AFMSS

U.S. Department of the Interior

Bureau of Land Management

Application for Permit to Drill

APD ID: APD Received Date: Operator:

APD Package Report Contents

- Form 3160-3

- Operator Certification Report
- Application Report
- Application Attachments
 - -- Well Plat: 1 file(s)
- Drilling Plan Report
- Drilling Plan Attachments
 - -- Blowout Prevention Choke Diagram Attachment: 1 file(s)
 - -- Blowout Prevention BOP Diagram Attachment: 1 file(s)
 - -- Casing Design Assumptions and Worksheet(s): 6 file(s)
 - -- Hydrogen sulfide drilling operations plan: 1 file(s)
 - -- Proposed horizontal/directional/multi-lateral plan submission: 2 file(s)
 - -- Other Facets: 5 file(s)
 - -- Other Variances: 2 file(s)
- SUPO Report
- SUPO Attachments
 - -- Existing Road Map: 1 file(s)
 - -- New Road Map: 1 file(s)
 - -- New road access plan attachment: 1 file(s)
 - -- Additional Attachment: 2 file(s)
 - -- Attach Well map: 1 file(s)
 - -- Production Facilities map: 1 file(s)
 - -- Water source and transportation map: 1 file(s)
 - -- Construction Materials source location attachment: 1 file(s)
 - -- Well Site Layout Diagram: 1 file(s)
 - -- Recontouring attachment: 2 file(s)
 - -- Other SUPO Attachment: 3 file(s)

- PWD Report

Date Printed:

Well Status: Well Name:

Well Number:

- PWD Attachments

-- None

- Bond Report
- Bond Attachments

-- None

Form 3160-3 (June 2015) UNITED STATES		OMB No	APPROVED . 1004-0137 nuary 31, 2018		
DEPARTMENT OF THE INTE	5. Lease Serial No.				
BUREAU OF LAND MANAGE APPLICATION FOR PERMIT TO DRIL	6. If Indian, Allotee	or Tribe Name			
1a. Type of work: DRILL	ΓER	7. If Unit or CA Agre	eement, Name and No.		
1b. Type of Well: Oil Well Gas Well Other	8. Lease Name and V	Vall No			
1c. Type of Completion: Hydraulic Fracturing Single					
2. Name of Operator		9. API Well No. 30-	-015-54970		
3a. Address 3b.	Phone No. (include area code)	10. Field and Pool, o	r Exploratory		
4. Location of Well <i>(Report location clearly and in accordance with a</i>	any State requirements.*)	11. Sec., T. R. M. or	Blk. and Survey or Area		
At surface					
At proposed prod. zone					
14. Distance in miles and direction from nearest town or post office*		12. County or Parish	13. State		
15. Distance from proposed* 16. location to nearest property or lease line, ft. (Also to nearest drig, unit line, if any) 6.	No of acres in lease 17. Spacin	ng Unit dedicated to th	is well		
	Proposed Depth 20, BLM/	BIA Bond No. in file			
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22.	Approximate date work will start*	23. Estimated duration	on		
24	Attachments	1			
The following, completed in accordance with the requirements of Ons (as applicable)	hore Oil and Gas Order No. 1, and the H	Hydraulic Fracturing ru	lle per 43 CFR 3162.3-3		
 Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest System Lat SUPO must be filed with the appropriate Forest Service Office). 	 4. Bond to cover the operation Item 20 above). 5. Operator certification. 6. Such other site specific infor BLM. 	·	- · ·		
25. Signature	Name (Printed/Typed)		Date		
Title	1	I			
Approved by (Signature)	Name (Printed/Typed)		Date		
Title	Office	1			
Application approval does not warrant or certify that the applicant hole applicant to conduct operations thereon. Conditions of approval, if any, are attached.	ds legal or equitable title to those rights	in the subject lease wh	ich would entitle the		
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make i of the United States any false, fictitious or fraudulent statements or rep	it a crime for any person knowingly and presentations as to any matter within its	willfully to make to an jurisdiction.	ny department or agency		

(Continued on page 2)

.

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

Additional Operator Remarks

Location of Well

0. SHL: SESE / 1186 FSL / 353 FEL / TWSP: 18S / RANGE: 31E / SECTION: 22 / LAT: 32.72902 / LONG: -103.849885 (TVD: 0 feet, MD: 0 feet) PPP: SWSE / 661 FSL / 2642 FEL / TWSP: 18S / RANGE: 31E / SECTION: 21 / LAT: 32.727533 / LONG: -103.874487 (TVD: 7944 feet, MD: 15501 feet) PPP: SWSE / 661 FSL / 1321 FWL / TWSP: 18S / RANGE: 31E / SECTION: 21 / LAT: 32.727525 / LONG: -103.878781 (TVD: 7944 feet, MD: 16822 feet) PPP: SWSW / 662 FSL / 0 FWL / TWSP: 18S / RANGE: 31E / SECTION: 22 / LAT: 32.727548 / LONG: -103.865898 (TVD: 7944 feet, MD: 12860 feet) BHL: SWSW / 660 FSL / 100 FWL / TWSP: 18S / RANGE: 31E / SECTION: 21 / LAT: 32.727518 / LONG: -103.88275 (TVD: 7944 feet, MD: 18042 feet)

BLM Point of Contact

Name: JANET D ESTES Title: ADJUDICATOR Phone: (575) 234-6233 Email: JESTES@BLM.GOV

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	CENTENNIAL RESOURCE PRODUCTION LLC
WELL NAME & NO.:	PINKIE PIE 22-21 FED COM 114H
SURFACE HOLE FOOTAGE:	1186'/S & 353'/E
BOTTOM HOLE FOOTAGE	660'/S & 100'/W
LOCATION:	Section 22, T.18 S., R.31 E., NMP
COUNTY:	Eddy County, New Mexico

COA

H2S	• Yes	C No	
Potash	None	C Secretary	C R-111-P
Cave/Karst Potential	• Low	C Medium	C High
Cave/Karst Potential	Critical		
Variance	C None	Itex Hose	C Other
Wellhead	C Conventional	Multibowl	C Both
Wellhead Variance	C Diverter		
Other	□4 String	Capitan Reef	□WIPP
Other	□ Fluid Filled	Pilot Hole	Open Annulus
Cementing	Contingency	EchoMeter	Primary Cement
	Cement Squeeze		Squeeze
Special Requirements	🗆 Water Disposal	COM	🗖 Unit
Special Requirements	Batch Sundry		
Special Requirements	Break Testing	☑ Offline	Casing
Variance		Cementing	Clearance

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated AT SPUD. As a result, the Hydrogen Sulfide area must meet 43 CFR part 3170 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

Primary Casing Design:

 The 13-3/8 inch surface casing shall be set at approximately 740 feet per BLM Geologist (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. The surface hole shall be 17 1/2 inch in diameter.

- a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The **9-5/8** inch intermediate casing shall be set at approximately **4130 feet per BLM Geologist.** The minimum required fill of cement behind the **9-5/8** inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Casing test must be conducted in accordance with 43 CFR 3170. Surface pressure applied will vary based on fluid in the casing and burst conditions.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash. Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the **13-3/8** inch surface casing. Minimum working pressure of

Page 2 of 8

the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000** (**5M**) psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in Onshore Order 1 and 2.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

Offline Cementing

Contact the BLM prior to the commencement of any offline cementing procedure.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)

Page 3 of 8

c. BOPE tests (minimum of 4 hours)

Eddy County
 EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,
 BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822

- Lea CountyCall the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43 CFR part 3170 Subpart 3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e.

Page 4 of 8

changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL

- All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-

off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.
- C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JS 3/26/2024

Approval Date: 04/11/2024

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT Operator Certification Data Report

Operator

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: TINLEE VIA		Signed on: 05/22/2023
Title: Drilling Engineer		
Street Address: 300 N MARIENFE	LD STREET SUITE 1000	
City: MIDLAND	State: TX	Zip: 79701
Phone: (432)599-5624		
Email address: TINLEE.VIA@PER	MIANRES.COM	
Field		
Representative Name:		
Street Address:		
City: S	tate:	Zip:
Phone:		
Email address:		

AFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Submission Date: 05/22/2023

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: PINKIE PIE 22-21 FED COM

Well Type: OIL WELL

APD ID: 10400092398

Highlighted data reflects the most recent changes Show Final Text

Section 1 - General

APD ID:	10400092398	Tie to previous NOS?	Ν	Submission Date: 05/22/2023
BLM Office	: Carlsbad	User: TINLEE VIA	Titl	e: Drilling Engineer
Federal/Ind	ian APD: FED	Is the first lease penet	rated for product	ion Federal or Indian? FED
Lease num	ber: NMNM14103	Lease Acres:		
Surface acc	cess agreement in place?	Allotted?	Reservation:	
Agreement	in place? NO	Federal or Indian agree	ement:	
Agreement	number:			
Agreement	name:			
Keep applie	cation confidential? Y			
Permitting	Agent? NO	APD Operator: CENTE	NNIAL RESOURC	E PRODUCTION LLC
Operator le	tter of			

Operator Info

Operator Organization Name: CENTENNIAL RESOURCE PRODUCTION LLC Operator Address: 300 N MARIENFIELD STREET SUITE 1000 Zip: 79701 **Operator PO Box: Operator City: MIDLAND** State: TX

Operator Phone: (432)695-4222

Operator Internet Address: KANICIA.SCHLICHTING@PERMIANRES.COM

Section 2 - Well Information

Well in Master Development Plan? NO	Master Development Plan name:						
Well in Master SUPO? NO	Master SUPO name:						
Well in Master Drilling Plan? NO	Master Drilling Plan name:						
Well Name: PINKIE PIE 22-21 FED COM	Well Number: 114H	Well API Number:					
Field/Pool or Exploratory? Field and Pool	Field Name: AVALON	Pool Name: BONE SPRING EAST					

Well Number: 114H

Well Work Type: Drill

Application Data 04/22/2024

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: PINKIE PIE 22-21 FED COM

Well Number: 114H

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL

Is the proposed well in a Helium production area? N	Use Existing Well Pad? N	New surface disturbance?				
Type of Well Pad: MULTIPLE WELL	Multiple Well Pad Name: PINKIE PIE 22 ESE	Number: 1				
Well Class: HORIZONTAL	Number of Legs: 1					
Well Work Type: Drill						
Well Type: OIL WELL						
Describe Well Type:						
Well sub-Type: INFILL						
Describe sub-type:						
Distance to town: 2 Miles Distance to ne	arest well: 33 FT Distant	ce to lease line: 353 FT				
Reservoir well spacing assigned acres Measurement:	320 Acres					
Well plat: PINKIE_PIE_22_FEDERAL_COM_114H_	_FINAL04_10_23_v1_202308	25135714.pdf				
Well work start Date: 05/01/2024	Duration: 18 DAYS					
Section 3 - Well Location Table						
Survey Type: RECTANGULAR						
Describe Survey Type:						

Datum: NAD83

Survey number:

Vertical Datum: NAVD88

Reference Datum: GROUND LEVEL

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this
SHL Leg #1	118 6	FSL	353	FEL	18S	31E	22	Aliquot SESE	32.72902		EDD Y	MEXI		F	NMNM 14103	365 4	0	0	Y
KOP Leg #1	752	FSL	182	FEL	18S	31E	22	Aliquot SESE	32.72782 4	- 103.8493 36	EDD Y	MEXI		F	NMNM 14103	- 380 3	747 7	745 7	Y
PPP Leg #1-1	662	FSL	0	FW L	18S	31E	22	Aliquot SWS W	32.72754 8	- 103.8658 98	EDD Y	NEW MEXI CO		F	NMNM 14103	- 429 0	128 60	794 4	Y

Page 2 of 3

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: PINKIE PIE 22-21 FED COM

Well Number: 114H

						-										-	-		
Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this
PPP	661	FSL		FEL	18S	31E	21	Aliquot	32.72753		EDD	NEW	NEW	F	NMNM	-	155	794	Y
Leg			2					SWSE	3	103.8744 87	Y	MEXI CO	MEXI CO		12212	429	01	4	
#1-2										0/		0	0			0			
PPP	661	FSL	132	FW	18S	31E	21	Aliquot	32.72752		EDD	NEW	NEW	F	NMNM	-	168	794	Y
Leg			1	L				SWSE	5	103.8787 81	Y	MEXI CO	MEXI CO		025778 A	429	22	4	
#1-3										01		00	00		^	0			
EXIT	660	FSL	100	FW	18S	31E	21	Aliquot	32.72751	-	EDD	NEW	NEW	F	NMNM	-	180	794	Y
Leg				L				SWS	8	103.8827	Y	MEXI CO	MEXI CO		175770	429	42	4	
#1								W		5		0	00			U			
BHL	660	FSL	100	FW	18S	31E	21	Aliquot	32.72751	-	EDD	NEW	NEW	F	NMNM	-	180	794	Y
Leg				L				sws	8	103.8827	Y	MEXI	MEXI		175770	429	42	4	
#1								W		5		co	со			U			

PERMIAN RESOURCES OPERATING, LLC PINKIE PIE 22 FEDERAL COM ESE 1 SECTION 22, T18E, R31E, N.M.P.M. EDDY COUNTY, NEW MEXICO

DATE:	DESCRIPTION:
4/10/2023	FINAL PLAT PACKAGE

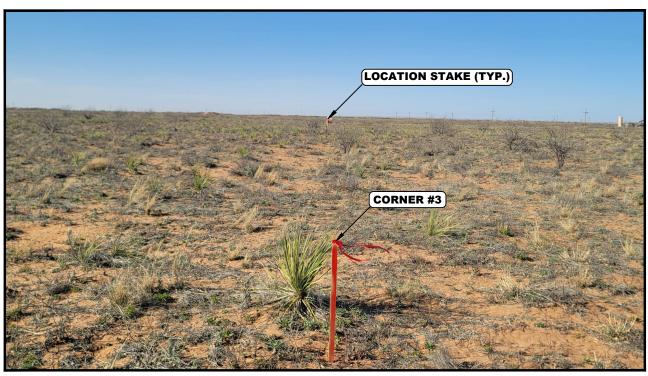


PHOTO: VIEW FROM CORNER #3 TO LOCATION STAKES

CAMERA ANGLE: EASTERLY

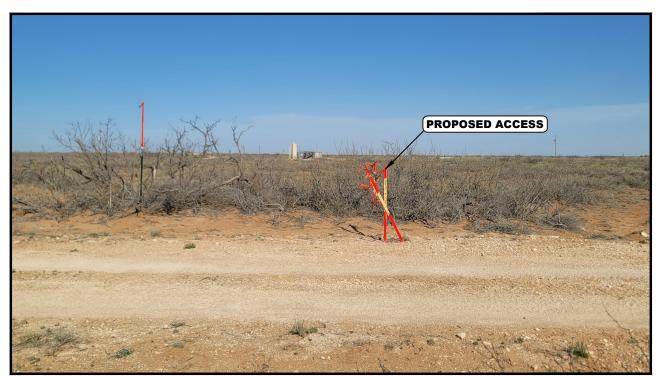
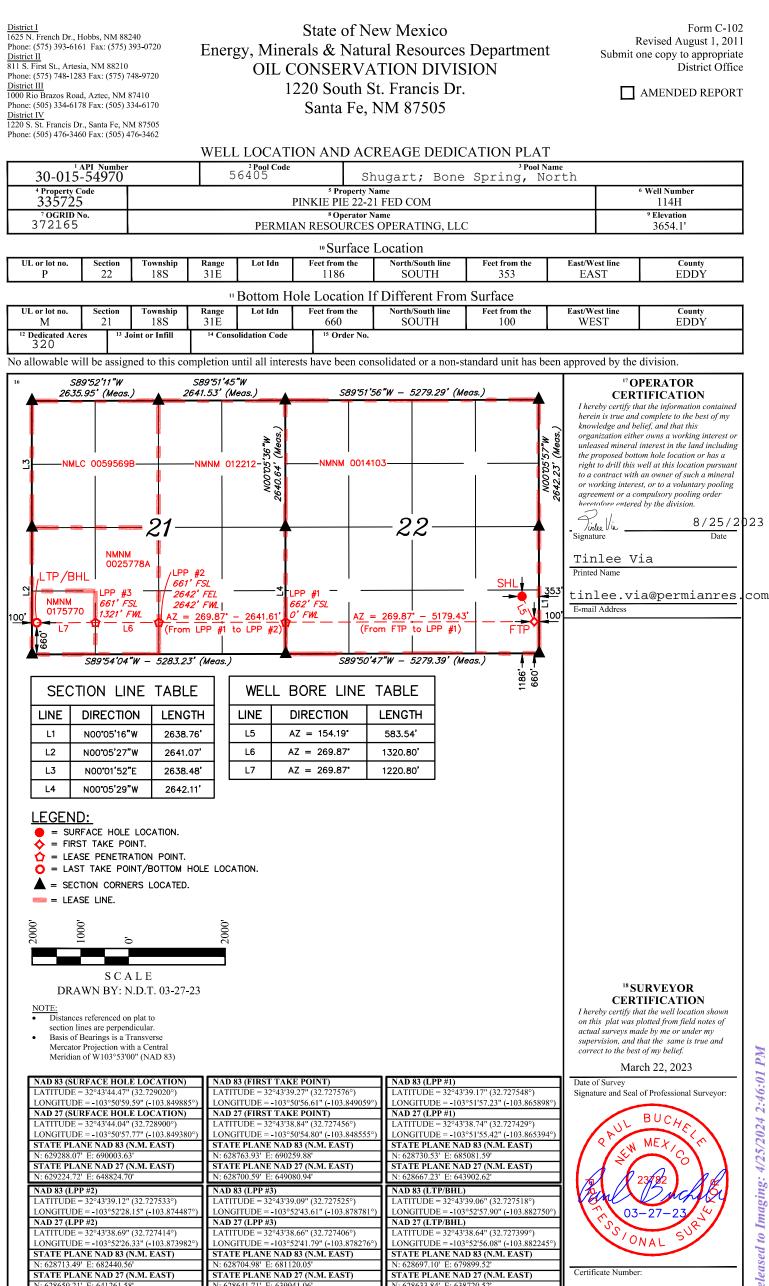


PHOTO: VIEW FROM BEGINNING OF PROPOSED ACCESS

CAMERA ANGLE: EASTERLY

PERMIAN RESOURCES OPERATING, LLC

PINKIE PIE 22 FEDERAL COM ESE 1 E 1/2 SE 1/4, SECTION 22, T18S, R31E, N.M.P.M. EDDY COUNTY, NEW MEXICO

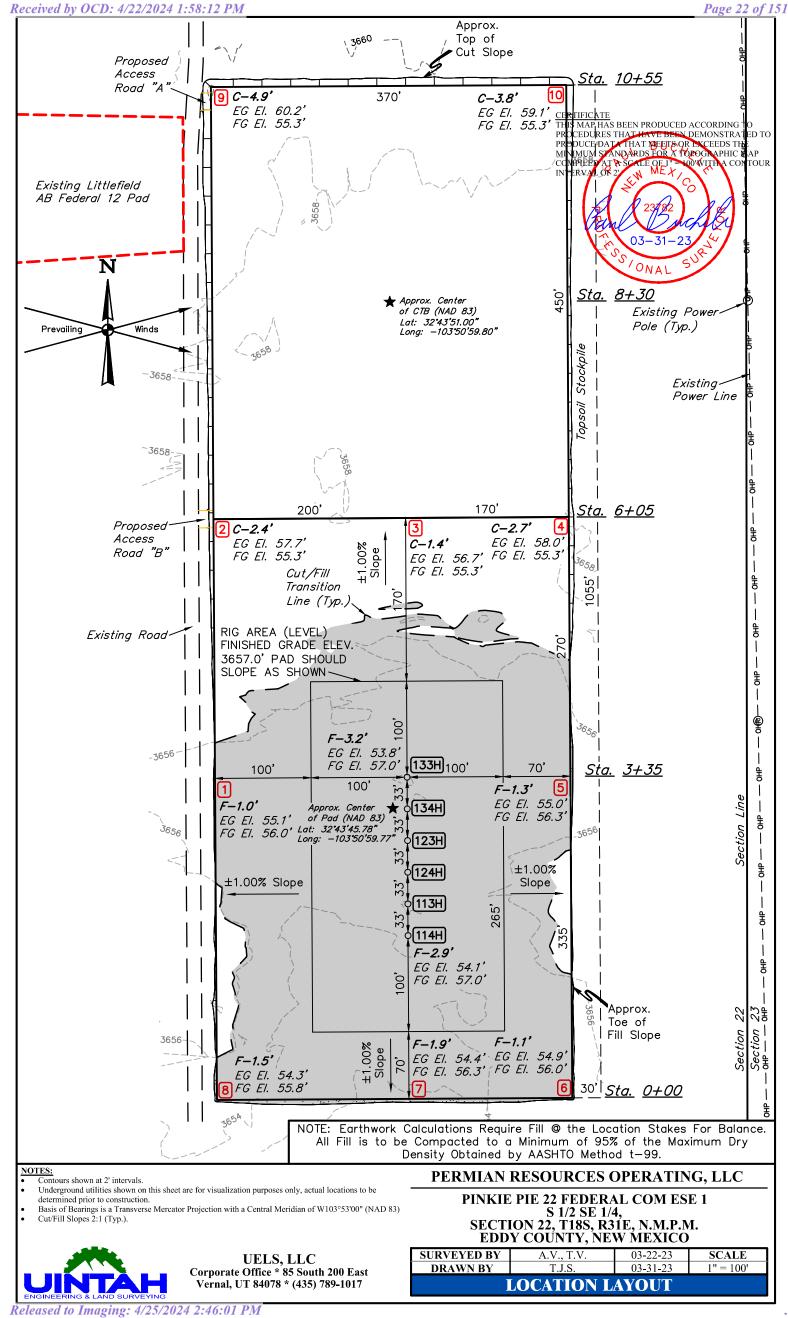


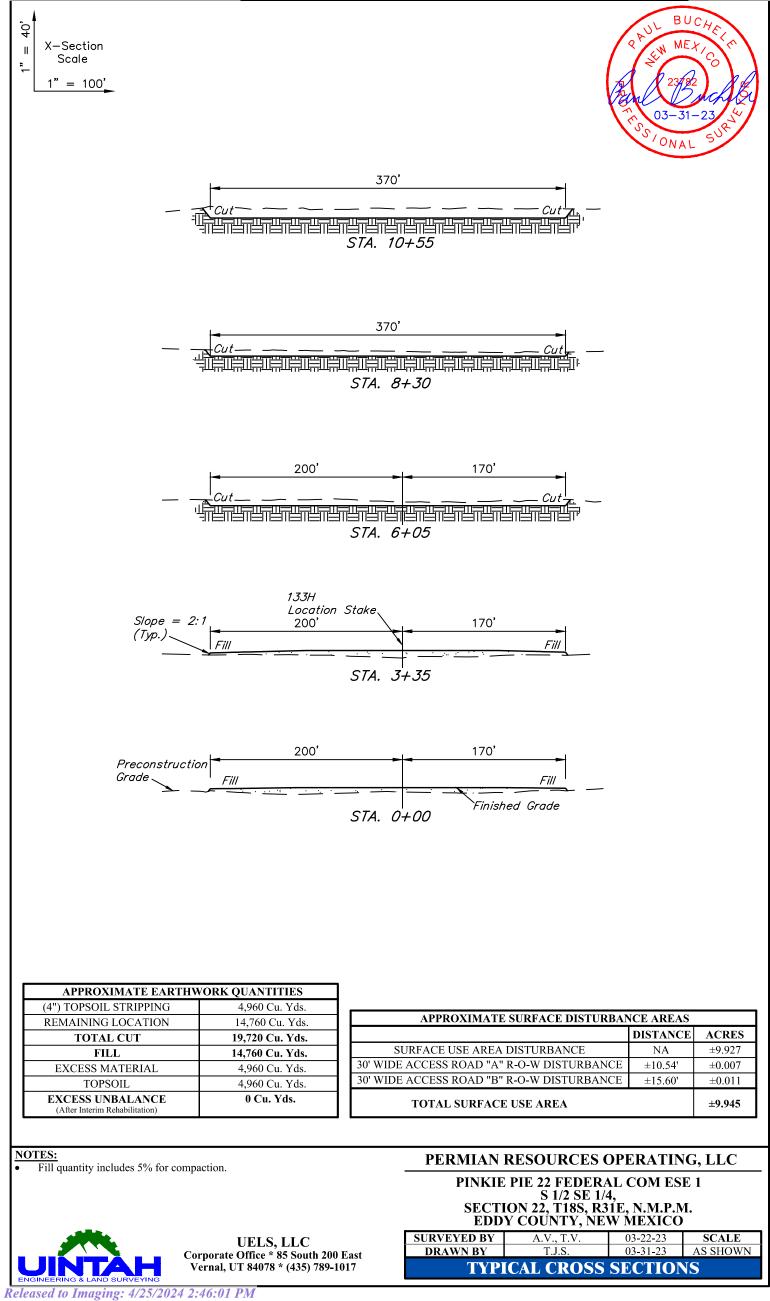
UELS, LLC Corporate Office * 85 South 200 East Vernal, UT 84078 * (435) 789-1017
 TAKEN BY
 A.V., T.V.
 03-22-23

 DRAWN BY
 D.M.C.
 03-29-23

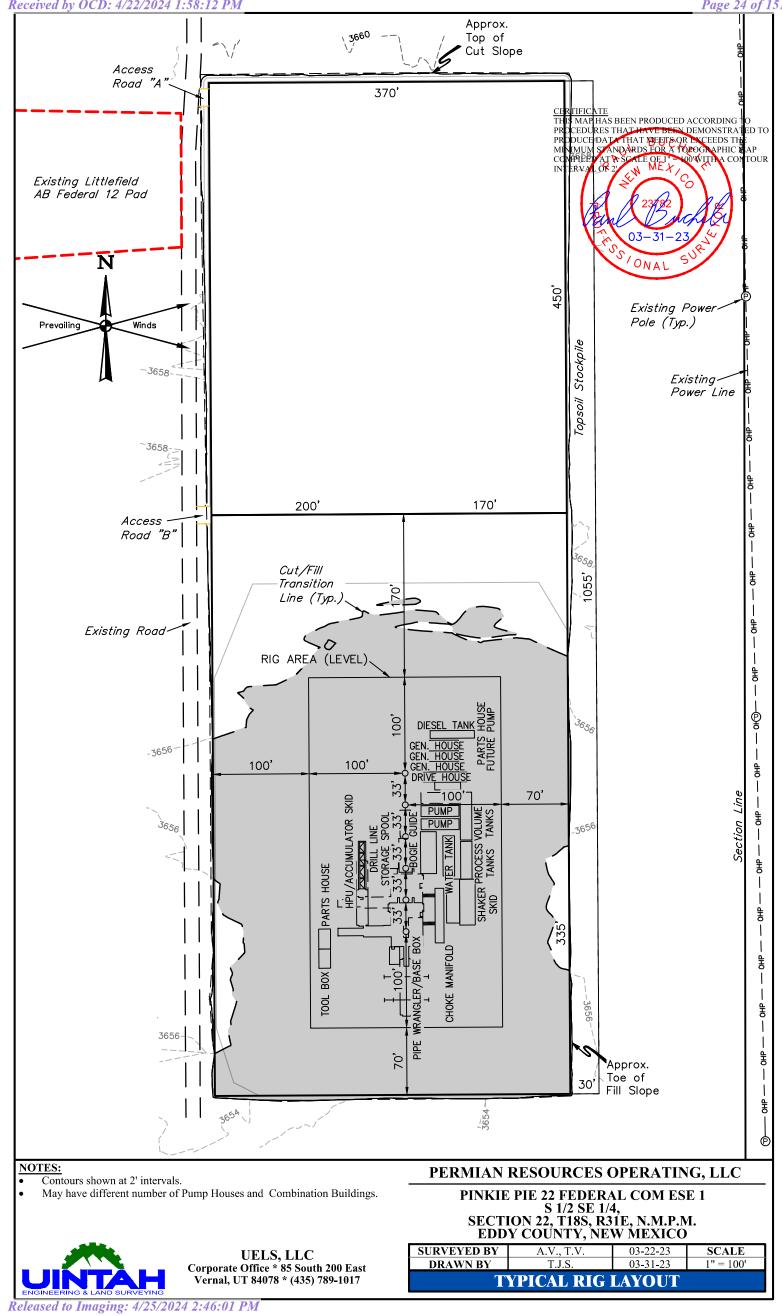
 LOCATION PHOTOS
 PHOTO

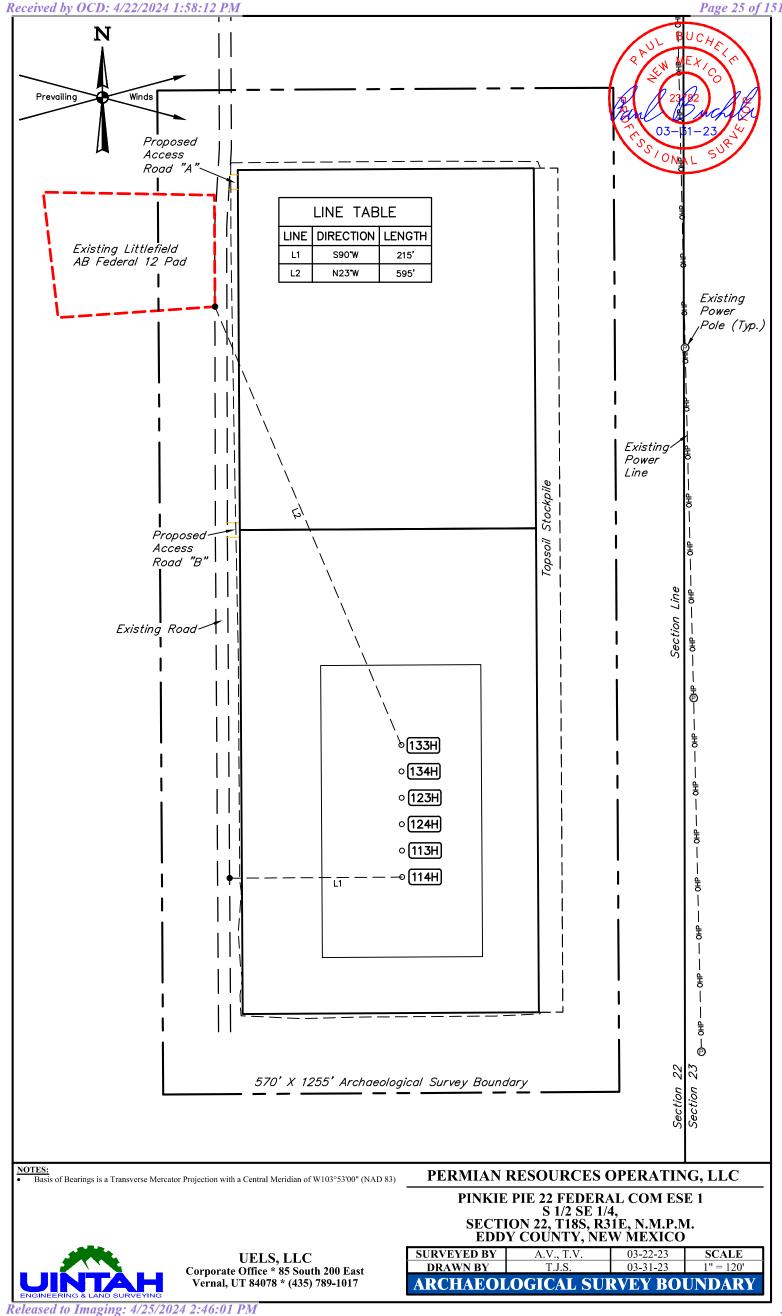
Released to Imaging: 4/25/2024 2:46:01 PM

