	179.85	9.000.0	-8,431.3	149.6	8,431.7	0.00	0.00	0.0
17,000.0	90.00	179.85	9,000.0	-8,531.3	149.9	8,531.7	0.00	0.00	0.0
17,100.0	90.00	179.85	9,000.0	-8,631.3	150.1	8,631.7	0.00	0.00	0.0
17,200.0	90.00	179.85	9,000.0	-8,731.3	150.4	8,731.7	0.00	0.00	0.0
17,300.0	90.00	179.85	9,000.0	-8,831.3	150.4	8,831.7	0.00	0.00	0.0
							0.00		0.0
17,400.0	90.00	179.85	9,000.0	-8,931.3	150.9	8,931.7		0.00	
17,500.0	90.00	179.85	9,000.0	-9,031.3	151.2	9,031.7	0.00	0.00	0.0
17,600.0	90.00	179.85	9,000.0	-9,131.3	151.4	9,131.7	0.00	0.00	0.0
17,700.0	90.00	179.85	9,000.0	-9,231.3	151.7	9,231.7	0.00	0.00	0.0
17,800.0	90.00	179.85	9,000.0	-9,331.3	152.0	9,331.7	0.00	0.00	0.0
17,900.0	90.00	179.85	9,000.0	-9,431.3	152.2	9,431.7	0.00	0.00	0.0
18,000.0	90.00	179.85	9,000.0	-9,531.3	152.5	9,531.7	0.00	0.00	0.0
18,100.0	90.00	179.85	9,000.0	-9,631.3	152.7	9,631.7	0.00	0.00	0.0
18,200.0	90.00	179.85	9,000.0	-9,731.3	153.0	9,731.7	0.00	0.00	0.0
18,300.0	90.00	179.85	9,000.0	-9,831.3	153.3	9,831.7	0.00	0.00	0.0
18,400.0	90.00	179.85	9,000.0	-9,931.3	153.5	9,931.7	0.00	0.00	0.0
18,500.0	90.00	179.85	9,000.0	-10,031.3	153.8	10,031.7	0.00	0.00	0.0
18,600.0	90.00	179.85	9,000.0	-10,131.3	154.1	10,131.7	0.00	0.00	0.0
18,700.0	90.00	179.85	9,000.0	-10,231.3	154.3	10,231.7	0.00	0.00	0.0
18,800.0	90.00	179.85	9,000.0	-10,331.3	154.6	10,331.7	0.00	0.00	0.0
18,900.0	90.00	179.85	9,000.0	-10,431.3	154.8	10,431.7	0.00	0.00	0.0
19,000.0	90.00	179.85	9,000.0	-10,531.3	155.1	10,531.7	0.00	0.00	0.0
19,100.0	90.00	179.85	9,000.0	-10,631.3	155.4	10,631.7	0.00	0.00	0.0
19,200.0	90.00	179.85	9,000.0	-10,731.3	155.6	10,731.7	0.00	0.00	0.0
19,200.0	90.00	179.85	9,000.0	-10,831.3	155.9	10,731.7	0.00	0.00	0.0
19,400.0	90.00	179.85	9,000.0	-10,931.3	156.1	10,931.7	0.00	0.00	0.0
19,400.0	90.00	179.85	9,000.0 9,000.0	-10,931.3 -11,031.3	156.1	10,931.7 11,031.7	0.00	0.00	0.0
19,500.0		179.85		,	156.4	11,131.7	0.00	0.00	0.0
	90.00		9,000.0	-11,131.3		,			
19,669.4	90.00	179.85	9,000.0	-11,200.8	156.8	11,201.1	0.00	0.00	0.0

