Cerved by UCD: 3/4/2024 11:01:47 AM U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Sundry Print Repor
Well Name: FORTY NINER RIDGE UNIT	Well Location: T23S / R30E / SEC 16 / SWNE /	County or Parish/State:
Well Number: 127H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM054827	Unit or CA Name: FORTY NINER RIDGE UNIT	Unit or CA Number: NMNM70951X
US Well Number: 3001549420	Well Status: Approved Application for Permit to Drill	Operator: MEWBOURNE OIL COMPANY

Notice of Intent

Sundry ID: 2782973

Type of Submission: Notice of Intent

Date Sundry Submitted: 04/02/2024

Date proposed operation will begin: 04/16/2024

Type of Action: APD Change Time Sundry Submitted: 11:43

Procedure Description: Mewbourne requests the following changes be made to the Forty Niner Ridge Unit #127H (API #30-015-49420): 1. SHL change f/ 2394 FNL & 2353 FEL (16) to 2386 FNL & 2358 FEL (16) 2. Change target zone f/ Bonespring to Wolfcamp 3. Attached drlg plan, plot, csg & cmt assumptions corresponding to SHL & Target changes 4. Attached variance to perform Open Hole Annulus per R111Q guidelines. 5. Attached plat corresponding to SHL & Target changes. 6. Attached variance to perform Breaktesting and Offline Cementing.

NOI Attachments

Procedure Description

Forty_Niner_Ridge_Unit_127H_MOC_Dir_Plot_20240402114221.pdf Mewbourne_Offline_Cementing_Variance_20240402114222.pdf Mewbourne_Break_Testing_Variance_20240402114222.pdf Forty_Niner_Ridge_Unit__127H_CsgAssumptions_20240402114216.pdf Forty_Niner_Ridge_Unit__127H_Drlg_Program_20240402114216.pdf Forty_Niner_Ridge_Unit__127H_R_111Q_Variance_20240402114216.pdf Forty_Niner_Ridge_Unit__127H_AddInfo_20240402114216.pdf FORTY_NINER_RIDGE_UNIT_127H_C102_20240402114216.pdf

Received by OCD: 4/4/2024 11:01:47 AM Well Name: FORTY NINER RIDGE UNIT	Well Location: T23S / R30E / SEC 16 / SWNE /	County or Parish/State: Page 2 of
Well Number: 127H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM054827	Unit or CA Name: FORTY NINER RIDGE UNIT	Unit or CA Number: NMNM70951X
US Well Number: 3001549420	Well Status: Approved Application for Permit to Drill	Operator: MEWBOURNE OIL COMPANY

Forty_Niner_Ridge_Unit_127H_MOC_Dir_Plan_20240402114216.pdf

Conditions of Approval

Additional

FORTY_NINER_RIDGE_UNIT_127H_10400068198_A_20240403141704.pdf

FORTY_NINER_RIDGE_UNIT_127H_10400068198_B_20240403141705.pdf

FORTY_NINER_RIDGE_UNIT_127H_Eng_COA_20240403141705.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: RYAN MCDANIEL

Name: MEWBOURNE OIL COMPANY

Title: Engineer

Street Address: 4801 BUSINESS PARK BLVD

City: HOBBS State: NM

Phone: (575) 393-5905

Email address: RYANMCDANIEL@MEWBOURNE.COM

Field

Representative Name:	
Street Address:	
City:	State:
Phone:	
Email address:	

Zip:

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS

BLM POC Phone: 5752342234

Disposition: Approved

Signature: Chris Walls

BLM POC Title: Petroleum Engineer BLM POC Email Address: cwalls@blm.gov

Disposition Date: 04/04/2024

Signed on: APR 02, 2024 11:42 AM

Received by OCD: 4/4/2024 11:01:47 AM

eceiveu by OCD. 4/4/202	4 11.01.4 / /11/1			ruge 5 0j	
Form 3160-5 (June 2019)	UNITED STAT DEPARTMENT OF THE BUREAU OF LAND MAI	INTERIOR	OM	RM APPROVED B No. 1004-0137 es: October 31, 2021	
SUND Do not use	RY NOTICES AND REP this form for proposals vell. Use Form 3160-3 (6. If Indian, Allottee or Tribe Name			
	IIT IN TRIPLICATE - Other inst	tructions on page 2	7. If Unit of CA/Agreem	ent, Name and/or No.	
1. Type of Well	Gas Well Other		8. Well Name and No.		
2. Name of Operator			9. API Well No.		
3a. Address		3b. Phone No. (include area code)	10. Field and Pool or Ex	10. Field and Pool or Exploratory Area	
4. Location of Well (Footage, Se	ec., T.,R.,M., or Survey Description	n)	11. Country or Parish, St	late	
1:	2. CHECK THE APPROPRIATE	BOX(ES) TO INDICATE NATURE O	F NOTICE, REPORT OR OTHE	R DATA	
TYPE OF SUBMISSION		ТҮРЕ	OF ACTION		
Notice of Intent	Acidize	Deepen [Hydraulic Fracturing]	Production (Start/Resume) Reclamation	Water Shut-Off Well Integrity	
Subsequent Report	Casing Repair Change Plans	New Construction	Recomplete Temporarily Abandon	Other	
Final Abandonment Noti		= · =	Water Disposal		
the proposal is to deepen dir the Bond under which the w completion of the involved of	ectionally or recomplete horizonta ork will be perfonned or provide to operations. If the operation results ent Notices must be filed only after	he Bond No. on file with BLM/BIA. R	sured and true vertical depths of a equired subsequent reports must ion in a new interval, a Form 316	all pertinent markers and zones. Attach be filed within 30 days following 0-4 must be filed once testing has been	

14. I hereby certify that the foregoing is true and correct. Name (<i>Printed/Typed</i>)		
	Title	
Signatura	Date	
Signature I		
THE SPACE FOR FEDE	RAL OR STATE OF	FICE USE
Approved by		
	Title	Date
Conditions of approval, if any, are attached. Approval of this notice does not warrant of certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon.		
Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any any false, fictitious or fraudulent statements or representations as to any matter within		llfully to make to any department or agency of the United Stat

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

Additional Information

Location of Well

0. SHL: SWNE / 2394 FNL / 2353 FEL / TWSP: 23S / RANGE: 30E / SECTION: 16 / LAT: 32.3057689 / LONG: -103.8852538 (TVD: 0 feet, MD: 0 feet) PPP: NWSE / 3550 FNL / 1840 FEL / TWSP: 23S / RANGE: 30E / SECTION: 16 / LAT: 32.30479 / LONG: -103.8835922 (TVD: 10664 feet, MD: 10991 feet) PPP: NWNE / 0 FNL / 1840 FEL / TWSP: 23S / RANGE: 30E / SECTION: 21 / LAT: 32.2977859 / LONG: -103.8835812 (TVD: 10703 feet, MD: 13539 feet) PPP: SWNE / 1340 FNL / 1840 FEL / TWSP: 23S / RANGE: 30E / SECTION: 21 / LAT: 32.2940997 / LONG: -103.8835754 (TVD: 10709 feet, MD: 14880 feet) PPP: NWSE / 2650 FNL / 1840 FEL / TWSP: 23S / RANGE: 30E / SECTION: 21 / LAT: 32.2904987 / LONG: -103.8835697 (TVD: 10714 feet, MD: 16190 feet) BHL: SWSE / 100 FSL / 1840 FEL / TWSP: 23S / RANGE: 30E / SECTION: 21 / LAT: 32.2834829 / LONG: -103.8835587 (TVD: 10724 feet, MD: 18742 feet)