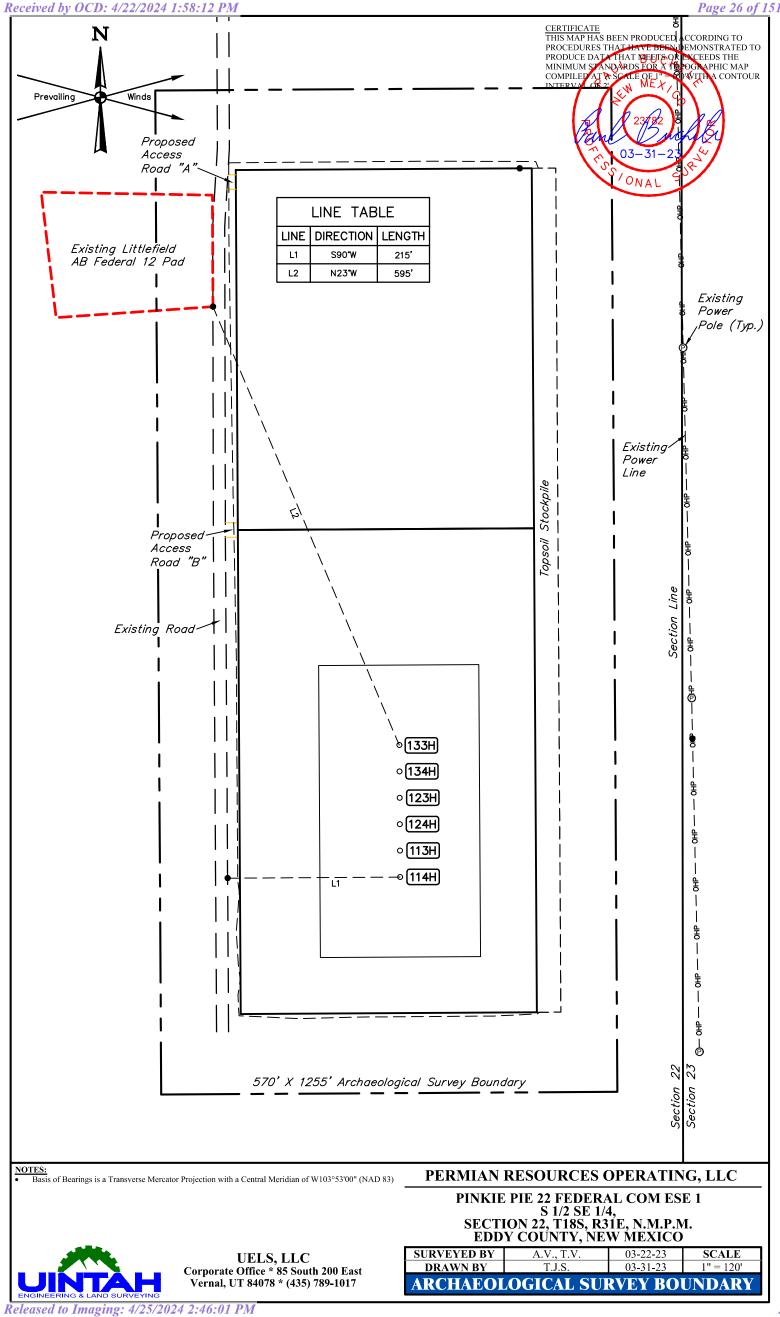

21' E: 641261


71' E 639941 0

Page 21 of 151


Released to Imaging: 4/25/2024 2:46:01 PM





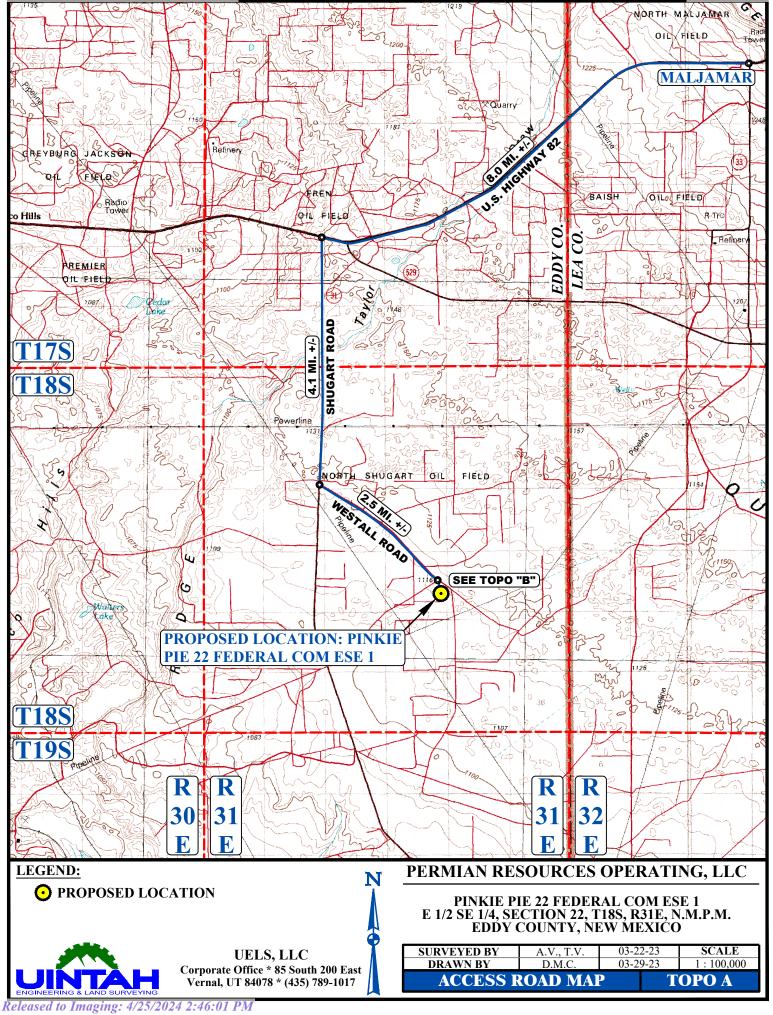
Page 25 of 151

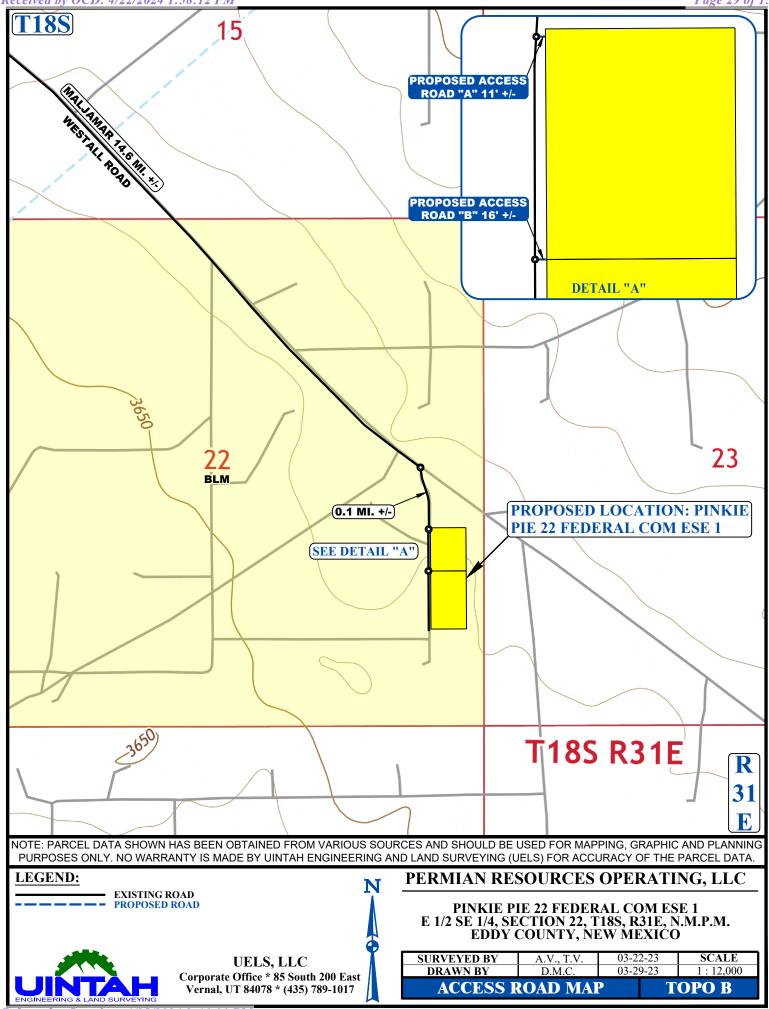
BEGINNING AT THE INTERSECTION OF U.S. HIGHWAY 82 AND MALJAMAR ROAD IN MALJAMAR, NEW MEXICO; PROCEED IN A WESTERLY DIRECTION ALONG U.S. HIGHWAY 82 APPROXIMATELY 8.0 MILES TO THE JUNCTION OF THIS ROAD AND SHUGART ROAD TO THE SOUTH; TURN LEFT AND PROCEED IN A SOUTHERLY DIRECTION APPROXIMATELY 4.1 MILES TO THE JUNCTION OF THIS ROAD AND WESTALL ROAD TO THE EAST; TURN LEFT AND PROCEED IN AN EASTERLY DIRECTION APPROXIMATELY 2.5 MILES TO THE JUNCTION OF THIS ROAD AND AN EXISTING ROAD TO THE SOUTH: TURN RIGHT AND PROCEED IN AN SOUTHERLY DIRECTION APPROXIMATELY 0.1 MILES TO THE BEGINNING OF THE PROPOSED ACCESS ROAD "A" TO THE EAST: FOLLOW ROAD FLAGS IN AN EASTERLY DIRECTION APPROXIMATELY 11' TO THE PROPOSED LOCATION.

TOTAL DISTANCE FROM MALJAMAR, NEW MEXICO TO THE PROPOSED WELL LOCATION IS APPROXIMATELY 14.7 MILES.

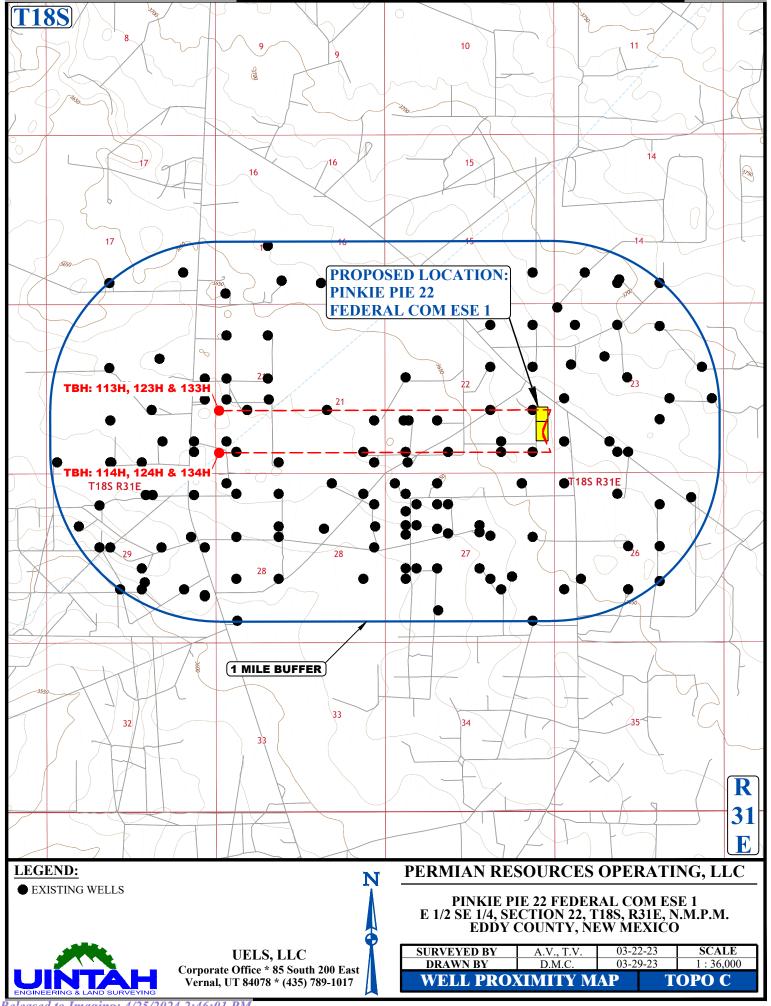
PERMIAN RESOURCES OPERATING, LLC

PINKIE PIE 22 FEDERAL COM ESE 1 E 1/2 SE 1/4, SECTION 22, T18S, R31E, N.M.P.M. EDDY COUNTY, NEW MEXICO

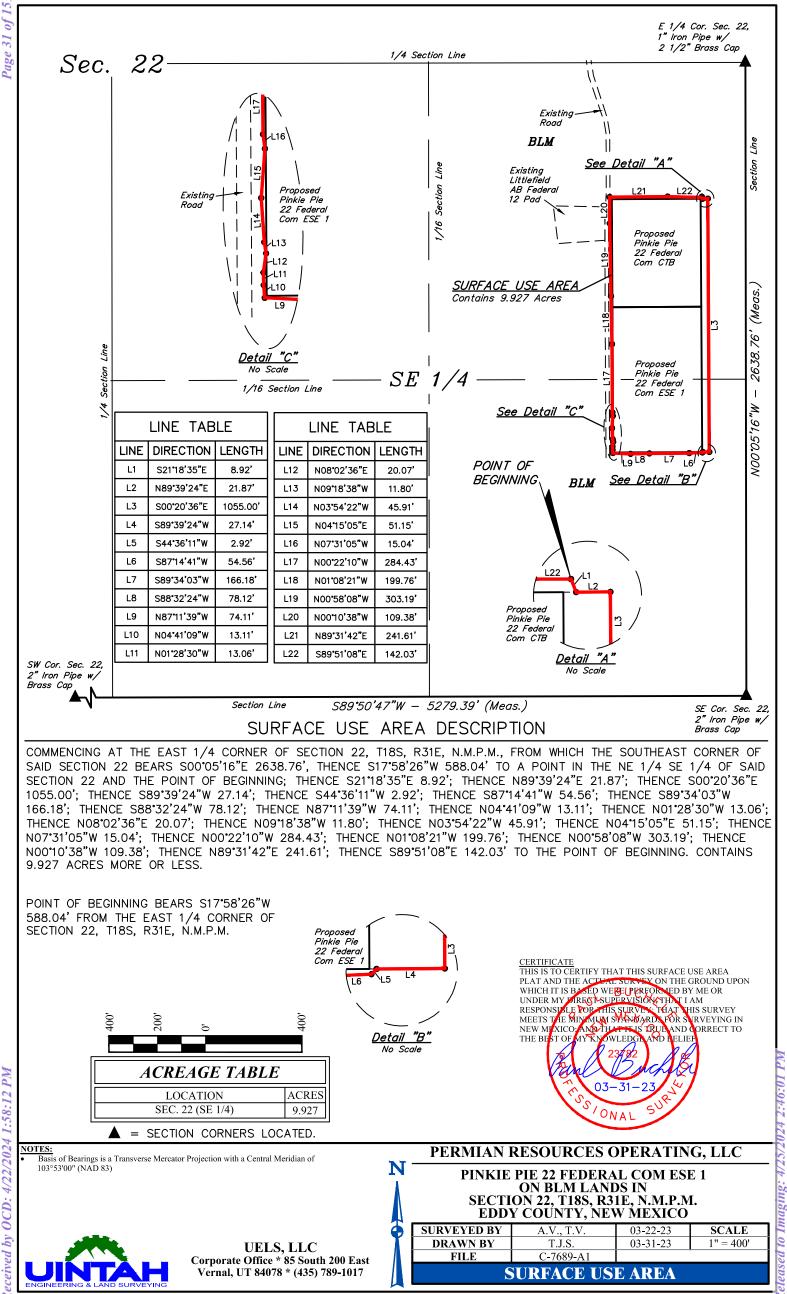

SURVEYED BY A.V., T.V. 03-22-23 **DRAWN BY** 03-29-2 D.M.C **ROAD DESCRIPTION**

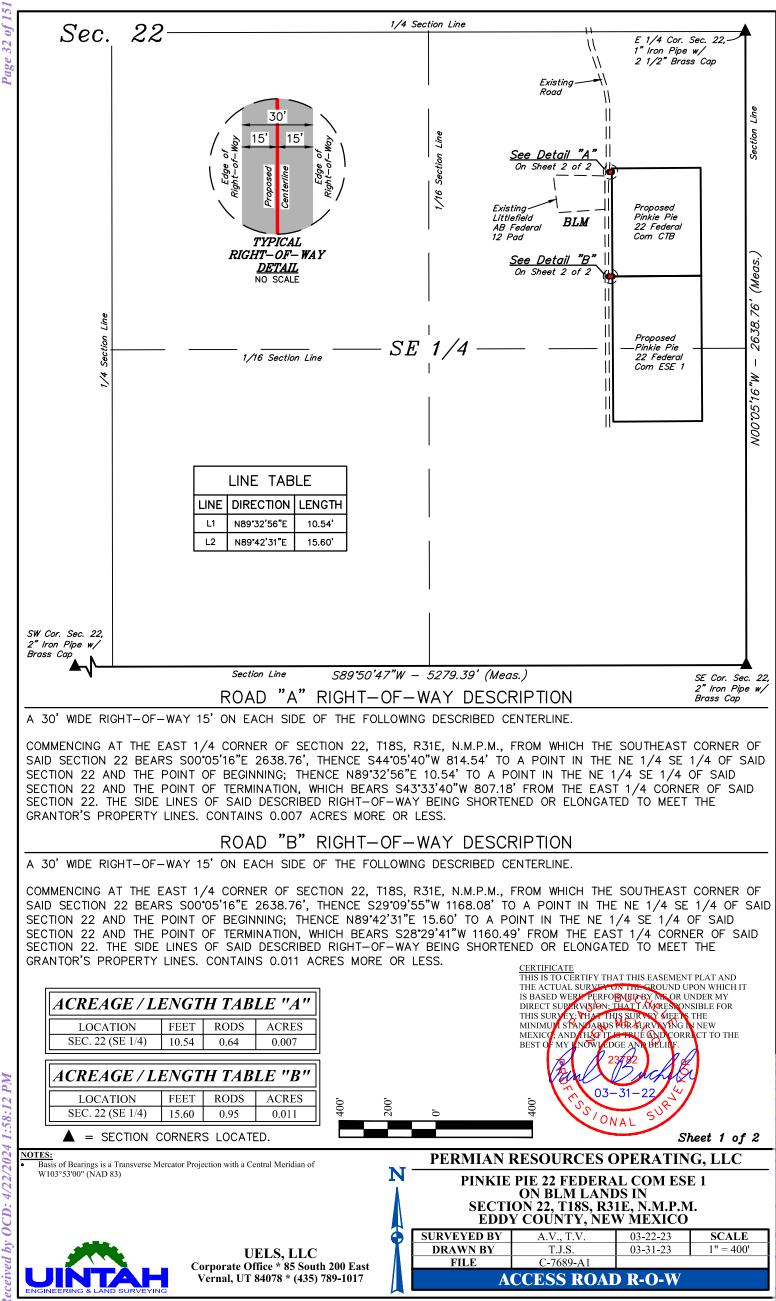

UELS, LLC Corporate Office * 85 South 200 East Vernal, UT 84078 * (435) 789-1017

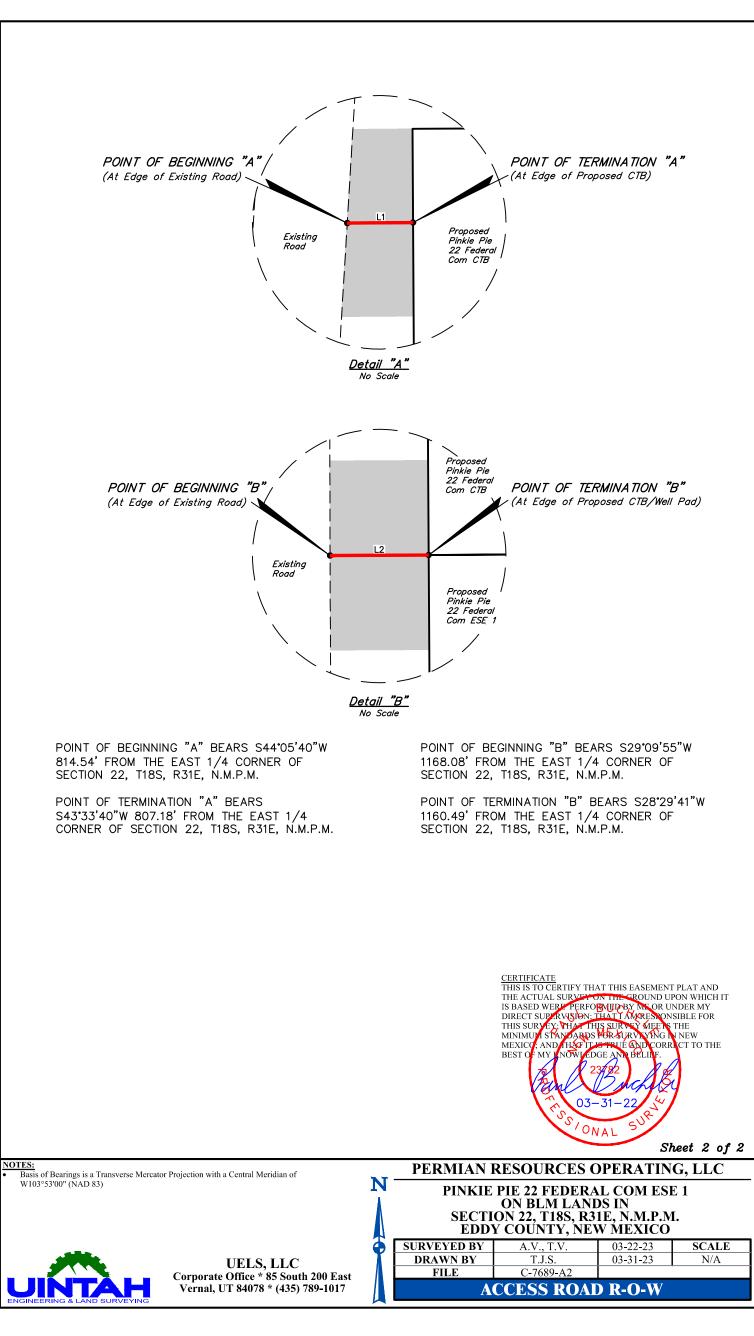
Page 28 of 151



Page 29 of 151




Released to Imaging: 4/25/2024 2:46:01 PM


Page 30 of 151

Released to Imaging: 4/25/2024 2:46:01 PM

Section 1 - Geologic Formations

Formation		Flavetin	True Vertical			Mineral Resources	Producing Formatio	
ID 13239884	Formation Name RUSTLER	Elevation 3654	684	Depth 684	Lithologies SANDSTONE	USEABLE WATER		
15259004	ROSTEER	5054	004	004	SANDOTONE	USEABLE WATER	IN IN	
13239885	TOP SALT	2770	884	884	ANHYDRITE, SALT	NONE	N	
13239903	TANSILL	1558	2096	2096	ANHYDRITE, SHALE	NATURAL GAS, OIL	N	
13239888	YATES	1420	2234	2234	SHALE	NATURAL GAS, OIL	N	
13239904	SEVEN RIVERS	925	2729	2729	LIMESTONE	NATURAL GAS, OIL	N	
13239905	QUEEN	262	3392	3392	LIMESTONE	NATURAL GAS, OIL	N	
13239906	GRAYBURG	-40	3694	3694	LIMESTONE	NATURAL GAS, OIL	N	
13239887	CHERRY CANYON	-790	4444	4444	SANDSTONE	NATURAL GAS, OIL	N	
13239907	BRUSHY CANYON	-1009	4664	4664	SANDSTONE	NATURAL GAS, OIL	N	
13239894	BONE SPRING LIME	-2430	6084	6084	LIMESTONE	NATURAL GAS, OIL	N	
13239898	FIRST BONE SPRING SAND	-4130	7784	7784	SANDSTONE, SHALE	NATURAL GAS, OIL	Y	
13239899	BONE SPRING 2ND	-4680	8334	8334	SANDSTONE	NATURAL GAS, OIL	N	
13239901	BONE SPRING 3RD	-5605	9259	9259	SANDSTONE	NATURAL GAS, OIL	N	

Section 2 - Blowout Prevention

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: PINKIE PIE 22-21 FED COM

Well Number: 114H

Pressure Rating (PSI): 5M

Rating Depth: 8100

Equipment: BOPE with working pressure ratings in excess of anticipated maximum surface pressure will be utilized for well control from drill out of surface casing to TMD. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. All BOPE connections shall be flanged, welded or clamped. All choke lines shall be straight unless targeted with running tees or tee blocks are used, and choke lines shall be anchored to prevent whip and reduce vibrations. All valves in the choke line & the choke manifold shall be full opening as to not cause restrictions and to allow for straight fluid paths to minimize potential erosion. All gauges utilized in the well control system shall be of a type designed for drilling fluid service. A top drive inside BOP valve will be utilized at all times. Subs equipped with full opening valves sized to fit the drill pipe and collars will be available on the rig floor in the open position. The key to operate said valve equipped subs will be on the rig floor at all times. The accumulator system will have sufficient capacity to open the HCR and close all three sets of rams plus the annular preventer while retaining at least 300 psi above precharge on the closing manifold (accumulator system shall be capable of doing so without using the closing unit pumps). The fluid reservoir capacity will be double the usable fluid volume of the accumulator system capacity, and the fluid level will be maintained at the manufacturer's recommended level. Prior to connecting the closing unit to the BOP stack, an accumulator precharge pressure test shall be performed to ensure the precharge pressure is within 100 psi of the desired precharge pressure (only nitrogen gas will be used to precharge). Two independent power sources will be made available at all times to power the closing unit pumps so that the pumps can automatically start when the closing valve manifold pressure has decreased to the preset level. Closing unit pumps will be sized to allow opening of HCR and closing of annular preventer on 5" drill pipe achieving at least 200 psi above precharge pressure with the accumulator system isolated from service in less than two minutes. A valve shall be installed in the closing line as close to the annular preventer as possible to act as a locking device; the valve shall be maintained in the open position and shall be closed only when the power source for the accumulator system is inoperative. Remote controls capable of opening and closing all preventers & the HCR shall be readily accessible to the driller; master controls with the same capability will be operable at the accumulator. The wellhead will be a multibowl speed head allowing for hangoff of intermediate casing & isolation of the 133/8 x 95/8 annulus without breaking the connection between the BOP & wellhead to install an additional casing head. A wear bushing will be installed & inspected frequently to guard against internal wear to wellhead. VBRs (variable bore rams) will be run in upper rambody of BOP stack to provide redundancy to annular preventer while RIH w/ production casing;

Requesting Variance? YES

Variance request: Flex hose and offline cement variances, see attachments in section 8.

Testing Procedure: The BOP test shall be performed before drilling out of the surface casing shoe and will occur at a minimum: a. when initially installed b. whenever any seal subject to test pressure is broken c. following related repairs d. at 30 day intervals e. checked daily as to mechanical operating conditions. The ram type preventer(s) will be tested using a test plug to 250 psi (low) and 5,000 psi (high) (casinghead WP) with a test plug upon its installation onto the 13 surface casing. If a test plug is not used, the ram type preventer(s) shall be tested to 70% of the minimum internal yield pressure of the casing. The annular type preventer(s) shall be tested to 3500 psi. Pressure will be maintained for at least 10 minutes or until provisions of the test are met, whichever is longer. A Sundry Notice (Form 3160 5), along with a copy of the BOP test report, shall be submitted to the local BLM office within 5 working days following the test. If the bleed line is connected into the buffer tank (header), all BOP equipment including the buffer tank and associated valves will be rated at the required BOP pressure. The BLM office will be provided with a minimum of four (4) hours notice of BOP testing to allow witnessing. The BOP Configuration, choke manifold layout, and accumulator system, will be in compliance with Onshore Order 2 for a 5,000 psi system. A remote accumulator and a multi-bowl system will be used, please see attachment in section 8 for multi-bowl procedure. Pressures, capacities, and specific placement and use of the manual and/or hydraulic controls, accumulator controls, bleed lines, etc., will be identified at the time of the BLM 'witnessed BOP test. Any remote controls will be capable of both opening and closing all preventers and shall be readily accessible.

Choke Diagram Attachment:

Pinkie_Pie_5M_Choke_Diagram_20230515124351.pdf

BOP Diagram Attachment:

Pinkie_Pie_5M_BOP_Diagram_20230515124356.pdf

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC
Well Name: PINKIE PIE 22-21 FED COM
Well

Well Number: 114H

Pinkie_Pie_5M_Choke_Diagram_20230515124351.pdf

Pinkie_Pie_5M_BOP_Diagram_20230515124356.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	709	0	709	3654	2945	709	J-55	54.5	BUTT	3.23	1.71	DRY	6.56	DRY	6.15
2	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	4614	0	4614	3758	-960	4614	J-55	36	BUTT	2.88	1.65	DRY	2.4	DRY	2.12
3	PRODUCTI ON	8.75	5.5	NEW	API	N	0	8238	0	7944	3238	-4290	1	OTH ER		OTHER - GEOCONN	1.81	1.89	DRY	2.32	DRY	2.32
4	PRODUCTI ON	7.87 5	5.5	NEW	API	N	8238	18042	7944	7944	-4290	-4290	1	OTH ER		OTHER - GEOCONN	1.81	1.89	DRY	2.32	DRY	2.32

Casing Attachments

Casing ID: 1 String SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Pinkie_Pie_Casing_Design_Assumptions_20230519094752.pdf

Received by OCD: 4/22/2024 1:58:12 PM

Page 37 of 151

Well Name: PINKIE PIE 22-21 FED COM

Well Number: 114H

Casing Attachments

Casing ID: 2 String INTERMEDIATE
Inspection Document:
Spec Document:
Tapered String Spec:
Casing Design Assumptions and Worksheet(s):
Pinkie_Pie_Casing_Design_Assumptions_20230519114545.pdf
Casing ID: 3 String PRODUCTION
Inspection Document:
Spec Document:
Tapered String Spec:
Casing Design Assumptions and Worksheet(s):
Pinkie_Pie_Production_Casing_Spec_Sheet_20230522094419.pdf
Pinkie_Pie_Casing_Design_Assumptions_20230522094419.pdf
Casing ID: 4 String PRODUCTION
Inspection Document:
Spec Document:
Tapered String Spec:
Casing Design Assumptions and Worksheet(s):
Pinkie_Pie_Casing_Design_Assumptions_20230522094442.pdf
Pinkie_Pie_Production_Casing_Spec_Sheet_20230522094442.pdf

.

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: PINKIE PIE 22-21 FED COM

Well Number: 114H

Section 4 -	Cement
-------------	--------

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	509	380	1.88	12.9	710	100	Class C	EconoCem-HLC + 5% Salt + 5% Kol-Seal
SURFACE	Tail		509	709	560	1.34	14.8	740	50	Class C	Accelerator
INTERMEDIATE	Lead		0	3690	800	2.08	12.7	1660	50	Class C	Salt, Extender & LCM
INTERMEDIATE	Tail		3690	4614	330	1.34	14.8	440	50	Class C	Accelerator
PRODUCTION	Lead		4114	7477	480	2.41	11.5	1150	40	Class H	POZ, Extender, Fluid Loss, Dispersant, Retarder
PRODUCTION	Tail		7477	1804 2	1370	1.73	12.5	2370	25	Class H	POZ, Extender, Fluid Loss, Dispersant, Retarder
PRODUCTION	Lead		4114	7477	480	2.41	11.5	1150	40	Class H	POZ, Extender, Fluid Loss, Dispersant, Retarder
PRODUCTION	Tail		7477	1804 2	1370	1.73	12.5	2370	25	Class H	POZ, Extender, Fluid Loss, Dispersant, Retarder

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient quantities of mud materials will be on the well site at all times for the purpose of assuring well control and maintaining wellbore integrity. Surface interval will employ fresh water mud. The intermediate hole will utilize a saturated brine fluid to inhibit salt washout. The production hole will employ brine based and oil base fluid to inhibit formation reactivity and of the appropriate density to maintain well control.

Describe the mud monitoring system utilized: Centrifuge separation system. Open tank monitoring with EDR will be used for drilling fluids and return volumes. Open tank monitoring will be used for cement and cuttings return volumes. Mud properties will be monitored at least every 24 hours using industry accepted mud check practices.

Circulating Medium Table

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: PINKIE PIE 22-21 FED COM

Well Number: 114H

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (Ibs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	709	WATER-BASED MUD	8.6	9.5							
8238	1804 2	OIL-BASED MUD	9	10							
4614	8238	OTHER : Brine	9	10							
709	4614	SALT SATURATED	10	10							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Will utilize MWD/LWD (Gamma Ray logging) from intermediate hole to TD of the well.

List of open and cased hole logs run in the well:

DIRECTIONAL SURVEY, GAMMA RAY LOG,

Coring operation description for the well:

N/A

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 4140

Anticipated Bottom Hole Temperature(F): 137

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations

 $H2S_Contingiency_Plan_Pinkie_Pie_22_21_Fed_Com_113H_114H_123H_124H_133H_134H_20230522082212.pdf$

Anticipated Surface Pressure: 2392

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: PINKIE PIE 22-21 FED COM

Well Number: 114H

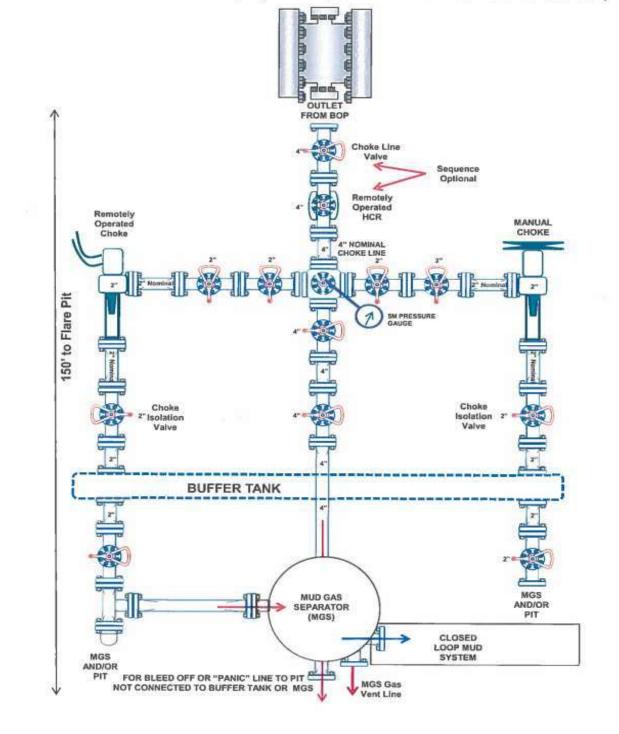
Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Pinkie_Pie_22_21_Fed_Com_114H___PWP0___AC_Summary_20230522094855.pdf

Pinkie_Pie_22_21_Fed_Com_114H___PWP0_20230522094855.pdf

Other proposed operations facets description:


Please see attached Drilling plan including multi-bowl diagram and procedure, proposed WBD, and casing connection data sheet. We also plan to batch drill this well along with offline cementing, see details under variance request below. Permian Resources Operating, LLC requests to use a flex hose on H&P choke manifold for this well. The Flex Hose specifications are attached below.