Planning Report

Database: Company: Project: Site: Well: Wellbore: Design:	Avant Oper Lea Co., NI Cutbow 36		n Pad 2		TVD Refere MD Refere North Refe	nce:	WELL @ WELL @ Grid	tbow 36 1 Fed 0 3606.5usft (3 0 3606.5usft (3 n Curvature	3606.5)	2H
Design Targets Target Name										
- hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitud	e	Longitude
LTP/PBHL - Cutbow 3 - plan hits target o - Point		0 0.01	9,000.0	-11,200.8	156.8	580,830.40	729,282.18	32.595	2734°N	103.7230660°W
FTP - Cutbow 36 1 Fe - plan hits target o - Point		0 0.01	9,000.0	-833.7	129.8	591,197.48	729,255.09	32.623	37686°N	103.7229607°W
Casing Points										
N	leasured Depth (usft)	Vertical Depth (usft)			Name			asing ameter (")	Hole Diameter (")	
	9,302.3	9,000.0	LP					5-1/2	5-1/2	
Plan Annotations										
De	pth I	ertical Depth (usft)	Local +N/-S (usft)		:/-W sft)	Comment				
6 	5,620.0 5,104.7 7,867.6 3,352.3 3,552.3 9,302.3	5,620.0 6,102.4 7,840.1 8,322.5 8,522.5 9,000.0	0.0 -38.5 -317.7 -356.2 -356.2 -833.7	2	0.0 13.9 114.6 128.5 128.5 129.8	KOP - Start Build 2.0 Start 1762.8 hold at Start Drop -2.00 Start 200.0 hold at 8 KOP #2 - Start Build LP - Start 10367.1 h	6104.7 MD 352.3 MD 12.00	_		

Avant Operating, LLC

Lea Co., NM (NAD 83) Cutbow 36 1 Federal Com Pad 2 Cutbow 36 1 Federal Com 302H

OH Plan 0.2

Anticollision Summary Report

07 February, 2024

Results Limited by:

Maximum centre distance of 1,000.0usft

Anticollision Summary Report

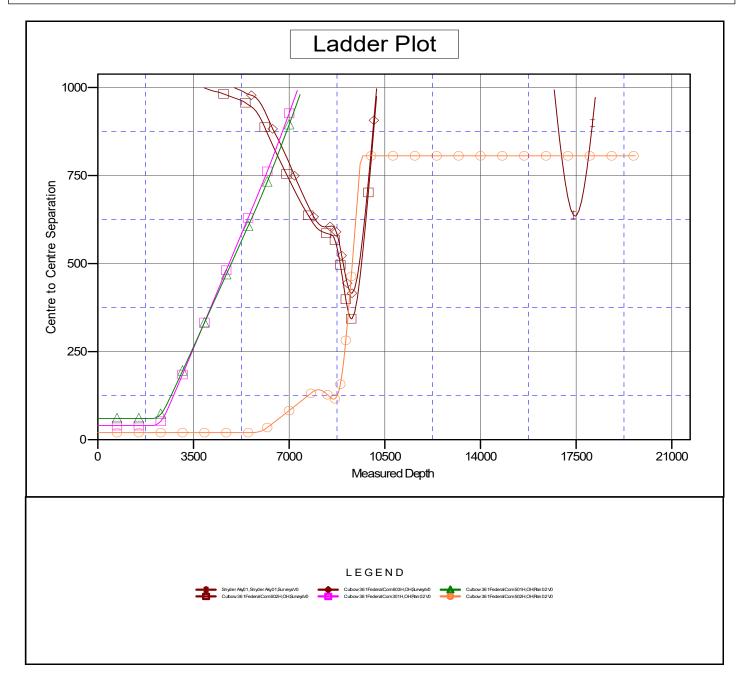
Company:	Avant Operating, LLC	Local Co-ordinate Reference:	Well Cutbow 36 1 Federal Com 302H			
Project:	Lea Co., NM (NAD 83)	TVD Reference:	WELL @ 3606.5usft (3606.5)			
Reference Site:	Cutbow 36 1 Federal Com Pad 2	MD Reference:	WELL @ 3606.5usft (3606.5)			
Site Error:	0.0 usft	North Reference:	Grid			
Reference Well:	Cutbow 36 1 Federal Com 302H	Survey Calculation Method:	Minimum Curvature			
Well Error:	0.0 usft	Output errors are at	2.00 sigma			
Reference Wellbore	ОН	Database:	EDM 5000.16 Single User Db			
Reference Design:	Plan 0.2	Offset TVD Reference:	Offset Datum			
Reference Plan 0.2						
Filter type:	NO GLOBAL FILTER: Using user defined selection & filtering criteria					
Interpolation Method:	Stations	Error Model:	ISCWSA			
Depth Range:	Unlimited	Scan Method:	Closest Approach 3D			

Warning Levels Eval	uated at:	2.00 Sigma	Casing Method: Not applied
Survey Tool Program	1	Date 2/7/2024	
From (usft)	To (usft)	Survey (Wellbore)	Tool Name Description
0.0	19,669.	4 Plan 0.2 (OH)	B001Mb_MWD+HRGM OWSG MWD + HRGM