FORTY NINER RIDGE UNIT 127H

13 3/8	in. surface c	asing in a	17 1/2	inch hole.		Design I	Factors					
Segment	#/ft	Gr	rade	Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weigh
"A"	48.00	Н	40	STC	17.20	4.52	1.07	390	10	2.03	9.13	18,720
"B"				STC				0				0
				Tail Cement	does	circ to sfc.	Totals:	390				18,72
Comparison	of Proposed	to Minimum	n Required C	ement Volume	es							
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd			Minimum C	Clearand
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE			b/w Hole &	Couplin
17 1/2	0.6946	330	544	310	75	8.40	854	2M			1.5	6
								5M BOPE	E below su	rface.		
9 5/8	inch casing i	inside the	13 3/8	inch ca	esina	Design I	Eactors					
Segment	#/ft		rade	Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weig
"A"	36.00	-	55	LTC	3.65	1.25	0.64	3,450	2	1.10	a-c 2.37	124.2
"B"	36.00	J	55	LIC	3.05	1.25	0.64	0,450	2	1.10	2.37	0
D							Totals:	0 3,450				124.2
The to		n intended t	a ha at	0	66 6×0	the ourface of		3,450 390	<i>4</i>	orlon	th proviews	,
Hole	p of cement is Annular			Min		the surface o Drilling	or nave a Calc		π. 0\	renap wi	th previous Minimum (
Size	Volume	1 Stage	1 Stage	Cu Ft	1 Stage	5	MASP	Req'd BOPE				
Size	volume	Cmt Sx	CuFt Cmt 904	1105	% Excess	Mud Wt		5M			b/w Hole & 0.8	
40.414	0 04 00				-18	9.00	3188	5171			0.8	51
12 1/4	0.3132	500			0			5 0				$\Sigma 0/a v a$
	epths for DV	Tool(s):	1150	Stage 1	Stage 2		sum of sx	<u>Σ CuFt</u>				
Setting D	Depths for DV % Excess	Tool(s): s cementt b	1150 y stage:	Stage 1 25	17	Excess cen	750	1356	ow the CF	O's recom	mendation. Mo	Σ%exc 23 re ceme
Setting D	Depths for DV % Excess	Tool(s): s cementt b	1150 y stage:	Stage 1	17	Excess cen	750	1356 d stage is bel	ow the CF(be needed		mendation. Mo	23
Setting D Burst Frac	Depths for DV % Excess Gradient(s) for S	Tool(s): s cementt by Gegment(s): A inside the	1150 y stage: , B, C, D = 1.02 9 5/8	Stage 1 25 2, b, c, d All > 0 inch ca	17 0.70, OK. asing.	Design Fact	750 nent for the 2n	1356 d stage is bel might	be needed	d.		23 re ceme
Setting D Burst Frac 7 Segment	Depths for DV % Excess Gradient(s) for S inch casing #/ft	Tool(s): s cementt by Segment(s): A inside the Gr	1150 y stage: , B, C, D = 1.0 9 5/8 rade	Stage 1 25 2, b, c, d All > 0 inch ca Coupling	17 0.70, OK. asing. Joint	<u>Design Fact</u> Collapse	750 nent for the 2n cors Burst	1356 d stage is bel might Length	be needed B@s	d. a-B	a-C	23 re cemer Weig
Setting D Burst Frac 7 Segment "A"	Depths for DV % Excess Gradient(s) for S	Tool(s): s cementt by Segment(s): A inside the Gr	1150 y stage: , B, C, D = 1.02 9 5/8	Stage 1 25 2, b, c, d All > 0 inch ca	17 0.70, OK. asing.	Design Fact	750 nent for the 2n	1356 d stage is bel might Length 10,650	be needed	d.		23 re ceme Weig 276,9
Setting D Burst Frac 7 Segment	Depths for DV % Excess Gradient(s) for S inch casing #/ft	Tool(s): s cementt by Segment(s): A inside the Gr	1150 y stage: , B, C, D = 1.0 9 5/8 rade	Stage 1 25 2, b, c, d All > 0 inch ca Coupling	17 0.70, OK. asing. Joint	<u>Design Fact</u> Collapse	750 ment for the 2n cors Burst 1.5	1356 d stage is bel might Length 10,650 0	be needed B@s	d. a-B	a-C	23 re ceme Weig 276,9 0
Setting D Burst Frac 7 Segment "A" "B"	epths for DV % Excess Gradient(s) for S inch casing #/ft 26.00	Tool(s): s cementt b Segment(s): A inside the Gr P	1150 y stage: , B, C, D = 1.0 9 5/8 rade 110	Stage 1 25 2, b, c, d All > inch ca Coupling LTC	17 0.70, OK. asing. Joint 2.31	Design Fact Collapse 1.1	750 nent for the 2n ors Burst 1.5 Totals:	1356 d stage is bel might Length 10,650 0 10,650	B@s 2	d. a-B 2.37	a-C 1.95	23 re ceme Weig 276,9 0 276,9
Setting D Burst Frac 7 Segment "A" "B" The to	Pepths for DV % Excess Gradient(s) for S inch casing #/ft 26.00 p of cement is	Tool(s): s cementt b Segment(s): A inside the Gr P s intended to	1150 y stage: , B, C, D = 1.0 9 5/8 rade 110 o be at	Stage 1 25 2, b, c, d All > inch ca Coupling LTC 3950	17 0.70, OK. asing. Joint 2.31 ft. from	Design Fact Collapse 1.1 the surface c	750 nent for the 2n ors Burst 1.5 Totals: or have a	1356 d stage is bel might Length 10,650 0 10,650 -500	B@s 2	d. a-B 2.37	a-C 1.95 ith previous	23 re ceme Weig 276,9 0 276,9 casing.
Setting D Burst Frac 7 Segment "A" "B" The to Hole	epths for DV % Excess Gradient(s) for S inch casing #/ft 26.00 p of cement is Annular	Tool(s): s cementt b Segment(s): A inside the Gr P s intended to 1 Stage	1150 y stage: , B, C, D = 1.0 9 5/8 rade 110 o be at 1 Stage	Stage 1 25 2, b, c, d All > inch ca Coupling LTC 3950 Min	17 0.70, OK. asing. Joint 2.31 ft. from 1 Stage	Design Fact Collapse 1.1 the surface o Drilling	750 nent for the 2n ors Burst 1.5 Totals: or have a Calc	1356 d stage is bel might 10,650 0 10,650 -500 Req'd	B@s 2	d. a-B 2.37	a-C 1.95 ith previous Minimum (23 re ceme Weig 276,9 0 276,9 casing. Clearan
Setting D Burst Frac 7 Segment "A" "B" The to Hole Size	Pepths for DV % Excess Gradient(s) for S inch casing #/ft 26.00 p of cement is Annular Volume	Tool(s): s cementt b Segment(s): A inside the Gr P s intended t 1 Stage Cmt Sx	1150 y stage: , B, C, D = 1.0: 9 5/8 rade 110 o be at 1 Stage CuFt Cmt	Stage 1 25 2, b, c, d All > 0 inch ca Coupling LTC 3950 Min Cu Ft	17 0.70, OK. asing. Joint 2.31 ft. from 1 Stage % Excess	Design Fact Collapse 1.1 the surface of Drilling Mud Wt	750 nent for the 2n Ors Burst 1.5 Totals: or have a Calc MASP	1356 d stage is bel might Length 10,650 0 10,650 -500 Req'd BOPE	B@s 2	d. a-B 2.37	a-C 1.95 ith previous Minimum (b/w Hole &	23 re ceme 276,9 0 276,9 casing Clearan Couplir
Setting D Burst Frac 7 Segment "A" "B" The to Hole Size 8 3/4	Pepths for DV % Excess Gradient(s) for S inch casing #/ft 26.00 p of cement is Annular Volume 0.1503	Tool(s): s cementt b Segment(s): A inside the Gr P s intended t 1 Stage Cmt Sx 660	1150 y stage: , B, C, D = 1.0 9 5/8 rade 110 o be at 1 Stage	Stage 1 25 2, b, c, d All > d inch ca Coupling LTC 3950 Min Cu Ft 1007	17 0.70, OK. Joint 2.31 ft. from 1 Stage % Excess 2	Design Fact Collapse 1.1 the surface of Drilling Mud Wt 10.00	750 nent for the 2n Ors Burst 1.5 Totals: or have a Calc MASP 4198	1356 d stage is bel might Length 10,650 0 10,650 -500 Req'd BOPE 5M	B@s 2 ft. ov	d. a-B 2.37 verlap wi	a-C 1.95 th previous Minimum (b/w Hole & 0.5	23 re ceme Weig 276,9 0 276,9 casing. Clearan Couplir 5
Setting D Burst Frac 7 Segment "A" "B" The to Hole Size 8 3/4	Pepths for DV % Excess Gradient(s) for S inch casing #/ft 26.00 p of cement is Annular Volume	Tool(s): s cementt b Segment(s): A inside the Gr P s intended t 1 Stage Cmt Sx 660	1150 y stage: , B, C, D = 1.0: 9 5/8 rade 110 o be at 1 Stage CuFt Cmt	Stage 1 25 2, b, c, d All > 0 inch ca Coupling LTC 3950 Min Cu Ft 1007 Operator is	17 0.70, OK. asing. Joint 2.31 ft. from 1 Stage % Excess 2 s proposing 1	Design Fact Collapse 1.1 the surface of Drilling Mud Wt 10.00 to use R-111- days after we	750 nent for the 2n Ors Burst 1.5 Totals: or have a Calc MASP 4198 Q guidelines	1356 d stage is bel might Length 10,650 0 10,650 -500 Req'd BOPE 5M for cementi	B@s 2 ft. ov	a-B 2.37 verlap wi	a-C 1.95 ith previous Minimum (b/w Hole & 0.5 ing. 2nd stage	23 re ceme Weig 276,9 0 276,9 casing. Clearan Couplir 5 e will be
Setting D Burst Frac 7 Segment "A" "B" The to Hole Size 8 3/4	Pepths for DV % Excess Gradient(s) for S inch casing #/ft 26.00 p of cement is Annular Volume 0.1503	Tool(s): s cementt b Segment(s): A inside the Gr P s intended t 1 Stage Cmt Sx 660	1150 y stage: , B, C, D = 1.0: 9 5/8 rade 110 o be at 1 Stage CuFt Cmt	Stage 1 25 2, b, c, d All > 0 inch ca Coupling LTC 3950 Min Cu Ft 1007 Operator is	17 0.70, OK. asing. Joint 2.31 ft. from 1 Stage % Excess 2 s proposing 1 d within 180	Design Fact Collapse 1.1 the surface of Drilling Mud Wt 10.00 to use R-111- days after we	750 nent for the 2n Burst 1.5 Totals: or have a Calc MASP 4198 Q guidelines Il completior ollapse desig	1356 d stage is bel might Length 10,650 0 10,650 -500 Req'd BOPE 5M for cementi	B@s 2 ft. ov	a-B 2.37 verlap wi	a-C 1.95 ith previous Minimum (b/w Hole & 0.5 ing. 2nd stage	23 re ceme Weig 276,9 0 276,9 casing. Clearan Couplir 5 e will be
Setting D Burst Frac 7 Segment "A" "B" The to Hole Size 8 3/4 Class 'C' tail	epths for DV % Excess Gradient(s) for S inch casing #/ft 26.00 p of cement is Annular Volume 0.1503 cmt yld > 1.35	Tool(s): s cementt b Segment(s): A inside the Gr P s intended t 1 Stage Cmt Sx 660	1150 y stage: , B, C, D = 1.0 9 5/8 rade 110 0 be at 1 Stage CuFt Cmt 1023	Stage 1 25 2, b, c, d All > 0 inch ca Coupling LTC 3950 Min Cu Ft 1007 Operator is Bradenhea	17 0.70, OK. asing. Joint 2.31 ft. from 1 Stage % Excess 2 s proposing 1 d within 180	Design Fact Collapse 1.1 the surface of Drilling Mud Wt 10.00 to use R-111- days after we co	750 nent for the 2n Burst 1.5 Totals: or have a Calc MASP 4198 Q guidelines Il completior ollapse desig	1356 d stage is bel might Length 10,650 0 10,650 -500 Req'd BOPE 5M for cementi	B@s 2 ft. ov	a-B 2.37 verlap wi	a-C 1.95 ith previous Minimum (b/w Hole & 0.5 ing. 2nd stage	23 weig 276,9 0 276,9 casing. Clearan Couplir 5 s e will be
Setting D Burst Frac 7 Segment "A" "B" The to Hole Size 8 3/4 Class 'C' tail 4 1/2	Pepths for DV % Excess Gradient(s) for S inch casing #/ft 26.00 p of cement is Annular Volume 0.1503 cmt yld > 1.35	Tool(s): s cementt b Segment(s): A inside the Gr P s intended t 1 Stage Cmt Sx 660 w/top @ Gr	1150 y stage: , B, C, D = 1.0 9 5/8 rade 110 0 be at 1 Stage CuFt Cmt 1023	Stage 1 25 2, b, c, d All > 0 inch ca Coupling LTC 3950 Min Cu Ft 1007 Operator is Bradenhea	17 0.70, OK. asing. Joint 2.31 ft. from 1 Stage % Excess 2 s proposing f d within 180	Design Fact Collapse 1.1 the surface of Drilling Mud Wt 10.00 to use R-111- days after we co Design I	750 nent for the 2n Burst 1.5 Totals: or have a Calc MASP 4198 Q guidelines Il completior bilapse desig	1356 d stage is bel might 10,650 0 10,650 -500 Req'd BOPE 5M for cementi Productior In requirement	B@s 2 ft. ov ng produc casing n ents.	a-B 2.37 verlap wi	a-C 1.95 th previous Minimum (b/w Hole & 0.5 ing. 2nd stag ept fluid-fillec	23 re cemer 276,9 0 276,9 casing. Clearan Couplir 5 e will be
Setting D Burst Frac 7 Segment "A" "B" The to Hole Size 8 3/4 Class 'C' tail 4 1/2 Segment	epths for DV % Excess Gradient(s) for S inch casing #/ft 26.00 p of cement is Annular Volume 0.1503 cmt yld > 1.35 inch Liner #/ft	Tool(s): s cementt b Segment(s): A inside the Gr P s intended t 1 Stage Cmt Sx 660 w/top @ Gr	1150 y stage: , B, C, D = 1.0 9 5/8 rade 110 0 be at 1 Stage CuFt Cmt 1023 10489 rade	Stage 1 25 2, b, c, d All > 0 inch ca Coupling LTC 3950 Min Cu Ft 1007 Operator is Bradenhea ft. from the Coupling	17 0.70, OK. asing. Joint 2.31 ft. from 1 Stage % Excess 2 s proposing 1 d within 180 e surface. Joint	Design Fact Collapse 1.1 the surface of Drilling Mud Wt 10.00 to use R-111- days after we cr Design I Collapse	750 nent for the 2n Burst 1.5 Totals: or have a Calc MASP 4198 Q guidelines Il completion bilapse desig	1356 d stage is bel might 10,650 0 10,650 -500 Req'd BOPE 5M for cementi . Production In requiremed	B@s 2 ft. ov ng produc casing n ents.	a-B 2.37 verlap wi ction cas nust be k a-B	a-C 1.95 Minimum C b/w Hole & 0.5 ing. 2nd stage ept fluid-fillec a-C	23 Weig 276,9 0 276,9 Casing. Clearand Couplin 55 e will be d to mee
Setting D Burst Frac 7 Segment "A" "B" The to Hole Size 8 3/4 Class 'C' tail Class 'C' tail 4 1/2 Segment "A"	epths for DV % Excess Gradient(s) for S inch casing #/ft 26.00 p of cement is Annular Volume 0.1503 cmt yld > 1.35 inch Liner #/ft	Tool(s): s cementt b Segment(s): A inside the Gr P s intended t 1 Stage Cmt Sx 660 w/top @ Gr	1150 y stage: , B, C, D = 1.0 9 5/8 rade 110 0 be at 1 Stage CuFt Cmt 1023 10489 rade	Stage 1 25 2, b, c, d All > 0 inch ca Coupling LTC 3950 Min Cu Ft 1007 Operator is Bradenhea ft. from the Coupling LTC	17 0.70, OK. asing. Joint 2.31 ft. from 1 Stage % Excess 2 s proposing 1 d within 180 e surface. Joint	Design Fact Collapse 1.1 the surface of Drilling Mud Wt 10.00 to use R-111- days after we cr Design I Collapse	750 nent for the 2n Burst 1.5 Totals: or have a Calc MASP 4198 Q guidelines Il completion bilapse desig	1356 d stage is bel might 10,650 0 10,650 -500 Req'd BOPE 5M for cementi . Productior In requirement 8,335	B@s 2 ft. ov ng produc casing n ents.	a-B 2.37 verlap wi ction cas nust be k a-B	a-C 1.95 Minimum C b/w Hole & 0.5 ing. 2nd stage ept fluid-fillec a-C	23 weig 276,9 0 276,9 casing. Clearan Couplin 5 5 e will be d to meet 4 to meet 112,5 0
Setting D Burst Frac 7 Segment "A" "B" The to Hole Size 8 3/4 Class 'C' tail Class 'C' tail 4 1/2 Segment "A" "B"	epths for DV % Excess Gradient(s) for S inch casing #/ft 26.00 p of cement is Annular Volume 0.1503 cmt yld > 1.35 inch Liner #/ft	Tool(s): s cementt b Segment(s): A inside the Gr P s intended t 1 Stage Cmt Sx 660 w/top @ Gr P	1150 y stage: , B, C, D = 1.0 9 5/8 rade 110 o be at 1 Stage CuFt Cmt 1023 10489 rade 110	Stage 1 25 2, b, c, d All > 0 inch ca Coupling LTC 3950 Min Cu Ft 1007 Operator is Bradenhea ft. from the Coupling LTC	17 0.70, OK. asing. Joint 2.31 ft. from 1 Stage % Excess 2 s proposing f d within 180 e surface. Joint 6.20	Design Fact Collapse 1.1 the surface of Drilling Mud Wt 10.00 to use R-111- days after we cr Design I Collapse	750 nent for the 2n Burst 1.5 Totals: or have a Calc MASP 4198 Q guidelines Il completion collapse desig Factors Burst 1.87 Totals:	1356 d stage is bel might 10,650 0 10,650 -500 Req'd BOPE 5M for cementi b. Productior in requirement 8,335 0	B@s 2 ft. ov casing n ents. B@s 2	a-B 2.37 verlap wi ction cas nust be k a-B 2.96	a-C 1.95 Minimum C b/w Hole & 0.5 ing. 2nd stage ept fluid-fillec a-C	23 re ceme 276,9 0 276,9 casing Clearan Couplir 55 e will be d to mee 112,5 0 112,5
Setting D Burst Frac 7 Segment "A" "B" The to Hole Size 8 3/4 Class 'C' tail Class 'C' tail 4 1/2 Segment "A" "B"	epths for DV % Excess Gradient(s) for S inch casing #/ft 26.00 p of cement is Annular Volume 0.1503 cmt yld > 1.35 inch Liner #/ft 13.50	Tool(s): s cementt b Segment(s): A inside the Gr P s intended t 1 Stage Cmt Sx 660 w/top @ Gr P	1150 y stage: , B, C, D = 1.0: 9 5/8 rade 110 o be at 1 Stage CuFt Cmt 1023 10489 rade 110 o be at	Stage 1 25 2, b, c, d All > 0 inch ca Coupling LTC 3950 Min Cu Ft 1007 Operator is Bradenhea ft. from the Coupling LTC 0.00	17 0.70, OK. asing. Joint 2.31 ft. from 1 Stage % Excess 2 s proposing f d within 180 e surface. Joint 6.20	Design Fact Collapse 1.1 the surface of Drilling Mud Wt 10.00 to use R-111- days after we cr Design I Collapse 1.46	750 nent for the 2n Burst 1.5 Totals: or have a Calc MASP 4198 Q guidelines Il completion collapse desig Factors Burst 1.87 Totals:	1356 d stage is bel might 10,650 0 10,650 -500 Req'd BOPE 5M for cementi . Production In requirement 8,335 0 8,335	B@s 2 ft. ov casing n ents. B@s 2	a-B 2.37 verlap wi ction cas nust be k a-B 2.96	a-C 1.95 Minimum (b/w Hole & 0.5 ing. 2nd stag: ept fluid-fillec a-C 2.54	23 re ceme 276,9 0 276,9 casing. Clearand Couplin 5 e will be d to mee 112,5 0 112,5 casing.
Setting D Burst Frac 7 Segment "A" "B" The to Hole Size 8 3/4 Class 'C' tail Class 'C' tail 4 1/2 Segment "A" "B"	Pepths for DV % Excess Gradient(s) for S inch casing #/ft 26.00 p of cement is Annular Volume 0.1503 cmt yld > 1.35 inch Liner #/ft 13.50 p of cement is	Tool(s): s cementt b Segment(s): A inside the Gr P s intended t 1 Stage Cmt Sx 660 w/top @ Gr P s intended t	1150 y stage: , B, C, D = 1.0 9 5/8 rade 110 o be at 1 Stage CuFt Cmt 1023 10489 rade 110	Stage 1 25 2, b, c, d All > 0 inch ca Coupling LTC 3950 Min Cu Ft 1007 Operator is Bradenhea ft. from the Coupling LTC 0.00 10489	17 0.70, OK. asing. Joint 2.31 ft. from 1 Stage % Excess 2 s proposing 1 d within 180 e surface. Joint 6.20 ft. from	Design Fact Collapse 1.1 the surface of Drilling Mud Wt 10.00 to use R-111- days after we co Design I Collapse 1.46	750 nent for the 2n Ors Burst 1.5 Totals: or have a Calc MASP 4198 Q guidelines Il completior ollapse desig Factors Burst 1.87 Totals: or have a	1356 d stage is bel might 10,650 0 10,650 -500 Req'd BOPE 5M for cementi . Productior in requirement 8,335 0 8,335 161	B@s 2 ft. ov casing n ents. B@s 2	a-B 2.37 verlap wi ction cas nust be k a-B 2.96	a-C 1.95 th previous Minimum C b/w Hole & 0.5 ing. 2nd stag ept fluid-fillec a-C 2.54 th previous	23 re ceme 276,9 0 276,9 casing. Clearan Couplir 5 e will be d to mee 112,5 0 112,5 casing. Clearan

.