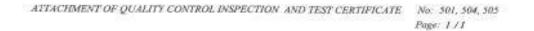
Other proposed operations facets attachment:

Multibowl_Wellhead_Diagram_20230515132758.pdf Pinkie_Pie_Multiwell_Batch_Drilling_Procedure_20230515132759.pdf Pinkie_Pie_Production_Casing_Spec_Sheet_20230515132822.pdf Pinkie_Pie_114H_Proposed_WBD_20230522094905.pdf Pinkie_Pie_22_Fed_Com_114H_drilling_packet_20240319180759.pdf

Other Variance attachment:

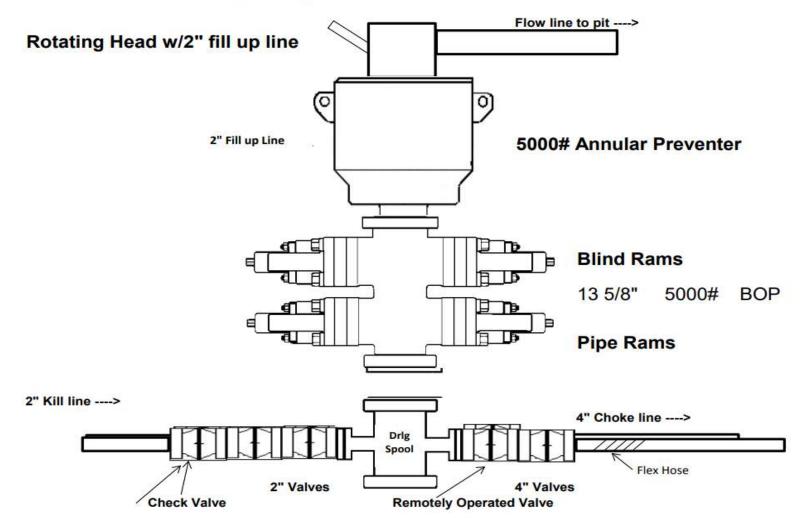
Offline_Cementing_Procedure_20230519095721.pdf Pinkie_Pie_5M_Choke_Diagram___Flex_Hose_20230519095720.pdf

5M Choke Manifold Equipment (WITH MGS + CLOSED LOOP)



CONTITECH RUBBER	No:QC-DB- 210/ 2014 Page: 9 / 113				
Industrial Kft.	Page:	9/113			

	LITY CON AND TES	CER	r, N*:	504			
PURCHASER:	P.O.	N°:	4500409659	i.			
CONTITECH RUBBER order N	538236	HOSE TYPE:	3° 1	D	Choke and	d Kill Hose	-
HOSE SERIAL N	67255	NOMINAL / AC	TUAL LEN	GTH:	10,67 m	1 / 10,77 m	
W.P. 68,9 MPa 10	ist 000	T.P. 103,4	MPa	15000 P	al Duration	60	min
↑ 10 mm = 10 мin.		See attachm	ient. (1 p	age)			
-> 10 mm = 20 MPs							
Y-8 107 107 - 7 107 - 107		Serie	e N°	-	Quelity	Heat N	6
COUPLINGS Typ 3* coupling with	e	Seria 9251	¥ N° 9254		Quelity	Heat N A0579	2
COUPLINGS Typ	e	- 19.07		- 8			N
COUPLINGS Typ 3° coupling with 4 1/16° 10K API b.w. Fla Not Designed F	e i inge end	9251		- 8	NISI 4130 NISI 4130 A	A0579	N 8 C
COUPLINGS Typ 3° coupling with 4 1/16° 10K API b.w. Fla Not Designed F All metal parts are flawless WE CERTIFY THAT THE ABOVE	e inge end for Well Te	9251 esting	9254 RED IN ACC	ORDANCE V	AISI 4130 AISI 4130 A Temp	A0578 03560 PI Spec 16 perature rab	N 8 C e:"B"
COUPLINGS Typ 3° coupling with 4 1/16° 10K API b.w. Fla Not Designed F All metal parts are flawless	e inge end for Well Te HOSE HAS BE ESTED AS ABO We hereby o the above Purc andards, codes	9251 Esting EEN MANUFACTU DVE WITH SATIBL	9254 RED IN ACC ACTORY RE we densile that these fit and meet the	ORDANCE V SULT. spreet support relevant acc	AISI 4130 AISI 4130 A Temp WTH THE TERMS and by us are in to wore fabricate	A05791 03560 PI Spec 16 perature rab	N 8 C e:"B"


Contribute Reduce Relation RT, - Busingards at 90 H #728 Elegand (H #701 PO Busing): Hardger, Hardger) Presex - Ste Stroke 727 (Filo) - Ste 82.568 728 (an erail into@Basil contracts by University Annual An

.

L. LEG GL HTT	Control Rating
GH +21-22 40 RD +21-30 40	Ott 28
BL +1853. nor 24 +21,15 PC	01+20
RD 1+21+91 PC	01+18
BL #1000-100 m	
R12 + E11-30 - Pri	01100
IL Telde Dr. 329017	ottene ottenet Semini-10,5 auge
80 +21-30 40	00150 101145-10,01 allos
BL +1857. bad GM +21.38 PC	1881 54
RD +21v84 =c	eerad
BL +1859 Ecc	IDE AE
0	eat se
HL +1861- bde	loos ad
0-+151+300-90	loei co
R. +1864- bar	108 28
20 20 30 4	0 50 80 70 mb nh 100
9:85:2014: 29:50 7252:67255:67256 2	
FIL-SCIVIA44	

5,000 psi BOP Schematic

Permian Resources Casing Design Criteria

A sundry will be requested if any lesser grade or different size casing is substituted. All casing will be centralized as specified in On Shore Order II. Casing will be tested as specified in On Shore Order II.

Casing Design Assumptions:

Surface

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate I

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.

- (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate or Intermediate II

- 1) Burst Design Loads
 - a) Gas Kick Profile
 - Internal: Load profile based on influx encountered in lateral portion of wellbore with a maximum influx volume of 150 bbl and a kick intensity of 1.5 ppg using maximum anticipated MW of 9.9 ppg.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
- a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the deepest TVD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Production

- 1) Burst Design Loads
 - a) Injection Down Casing
 - (1) Internal: Surface pressure plus injection fluid gradient.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test (Drilling)
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - c) Casing Pressure Test (Production)
 - (1) Internal: The design pressure test should be the greater of the planned test pressure prior to simulation down the casing, the regulatory test pressure, and the expected gas lift system pressure. The design test fluid should be the fluid associated with the pressure test having the greatest pressure.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - d) Tubing Leak
 - (1) Internal: SITP plus a packer fluid gradient to the top of packer.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
 - b) Full Evacuation
 - (1) Internal: Full void pipe.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Permian Resources Casing Design Criteria

A sundry will be requested if any lesser grade or different size casing is substituted. All casing will be centralized as specified in On Shore Order II. Casing will be tested as specified in On Shore Order II.

Casing Design Assumptions:

Surface

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate I

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.

- (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate or Intermediate II

- 1) Burst Design Loads
 - a) Gas Kick Profile
 - Internal: Load profile based on influx encountered in lateral portion of wellbore with a maximum influx volume of 150 bbl and a kick intensity of 1.5 ppg using maximum anticipated MW of 9.9 ppg.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
- a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the deepest TVD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Production

- 1) Burst Design Loads
 - a) Injection Down Casing
 - (1) Internal: Surface pressure plus injection fluid gradient.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test (Drilling)
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - c) Casing Pressure Test (Production)
 - (1) Internal: The design pressure test should be the greater of the planned test pressure prior to simulation down the casing, the regulatory test pressure, and the expected gas lift system pressure. The design test fluid should be the fluid associated with the pressure test having the greatest pressure.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - d) Tubing Leak
 - (1) Internal: SITP plus a packer fluid gradient to the top of packer.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
 - b) Full Evacuation
 - (1) Internal: Full void pipe.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

•

I One Corp.	GEOCONN-S Pipe: SeAH P110RY 95%PBW (A CONTRACTOR OF	Page	CONTRACTOR STATES AND A STATES AND A	17 SeAH P110R Cplg6.050 P110
Metal One	Coupling: P110RY (SMY	STREEPING STREEPING	Date		Feb-21
menu Vnc		Rev	3-1	0	
	Connection Data	Sneet	Rev.	8	U
	Geometry	Imp	erial	<u>s.</u>	<u>I.</u>
	Pipe Body	119 Ave.	379 24	4	2-12 201
	Grade *1	P110RY		P110RY	
	SMYS	110	ksi	110	ksi
CEOCONN CC	Pipe OD (D)	5.500	in	139.70	mm
GEOCONN-SC	Weight	17.00	lb/ft	25.33	kg/m
	Wall Thickness (t)	0.304	in	7.72	mm
67 801 LA 19 (88)	Pipe ID (d)	4.892	in	124.26	mm
Wsc1	Drift Dia.	4.767	in	121.08	mm
+ D	Connection				
	Coupling SMYS	110	ksi	110	ksi
↑ §	SC-Coupling OD (Wsc1)	6.050	in	153.67	mm
}d	Coupling Length (NL)	8,350	in	212.09	mm
ξ	Make up Loss	4.125	in	104.78	mm
1 8	Pipe Critical Area	4.96	in ²	3,202	mm ²
ξ	Box Critical Area	6.10	in ²	3.937	mm ²
ε I	Thread Taper	0.10			1000
1 8	Number of Threads			3/4" per ft)	
	S.M.Y.S. *1	546	kips	2,428	KN MPa
	Performance Properties for Pip		kine	2 429	KN
ş	M.I.Y.P. *1	11,550	psi	79.66	MPa
	Collapse Strength *1	7,480	psi	51.59	MPa
	M.I.Y.P. = Minin *1: SeAH P110RY 95%RBW: SMYS Performance Properties for C Min. Connection Joint Strength	and the second se		of S.M.Y.S.	
8	Min. Compression Yield		100%	of S.M.Y.S.	
3	Internal Pressure		100% of M.I.		
3	External Pressure		100% of Colla		
	Max. DLS (deg. /100ft)			>90	
t> <	Recommended Torque				
A.C. 80	Min	10.800	ft-lb	14.600	N-m
	Opti.	12,000	ft-lb	16,200	N-m
	Max	13,200	ft-lb	17,800	N-m
		15,600	ft-lb	21,100	N-m
	Operational Max			21,100	
	Operational Max. Note : Operational Max. torque ca	in be applied for high to	orque application	•••	

prevision is advance for use in a particular approximation The products described in this Connection Data Sheet are not recommended for use in deep water offshore applications. For more information, please refer to <u>http://www.mtlo.co.jo/mo-</u> con/_images/top/WebsiteTerms_Active_20333267_1.pdf the contents of which are incorporated by reference into this Connection Data Sheet.

Permian Resources Casing Design Criteria

A sundry will be requested if any lesser grade or different size casing is substituted. All casing will be centralized as specified in On Shore Order II. Casing will be tested as specified in On Shore Order II.

Casing Design Assumptions:

Surface

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate I

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.

- (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate or Intermediate II

- 1) Burst Design Loads
 - a) Gas Kick Profile
 - Internal: Load profile based on influx encountered in lateral portion of wellbore with a maximum influx volume of 150 bbl and a kick intensity of 1.5 ppg using maximum anticipated MW of 9.9 ppg.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
- a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the deepest TVD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Production

- 1) Burst Design Loads
 - a) Injection Down Casing
 - (1) Internal: Surface pressure plus injection fluid gradient.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test (Drilling)
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - c) Casing Pressure Test (Production)
 - (1) Internal: The design pressure test should be the greater of the planned test pressure prior to simulation down the casing, the regulatory test pressure, and the expected gas lift system pressure. The design test fluid should be the fluid associated with the pressure test having the greatest pressure.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - d) Tubing Leak
 - (1) Internal: SITP plus a packer fluid gradient to the top of packer.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
 - b) Full Evacuation
 - (1) Internal: Full void pipe.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Permian Resources Casing Design Criteria

A sundry will be requested if any lesser grade or different size casing is substituted. All casing will be centralized as specified in On Shore Order II. Casing will be tested as specified in On Shore Order II.

Casing Design Assumptions:

Surface

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate I

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.

- (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate or Intermediate II

- 1) Burst Design Loads
 - a) Gas Kick Profile
 - Internal: Load profile based on influx encountered in lateral portion of wellbore with a maximum influx volume of 150 bbl and a kick intensity of 1.5 ppg using maximum anticipated MW of 9.9 ppg.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
- a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the deepest TVD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Production

- 1) Burst Design Loads
 - a) Injection Down Casing
 - (1) Internal: Surface pressure plus injection fluid gradient.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test (Drilling)
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - c) Casing Pressure Test (Production)
 - (1) Internal: The design pressure test should be the greater of the planned test pressure prior to simulation down the casing, the regulatory test pressure, and the expected gas lift system pressure. The design test fluid should be the fluid associated with the pressure test having the greatest pressure.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - d) Tubing Leak
 - (1) Internal: SITP plus a packer fluid gradient to the top of packer.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
 - b) Full Evacuation
 - (1) Internal: Full void pipe.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

.

I One Corp.	GEOCONN-S Pipe: SeAH P110RY 95%PBW (A CONTRACTOR OF	Page	CONTRACTOR STATES AND A STATES AND A	17 SeAH P110R Cplg6.050 P110
Metal One	Coupling: P110RY (SMY	STREEPING STREEPING	Date		Feb-21
menu Vnc		Rev	3-1	0	
	Connection Data	Sneet	Rev.	8	U
	Geometry	Imp	erial	<u>s.</u>	<u>I.</u>
	Pipe Body	117 Av.	379 A	4	2-12 201
	Grade *1	P110RY		P110RY	
	SMYS	110	ksi	110	ksi
CEOCONN CC	Pipe OD (D)	5.500	in	139.70	mm
GEOCONN-SC	Weight	17.00	lb/ft	25.33	kg/m
	Wall Thickness (t)	0.304	in	7.72	mm
67 801 LA 19 (88)	Pipe ID (d)	4.892	in	124.26	mm
Wsc1	Drift Dia.	4.767	in	121.08	mm
+ D	Connection				
	Coupling SMYS	110	ksi	110	ksi
↑ §	SC-Coupling OD (Wsc1)	6.050	in	153.67	mm
}d	Coupling Length (NL)	8,350	in	212.09	mm
ξ	Make up Loss	4.125	in	104.78	mm
1 8	Pipe Critical Area	4.96	in ²	3,202	mm ²
ξ	Box Critical Area	6.10	in ²	3.937	mm ²
ε I	Thread Taper	0.10			1000
1 8	Number of Threads			3/4" per ft)	
	S.M.Y.S. *1	546	kips	2,428	KN MPa
	Performance Properties for Pip		kine	2 429	KN
ş	M.I.Y.P. *1	11,550	psi	79.66	MPa
	Collapse Strength *1	7,480	psi	51.59	MPa
	M.I.Y.P. = Minin *1: SeAH P110RY 95%RBW: SMYS Performance Properties for C Min. Connection Joint Strength	and the second se		of S.M.Y.S.	
8	Min. Compression Yield		100%	of S.M.Y.S.	
3	Internal Pressure		100% of M.I.		
3	External Pressure		100% of Colla		
	Max. DLS (deg. /100ft)			>90	
t> <	Recommended Torque				
A.C. 80	Min	10.800	ft-lb	14.600	N-m
	Opti.	12,000	ft-lb	16,200	N-m
	Max	13,200	ft-lb	17,800	N-m
		15,600	ft-lb	21,100	N-m
	Operational Max			21,100	
	Operational Max. Note : Operational Max. torque ca	in be applied for high to	orque application		

prevision is advance for use in a particular approximation The products described in this Connection Data Sheet are not recommended for use in deep water offshore applications. For more information, please refer to <u>http://www.mtlo.co.jo/mo-</u> con/_images/top/WebsiteTerms_Active_20333267_1.pdf the contents of which are incorporated by reference into this Connection Data Sheet.

H₂S CONTINGENCY PLAN

FOR

Permian Resources Corporation Pinkie Pie 22-21 Fed Com 113H, 114H, 123H, 124H, 133H, 134H Eddy County, New Mexico

> 04-28-2023 This plan is subject to updating

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

Table of Contents

Sectio	n 1.0 – Introduction
Ι.	Purpose
١١.	Scope & Applicability
	n 2.0 - Plan Implementation
Ι.	Activation Requirements
11.	Emergency Evacuation
111.	Emergency Response Activities
	n 3.0 - Potential Hazardous Conditions4
Sectio	n 4.0 - Notification of H2S Release Event6
١.	Local & State Law Enforcement
П.	General Public
111.	New Mexico Oil Conservation Division
IV.	New Mexico Environment Department
ν.	Bureau of Land Management
Sectio	n 5.0 - Emergency Contact List7
١.	Permian Resources Management Personnel
П.	Eddy County Sheriff
111.	New Mexico State Highway Patrol
IV.	Fire / EMS
ν.	Carlsbad Memorial Hospital
VI.	Emergency Response Contractors
VII.	New Mexico Oil Conservation Division
VIII.	New Mexico Environment Department
IX.	Bureau of Land Management
Х.	Other Agencies
Sectio	n 6.0 – Drilling Location Information9-12
١.	Site Safety Information
11.	Directions to Location
111.	Plat of Location including GPS Coordinates
IV.	Routes of Ingress & Egress (MAP)
V.	ROE Map
VI.	Residences in ROE
VII.	Public Roads in ROE
	n 7.0 – Hazard Communication13-15
Ι.	Physical Characteristics of Hydrogen Sulfide Gas
II. 	Human Health Hazards / Toxicological Information
	Environmental Hazards
	n 8.0 - Regulatory Information15-17
I. 	OSHA Information
. Cantin	New Mexico Oil Conservation Division & Bureau of Land Management
	n 9.0 - Training Requirements
	n 10.0 - Personal Protective Equipment18
Appen	
Ι.	Appendix A – H_2SSDS

I. Appendix $A = H_2 S S S S$ II. Appendix $B = SO_2 S S S$

.

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

Section 1.0 – Introduction

I. Purpose

The purpose of this contingency plan (Plan) is to provide Permian Resources Corporation. (Permian Resources) with an organized plan of action for alerting and protecting Permian Resources employees, the general public, and any potential first responders prior to any intentional release or immediately following the accidental / unintentional release of a potentially hazardous volume / concentration of Hydrogen Sulfide Gas (H2S).

II. Scope & Applicability

This Plan applies to all planned, unplanned, uncontrolled and/or unauthorized releases of hazardous concentrations of H₂S or any associated hazardous byproducts of combustion, occurring at any Permian Resources owned or operated facilities including but not limited to: wells, flowlines, pipelines, tank batteries, production facilities, SWD facilities, compressor stations, gas processing plants, drilling / completions / workover operations, and any other applicable company owned property.

Section 2.0 - Plan Implementation

I. Activation Requirements

In accordance with the requirements of Bureau of Land Management Onshore Order #6 and NMAC 19.15.11, this Plan shall be activated in advance of any authorized, planned, unplanned, uncontrolled, or unauthorized release of a hazardous volume / concentration of H_2S gas, or SO^2 , which could potentially adversely impact the workers, general public or the environment.

II. Emergency Evacuation

In the event of an unplanned, uncontrolled, or unauthorized release of a hazardous volume / concentration of H_2S gas, the first priority is to ensure the safety of the workers and general public. Upon discovery and subsequent determination of an applicable release, which cannot be quickly mitigated, immediately by using 911, notify local authorities to begin the process of alerting the general public, evacuate any residents within the Radius of Exposure (ROE), and limit any general public or employee access to any areas within the ROE of the affected facility.

III. Emergency Response Activities

The purpose of emergency response actions is to take steps to quickly mitigate / stop the ongoing release of the hazardous source of H_2S . Upon discovery of any hazardous release, immediately notify Permian Resources management to activate the Emergency Response Team (ERT). Once Permian Resources supervision arrives and assesses the situation, a work plan identifying the proper procedures shall be developed to stop the release.

Section 3.0 - Potential Hazardous Conditions & Response Actions

During a planned or unplanned release of H₂S, there are several hazardous conditions that are presented both to employees, the general public, and emergency responders. These specific hazardous conditions

Received by OCD: 4/22/2024 1:58:12 PM

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

are identified in the tables below.

H2S OPERATING CONDITIONS – RESPONSE ACTIONS TO CONSIDER	✓
H ₂ S CONDITION 1: POTENTIAL DANGER TO LIFE AND HEALTH -> WARNING SI GREEN	GN
H ₂ S concentration <10 ppm detected by location monitors	
General Actions During Condition 1	
Notify Site Supervisor / Permian Resources Person-in-Charge (PIC) of any observed increase in ambient H ₂ S concentrations	
All personnel check safety equipment is in adequate working order & store in accessible location	
Sensitize crews with safety meetings.	
Limit visitors and non-essential personnel on location	
Continuously monitor H ₂ S concentrations and check calibration of sensors	
Ensure H ₂ S scavenger is on location.	
H₂S CONDITION 2: MODERATE DANGER TO LIFE AND HEALTH → WARNING SIGN YELLOW	
H_2S concentration >10 ppm and < 30 ppm in atmosphere detected by location monitors:	
General Actions During Condition 2	
Sound H ₂ S alarm and/or display yellow flag.	
Account for on-site personnel	
Upon sounding of an area or personal H ₂ S monitor alarm when 10 ppm is reached, proceed to a safe briefing area upwind of the location immediately (see MA-4, Figure 5-1).	
Don proper respiratory protection.	
Alert other affected personnel	
If trained and safe to do so undertake measures to control source H2S discharge and eliminate possible ignition sources. Initiate Emergency Shutdown procedures as deemed necessary to correct or control the specific situation.	
Account for on-site personnel at safe briefing area.	
Stay in safe briefing area if not working to correct the situation.	
Keep Site Supervisor / Permian Resources PIC informed. Notify applicable government agencies (Appendix A) If off-site impact; notify any neighbors within Radius of Exposure (ROE), Fig 5.11	
Continuously monitor H ₂ S until readings below 10 ppm.	
Evacuated area shall not be re-entered except by trained and authorized personnel utilizing appropriate respiratory protection; or until "all clear" sounded by Permian Resources PIC / Site Supervisor.	

Permian Resources Corporation

H₂S Contingency Plan Pinkie Pie 22-21 Fed Com 113H, 114H, 123H, 124H, 133H, 134H

> 30 ppm H_2S concentration in air detected by location monitors: Extreme danger to life	
General Actions During Condition 3	
5	
Sound H ₂ S alarm and/or display red flag.	
Account for on-site personnel	
Move away from H_2S source and get out of the affected area.	
Proceed to designated safe briefing area; alert other affected personnel.	
Account for personnel at safe briefing area.	
If trained and safe to do so undertake measures to control source H2S discharge and eliminate possible ignition sources. Initiate Emergency Shutdown procedures as deemed necessary to correct or control the specific situation.	
Notify vehicles or situation and divert all traffic away from location.	
Permian Resources Peron-in-Charge will make appropriate community notifications.	
Red warning flag must be on display until the situation has been corrected and the Permian Resources Person-in-Charge determines it is safe to resume operations under Condition 1.	
Notify management of the condition and action taken. If H ₂ S concentration is increasing and steps to correct the situation are not successful – or at any time if well control is questionable – alert all responsible parties for possible activation of the H ₂ S Contingency Plan. If well control at the surface is lost, determine if situation warrants igniting the well.	
If uncontrolled flow at the surface occurs, the Permian Resources PIC, with approval, if possible, from those coordinating the emergency (as specified in the site-specific H_2S Contingency Plan) are responsible for determining if the situation warrants igniting the flow of the uncontrolled well. This decision should be made only as a last resort and in a situation where it is obvious that human life is in danger and there is no hope of controlling the flow under prevailing conditions.	
If the flow is ignited, burning H ₂ S will be converted to sulfur dioxide (SO ₂), which is also highly toxic. Do not assume that area is safe after the flow is ignited. If the well is ignited, evacuation of the area is mandatory, because SO ₂ will remain in low-lying places under no-wind conditions.	
 Keep Site Supervisor / Permian Resources PIC informed. Notify applicable government agencies and local law enforcement (Appendix A) If off-site impact; notify any neighbors within the Radius of Exposure (ROE), see example in Figure 5-11. 	
Continuously monitor H ₂ S until readings fall below 10 ppm.	
Evacuated area shall not be re-entered except by trained and authorized personnel utilizing appropriate respiratory protection; or until "all clear" sounded by Permian Resources PIC / Site Supervisor.	

.

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

Alert public (directly or through appropriate government agencies) who may be subject to potentially harmful exposure levels.	
Make recommendations to public officials regarding blocking unauthorized access to the unsafe area and assist as appropriate.	
Make recommendations to public officials regarding evacuating the public and assist as appropriate.	
Monitor ambient air in the area of exposure (after following abatement measures) to determine when it is safe for re-entry.	

Section 4.0 - Notification of H₂S Release Event

I. Local & State Law Enforcement

Prior to the planned / controlled release of a hazardous concentration of H_2S gas or any associated byproducts of the combustion of H_2S gas, notify local law enforcement agencies regarding the contents of this plan.

In the event of the discovery of an unplanned/uncontrolled release of a hazardous concentration of H₂S gas or any associated byproducts of combustion, immediately notify local and/or state law enforcement agencies of the situation and ask for their assistance.

II. General Public

In the event of a planned or unplanned release of a hazardous concentration of H₂S gas or any associated byproducts of combustion, notify local law enforcement agencies and ask for their assistance in alerting the general public and limiting access to any public roads that may be impacted by such a release.

III. New Mexico Oil Conservation Division

The Permian Resources HSE Department will make any applicable notification to the New Mexico OCD regarding any release of a hazardous concentration of H₂S Gas or any associated byproducts of combustion.

IV. New Mexico Environment Department

The Permian Resources HSE Department will make any applicable notifications to the NMED regarding any release of a hazardous concentration of H₂S gas or any associated byproducts of combustion.

V. Bureau of Land Management

The Permian Resources Regulatory Department will make any applicable notifications to the BLM regarding any release of a hazardous concentration of H_2S gas or any associated byproducts of combustion.

Section 5.0 - Emergency Contact List

Ρ

mian Deseurose Componetian			Eddy Ca		
mian Resources Corporation	H ₂ S Contingency Plan		Eddy Co	Eddy County, New Mexico	
	Pinkie Pie 22-21 Fed Com 113H, 114H,				
	123H, 124	H, 133H, 134H			
	EMERGENCY	CONTACT LIST	-		
Р	ERMIAN RESOUR	CES CORPORATIO	ON.		
POSITION	NAME	OFFICE	CELL	ALT PHONE	
	Oper	ations			
Operations Superintendent	Rick Lawson		432.530.3188		
TX Operations Superintendent	Josh Graham	432.940.3191	432.940.3191		
NM Operations Superintendent	Manual Mata	432.664.0278	575.408.0216		
Drilling Manager	Jason Fitzgerald	432.315.0146	318.347.3916		
Drilling Engineer	Ronny Hise	432.315.0144	432.770.4786		
Production Manager	Levi Harris	432.219.8568	720.261.4633		
SVP Development Ops	Clayton Smith	720.499.1416	361.215.2494		
SVP Production Ops	Casey McCain	432.695.4239	432.664.6140		
	HSE & R	egulatory			
H&S Manager	Adam Hicks	720.499.2377	903.426.4556		
Regulatory Manager	Sarah Ferreyros	720.499.1454	720.854.9020		
Environmental Manager	Montgomery Floyd	432-315-0123	432-425-8321		
HSE Consultant	Blake Wisdom		918-323-2343		
	Local, State, &	Federal Agenci	es		
Eddy County Sheriff		575-887-7551		911	
New Mexico State Highway Patrol		505-757-2297		911	
Carlsbad Fire / EMS		575-885-3125		911	
Carlsbad Memorial Hospital		575-887-4100	(00-) 000 0-0-		
Secorp – Safety Contractor	Ricky Stephens		(325)-262-0707		
New Mexico Oil Conservation Division – District 1 Office – Hobbs, NM.		575-393-6161			
New Mexico Environment					
Department – District III Office –		575-397-6910			
Hobbs, NM New Mexico Oil Conservation Division					
– Hobbs, NM	24 Hour Emergency	575-393-6161			
Bureau of Land Management – Carlsbad, NM		575-234-5972			
U.S. Fish & Wildlife		502-248-6911			

Section 6.0 – Drilling Location Information

Ι. Site Safety Information

- 1. Safe Briefing Area
 - a. There shall be two areas that will be designated as "SAFE BRIEFING AREAs". If H₂S is detected in concentrations equal to or in excess of 10 ppm all personnel not assigned emergency duties are to assemble in the designated Safe Briefing area for instructions. These two areas shall be positioned in accessible locations to facilitate the availability of self-contained breathing air devices. The briefing areas shall be positioned no less than 250' from the wellhead and in such locations that at least one briefing area will be upwind from the well at all times.

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

2. <u>Wind Indicators</u>

- a. 4 Windsocks will be installed at strategic points on the facility.
- 3. Danger Signs
 - a. A warning sign indicating the possible well conditions will be displayed at the location entrance.

DANGER
POISONOUS GAS
HYDROGEN SULFIDE
DO NOT APPROACH IF AMBER LIGHTS ARE FLASHING

4. <u>H₂S Detectors and Alarms</u>

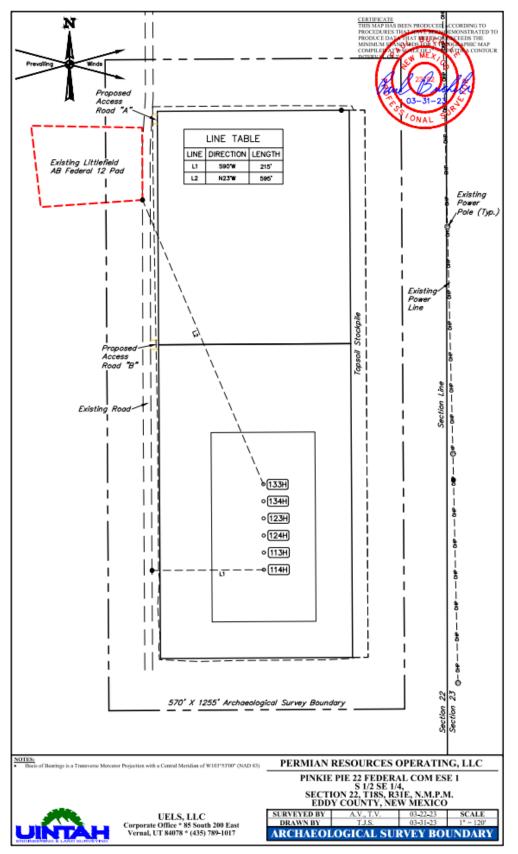
a. Continuous monitoring type H₂S detectors, capable of sensing a minimum of 5ppm H₂S in air will be located centrally located at the tanks, heater treater, and combustor. Continuous monitoring type SO₂ detector will also be located at the combustor. The automatic H₂S alarm/flashing light will be located at the site entrance and in front of tank battery.

5. Safety Trailer

a. A safety trailer equipped with an emergency cascade breathing air system with 2 ea. Work/escape packs, a stretcher, 2 OSHA approved full body harnesses, and a 20# Class ABC fire extinguisher shall be available at the site in close proximity to the safe briefing area. The cascade system shall be able to be deployed to the drill floor when needed to provide safe breathing air to the workers as needed.

6. Well Control Equipment

- a. The location shall have a flare line to a remote automatic ignitor and back up flare gun, placed 150' from the wellhead.
- b. The location shall be equipped with a remotely operated choke system and a mud gas separator.


7. Mud Program

- a. Company shall have a mud program that contains sufficient weight and additives to control $H_2S.$
- 8. <u>Metallurgy</u>
 - a. All drill strings, casing, tubing, wellhead, BOP, spools, kill lines, choke manifold and lines, and valves shall be suitable for anticipated H₂S volume and pressure.
- 9. Communication
 - a. The location shall be equipped with a means of effective communication such as a cell phones, intercoms, satellite phones or landlines.