Error Surface:

Pedal Curve

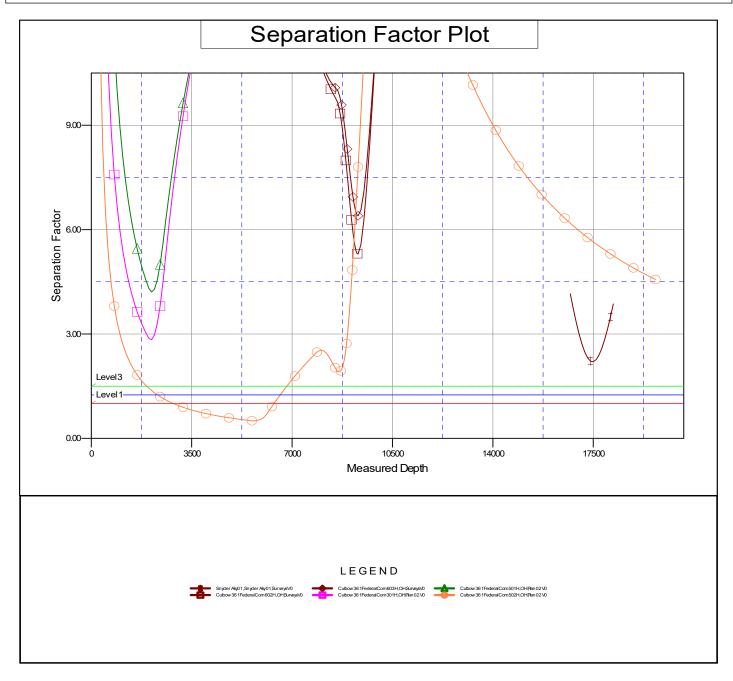
Summary					
Site Name Offset Well - Wellbore - Design	Reference Measured Depth (usft)	Offset Measured Depth (usft)	Dista Between Centres (usft)	nce Between Ellipses (usft)	Separation Warning Factor
Cutbow 36 1 Federal Com Pad 1 Cutbow 36 1 Federal Com 601H - OH - Surveys Cutbow 36 1 Federal Com 602H - OH - Surveys Cutbow 36 1 Federal Com 603H - OH - Surveys Cutbow 36 1 Federal Com 603H - OH - Surveys	9,287.0 9,292.7 9,302.3	8,995.8 8,988.4 8,988.2	343.2 415.7 415.8	278.5 350.8 350.9	Out of range 5.301 CC, ES, SF 6.402 CC, ES 6.399 SF
Cutbow 36 1 Federal Com Pad 2 Cutbow 36 1 Federal Com 301H - OH - Plan 0.2 Cutbow 36 1 Federal Com 301H - OH - Plan 0.2 Cutbow 36 1 Federal Com 501H - OH - Plan 0.2 Cutbow 36 1 Federal Com 501H - OH - Plan 0.2 Cutbow 36 1 Federal Com 502H - OH - Plan 0.2 Cutbow 36 1 Federal Com 502H - OH - Plan 0.2	2,000.0 2,100.0 2,000.0 2,100.0 5,620.0 5,700.0	2,000.0 2,099.0 2,000.0 2,098.4 5,620.0 5,700.3	40.1 41.3 60.0 61.3 20.1 20.3	26.2 26.7 46.1 46.7 -19.7 -20.1	2.884 CC, ES 2.834 SF 4.323 CC, ES 4.206 SF 0.505 Level 1, CC 0.503 Level 1, ES, SF
Snyder Aky 01 (Offset) Snyder Aky 01 - Snyder Aky 01 - Surveys State HH 03H (Offset) State HH 03H (Offset) - State HH 03H (Offset) - Surveys	17,463.8	8,878.5	634.9	346.6	2.202 CC, ES, SF Out of range


Anticollision	Summary	Report
---------------	---------	--------

Company:	Avant Operating, LLC
Project:	Lea Co., NM (NAD 83)
Reference Site:	Cutbow 36 1 Federal Com Pad 2
Site Error:	0.0 usft
Reference Well:	Cutbow 36 1 Federal Com 302H
Well Error:	0.0 usft
Reference Wellbore	ОН
Reference Design:	Plan 0.2

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Output errors are at Database: Offset TVD Reference: Well Cutbow 36 1 Federal Com 302H WELL @ 3606.5usft (3606.5) WELL @ 3606.5usft (3606.5) Grid Minimum Curvature 2.00 sigma EDM 5000.16 Single User Db Offset Datum