FORTY NINER RIDGE UNIT 127H

13 3/8	in. surface o	asing in a	17 1/2	inch hole.		Design	Factors					
Segment	#/ft	G	ade	Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	48.00	Н	40	STC	17.20	4.52	1.07	390	10	2.03	9.13	18,720
"B"				STC				0				0
				Tail Cement	does	circ to sfc.	Totals:	390				18,720
Comparison	of Proposed	to Minimum	Required C	ement Volume	es							
"A" "B" Comparison Hole Size	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd			Minimum (Clearance
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE			b/w Hole &	Coupling
17 1/2	0.6946	330	544	310	75	8.40	854	2M			1.5	1 0
	010010		U II			0.10	001		E below su	rface.		
9 5/8	inch casing	inside the	13 3/8	inch ca	ising.	Design	Factors					
Segment	#/ft	Gi	ade	Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	36.00	J	55	LTC	3.65	1.25	0.61	3,450	2	1.06	2.37	124,200
"B"								0				0
"A" "B"							Totals:	3,450				124,20
	p of cement i	s intended t	o be at	0	ft from	the surface of		390	ft ov	verlan w	ith previous	'
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd	1		Minimum (
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE			b/w Hole &	
12 1/4	0.3132	500	904	1105	-18	9.00	3331	5M			0.8	1 0
-	Depths for DV		1150	Stage 1	Stage 2	3.00	sum of sx	Σ CuFt			0.0	Σ%exce
Setting L		s cementt b		25	17		750	1356				23
						Execce cor			ow the CE		mendation. Mo	
Burst Frac	Gradient(s) for S	Segment(s): A	, B, C, D = 1.0	2, b, c, d All > (0.70, OK.	LACESS CEI			be needed			ie cement
7	inch casing	incido tho	9 5/8	inch ca	sina	Design Fact	lors					
Segment	#/ft		ade	Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
	26.00	HCP		LTC	2.22	1.33	1.72	11,535	2	2.99	2.34	299,91
"A" "B"	26.00	нср	110	LIC	2.22	1.33	1.72	0	2	2.99	2.34	299,91
B							Tatalas					
							Totals:	11,535				299,91
	p of cement i			3950		the surface of		-500	ft. ov	erlap w	ith previous	
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd			Minimum (
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE			b/w Hole &	
											0.5	5
8 3/4	0.1503	660	1023	1140	-10	10.00	4198	5M				
	0.1503 cmt yld > 1.35	660	1023	Operator is	s proposing t	to use R-111-	Q guidelines	for cementi	01		0 0	
		660	1023	-	s proposing t	to use R-111-	Q guidelines completion. I	for cementi nsufficient c	01		0 0	
		660	1023	Operator is	s proposing t	to use R-111-	Q guidelines completion. I	for cementi	01		0 0	
			1023	Operator is	s proposing t within 180 da	to use R-111-	Q guidelines completion. I ft. in the	for cementi nsufficient c	01		0 0	
Class 'C' tail	cmt yld > 1.35	w/top @		Operator is Bradenhead v	s proposing t within 180 da	to use R-111- ays after well	Q guidelines completion. I ft. in the	for cementi nsufficient c	01		0 0	
Class 'C' tail	cmt yld > 1.35 inch Liner	w/top @ Gi	10689	Operator is Bradenhead v ft. from the	s proposing t within 180 da	to use R-111- ays after well <u>Design</u>	Q guidelines completion. I ft. in the Factors	for cementi nsufficient c 1st stage.	ement to	bring TC	DC to the prop	osed 395
Class 'C' tail 4 1/2 Segment	cmt yld > 1.35 inch Liner #/ft	w/top @ Gi	10689 rade	Operator is Bradenhead v ft. from the Coupling	e surface. Joint	to use R-111- ays after well <u>Design</u> Collapse	Q guidelines completion. I ft. in the Factors Burst	for cementi nsufficient c 1st stage.	B@s	bring TC	DC to the prop	osed 399 Weigh
Class 'C' tail 4 1/2 Segment "A"	cmt yld > 1.35 inch Liner #/ft	w/top @ Gi	10689 rade	Operator is Bradenhead v ft. from the Coupling LTC	e surface. Joint	to use R-111- ays after well <u>Design</u> Collapse	Q guidelines completion. I ft. in the Factors Burst	for cementi nsufficient c 1st stage. Length 8,135	B@s	bring TC	DC to the prop	Weigh 109,82 0
Class 'C' tail 4 1/2 Segment "A" "B"	cmt yld > 1.35 inch Liner #/ft	w/top @ Gi P	10689 rade 110	Operator is Bradenhead v ft. from the Coupling LTC	s proposing t within 180 da surface. Joint 6.53	to use R-111- ays after well <u>Design</u> Collapse	Q guidelines completion. I ft. in the Factors Burst 1.87 Totals:	for cementi nsufficient o 1st stage. Length 8,135 0	B@s 2	a-B 2.96	DC to the prop	Weigh 109,82 0 109,82
Class 'C' tail 4 1/2 Segment "A" "B"	cmt yld > 1.35 inch Liner #/ft 13.50	w/top @ Gi P	10689 rade 110	Operator is Bradenhead v ft. from the Coupling LTC 0.00	s proposing t within 180 da surface. Joint 6.53	Design Collapse 1.46	Q guidelines completion. I ft. in the Factors Burst 1.87 Totals:	for cementi nsufficient of 1st stage. Length 8,135 0 8,135	B@s 2	a-B 2.96	a-C 2.54	Weigh 109,82 0 109,82 casing.
Class 'C' tail 4 1/2 Segment "A" "B" The to	cmt yld > 1.35 inch Liner #/ft 13.50 p of cement is	w/top @ Gi P s intended t	10689 rade 110 o be at	Operator is Bradenhead v ft. from the Coupling LTC 0.00 10689	s proposing t within 180 da s surface. Joint 6.53 ft. from	o use R-111- ays after well Design Collapse 1.46	Q guidelines completion. I ft. in the Factors Burst 1.87 Totals: or have a	for cementinsufficient c 1st stage. Length 8,135 0 8,135 846	B@s 2	a-B 2.96	a-C 2.54 Minimum (Weigh 109,82: 0 109,82: casing. Clearance
Class 'C' tail 4 1/2 Segment "A" "B" The to Hole	cmt yld > 1.35 inch Liner #/ft 13.50 p of cement is Annular	w/top @ Gi P s intended t 1 Stage	10689 rade 110 o be at 1 Stage	Operator is Bradenhead v ft. from the Coupling LTC 0.00 10689 Min	s proposing t within 180 da s surface. Joint 6.53 ft. from 1 Stage	Design Design Collapse 1.46 the surface of Drilling	Q guidelines completion. I ft. in the Factors Burst 1.87 Totals: or have a Calc	for cementinsufficient c 1st stage. Length 8,135 0 8,135 846 Req'd	B@s 2	a-B 2.96	a-C 2.54 2.54	Weigh 109,823 0 109,823 casing. Clearance Coupling

.

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	MEWBOURNE OIL COMPANY
WELL NAME & NO.:	FORTY NINER RIDGE UNIT 127H
APD ID	10400068198
SURFACE HOLE FOOTAGE:	2386'/N & 2358'/E
BOTTOM HOLE FOOTAGE	330'/S & 1620'/E
SURFACE LOCATION:	Section 16, T.23 S., R.30 E. NMP.
COUNTY:	Eddy County, New Mexico

COA

H ₂ S	• Yes	C No	
Potash	C None	C Secretary	🖲 R-111-P
Cave/Karst Potential	C Low	C Medium	🖲 High
Cave/Karst Potential	C Critical		
Variance	C None	• Flex Hose	C Other
Wellhead	C Conventional	Multibowl	C Both
Other	4 String	Capitan Reef	□WIPP
Other	Fluid Filled	Pilot Hole	Open Annulus
Other Variances	Offline cementing	Squeeze cement	Break testing
Special Requirements	□ Water Disposal	COM	🗹 Unit

SEE ORIGINAL COA FOR ALL OTHER REQUIREMENTS.

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H₂S) Drilling Plan shall be activated **AT SPUD**. As a result, the Hydrogen Sulfide area must meet **43 CFR 3176** requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING DESIGN

Primary Casing Program

- 1. The 13-3/8 inch surface casing shall be set at approximately 390 ft. (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 ft. above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic-type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of

six hours after pumping cement and ideally between 8-10 hours after completing the cement job.

- b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>24 hours</u> or 500 psi compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 psi compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- The 9-5/8 inch intermediate casing shall be set in a competent bed at approximately 3,450 ft. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:
 - **Cement to surface.** If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to **Potash and cave/karst**.

Note: Excess cement volume for the 2^{nd} stage is below the CFO's recommendation of 25%. More cement might be needed.

- ✤ In <u>High Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- ✤ In <u>Secretary Potash Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- ✤ In <u>R111 Potash Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- **3.** Operator has proposed to set **7-inch 26# P-110** production casing at approximately **10,650 ft.** (10,646 ft. TVD). The minimum required fill of cement behind the **7-inch** production casing is:

Option 1 (Single Stage): Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the **lead** cement slurry due to **cave/karst, and potash.**

Option 2 (Two Stage): Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage within 180 days after well completion in accordance with R-111-Q guidelines.

a. First stage: Operator will cement production casing with intent to bring cement to top of Brushy Canyon formation. Wait on cement (WOC) time for a

primary cement job is to include the lead cement slurry due to cave/karst and Potash.

b. Second stage: Operator will perform bradenhead squeeze within 180 days after completion. Cement shall be tie-back at least 500 ft. into intermediate casing and below the Marker Bed 126. If cement does not circulate, the appropriate BLM office shall be notified.

Note: Operator has proposed to pump down 9-5/8" X 7" annulus within 180 days after well completion in accordance with R-111-Q guidelines. Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus AND/OR operator shall run a CBL from TD of the 7" casing to top of the salt after the second stage bradenhead to verify cement bond quality and TOC. Submit results to the BLM. Operator must run one CBL per Well Pad.

Casing test must be conducted in accordance with title 43 CFR 3172. Surface pressure applied will vary based on fluid in the casing and burst conditions.

Note: Production casing must be kept fluid-filled to meet minimum collapse design requirements.

- 4. The minimum required fill of cement behind the 4-1/2 in. production liner is:
 - Cement should tie-back **at least 100 feet** into previous casing string. Operator shall provide method of verification.

Alternate Casing Program

- 1. The 13-3/8 inch surface casing shall be set at approximately 390 ft. (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 ft. above the salt.
 - e. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic-type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - f. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>24 hours</u> or 500 psi compressive strength, whichever is greater. (This is to include the lead cement)
 - g. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 psi compressive strength, whichever is greater.
 - h. If cement falls back, remedial cementing will be done prior to drilling out that string.

- The 9-5/8 inch intermediate casing shall be set in a competent bed at approximately 3,450 ft. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:
 - **Cement to surface.** If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to **Potash and cave/karst**.

Note: Excess cement volume for the 2^{nd} stage is below the CFO's recommendation of 25%. More cement might be needed.

- ✤ In <u>High Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- In <u>Secretary Potash Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- ✤ In <u>R111 Potash Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- **3.** Operator has proposed to set **7-inch 26# HCP-110** production casing at approximately **11,535 ft.** (11,124 ft. TVD). The minimum required fill of cement behind the **7-inch** production casing is:

Option 1 (Single Stage): Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the **lead** cement slurry due to **cave/karst, and potash.**

Option 2 (Two Stage): Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage within 180 days after well completion in accordance with R-111-Q guidelines.

- c. First stage: Operator will cement production casing with intent to bring cement to top of Brushy Canyon formation. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst and Potash.
- d. Second stage: Operator will perform bradenhead squeeze within 180 days after completion. Cement shall be tie-back at least 500 ft. into intermediate casing and below the Marker Bed 126. If cement does not circulate, the appropriate BLM office shall be notified.

Note: Operator has proposed to pump down 9-5/8" X 7" annulus within 180 days after well completion in accordance with R-111-Q guidelines. Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus AND/OR operator

shall run a CBL from TD of the 7" casing to top of the salt after the second stage bradenhead to verify cement bond quality and TOC. Submit results to the BLM. Operator must run one CBL per Well Pad.

Casing test must be conducted in accordance with title 43 CFR 3172. Surface pressure applied will vary based on fluid in the casing and burst conditions.

Note: Cement volume for the 1^{st} stage is insufficient to bring TOC to the proposed 3,950 ft. More cement is needed.

- 4. The minimum required fill of cement behind the 4-1/2 in. production liner is:
 - Cement should tie-back at least 100 feet into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use **flex line** from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi. Before drilling the surface casing shoe out, the BOP/BOPE and annular preventer shall be pressure-tested in accordance with title 43 CFR 3172 and API Standard 53.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in the **title 43 CFR 3172.6(b)(9)** must be followed.

BOPE Break Testing Variance (Note: For a minimum 5M BOPE or less (Utilizing a 10M BOPE system)

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per title **43 CFR 3172**.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Offline cementing variance is approved for surface and intermediate casings only. Contact the BLM prior to the commencement of any offline cementing procedure.

D. SPECIAL REQUIREMENT (S)

Unit Wells

The well sign for a unit well shall include the unit number in addition to the surface and bottom hole lease numbers. This also applies to participating area numbers. If a participating area has not been established, the operator can use the general unit designation, but will replace the unit number with the participating area number when the sign is replaced.

Commercial Well Determination

A commercial well determination shall be submitted after production has been established for at least six months. (This is not necessary for secondary recovery unit wells)

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Eddy County
 EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,
 BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822

Lea CountyCall the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **title 43 CFR 3172**
 - as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

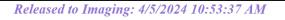
- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

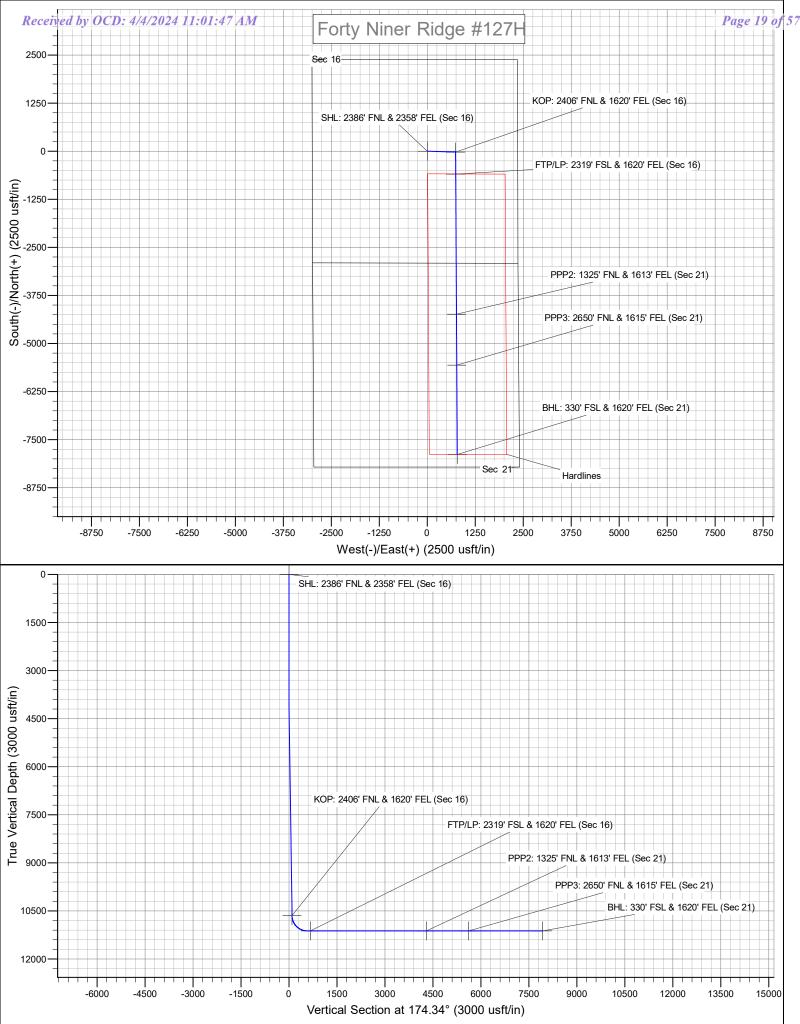
B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in the **title 43 CFR 3172** and **API STD 53 Sec. 5.3**.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in the **title 43 CFR 3172.6(b)(9)** must be followed.
 - e. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including

lead cement), whichever is greater. However, if the float does not hold, cutoff cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to **43 CFR 3172** with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000-psi chart for a 2-3M BOP/BOP, on a 10000-psi chart for a 5M BOP/BOPE and on a 15000-psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one-hour chart. A circular chart shall have a maximum 2-hour clock. If a twelve hour or twenty-four-hour chart is used, tester shall make a notation that it is run with a two-hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low-pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR 3172.


C. DRILLING MUD


Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crewintensive operations.

SA 04/03/2024

_

Mewbourne Oil Co.

Surface & Intermediate Offline Cementing Variance

Mewbourne Oil Company requests a variance to perform offline cementing for surface and intermediate casing strings with the following conditions:

- Offline cementing will not be performed on production casing.
- Offline cementing will not be performed on a hole section with MASP > 5000 psi.
- Offline cementing will not be performed concurrently with offset drilling.

Surface Casing Order of Operations:

- 1. Run 13 3/8" surface casing as per normal operations (TPGS and float collar).
- 2. Perform negative pressure test to confirm integrity of float equipment while running casing.
- 3. Confirm well is static.
- 4. Make up 13 [%]" wellhead or wellhead landing ring assembly and land on 20" conductor.
- 5. Fill pipe, circulate casing capacity and confirm float(s) are still holding.
- 6. Confirm well is static.
- 7. Back out landing joint and pull to rig floor. Lay down landing joint.
- 8. Walk rig to next well on pad with cement crew standing by to rig up.
- 9. Make up offline cement tool with forklift per wellhead manufacturer (Fig. 1 & 2).
- 10. Make up cement head on top of offline cement tool with forklift.
- 11. Commence cement operations.
- 12. If cement circulates, confirm well is static and proceed to step 16.
- 13. If cement does not circulate, notify the appropriate BLM office, wait a minimum of six hours, and run a temperature survey to determine the top of cement.
- 14. Use 1" pipe for remedial cement job until the surface casing is cemented to surface.
- 15. Confirm well is static.
- 16. Once cement job is complete, the cement head and offline cementing tool are removed. The wellhead technician returns to cellar to install wellhead/valves.
- 17. Install wellhead capping flange.