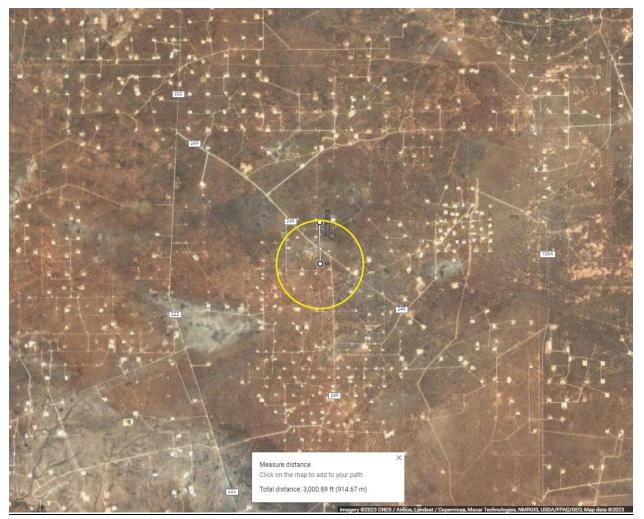
Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

II. Directions to Location

BEGINNING AT THE INTERSECTION OF U.S. HIGHWAY 82 AND MALJAMAR ROAD IN MALJAMAR, NEW MEXICO; PROCEED IN A WESTERLY DIRECTION ALONG U.S. HIGHWAY 82 APPROXIMATELY 8.0 MILES TO THE JUNCTION OF THIS ROAD AND SHUGART ROAD TO THE SOUTH; TURN LEFT AND PROCEED IN A SOUTHERLY DIRECTION APPROXIMATELY 4.1 MILES TO THE JUNCTION OF THIS ROAD AND WESTALL ROAD TO THE EAST; TURN LEFT AND PROCEED IN AN EASTERLY DIRECTION APPROXIMATELY 2.5 MILES TO THE JUNCTION OF THIS ROAD AND AN EXISTING ROAD TO THE SOUTH; TURN RIGHT AND PROCEED IN AN SOUTHERLY DIRECTION APPROXIMATELY 0.1 MILES TO THE BEGINNING OF THE PROPOSED ACCESS ROAD "A" TO THE EAST; FOLLOW ROAD FLAGS IN AN EASTERLY DIRECTION APPROXIMATELY 11'TO THE PROPOSED LOCATION. TOTAL DISTANCE FROM MALJAMAR, NEW MEXICO TO THE PROPOSED WELL LOCATION IS APPROXIMATELY 14.7 MILES. Plat of Location

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

1. Routes of Ingress & Egress (MAP)



2. Residences in proximity to the 3000' Radius of Exposure (ROE) (MAP)

There are no residences or public gathering places with the 3000' ROE, 100 PPM, 300 PPM, or 500 PPM ROE.

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

Map of 3000' ROE Perimeter

100 PPM, 300 PPM, & 500 PPM Max ROE under worst case scenario

Enter H ₂ S in PPM	1500	
Enter Gas flow in mcf/day (maximum worst case conditions)	2500	
500 ppm radius of exposure (public road)	<u>105</u>	feet
300 ppm radius of exposure	<u>146</u>	feet
100 ppm radius of exposure (public area)	<u>230</u>	feet

- Location NAD 83 GPS Coordinates *Lat: 32.729110, Long: 103.849885*
- 3. Public Roads in proximity of the Radius of Exposure (ROE)

There are no public roads that would be within the 500 PPM ROE. The closest public road is New Mexico

Г

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

Highway 249, which is 800' from the location.

Section 7.0 – Hazard Communication

I. Physical Characteristics of Hydrogen Sulfide Gas

Hydrogen sulfide (H₂S) is a colorless, poisonous gas that is soluble in water. It can be present in crude oils, condensates, natural gas and wastewater streams.

 H_2S is heavier than air with a vapor density of 1.189 (air = 1.0); however, H_2S is most often mixed with other gases. These mixtures of H_2S and other gases can be heavier or lighter than air. If the H_2S -containing mixture is heavier, it can collect in low areas such as ditches, ravines, firewalls, and pits; in storage tanks; and in areas of poor ventilation. Please see physical properties in **Table 7.0**.

With H₂S the sense of smell is rapidly lost allowing lethal concentrations to be accumulated without warning. The toxicity of hydrogen sulfide at varying concentrations is indicated in the **Table 7.1**.

Warning: Do not use the mouth-to-mouth method if a victim ingested or inhaled hydrogen sulfide. Give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device.

Table 7.0. Physical Properties of H₂S

Properties of H2S	Description	
Vapor Density > 1 = 1.189 Air = 1	 H2S gas is slightly heavier than air, which can cause it to settle in low places and build in concentration. Produced as a mixture with other gases associated with oil and gas production. 	
Flammable Range 4.3%-46% 43000 ppm – 460000 ppm	 H2S can be extremely flammable / explosive when these concentrations are reached by volume in air. 	

Although H₂S is primarily a respiratory hazard, it is also flammable and forms an explosive mixture at concentrations of 4.3%–46.0% (40,000ppm – 460,000 ppm) by volume in air.

H₂S can be encountered when:

- Venting and draining equipment.
- Opening equipment (separators, pumps, and tanks).
- Opening piping connections ("line breaking").
- Gauging and sampling storage tanks.
- Entering confined spaces.
- Working around wastewater pits, skimmers, and treatment facilities.
- II. Human Health Hazards Toxicological Information

Table 7.1. Hazards & Toxicity

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

Concentration (ppm)	Symptoms/Effects
0.00011-0.00033 ppm	Typical background concentrations
0.01-1.5 ppm	Odor threshold (when rotten egg smell is first noticeable to some). Odor becomes more offensive at 3-5 ppm. Above 30 ppm, odor described as sweet or sickeningly sweet.
2-5 ppm	Prolonged exposure may cause nausea, tearing of the eyes, headaches or loss of sleep. Airway problems (bronchial constriction) in some asthma patients.
20 ppm	Possible fatigue, loss of appetite, headache, irritability, poor memory, dizziness.
50-100 ppm	Slight conjunctivitis ("gas eye") and respiratory tract irritation after 1 hour. May cause digestive upset and loss of appetite.
100 ppm	Coughing, eye irritation, loss of smell after 2-15 minutes (olfactory fatigue). Altered breathing, drowsiness after 15-30 minutes. Throat irritation after 1 hour. Gradual increase in severity of symptoms over several hours. Death may occur after 48 hours.
100-150 ppm	Loss of smell (olfactory fatigue or paralysis).
200-300 ppm	Marked conjunctivitis and respiratory tract irritation after 1 hour. Pulmonary edema may occur from prolonged exposure.
500-700 ppm	Staggering, collapse in 5 minutes. Serious damage to the eyes in 30 minutes. Death after 30-60 minutes.
700-1000 ppm	Rapid unconsciousness, "knockdown" or immediate collapse within 1 to 2 breaths, breathing stops, death within minutes.
1000-2000 ppm	Nearly instant death

III. Environmental Hazards

 H_2S and its associated byproducts from combustion presents a serious environmental hazard. Sulphur Dioxide SO₂ is produced as a constituent of flaring H_2S Gas and can present hazards associated, which are similar to H_2S . Although SO₂ is heavier than air, it will be picked up by a breeze and carried downwind at

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

elevated temperatures. Since Sulfur Dioxide is extremely irritating to the eyes and mucous membranes of the upper respiratory tract, it has exceptionally good warning powers in this respect. The following table indicates the toxic nature of the gas. Please see the attached SDS in Appendix B for reference.

SULFUR DIOXIDE TOXICITY		
Conce	ntration	Effects
%SO ₂	PPM	
0.0005	3 to 5	Pungent odor-normally a person can detect SO ₂ in this range.
0.0012	12	Throat irritation, coughing, and constriction of the chest tearing and smarting of eyes.
0.15	150	So irritating that it can only be endured for a few minutes.
0.05	500	Causes a sense of suffocation, even with first breath.

Section 8.0 - Regulatory Information

I. OSHA & NIOSH Information

II. Table 8.0. OSHA & NIOSH H₂S Information

PEL, IDLH, TLV	Description
NIOSH PEL 10 PPM	 PEL is the Permissible Exposure Limit that an employee may be exposed up to 8 hr / day.
OSHA General Industry Ceiling PEL – 20 PPM	 The maximum exposure limit, which cannot be exceeded for any length of time.
IDLH 100 PPM	 Immediately Dangerous to Life and Health
Permian Resources PEL 10 PPM	 Permian Resources Policy Regarding H2S for employee safety

III. New Mexico OCD & BLM – H₂S Concentration Threshold Requirements

New Mexico NMAC 19.15.11 and Onshore Order #6 identify two Radii of Exposure (ROE) that identify potential danger to the public and require additional compliance measures. Permian Resources is required to install safety devices, establish safety procedures and develop a written H₂S contingency plan for sites where the H₂S concentrations are as follows.

Table 8.1.	Calculating H ₂ S Radius of Exposure	

H₂S Radius of Exposure	Description	Control and Equipment Requirements
100 ppm	Distance from a release to where the H_2S concentration in the air will dilute below 100ppm	 ROE > 50-ft and includes any part of a "public area" (residence, school, business, etc., or any area that can be expected to be populated). ROE > 3,000-ft

H ₂ S Contingency Plan	Eddy County, New Mexico
Pinkie Pie 22-21 Fed Com 113H, 114H,	
123H, 124H, 133H, 134H	
	Pinkie Pie 22-21 Fed Com 113H, 114H,

500 ppm	Distance from a release to where the H ₂ S concentration in the air will dilute below 500ppm	ROE > 50-ft and includes any part of a public road (public roads are tax supported roads or any road used for public access or use)
500 ppm		road (public roads are tax supported roads

Calculating H₂S Radius of Exposure

The ROE of an H₂S release is calculated to determine if a potentially hazardous volume of H₂S gas at 100 or 500 parts per million (ppm) is within a regulated distance requiring further action. If information about the concentration of H₂S and the potential gas release volume is known, the location of the Muster Areas will be set, and safety measures will be implemented based on the calculated radius of exposure (ROE). NMAC 19.15.11 – Hydrogen Sulfide Safety defines the ROE as the radius constructed with the gas's point of escape as its center and its length calculated by the following Pasquill-Gifford equations:

To determine the extent of the **<u>100 ppm ROE</u>**:

 $x = [(1.589) \text{ (mole fraction H}_2S)(Q)]^{(.6258)}$.

To determine the extent of the **500 ppm ROE**:

 $x = [(0.4546) \text{ (mole fraction H}_2S)(Q)]^{(.6258)}$.

Table 8.2. Calculating H2S Radius of Exposure

ROE Variable	Description
X =	ROE in feet
Q =	Max volume of gas released determined to be released in cubic feet per day (ft ³ /d) normalized to standard temperature and pressure, 60°F and 14.65 psia
Mole fraction H ₂ S =	Mole fraction of H ₂ S in the gaseous mixture released.

The volume used as the escape rate in determining the ROE is specified in the rule as follows:

- The maximum daily volume rate of gas containing H₂S handled by that system element for which the ROE is calculated.
- For existing gas wells, the current adjusted open-flow rate, or the operator's estimate of the well's capacity to flow against zero back-pressure at the wellhead.

New Mexico Oil Conservation Division & BLM Site Requirements under NMAC 19.15.11 & Onshore Order #6

- Two cleared areas will be designated as Safe Briefing Areas. During an emergency, personnel will assemble in one of these areas for instructions from the Permian Resources Person-in-Charge. Prevailing wind direction should be considered in locating the briefing areas 200' or more on either side of the well head. One area should offset the other at an angle of 45° to 90° with respect to prevailing wind direction to allow for wind shifts during the work period.
- In the event of either an intentional or accidental releases of hydrogen sulfide, safeguards to protect the general public from the harmful effects of hydrogen sulfide must be in place for operations. A summary of the provisions in each of three H₂S ROE cases is included in **Table 8.3**.
 - **CASE 1** -100 ppm ROE < 50'

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

- **CASE 2** 100 ppm ROE is 50' or greater, but < 3000' and does not penetrate public area.
- **CASE 3** -100 ppm ROE is 50' or greater and penetrates a public area or 500 ppm ROE includes a public road. Also if 100 ppm ROE > 3000' regardless of public area.

Table 8.3. NMAC 19.15.11 Compliance Requirements Drilling & Production

NMAC 19.15.11 & BLM COMPLIANCE REQUIREMENTS - DRILLING & PRODUCTION			
PROVISION	CASE 1	CASE 2	CASE 3
H ₂ S Concentration Test	X	Х	X
H-9	Х	Х	Х
Training	Х	Х	Х
District Office Notification	Х	Х	Х
Drill Stem Tests Restricted	X*	X*	Х
BOP Test	X*	X*	Х
Materials		Х	Х
Warning and Marker		Х	Х
Security		Х	Х
Contingency Plan			Х
Control and Equipment Safety			Х
Monitors		X**	X**
Mud (ph Control or Scavenger)			X*
Wind Indicators		X**	Х
Protective Breathing Equipment		X**	Х
Choke Manifold, Secondary Remote Control, and Mud-Gas Separator			Х
Flare Stacks			X*

Section 9.0 - Training Requirements

Training

The following elements are considered a minimum level of training for personnel assigned to operations who may encounter H₂S as part of routine or maintenance work.

- The hazards, characteristics, and properties of hydrogen sulfide (H₂S) and (SO₂).
- Sources of H₂S and SO₂.
- Proper use of H₂S and SO₂ detection methods used at the workplace.
- Recognition of, and proper response to, the warning signals initiated by H₂S and SO₂ detection systems in use at the workplace.
- Symptoms of H₂S exposure; symptoms of SO₂ exposure
- Rescue techniques and first aid to victims of H₂S and SO₂ exposure.
- Proper use and maintenance of breathing equipment for working in H₂S and SO₂ atmospheres, as appropriate theory and hands-on practice, with demonstrated proficiency (29 *CFR* Part 1910.134).
- Workplace practices and relevant maintenance procedures that have been established to protect personnel from the hazards of H₂S and SO₂.
- Wind direction awareness and routes of egress.

ermian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

- Confined space and enclosed facility entry procedures (if applicable).
- Emergency response procedures that have been developed for the facility or operations.
- Locations and use of safety equipment.
- Locations of safe briefing areas.

Refresher training will be conducted annually.

Section 10.0 - Personal Protective Equipment

I. <u>Personal H₂S Monitors</u>

All personnel engaged in planned or unplanned work activity to mitigate the release of a hazardous concentration of H₂S shall have on their person a personal H2S monitor.

- II. Fixed H₂S Detection and Alarms
 - 4 channel H₂S monitor
 - 4 wireless H₂S monitors
 - H₂S alarm system (Audible/Red strobe)
 - Personal gas monitor for each person on location
 - Gas sample tubes

III. Flame Resistant Clothing

All personnel engaged in planned or unplanned work activity associated with this Plan shall have on the appropriate level of FRC clothing.

IV. <u>Respiratory Protection</u>

The following respiratory protection equipment shall be available at each drilling location.

- Working cascade system available on rig floor and pit system & 750' of air line hose
- Four (4) breathing air manifolds
- Four (4) 30-minute rescue packs
- Five (5) work/Escape units
- Five (5) escape units
- One (1) filler hose for the work/escape/rescue units

Supplied air (airline or SCBA) respiratory protection against hydrogen sulfide exposure is required in the following situations:

- When routine or maintenance work tasks involve exposure to H₂S concentrations of 10 ppm or greater.
- When a fixed location area monitor alarms, and re-entry to the work area is required to complete a job.
- When confined spaces are to be entered without knowledge of H₂S levels present, or if initial measurements are to be taken of H₂S levels.
- During rescue of employees suspected of H₂S overexposure.
- For specific tasks identified with significant exposure potential and outlined in local program guidelines.
- All respiratory equipment for hydrogen sulfide must be of the supplied-air type, equipped with pressure-demand regulators and operated in the pressure-demand mode only. This is the only type of respiratory protection recommended for hydrogen sulfide application. Equipment should be approved by NIOSH/MSHA or other recognized national authority as required. If airline units are used, a five-minute egress bottle should also be carried.

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

- Gas masks or other air-purifying respirators MUST NEVER BE USED FOR HYDROGEN SULFIDE due to the poor warning properties of the gas.
- Use of respiratory protection should be accompanied by a written respiratory protection program.

Appendix A H₂S SDS

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

PRAXAIR	Hydrogen sulfide Safety Data Sheet E-4611 according to the Hazardous Products Regulation (February 11, 2015) Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013	
SECTION 1: Identification		
1.1. Product identifier		
Product form	: Substance	
Name	: Hydrogen sulfide	
CAS No	: 7783-06-4	
Formula	: H2S	
Other means of identification	: Hydrogen sulfide	
Product group	: Core Products	
1.2. Recommended use and r		
Recommended uses and restrictions	: Industrial use Use as directed	
1.3. Supplier		
Praxair Canada inc. 1200 – 1 City Centre Drive Mississauga - Canada L5B 1M2 T 1-905-803-1600 - F 1-905-803-168 www.praxair.ca	2	
1.4. Emergency telephone nu	mber	
Emergency number	: 1-800-363-0042 Call emergency number 24 hours a day only for spills, leaks, fire, exposure, or accidents involving this product. For routine information, contact your supplier or Praxair sales representative.	
SECTION 2: Hazard identifie	cation	
2.1. Classification of the subs	tance or mixture	
GHS-CA classification		
Flam. Gas 1H22Liquefied gasH28Acute Tox. 2 (Inhalation: gas)H33STOT SE 3H33	0 0	
2.2. GHS Label elements, incl	uding precautionary statements	
GHS-CA labelling		
Hazard pictograms	HS02 GHS04 GHS06 GHS07	
Signal word	: DANGER	
Hazard statements	: EXTREMELY FLAMMABLE GAS CONTAINS GAS UNDER PRESSURE; MAY EXPLODE IF HEATED FATAL IF INHALED MAY CAUSE RESPIRATORY IRRITATION MAY FORM EXPLOSIVE MIXTURES WITH AIR SYMPTOMS MAY BE DELAYED EXTENDED EXPOSURE TO GAS REDUCES THE ABILITY TO SMELL SULFIDES	
Precautionary statements	: Do not handle until all safety precautions have been read and understood Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking	
	on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure th curacy of any version of this document after it has been downloaded or removed from our website.	ıe
EN (English)	SDS ID : E-4611	1/

rmian Da	courses Corporation		ontingona, Dlar		Eddy County Now Mari
eriniali Ke	esources Corporation		ontingency Plan	1111	Eddy County, New Mexi
			21 Fed Com 113H,		
		123H, 1	24H, 133H, 134H		
	IPRAXAIR	Hydrogen su Safety Data Sheet according to the Hazardous Pro Date of issue: 10-15-1979	Ifide E-4611 Dducts Regulation (February 11, Revision date: 08-10-2016	2015) Supersedes: 10-1	5-2013
		Avoid release t Wear protective protection Leaking gas fin In case of leak. Store locked up Dispose of con Protect from su Close valve aff Do not open va When returning	only outdoors or in a well-ver o the environment e gloves, protective clothing, e: Do not extinguish, unless age, eliminate all ignition sou	eye protection, resp leak can be stopped irces e with container Sup ature exceeds 52°C y ment prepared for us alve outlet cap or plu	plier/owner instructions (125°F) se
	2.3. Other hazards				
	Other hazards not contributing to the classification	: Contact with liq	uid may cause cold burns/fr	ostbite.	
	2.4. Unknown acute toxicity (GHS-CA)				
	No data available		- A -		
	SECTION 3: Composition/inf 3.1. Substances	formation on ingredier	115		
Name		CAS No.	% (Vol.) Com	mon Name (synony	vms)
	Hydrogen sulfide (Main constituent)	(CAS No) 7783-06-4	100 Hydro	ogen sulfide (H2S) / Hyd	drogen sulphide / Sulfur hydride /
	(Main consultent)		Sullur	reted nydrogen / Dinydr	ogen sulphide / Hydrogensulfide
	3.2. Mixtures				
	Not applicable				
	4.1. Description of first aid me				
	4.1. Description of first aid me First-aid measures after inhalation		sh air and keep at rest in a po	osition comfortable fo	or breathing. If not breathing,
		give artificial re physician.	spiration. If breathing is diffic	cult, trained personne	el should give oxygen. Call a
	First-aid measures after skin contact	warm water no skin. Maintain returned to the		/ater temperature sh minutes or until norn ssive exposure, rem	ould be tolerable to normal nal coloring and sensation have ove clothing while showering
	First-aid measures after eye contact		eyeballs to ensure that all su		utes. Hold the eyelids open and noroughly. Contact an
	First-aid measures after ingestion	: Ingestion is not	t considered a potential route	e of exposure.	
	4.2. Most important symptoms No additional information available	and effects (acute and dela	ayed)		
	4.3. Immediate medical attenti	on and special treatment, if			
	Other medical advice or treatment	: Obtain medical	assistance. Treat with cortion	costeroid spray as so	oon as possible after inhalation.
	SECTION 5: Fire-fighting me	asures			
	5.1. Suitable extinguishing me	dia			
		dia : Carbon dioxide surrounding fire	e, Dry chemical, Water spray e.	or fog. Use extinguis	shing media appropriate for

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

2/9

•

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

	ording to	Data Sheet E-4611 the Hazardous Products Regulation (February 11, 2015)
		: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013
5.3. Specific hazards arising from 1	he haza	rdous product
Fire hazard	:	EXTREMELY FLAMMABLE GAS. If venting or leaking gas catches fire, do not extinguish flames. Flammable vapors may spread from leak, creating an explosive reignition hazard. Vapors can be ignited by pilot lights, other flames, smoking, sparks, heaters, electrical equipment, static discharge, or other ignition sources at locations distant from product handling point. Explosive atmospheres may linger. Before entering an area, especially a confined area, check the atmosphere with an appropriate device.
Explosion hazard	:	EXTREMELY FLAMMABLE GAS. Forms explosive mixtures with air and oxidizing agents.
Reactivity	:	No reactivity hazard other than the effects described in sub-sections below.
Reactivity in case of fire	:	No reactivity hazard other than the effects described in sub-sections below.
5.4. Special protective equipment a	and prec	autions for fire-fighters
Firefighting instructions	:	DANGER! Toxic, flammable liquefied gas
		Evacuate all personnel from the danger area. Use self-contained breathing apparatus (SCBA) and protective clothing. Immediately cool containers with water from maximum distance. Stop flow of gas if safe to do so, while continuing cooling water spray. Remove ignition sources if safe to do so. Remove containers from area of fire if safe to do so. On-site fire brigades must comply with their provincial and local fire code regulations.
Special protective equipment for fire fighter	s :	Standard protective clothing and equipment (Self Contained Breathing Apparatus) for fire fighters.
Other information	:	Containers are equipped with a pressure relief device. (Exceptions may exist where authorized by TC.).
SECTION 6: Accidental release	measu	res
		ment and emergency procedures
General measures		DANGER! Toxic, flammable liquefied gas . Forms explosive mixtures with air and oxidizing
		agents. Immediately evacuate all personnel from danger area. Use self-contained breathing apparatus where needed. Remove all sources of ignition if safe to do so. Reduce vapors with fog or fine water spray, taking care not to spread liquid with water. Shut off flow if safe to do so. Ventilate area or move container to a well-ventilated area. Flammable vapors may spread from leak and could explode if reignited by sparks or flames. Explosive atmospheres may linger. Before entering area, especially confined areas, check atmosphere with an appropriate device.
6.2. Methods and materials for con	tainmen	t and cleaning up
Methods for cleaning up	:	Try to stop release. Reduce vapour with fog or fine water spray. Prevent waste from contaminating the surrounding environment. Prevent soil and water pollution. Dispose of contents/container in accordance with local/regional/national/international regulations. Contact supplier for any special requirements.
6.3. Reference to other sections		
For further information refer to section	B: Expos	ure controls/personal protection
SECTION 7: Handling and stora	de	
7.1. Precautions for safe handling	5-	
Precautions for safe handling	:	Leak-check system with soapy water; never use a flame
		All piped systems and associated equipment must be grounded
		Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. Use only non-sparking tools. Use only explosion-proof equipment
		Wear leather safety gloves and safety shoes when handling cylinders. Protect cylinders from physical damage; do not drag, roll, slide or drop. While moving cylinder, always keep in place removable valve cover. Never attempt to lift a cylinder by its cap; the cap is intended solely to protect the valve. When moving cylinders, even for short distances, use a cart (trolley, hand truck, etc.) designed to transport cylinders. Never insert an object (e.g, wrench, screwdriver, pr bar) into cap openings; doing so may damage the valve and cause a leak. Use an adjustable strap wrench to remove over-tight or rusted caps. Slowly open the valve. If the valve is hard th open, discontinue use and contact your supplier. Close the container valve are reach use:

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

3/9

•

Permian Resour

rces Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

Storage conditions

Hydrogen sulfide

Safety Data Sheet E-4611 according to the Hazardous Products Regulation (February 11, 2015) Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

7.2. Conditions for safe storage, including any incompatibilities

: Store only where temperature will not exceed 125°F (52°C). Post "No Smoking/No Open Flames" signs in storage and use areas. There must be no sources of ignition. Separate packages and protect against potential fire and/or explosion damage following appropriate codes and requirements (e.g, NFPA 30, NFPA 55, NFPA 70, and/or NFPA 221 in the U.S.) or according to requirements determined by the Authority Having Jurisdiction (AHJ). Always secure containers upright to keep them from falling or being knocked over. Install valve protection cap, if provided, firmly in place by hand when the container is not in use. Store full and empty containers separately. Use a first-in, first-out inventory system to prevent storing full containers for long periods. For other precautions in using this product, see section 16

OTHER PRECAUTIONS FOR HANDLING, STORAGE, AND USE: When handling product under pressure, use piping and equipment adequately designed to withstand the pressures to be encountered. Never work on a pressurized system. Use a back flow preventive device in the piping. Gases can cause rapid suffocation because of oxygen deficiency; store and use with adequate ventilation. If a leak occurs, close the container valve and blow down the system in a safe and environmentally correct manner in compliance with all international, federal/national, state/provincial, and local laws; then repair the leak. Never place a container where it may become part of an electrical circuit.

SECTION 8: Exposure controls/personal protection					
8.1. Control parameters					
Hydrogen sulfide (7783-06-4)					
USA - ACGIH	ACGIH TLV-TWA (ppm)	1 ppm			
USA - ACGIH	ACGIH TLV-STEL (ppm)	5 ppm			
USA - OSHA	OSHA PEL (Ceiling) (ppm)	20 ppm			
Canada (Quebec)	VECD (mg/m ³)	21 mg/m ³			
Canada (Quebec)	VECD (ppm)	15 ppm			
Canada (Quebec)	VEMP (mg/m ³)	14 mg/m ³			
Canada (Quebec)	VEMP (ppm)	10 ppm			
Alberta	OEL Ceiling (mg/m ³)	21 mg/m ³			
Alberta	OEL Ceiling (ppm)	15 ppm			
Alberta	OEL TWA (mg/m ³)	14 mg/m³			
Alberta	OEL TWA (ppm)	10 ppm			
British Columbia	OEL Ceiling (ppm)	10 ppm			
Manitoba	OEL STEL (ppm)	5 ppm			
Manitoba	OEL TWA (ppm)	1 ppm			
New Brunswick	OEL STEL (mg/m ³)	21 mg/m ³			
New Brunswick	OEL STEL (ppm)	15 ppm			
New Brunswick	OEL TWA (mg/m³)	14 mg/m³			
New Brunswick	OEL TWA (ppm)	10 ppm			
New Foundland & Labrador	OEL STEL (ppm)	5 ppm			
New Foundland & Labrador	OEL TWA (ppm)	1 ppm			
Nova Scotia	OEL STEL (ppm)	5 ppm			
Nova Scotia	OEL TWA (ppm)	1 ppm			
Nunavut	OEL Ceiling (mg/m ³)	28 mg/m ³			
Nunavut	OEL Ceiling (ppm)	20 ppm			
Nunavut	OEL STEL (mg/m ³)	21 mg/m ³			
Nunavut	OEL STEL (ppm)	15 ppm			
Nunavut	OEL TWA (mg/m ³)	14 mg/m ³			
Nunavut	OEL TWA (ppm)	10 ppm			
Northwest Territories	OEL STEL (ppm)	15 ppm			

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

Hydrogen sulfide (7783-06-4)				
Northwest Territories	OEL TWA (ppm)	10 ppm		
Ontario	OEL STEL (ppm)	15 ppm		
Ontario	OEL TWA (ppm)	10 ppm		
Prince Edward Island	OEL STEL (ppm)	5 ppm		
Prince Edward Island	OEL TWA (ppm)	1 ppm		
Québec	VECD (mg/m ³)	21 mg/m ³		
Québec	VECD (ppm)	15 ppm		
Québec	VEMP (mg/m ³)	14 mg/m ³		
Québec	VEMP (ppm)	10 ppm		
Saskatchewan	OEL STEL (ppm)	15 ppm		
Saskatchewan	OEL TWA (ppm)	10 ppm		
Yukon	OEL STEL (mg/m ³)	27 mg/m ³		
Yukon	OEL STEL (ppm)	15 ppm		
Yukon	OEL TWA (mg/m ³)	15 mg/m ³		
Yukon	OEL TWA (ppm)	10 ppm		
3.2. Appropriate engineering controls				

Appropriate engineering controls

: Use corrosion-resistant equipment. Use an explosion-proof local exhaust system. Local exhaust and general ventilation must be adequate to meet exposure standards. MECHANICAL (GENERAL): Inadequate - Use only in a closed system. Use explosion proof equipment and

	lighting.
8.3. Individual protection measured	es/Personal protective equipment
Personal protective equipment	: Safety glasses. Face shield. Gloves.
Hand protection	: Wear work gloves when handling containers. Wear heavy rubber gloves where contact with product may occur.
Eye protection	: Wear goggles and a face shield when transfilling or breaking transfer connections. Select in accordance with the current CSA standard Z94.3, "Industrial Eye and Face Protection", and any provincial regulations, local bylaws or guidelines.
Respiratory protection	: Respiratory protection: Use respirable fume respirator or air supplied respirator when working in confined space or where local exhaust or ventilation does not keep exposure below TLV. Select in accordance with provincial regulations, local bylaws or guidelines. Selection should be based on the current CSA standard Z94.4, "Selection, Care, and Use of Respirators." Respirators should also be approved by NIOSH and MSHA. For emergencies or instances with unknown exposure levels, use a self-contained breathing apparatus (SCBA).
Thermal hazard protection	 Wear cold insulating gloves when transfilling or breaking transfer connections. Standard EN 511 - Cold insulating gloves.
Other information	: Other protection : Safety shoes for general handling at customer sites. Metatarsal shoes and cuffless trousers for cylinder handling at packaging and filling plants. Select in accordance with the current CSA standard Z195, "Protective Foot Wear", and any provincial regulations, local bylaws or guidelines. For working with flammable and oxidizing materials, consider the use of flame resistant anti-static safety clothing.

9.1. Information on basic physical and chemical properties		
Physical state : Gas		
Appearance	: Colorless gas. Colorless liquid at low temperature or under high pressure.	
Molecular mass	: 34 g/mol	
Colour	: Colourless.	
Odour	: Odour can persist. Poor warning properties at low concentrations. Rotten eggs.	
Odour threshold	: Odour threshold is subjective and inadequate to warn of overexposure.	