Reference Depths are relative to WELL @ 3606.5usft (3606.5) Offset Depths are relative to Offset Datum Central Meridian is 104.3333333°W Coordinates are relative to: Cutbow 36 1 Federal Com 302H Coordinate System is US State Plane 1983, New Mexico Eastern Zone Grid Convergence at Surface is: 0.33°


CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

- Company: Avant Operating, LLC Project: Lea Co., NM (NAD 83) Cutbow 36 1 Federal Com Pad 2 **Reference Site:** Site Error: 0.0 usft **Reference Well:** Cutbow 36 1 Federal Com 302H Well Error: 0.0 usft **Reference Wellbore** OH Reference Design: Plan 0.2
- Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Output errors are at Database: Offset TVD Reference:
- Well Cutbow 36 1 Federal Com 302H WELL @ 3606.5usft (3606.5) WELL @ 3606.5usft (3606.5) Grid Minimum Curvature 2.00 sigma EDM 5000.16 Single User Db Offset Datum

Reference Depths are relative to WELL @ 3606.5usft (3606.5) Offset Depths are relative to Offset Datum Central Meridian is 104.3333333°W Coordinates are relative to: Cutbow 36 1 Federal Com 302H Coordinate System is US State Plane 1983, New Mexico Eastern Zone Grid Convergence at Surface is: 0.33°

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

PROPOSAL#: 220810143528-I

CEMENT PROCEDURE & PROPOSAL

PREPARED FOR:

Mr. Braden Harris EMAIL: braden@avantnr.com PHONE NUMBER: 406-600-3310

Avant Natural Resources

Cutbow 36-1 Fed Com #302H

Lea County, NM

API Number: 30-025-51647

Service Point

Odessa 1400 S JBS Parkway Odessa, TX 79766 432-701-8955

Technical Writer

Jonathan Smith jonathan@wtcementers.com 432-701-3719

WTC Representative

Jon Reynolds jon@wtcementers.com 432-257-1234

.Disclaimer Notice:

The ability of West Texas Cementers to complete this work is subject to the availability of the raw materials required to complete the job.

This information is presented in good faith, but no warranty is given by and West Texas Cementers LLC assumes no liability for advice or recommendations made concerning results to be obtained from the use of any product or service. The results given are estimates based on calculations produced by a computer model including various assumptions on the well, reservoir and treatment. The results depend on input data provided by the Operator and estimates as to unknown data and can be no more accurate than the model, the assumptions and such input data. The information presented is WTC LLC best estimate of the actual results that may be achieved and should be used for comparison purposes rather than absolute values. The quality of input data, and hence results, may be improved through the use of certain tests and procedures which West Texas Cementers LLC can assist in selecting. The Operator has superior knowledge of the well, the reservoir, the field and conditions affecting them. If the Operator is aware of any conditions whereby a neighboring well or wells might be affected by the teratment proposed herein it is the Operator's responsibility to notify the owner or owners of the well or wells accordingly. Prices quoted are estimates only and are good for 30 days from the date of issue. Actual charges may vary depending upon time, equipment, and material ultimately required to perform these services. Freedom from infringement of patents of West Texas

PRINTED 1/25/2024 15:11

VERSION: v0.29

•

	ural Resources 5-1 Fed Com #302 y, NM	Η	Surfac	ce			ALLAS CEMENTER ALLAS CEMENTER MAN Oressa, Tessa
					~~~	PI	ROPOSAL#: 220810143528-I
					UN		
MUD			8.4# Fresh 30" 98.89# C				
PREVIOUS	PIPE		50 50.05# C.	56 10 120			
			24'' OH to 11	75			
OPEN HOL	E		21 011011				
			20'' 94# J-55/	BTC to 1175			
CASING/IN	IJECTION		<b>-</b> /	-			
MD			1175				
EST BHST/	внст			(0.8-F/100-F	T)		
NOTES	Standby charges start a			-	-		
				VOLUMES			
	FLUID NAME	LENGTH	OD	ID	XS	FACTOR	VOLUME
		(ft)	(in.)	(in.)	(%)	(bbl/ft)	(bbl)
	Lead	120	29.376	20		0.4497	54.0
	Lead	755	24	20	50%	0.2564	193.6
	Tail	300	24	20	20%	0.2052	61.5
	SHOE JOINT	40	20	19.124		0.3553	14.2
				FLUIDS			
				SPACER			
				Fresh Water			
VOLUME			20-bbl				
				Lead			
	35%	B_Poz+65% Class	s C+6% Gel+5%	SALT+0.25PPS Pol	-E-Flake+0.005G	PS NoFoam V1A	
VOLUME			735-SX				249 7 666
							248.7-bbls
YIELD			12.8-ppg 1.9-cf/sx				
MIX WATE	R	10.17-gps					
TOP OF CE			Surface				
EXCESS			50%				
LACE33			5070				