Barriers

Before Walk:

- Float(s) in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus

After Walk:

- Float(s) in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus
- Offline cementing tool tested to 5000 psi and cement head
- Capping flange after cementing

20" Surface Casing Order of Operations (4 string area):

- 1. Run 20" surface casing as per normal operations (TPGS and float collar).
- 2. Perform negative pressure test to confirm integrity of float equipment while running casing.
- 3. Fill pipe, circulate casing capacity and confirm float(s) are still holding.
- 4. Confirm well is static.
- 5. Back out landing joint and pull to rig floor. Lay down landing joint.
- 6. Make up cement head.
- 7. Walk rig to next well on pad with cement crew standing by to rig up.
- 8. Commence cement operations.
- 9. If cement circulates, confirm well is static and proceed to step 13.
- 10. If cement does not circulate, notify the appropriate BLM office, wait a minimum of six hours, and run a temperature survey to determine the top of cement.
- 11. Use 1" pipe for remedial cement job until the surface casing is cemented to surface.
- 12. Confirm well is static.
- 13. Once cement job is complete, remove cement head and install cap.

Barriers

Before Walk:

- Float(s) in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus
- Cement Head

After Walk:

- Float(s) in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus
- Cement head
- Capping flange after cementing

Intermediate Casing Order of Operations:

- 1. Run casing as per normal operations (float shoe and float collar).
- 2. Perform negative pressure test to confirm integrity of float equipment while running casing.
- 3. Confirm well is static (if running SBM).
- 4. Land casing.
- 5. Fill pipe, circulate casing capacity and confirm floats are still holding.
- 6. Confirm well is static.
- 7. Back out landing joint and pull to rig floor. Lay down landing joint. Install packoff & test.
- 8. Nipple down BOP.
- 9. Walk rig to next well on pad with cement crew standing by to rig up.
- 10. Make up offline cement tool using forklift per wellhead manufacturer (Fig. 3 8).
- 11. Make up cement head on top of offline cement tool.
- 12. Commence cement operations.
- 13. If cement circulates, confirm well is static and proceed to step 16.
- 14. If cement does not circulate (when required), notify the appropriate BLM office, wait a minimum of six hours, and run a temperature survey to determine the top of cement.
- 15. Pump remedial cement job if required.
- 16. Confirm well is static.
- 17. Remove cement head and offline cementing tool.
- 18. Install wellhead capping flange and test.

Barriers

Before Nipple Down:

- Floats in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus
- Solid body mandrel and/or packoff

After Nipple Down:

- Floats in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus
- Solid body mandrel and/or packoff
- Offline cementing tool tested to 5000 psi and cement head
- Capping flange after cementing

Risks:

- Pressure build up in annulus before cementing
 - o Contact BLM if a well control event occurs.
 - Rig up 3rd party pump or rig pumps to pump down casing and kill well.
 - Returns will be taken through the wellhead valves to a choke manifold (Fig 9 & 10).
 - Well could also be killed through the wellhead valves down the annulus.

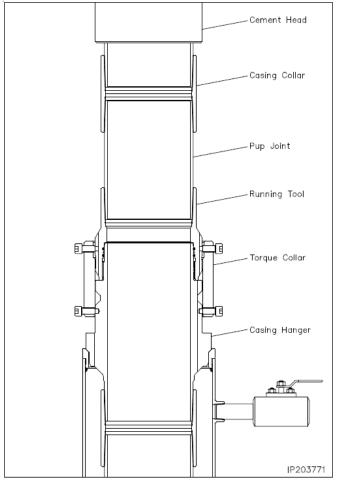


Figure 1. Cactus 13 3/8" 5M offline cementing tool. Pressure rating limited by the lesser of 5M tool rating or the 13 3/8" pup joint and casing.

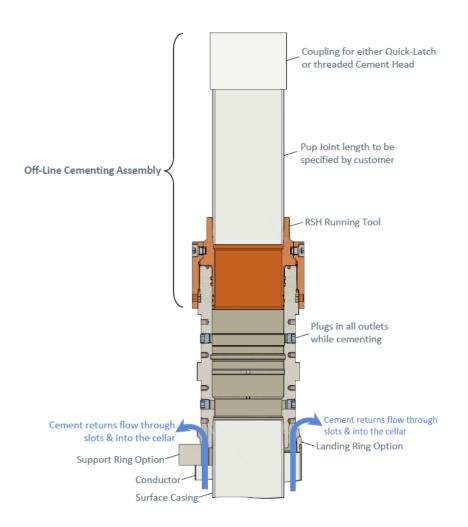


Figure 2. Vault 13 3/8" 5M offline cementing tool. Pressure rating limited by the lesser of 5M tool rating or the 13 3/8" pup joint and casing.

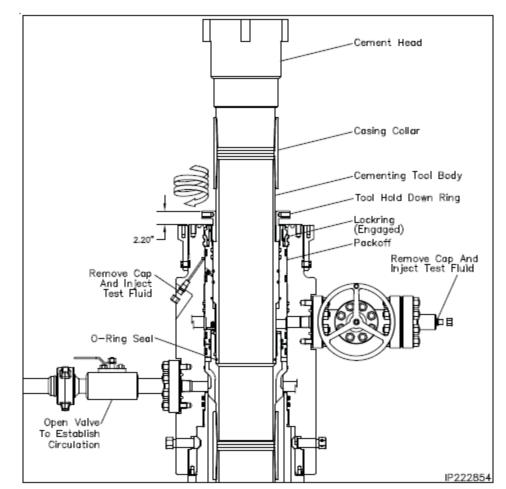


Figure 3. Cactus 9 5/8" 5M offline cementing tool. Pressure rating limited by the lesser of 5M tool rating or the 9 5/8" pup joint and casing.

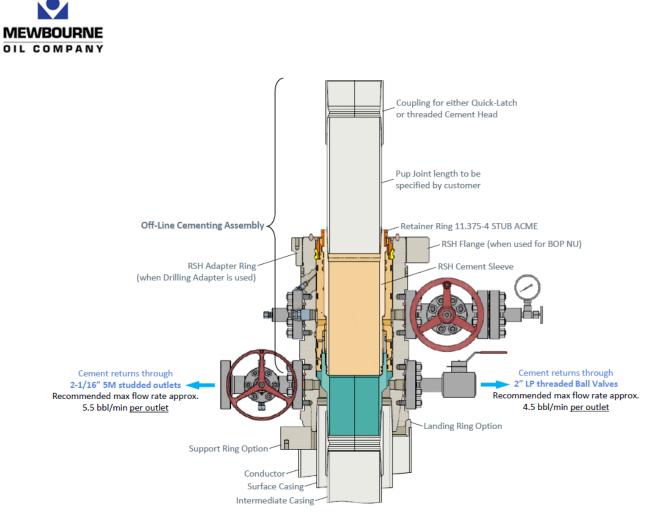


Figure 4. Vault 9 5/8" 5M offline cementing tool. Pressure rating limited by the lesser of 5M tool rating or the 9 5/8" pup joint and casing.

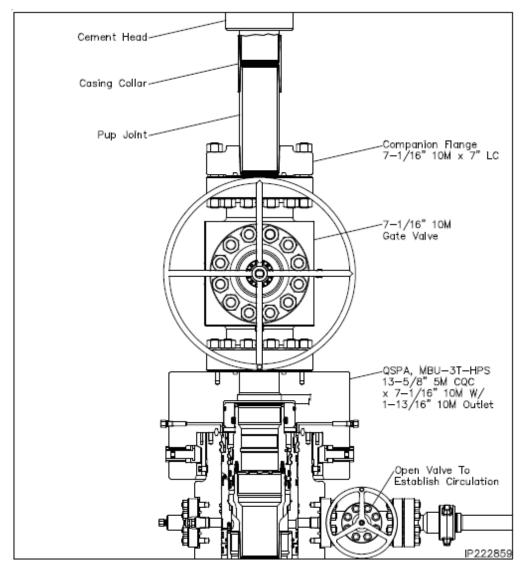


Figure 5. Cactus 7" 5M offline cementing tool. Pressure rating limited by the lesser of 5M tool rating or the 7" pup joint and casing.

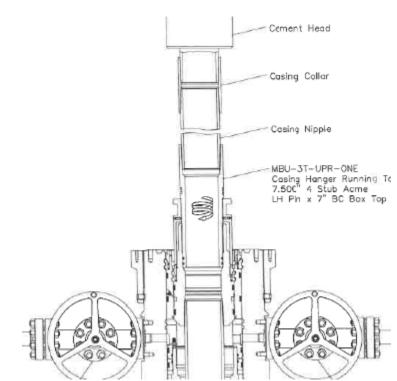


Figure 6. Cactus 7" 5M offline cementing tool. Pressure rating limited by the lesser of 5M tool rating or the 7" pup joint and casing.

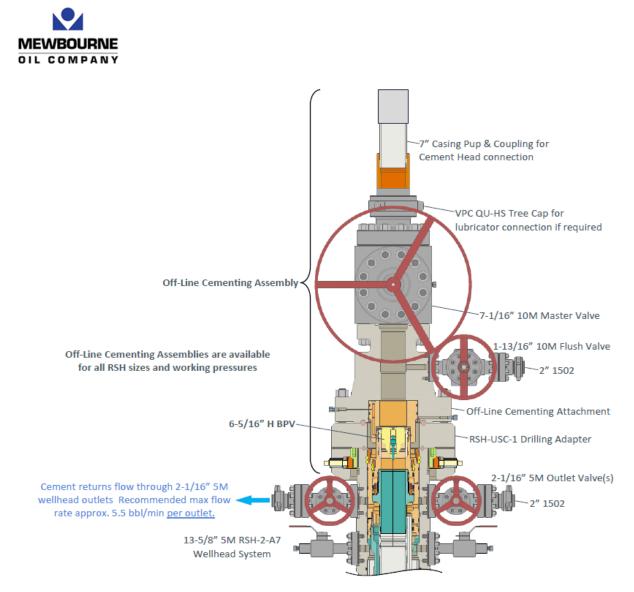
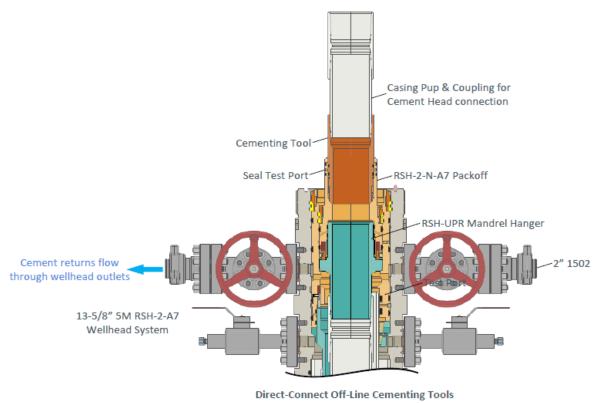



Figure 7. Vault 7" 5M offline cementing tool. Pressure rating limited by the lesser of 5M tool rating or the 7" pup joint and casing.

for production casing are available for all RSH Systems

Figure 8. Vault 7" 5M offline cementing tool. Pressure rating limited by the lesser of 5M tool rating or the 7" pup joint and casing.

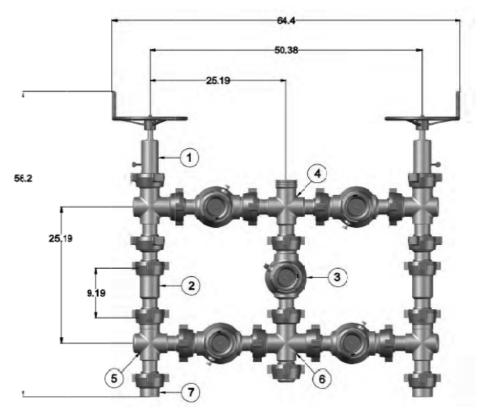


Figure 9. Five valve 15k choke manifold.

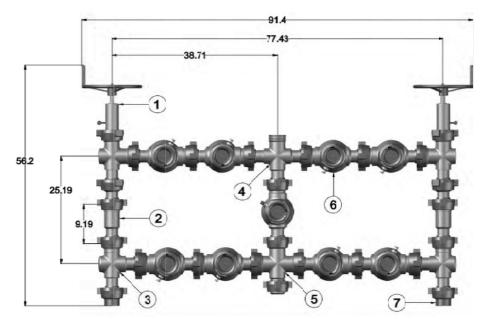


Figure 10. Nine valve 15k choke manifold.

Mewbourne Oil Co.

BOP Break Testing Variance

Mewbourne Oil Company requests a variance from the minimum standards for well control equipment testing of 43 CFR 3172 to allow a testing schedule of the blow out preventer (BOP) and blow out prevention equipment (BOPE) along with batch drilling & offline cementing operations. Modern rig upgrades which facilitate pad drilling allow the BOP stack to be moved between wells on a multi-well pad without breaking any BOP stack components apart. Widespread use of these technologies has led to break testing BOPE being endorsed as safe and reliable. American Petroleum Institute (API) best practices are frequently used by regulators to develop their regulations. API Standard 53, *Well Control Equipment Systems for Drilling Wells* (5th Ed., Dec. 2018) Section 5.3.7.1 states "A pressure test of the pressure containing component shall be performed following the disconnection or repair, limited to the affected component."

Procedures

- 1. Full BOPE test at first installation on the pad.
 - Full BOPE test at least every 21 days.
 - Function test BOP elements per 43 CFR 3172.
 - Contact the BLM if a well control event occurs.
- 2. After the well section is secured and the well is confirmed to be static, the BOP will be disconnected from the wellhead and walked with the rig to another well on the pad. Two breaks on the BOPE will be made (Fig. 1).
 - Connection between the flex line and the HCR valve
 - Connection between the wellhead and the BOP quick connect (Fig. 5 & 6).
- 3. A capping flange will be installed after cementing per wellhead vendor procedure & casing pressure will be monitored via wellhead valve.
- 4. The BOP will be removed and carried by a hydraulic carrier (Fig. 3 & 4).
- 5. The rig will then walk to the next well.
- 6. Confirm that the well is static and remove the capping flange.
- 7. The connection between the flex line and HCR valve and the connection between the wellhead and the BOP quick connect will be reconnected.
- 8. Install a test plug into the wellhead.
- 9. A test will then be conducted against the upper pipe rams and choke, testing both breaks (Fig. 1 & 2).
- 10. The test will be held at 250 psi low and to the high value submitted in the APD, not to exceed 5000 psi.
- 11. The annular, blind rams and lower pipe rams will then be function tested.
- 12. If a pad consists of three or more wells, steps 4 through 11 will be repeated.

13. A break test will only be conducted if the intermediate section can be drilled and cased within 21 days of the last full BOPE test.

Barriers

Before Nipple Down:

- Floats in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus
- Solid body mandrel and/or packoff

After Nipple Down:

- Floats in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus
- Solid body mandrel and/or packoff
- Offline cementing tool and/or cement head
- Capping flange after cementing

Summary

A variance is requested to only test broken pressure seals on the BOPE when moving between wells on a multi-well pad if the following conditions are met:

- A full BOPE test is conducted on the first well on the pad. API Standard 53 requires testing annular BOP to 70% of RWP or 100% of MASP, whichever is greater.
- If the first well on the pad is not the well with the deepest intermediate section, a full BOPE test will also be performed when moving to a deeper well.
- The hole section being drilled has a MASP under 5000 psi.
- If a well control event occurs, Mewbourne will contact BLM for permission to continue break testing.
- If significant (>50%) losses occur, full BOPE testing will be required going forward.
- Full BOPE test will be required prior to drilling the production hole.

While walking the rig, the BOP stack will be secured via hydraulic winch or hydraulic carrier. A full BOPE test will be performed at least every 21 days.