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

5/9

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

	ЛV	A I	
PR		4 1 1	
			a

Hydrogen sulfide Safety Data Sheet E-4611 according to the Hazardous Products Regulation (February 11, 2015) Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

pH	: Not applicable.
pH solution	: No data available
Relative evaporation rate (butylacetate=1)	: No data available
Relative evaporation rate (ether=1)	: Not applicable.
Melting point	: -86 °C
Freezing point	: -82.9 °C
Boiling point	: -60.3 °C
Flash point	: Not applicable.
Critical temperature	: 100.4 °C
Auto-ignition temperature	: 260 °C
Decomposition temperature	: No data available
Vapour pressure	: 1880 kPa
Vapour pressure at 50 °C	: No data available
Critical pressure	: 8940 kPa
Relative vapour density at 20 °C	: >=
Relative density	: No data available
Relative density of saturated gas/air mixture	: No data available
Density	: No data available
Relative gas density	: 1.2
Solubility	: Water: 3980 mg/l
Log Pow	: Not applicable.
Log Kow	: Not applicable.
Viscosity, kinematic	: Not applicable.
Viscosity, dynamic	: Not applicable.
Viscosity, kinematic (calculated value) (40 °C)	: No data available
Explosive properties	: Not applicable.
Oxidizing properties	: None.
Flammability (solid, gas)	:
	4.3 - 46 vol %

9.2.	Other information	
Gas grou	ıp	: Liquefied gas
Additiona	al information	: Gas/vapour heavier than air. May accumulate in confined spaces, particularly at or below ground level

tivity hazard other than the effects described in sub-sections below. under normal conditions. act violently with oxidants. Can form explosive mixture with air. noisture in installation systems. Keep away from heat/sparks/open flames/hot surfaces. noking. iia. Bases. Bromine pentafluoride. Chlorine trifluoride. chromium trioxide. (and heat). (powdered). Fluorine. Lead. Lead oxide. Mercury. Nitric acid. Nitrogen trifluoride.			
under normal conditions. act violently with oxidants. Can form explosive mixture with air. noisture in installation systems. Keep away from heat/sparks/open flames/hot surfaces. noking. iia. Bases. Bromine pentafluoride. Chlorine trifluoride. chromium trioxide. (and heat).			
act violently with oxidants. Can form explosive mixture with air. oisture in installation systems. Keep away from heat/sparks/open flames/hot surfaces. noking. iia. Bases. Bromine pentafluoride. Chlorine trifluoride. chromium trioxide. (and heat).			
noisture in installation systems. Keep away from heat/sparks/open flames/hot surfaces. noking. iia. Bases. Bromine pentafluoride. Chlorine trifluoride. chromium trioxide. (and heat).			
noking. ia. Bases. Bromine pentafluoride. Chlorine trifluoride. chromium trioxide. (and heat).			
n sulfide. Organic compounds. Oxidizing agents. Oxygen difluoride. Rubber. Sodium. pisture). Water.			
I decomposition may produce : Sulfur. Hydrogen.			
SECTION 11: Toxicological information			
11.1. Information on toxicological effects			
ssified			
SECTION 11: Toxicological information 11.1. Information on toxicological effects Acute toxicity (oral) : Not classified Acute toxicity (dermal) : Not classified			

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

Acute toxicity (inhalation)	: Inhalation:gas: FATAL IF INHALED.
Hydrogen sulfide (\f)7783-06-4	
LC50 inhalation rat (mg/l)	0.99 mg/l (Exposure time: 1 h)
LC50 inhalation rat (ppm)	356 ppm/4h
ATE CA (gases)	356.0000000 ppmv/4h
ATE CA (vapours)	0.9900000 mg/l/4h
ATE CA (dust,mist)	0.9900000 mg/l/4h
Skin corrosion/irritation	: Not classified
	pH: Not applicable.
Serious eye damage/irritation	: Not classified
	pH: Not applicable.
Respiratory or skin sensitization	: Not classified
Germ cell mutagenicity	: Not classified
Carcinogenicity	: Not classified
Reproductive toxicity	: Not classified
Specific target organ toxicity (single exposure)	: MAY CAUSE RESPIRATORY IRRITATION.
Specific target organ toxicity (repeated exposure)	: Not classified
Aspiration hazard	: Not classified

SECTION 12: Ecological information	
12.1. Toxicity	
Ecology - general	: VERY TOXIC TO AQUATIC LIFE.
Hydrogen sulfide (7783-06-4)	
LC50 fish 1	0.0448 mg/l (Exposure time: 96 h - Species: Lepomis macrochirus [flow-through])
LC50 fish 2	0.016 mg/l (Exposure time: 96 h - Species: Pimephales promelas [flow-through])
12.2. Persistence and degradability	
Hydrogen sulfide (7783-06-4)	
Persistence and degradability	Not applicable for inorganic gases.
12.3. Bioaccumulative potential	
Hydrogen sulfide (7783-06-4)	
BCF fish 1	(no bioaccumulation expected)
Log Pow	Not applicable.
Log Kow	Not applicable.
Bioaccumulative potential	No data available.
12.4. Mobility in soil	
Hydrogen sulfide (7783-06-4)	
Mobility in soil	No data available.
Log Pow	Not applicable.
Log Kow	Not applicable.
Ecology - soil	Because of its high volatility, the product is unlikely to cause ground or water pollution.
12.5. Other adverse effects	
Other adverse effects	: May cause pH changes in aqueous ecological systems.
Effect on the ozone layer	: None
Effect on global warming	: No known effects from this product

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

7/9

Permian Resources Corporation	H ₂ S Contingency Plan Pinkie Pie 22-21 Fed Com 113H, 114H,	Eddy County, New Mexico
	123H, 124H, 133H, 134H	

Hydrogen sulfide Safety Data Sheet E-4611 according to the Hazardous Products Regulation (February 11, 2015) Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

13.1. Disposal methods	
Waste disposal recommendations	: Do not attempt to dispose of residual or unused quantities. Return container to supplier.
SECTION 14: Transport information	
14.1. Basic shipping description	
In accordance with TDG	
TDG	
UN-No. (TDG)	: UN1053
TDG Primary Hazard Classes	: 2.3 - Class 2.3 - Toxic Gas.
TDG Subsidiary Classes	: 2.1
Proper shipping name	: HYDROGEN SULPHIDE
ERAP Index	: 500
Explosive Limit and Limited Quantity Index	: 0
Passenger Carrying Ship Index	: Forbidden
Passenger Carrying Road Vehicle or Passenger Carrying Railway Vehicle Index	: Forbidden
14.3. Air and sea transport	
IMDG	
UN-No. (IMDG)	: 1053
Proper Shipping Name (IMDG)	: HYDROGEN SULPHIDE
Class (IMDG)	: 2 - Gases
MFAG-No	: 117
IATA	
UN-No. (IATA)	: 1053
Proper Shipping Name (IATA)	: Hydrogen sulphide
Class (IATA)	: 2
SECTION 15: Regulatory information	
15.1. National regulations	
Hydrogen sulfide (7783-06-4)	
Listed on the Canadian DSL (Domestic Substan	ces List)
15.2. International regulations	
Hydrogen sulfide (7783-06-4)	
Listed on the AICS (Australian Inventory of Cher	mical Substances)
Listed on IECSC (Inventory of Existing Chemica	I Substances Produced or Imported in China)
	Inventory of Existing Commercial Chemical Substances)
	Chemical Substances) inventory
Listed on the Japanese ENCS (Existing & New Listed on the Korean ECL (Existing Chemicals L	
Listed on the Japanese ENCS (Existing & New Listed on the Korean ECL (Existing Chemicals L Listed on NZIoC (New Zealand Inventory of Che	.ist) micals)
Listed on the Japanese ENCS (Existing & New Listed on the Korean ECL (Existing Chemicals L Listed on NZIoC (New Zealand Inventory of Che Listed on PICCS (Philippines Inventory of Chem	.ist) micals) icals and Chemical Substances)
Listed on the Japanese ENCS (Existing & New Listed on the Korean ECL (Existing Chemicals L Listed on NZIoC (New Zealand Inventory of Che	ist) micals) icals and Chemical Substances) inces Control Act) inventory
Listed on the Japanese ENCS (Existing & New Listed on the Korean ECL (Existing Chemicals L Listed on NZIoC (New Zealand Inventory of Che Listed on PICCS (Philippines Inventory of Chem Listed on the United States TSCA (Toxic Substa Listed on INSQ (Mexican national Inventory of C	ist) micals) icals and Chemical Substances) inces Control Act) inventory
Listed on the Japanese ENCS (Existing & New Listed on the Korean ECL (Existing Chemicals L Listed on NZIoC (New Zealand Inventory of Chemisted on PICCS (Philippines Inventory of Chemisted on the United States TSCA (Toxic Substatisted on INSQ (Mexican national Inventory of Costervision) (Section 16: Other information)	ist) micals) icals and Chemical Substances) inces Control Act) inventory
Listed on the Japanese ENCS (Existing & New Listed on the Korean ECL (Existing Chemicals L Listed on NZIoC (New Zealand Inventory of Chem Listed on PICCS (Philippines Inventory of Chem Listed on the United States TSCA (Toxic Substat Listed on INSQ (Mexican national Inventory of C SECTION 16: Other information Date of issue	ist) micals) icals and Chemical Substances) inces Control Act) inventory Chemical Substances)
Listed on the Japanese ENCS (Existing & New Listed on the Korean ECL (Existing Chemicals L Listed on NZIoC (New Zealand Inventory of Che Listed on PICCS (Philippines Inventory of Chem Listed on the United States TSCA (Toxic Substa	ist) micals) icals and Chemical Substances) inces Control Act) inventory chemical Substances) : 15/10/1979
Listed on the Japanese ENCS (Existing & New Listed on the Korean ECL (Existing Chemicals L Listed on NZIoC (New Zealand Inventory of Chemicated on PICCS (Philippines Inventory of Chemicated on the United States TSCA (Toxic Substated on INSQ (Mexican national Inventory of Communication Insection) (SECTION 16: Other information) Date of issue Revision date Supersedes	ist) micals) icals and Chemical Substances) inces Control Act) inventory chemical Substances) : 15/10/1979 : 10/08/2016
Listed on the Japanese ENCS (Existing & New Listed on the Korean ECL (Existing Chemicals L Listed on NZIOC (New Zealand Inventory of Chemicated on PICCS (Philippines Inventory of Chemicated on the United States TSCA (Toxic Substat Listed on INSQ (Mexican national Inventory of Comicated on Inventor) (Section 16: Other information) Date of issue Revision date	ist) micals) icals and Chemical Substances) inces Control Act) inventory Chemical Substances) : 15/10/1979 : 10/08/2016 : 15/10/2013
Listed on the Japanese ENCS (Existing & New Listed on the Korean ECL (Existing Chemicals L Listed on NZIoC (New Zealand Inventory of Chemicated on PICCS (Philippines Inventory of Chemicated on the United States TSCA (Toxic Substatisted on INSQ (Mexican national Inventory of Costection of the States of Section 16: Other information Date of issue Revision date Supersedes Indication of changes:	ist) micals) icals and Chemical Substances) inces Control Act) inventory chemical Substances) : 15/10/1979 : 10/08/2016
Listed on the Japanese ENCS (Existing & New Listed on the Korean ECL (Existing Chemicals L Listed on NZIOC (New Zealand Inventory of Chemicated on PICCS (Philippines Inventory of Chemicated on the United States TSCA (Toxic Substates Listed on INSQ (Mexican national Inventory of Construction) SECTION 16: Other Information Date of issue Revision date Supersedes Indication of changes: Training advice	ist) micals) icals and Chemical Substances) inces Control Act) inventory themical Substances) : 15/10/1979 : 10/08/2016 : 15/10/2013 : Users of breathing apparatus must be trained. Ensure operators understand the toxicity hazar Ensure operators understand the flammability hazard.
Listed on the Japanese ENCS (Existing & New Listed on the Korean ECL (Existing Chemicals L Listed on NZIoC (New Zealand Inventory of Chemicals L Listed on PICCS (Philippines Inventory of Chemicate Listed on the United States TSCA (Toxic Substat Listed on INSQ (Mexican national Inventory of Comicate Communication) SECTION 16: Other information Date of issue Revision date Supersedes Indication of changes: Training advice	ist) micals) icals and Chemical Substances) inces Control Act) inventory chemical Substances) : 15/10/1979 : 10/08/2016 : 15/10/2013 : Users of breathing apparatus must be trained. Ensure operators understand the toxicity hazar

ved by OCD: 4/22/2024 1:58:12 PM		Pag
Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	
Other information	according to the Hazardous Products Regulation (February 11, 2015) Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: : When you mix two or more chemicals, you can create addi and evaluate the safety information for each component be Consult an industrial hygienist or other trained person when Before using any plastics, confirm their compatibility with th Praxair asks users of this product to study this SDS and be and safety information. To promote safe use of this product agents, and contractors of the information in this SDS and and safety information, (2) furnish this information to each µ each purchaser to notify its employees and customers of th information The opinions expressed herein are those of qualified exper	tional, unexpected hazards. Obtain fore you produce the mixture. n you evaluate the end product. is product come aware of the product hazards ., a user should (1) notify employees, of any other known product hazards surchaser of the product, and (3) ask e product hazards and safety ts within Praxair Canada Inc. We
	believe that the information contained herein is current as a Since the use of this information and the conditions of use. Canada Inc, it is the user's obligation to determine the cond Praxair Canada Inc, SDSs are furnished on sale or delivery independent distributors and suppliers who package and so SDSs for these products, contact your Praxair sales repress supplier, or download from www.praxair.ca. If you have que would like the document number and date of the latest SDS	are not within the control of Praxair litions of safe use of the product. by Praxair Canada Inc, or the ell our products. To obtain current entative, local distributor, or estions regarding Praxair SDSs,

Praxair suppliers in your area, phone or write Praxair Canada Inc, (Phone: 1-888-257-5149; Address: Praxair Canada Inc, 1 City Centre Drive, Suite 1200, Mississauga, Ontario, L5B 1M2).

PRAXAIR and the Flowing Airstream design are trademarks or registered trademarks of Praxair Technology, Inc. in the United States and/or other countries.

NFPA health hazard	: 4 - Very short exposure could cause death or serious residual injury even though prompt medical attention was given.
NFPA fire hazard	: 4 - Will rapidly or completely vaporize at normal pressure and temperature, or is readily dispersed in air and will burn readily.
NFPA reactivity	: 0 - Normally stable, even under fire exposure conditions, and are not reactive with water.
HMIS III Rating	
Health	: 2 Moderate Hazard - Temporary or minor injury may occur
Flammability	: 4 Severe Hazard - Flammable gases, or very volatile flammable liquids with flash points below 73 F, and boiling points below 100 F. Materials may ignite spontaneously with air. (Class IA)
Physical	: 2 Moderate Hazard - Materials that are unstable and may undergo violent chemical changes at normal temperature and pressure with low risk for explosion. Materials may react violently with water or form peroxides upon exposure to air.

SDS Canada (GHS) - Praxair

This information is based on our current knowledge and is intended to describe the product for the purposes of health, safety and environmental requirements only. It should not therefore be construed as guaranteeing any specific property of the product.

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

Appendix B SO₂ SDS

Safety Data Sheet

Material Name: SULFUR DIOXIDE

SDS ID: MAT22290

al Name: SULFUR DIOXIDE	SDS ID: MAT2
Section 1 - PRODUCT AND COMPANY IDENTIFICATION	
Material Name	
SULFUR DIOXIDE	
Synonyms	
MTG MSDS 80; SULFUROUS ACID ANHYDRIDE; SULFUROUS OXIDE; SULPHUR DIOXID	E;
SULFUROUS ANHYDRIDE; FERMENTICIDE LIQUID; SULFUR DIOXIDE(SO2); SULFUR O	XIDE;
SULFUR OXIDE(SO2)	
Chemical Family	
inorganic, gas	
Product Description	
Classification determined in accordance with Compressed Gas Association standards.	
Product Use	
Industrial and Specialty Gas Applications.	
Restrictions on Use	
None known.	
Details of the supplier of the safety data sheet	
MATHESON TRI-GAS, INC.	
3 Mountainview Road	
Warren, NJ 07059	
General Information: 1-800-416-2505	
Emergency #: 1-800-424-9300 (CHEMTREC)	
Outside the US: 703-527-3887 (Call collect)	
Section 2 - HAZARDS IDENTIFICATION	
Classification in accordance with paragraph (d) of 29 CFR 1910.1200.	
Gases Under Pressure - Liquefied gas	
Acute Toxicity - Inhalation - Gas - Category 3	
Skin Corrosion/Irritation - Category 1B	
Serious Eye Damage/Eye Irritation - Category 1	
Simple Asphyxiant	
GHS Label Elements	
Symbol(s)	
$\wedge \wedge \wedge$	
Circuit Word	
Signal Word Danger	
Hazard Statement(s)	
Contains gas under pressure; may explode if heated.	
Toxic if inhaled.	
Causas savana shin huma and ava dama a	
Causes severe skin burns and eye damage.	
May displace oxygen and cause rapid suffocation.	
May displace oxygen and cause rapid suffocation. Precautionary Statement(s)	
May displace oxygen and cause rapid suffocation. Precautionary Statement(s) Prevention	
May displace oxygen and cause rapid suffocation. Precautionary Statement(s)	

Page 1 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

Material Name: SULFUR DIOXIDE

Wash thoroughly after handling. Do not breathe dusts or mists. Response IF INHALED: Remove person to fresh air and keep comfortable for breathing. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing IF ON SKIN (or hair): Remove/take off immediately all contaminated clothing. Rinse skin with water/shower. Wash contaminated clothing before reuse. IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. Immediately call a POISON CENTER or doctor. Specific treatment (see label). Storage Store in a well-ventilated place. Keep container tightly closed. Store locked up Protect from sunlight. Disposal Dispose of contents/container in accordance with local/regional/national/international regulations. Other Hazards Contact with liquified gas may cause frostbite.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS			
CAS Component Name Per			
7446-09-5	Sulfur dioxide	100.0	
	Section 4 - FIRST AID MEASURES		

Inhalation

IF INHALED: Remove person to fresh air and keep at rest in a position comfortable for breathing. Get immediate medical attention.

Skin

IF ON SKIN (or hair): Remove/take off immediately all contaminated clothing. Rinse skin with water/shower. Wash contaminated clothing before reuse. If frostbite or freezing occur, immediately flush with plenty of lukewarm water (105-115°F; 41-46°C). If warm water is not available, gently wrap affected parts in blankets. DO NOT induce vomiting. Get immediate medical attention.

Eyes

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Get immediate medical attention.

Ingestion

IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. Get immediate medical attention. Most Important Symptoms/Effects

Acute

Toxic if inhaled, frostbite, suffocation, respiratory tract burns, skin burns, eye burns

Delayed

No information on significant adverse effects.

- Indication of any immediate medical attention and special treatment needed
- Treat symptomatically and supportively.

Note to Physicians

For inhalation, consider oxygen.

Page 2 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

SDS ID: MAT22290

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

Safety Data Sheet		
al Name: SULFUR DIOXIDE	SDS ID: MA	
Section 5 - FIRE FIGHTING MEASURES		
Extinguishing Media Suitable Extinguishing Media carbon dioxide, regular dry chemical, Large fires: Use regular foam or flood with fine water spray.		
Unsuitable Extinguishing Media None known.		
Special Hazards Arising from the Chemical Negligible fire hazard.		
Hazardous Combustion Products sulfur oxides		
Fire Fighting Measures		
Move container from fire area if it can be done without risk. Cool containers with water spray until is out. Stay away from the ends of tanks. Keep unnecessary people away, isolate hazard area and de		
Special Protective Equipment and Precautions for Firefighters Wear full protective fire fighting gear including self contained breathing apparatus (SCBA) for protection against possible exposure.		
Section 6 - ACCIDENTAL RELEASE MEASURES		
Personal Precautions, Protective Equipment and Emergency Procedures		
Wear personal protective clothing and equipment, see Section 8.		
Methods and Materials for Containment and Cleaning Up		
Keep unnecessary people away, isolate hazard area and deny entry. Stay upwind and keep out of lo		
Ventilate closed spaces before entering. Evacuation radius: 150 feet. Stop leak if possible without p Reduce vapors with water spray. Do not get water directly on material.	ersonal risk.	
Environmental Precautions		
Avoid release to the environment.		
Section 7 - HANDLING AND STORAGE		
Precautions for Safe Handling		
Do not get in eyes, on skin, or on clothing. Do not breathe gas, fumes, vapor, or spray. Wash hands		
handling. Use only outdoors or in a well-ventilated area. Wear protective gloves/protective clothing		
protection/face protection. Contaminated work clothing should not be allowed out of the workplace		
drink or smoke when using this product. Keep only in original container. Avoid release to the envir	onment.	
Conditions for Safe Storage, Including any Incompatibilities Store in a well-ventilated place. Keep container tightly closed.		
Store in a weil-ventilated place. Keep container tignity closed. Store locked up.		
Protect from sunlight.		
Store and handle in accordance with all current regulations and standards. Protect from physical dat	mage. Store	
outside or in a detached building. Keep separated from incompatible substances.		

Incompatible Materials

bases, combustible materials, halogens, metal carbide, metal oxides, metals, oxidizing materials, peroxides, reducing agents

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

Component Exposure Limits

Sulfur dioxide	7446-09-5
ACGIH:	0.25 ppm STEL

Page 3 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

Material Name: SULFUR DIOXIDE

NIOSH:	2 ppm TWA ; 5 mg/m3 TWA	
	5 ppm STEL ; 13 mg/m3 STEL	
	100 ppm IDLH	
OSHA (US):	5 ppm TWA ; 13 mg/m3 TWA	
Mexico:	0.25 ppm STEL [PPT-CT]	

ACGIH - Threshold Limit Values - Biological Exposure Indices (BEI)

There are no biological limit values for any of this product's components.

Engineering Controls

Provide local exhaust or process enclosure ventilation system. Ensure compliance with applicable exposure limits. Individual Protection Measures, such as Personal Protective Equipment

Eye/face protection

Wear splash resistant safety goggles with a faceshield. Contact lenses should not be worn. Provide an emergency eye wash fountain and quick drench shower in the immediate work area.

Skin Protection

Wear appropriate chemical resistant clothing. Wear chemical resistant clothing to prevent skin contact. Respiratory Protection

Any self-contained breathing apparatus that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode.

Glove Recommendations

Wear appropriate chemical resistant gloves.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES				
Appearance	colorless gas	Physical State	gas	
Odor	irritating odor	Color	colorless	
Odor Threshold	3 - 5 ppm	рН	(Acidic in solution)	
Melting Point	-73 °C (-99 °F)	Boiling Point	-10 °C (14 °F)	
Boiling Point Range	Not available	Freezing point	Not available	
Evaporation Rate	>1 (Butyl acetate = 1)	Flammability (solid, gas)	Not available	
Autoignition Temperature	Not available	Flash Point	(Not flammable)	
Lower Explosive Limit	Not available	Decomposition temperature	Not available	
Upper Explosive Limit	Not available	Vapor Pressure	2432 mmHg @ 20 °C	
Vapor Density (air=1)	2.26	Specific Gravity (water=1)	1.462 at -10 °C	

Page 4 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

SDS ID: MAT22290

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

Mate

2290

rial Name: SULFUR DIOXI	DE		SDS ID: MAT2
Water Solubility	22.8 % (@ 0 °C)	Partition coefficient: n- octanol/water	Not available
Viscosity	Not available	Kinematic viscosity	Not available
Solubility (Other)	Not available	Density	Not available
Physical Form	liquified gas	Molecular Formula	S-02
Molecular Weight	64.06		
Solvent Solubility Soluble alcohol, acetic acid, sulfuric		Benzene, sulfuryl chloride, nitrobenzene ILITY AND REACTIVITY	s, Toluene, acetone
Reactivity No reactivity hazard is expect Chemical Stability			
Stable at normal temperature Possibility of Hazardous R Will not polymerize. Conditions to Avoid	eactions		
	rial. Containers may rup	ture or explode if exposed to heat.	
bases, combustible materials	s, halogens, metal carbid	e, metal oxides, metals, oxidizing materia	als, peroxides, reducing
agents Hazardous decomposition oxides of sulfur	products		
Se Information on Likely Rou		DLOGICAL INFORMATION	
Skin Contact skin burns Eye Contact eye burns Ingestion burns, nausea, vomiting, dia Acute and Chronic Toxicit Component Analysis - LDS The components of this mate published: Sulfur dioxide (7446-09-5) Inhalation LC50 Rat 965 - 1 Product Toxicity Data	rrhea, stomach pain y 50/LC50 erial have been reviewed	m, burns, difficulty breathing l in various sources and the following sele	ected endpoints are
Acute Toxicity Estimate No data available. Immediate Effects			

Page 5 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

Permian Resourc	es Cornorati	on	H ₂ S Contingency Plan	Eddy County, New Mexico
criman Resourc		011	Pinkie Pie 22-21 Fed Com 113H, 114H,	Eddy county, New Mexico
			123H, 124H, 133H, 134H	
	MATH	ESON		
	askThe Gas	Professionals™		
			Safety Data Sheet	
Mater	al Name: SULF			SDS ID: MAT22290
	Delayed Effects		ocation, respiratory tract burns, skin burns, eye burns	
	No information of	on significant	adverse effects.	
	Irritation/Corre respiratory tract		ms, eye burns	
	Respiratory Ser	isitization	· •	
	No data available Dermal Sensitiz			
	No data availabl	e.		
ſ	Component Car Sulfur dioxide	rcinogenicity 7446-09-5		
	ACGIH:	A4 - Not Cla	ssifiable as a Human Carcinogen	
	IARC:	Monograph :	54 [1992] (Group 3 (not classifiable))	
_	Germ Cell Mut			
	No data available Tumorigenic Da			
	No data availabl			
	Reproductive T No data available			
			ity - Single Exposure	
	No target organs Specific Target		ity - Repeated Exposure	
	No target organs	identified.		
	Aspiration haza Not applicable.	ird		
	Medical Condit		ted by Exposure	
Г	respiratory disor		THE PROPERTY IN THE PROPERTY INTENTY IN THE PROPERTY INTERPOPERTY INTERPOP	
L	Component An		ection 12 - ECOLOGICAL INFORMATION	
	No LOLI ecotox	icity data are a	available for this product's components.	
	Persistence and No data available		у	
	Bioaccumulativ	e Potential		
	No data available Mobility	c.		
-	No data available	e.		
L			ection 13 - DISPOSAL CONSIDERATIONS	
	Disposal Metho Dispose of conte		in accordance with local/regional/national/international regulations.	
	Component Wa	ste Numbers	· · ·	
г	The U.S. EPA ha	-	ed waste numbers for this product's components.	
L	US DOT L		Section 14 - TRANSPORT INFORMATION	
	US DOT Inform Shipping Name		OXIDE	
			Issue date: 2021-01-30 Revision 8.0	

•

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Pinkie Pie 22-21 Fed Com 113H, 114H,	
	123H, 124H, 133H, 134H	

Material Name: SULFUR DIOXIDE

Hazard Class: 2.3 UN/NA #: UN1079 Required Label(s): 2.3

IMDG Information: Shipping Name: SULPHUR DIOXIDE Hazard Class: 2.3 UN#: UN1079 Required Label(s): 2.3

TDG Information: Shipping Name: SULFUR DIOXIDE Hazard Class: 2.3 UN#: UN1079 Required Label(s): 2.3

International Bulk Chemical Code

This material does not contain any chemicals required by the IBC Code to be identified as dangerous chemicals in bulk.

Section 15 - REGULATORY INFORMATION

U.S. Federal Regulations

This material contains one or more of the following chemicals required to be identified under SARA Section 302 (40 CFR 355 Appendix A), SARA Section 313 (40 CFR 372.65), CERCLA (40 CFR 302.4), TSCA 12(b), and/or require an OSHA process safety plan.

Sulfur dioxide	7446-09-5				
SARA 302:	500 lb TPQ				
OSHA (safety):	1000 lb TQ (Liquid)				
SARA 304:	500 lb EPCRA RQ				

SARA Section 311/312 (40 CFR 370 Subparts B and C) reporting categories

Gas Under Pressure; Acute toxicity; Skin Corrosion/Irritation; Serious Eye Damage/Eye Irritation; Simple Asphyxiant

U.S. State Regulations

The following components appear on one or more of the following state hazardous substances lists:

Component	CAS	CA	MA	MN	NJ	PA
Sulfur dioxide	7446-09-5	Yes	Yes	Yes	Yes	Yes

California Safe Drinking Water and Toxic Enforcement Act (Proposition 65)

This product can expose you to chemicals including Sulfur dioxide , which is known to the State of California to cause birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Page 7 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

SDS ID: MAT22290

ermian Resources Corporation						H ₂ S Contingency Plan Pinkie Pie 22-21 Fed Com 113H, 114H, 123H, 124H, 133H, 134H					14H,	Eddy County, New Mexico		
6		1AT												
Mate	arial Na	ame: S	ULFI			ŝ	Safe	ety D	ata S	heet			s	DS ID: MAT22290
inde		ur dioxi		7446-0					٦					
		o/Dev. 1				l toxicit	v. 7/2	9/201	1					
		ponent			·		,,,,,							
		ur dioxi				JP - EN	ICE	JP - 19		D VECL A		KR KECI	A]
	US	CA	AU	CN	EU		vcs		<u> </u>	R KECI - A	nnex 1		Annex 2	
	Yes	DSL	Yes	Yes	EIN	Yes		Yes	Ĩ	es		No		
	KR -	REAC	H CC.	A M2	K NZ	PH	TH-	TECI	TW, C	N VN (Dr	aft)			
	No			Ye	s Yes	s Yes	Yes		Yes	Yes				
						Sectio	on 16	- 01	HER	INFORM	ATIO	N		
	Haza SUS SDS Key / ACG Austr Com Com Envir Expo Asso Immo Kow Exist Exist - Kor LLV Conc - Natio Perm Regis	mary of update: / Legen iIH - An ralia; B(fornia/M prehens; ; CLP - ;sche Fo; - Dome pean Inv mercial ronment osure Inco cetation; ediately strial Sa r - Octan ting Che rea Regi r - Level centratio tional Fi cy Trade onal Too nissible I stration,	e: 0 = f Cha c: 02/10 nd mericas OD - 1 Aassac sive Eu Class prschuu estic S vventor Chen tal Prr dices); i ICAO v Dang fiety a mol/wa emical emical istratii l Limii on Val ire Prr dices); processione enical istratii l Limii on Val ire Prr dices); processione enical	Minima nges D/2016 an Conf Biocher husetts novironn ification ngsgem ubstance ry of (E nical Substance ry of (E substance ry of (E nical Substance ry of (E substance ry of (erence mical O /Minne nental I n, Labe einscha ces List xisting bstance Agence Agence KECL) KECL) Evaluar ; LOLI te Worl Agence Agence atry; No gram; N	of Gove xygen I sota/Net Response illing, an aft; DOT ; EC – F Comme es; ENC ; EU - national al Civil . and Heal v; IUCL befficien i; KR KI), KR - tion of C - List O kplace; N y; NIOS 1 - Non-(UZ - Net - Philip isation, i	rnmen Deman w Jerss e, Con C - Dej Europe reial (S - Jaj Europe reial (S - Jaj Europe Agen Ayen Ayen ID - Ir t; KR ECI A Korea hemis f LIst WEL - SH - N quanti w Zeal pines; and re	ntal Ind d; C - ey/Pen npensa kaging partme an Cor Chemid pan Ex- bean Ur cy for 1 on Org 1DG - nternati KECI nnex 2 ; LD50 cal Sub s TM - Co Maxin lational tative; and; Co RCRA	fustrial F Celsius; insylvani titon, and g, CN - C nt of Trr mmissio cal Subst isting an nion; F - Research ganizatio Internati ional Um Annex 1 - Korea)/LC50 - stances ChemAD mum Ex I Institut NSL - P SHA - C A - Resolon on of Che	CA - Canad ia*; CAS - Ci l Liability A hina; CPR - ansportation; n; EEC - Eu tances); EIN dd New Chen Fahrenheit; n; IDL - Ing onal Maritir iform Chem l - Korea Ex Existing Cf Lethal Doss Chemical Co VISOR's Ro posure Limi e for Occup Non-Domest Occupational uree Conserv emicals; RII	DR - 1 a; CA/ hemici ct; CFI DSD - ropean ECS - nical S IATA F - Ba IATA redient isting (emical / Letha isting (gulato s; MX titional is Subs; Safety vation a) - Eur	European Roa MA/MN/NJ/I al Abstracts S & - Code of Fe olled Products - Dangerous S Economic Co European Inve ubstance Inve ekground (for - Internationa Disclosure L gerous Goods formation Dat Chemicals Inv is Inventory (F al Concentrati Act; LEL - Lo ry Database; 1 - Mexico; Ne Safety and He stance List (Co and Health A und Recovery opean Rail Tr	PA - ervice; CE ederal Regu Regulatio substance I mmunity; entory of E entory of E intory; EP4 Venezuela 1 Air Trans ist; IDLH v; ISHL - Ja abase; JP - entory (KE KECI) / Ko on; KR RE wer Explo MAK - Ma e- Non-spe ealth; NJTS anada); NT idministrat Act; REA(ansport; S/	RCLA - Ilations ns; DFG - Directive; EIN - ixisting A - a Biological sport - a Biological sport - a Biological sport - a Biological sport - a Biological sport - a Biological sport - a Biological sport - a Biological sport - a Biological sport - a Biological sport - - a Biological sport - - - - - - - - - - - - -
	Supe	-rand A	u	incino e	in ne			,	- Gende	quantitative,	SILL	- Short-term	exposure 1	
Daga	8 of 9					lee	ue de	te: 20	21.01.2	0 Revisio	0.9.0		- Driet	date: 2021-01-30

•

NEW MEXICO

(SP) EDDY PINKIE PIE 22-21 FED COM PINKIE PIE 22-21 FED COM 114H

OWB PWP0

Anticollision Summary Report

09 May, 2023

Received by OCD: 4/22/2024 1:58:12 PM

Permian Resources

Anticollision Summary Report

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well PINKIE PIE 22-21 FED COM 114H							
Project:	(SP) EDDY	TVD Reference:	GL @ 3654.1usft							
Reference Site:	PINKIE PIE 22-21 FED COM	MD Reference:	GL @ 3654.1usft							
Site Error:	0.0 usft	North Reference:	Grid							
Reference Well:	PINKIE PIE 22-21 FED COM 114H	Survey Calculation Method:	Minimum Curvature							
Well Error:	0.0 usft	Output errors are at	2.00 sigma							
Reference Wellbore	OWB	Database:	Compass							
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum							
		_								
Reference	Reference PWP0									
Filter type:	Filter type: NO GLOBAL FILTER: Using user defined selection & filtering criteria									

Warning Levels Evaluated	at: 2.00 Sigma	Casing Method:	Not applied
Results Limited by:	Maximum centre distance of 1,000.0usft	Error Surface:	Pedal Curve
Depth Range:	Unlimited	Scan Method:	Closest Approach 3D
Interpolation Method:	Stations	Error Model:	ISCWSA
		in di interning eriterita	

Survey Tool Program		Date 5/9/2023		
From (usft)	To (usft)	Survey (Wellbore)	Tool Name	Description
0.0	18,041.4	4 PWP0 (OWB)	MWD+IFR1+MS	OWSG_Rev2_MWD + IFR1 + Multi-Station Correction

-					
s	u	m	m	ar	v

	Reference	Offset	Dista	nce		
Site Name Offset Well - Wellbore - Design	Measured Depth (usft)	Measured Depth (usft)	Between Centres (usft)	Between Ellipses (usft)	Separation Factor	Warning
PINKIE PIE 22-21 FED COM						
PINKIE PIE 22-21 FED COM 113H - OWB - PWP0	2,000.0	1,999.8	33.0	18.7	2.301	CC, ES, SF
PINKIE PIE 22-21 FED COM 123H - OWB - PWP0	2,000.0	2,000.8	99.0	84.6	6.901	CC, ES
PINKIE PIE 22-21 FED COM 123H - OWB - PWP0	2,100.0	2,100.8	100.6	85.6	6.689	SF
PINKIE PIE 22-21 FED COM 124H - OWB - PWP0	7,479.6	7,488.5	50.6	-2.3	0.956	Level 3, CC, ES, SF
PINKIE PIE 22-21 FED COM 133H - OWB - PWP0	2,000.0	1,999.7	165.0	150.6	11.506	CC, ES
PINKIE PIE 22-21 FED COM 133H - OWB - PWP0	2,250.0	2,249.4	175.2	159.1	10.906	SF
PINKIE PIE 22-21 FED COM 134H - OWB - PWP0	2,000.0	2,000.4	132.0	117.6	9.203	CC
PINKIE PIE 22-21 FED COM 134H - OWB - PWP0	7,525.0	7,542.4	156.9	103.6	2.940	ES
PINKIE PIE 22-21 FED COM 134H - OWB - PWP0	7,550.0	7,567.2	157.4	103.9	2.939	SF
SHUGART FED 22 1 - OWB - AWP	9,231.5	7,943.8	1.3	-226.3	0.006	Level 3, CC, ES, SF