Avant Natural Resources Cutbow 36-1 Fed Com #302H Lea County, NM	Surface	ASIAN CEMENTER
		PROPOSAL#: 220810143528-I
	Tail	
	100% Class C+1% CaCl2+0.005GPS NoFoam V1A	
VOLUME	320-SX	75.8-bbls
DENSITY	14.8-ppg	
YIELD	1.33-cf/sx	
MIX WATER	6.34-gps	
TOP OF CEMENT	875-ft	
EXCESS	20%	
	DISPLACEMENT	
	Displacement	
VOLUME	403.2-bbl	

### **1st Intermediate**



PROPOSAL#: 220810143528

			WELL	INFORMATI	ON		
MUD			10.5# Brine	<u>j</u>			
PREVIOUS PIP	20" 94# CSG to 1175						
PREVIOUS PIP	E						
OPEN HOLE			17.5'' OH to 2	950			
OPEN HOLE							
CASING/INJEC			13.375'' 54.5#	‡ J-55/LTC to 29	50		
CASING/INJEC							
MD			2950				
EST BHST/BHO				F (0.8-F/100-	-		
NOTES Sta	ndby charges start a	fter WTC has bee	en on location fo	or more than 4-hr	S.		
				VOLUMES			
1	FLUID NAME	LENGTH	OD	ID	XS	FACTOR	VOLUME
		(ft)	(in.)	(in.)	(%)	(bbl/ft)	(bbl)
	Lead	1175	19.124	13.375		0.1815	213.2
	Lead	1185	17.5	13.375	50%	0.1856	219.9
	Tail	590	17.5	13.375	20%	0.1485	87.6
	SHOE JOINT	40	13.375	12.615		0.1546	6.2
				FLUIDS			
				SPACER			
				Fresh Water			
VOLUME			20-bbl				
				Lead			
	35% B_Poz+	65% Class C+6%	Gel+5% SALT+0.	.05% R-1300+0.25	SPPS Pol-E-Flake+	0.005GPS NoFoam V14	4
						434.8-bbls	
	DENSITY 12.8-ppg						
	YIELD 1.9-cf/sx						
MIX WATER			10.17-gps				
TOP OF CEME	NT		Surface				
EXCESS			50%				

Avant Natural Resources Cutbow 36-1 Fed Com #302H Lea County, NM	1st Intermediate	AND CEMENT COMPANY
		PROPOSAL#: 220810143528-I
	Tail	
	100% Class C+5% SALT+0.005GPS NoFoam V1A	
VOLUME	390-SX	94.5-bbls
DENSITY	14.8-ppg	
YIELD	1.36-cf/sx	
MIX WATER	6.51-gps	
TOP OF CEMENT	2360-ft	
EXCESS	20%	
	DISPLACEMENT	
	Displacement	
VOLUME	449.8-bbl	