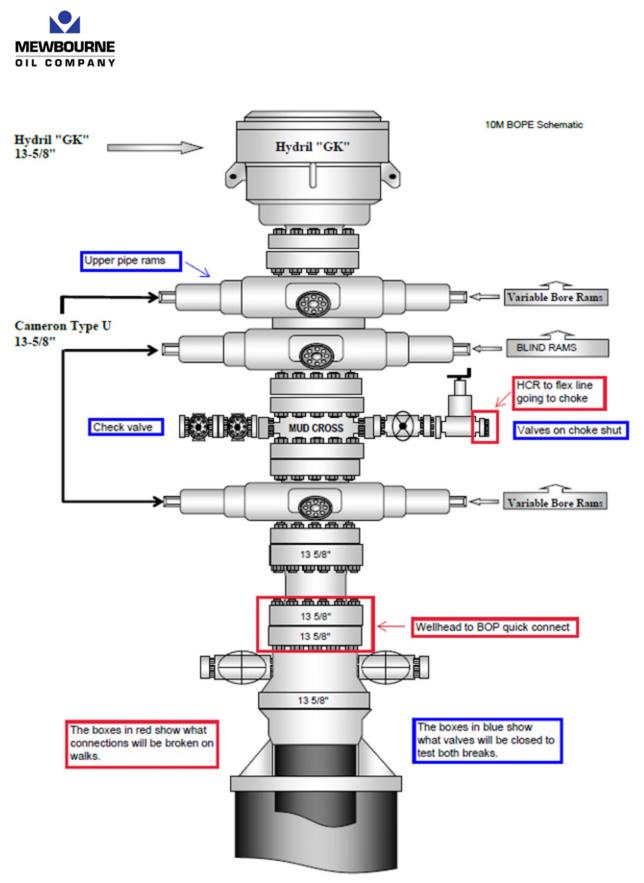


Figure 1. BOP diagram

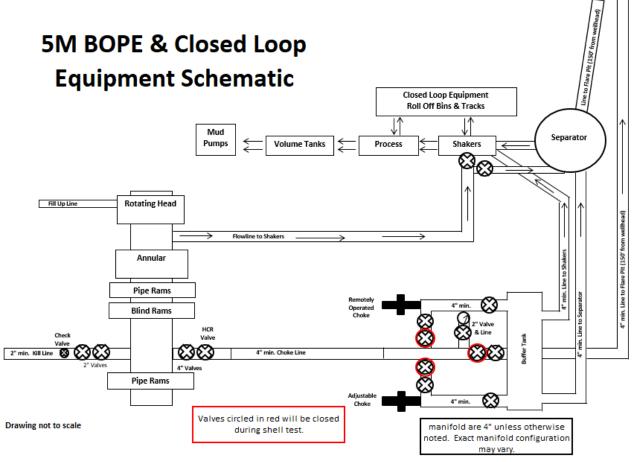


Figure 2. BOPE diagram

Figure 3. BOP handling system

Figure 4. BOP handling system

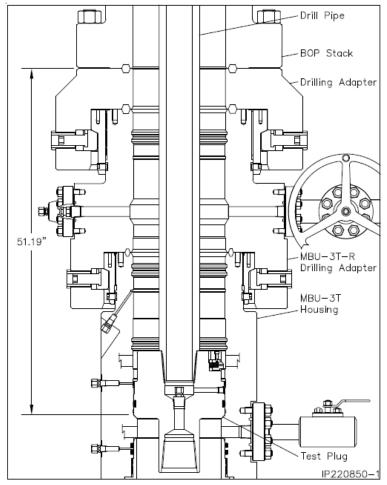


Figure 5. Cactus 5M wellhead with BOP quick connect

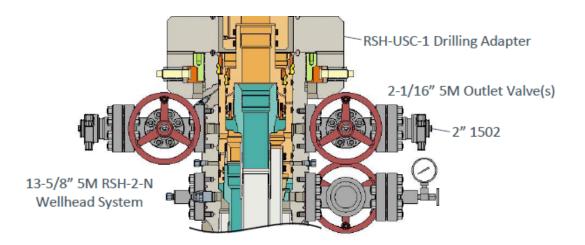


Figure 6. Vault 5M wellhead with BOP quick connect

Casing Program Design A						BLM Minimum Safety Factors	1.125	1.0	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	390'	390'	13.375" 48# H40 STC	4.52	10.16	17.20	28.90
Int	12.25"	0'	0'	3450'	3450'	9.625" 36# J55 LTC	1.25	2.18	3.65	4.54
Production	8.75"	0'	0'	10650'	10646'	7" 26# P110 LTC	1.13	1.80	2.50	3.00
Liner	6.125"	10489'	10447'	18824'	11124'	4.5" 13.5# P110 LTC	1.60	1.87	3.00	3.75

Cement Program

Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	TOC/BOC	Volume ft ³	% Excess	Slurry Description
13.375 in	LEAD	130	12.5	2.12	0' - 199'	280	100%	Class C: Salt, Gel, Extender, LCM
15.575 III	TAIL	200	14.8	1.34	199' - 390'	268	10070	Class C: Retarder
1st Stg 9.625 in	LEAD	300	12.5	2.12	1150' - 2771'	640	25%	Class C: Salt, Gel, Extender, LCM
1st 3tg 9.025 m	TAIL	200	14.8	1.34	2771' - 3450'	268	2370	Class C: Retarder
					9 5/8'' D	V Tool @ 1150'		
2nd Stg 9.625 in	LEAD	150	12.5	2.12	0' - 811'	320	25%	Class C: Salt, Gel, Extender, LCM
2nd Stg 9.025 m	TAIL	100	14.8	1.34	811' - 1150'	134	2370	Class C: Retarder
7 in	LEAD	260	12.5	2.12	3950' - 7607'	560	0%	Class C: Salt, Gel, Extender, LCM, Defoamer
, m	TAIL	400	15.6	1.18	7607' - 10689'	472	070	Class H: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	530	13.5	1.85	10489' - 18824'	990	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti- settling Agent

Design A - Mud Pro	gram		Geology						
Depth	Mud Wt	Mud Type	Formation	Formation Est. Top (TVD) Mineral Res		Formation	Est. Top (TVD)	Mineral Resources	
			Rustler			Yeso			
0' - 390'	8.4	Fresh Water	Castile			Delaware (Lamar)	3590'	Oil/Natural Gas	
390' - 3450'	9	Brine	Salt Top	435'	None	Bell Canyon	3620'	Oil/Natural Gas	
3450' - 10689'	10	Cut-Brine	Marker Bed 1	26 1175'	None	Cherry Canyon	4250'	Oil/Natural Gas	
10689' - 18824'	11.5	OBM	Salt Base	3370'	None	Manzanita Marker	4480'	Oil/Natural Gas	
			Seven River	;		Basal Brushy Canyon	5855'	Oil/Natural Gas	
			Queen			Bone Spring	7150'	Oil/Natural Gas	
			Capitan			1st Bone Spring	8170'	Oil/Natural Gas	
			Grayburg			2nd Bone Spring	8540'	Oil/Natural Gas	
			San Andres			3rd Bone Spring	9300'	Oil/Natural Gas	
			Glorieta			Wolfcamp	10450'	Oil/Natural Gas	

All casing strings will be tested in accordance with 43 CFR Part 3170 Subpart 3172. Must have table for contingency casing.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Ν
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	N
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	Y
If yes, are the first three strings cemented to surface?	N
Is 2 nd string set 100' to 600' below the base of salt?	Y
Is an open annulus used to satisfy R-111-Q? If yes, see cement design.	Y
Is an Open Annulus used to satisfy R-111-Q?	Y
If yes, at what depth is the TOC? 7" TOC @ 3950', BHS TOC @ 2950'	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	1
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
(or a string mem/ in joint and a commission of earlier in loss encentration occurs.	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

Casing Program Design B						BLM Minimum Safety Factors	1.125	1.0	1.6 Dry 1.8 Wet	1.6 Drv 1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	390'	390'	13.375" 48# H40 STC	4.52	10.16	17.20	28.90
Int 2	12.25"	0'	0'	3450'	3450'	9.625" 36# J55 LTC	1.25	2.18	3.65	4.54
Production	8.75"	0'	0'	11535'	11124'	7" 26# HCP110 LTC	1.35	1.72	2.31	2.77
Liner	6.125"	10689'	10646'	18824'	11124'	4.5" 13.5# P110 LTC	1.60	1.87	3.08	3.84

Design B - Cement Program

Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	TOC/BOC	Volume ft ³	% Excess	Slurry Description
13.375 in	LEAD	130	12.5	2.12	0' - 199'	280	100%	Class C: Salt, Gel, Extender, LCM
13.375 III	TAIL	200	14.8	1.34	199' - 390'	268	100%	Class C: Retarder
1st Stg 9.625 in	LEAD	300	12.5	2.12	1150' - 2771'	640	25%	Class C: Salt, Gel, Extender, LCM
1st stg 5.025 m	TAIL	200	14.8	1.34	2771' - 3450'	268	2.3%	Class C: Retarder
					9 5/8'' D	V Tool @ 1150'		
2nd Stg 9.625 in	LEAD	150	12.5	2.12	0' - 811'	320	25%	Class C: Salt, Gel, Extender, LCM
2nu 3tg 9.025 m	TAIL	100	14.8	1.34	811' - 1150'	134	2.370	Class C: Retarder
7 in	LEAD	260	12.5	2.12	3950' - 7607'	560	0%	Class C: Salt, Gel, Extender, LCM, Defoamer
/ III	TAIL	400	15.6	1.18	7607' - 10689'	472	0%	Class H: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	530	13.5	1.85	10689' - 18824'	990	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti-

Design B - Mud Program

Depth	Mud Wt	Mud Type
0' - 390'	8.4	Fresh Water
390' - 3450'	9	Brine
3450' - 11535'	10	Cut-Brine
11535' - 18824'	11.5	OBM

Geology					
Formation	Est. Top (TVD)	Mineral Resources	Formation	Est. Top (TVD)	Mineral Resources
Rustler			Yeso		
Castile			Delaware (Lamar)	3590'	Oil/Natural Gas
Salt Top	435'	None	Bell Canyon	3620'	Oil/Natural Gas
Marker Bed 126	1175'	None	Cherry Canyon	4250'	Oil/Natural Gas
Salt Base	3370'	None	Manzanita Marker	4480'	Oil/Natural Gas
Seven Rivers			Basal Brushy Canyon	5855'	Oil/Natural Gas
Queen			Bone Spring	7150'	Oil/Natural Gas
Capitan			1st Bone Spring	8170'	Oil/Natural Gas
Grayburg			2nd Bone Spring	8540'	Oil/Natural Gas
San Andres			3rd Bone Spring	9300'	Oil/Natural Gas
Glorieta			Wolfcamp	10450'	Oil/Natural Gas

All casing strings will be tested in accordance with 43 CFR Part 3170 Subpart 3172. Must have table for contingency casing.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Ν
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	N
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	Y
If yes, are the first three strings cemented to surface?	N
Is 2 nd string set 100' to 600' below the base of salt?	Y
Is an Open Annulus used to satisfy R-111-Q?	Y
If yes, at what depth is the TOC? 7" TOC @ 3950', BHS TOC @ 2950'	
If yes, at what depth is the weak point planned?	
Is well located in high Cave/Karst?	Ν
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

Well Location	GL: 3143'										
Point	Calls	Leases	Aliquot	Section	Township	Range	County	Lat	Long	TVD	MD
SHL	SHL: 2386' FNL & 2358' FEL (Sec 16)	State	SWNE	16	238	30E	Eddy	32.3057915	103.8852725	0'	0'
KOP	KOP: 2406' FNL & 1620' FEL (Sec 16)	State	SWNE	16	238	30E	Eddy	32.3057247	103.8828831	10,647'	10,689'
FTP	FTP: 2319' FSL & 1620' FEL (Sec 16)	State	NWSE	16	238	30E	Eddy	32.3041499	103.8828872	11,124'	11,535'
PPP2	PPP2: 1325' FNL & 1613' FEL (Sec 21)	NMNM0543827	SWNE	21	238	30E	Eddy	32.2941348	103.8828685	11,124'	15,178'
PPP3	PPP3: 2650' FNL & 1615' FEL (Sec 21)	NMNM104965	NWSE	21	238	30E	Eddy	32.2904930	103.8828617	11,124'	16,503'
BHL	BHL: 330' FSL & 1620' FEL (Sec 21)	NMNM104965	SWSE	21	238	30E	Eddy	32.2841125	103.8828498	11,124'	18,824'

GEOLOGY

Formation	Est. Top (TVD)	Lithology	Mineral Resources	Formation	Est. Top (TVD)	Lithology	Mineral Resources
Rustler				Yeso			
Castile				Delaware (Lamar)	3590'	Limestone/Dolomite	Oil/Natural Gas
Salt Top	435'	Salt	None	Bell Canyon	3620'	Sandstone	Oil/Natural Gas
Marker Bed 126	1175'		None	Cherry Canyon	4250'	Sandstone	Oil/Natural Gas
Salt Base	3370'	Salt	None	Manzanita Marker	4480'	Limestone	Oil/Natural Gas
Seven Rivers				Basal Brushy Canyon	5855'	Sandstone	Oil/Natural Gas
Queen				Bone Spring	7150'	Limestone	Oil/Natural Gas
Capitan				1st Bone Spring	8170'	Sandstone	Oil/Natural Gas
Grayburg				2nd Bone Spring	8540'	Sandstone	Oil/Natural Gas
San Andres				3rd Bone Spring	9300'	Sandstone	Oil/Natural Gas
Glorietta				Wolfcamp	10450'	Shale/Sandstone/Limestone	Oil/Natural Gas

		Casing Progra	am Decign A			BLM Minimum Safety Factors	1.125	1.0	1.6 Dry	1.6 Dry
		Casing 110gr	am Design A			bear minimum safety ractors	1.125	1.0	1.8 Wet	1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	390'	390'	13.375" 48# H40 STC	4.52	10.16	17.20	28.90
Int	12.25"	0'	0'	3450'	3450'	9.625" 36# J55 LTC	1.25	2.18	3.65	4.54
Production	8.75"	0'	0'	10650'	10646'	7" 26# P110 LTC	1.13	1.80	2.50	3.00
Liner	6.125"	10489'	10447'	18824'	11124'	4.5" 13.5# P110 LTC	1.60	1.87	3.00	3.75

All casing strings will be tested in accordance with 43 CFR Part 3172. Must have table for contingency casing.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	N
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	Y
If yes, are the first three strings cemented to surface?	N
Is 2 nd string set 100' to 600' below the base of salt?	Y
Is an Open Annulus used to satisfy R-111-Q?	Y
If yes, at what depth is the TOC? 7" TOC @ 3950', BHS TOC @ 2950'	
If yes, at what depth is the weak point planned?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

Design A - Cement Program

Csg. Size		# Sacks	Wt., lb/gal	Yield, ft ³ /sack	TOC/BOC	Volume, ft ³	% Excess	Slurry Description
13.375 in	LEAD	130	12.5	2.12	0' - 199'	280	100%	Class C: Salt, Gel, Extender, LCM
15.575 m	TAIL	200	14.8	1.34	199' - 390'	268	100%	Class C: Retarder
1st Stg 9.625 in	LEAD	300	12.5	2.12	1150' - 2771'	640	25%	Class C: Salt, Gel, Extender, LCM
1st Stg 9.025 m	TAIL	200	14.8	1.34	2771' - 3450'	268	23%	Class C: Retarder
					9 5	/8'' DV Tool @ 1150'		
2nd Stg 9.625 in	LEAD	150	12.5	2.12	0' - 811'	320	25%	Class C: Salt, Gel, Extender, LCM
210 Stg 9.025 III	TAIL	100	14.8	1.34	811' - 1150'	134	23%	Class C: Retarder
7 in	LEAD	260	12.5	2.12	3950' - 7607'	560	0%	Class C: Salt, Gel, Extender, LCM, Defoamer
/ III	TAIL	400	15.6	1.18	7607' - 10689'	472	0%	Class H: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	530	13.5	1.85	10489' - 18824'	990	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti-

Pressure Control Equipment

BOP installed and tested before drilling hole, in:	Size, in	System Rated WP	Туре		Tested to:	Rating Depth					
12.25		5M	Annular	Х	2500#						
	13.375 5M Pipe		Blind Ram	Х							
		13.375	13.375	13.375	13.375	13.375	~~~	Pipe Ram	Х	5000#	18,824'
		Double Ram		5000#							
			Other*								

*Specify if additional ram is utilized.