Received by OCD: 4/22/2024 1:58:12 PM



Permian Resources

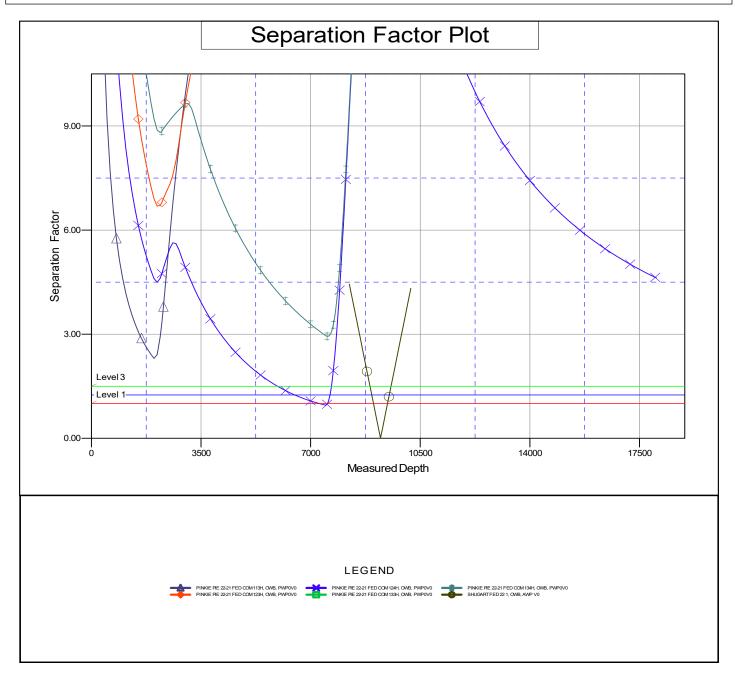
Anticollision Summary Report

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well PINKIE PIE 22-21 FED COM 114H
Project:	(SP) EDDY	TVD Reference:	GL @ 3654.1usft
Reference Site:	PINKIE PIE 22-21 FED COM	MD Reference:	GL @ 3654.1usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	PINKIE PIE 22-21 FED COM 114H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Reference Depths are relative to GL @ 3654.1usft Offset Depths are relative to Offset Datum Central Meridian is 104° 20' 0.000 W Coordinates are relative to: PINKIE PIE 22-21 FED COM 114H Coordinate System is US State Plane 1983, New Mexico Eastern Zone Grid Convergence at Surface is: 0.26°

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Received by OCD: 4/22/2024 1:58:12 PM



Permian Resources

Anticollision Summary Report

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well PINKIE PIE 22-21 FED COM 114H
Project:	(SP) EDDY	TVD Reference:	GL @ 3654.1usft
Reference Site:	PINKIE PIE 22-21 FED COM	MD Reference:	GL @ 3654.1usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	PINKIE PIE 22-21 FED COM 114H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum
Reference Well: Well Error: Reference Wellbore	PINKIE PIE 22-21 FED COM 114H 0.0 usft OWB	Survey Calculation Method: Output errors are at Database:	Minimum Curvature 2.00 sigma Compass

Reference Depths are relative to GL @ 3654.1usft Offset Depths are relative to Offset Datum Central Meridian is 104° 20' 0.000 W Coordinates are relative to: PINKIE PIE 22-21 FED COM 114H Coordinate System is US State Plane 1983, New Mexico Eastern Zone Grid Convergence at Surface is: 0.26°

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

NEW MEXICO

(SP) EDDY PINKIE PIE 22-21 FED COM PINKIE PIE 22-21 FED COM 114H

OWB

Plan: PWP0

Standard Planning Report - Geographic

09 May, 2023

Received by OCD: 4/22/2024 1:58:12 PM PERMIAN

RESOURCES

Permian Resources

Planning Report - Geographic

Database: Company: Project: Site: Well: Wellbore: Design:	(SP) E PINKIE	Mexico DDy E PIE 22-21 Fe E PIE 22-21 Fe			TVD Refer MD Refer North Ref	ence:		Well PINKIE PIE GL @ 3654.1us GL @ 3654.1us Grid Minimum Curva	ft	M 114H
Project	(SP) ED	DY								
Map System: Geo Datum: Map Zone:	North Am	Plane 1983 Ierican Datum Iico Eastern Zo			System Da	tum:	Me	ean Sea Level		
Site	PINKIE	PIE 22-21 FE	D COM							
Site Position: From: Position Uncertaiı	Map nty:		Northi Eastin O usft Slot R	-		,247.27 usft ,740.60 usft 13-3/16 "	Latitude: Longitude: Grid Converg	jence:		32° 44' 13.764 N 103° 51' 2.507 W 0.26 °
Well	PINKIE	PIE 22-21 FE	COM 114H							
Well Position	+N/-S +E/-W	(0.0 usft Ea	orthing: asting:	•	629,288.07 690,003.63	Busft Lor	itude: ngitude:		32° 43' 44.471 N 103° 50' 59.585 W
Position Uncertain	nty		0.0 usft Wo	ellhead Elevat	lon:		Gro	ound Level:		3,654.1 usft
Wellbore	OWB									
Magnetics	Mo	del Name	Sampl	e Date	Declina (°)	tion	Dip A (Field Str (n1	-
		IGRF200510	1	12/31/2009		7.92		60.66	49,06	4.62775560
Design	PWP0									
Audit Notes: Version:			Phase	o. [PROTOTYPE	Tiz	on Depth:		0.0	
				-			-			
Vertical Section:		L	Depth From (TN (usft) 0.0	VD)	+N/-S (usft) 0.0	(u	E/-W Isft)).0		ection (°) 66.65	
Plan Survey Tool Depth From (usft) 1 (Depth (usf		5/9/2023 (Wellbore) OWB)		Tool Name MWD+IFR1+ OWSG_Rev2		Remarks 1 +			
Plan Sections										
Measured	iclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,250.0	5.00	158.54	2,000.0	-10.1	4.0	2.00	2.00	0.00	158.54	
	5.00	158.54	7,456.8	-434.1	170.7	0.00	0.00	0.00	0.00	
7,477.0		264.90	7,944.0	-517.3	-300.9	12.01	11.16	13.97	106.30	
7,477.0 8,238.3	90.00	204.90	7,044.0							
	90.00 90.00 90.00	269.63 269.63	7,944.0 7,944.0 7,944.0	-528.6 -591.0	-536.9 -10,104.1	2.00 0.00	0.00 0.00		90.00	INKIE PIE 22-21 FE

5/9/2023 9:10:26AM

Permian Resources

Planning Report - Geographic

Database:	Compass	Local Co-ordinate Reference:	Well PINKIE PIE 22-21 FED COM 114H
Company:	NEW MEXICO	TVD Reference:	GL @ 3654.1usft
Project:	(SP) EDDY	MD Reference:	GL @ 3654.1usft
Site:	PINKIE PIE 22-21 FED COM	North Reference:	Grid
Well:	PINKIE PIE 22-21 FED COM 114H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	PWP0		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
0.0	0.00	0.00	0.0	0.0	0.0	629,288.07	690,003.63	32° 43' 44.471 N	103° 50' 59.585 W
100.0	0.00	0.00	100.0	0.0	0.0	629,288.07	690,003.63	32° 43' 44.471 N	103° 50' 59.585 W
200.0	0.00	0.00	200.0	0.0	0.0	629,288.07	690,003.63	32° 43' 44.471 N	103° 50' 59.585 W
300.0	0.00	0.00	300.0	0.0	0.0	629,288.07	690,003.63	32° 43' 44.471 N	103° 50' 59.585 W
400.0	0.00	0.00	400.0	0.0	0.0	629,288.07	690,003.63	32° 43' 44.471 N	103° 50' 59.585 W
500.0	0.00	0.00	500.0	0.0	0.0	629,288.07	690,003.63	32° 43' 44.471 N	103° 50' 59.585 W
600.0	0.00	0.00	600.0	0.0	0.0	629,288.07	690,003.63	32° 43' 44.471 N	103° 50' 59.585 W
700.0	0.00	0.00	700.0	0.0	0.0	629,288.07	690,003.63	32° 43' 44.471 N	103° 50' 59.585 W
800.0	0.00	0.00	800.0	0.0	0.0	629,288.07	690,003.63	32° 43' 44.471 N	103° 50' 59.585 W
900.0	0.00	0.00	900.0	0.0	0.0	629,288.07	690,003.63	32° 43' 44.471 N	103° 50' 59.585 W
1,000.0	0.00	0.00	1,000.0	0.0	0.0	629,288.07	690,003.63	32° 43' 44.471 N	103° 50' 59.585 W
1,100.0	0.00	0.00	1,100.0	0.0	0.0	629,288.07	690,003.63	32° 43' 44.471 N	103° 50' 59.585 W
1,200.0	0.00	0.00	1,200.0	0.0	0.0	629,288.07	690,003.63	32° 43' 44.471 N	103° 50' 59.585 W
1,300.0	0.00	0.00	1,300.0	0.0	0.0	629,288.07	690,003.63	32° 43' 44.471 N	103° 50' 59.585 W
1,400.0	0.00	0.00	1,400.0	0.0	0.0	629,288.07	690,003.63	32° 43' 44.471 N	103° 50' 59.585 W
1,500.0	0.00	0.00	1,500.0	0.0	0.0	629,288.07	690,003.63	32° 43' 44.471 N	103° 50' 59.585 W
1,600.0	0.00	0.00	1,600.0	0.0	0.0	629,288.07	690,003.63	32° 43' 44.471 N	103° 50' 59.585 W
1,700.0	0.00	0.00	1,700.0	0.0	0.0	629,288.07	690,003.63	32° 43' 44.471 N	103° 50' 59.585 W
1,800.0	0.00	0.00	1,800.0	0.0	0.0	629,288.07	690,003.63	32° 43' 44.471 N	103° 50' 59.585 W
1,900.0	0.00	0.00	1,900.0	0.0	0.0	629,288.07	690,003.63	32° 43' 44.471 N	103° 50' 59.585 W
2,000.0	0.00	0.00	2,000.0	0.0	0.0	629,288.07	690,003.63	32° 43' 44.471 N	103° 50' 59.585 W
2,100.0	2.00	158.54	2,100.0	-1.6	0.6	629,286.45	690,004.26	32° 43' 44.455 N	103° 50' 59.578 W
2,200.0	4.00	158.54	2,199.8	-6.5	2.6	629,281.58	690,006.18	32° 43' 44.407 N	103° 50' 59.556 W
2,250.0 2,300.0	5.00	158.54 158.54	2,249.7 2,299.5	-10.1 -14.2	4.0	629,277.93	690,007.61	32° 43' 44.371 N	103° 50' 59.539 W 103° 50' 59.521 W
2,300.0	5.00	158.54	2,299.5 2,399.1	-14.2	5.6 8.8	629,273.87	690,009.21	32° 43' 44.330 N	
2,400.0	5.00 5.00	158.54	2,399.1 2,498.7	-22.3 -30.4	0.0 12.0	629,265.76 629,257.65	690,012.40 690,015.59	32° 43' 44.250 N 32° 43' 44.170 N	103° 50' 59.484 W 103° 50' 59.447 W
2,500.0	5.00	158.54	2,498.7 2,598.4	-30.4 -38.5	12.0	629,249.54	690,015.59	32° 43' 44.170 N 32° 43' 44.089 N	103° 50' 59.447 W
2,000.0	5.00	158.54	2,598.4	-30.5	18.3	629,249.34	690,021.96	32° 43' 44.009 N	103° 50' 59.373 W
2,800.0	5.00	158.54	2,030.0	-54.8	21.5	629,233.32	690,025.15	32° 43' 43.928 N	103° 50' 59.336 W
2,900.0	5.00	158.54	2,897.2	-62.9	24.7	629,225.20	690,028.34	32° 43' 43.848 N	103° 50' 59.299 W
3,000.0	5.00	158.54	2,996.8	-71.0	27.9	629,217.09	690,031.53	32° 43' 43.767 N	103° 50' 59.262 W
3,100.0	5.00	158.54	3,096.4	-79.1	31.1	629,208.98	690,034.72	32° 43' 43.687 N	103° 50' 59.226 W
3,200.0	5.00	158.54	3,196.1	-87.2	34.3	629,200.87	690,037.91	32° 43' 43.607 N	103° 50' 59.189 W
3,300.0	5.00	158.54	3,295.7	-95.3	37.5	629,192.76	690,041.09	32° 43' 43.526 N	103° 50' 59.152 W
3,400.0	5.00	158.54	3,395.3	-103.4	40.7	629,184.65	690,044.28	32° 43' 43.446 N	103° 50' 59.115 W
3,500.0	5.00	158.54	3,494.9	-111.5	43.8	629,176.54	690,047.47	32° 43' 43.365 N	103° 50' 59.078 W
3,600.0	5.00	158.54	3,594.5	-119.6	47.0	629,168.43	690,050.66	32° 43' 43.285 N	103° 50' 59.041 W
3,700.0	5.00	158.54	3,694.2	-127.8	50.2	629,160.31	690,053.85	32° 43' 43.205 N	103° 50' 59.004 W
3,800.0	5.00	158.54	3,793.8	-135.9	53.4	629,152.20	690,057.04	32° 43' 43.124 N	103° 50' 58.967 W
3,900.0	5.00	158.54	3,893.4	-144.0	56.6	629,144.09	690,060.23	32° 43' 43.044 N	103° 50' 58.930 W
4,000.0	5.00	158.54	3,993.0	-152.1	59.8	629,135.98	690,063.41	32° 43' 42.963 N	103° 50' 58.894 W
4,100.0	5.00	158.54	4,092.6	-160.2	63.0	629,127.87	690,066.60	32° 43' 42.883 N	103° 50' 58.857 W
4,200.0	5.00	158.54	4,192.3	-168.3	66.2	629,119.76	690,069.79	32° 43' 42.803 N	103° 50' 58.820 W
4,300.0	5.00	158.54	4,291.9	-176.4	69.4	629,111.65	690,072.98	32° 43' 42.722 N	103° 50' 58.783 W
4,400.0	5.00	158.54	4,391.5	-184.5	72.5	629,103.53	690,076.17	32° 43' 42.642 N	103° 50' 58.746 W
4,500.0	5.00	158.54	4,491.1	-192.7	75.7	629,095.42	690,079.36	32° 43' 42.561 N	103° 50' 58.709 W
4,600.0	5.00	158.54	4,590.7	-200.8	78.9	629,087.31	690,082.55	32° 43' 42.481 N	103° 50' 58.672 W
4,700.0	5.00	158.54	4,690.4	-208.9	82.1	629,079.20	690,085.73	32° 43' 42.401 N	103° 50' 58.635 W
4,800.0	5.00	158.54	4,790.0	-217.0	85.3	629,071.09	690,088.92	32° 43' 42.320 N	103° 50' 58.598 W
4,900.0	5.00	158.54	4,889.6	-225.1	88.5	629,062.98	690,092.11	32° 43' 42.240 N	103° 50' 58.561 W
5,000.0	5.00	158.54	4,989.2	-233.2	91.7	629,054.87	690,095.30	32° 43' 42.159 N	103° 50' 58.525 W
5,100.0	5.00	158.54	5,088.8	-241.3	94.9	629,046.75	690,098.49	32° 43' 42.079 N	103° 50' 58.488 W
5,200.0	5.00	158.54	5,188.5	-249.4	98.1	629,038.64	690,101.68	32° 43' 41.999 N	103° 50' 58.451 W
5,300.0	5.00	158.54	5,288.1	-257.5	101.2	629,030.53	690,104.87	32° 43' 41.918 N	103° 50' 58.414 W

5/9/2023 9:10:26AM

Permian Resources

Planning Report - Geographic

Database:	Compass	Local Co-ordinate Reference:	Well PINKIE PIE 22-21 FED COM 114H
		Local Co-orunnale Reference.	
Company:	NEW MEXICO	TVD Reference:	GL @ 3654.1usft
Project:	(SP) EDDY	MD Reference:	GL @ 3654.1usft
Site:	PINKIE PIE 22-21 FED COM	North Reference:	Grid
Well:	PINKIE PIE 22-21 FED COM 114H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	PWP0		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
5,400.0		158.54	5,387.7	-265.7	104.4	629,022.42	690,108.05	32° 43' 41.838 N	103° 50' 58.377 W
5,500.0		158.54	5,487.3	-273.8	107.6	629,014.31	690,111.24	32° 43' 41.757 N	103° 50' 58.340 W
5,600.0		158.54	5,586.9	-281.9	110.8	629,006.20	690,114.43	32° 43' 41.677 N	103° 50' 58.303 W
5,700.0		158.54	5,686.6	-290.0	114.0	628,998.09	690,117.62	32° 43' 41.597 N	103° 50' 58.266 W
5,800.0		158.54	5,786.2	-298.1	117.2	628,989.98	690,120.81	32° 43' 41.516 N	103° 50' 58.229 W
5,900.0		158.54	5,885.8	-306.2	120.4	628,981.86	690,124.00	32° 43' 41.436 N	103° 50' 58.193 W
6,000.0		158.54	5,985.4	-314.3	123.6	628,973.75	690,127.19	32° 43' 41.355 N	103° 50' 58.156 W
6,100.0		158.54	6,085.0	-322.4	126.7	628,965.64	690,130.38	32° 43' 41.275 N	103° 50' 58.119 W
6,200.0		158.54	6,184.7	-330.5	129.9	628,957.53	690,133.56	32° 43' 41.195 N	103° 50' 58.082 W
6,300.0		158.54	6,284.3	-338.7	133.1	628,949.42	690,136.75	32° 43' 41.114 N	103° 50' 58.045 W
6,400.0	5.00	158.54	6,383.9	-346.8	136.3	628,941.31	690,139.94	32° 43' 41.034 N	103° 50' 58.008 W
6,500.0	5.00	158.54	6,483.5	-354.9	139.5	628,933.20	690,143.13	32° 43' 40.953 N	103° 50' 57.971 W
6,600.0	5.00	158.54	6,583.1	-363.0	142.7	628,925.08	690,146.32	32° 43' 40.873 N	103° 50' 57.934 W
6,700.0	5.00	158.54	6,682.7	-371.1	145.9	628,916.97	690,149.51	32° 43' 40.792 N	103° 50' 57.897 W
6,800.0	5.00	158.54	6,782.4	-379.2	149.1	628,908.86	690,152.70	32° 43' 40.712 N	103° 50' 57.860 W
6,900.0	5.00	158.54	6,882.0	-387.3	152.3	628,900.75	690,155.88	32° 43' 40.632 N	103° 50' 57.824 W
7,000.0	5.00	158.54	6,981.6	-395.4	155.4	628,892.64	690,159.07	32° 43' 40.551 N	103° 50' 57.787 W
7,100.0	5.00	158.54	7,081.2	-403.5	158.6	628,884.53	690,162.26	32° 43' 40.471 N	103° 50' 57.750 W
7,200.0	5.00	158.54	7,180.8	-411.7	161.8	628,876.42	690,165.45	32° 43' 40.390 N	103° 50' 57.713 W
7,300.0	5.00	158.54	7,280.5	-419.8	165.0	628,868.31	690,168.64	32° 43' 40.310 N	103° 50' 57.676 W
7,400.0		158.54	7,380.1	-427.9	168.2	628,860.19	690,171.83	32° 43' 40.230 N	103° 50' 57.639 W
7,477.0		158.54	7,456.8	-434.1	170.7	628,853.95	690,174.28	32° 43' 40.168 N	103° 50' 57.611 W
7,500.0		190.69	7,479.7	-436.0	170.8	628,852.03	690,174.46	32° 43' 40.149 N	103° 50' 57.609 W
7,600.0		245.50	7,578.4	-445.4	158.8	628,842.65	690,162.47	32° 43' 40.056 N	103° 50' 57.750 W
7,700.0		254.89	7,672.2	-456.2	126.6	628,831.86	690,130.20	32° 43' 39.951 N	103° 50' 58.128 W
7,800.0		258.65	7,757.1	-467.9	75.5	628,820.14	690,079.08	32° 43' 39.838 N	103° 50' 58.727 W
7,819.5		259.15	7,772.3	-470.3	63.5	628,817.79	690,067.08	32° 43' 39.815 N	103° 50' 58.868 W
	PIE 22-21 FED								
7,900.0		260.80	7,829.4	-480.1	7.7	628,808.00	690,011.33	32° 43' 39.720 N	103° 50' 59.521 W
8,000.0		262.29	7,885.9	-492.1	-73.7	628,795.97	689,929.93	32° 43' 39.605 N	103° 51' 0.474 W
8,100.0		263.47	7,924.2	-503.5	-165.2	628,784.58	689,838.44	32° 43' 39.497 N	103° 51' 1.546 W
8,200.0		264.51	7,942.5	-513.7 -517.2	-262.8 -300.6	628,774.33	689,740.85	32° 43' 39.400 N	103° 51' 2.689 W
8,238.0		264.90	7,944.0	-517.2	-300.6	628,770.83	689,703.05	32° 43' 39.367 N	103° 51' 3.132 W
8,238.3		264.00	7.044.0	E17 0	-300.9	609 770 90	690 700 74	20º 42' 20 266 N	102° E4' 2 12E W
8,300.0		264.90 266.13	7,944.0 7,944.0	-517.3 -522.1	-300.9 -362.4	628,770.80	689,702.74 689,641.24	32° 43' 39.366 N	103° 51' 3.135 W 103° 51' 3.855 W
8,400.0		268.13	7,944.0	-522.1	-302.4 -462.3	628,765.98 628,760.98	689,541.37	32° 43' 39.321 N 32° 43' 39.276 N	103° 51' 5.025 W
8,400.0		269.63	7,944.0	-528.6	-402.3	628,759.52	689,466.77	32° 43' 39.265 N	103° 51' 5.898 W
8,500.0		269.63	7,944.0	-528.7	-562.2	628,759.36	689,441.39	32° 43' 39.265 N	103° 51' 6.195 W
8,600.0		269.63	7,944.0	-529.4	-662.2	628,758.70	689,341.39	32° 43' 39.263 N	103° 51' 7.366 W
8,700.0		269.63	7,944.0	-530.0	-762.2	628,758.05	689,241.40	32° 43' 39.261 N	103° 51' 8.537 W
8,800.0		269.63	7,944.0	-530.7	-862.2	628,757.40	689,141.40	32° 43' 39.259 N	103° 51' 9.707 W
8,900.0		269.63	7,944.0	-531.3	-962.2	628,756.75	689,041.40	32° 43' 39.257 N	103° 51' 10.878 W
9,000.0		269.63	7,944.0	-532.0	-1,062.2	628,756.09	688,941.40	32° 43' 39.255 N	103° 51' 12.048 W
9,100.0		269.63	7,944.0	-532.6	-1,162.2	628,755.44	688,841.40	32° 43' 39.253 N	103° 51' 13.219 W
9,200.0		269.63	7,944.0	-533.3	-1,262.2	628,754.79	688,741.41	32° 43' 39.251 N	103° 51' 14.390 W
9,300.0		269.63	7,944.0	-533.9	-1,362.2	628,754.14	688,641.41	32° 43' 39.249 N	103° 51' 15.560 W
9,400.0		269.63	7,944.0	-534.6	-1,462.2	628,753.48	688,541.41	32° 43' 39.247 N	103° 51' 16.731 W
9,500.0		269.63	7,944.0	-535.2	-1,562.2	628,752.83	688,441.41	32° 43' 39.245 N	103° 51' 17.902 W
9,600.0	90.00	269.63	7,944.0	-535.9	-1,662.2	628,752.18	688,341.41	32° 43' 39.243 N	103° 51' 19.072 W
9,700.0	90.00	269.63	7,944.0	-536.5	-1,762.2	628,751.53	688,241.42	32° 43' 39.241 N	103° 51' 20.243 W
9,800.0	90.00	269.63	7,944.0	-537.2	-1,862.2	628,750.88	688,141.42	32° 43' 39.239 N	103° 51' 21.414 W
9,900.0	90.00	269.63	7,944.0	-537.9	-1,962.2	628,750.22	688,041.42	32° 43' 39.237 N	103° 51' 22.584 W
10,000.0	90.00	269.63	7,944.0	-538.5	-2,062.2	628,749.57	687,941.42	32° 43' 39.235 N	103° 51' 23.755 W

5/9/2023 9:10:26AM

Permian Resources

Planning Report - Geographic

Database:	Compass	Local Co-ordinate Reference:	Well PINKIE PIE 22-21 FED COM 114H
Company:	NEW MEXICO	TVD Reference:	GL @ 3654.1usft
Project:	(SP) EDDY	MD Reference:	GL @ 3654.1usft
Site:	PINKIE PIE 22-21 FED COM	North Reference:	Grid
Well:	PINKIE PIE 22-21 FED COM 114H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	PWP0		

Planned Survey

(usft) (°) (usft) (usft) (usft) (usft) (usft) 10,100.0 90.00 269.63 7,944.0 -539.2 -2,162.2 628,748.92 687,841.43 33	Latitude 32° 43' 39.233 N 32° 43' 39.231 N	Longitude
10,100.0 90.00 269.63 7,944.0 -539.2 -2,162.2 628,748.92 687,841.43		4000 541 04 000 144
	32° 43' 39.231 N	103° 51' 24.926 W
		103° 51' 26.096 W
	32° 43' 39.229 N	103° 51' 27.267 W
	32° 43' 39.227 N	103° 51' 28.437 W
	32° 43' 39.225 N	103° 51' 29.608 W
	32° 43' 39.223 N	103° 51' 30.779 W
	32° 43' 39.221 N	103° 51' 31.949 W
	32° 43' 39.219 N	103° 51' 33.120 W
	32° 43' 39.217 N	103° 51' 34.291 W
	32° 43' 39.215 N	103° 51' 35.461 W
	32° 43' 39.213 N	103° 51' 36.632 W
	32° 43' 39.211 N 32° 43' 39.209 N	103° 51' 37.803 W 103° 51' 38.973 W
	32° 43' 39.209 N 32° 43' 39.207 N	103° 51' 40.144 W
	32° 43' 39.207 N 32° 43' 39.205 N	103° 51' 41.315 W
	32° 43' 39.203 N 32° 43' 39.203 N	103° 51' 42.485 W
	32° 43' 39.201 N	103° 51' 43.656 W
	32° 43' 39.199 N	103° 51' 44.826 W
	32° 43' 39.196 N	103° 51' 45.997 W
	32° 43' 39.194 N	103° 51' 47.168 W
	32° 43' 39.192 N	103° 51' 48.338 W
	32° 43' 39.190 N	103° 51' 49.509 W
	32° 43' 39.188 N	103° 51' 50.680 W
	32° 43' 39.186 N	103° 51' 51.850 W
12,500.0 90.00 269.63 7,944.0 -554.8 -4,562.1 628,733.26 685,441.48	32° 43' 39.184 N	103° 51' 53.021 W
12,600.0 90.00 269.63 7,944.0 -555.5 -4,662.1 628,732.61 685,341.48 3	32° 43' 39.182 N	103° 51' 54.192 W
12,700.0 90.00 269.63 7,944.0 -556.1 -4,762.1 628,731.96 685,241.48 3	32° 43' 39.180 N	103° 51' 55.362 W
12,800.0 90.00 269.63 7,944.0 -556.8 -4,862.1 628,731.30 685,141.48	32° 43' 39.178 N	103° 51' 56.533 W
12,860.0 90.00 269.63 7,944.0 -557.2 -4,922.1 628,730.91 685,081.48	32° 43' 39.177 N	103° 51' 57.235 W
LPP 1		
12,900.0 90.00 269.63 7,944.0 -557.4 -4,962.1 628,730.65 685,041.48	32° 43' 39.176 N	103° 51' 57.704 W
	32° 43' 39.174 N	103° 51' 58.874 W
	32° 43' 39.172 N	103° 52' 0.045 W
	32° 43' 39.169 N	103° 52' 1.215 W
	32° 43' 39.167 N	103° 52' 2.386 W
	32° 43' 39.165 N	103° 52' 3.557 W
	32° 43' 39.163 N	103° 52' 4.727 W
	32° 43' 39.161 N	103° 52' 5.898 W
	32° 43' 39.159 N	103° 52' 7.069 W
	32° 43' 39.157 N	103° 52' 8.239 W
	32° 43' 39.155 N	103° 52' 9.410 W
	32° 43' 39.152 N	103° 52' 10.581 W
	32° 43' 39.150 N	103° 52' 11.751 W
	32° 43' 39.148 N 32° 43' 39.146 N	103° 52' 12.922 W
	32° 43' 39.146 N 32° 43' 39.144 N	103° 52' 14.093 W 103° 52' 15.263 W
	32° 43' 39.144 N 32° 43' 39.142 N	103° 52' 16.434 W
	32° 43' 39.142 N 32° 43' 39.140 N	103° 52' 17.604 W
	32° 43' 39.138 N	103° 52' 18.775 W
	32° 43' 39.135 N	103° 52' 19.946 W
	32° 43' 39.133 N	103° 52' 21.116 W
	32° 43' 39.131 N	103° 52' 22.287 W
	32° 43' 39.129 N	103° 52' 23.458 W
	32° 43' 39.127 N	103° 52' 24.628 W

5/9/2023 9:10:26AM

Permian Resources

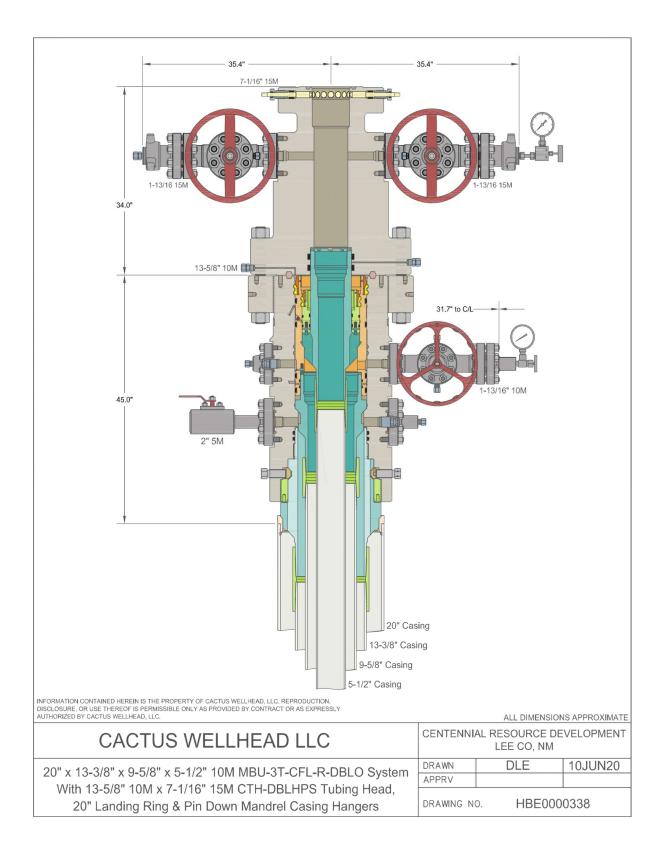
Planning Report - Geographic

Database:	Compass	Local Co-ordinate Reference:	Well PINKIE PIE 22-21 FED COM 114H
Company:	NEW MEXICO	TVD Reference:	GL @ 3654.1usft
Project:	(SP) EDDY	MD Reference:	GL @ 3654.1usft
Site:	PINKIE PIE 22-21 FED COM	North Reference:	Grid
Well:	PINKIE PIE 22-21 FED COM 114H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	PWP0		