## 2nd Multi-Stage Intermediate



							PROPOSAL#: 220810143528-I	
			WELL	INFORMATI	ON			
MUD			8.4# Fresh					
PREVIOUS	PIPE		13.375'' 54.5#	‡ CSG to 2950				
			12.25" OH to	1603				
OPEN HOLI	E		12.25 01110	4005				
			9.625'' 40# J-5	55/LTC/L-80 HC	to 4603			
CASING/IN	JECTION							
MD			4603					
TVD			4600					
EST BHST/E	внст		117-F / 103	8-F (0.8-F/10	0-FT)			
DV TOOL			3200					
EST BHST/E	BHCT STG2		106-F / 95-	F (0.8-F/100	-FT)			
NOTES	Standby charges start a	ifter WTC has bee	en on location fo	or more than 8-hr	S.			
				VOLUMES				
	FLUID NAME	LENGTH	OD	ID	XS	FACTOR	VOLUME	
		(ft)	(in.)	(in.)	(%)	(bbl/ft)	(bbl)	
	Stage 1 Lead	482	12.25	9.625	50%	0.0837	40.3	
	Stage 1 Tail	921	12.25	9.625	20%	0.0669	61.6	
	Stage 2 Lead	2790	12.615	9.625	50%	0.0969	270.3	
	Stage 2 Tail	160	12.615	9.625	0%	0.0646	10.3	
	Stage 2 Tail	250	12.25	9.625	0%	0.0558	13.9	
	SHOE JOINT	40	9.625	8.835		0.0758	3.0	
				FLUIDS				
				SPACER				
				Fresh Water				
VOLUME			25-bbl					
			St	tage 1 Lead				
	35% B_Poz-	+65% Class C+6%	Gel+5% SALT+0	.4% R-1300+0.25	PPS Pol-E-Flake+	0.005GPS NoFoam V	1A	
VOLUME			120-SX				40.6-bbls	
DENSITY		12.8-ppg						
YIELD		1.9-cf/sx						
MIX WATE	R		10.18-gps					
TOP OF CE			3200-ft					
EXCESS			50%					

## 2nd Multi-Stage Intermediate



	PROPOSAL#: 220810143528-I
Stage 1 Tail	
100% Class C+5% SALT+0.25% CRT-201+0.005GPS NoFoam	V1A
270-SX	65.4-bbls
14.8-ppg	
1.36-cf/sx	
6.49-gps	
3682-ft	
20%	
DISPLACEMENT	
Displacement	
346-bbl	
SPACER	
Fresh Water	
20-bbl	
Stage 2 Lead	
+65% Class C+6% Gel+5% SALT+0.2% R-1300+0.25PPS Pol-E-Flake+0	0.005GPS NoFoam V1A
800-SX	270.7-bbls
12.8-ppg	
1.9-cf/sx	
10.18-gps	
Surface	
50%	
Stage 2 Tail	
100% Class C+5% SALT+0.005GPS NoFoam V1A	
100-SX	24.2-bbls
14.8-ppg	
1.36-cf/sx	
6.51-gps	
2790-ft	
DISPLACEMENT	
Displacement	
242.6-bbl	
	270-SX 14.8-ppg 1.36-cf/sx 6.49-gps 3682-ft 20% DISPLACEMENT Displacement 346-bbl 5PACER 346-bbl 20-bbl 20-bbl 20-bbl 20-bbl 20-bbl 100-SX 12.8-ppg 1.9-cf/sx 10.18-gps Surface 50% 2128-000 Stage 2 Tail 100% Class C+5% SALT+0.005GPS NoFoam V1A 100-SX 14.8-ppg 1.36-cf/sx 6.51-gps 2790-ft 0% DISPLACEMENT

## Production



PROPOSAL#: 220810143528-

			WELL	<b>INFORMATI</b>	ON		
MUD			9.8# OBM				
PREVIOUS	9.625" 40# CSG to 4603 PREVIOUS PIPE						
OPEN HOI	LE	8	3.75'' OH to 1	19660			
			5.5'' 20# P-11	LO/HC/GBCD to :	19660		
CASING/IN	NJECTION						
MD			19660				
TVD		9	9000				
EST BHST/	′ВНСТ	:	201-F / 184	4-F (1.34-F/10	00-FT)		
КОР		:	8543				
NOTES	Standby charges start a	fter WTC has bee	n on location f	or more than 8-hr	s.		
				VOLUMES			
	FLUID NAME	LENGTH	OD	ID	XS	FACTOR	VOLUME
		(ft)	(in.)	(in.)	(%)	(bbl/ft)	(bbl)
	Lead	4603	8.835	5.5		0.0464	213.8
	Lead	3940	8.75	5.5	50%	0.0675	265.9
	Tail	11117	8.75	5.5	20%	0.0540	600.1
	SHOE JOINT	80	5.5	4.778		0.0222	1.8
				FLUIDS			
				SPACER			
	Wt. Spacer 37	.16GPB Water+8P	PB PolyScrub 4	4320+105.54PPB E	Barite+1GPB Hole	Scrub 4311+1PPB R-13	00
VOLUME			40-bbl				
DENSITY			10.3-ppg				
DENSITT			10.5 ppg	Lead			
			20/ 01/0 0 05			···	
	100% ProLite+5	PPS Plexcrete STE	+2% SIVIS+0.65	5% R-1300+0.2% F	L-24+3PPS Glisor	ite+0.005GPS NoFoam	VIA
VOLUME		:	800-SX				481.6-bbls
DENSITY			10.7-ppg				
YIELD		:	3.38-cf/sx				
MIX WATE	ER	:	21.06-gps				
TOP OF CE	EMENT		Surface				
EXCESS			50%				