Equipment: Annular, Pipe Rams, Blind Rams, Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Variance Request: A variance is requested for the use of a variable choke line from the BOP to the choke manifold. See attached for hydrostatic test chart. Anchors are not required by manufacturer. Variance is requested to use a multi bowl wellhead. Variance is requested to perform break testing according to attached procedure.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per 43 CFR Part 3172 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

Y	Formation integrity test will be performed per 43 CFR Part 3172. On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with 43 CFR Part 3172.
Ν	Mewbourne Oil Company request a variance to use a 5000 psi annular BOP with a 10,000 psi BOP stack.

Mud Program

Depth (MD)	Mud Wt., lb/gal	Mud Type
	8.4	Fresh Water
0' - 390'	8.4	Fresh Water
390' - 3450'	9	Brine
3450' - 10689'	10	Cut-Brine
10689' - 18824'	11.5	OBM

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?

Pason/PVT/Visual Monitoring

Logging and Testing Procedures

Logging	g, Coring and Testing.
	Will run GR/CNL from KOP (10689') to surface (horizontal well – vertical portion of hole). Stated logs run will be in the Completion Report and submitted to the BLM.
Ν	No logs are planned based on well control or offset log information. Offset Well:
Ν	Coring? If yes, explain:

Open & Cased Hole Logs Run In the Well

	Caliper		Cement Bond Log	CNL/FDC
	Compensated Densilog	<	Compensated Neutron Log	Computer Generated Log
	Dip Meter Log	<	Directional Survey	Dual Induction/Microresistivity
	Dual Lateral Log/Microspherically Focused		Electric Log	Formation Density Compensated Log
~	Gamma Ray Log		Measurement While Drilling	Mud Log/Geological Lithology Log
	Other		Porosity-Resistivity Log	Sidewall Neutron Log
	Sonic Log		Spontaneous Potential Log	Temperature Log

Drilling Conditions

Condition	Specify what type and where?					
BH Pressure at deepest TVD	6652 psi					
BH Temperature	140					
Abnormal Temp, Pressure, or Geologic Hazards	No					
Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud						
scavengers in surface hole. Weighted mud for nos	able over-pressure in Wolfcamp formation					

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

	H2S is present
Х	H2S Plan attached

Other facets of operation

Mewbourne Oil C	ewbourne Oil Company also requests approval to implement Design B as described below. BLM will be notified of elected design.									
Offline Cementi	ng Variance: Varia	ance is request	to perform off	line cementing acc	ording to the atta	ched procedure.				
Casing Program Design B BLM Minimum Safety Factors 1.125 1.0 1.6 Dry 1.6 Dry										
		0 0	Sing Frogram Design D						1.8 Wet	1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt	SF Body
Surface	17.5"	0'	0'	390'	390'	13.375" 48# H40 STC	4.52	10.16	17.20	28.90
Int 2	12.25"	0'	0'	3450'	3450'	9.625" 36# J55 LTC	1.25	2.18	3.65	4.54
Production	8.75"	0'	0'	11535'	11124'	7" 26# HCP110 LTC	1.35	1.72	2.31	2.77
Liner	6.125"	10689'	10646'	18824'	11124'	4.5" 13.5# P110 LTC	1.60	1.87	3.08	3.84

All casing strings will be tested in accordance with 43 CFR Part 3172. Must have table for contingency casing.

	Y or N				
Is casing new? If used, attach certification as required in Onshore Order #1	Y				
Is casing API approved? If no, attach casing specification sheet.					
Is premium or uncommon casing planned? If yes attach casing specification sheet.					
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).					
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y				
Is well located within Capitan Reef?	N				
If yes, does production casing cement tie back a minimum of 50' above the Reef?					
Is well within the designated 4 string boundary.	N				
Is well located in SOPA but not in R-111-P?	N				
If yes, are the first 2 strings cemented to surface and 3 nd string cement tied back 500' into previous casing?					
Is well located in R-111-P and SOPA?	Y				
If yes, are the first three strings cemented to surface?	N				
Is 2 nd string set 100' to 600' below the base of salt?	Y				
Is an open annulus used to satisfy R-111-Q? If yes, see cement design.	Y				
Is an Open Annulus used to satisfy R-111-Q?	Y				
If yes, at what depth is the TOC? 7" TOC @ 3950', BHS TOC @ 2950'					
Is well located in high Cave/Karst?	N				
If yes, are there two strings cemented to surface?					
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?					
Is well located in critical Cave/Karst?	N				
If yes, are there three strings cemented to surface?					

Design B - Cement Program

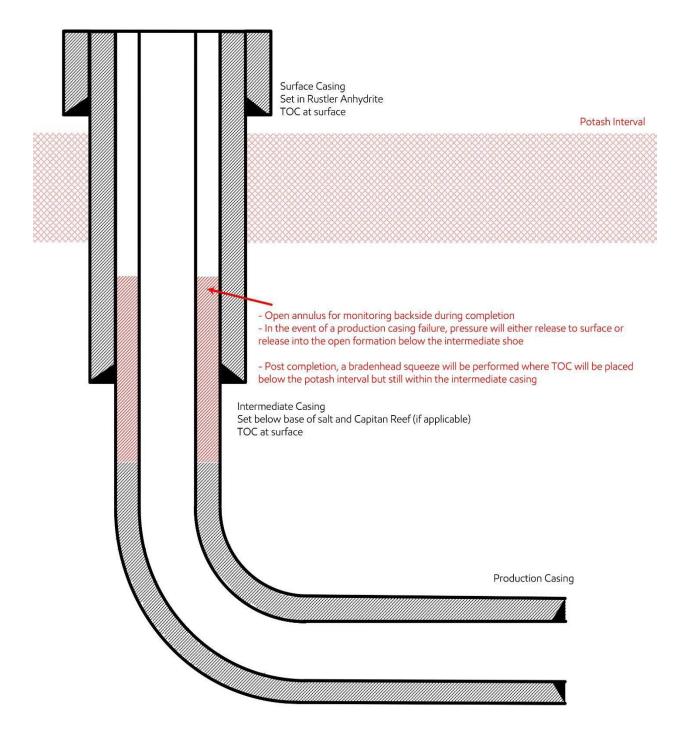
Csg. Size		# Sacks	Wt., lb/gal	Yield, ft ³ /sack	TOC/BOC	Volume, ft ³	% Excess	Slurry Description
13.375 in	LEAD	130	12.5	2.12	0' - 199'	280	100%	Class C: Salt, Gel, Extender, LCM
15.575 m	TAIL	200	14.8	1.34	199' - 390'	268	100%	Class C: Retarder
1st Stg 9.625 in	LEAD	300	12.5	2.12	1150' - 2771'	640	25%	Class C: Salt, Gel, Extender, LCM
1st Stg 9.025 m	TAIL	200	14.8	1.34	2771' - 3450'	268	2,370	Class C: Retarder
		-			95	/8'' DV Tool @ 1150'		
2nd Stg 9.625 in	LEAD	150	12.5	2.12	0' - 811'	320	25%	Class C: Salt, Gel, Extender, LCM
2110 Stg 9.025 III	TAIL	100	14.8	1.34	811' - 1150'	134	2,370	Class C: Retarder
7 in	LEAD	260	12.5	2.12	3950' - 7607'	560	0%	Class C: Salt, Gel, Extender, LCM, Defoamer
/ III	TAIL	400	15.6	1.18	7607' - 10689'	472	0%	Class H: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	530	13.5	1.85	10689' - 18824'	990	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti-

Mewbourne Oil Company Variance Request

Mewbourne Oil Company request a variance for the production string per R-111P guidelines to be implemented as follows:

Production String

- *a)* The Production string shall consist new oil field casing in good condition that meets API specifications, rated for the loads expected over the lifecycle of the well.
- b) For wells within the KPLA where a 2nd intermediate string will not be utilized resulting in a 3 String Design (Surface, Salt or Salt/Capitan Reef, Production), the following safeguard shall apply to safely divert flow of wellbore fluids away from the Salt Interval in the event of a catastrophic production casing failure. The Surface Equipment utilized during stimulation operations should be designed to relieve pressure from the production x intermediate casing annulus below the burst threshold of the casing string components.


i. A monitored open annulus will be incorporated during completion by leaving the 1st Intermediate Casing x Production Casing annulus un-cemented and monitored inside the 1st Intermediate String. Reference wellbore diagram.

i. The top of cement in the Production Casing x 1st Intermediate Casing Annulus shall stand uncemented at least 500' below the 1st Intermediate Casing Shoe. Zero percent excess shall be pumped on the Production Cementing Slurry to ensure no tie-back into the 1st Intermediate Casing Shoe.

ii. After Stimulation Operations have been concluded and no longer than 180 days after the well is brought online, the operator will be responsible for Bradenheading cement to ensure at least a 500' tie back has been established inside the 1st Intermediate (Salt String / Capitan String) but not higher than Marker Bed No. 126 (base of the Potash mining interval).

iii. The top of cement may be estimated through pumped displacement volumes or with the use of a fluid shot tool prior to filling backside with fluid.

3-String Design – Open Production Casing Annulus

		Casing Prog	ram Design A			BLM Minimum Safety Factors	1.125	1.0	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	390'	390'	13.375" 48# H40 STC	4.52	10.16	17.20	28.90
Int	12.25"	0'	0'	3450'	3450'	9.625" 36# J55 LTC	1.25	2.18	3.65	4.54
Production	8.75"	0'	0'	10650'	10646'	7" 26# P110 LTC	1.13	1.80	2.50	3.00
Liner	6.125"	10489'	10447'	18824'	11124'	4.5" 13.5# P110 LTC	1.60	1.87	3.00	3.75

Cement Program								
Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	TOC/BOC	Volume ft ³	% Excess	Slurry Description
13.375 in	LEAD	130	12.5	2.12	0' - 199'	280	100%	Class C: Salt, Gel, Extender, LCM
15.575 III	TAIL	200	14.8	1.34	199' - 390'	268	100%	Class C: Retarder
1st Stg 9.625 in	LEAD	300	12.5	2.12	1150' - 2771'	640	25%	Class C: Salt, Gel, Extender, LCM
18t 3tg 9.025 II	TAIL	200	14.8	1.34	2771' - 3450'	268	2370	Class C: Retarder
					9 5/8'' D	V Tool @ 1150'		
2nd Stg 9.625 in	LEAD	150	12.5	2.12	0' - 811'	320	25%	Class C: Salt, Gel, Extender, LCM
2110 Stg 9.025 III	TAIL	100	14.8	1.34	811' - 1150'	0	2370	Class C: Retarder
7 in	LEAD	260	12.5	2.12	3950' - 7607'	560	0%	Class C: Salt, Gel, Extender, LCM, Defoamer
/ III	TAIL	400	15.6	1.18	7607' - 10689'	472	0%	Class H: Retarder, Fluid Loss, Defoamer
					7" TOC @ 395	0', BHS TOC @ 2950'		
Braden Head Sqz	LEAD	140	14.8	1.34	2950' - 3950'	190	25%	Class C
4.5 in	LEAD	530	13.5	1.85	10489' - 18824'	990	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti- settling Agent

	Casing Program Design B						1.125	1.0	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	390'	390'	13.375" 48# H40 STC	4.52	10.16	17.20	28.90
Int 2	12.25"	0'	0'	3450'	3450'	9.625" 36# J55 LTC	1.25	2.18	3.65	4.54
Production	8.75"	0'	0'	11535'	11124'	7" 26# HCP110 LTC	1.35	1.72	2.31	2.77
Liner	6.125"	10689'	10646'	18824'	11124'	4.5" 13.5# P110 LTC	1.60	1.87	3.08	3.84

Design B - Cement Program

Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	TOC/BOC	Volume ft ³	% Excess	Slurry Description
13.375 in	LEAD	130	12.5	2.12	0' - 199'	280	100%	Class C: Salt, Gel, Extender, LCM
15.575 III	TAIL	200	14.8	1.34	199' - 390'	268	100%	Class C: Retarder
1st Stg 9.625 in	LEAD	50	12.5	2.12	2500' - 2776'	110	25%	Class C: Salt, Gel, Extender, LCM
1st 8tg 9.025 m	TAIL	200	14.8	1.34	2776' - 3450'	268	23%	Class C: Retarder
					9 5/8'' D	V Tool @ 2500'		
2nd Stg 9.625 in	LEAD	400	12.5	2.12	0' - 2160'	850	25%	Class C: Salt, Gel, Extender, LCM
2nd Stg 9.625 m	TAIL	100	14.8	1.34	2160' - 2500'	0	23%	Class C: Retarder
7 in	LEAD	330	12.5	2.12	3800' - 8420'	700	0%	Class C: Salt, Gel, Extender, LCM, Defoamer
/ 111	TAIL	400	15.6	1.18	8420' - 11535'	472	0%	Class H: Retarder, Fluid Loss, Defoamer
					7'' TOC @ 380	0', BHS TOC @ 2950'		
Braden Head Sqz	LEAD	120	14.8	1.34	2950' - 3800'	170	25%	Class C
4.5 in	LEAD	520	13.5	1.85	10689' - 18824'	970	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti

Operator Name:	Property Name:	Well Number
Mewbourne Oil Company	Forty Niner Ridge Unit	127H

Kick Off Point (KOP)

	onne (mor	/							
UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
G	16	23	30	-	2406'	FNL	1620'	FEL	Eddy
		Latitude				Long	itude		NAD
32.305724	7				-103.88288	331			83

First Take Point (FTP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
J	16	23	30	-	2319'	FSL	1620'	FEL	Eddy
		Latitude				Long	itude		NAD
32.3041499)				-103.88288	372			83

Last Take Point (LTP)

East rane r	ount (BII	1							
UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
0	21	23	30	-	330'	FSL	1620'	FEL	Eddy
		Latitude				Long	itude		NAD
32.2841125	i				-103.88284	198			83

Y

Well Number

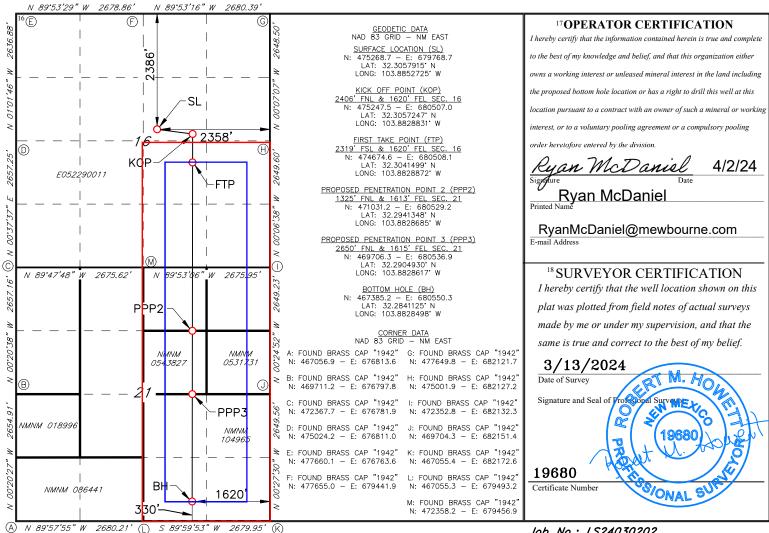
Is this well the defining well for the Horizontal Spacing Unit? Is this well an infill well? N

If infill is yes please provide API if available, Operator Name and well number for Defining well for Horizontal Spacing Unit.