Planned Survey

easured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
15,300.0	90.00	269.63	7,944.0	-573.1	-7,362.1	628,714.99	682,641.54	32° 43' 39.125 N	103° 52' 25.799 W
15,400.0	90.00	269.63	7,944.0	-573.7	-7,462.1	628,714.34	682,541.54	32° 43' 39.122 N	103° 52' 26.970 W
15,500.0	90.00	269.63	7,944.0	-574.4	-7,562.1	628,713.69	682,441.54	32° 43' 39.120 N	103° 52' 28.140 W
15,501.0	90.00	269.63	7,944.0	-574.4	-7,563.1	628,713.68	682,440.54	32° 43' 39.120 N	103° 52' 28.152 W
LPP 2									
15,600.0	90.00	269.63	7,944.0	-575.0	-7,662.1	628,713.04	682,341.54	32° 43' 39.118 N	103° 52' 29.311 V
15,700.0	90.00	269.63	7,944.0	-575.7	-7,762.1	628,712.38	682,241.54	32° 43' 39.116 N	103° 52' 30.482 V
15,800.0	90.00	269.63	7,944.0	-576.3	-7,862.1	628,711.73	682,141.55	32° 43' 39.114 N	103° 52' 31.652 V
15,900.0	90.00	269.63	7,944.0	-577.0	-7,962.1	628,711.08	682,041.55	32° 43' 39.112 N	103° 52' 32.823 V
16,000.0	90.00	269.63	7,944.0	-577.6	-8,062.1	628,710.43	681,941.55	32° 43' 39.109 N	103° 52' 33.993 V
16,100.0	90.00	269.63	7,944.0	-578.3	-8,162.1	628,709.77	681,841.55	32° 43' 39.107 N	103° 52' 35.164 V
16,200.0	90.00	269.63	7,944.0	-579.0	-8,262.1	628,709.12	681,741.55	32° 43' 39.105 N	103° 52' 36.335 V
16,300.0	90.00	269.63	7,944.0	-579.6	-8,362.1	628,708.47	681,641.56	32° 43' 39.103 N	103° 52' 37.505 V
16,400.0	90.00	269.63	7,944.0	-580.3	-8,462.1	628,707.82	681,541.56	32° 43' 39.101 N	103° 52' 38.676 V
16,500.0	90.00	269.63	7,944.0	-580.9	-8,562.1	628,707.16	681,441.56	32° 43' 39.098 N	103° 52' 39.847 V
16,600.0	90.00	269.63	7,944.0	-581.6	-8,662.1	628,706.51	681,341.56	32° 43' 39.096 N	103° 52' 41.017 V
16,700.0	90.00	269.63	7,944.0	-582.2	-8,762.1	628,705.86	681,241.57	32° 43' 39.094 N	103° 52' 42.188 V
16,800.0	90.00	269.63	7,944.0	-582.9	-8,862.1	628,705.21	681,141.57	32° 43' 39.092 N	103° 52' 43.359 V
16,822.0	90.00	269.63	7,944.0	-583.0	-8,884.1	628,705.06	681,119.57	32° 43' 39.091 N	103° 52' 43.616 V
LPP 3									
16,900.0	90.00	269.63	7,944.0	-583.5	-8,962.1	628,704.55	681,041.57	32° 43' 39.090 N	103° 52' 44.529 V
17,000.0	90.00	269.63	7,944.0	-584.2	-9,062.1	628,703.90	680,941.57	32° 43' 39.087 N	103° 52' 45.700 V
17,100.0	90.00	269.63	7,944.0	-584.8	-9,162.1	628,703.25	680,841.57	32° 43' 39.085 N	103° 52' 46.871 V
17,200.0	90.00	269.63	7,944.0	-585.5	-9,262.0	628,702.60	680,741.58	32° 43' 39.083 N	103° 52' 48.041 V
17,300.0	90.00	269.63	7,944.0	-586.1	-9,362.0	628,701.95	680,641.58	32° 43' 39.081 N	103° 52' 49.212 V
17,400.0	90.00	269.63	7,944.0	-586.8	-9,462.0	628,701.29	680,541.58	32° 43' 39.078 N	103° 52' 50.382 V
17,500.0	90.00	269.63	7,944.0	-587.4	-9,562.0	628,700.64	680,441.58	32° 43' 39.076 N	103° 52' 51.553 V
17,600.0	90.00	269.63	7,944.0	-588.1	-9,662.0	628,699.99	680,341.58	32° 43' 39.074 N	103° 52' 52.724 V
17,700.0	90.00	269.63	7,944.0	-588.7	-9,762.0	628,699.34	680,241.59	32° 43' 39.072 N	103° 52' 53.894 \
17,800.0	90.00	269.63	7,944.0	-589.4	-9,862.0	628,698.68	680,141.59	32° 43' 39.070 N	103° 52' 55.065 V
17,900.0	90.00	269.63	7,944.0	-590.0	-9,962.0	628,698.03	680,041.59	32° 43' 39.067 N	103° 52' 56.236 \
18,000.0	90.00	269.63	7,944.0	-590.7	-10,062.0	628,697.38	679,941.59	32° 43' 39.065 N	103° 52' 57.406
18,042.1	90.00	269.63	7,944.0	-591.0	-10,104.1	628,697.10	679,899.52	32° 43' 39.064 N	103° 52' 57.899 V

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
PINKIE PIE 22-21 FED (- plan hits target cent - Point	0.00 ter	0.00	7,944.0	-591.0	-10,104.1	628,697.10	679,899.52	32° 43' 39.064 N	103° 52' 57.899 W
PINKIE PIE 22-21 FED (- plan misses target o - Point	0.00 center by 263.	0.00 7usft at 7819	7,944.0 9.5usft MD (-524.1 7772.3 TVD, ·	256.2 470.3 N, 63.5	628,763.93 E)	690,259.88	32° 43' 39.273 N	103° 50' 56.614 W



Permian Resources

Planning Report - Geographic

Database:	Compass	Local Co-ordinate Reference:	Well PINKIE PIE 22-21 FED COM 114H
Company:	NEW MEXICO	TVD Reference:	GL @ 3654.1usft
Project:	(SP) EDDY	MD Reference:	GL @ 3654.1usft
Site:	PINKIE PIE 22-21 FED COM	North Reference:	Grid
Well:	PINKIE PIE 22-21 FED COM 114H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	PWP0		

Plan Annotati	ions				
	Measured	Vertical	Local Coor	dinates	
	Depth	Depth	+N/-S	+E/-W	
	(usft)	(usft)	(usft)	(usft)	Comment
	8,238.0	7,944.0	-517.2	-300.6	EOC/FTP
	12,860.0	7,944.0	-557.2	-4,922.1	LPP 1
	15,501.0	7,944.0	-574.4	-7,563.1	LPP 2
	16,822.0	7,944.0	-583.0	-8,884.1	LPP 3
	18,042.1	7,944.0	-591.0	-10,104.1	LTP/BHL

Permian Resources Multi-Well Pad Batch Drilling Procedure

<u>Surface Casing</u> - PR intends to Batch set all 13-3/8" casing to a depth approved in the APD. 17-1/2" Surface Holes will be batch drilled by a rig. Appropriate notifications will be made prior to spudding the well, running and cementing casing and prior to skidding to the rig to the next well on pad.

- 1. Drill 17-1/2" Surface hole to Approved Depth with Rig and perform wellbore cleanup cycles. Trip out and rack back drilling BHA.
- 2. Run and land 13-3/8" 54.5# J55 BTC casing see Illustration 1-1 Below to depth approved in APD.
- 3. Set packoff and test to 5k psi
- 4. Offline Cement
- 5. Install wellhead with pressure gauge and nightcap. Nightcap is shown on final wellhead Stack up Illustration #2-2.
- 6. Skid Rig to adjacent well to drill Surface hole.
- 7. Surface casing test will be performed by the rig in order to allow ample time for Cement to develop 500psi compressive strength. Casing test to 0.22 psi/ft or 1500 psi whichever is

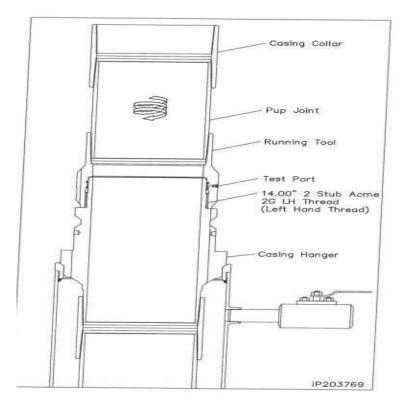
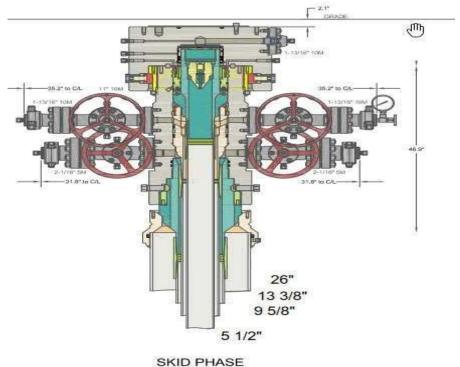
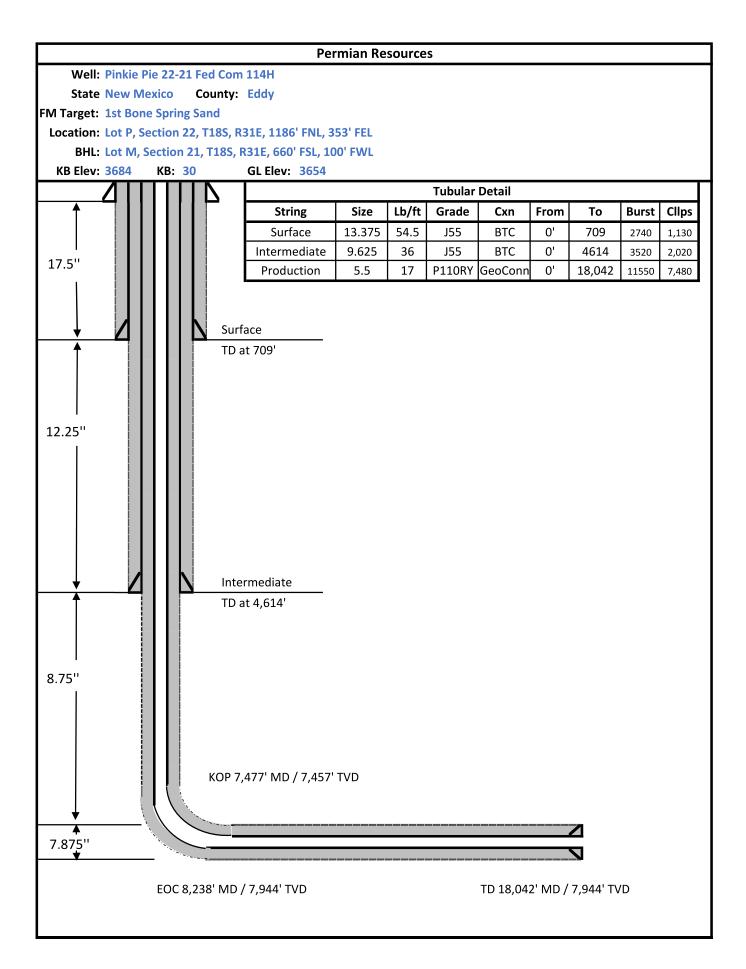



Illustration 1-1

<u>Intermediate Casing</u> – PR intends to Batch set all intermediate casing strings to a depth approved in the APD, typically set into Lamar. 12-1/4" Intermediate Holes will be batch drilled by the rig. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

- 1. Rig will remove the nightcap and install and test BOPE.
- 2. Test Surface casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 3. Install wear bushing then drill out 13-3/8" shoe-track plus 20' and conduct FIT to minimum of the MW equivalent anticipated to control the formation pressure to the next casing point.
- 4. Drill Intermediate hole to approved casing point. Trip out of hole with BHA to run Casing.
- 5. Remove wear bushing then run and land Intermediate Casing with mandrel hanger in wellhead.
- 6. Cement casing to surface with floats holding.
- 7. Washout stack then run wash tool in wellhead and wash hanger and pack-off setting area.
- 8. Install pack-off and test void to 5,000 psi for 15 minutes. Nightcap shown on final wellhead stack up illustration 2-2 on page 3.
- 9. Test casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 10. Install nightcap skid rig to adjacent well to drill Intermediate hole.

SKID FHASE


<u>Production Casing</u> – PR intends to Batch set all Production casings with Rig. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

- 1. Big Rig will remove the nightcap and install and test BOPE.
- 2. Install wear bushing then drill Intermediate shoe-track plus 20' and conduct FIT to minimum MW equivalent to control the formation pressure to TD of well.
- 3. Drill Vertical hole to KOP Trip out for Curve BHA.
- 4. Drill Curve, landing in production interval Trip for Lateral BHA.
- 5. Drill Lateral / Production hole to Permitted BHL, perform cleanup cycles and trip out to run 51/2" Production Casing.
- 6. Remove wear bushing then run 5-1/2" production casing to TD landing casing mandrel in wellhead.
- 7. Cement 5-1/2" Production string with floats holding.
- 8. Run in with wash tool and wash wellhead area install pack-off and test void to 5,000psi for 15 minutes.
- 9. Install BPV in 5-1/2" mandrel hanger Nipple down BOPE and install nightcap.
- 10. Test nightcap void to 5,000psi for 30 minutes per illustration 2-2
- 11. Skid rig to adjacent well on pad to drill production hole.

.

al One Corp. Metal One	GEOCONN- Pipe: SeAH P110RY 95%PBW (SMYS110ksi) *1	Page	95%RBW+SC-	17 SeAH P110R Cplg6.050 P110		
Metal One	Coupling: P110RY (SMY		Date	3-Feb-21			
	Connection Data	Sheet	Sheet Rev.		0		
	Geometry	Impe	erial	<u>s.</u>	<u>.l.</u>		
	Pipe Body	819 A.4	319	24 (#	- 141 		
	Grade *1	P110RY		P110RY			
	SMYS	110	ksi	110	ksi		
	Pipe OD (D)	5.500	in	139.70	mm		
GEOCONN-SC	Weight	17.00	lb/ft	25.33	kg/m		
	Wall Thickness (t)	0.304	in	7.72	mm		
	Pipe ID (d)	4.892	in	124.26	mm		
Wsc1	Drift Dia.	4.767	in	121.08	mm		
D	Connection						
	Coupling SMYS	110	ksi	110	ksi		
4	SC-Coupling OD (Wsc1)	6.050	in	153.67	mm		
b 6	Coupling Length (NL)	8.350	in	212.09	mm		
5	Make up Loss	4.125	in	104.78	mm		
8							
3	Pipe Critical Area	4.96	in ²	3,202	mm ²		
3	Box Critical Area	6.10	in ²	3,937	mm ²		
3	Thread Taper	2	1/16(3/4" per ft)			
8	Number of Threads		5	TPI			
	Performance Properties for Pi S.M.Y.S. *1	546	kips	2,428	kN		
2	M.I.Y.P. *1	11,550	DSI	70.00			
	AREAS A. T. A	11,000	psi	79.66	MPa		
- 	Collapse Strength *1	7,480	psi	51.59	MPa MPa		
- NL	Collapse Strength *1 Note S.M.Y.S.= Spec	7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550	psi Strength of Pipe essure of Pipe b	51.59 body			
- NL	Collapse Strength *1. Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY	7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550	psi Strength of Pipe essure of Pipe b	51.59 body			
- NL	Collapse Strength *1. Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY Performance Properties for C	7,480 ified Minimum YIELD num Internal Yield Pre \$110ksi, MIYP11,550 onnection	psi Strength of Pipe essure of Pipe b psi	51.59 body ody			
NL NL	Collapse Strength *1. Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY Performance Properties for C Min. Connection Joint Strength	7,480 ified Minimum YIELD num Internal Yield Pre \$110ksi, MIYP11,550 onnection	psi Strength of Pipe essure of Pipe b psi 100%	51.59 body of <u>S.M.Y.S.</u> of S.M.Y.S.			
NL NL	Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY Performance Properties for C Min. Connection Joint Strength Min. Compression Yield	7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550 onnection	psi Strength of Pipe essure of Pipe b psi 100% 100%	51.59 body of S.M.Y.S. of S.M.Y.S. Y.P.			
NI .	Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure	7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550 onnection	psi Strength of Pipe essure of Pipe bi psi 100% 100% of M.I. 100% of Colla	51.59 body of S.M.Y.S. of S.M.Y.S. Y.P.			
	Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure	7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550 onnection	psi Strength of Pipe essure of Pipe bi psi 100% 100% of M.I. 100% of Colla	51.59 body of S.M.Y.S. of S.M.Y.S. Y.P. spse Strength			
NI TN	Collapse Strength *1. Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft)	7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550 onnection	psi Strength of Pipe essure of Pipe bi psi 100% 100% of M.I. 100% of Colla	51.59 body of S.M.Y.S. of S.M.Y.S. Y.P. spse Strength			
NI TI	Collapse Strength *1. Note S.M.Y.S.= Spect M.I.Y.P. = Minin *1: SeAH P110RY 95%RBW: SMY: Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min.	7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550 onnection	psi Strength of Pipe be essure of Pipe be psi 100% 100% 100% of M.I. 100% of Colla	of S.M.Y.S. of S.M.Y.S. of S.M.Y.S. Y.P. pse Strength	MPa		
	Collapse Strength *1. Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY: Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque	7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550 onnection 10,800	psi Strength of Pipe be essure of Pipe be psi 100% 100% of M.I.' 100% of Colla ft-lb	51.59 body of S.M.Y.S. of S.M.Y.S. Y.P. ppse Strength >90 14,600	MPa N-m		
	Collapse Strength *1. Note S.M.Y.S.= Spection M.I.Y.P. = Minit *1: SeAH P110RY 95%R6W: SMY Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti.	7,480 ified Minimum YIELD num Internal Yield Press S110ksi, MIYP11,550 onnection 10,800 12,000	psi Strength of Pipe be psi 100% 100% of M.I. 100% of Colla ft-lb	51.59 sbody ody of S.M.Y.S. of S.M.Y.S. Y.P. pses Strength >90 14,600 16,200	MPa N-m N-m		
TN t	Collapse Strength *1. Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti. Max.	7,480 ified Minimum YIELD num Internal Yield Press S110ksi, MIYP11,550 onnection 10,800 12,000 13,200 15,600	psi Strength of Pipe be psi 100% 100% of M.I. 100% of Colla ft-lb ft-lb ft-lb	51.59 sbody of S.M.Y.S. of S.M.Y.S. y.P. upse Strength >90 14,600 16,200 17,800	MPa N-m N-m N-m		
TN t	Collapse Strength *1. Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti. Max. Operational Max.	7,480 ified Minimum YIELD num Internal Yield Press S110ksi, MIYP11,550 onnection 10,800 12,000 13,200 15,600	psi Strength of Pipe be psi 100% 100% of M.I. 100% of Colla ft-lb ft-lb ft-lb	51.59 sbody of S.M.Y.S. of S.M.Y.S. y.P. upse Strength >90 14,600 16,200 17,800	MPa N-m N-m N-m		
	Collapse Strength *1. Note S.M.Y.S.= Spec M.I.Y.P. = Minir *1: SeAH P110RY 95%RBW: SMY Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti. Max. Operational Max.	7,480 ified Minimum YIELD num Internal Yield Press S110ksi, MIYP11,550 onnection 10,800 12,000 13,200 15,600	psi Strength of Pipe be psi 100% 100% of M.I. 100% of Colla ft-lb ft-lb ft-lb	51.59 sbody of S.M.Y.S. of S.M.Y.S. y.P. upse Strength >90 14,600 16,200 17,800	MPa N-m N-m N-m		
t -	Collapse Strength *1. Note S.M.Y.S.= Spection M.I.Y.P. = Mining Min.Y.P. = Mining *1: SeAH P110RY 95%RBW: SMY Performance Properties for C Min. Connection Joint Strength Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti. Max. Operational Max. Note : Operational Max. Note : Operational Max. Note : operational Max.	7,480 ified Minimum YIELD num Internal Yield Press S110ksi, MIYP11,550 onnection 10,800 12,000 13,200 15,600 an be applied for high to be corporation or its parents, it	psi Strength of Pipe be psi 100% 100% of M.I.' 100% of Colla ft-lb ft-lb ft-lb ft-lb ft-lb strengtication	51.59 sbody of S.M.Y.S. of S.M.Y.S. ypse Strength >90 14,600 16,200 17,800 21,100 (herein colectively referred to	MPa N-m N-m N-m N-m N-m		
t	Collapse Strength *1. Note S.M.Y.S.= Spect M.I.Y.P. = Minin *1: SeAH P110RY 95%R6W: SMY Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti. Max. Operational Max. Note : Operational Max. torque of	7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550 onnection 10,800 12,000 13,200 15,600 an be applied for high to the Corporation or its parents, in	psi Strength of Pipe be psi 100% 100% 100% of M.I. 100% of Colla ft-lb ft-lb ft-lb ft-lb rtub ft-lb strengared by reference or affituates	tbody body of S.M.Y.S. of S.M.Y.S. y.P. pse Strength ≥90 14,600 16,200 17,800 21,100 (herein collectively referred to renoe to engineering information	MPa N-m N-m N-m N-m N-m		

Such statements in no uniting statements down are extracting or produce to a period of approach, the approach is the approach. The approach is the statement of the set of the statement of the s

.

Permian Resources - Pinkie Pie 22-21 Fed Com 114H

1. Geologic Formations

Formation	Elevation	TVD	Target
Rustler	3000	684	No
Top of Salt	2800	884	No
Capitan	NP	NP	No
Tansill	1588	2096	No
Yates	1450	2234	No
Seven Rivers	955	2729	No
Queen	292	3392	No
Grayburg	-10	3694	No
Delaware Sands	-760	4444	No
BYCN	-980	4664	No
Bone Spring Lime	-2400	6084	No
1st Bone Spring Sand	-4100	7784	Yes
2nd Bone Spring Sand	-4650	8334	No
3rd Bone Spring Sand	-5575	9259	No
Wolfcamp	-5920	9604	No

2. Blowout Prevention

BOP installed and tested before drilling which hole?	Size?	Min. Size? Required WP		Туре		Tested to:
			Anr	nular	х	2500 psi
			Blind	Ram	х	
12.25	13-5/8"	5M	Pipe	Ram	х	5000 psi
			Doubl	e Ram		5000 psi
			Other*			
			Anr	nular	х	2500 psi
			Blind	Ram	х	
8.75	13-5/8"	5M	Pipe	Ram	х	5000 mai
			Doubl	e Ram		5000 psi
			Other*			

Equipment: BOPE with working pressure ratings in excess of anticipated maximum surface pressure will be utilized for well control from drill out of surface casing to TMD. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. All BOPE connections shall be flanged, welded or clamped. All choke lines shall be straight unless targeted with running tees or tee blocks are used, and choke lines shall be anchored to prevent whip and reduce vibrations. All valves in the choke line & the choke manifold shall be full opening as to not cause restrictions and to allow for straight fluid paths to minimize potential erosion. All gauges utilized in the well control system shall be of a type designed for drilling fluid service. A top drive inside BOP valve will be utilized at all times. Subs equipped with full opening valves sized to fit the drill pipe and collars will be available on the rig floor in the open position. The key to operate said valve equipped subs will be on the rig floor at all times. The accumulator system will have sufficient capacity to open the HCR and close all three sets of rams plus the annular preventer while retaining at least 300 psi above precharge on the closing manifold (accumulator system shall be capable of doing so without using the closing unit pumps). The fluid reservoir capacity will be double the usable fluid volume of the accumulator system capacity, and the fluid level will be maintained at the manufacturer's recommended level. Prior to connecting the closing unit to the BOP stack, an accumulator precharge pressure test shall be performed to ensure the precharge pressure is within 100 psi of the desired precharge pressure (only nitrogen gas will be used to precharge). Two independent power sources will be made available at all times to power the closing unit pumps so that the pumps can automatically start when the closing valve manifold pressure has decreased to the preset level. Closing unit pumps will be sized to allow opening of HCR and closing of annular preventer on 5" drill pipe achieving at least 200 psi above precharge pressure with the accumulator system isolated from service in less than two minutes. A valve shall be installed in the closing line as close to the annular preventer as possible to act as a locking device; the valve shall be maintained in the open position and shall be closed only when the power source for the accumulator system is inoperative. Remote controls capable of opening and closing all preventers & the HCR shall be readily accessible to the driller; master controls with the same capability will be operable at the accumulator. The wellhead will be a multibowl speed head allowing for hangoff of intermediate casing & isolation of the 133/8 x 95/8 annulus without breaking the connection between the BOP & wellhead to install an additional casing head. A wear bushing will be installed & inspected frequently to guard against internal wear to wellhead. VBRs (variablebore rams) will be run in upper rambody of BOP stack to provide redundancy to annular preventer while RIH w/ production casing;

Requesting Variance? YES

Variance request: Flex hose and offline cement variances, see attachments in section 8.

Testing Procedure: The BOP test shall be performed before drilling out of the surface casing shoe and will occur at a minimum: a. when initially installed b. whenever any seal subject to test pressure is broken c. following related repairs d. at 30 day intervals e. checked daily as to mechanical operating conditions. The ram type preventer(s) will be tested using a test plug to 250 psi (low) and 5,000 psi (high) (casinghead WP) with a test plug upon its installation onto the 13 surface casing. If a test plug is not used, the ram type preventer(s) shall be tested to 70% of the minimum internal yield pressure of the casing. The annular type preventer(s) shall be tested to 3500 psi. Pressure will be maintained for at least 10 minutes or until provisions of the test are met, whichever is longer. A Sundry Notice (Form 3160 5), along with a copy of the BOP test report, shall be submitted to the local BLM office within 5 working days following the test. If the bleed line is connected into the buffer tank (header), all BOP equipment including the buffer tank and associated valves will be rated at the required BOP pressure. The BLM office will be provided with a minimum of four (4) hours notice of BOP testing to allow witnessing. The BOP Configuration, choke manifold layout, and accumulator system, will be in compliance with Onshore Order 2 for a 5,000 psi system. A remote accumulator and a multi-bowl system will be used, please see attachment in section 8 for multi-bowl procedure. Pressures, capacities, and specific placement and use of the manual and/or hydraulic controls, accumulator controls, bleed lines, etc., will be identified at the time of the BLM witnessed BOP test. Any remote controls will be capable of both opening and closing all preventers and shall be readily accessible.

Choke Diagram Attachemnt: 5 M Choe Manifold BOP Diagram Attachment: BOP Schematic

3. Casing

String	Hole Size	Casing Size	Тор	Bottom	Top TVD	Bottom TVD	Length	Grade	Weight	Connection	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
Surface	17.5	13.375	0	709	0	709	709	J55	54.5	BTC	3.23	1.71	Dry	6.56	Dry	6.15
Intermediate	12.25	9.625	0	4614	0	4614	4614	J55	36	BTC	2.88	1.65	Dry	2.40	Dry	2.12
Production	8.75	5.5	0	8238	0	7944	8238	P110RY	17	GeoConn	1.81	1.89	Dry	2.32	Dry	2.32
Production	7.875	5.5	8238	18042	7944	7944	9804	P110RY	17	GeoConn	1.81	1.89	Dry	2.32	Dry	2.32
								BLM Mi	n Safe	ety Factor	1.125	1		1.6		1.6

Non API casing spec sheets and casing design assumptions attached.

4. Cement

	Lead/Tail	Top MD	Bottom MD	Quanity (sx)	Yield	Density	u Ft	Excess %	Cement Type	Additives
String	Ĕ	Τc	B	Ø	Yi	ă	Cu	Ê	Ŭ	▲ EconoCem-HLC + 5% Salt +
Surface	Lead	0	509	380	1.88	12.9	710	100%	Class C	5% Kol-Seal
Surface	Tail	509	709	560	1.34	14.8	740	50%	Class C	Accelerator
Intermediate	Lead	0	3690	800	2.08	12.7	1660	50%	Class C	Salt, Extender, and LCM
Intermediate	Tail	3690	4614	330	1.34	14.8	440	50%	Class C	Accelerator
Production	Lead	4114	7477	480	2.41	11.5	1150	40%	Class H	POZ, Extender, Fluid Loss, Dispersant, Retarder
Production	Tail	7477	18042	1370	1.73	12.5	2370	25%	Class H	POZ, Extender, Fluid Loss, Dispersant, Retarder

5. Circulating Medium

Mud System Type: Closed

Will an air or gas system be used: No

Describe what will be on location to control well or mitigate oter conditions: Sufficient quantities of mud materials will be on the well site at all times for the purpose of assuring well control and maintaining wellbore integrity. Surface interval will employ fresh water mud. The intermediate hole will utilize a saturated brine fluid to inhibit salt washout. The production hole will employ brine based and oil base fluid to inhibit formation reactivity and of the appropriate density to maintain well control.

Describe the mud monitoring system utilized: Centrifuge separation system. Open tank monitoring with EDR will be used for drilling fluids and return volumes. Open tank monitoring will be used for cement and cuttings return volumes. Mud properties will be monitored at least every 24 hours using industry accepted mud check practices.

Cuttings Volume: 9220 Cu Ft

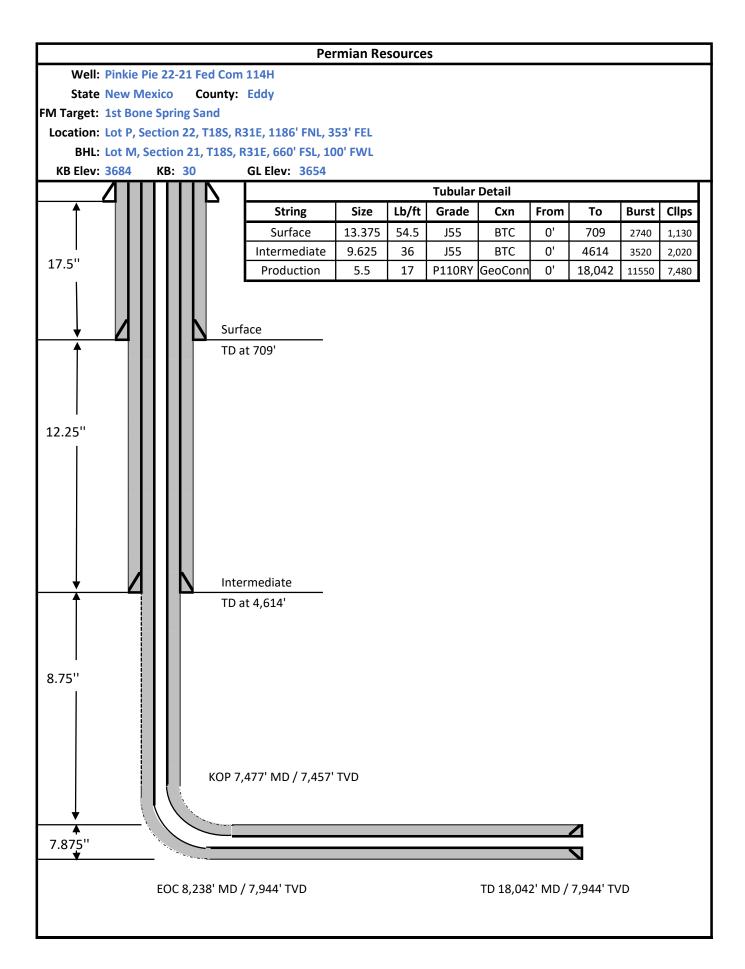
Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight	Max Weight
0	709	Water Based Mud	8.6	9.5
709	4614	Salt Saturated	10	10
4614	8238	Brine	9	10
8238	18042	OBM	9	10

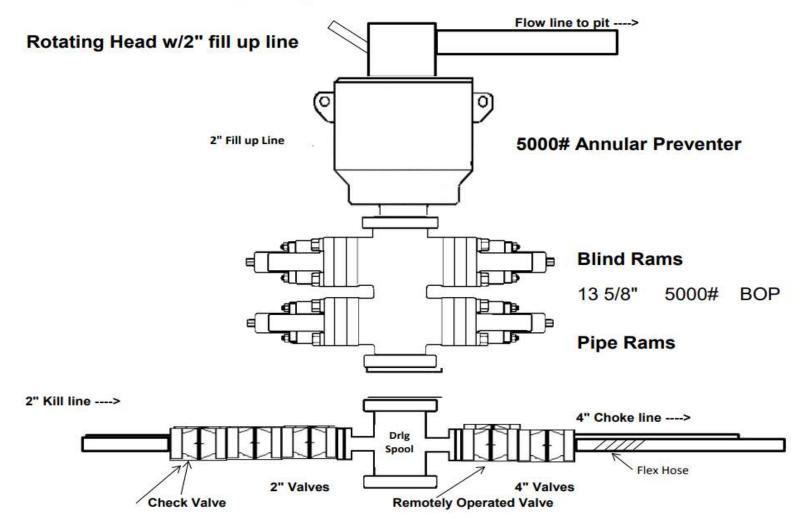
6. Test, Logging, Coring

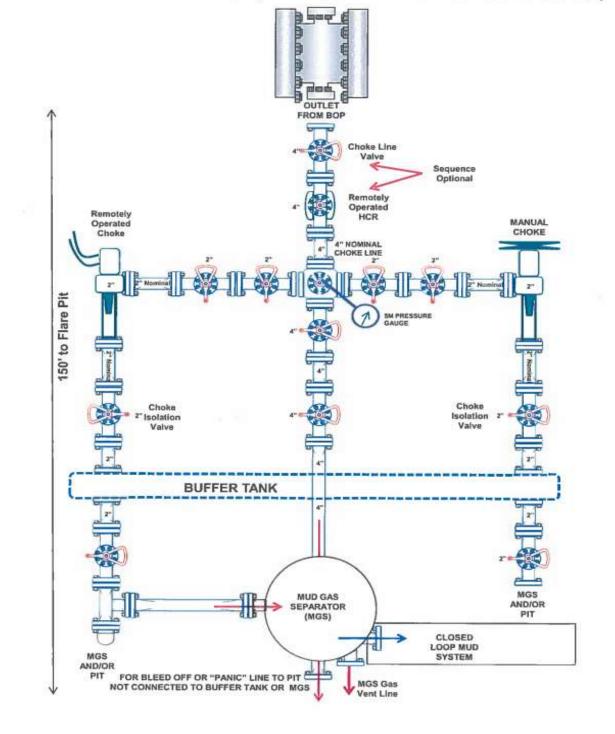
List of production tests including testing procedures, equipment and safety measures: Will utilize MWD/LWD (Gamma Ray logging) from intermediate hole to TD of the well. List of open and cased hole logs run in the well: DIRECTIONAL SURVEY, GAMMA RAY LOG, Coring operation description for the well: N/A

7. Pressure


Anticipated Bottom Hole Pressure	4140	psi
Anticipated Surface Pressure	2383.2	psi
Anticipated Bottom Hole Temperature	137	°F
Anticipated Abnormal pressure, temp, or geo hazards	No	