Avant Natural Resources Cutbow 36-1 Fed Com #302H Lea County, NM	Production	GANE CEMEN PARTY CENTER OF
		PROPOSAL#: 220810143528-I
	Tail	
50% B_Poz+50%	6 Class H+5% SALT+0.05% RCKCAS-100+0.75% R-1201+0.5% FL	-24+0.005GPS NoFoam V1A
VOLUME	2795-SX	602.3-bbls
DENSITY	14.5-ppg	
YIELD	1.21-cf/sx	
MIX WATER	5.28-gps	
TOP OF CEMENT	8543-ft	
EXCESS	20%	
	DISPLACEMENT	
	Fresh Water+ 0.25GPT Plexcide 24L+1GPT Corplex	
VOLUME	434.2-bbl	
DENSITY	8.34-ppg	

Page	<b>40</b>	of	41
------	-----------	----	----

.

CHEMICAL DESCRIPTIONS						
CHEMICAL NAME	CODE	DESCRIPTION				
	CODE	BESCHI HON				
B_Poz	WTC228	Poz - Fly Ash, Extender				
_ Class H	WTC101	API Cement				
Class C	WTC100	API Cement				
Premium C	WTC270	API Cement				
ProLite		Blended Based Cement				
Plexcrete SFA	WTC129	Cement Strength Enhancer				
Gel	WTC102	Extender				
Micro Crystal	WTC212	Cement Strength Enhancer				
Micro Shell	WTC209	Cement Strength Enhancer				
WTC1	WTC250	Extender				
Plexcrete STE	WTC127	Cement Strength Enhancer				
FAR-2	WTC260	Cement Strength Enhancer				
Gypsum	WTC111	Free Water Control, Extender				
CaCl2	WTC112	Accelerator				
SMS	WTC115	Free Water Control, Extender				
RCKCAS-100	WTC276	Free Water Control, Anti-Settling Agent				
SA-1	WTC264	Free Water Control, Extender				
R-33	WTC243	Lignosulfonate Retarder				
R-1300	WTC201	Low Temperature Retarder				
R-1201	WTC253	Lignosulfonate Retarder				
CRT-201	WTC278	Lignosulfonate Retarder				
C-37	WTC224	Dispersant, Friction Reducer				
FL-24	WTC277	Fluid Loss (polymers/copolymers - 300-F max)				
EC-10	WTC120	Expanding Agent				
Gas Bond	WTC126	Gas Migration Control (Hydrogen Generating)				
Gilsonite	WTC003	Premium Lost Circulation Material, Free Water Control				
Pol-E-Flake	WTC106	Lost Circulation Material				
Web Seal	WTC133	Premium Fiber Lost Circulation Material				
Zone Seal	WTC207	Premium Lost Circulation Material				
NoFoam V1A	WTC105	Liquid Defoamer				
Water		Fresh Water				
PolyScrub 4320	WTC232	Spacer Gelling Agent				
Barite	WTC116	Weighting Agent				
HoleScrub 4311	WTC281	Surfactant				
HoleScrub 4305	WTC213	Surfactant				
HoleScrub 4308	WTC215	Surfactant				
Soda Ash	WTC164	pH Control				
R-1300	WTC201	Low Temperature Retarder				
SuspendaCem 6302	WTC005	Free Water Control, Anti-Settling Agent				
Sugar	WTC119	Retarder				
AI-1, Acid Inhibitor	WTC015	Corrosion Inhibitor				
Plexcide 24L	WTC166	Biocide				
Corplex	WTC134	Corrosion Inhibitor				
Clay Max	WTC096	KCL Substitute				
Zone Seal	WTC207	Premium Lost Circulation Material				

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

### **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
Avant Operating, LLC	330396
1515 Wynkoop Street	Action Number:
Denver, CO 80202	320509
	Action Type:
	[C-103] NOI Change of Plans (C-103A)
CONDITIONS	

#### Created Condition Condition By Date 3/29/2024 pkautz None

Action 320509

CONDITIONS

Page 41 of 41