API #	
Operator Name:	Property Name:

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505


Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

		V	VELL LO	OCATIO	N AND ACF	REAGE DEDIC	CATION PLA	Т				
	API Number		2 Pool Code 3 Pool Name 20 98220 Purple Sage Wolfcamp									
30-	<u>015-49</u>	420		98220		Pur	ple Sage V	Nolfca	mp			
⁴ Property Co	de		⁵ Property Name ⁶ Well Number FORTY NINER RIDGE UNIT 127H									
⁷ OGRID 1 1474			⁸ Operator Name MEWBOURNE OIL COMPANY ⁹ Elevation 3143									
			¹⁰ Surface Location									
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet From the	East/We	st line	County		
G	16	23S	30E		2386	NORTH	2358	EAS	ST	EDDY		
			¹¹ I	Bottom H	lole Location	If Different Fr	om Surface					
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/We	st line	County		
0	21	23S	30E		330	SOUTH	1620	EAS	ST	EDDY		
12 Dedicated Acres	s 13 Joint	or Infill 14	Consolidation	Code 15 (Order No.							
480												

No allowable will be assigned to this completion until all interest have been consolidated or a non-standard unit has been approved by the division.

2680.39

Released to Imaging: 4/5/2024 10:53:37 AM

Job No.: LS24030202

Mewbourne Oil Company

Eddy County, New Mexico NAD 83 Forty Niner Ridge #127H Sec 16, T23S, R30E SHL: 2386' FNL & 2358' FEL (Sec 16) BHL: 330' FSL & 1620' FEL (Sec 21)

Plan: Design #1

Standard Planning Report

02 April, 2024

Database: Company: Project: Site: Nell: Nellbore: Design:	Eddy (Forty I Sec 16 BHL: 3 Desigr	ourne Oil Comp County, New M Niner Ridge #12 5, T23S, R30E 330' FSL & 162 n #1	exico NAD 83 27H 0' FEL (Sec 21)	TVD Refer MD Refere North Refe	Local Co-ordinate Reference:Site Forty Niner Ridge #127HTVD Reference:WELL @ 3171.0usft (Original Well EleMD Reference:WELL @ 3171.0usft (Original Well EleNorth Reference:GridSurvey Calculation Method:Minimum Curvature				
Project	Eddy C	ounty, New Me	xico NAD 83							
Map System: Geo Datum: Map Zone:	North Am	e Plane 1983 nerican Datum kico Eastern Zo			System Dat	um:	Gr	ound Level		
Site	Forty N	iner Ridge #12	7H							
Site Position: From: Position Uncertain	Map t y:	ο.Ο ι	Northi Eastin usft Slot R	g:	679,7		Latitude: Longitude:			32.3057916 -103.8852724
Well	Sec 16,	T23S, R30E								
Well Position Position Uncertain Grid Convergence:	-	0.	.0 usft Ea	rthing: sting: ellhead Elevat	ion:	475,268.70 679,768.70 3,171.0	usft Lon	tude: gitude: und Level:		32.3057916 -103.8852724 3,143.0 usf
Wellbore	BHL: 3	30' FSL & 1620)' FEL (Sec 21)						
Magnetics	Мо	del Name	Sample	e Date	Declina (°)	tion	Dip A (°	-		Strength nT)
Design Audit Notes: Version: Vertical Section:	Design		Phase epth From (TV (usft) 0.0		PROTOTYPE +N/-S (usft) 0.0	+E/	On Depth: /-W sft)	Dire	0.0 ection (°) 74.34	
Plan Survey Tool F Depth From (usft) 1 0.0	Depti (us	n To ft) Survey	4/2/2024 (Wellbore) #1 (BHL: 330'	FSL & 1620	Tool Name		Remarks			
Plan Sections Measured Depth Inc (usft)	lination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0 4,000.0 4,333.7 10,355.6 10,689.3	0.00 0.00 6.67 6.67 0.00	0.00 0.00 91.64 91.64 0.00	0.0 4,000.0 4,332.9 10,314.1 10,647.0	0.0 0.0 -0.6 -20.6 -21.2	0.0 0.0 19.4 718.9 738.3	0.00 0.00 2.00 0.00 2.00	0.00 0.00 2.00 0.00 -2.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 91.64 0.00	KOP: 2406' FNL & 16

4/2/2024 11:32:54AM

Database:	Hobbs	Local Co-ordinate Reference:	Site Forty Niner Ridge #127H
Company:	Mewbourne Oil Company	TVD Reference:	WELL @ 3171.0usft (Original Well Elev)
Project:	Eddy County, New Mexico NAD 83	MD Reference:	WELL @ 3171.0usft (Original Well Elev)
Site:	Forty Niner Ridge #127H	North Reference:	Grid
Well:	Sec 16, T23S, R30E	Survey Calculation Method:	Minimum Curvature
Wellbore:	BHL: 330' FSL & 1620' FEL (Sec 21)		
Design:	Design #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
• •				. ,		• •		. ,	. ,
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
SHL: 2386' F 100.0	NL & 2358' FEL 0.00	(Sec 16) 0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1 500 0	0.00	0.00	1 500 0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0			1,500.0						
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,200.0	0.00	0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00
2,300.0	0.00	0.00	2,300.0	0.0	0.0	0.0	0.00	0.00	0.00
2,400.0	0.00	0.00	2,400.0	0.0	0.0	0.0	0.00	0.00	0.00
2,500.0	0.00	0.00	2,500.0	0.0	0.0	0.0	0.00	0.00	0.00
2,600.0	0.00	0.00	2,600.0	0.0	0.0	0.0	0.00	0.00	0.00
2,700.0	0.00	0.00	2,700.0	0.0	0.0	0.0	0.00	0.00	0.00
2,800.0	0.00	0.00	2,800.0	0.0	0.0	0.0	0.00	0.00	0.00
2,900.0	0.00	0.00	2,900.0	0.0	0.0	0.0	0.00	0.00	0.00
3,000.0	0.00	0.00	3,000.0	0.0	0.0	0.0	0.00	0.00	0.00
3,100.0	0.00	0.00	3,100.0	0.0	0.0	0.0	0.00	0.00	0.00
3,200.0	0.00	0.00	3,200.0	0.0	0.0	0.0	0.00	0.00	0.00
	0.00		3,300.0				0.00		
3,300.0		0.00		0.0	0.0	0.0		0.00	0.00
3,400.0	0.00	0.00	3,400.0	0.0	0.0	0.0	0.00	0.00	0.00
3,500.0	0.00	0.00	3,500.0	0.0	0.0	0.0	0.00	0.00	0.00
3,600.0	0.00	0.00	3,600.0	0.0	0.0	0.0	0.00	0.00	0.00
3,700.0	0.00	0.00	3,700.0	0.0	0.0	0.0	0.00	0.00	0.00
3,800.0	0.00	0.00	3,800.0	0.0	0.0	0.0	0.00	0.00	0.00
3,900.0	0.00	0.00	3,900.0	0.0	0.0	0.0	0.00	0.00	0.00
4,000.0	0.00	0.00	4,000.0	0.0	0.0	0.0	0.00	0.00	0.00
4,100.0	2.00	91.64	4,100.0	-0.1	1.7	0.2	2.00	2.00	0.00
4,200.0	4.00	91.64	4,199.8	-0.2	7.0	0.9	2.00	2.00	0.00
4,300.0	6.00	91.64	4,299.5	-0.5	15.7	2.0	2.00	2.00	0.00
4,333.7	6.67	91.64	4,332.9	-0.6	19.4	2.5	2.00	2.00	0.00
4,400.0	6.67	91.64	4,398.8	-0.8	27.1	3.4	0.00	0.00	0.00
4,400.0	6.67	91.64	4,398.8	-0.8 -1.1	38.7	3.4 4.9	0.00	0.00	0.00
4,500.0	6.67	91.64 91.64	4,496.1 4,597.4	-1.1	50.7 50.3	4.9 6.4	0.00	0.00	0.00
	6.67								
4,700.0		91.64	4,696.8	-1.8	62.0 72.6	7.9	0.00	0.00	0.00
4,800.0	6.67	91.64	4,796.1	-2.1	73.6	9.4	0.00	0.00	0.00
4,900.0	6.67	91.64	4,895.4	-2.4	85.2	10.8	0.00	0.00	0.00
5,000.0	6.67	91.64	4,994.7	-2.8	96.8	12.3	0.00	0.00	0.00
5,100.0	6.67	91.64	5,094.1	-3.1	108.4	13.8	0.00	0.00	0.00

4/2/2024 11:32:54AM

COMPASS 5000.16 Build 97

Database:	Hobbs	Local Co-ordinate Reference:	Site Forty Niner Ridge #127H
Company:	Mewbourne Oil Company	TVD Reference:	WELL @ 3171.0usft (Original Well Elev)
Project:	Eddy County, New Mexico NAD 83	MD Reference:	WELL @ 3171.0usft (Original Well Elev)
Site:	Forty Niner Ridge #127H	North Reference:	Grid
Well:	Sec 16, T23S, R30E	Survey Calculation Method:	Minimum Curvature
Wellbore:	BHL: 330' FSL & 1620' FEL (Sec 21)		
Design:	Design #1		
•	° ·		

Planned Survey

Meas Dep (us	oth	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5	,200.0	6.67	91.64	5,193.4	-3.4	120.0	15.3	0.00	0.00	0.00
	,300.0	6.67	91.64	5,292.7	-3.8	131.6	16.8	0.00	0.00	0.00
5	,400.0	6.67	91.64	5,392.0	-4.1	143.3	18.2	0.00	0.00	0.00
	,500.0	6.67	91.64	5,491.3	-4.4	143.3	19.7	0.00	0.00	0.00
	,600.0	6.67	91.64	5,590.7	-4.4	166.5	21.2	0.00	0.00	0.00
	,700.0	6.67	91.64	5,690.0	-4.0 -5.1	178.1	21.2	0.00	0.00	0.00
	,800.0	6.67	91.64	5,789.3	-5.4	189.7	22.7	0.00	0.00	0.00
	,900.0	6.67	91.64	5,888.6	-5.8	201.3	25.6	0.00	0.00	0.00
	,000.0	6.67	91.64	5,988.0	-6.1	213.0	27.1	0.00	0.00	0.00
	,100.0	6.67	91.64	6,087.3	-6.4	224.6	28.6	0.00	0.00	0.00
	,200.0	6.67	91.64	6,186.6	-6.8	236.2	30.1	0.00	0.00	0.00
6	,300.0	6.67	91.64	6,285.9	-7.1	247.8	31.5	0.00	0.00	0.00
	,400.0	6.67	91.64	6,385.2	-7.4	259.4	33.0	0.00	0.00	0.00
	,500.0	6.67	91.64	6,484.6	-7.8	271.0	34.5	0.00	0.00	0.00
	,600.0	6.67	91.64	6,583.9	-8.1	282.7	36.0	0.00	0.00	0.00
	,700.0	6.67	91.64	6,683.2	-8.4	294.3	37.4	0.00	0.00	0.00
6	,800.0	6.67	91.64	6,782.5	-8.8	305.9	38.9	0.00	0.00	0.00
6	,900.0	6.67	91.64	6,881.9	-9.1	317.5	40.4	0.00	0.00	0.00
	,000.0	6.67	91.64	6,981.2	-9.5	329.1	41.9	0.00	0.00	0.00
7	,100.0	6.67	91.64	7,080.5	-9.8	340.7	43.4	0.00	0.00	0.00
7	,200.0	6.67	91.64	7,179.8	-10.1	352.3	44.8	0.00	0.00	0.00
7	,300.0	6.67	91.64	7,279.1	-10.5	364.0	46.3	0.00	0.00	0.00
7	,400.0	6.67	91.64	7,378.5	-10.8	375.6	47.8	0.00	0.00	0.00
7	,500.0	6.67	91.64	7,477.8	-11.1	387.2	49.3	0.00	0.00	0.00
7	,600.0	6.67	91.64	7,577.1	-11.5	398.8	50.7	0.00	0.00	0.00
7	,700.0	6.67	91.64	7,676.4	-11.8	410.4	52.2	0.00	0.00	0.00
7	,800.0	6.67	91.64	7,775.8	-12.1	422.0	53.7	0.00	0.00	0.00
7	,900.0	6.67	91.64	7,875.1	-12.5	433.7	55.2	0.00	0.00	0.00
8	,000.0	6.67	91.64	7,974.4	-12.8	445.3	56.7	0.00	0.00	0.00
8	,100.0	6.67	91.64	8,073.7	-13.1	456.9	58.1	0.00	0.00	0.00
8	,200.0	6.67	91.64	8,173.1	-13.5	468.5	59.6	0.00	0.00	0.00
8	,300.0	6.67	91.64	8,272.4	-13.8	480.1	61.1	0.00	0.00	0.00
8	,400.0	6.67	91.64	8,371.7	-14.1	491.7	62.6	0.00	0.00	0.00
8	,500.0	6.67	91.64	8,471.0	-14.5	503.4	64.0	0.00	0.00	0.00
	,600.0	6.67	91.64	8,570.3	-14.8	515.0	65.5	0.00	0.00	0.00
8	,700.0	6.67	91.64	8,669.7	-15.1	526.6	67.0	0.00	0.00	0.00
	,800.0	6.67	91.64	8,769.0	-15.5	538.2	68.5	0.00	0.00	0.00
8	,900.0	6.67	91.64	8,868.3	-15.8	549.8	70.0	0.00	0.00	0.00
	,000.0	6.67	91.64	8,967.6	-16.1	561.4	71.4	0.00	0.00	0.00
	,100.0	6.67	91.64	9,067.0	-16.5	573.0	72.9	0.00	0.00	0.00
	,200.0	6.67	91.64	9,166.3	-16.8	584.7	74.4	0.00	0.00	0.00
	,300.0	6.67	91.64	9,265.6	-17.1	596.3	75.9	0.00	0.00	0.00
9	,400.0	6.67	91.64	9,364.9	-17.5	607.9	77.3	0.00	0.00	0.00
9	,500.0	6.67	91.64	9,464.2	-17.8	619.5	78.8	0.00	0.00	0.00
	,600.0	6.67	91.64	9,563.6	-18.1	631.1	80.3	0.00	0.00	0.00
	,700.0	6.67	91.64	9,662.9	-18.5	642.7	81.8	0.00	0.00	0.00
	,800.0	6.67	91.64	9,762.2	-18.8	654.4	83.3	0.00	0.00	0.00
9	,900.0	6.67	91.64	9,861.5	-19.1	666.0	84.7	0.00	0.00	0.00
10	,000.0	6.67	91.64	9,960.9	-19.5	677.6	86.2	0.00	0.00	0.00
	,100.0	6.67	91.64	10,060.2	-19.8	689.2	87.7	0.00	0.00	0.00
	,200.0	6.67	91.64	10,159.5	-20.1	700.8	89.2	0.00	0.00	0.00
	,300.0	6.67	91.64	10,258.8	-20.5	712.4	90.6	0.00	0.00	0.00
10	,355.6	6.67	91.64	10,314.1	-20.6	718.9	91.5	0.00	0.00	0.00
	,400.0	5.79	91.64	10,358.2	-20.8	723.7	92.1	2.00	-2.00	0.00

4/2/2024 11:32:54AM

Page 4

COMPASS 5000.16 Build 97

Database:	Hobbs	Local Co-ordinate Reference:	Site Forty Niner Ridge #127H
Company:	Mewbourne Oil Company	TVD Reference:	WELL @ 3171.0usft (Original Well Elev)
Project:	Eddy County, New Mexico NAD 83	MD Reference:	WELL @ 3171.0usft (Original Well Elev)
Site:	Forty Niner Ridge #127H	North Reference:	Grid
Well:	Sec 16, T23S, R30E	Survey Calculation Method:	Minimum Curvature
Wellbore:	BHL: 330' FSL & 1620' FEL (Sec 21)		
Design:	Design #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,500.0	3.79	91.64	10,457.8	-21.0	732.1	93.1	2.00	-2.00	0.00
10,600.0	1.79	91.64	10,557.7	-21.2	736.9	93.8	2.00	-2.00	0.00
10,689.3	0.00	0.00	10,647.0	-21.2	738.3	93.9	2.00	-2.00	0.00
	FNL & 1620' FEL		10,01110			00.0	2.00	2.00	0.00
10,700.0	1.28	179.68	10,657.7	-21.3	738.3	94.1	12.01	12.01	0.00
10,725.0		179.68	10,682.7		738.3	94.1	12.01	12.01	0.00
	4.29			-22.5					
10,750.0	7.29	179.68	10,707.5	-25.1	738.3	97.8	12.01	12.01	0.00
10,775.0	10.29	179.68	10,732.2	-28.9	738.3	101.6	12.01	12.01	0.00
10,800.0	13.30	179.68	10,756.7	-34.0	738.4	106.7	12.01	12.01	0.00
10,825.0	16.30	179.68	10,780.9	-40.4	738.4	113.0	12.01	12.01	0.00
10,850.0	19.30	179.68	10,804.7	-48.0	738.4	120.6	12.01	12.01	0.00
10,875.0	22.31	179.68	10,828.0	-56.9	738.5	129.5	12.01	12.01	0.00
10,900.0	25.31	179.68	10,850.9	-67.0	738.6	139.5	12.01	12.01	0.00
10,925.0	28.31	179.68	10,873.2	-78.3	738.6	150.7	12.01	12.01	0.00
10,950.0	31.31	179.68	10,894.9	-90.7	738.7	163.1	12.01	12.01	0.00
10,975.0	34.32	179.68	10,915.9	-104.2	738.8	176.6	12.01	12.01	0.00
11,000.0	37.32	179.68	10,936.2	-118.9	738.8	191.2	12.01	12.01	0.00
11,025.0	40.32	179.68	10,955.7	-134.5	738.9	206.8	12.01	12.01	0.00
11,050.0	43.33	179.68	10,974.3	-151.2	739.0	223.4	12.01	12.01	0.00
11,075.0	46.33	179.68	10,992.0	-168.8	739.1	240.9	12.01	12.01	0.00
11,100.0	49.33	179.68	11,008.8	-187.3	739.2	259.4	12.01	12.01	0.00
11,125.0	52.33	179.68	11,024.6	-206.7	739.3	278.7	12.01	12.01	0.00
11,120.0	55.34	179.68	11,039.3	-226.9	739.4	298.8	12.01	12.01	0.00
11,175.0	58.34	179.68	11,053.0	-247.8	739.5	319.6	12.01	12.01	0.00
11,200.0	61.34	179.68	11,065.6	-269.4	739.7	341.1	12.01	12.01	0.00
11,225.0	64.35	179.68	11,077.0	-291.7	739.8	363.3	12.01	12.01	0.00
11,250.0	67.35	179.68	11,087.2	-314.5	739.9	386.0	12.01	12.01	0.00
11,275.0	70.35	179.68	11,096.2	-337.8	740.0	409.2	12.01	12.01	0.00
11,300.0	73.35	179.68	11,104.0	-361.6	740.2	432.8	12.01	12.01	0.00
11,325.0	76.36	179.68	11,110.5	-385.7	740.3	456.8	12.01	12.01	0.00
11,350.0	79.36	179.68	11,115.8	-410.1	740.4	481.2	12.01	12.01	0.00
11,375.0	82.36	179.68	11,119.8	-434.8	740.6	505.8	12.01	12.01	0.00
11,400.0	85.37	179.68	11,122.4	-459.7	740.7	530.5	12.01	12.01	0.00
11,425.0	88.37	179.68	11,123.8	-484.6	740.9	555.3	12.01	12.01	0.00
11,438.6	90.00	179.68	11,124.0	-498.2	740.9	568.9	12.01	12.01	0.00
11,500.0	90.00	179.68	11,124.0	-559.6	741.3	630.0	0.00	0.00	0.00
11,534.5	90.00	179.68	11,124.0	-594.1	741.5	664.4	0.00	0.00	0.00
	9' FSL & 1620' F		,				0.00	0.00	0.00
11,600.0	90.00	179.68	11,124.0	-659.6	741.8	729.6	0.00	0.00	0.00
11,700.0	90.00	179.68	11,124.0	-759.6	742.4	829.1	0.00	0.00	0.00
11,800.0	90.00	179.68	11,124.0	-859.6	742.9	928.7	0.00	0.00	0.00
11,900.0	90.00	179.68	11,124.0	-959.6	743.5	1,028.3	0.00	0.00	0.00
12,000.0	90.00	179.68	11,124.0	-1,059.6	744.0	1,127.8	0.00	0.00	0.00
12,100.0	90.00	179.68	11,124.0	-1,159.6	744.6	1,227.4	0.00	0.00	0.00
12,200.0	90.00	179.68	11,124.0	-1,259.6	745.1	1,327.0	0.00	0.00	0.00
12,300.0	90.00	179.68	11,124.0	-1,359.6	745.7	1,426.5	0.00	0.00	0.00
12,400.0	90.00	179.68	11,124.0	-1,459.6	746.2	1,526.1	0.00	0.00	0.00
12,500.0	90.00	179.68	11,124.0	-1,559.6	746.8	1,625.7	0.00	0.00	0.00
12,600.0	90.00	179.68	11,124.0	-1,659.6	747.3	1,725.2	0.00	0.00	0.00
12,700.0	90.00	179.68	11,124.0	-1,759.6	747.9	1,824.8	0.00	0.00	0.00
12,800.0	90.00	179.68	11,124.0	-1,859.6	748.4	1,924.4	0.00	0.00	0.00
12,900.0	90.00	179.68	11,124.0	-1,959.6	749.0	2,023.9	0.00	0.00	0.00
13,000.0	90.00	179.68	11,124.0	-2,059.6	749.5	2,123.5	0.00	0.00	0.00
13,100.0	90.00	179.68	11,124.0	-2,159.6	750.1	2,223.1	0.00	0.00	0.00

4/2/2024 11:32:54AM

COMPASS 5000.16 Build 97

Database:	Hobbs	Local Co-ordinate Reference:	Site Forty Niner Ridge #127H
Company:	Mewbourne Oil Company	TVD Reference:	WELL @ 3171.0usft (Original Well Elev)
Project:	Eddy County, New Mexico NAD 83	MD Reference:	WELL @ 3171.0usft (Original Well Elev)
Site:	Forty Niner Ridge #127H	North Reference:	Grid
Well:	Sec 16, T23S, R30E	Survey Calculation Method:	Minimum Curvature
Wellbore:	BHL: 330' FSL & 1620' FEL (Sec 21)		
Design:	Design #1		

Planned Survey

	Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
	13,200.0	90.00	179.68	11,124.0	-2,259.6	750.6	2,322.6	0.00	0.00	0.00
	13,300.0	90.00	179.68	11,124.0	-2,359.6	751.2	2,422.2	0.00	0.00	0.00
	13,400.0	90.00	179.68	11,124.0	-2,459.6	751.7	2,521.8	0.00	0.00	0.00
	13,500.0	90.00	179.68	11,124.0	-2,559.6	752.3	2,621.3	0.00	0.00	0.00
	13,600.0	90.00	179.68	11,124.0	-2,659.6	752.8	2,720.9	0.00	0.00	0.00
	13,700.0	90.00	179.68	11,124.0	-2,759.6	753.4	2,820.4	0.00	0.00	0.00
	13,800.0	90.00	179.68	11,124.0	-2,859.6	753.9	2,920.0	0.00	0.00	0.00
	13,900.0	90.00	179.68	11,124.0	-2,959.6	754.5	3,019.6	0.00	0.00	0.00
	14,000.0	90.00	179.68	11,124.0	-3,059.6	755.0	3,119.1	0.00	0.00	0.00
	14,100.0	90.00	179.68	11,124.0	-3,159.6	755.6	3,218.7	0.00	0.00	0.00
	14,200.0	90.00	179.68	11,124.0	-3,259.6	756.1	3,318.3	0.00	0.00	0.00
	14,300.0	90.00	179.68	11,124.0	-3,359.6	756.7	3,417.8	0.00	0.00	0.00
	14,400.0	90.00	179.68	11,124.0	-3,459.6	757.2	3,517.4	0.00	0.00	0.00
	14,500.0	90.00	179.68	11,124.0	-3,559.6	757.8	3,617.0	0.00	0.00	0.00
	14,600.0	90.00	179.68	11,124.0	-3,659.6	758.3	3,716.5	0.00	0.00	0.00
	14,700.0	90.00	179.68	11,124.0	-3,759.6	758.9	3,816.1	0.00	0.00	0.00
	14,800.0	90.00	179.68	11,124.0	-3,859.6	759.4	3,915.7	0.00	0.00	0.00
	14,900.0	90.00	179.68	11,124.0	-3,959.6	760.0	4,015.2	0.00	0.00	0.00
	15,000.0	90.00	179.68	11,124.0	-4,059.6	760.5	4,114.8	0.00	0.00	0.00
	15,100.0	90.00	179.68	11,124.0	-4,159.6	761.1	4,214.4	0.00	0.00	0.00
	15,177.9	90.00	179.68	11,124.0	-4,237.5	761.5	4,292.0	0.00	0.00	0.00
		FNL & 1613' FEI								
	15,200.0	90.00	179.68	11,124.0	-4,259.6	761.6	4,313.9	0.00	0.00	0.00
	15,300.0	90.00	179.68	11,124.0	-4,359.6	762.2	4,413.5	0.00	0.00	0.00
	15,400.0	90.00	179.68	11,124.0	-4,459.6	762.7	4,513.1	0.00	0.00	0.00
	15,500.0	90.00	179.68	11,124.0	-4,559.6	763.3	4,612.6	0.00	0.00	0.00
	15,600.0	90.00	179.68	11,124.0	-4,659.6	763.8	4,712.2	0.00	0.00	0.00
	15,700.0	90.00	179.68	11,124.0	-4,759.6	764.4	4,811.7	0.00	0.00	0.00
	15,800.0	90.00	179.68	11,124.0	-4,859.6	764.9	4,911.3	0.00	0.00	0.00
	15,900.0	90.00	179.68	11,124.0	-4,959.5	765.5	5,010.9	0.00	0.00	0.00
	16,000.0	90.00	179.68	11,124.0	-5,059.5	766.0	5,110.4	0.00	0.00	0.00
	16,100.0	90.00	179.68	11,124.0	-5,159.5	766.6	5,210.0	0.00	0.00	0.00
	16,200.0	90.00	179.68	11,124.0	-5,259.5	767.1	5,309.6	0.00	0.00	0.00
	16,300.0	90.00	179.68	11,124.0	-5,359.5	767.7	5,409.1	0.00	0.00	0.00
	16,400.0	90.00	179.68	11,124.0	-5,459.5	768.3	5,508.7	0.00	0.00	0.00
	16,500.0	90.00	179.68	11,124.0	-5,559.5	768.8	5,608.3	0.00	0.00	0.00
	16,502.9	90.00 FNL & 1615' FEI	179.68	11,124.0	-5,562.4	768.8	5,611.1	0.00	0.00	0.00
		90.00	· · /	11,124.0	5 650 F	760 4	5 707 0	0.00	0.00	0.00
	16,600.0 16,700.0	90.00	179.68 179.68	,	-5,659.5	769.4 769.9	5,707.8 5,807.4	0.00	0.00	0.00
1	,			11,124.0 11,124.0	-5,759.5		,			
	16,800.0 16,900.0	90.00	179.68	11,124.0	-5,859.5	770.5	5,907.0	0.00	0.00	0.00
	16,900.0	90.00	179.68	11,124.0	-5,959.5	771.0	6,006.5	0.00	0.00	0.00
		90.00	179.68	11,124.0	-6,059.5	771.6	6,106.1	0.00	0.00	0.00
1	17,100.0	90.00	179.68	11,124.0	-6,159.5	772.1	6,205.7	0.00	0.00	0.00
	17,200.0	90.00	179.68	11,124.0	-6,259.5	772.7	6,305.2	0.00	0.00	0.00
	17,300.0	90.00	179.68	11,124.0	-6,359.5	773.2	6,404.8	0.00	0.00	0.00
	17,400.0 17,500.0	90.00 90.00	179.68 179.68	11,124.0 11,124.0	-6,459.5 -6,559.5	773.8 774.3	6,504.4 6,603.9	0.00 0.00	0.00 0.00	0.00 0.00
	17,600.0	90.00	179.68	11,124.0	-6,659.5	774.9	6,703.5	0.00	0.00	0.00
	17,700.0	90.00	179.68	11,124.0	-6,759.5	775.4	6,803.0	0.00	0.00	0.00
	17,800.0	90.00	179.68	11,124.0	-6,859.5	776.0	6,902.6	0.00	0.00	0.00
	17,800.0	90.00	179.68	11,124.0	-6,959.5 -6,959.5	776.5	6,902.6 7,002.2	0.00	0.00	0.00
	18,000.0	90.00	179.68	11,124.0	-0,959.5 -7,059.5	776.5	7,002.2	0.00	0.00	0.00
	10,000.0	90.00	179.00	11,124.0	-7,009.0	111.1	7,101.7	0.00	0.00	0.00

4/2/2024 11:32:54AM

Received by OCD: 4/4/2024 11:01:47 AM

Planning Report

Database:	Hobbs	Local Co-ordinate Reference:	Site Forty Niner Ridge #127H
Company:	Mewbourne Oil Company	TVD Reference:	WELL @ 3171.0usft (Original Well Elev)
Project:	Eddy County, New Mexico NAD 83	MD Reference:	WELL @ 3171.0usft (Original Well Elev)
Site:	Forty Niner Ridge #127H	North Reference:	Grid
Well:	Sec 16, T23S, R30E	Survey Calculation Method:	Minimum Curvature
Wellbore:	BHL: 330' FSL & 1620' FEL (Sec 21)		
Design:	Design #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
18,100.0	90.00	179.68	11,124.0	-7,159.5	777.6	7,201.3	0.00	0.00	0.00
18,200.0	90.00	179.68	11,124.0	-7,259.5	778.2	7,300.9	0.00	0.00	0.00
18,300.0	90.00	179.68	11,124.0	-7,359.5	778.7	7,400.4	0.00	0.00	0.00
18,400.0	90.00	179.68	11,124.0	-7,459.5	779.3	7,500.0	0.00	0.00	0.00
18,500.0	90.00	179.68	11,124.0	-7,559.5	779.8	7,599.6	0.00	0.00	0.00
18,600.0	90.00	179.68	11,124.0	-7,659.5	780.4	7,699.1	0.00	0.00	0.00
18,700.0	90.00	179.68	11,124.0	-7,759.5	780.9	7,798.7	0.00	0.00	0.00
18,800.0	90.00	179.68	11,124.0	-7,859.5	781.5	7,898.3	0.00	0.00	0.00
18,824.0	90.00	179.68	11,124.0	-7,883.5	781.6	7,922.2	0.00	0.00	0.00
BHL: 330' FS	SL & 1620' FEL (Sec 21)							

Design Targets	
Target Name	

Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
SHL: 2386' FNL & 2358' - plan hits target cen - Point	0.00 Iter	0.00	0.0	0.0	0.0	475,268.70	679,768.70	32.3057916	-103.8852724
KOP: 2406' FNL & 1620' - plan hits target cen - Point	0.00 Iter	0.00	10,647.0	-21.2	738.3	475,247.50	680,507.00	32.3057248	-103.8828831
FTP/LP: 2319' FSL & 16 - plan hits target cen - Point	0.00 iter	0.00	11,124.0	-594.1	741.5	474,674.60	680,510.15	32.3041500	-103.8828807
BHL: 330' FSL & 1620' F - plan hits target cen - Point	0.00 Iter	0.00	11,124.0	-7,883.5	781.6	467,385.20	680,550.30	32.2841125	-103.8828498
PPP2: 1325' FNL & 161(- plan hits target cen - Point		0.00	11,124.0	-4,237.5	761.5	471,031.20	680,530.22	32.2941348	-103.8828653
PPP3: 2650' FNL & 161ť - plan hits target cen - Point		0.00	11,124.0	-5,562.4	768.8	469,706.30	680,537.51	32.2904928	-103.8828597

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

Released to Imaging: 4/5/2024 10:53:37 AM

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
MEWBOURNE OIL CO	14744
P.O. Box 5270	Action Number:
Hobbs, NM 88241	330086
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By	Condition	Condition Date
ward.rikala	All original COA's still apply. Additionally, if cement is not circulated to surface during cementing operations, then a CBL is required.	4/5/2024

Action 330086

CONDITIONS

Page 57 of 57