8. Waste Management

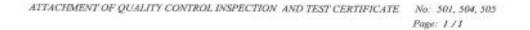

Waste Type:	Drilling
Waste content description:	Fresh water based drilling fluid
Amount of waste:	1500 bbls
Waste disposal frequency:	Weekly (after drilling all surfaces)
Safe containment description:	Steel tanks with plastic-lined containment berms
Waste disposal type:	Haul to commercial facility
Disposal location ownership:	Commercial
Waste Type:	Grey Water & Human Waste
Waste content description:	Grey Water/Human Waste
Amount of waste:	5000 gallons
Waste disposal frequency:	Weekly
Safe containment description:	Approved waste storage tanks with containment
Waste disposal type:	Haul to commercial facility
Disposal location ownership:	Commercial
Waste Type:	Garbage
Waste content description:	General trash/garbage
Amount of waste:	5000 lbs
Waste disposal frequency:	Weekly
Safe containment description:	Enclosed trash trailer
Waste disposal type:	Haul to commercial facility
Disposal location ownership:	Commercial
Waste Type:	Drilling
Waste content description:	Drill Cuttings
Amount of waste:	9220 Cu Ft
Waste disposal frequency:	Per well
Safe containment description:	Steel tanks
Waste disposal type:	Haul to commercial facility
Disposal location ownership:	Commercial
Waste Type:	Drilling
Waste content description:	Brine water based drilling fluid
Amount of waste:	1500 bbls
Waste disposal frequency:	Monthly
Safe containment description:	Steel tanks with plastic-lined containment berms
Waste disposal type:	Haul to commercial facility


9. Other Information

Well Plan and AC Report: attached Batching Drilling Procedure: attached WBD: attached Flex Hose Specs: attached Offline Cementing Procedure Attached:

5,000 psi BOP Schematic

5M Choke Manifold Equipment (WITH MGS + CLOSED LOOP)



CONTITECH RUBBER	No:QC-DB- 210/ 2014				
3. B	Page:	9/113			

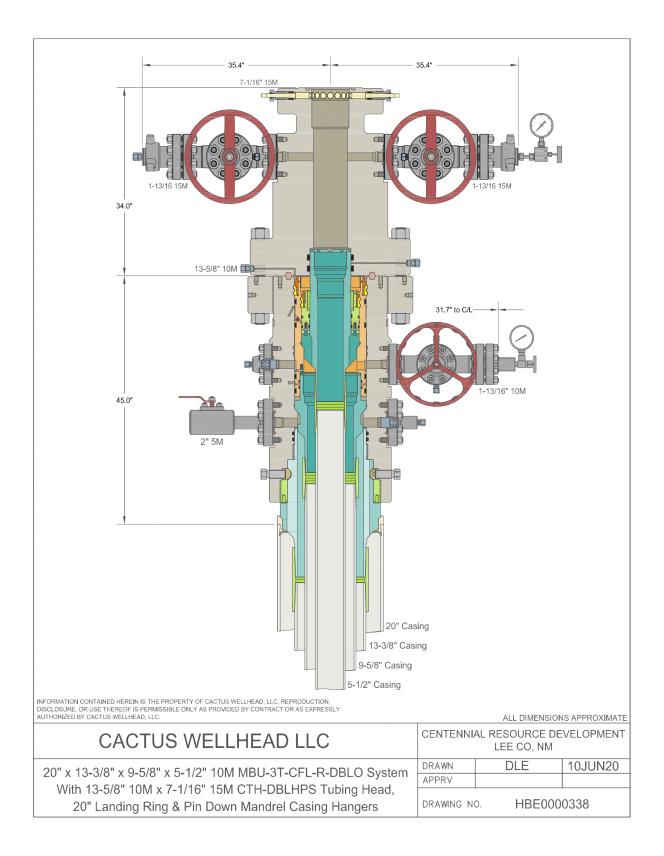
INSPECTIO	ALITY CON		ATE	CERT.	N	504		
PURCHASER:	ContiTech	Oil & Marine C	Corp.	P.O. N	4 S	4500409659		
CONTITECH RUBBER orde	ar Nº: 538236	HOSE TYPE:	3° 10	" ID Choke and Kill			Git Hose	
HOSE SERIAL Nº	67255	NOMINAL / AC	TUAL LENGTH: 10,6			/ 10,77 m		
W.P. 68,9 MPa	10000 psi	T.P. 103,4	MPa 15	5000 pel	Duration	60	min	
Ť 10 mm = 10 y	Min.	See attachm	ent. (1 pa	ge)				
→ 10 mm = 20 1 COUPLINGS	MPs Type	Seria	e N°	1	Quelity	Heat	NP	
3" coupling v	with	9251	9254	AB	SI 4130	A0570		
1 2 4 4 2 7 9 7 7 9 8 9 9 9 9	Flance end	20.000		9.8				
4 1/16" 10K API b.w.	100000 Million 1000			AB	51 4130	03560	IN	
Not Designed	d For Well Te	esting		AB	AF	osse PI Spec 16 erature ra	9N 08 C	
Not Designed	d For Well To	EN MANUFACTU		IDANCE WIT	AF Temp	PI Spec 16 erature ra	3N C te:"B"	
Not Designe	d For Well Te s OVE HOSE HAS BE IT TESTED AS ABO ATTY. We hereby of of the above Purce of the above Purce of standards, codes	EEN MANUFACTUR	ACTORY RESU vertime/equip hat these fem and meet the o	RDANCE WIT ILT. ment supple slega preed slegant accept	AF Temp In THE TERMS t by us are in c	PI Spec 16 erature ra of THE ORDE antomity with 1 inspected and	SN C C te:"B" R	

Contribute Modern Robert Mitter (K. 1. Busingent) at 10: 11 8728 Earlyst (H. 4701 P.D. Bas 162 Earlyst (H. 4709 P.D. Bas 162 Earlyst (H. 4700 P.D. Bas 162 E

.

GH 421-22 40	Charles Problem
RD +21-30 -00-	01128
BL +1853. nor	01:20
90 +21-91 PC	01110
BL #1055 be #	· · · · · · · · · · · · · · · · · · ·
GN +21,18 %5	01:00
BL	The second se
CN 1991-97.520017	Register Service-10,55 addres
B. +1857. bad	1881 54
24 +21,28 PC	00180
L P1859- Mod	DBIAC
24 +21-36 HC	88:38
L +1861- bde	100120
N 421-35 Sc	108:28
0 +21-30 -0 L +1664- bar	00120
Old Date of the second	
20 20 30 40	50 60 70 mb 60 100
9:89:2014: 20:50 7252:67253:67256 21	
rilli civirii	

.



ONTITECH RUBBER	No:QC-DB- 210/ 2014				
Industrial Kft.	Page:	15/113			
	ContiTe	ch			

Hose Data Sheet

CRI Order No.	538236
Customer	ContiTech Oil & Marine Corp.
Customer Order No	4500409859
Item No.	1
Hose Type	Flexible Hose
Standard	API SPEC 16 C
Inside dia in inches	3
Length	35 ft
Type of coupling one end	FLANGE 4.1/16" 10K API SPEC 6A TYPE 6BX FLANGE CAV BX155 R.GR.SOUR
Type of coupling other end	FLANGE 4.1/16* 10K API SPEC 6A TYPE 6BX FLANGE C/W BX155 R.GR.SOUR
H2S service NACE MR0175	Yes
Working Pressure	10 000 psi
Design Pressure	10 000 psi
Test Pressure	15 000 psi
Safety Factor	2,25
Marking	USUAL PHOENIX
Cover	NOT FIRE RESISTANT
Outside protection	St.steel outer wrap
Internal stripwound tube	No
Lining	OIL + GAS RESISTANT SOUR
Safety clamp	No
Lifting collar	No
Element C	No
Safety chain	No
Safety wire rope	No
Max.design temperature [°C]	100
Min.design temperature [°C]	-20
Min. Bend Radius operating [m]	0,90
Min. Bend Radius storage [m]	0,90
Electrical continuity	The Hose is electrically continuous
Type of packing	WOODEN CRATE ISPM-15

Printed: TIRETECH2/CsontosG - 2014.03.10 15:22:17

Permian Resources Casing Design Criteria

A sundry will be requested if any lesser grade or different size casing is substituted. All casing will be centralized as specified in On Shore Order II. Casing will be tested as specified in On Shore Order II.

Casing Design Assumptions:

Surface

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate I

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.

- (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate or Intermediate II

- 1) Burst Design Loads
 - a) Gas Kick Profile
 - Internal: Load profile based on influx encountered in lateral portion of wellbore with a maximum influx volume of 150 bbl and a kick intensity of 1.5 ppg using maximum anticipated MW of 9.9 ppg.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
- a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - Internal: Lost circulation at the deepest TVD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Production

- 1) Burst Design Loads
 - a) Injection Down Casing
 - (1) Internal: Surface pressure plus injection fluid gradient.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test (Drilling)
 - Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - c) Casing Pressure Test (Production)
 - (1) Internal: The design pressure test should be the greater of the planned test pressure prior to simulation down the casing, the regulatory test pressure, and the expected gas lift system pressure. The design test fluid should be the fluid associated with the pressure test having the greatest pressure.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - d) Tubing Leak
 - (1) Internal: SITP plus a packer fluid gradient to the top of packer.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
 - b) Full Evacuation
 - (1) Internal: Full void pipe.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Permian Resources Multi-Well Pad Batch Drilling Procedure

<u>Surface Casing</u> - PR intends to Batch set all 13-3/8" casing to a depth approved in the APD. 17-1/2" Surface Holes will be batch drilled by a rig. Appropriate notifications will be made prior to spudding the well, running and cementing casing and prior to skidding to the rig to the next well on pad.

- 1. Drill 17-1/2" Surface hole to Approved Depth with Rig and perform wellbore cleanup cycles. Trip out and rack back drilling BHA.
- 2. Run and land 13-3/8" 54.5# J55 BTC casing see Illustration 1-1 Below to depth approved in APD.
- 3. Set packoff and test to 5k psi
- 4. Offline Cement
- 5. Install wellhead with pressure gauge and nightcap. Nightcap is shown on final wellhead Stack up Illustration #2-2.
- 6. Skid Rig to adjacent well to drill Surface hole.
- 7. Surface casing test will be performed by the rig in order to allow ample time for Cement to develop 500psi compressive strength. Casing test to 0.22 psi/ft or 1500 psi whichever is

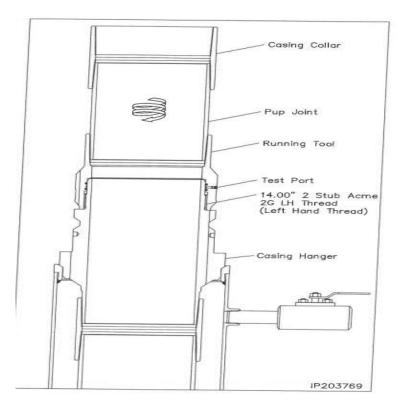
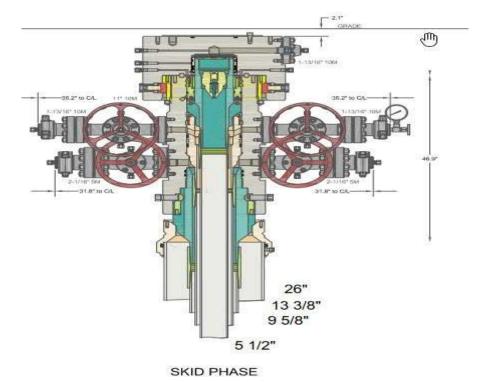
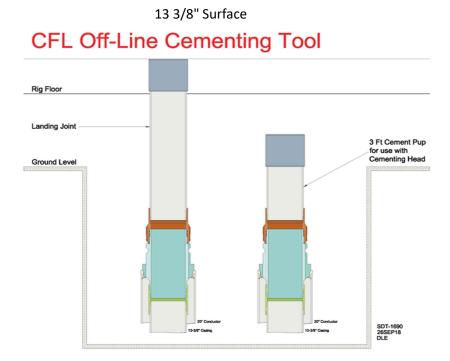


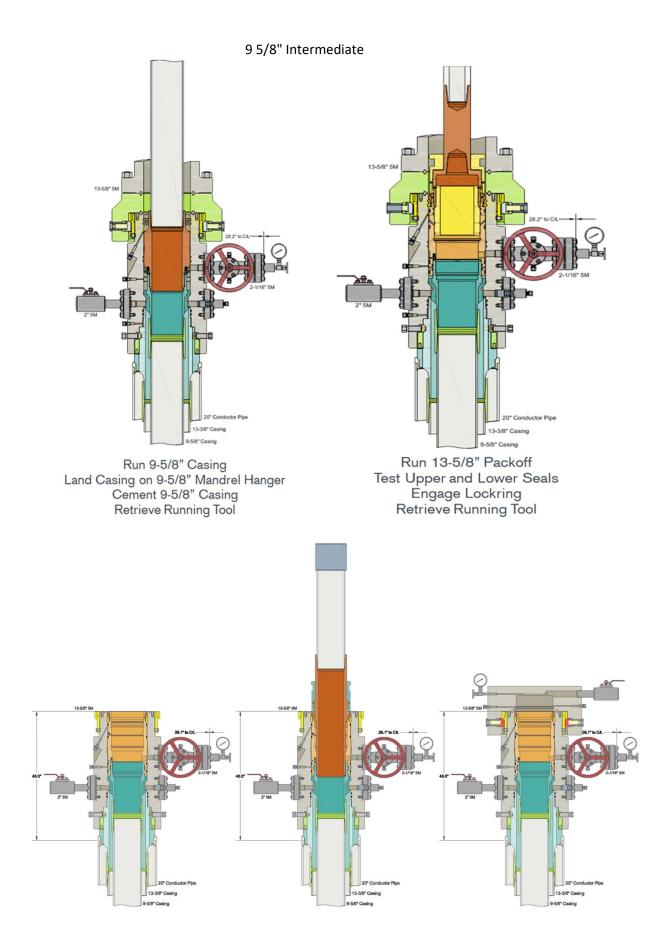
Illustration 1-1

<u>Intermediate Casing</u> – PR intends to Batch set all intermediate casing strings to a depth approved in the APD, typically set into Lamar. 12-1/4" Intermediate Holes will be batch drilled by the rig. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

- 1. Rig will remove the nightcap and install and test BOPE.
- 2. Test Surface casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 3. Install wear bushing then drill out 13-3/8" shoe-track plus 20' and conduct FIT to minimum of the MW equivalent anticipated to control the formation pressure to the next casing point.
- 4. Drill Intermediate hole to approved casing point. Trip out of hole with BHA to run Casing.
- 5. Remove wear bushing then run and land Intermediate Casing with mandrel hanger in wellhead.
- 6. Cement casing to surface with floats holding.
- 7. Washout stack then run wash tool in wellhead and wash hanger and pack-off setting area.
- 8. Install pack-off and test void to 5,000 psi for 15 minutes. Nightcap shown on final wellhead stack up illustration 2-2 on page 3.
- 9. Test casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 10. Install nightcap skid rig to adjacent well to drill Intermediate hole.



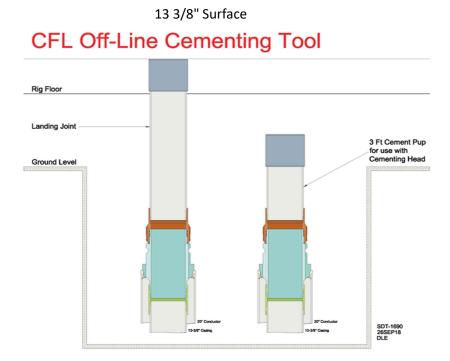

Illustration 2-2

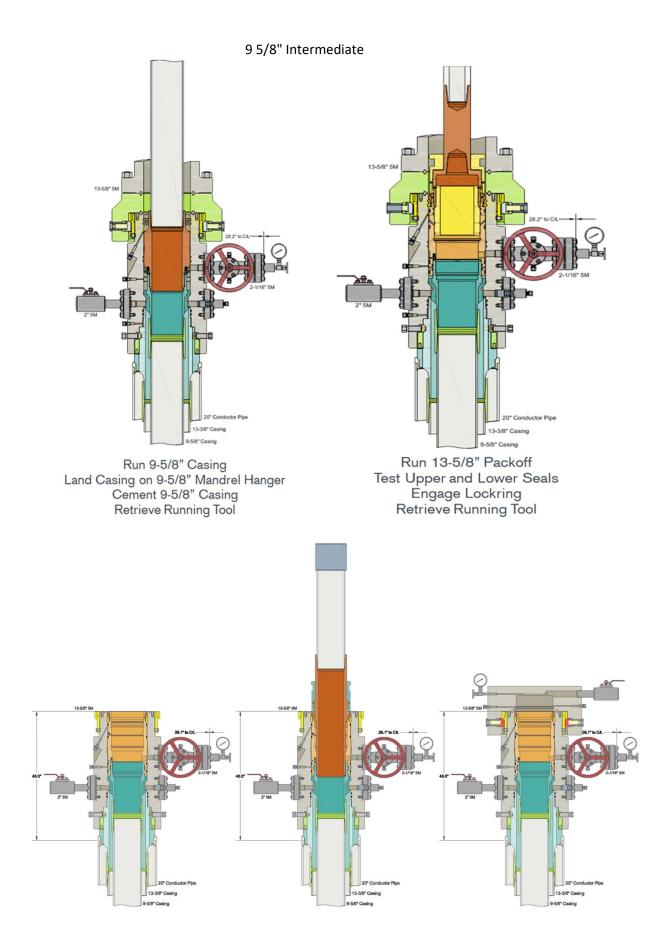

<u>Production Casing</u> – PR intends to Batch set all Production casings with Rig. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

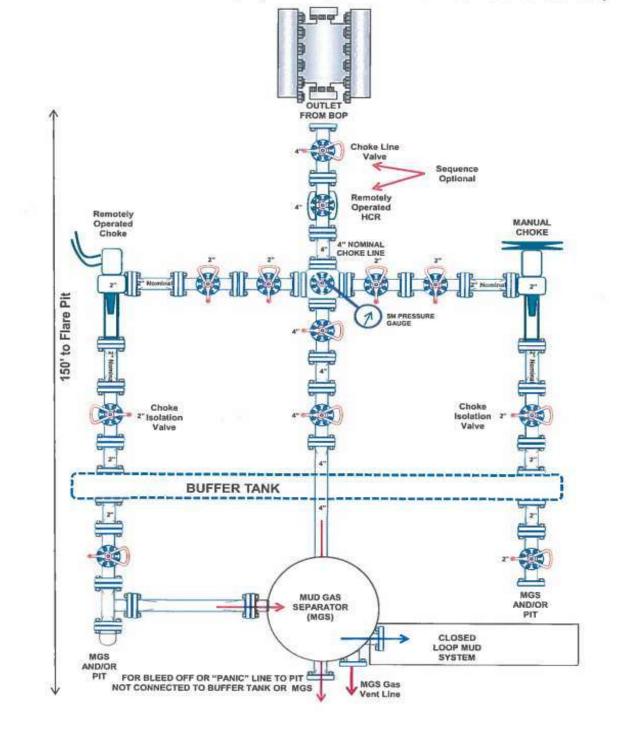
- 1. Big Rig will remove the nightcap and install and test BOPE.
- 2. Install wear bushing then drill Intermediate shoe-track plus 20' and conduct FIT to minimum MW equivalent to control the formation pressure to TD of well.
- 3. Drill Vertical hole to KOP Trip out for Curve BHA.
- 4. Drill Curve, landing in production interval Trip for Lateral BHA.
- 5. Drill Lateral / Production hole to Permitted BHL, perform cleanup cycles and trip out to run 51/2" Production Casing.
- 6. Remove wear bushing then run 5-1/2" production casing to TD landing casing mandrel in wellhead.
- 7. Cement 5-1/2" Production string with floats holding.
- 8. Run in with wash tool and wash wellhead area install pack-off and test void to 5,000psi for 15 minutes.
- 9. Install BPV in 5-1/2" mandrel hanger Nipple down BOPE and install nightcap.
- 10. Test nightcap void to 5,000psi for 30 minutes per illustration 2-2
- 11. Skid rig to adjacent well on pad to drill production hole.

Permian Resources Offline Cementing Procedure 13-3/8" & 9-5/8" Casing

- 1. Drill hole to Total Depth with Rig and perform wellbore cleanup cycles.
- 2. Run and casing to Depth.
- 3. Land casing with mandrel.
- 4. Circulate 1.5 csg capacity.
- 5. Flow test Confirm well is static and floats are holding.
- 6. Set Annular packoff and pressure test. Test to 5k.
- 7. Nipple down BOP and install cap flange.
- 8. Skid rig to next well on pad
- 9. Remove cap flange (confirm well is static before removal)
 - a) If well is not static use the casing outlet valves to kill well
 - b) Drillers method will be used in well control event
 - c) High pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - d) Kill mud will be circulated once influx is circulated out of hole
 - e) Confirm well is static and remove cap flange to start offline cement operations
- 10. Install offline cement tool.
- 11. Rig up cementers.
- 12. Circulate bottoms up with cement truck
- 13. Commence planned cement job, take returns through the annulus wellhead valve
- 14. After plug is bumped confirm floats hold and well is static
- 15. Rig down cementers and equipment
- 16. Install night cap with pressure gauge to monitor.


.

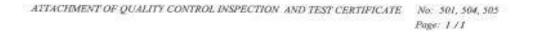

GEOCONN-SC WW Pi Wsc1 D CC M M Pi BC C C C C C C C C C C C C C C C C C C	Pipe: SeAH P110RY 95%PBW Coupling: P110RY (SMY Connection Data Demetry ipe Body rade *1 MYS ipe OD (D) /eight /all Thickness (t) ipe ID (d) rift Dia. onnection oupling SMYS C-Coupling OD (Wsc1) oupling Length (NL) lake up Loss ipe Critical Area ox Critical Area hread Taper	P110Ry Impe P110RY 110 5.500 17.00 0.304 4.892 4.767 110 6.050 8.350 4.125	Date Rev. erial ksi in lb/ft in in in ksi in in	<u>S.I</u> <u>P110RY</u> 110 139.70 25.33 7.72 124.26 121.08 110 153.67	eb-21 0 ksi mm kg/m mm mm mm ksi	
GEOCONN-SC W GEOCONN-SC W W Pi d CC GEOCONN-SC W W Pi d CC SC CC SC CC SC CC SC CC SC CC SC CC SC CC SC CC SC S	Connection Data	P110RY 110 5.500 17.00 0.304 4.892 4.767 110 6.050 8.350 4.125	Rev. erial ksi in lb/ft in in in ksi in	<u>S.I</u> <u>P110RY</u> 110 139.70 25.33 7.72 124.26 121.08 110 153.67	0 ksi mm kg/m mm mm mm ksi	
GEOCONN-SC WW Pi Wsc1 D CC M M Pi BC C C C C C C C C C C C C C C C C C C	pmetry ipe Body rade *1 MYS ipe OD (D) /eight /all Thickness (t) ipe ID (d) rift Dia. onnection oupling SMYS C-Coupling OD (Wsc1) oupling Length (NL) lake up Loss ipe Critical Area ox Critical Area	Impe P110RY 110 5.500 17.00 0.304 4.892 4.767 110 6.050 8.350 4.125	ksi in Ib/ft in in in ksi in	P110RY 110 139.70 25.33 7.72 124.26 121.08 110 153.67	ksi mm kg/m mm mm mm	
GEOCONN-SC W W Pi Wsc1 D C C S S C C S S C C C S S C C C S S C C C C S S C C C S S S T Pi D C C C S S S T Pi D C C S S T Pi D C C S S T Pi D C C S S T D C C S S S T D C C S S S T D C S S S T D C S S S S S S S S S S S S S S S S S S	rade *1 MYS ipe OD (D) /eight /all Thickness (t) ipe ID (d) rift Dia. onnection oupling SMYS C-Coupling OD (Wsc1) oupling Length (NL) iake up Loss ipe Critical Area ox Critical Area	P110RY 110 5.500 17.00 0.304 4.892 4.767 110 6.050 8.350 4.125	ksi in Ib/ft in in in ksi in	P110RY 110 139.70 25.33 7.72 124.26 121.08 110 153.67	ksi mm kg/m mm mm mm	
GEOCONN-SC W W Pi Wsc1 D C C S S C C S S C C C S S C C C S S C C C C S S C C C S S S T Pi D C C C S S S T Pi D C C S S T Pi D C C S S T Pi D C C S S T D C C S S S T D C C S S S T D C S S S T D C S S S S S S S S S S S S S S S S S S	rade *1 MYS ipe OD (D) /eight /all Thickness (t) ipe ID (d) rift Dia. onnection oupling SMYS C-Coupling OD (Wsc1) oupling Length (NL) iake up Loss ipe Critical Area ox Critical Area	110 5.500 17.00 0.304 4.892 4.767 110 6.050 8.350 4.125	ksi in Ib/ft in in in ksi in	110 139.70 25.33 7.72 124.26 121.08 110 153.67	ksi mm kg/m mm mm ksi	
GEOCONN-SC W W Pi Wsc1 D C C S S C C M Pi B C C S C C C C C C C C C C C C C C C C	MYS ipe OD (D) /eight /all Thickness (t) ipe ID (d) rift Dia. onnection oupling SMYS C-Coupling OD (Wsc1) oupling Length (NL) iake up Loss ipe Critical Area ox Critical Area	110 5.500 17.00 0.304 4.892 4.767 110 6.050 8.350 4.125	in Ib/ft in in in ksi in	110 139.70 25.33 7.72 124.26 121.08 110 153.67	mm kg/m mm mm ksi	
GEOCONN-SC	ipe OD (D) /eight /all Thickness (t) ipe ID (d) rift Dia. onnection oupling SMYS C-Coupling OD (Wsc1) oupling Length (NL) iake up Loss ipe Critical Area ox Critical Area	5.500 17.00 0.304 4.892 4.767 110 6.050 8.350 4.125	in Ib/ft in in in ksi in	139.70 25.33 7.72 124.26 121.08 110 153.67	mm kg/m mm mm ksi	
GEOCONN-SC W W Pi Wsc1 D CC SC CC SC CC SC CC SC CC SC CC SC CC SC CC SC CC SC CC SC CC SC CC SC CC SC S	reight /all Thickness (t) ipe ID (d) rift Dia. onnection oupling SMYS C-Coupling OD (Wsc1) oupling Length (NL) iake up Loss ipe Critical Area ox Critical Area	17.00 0.304 4.892 4.767 110 6.050 8.350 4.125	Ib/ft in in in ksi in	25.33 7.72 124.26 121.08 110 153.67	kg/m mm mm ksi	
Wsc1 Wsc1 D C C S C S C S C S C S C S C S S C S C S S C S S C S S S S S S S S S S S S S	All Thickness (t) ipe ID (d) rift Dia. onnection oupling SMYS C-Coupling OD (Wsc1) oupling Length (NL) lake up Loss ipe Critical Area ox Critical Area	0.304 4.892 4.767 110 6.050 8.350 4.125	in in in ksi in	7.72 124.26 121.08 110 153.67	mm mm mm ksi	
Wsc1 D C C C C C C C C C C C C C C C C C C	ipe ID (d) rift Dia. onnection oupling SMYS C-Coupling OD (Wsc1) oupling Length (NL) lake up Loss ipe Critical Area ox Critical Area	4.892 4.767 110 6.050 8.350 4.125	in in ksi in	124.26 121.08 110 153.67	mm mm ksi	
Wsc1 D Wsc1 D C S S M Pi B TT Ni Perfi	rift Dia. onnection oupling SMYS C-Coupling OD (Wsc1) oupling Length (NL) lake up Loss ipe Critical Area ox Critical Area	4.767 110 6.050 8.350 4.125	in ksi in	121.08 110 153.67	mm ksi	
d Ca M Pi Ba Pi Perfi	onnection oupling SMYS C-Coupling OD (Wsc1) oupling Length (NL) lake up Loss ipe Critical Area ox Critical Area	110 6.050 8.350 4.125	ksi in	110 153.67	ksi	
d Co Si Si M Pi Bi Bi Ni Ni Perfi	oupling SMYS C-Coupling OD (Wsc1) oupling Length (NL) lake up Loss ipe Critical Area ox Critical Area	6.050 8.350 4.125	in	153.67		
d Cd M Pi B TT Ni Perfi	C-Coupling OD (Wsc1) oupling Length (NL) lake up Loss ipe Critical Area ox Critical Area	6.050 8.350 4.125	in	153.67		
	oupling Length (NL) lake up Loss ipe Critical Area ox Critical Area	8.350 4.125		1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
	lake up Loss ipe Critical Area ox Critical Area	4.125	in		mm	
Pi Bri Ni Perfi	ipe Critical Area ox Critical Area			212.09	mm	
Perf	ox Critical Area	4.00	in	104.78	mm	
Perf		4.96	in ²	3,202	mm ²	
Perf	broad Tapar	6.10	in ²	3,937	mm ²	
Perf	Iteau Tabel	N (1998,1990) (1)	1.	3/4" per ft)		
Perf	umber of Threads			TPI		
	M.Y.S. *1	546	kips	2,428	kN	
2	I.Y.P. *1	11,550	DSI	79.66	MPa	
	ollapse Strength *1	7,480	DSI	51.59	MPa	
5	Constraints and a constraint of the second		essure of Pipe bo	SCH01010772		
	in. Connection Joint Strength	onneedon	100%	of S.M.Y.S.		
	in. Compression Yield		100%	of S.M.Y.S.		
3 Int	ternal Pressure		100% of MLY.P.			
E E	ternal Pressure	1	100% of Colla	pse Strength		
1 1 1 M	ax. DLS (deg. /100ft)			-90		
t ->	ecommended Torque					
	Min	10.800	ft-lb	14.600	N-m	
a	Opti.	12,000	ft-lb	16,200	N-m	
4	Max.	13,200	ft-lb	17,800	N-m	
	Operational Max.	15,600	ft-lb	21,100	N-m	
	Note : Operational Max. torque of			2.1.00		
Notice						
e of this information is at the reader/user's risk and						
e of information contained herein. The information ts, without regard to safety-related factors, all of wi	provided on this Connection Data Sheet is for i	nformational purposes only, and	d was prepared by refer	ence to engineering information	that is specific to the su	
ation.	the one responsibility of the operations	and approve and output connet	auro, inclai Urie abbull	construction and end	no vitan reopercito alla	


Such statements in no uniting statements down are extracting or produce to a period of approach, the approach is the approach. The approach is the statement of the set of the statement of the s

Permian Resources Offline Cementing Procedure 13-3/8" & 9-5/8" Casing

- 1. Drill hole to Total Depth with Rig and perform wellbore cleanup cycles.
- 2. Run and casing to Depth.
- 3. Land casing with mandrel.
- 4. Circulate 1.5 csg capacity.
- 5. Flow test Confirm well is static and floats are holding.
- 6. Set Annular packoff and pressure test. Test to 5k.
- 7. Nipple down BOP and install cap flange.
- 8. Skid rig to next well on pad
- 9. Remove cap flange (confirm well is static before removal)
 - a) If well is not static use the casing outlet valves to kill well
 - b) Drillers method will be used in well control event
 - c) High pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - d) Kill mud will be circulated once influx is circulated out of hole
 - e) Confirm well is static and remove cap flange to start offline cement operations
- 10. Install offline cement tool.
- 11. Rig up cementers.
- 12. Circulate bottoms up with cement truck
- 13. Commence planned cement job, take returns through the annulus wellhead valve
- 14. After plug is bumped confirm floats hold and well is static
- 15. Rig down cementers and equipment
- 16. Install night cap with pressure gauge to monitor.

5M Choke Manifold Equipment (WITH MGS + CLOSED LOOP)



CONTITECH RUBBER	No:QC-E	DB-210/2014
1	Page:	9/113

QUALITY CONTROL INSPECTION AND TEST CERTIFICATE					CERT. P	e.	504	
PURCHASER:	ContiTech	Oil & Marine	Corp.		P.O. Nº	§ 8	4500409659	
CONTITECH RUBBER order N	LIBBER order Nº: 538236 HOSE TYPE 3" ID Choke					Choke and	Kill Hose	
HOSE SERIAL N	67255	NOMINAL / AG	ACTUAL LENGTH: 10,67 m / 10,77 m			/ 10,77 m	m.	
W.P. 68,9 MPa 10	ist 0000	T.P. 103,4	MPa	1500	D pel	Duration:	60	min
↑ 10 mm = 10 Min.		See attachm	ient. (1	page	>			
-> 10 mm = 20 MPs	f							
COUPLINGS Typ	e	Serie	al N°		ä	ueitty	Heat	Nº.
100 million -		Serii 9251	el N° 9254			usiity il 4130	Heat	
COUPLINGS Typ	0	5.19.0	1.000		AIS	21.075		9N
COUPLINGS Typ 3° coupling with	n ange end	9251	1.000		AIS	1 4130 1 4130 AJ	A057	9N 08 C
COUPLINGS Typ 3° coupling with 4 1/16° 10K API b.w. Fis Not Designed F All metal parts are flawless WE CERTIFY THAT THE ABOVE	or Well Te	9251 esting	9254	CORDA	AIS	a 4130 a 4130 Aj Temp	A057 0358 PI Spec 16 erature ra	9N 08 C te:"B"
COUPLINGS Typ 3° coupling with 4 1/16° 10K API b.w. Fis Not Designed F All metal parts are flawless.	or Well To For Well To HOSE HAS BE ESTED AS ADD We hereby o the above Puro andards, codes	9251 Esting EEN MANUFACTU VE WITH SATISF Cetty that the ab- thaser Order and	9254 RED IN AC ACTORY # see items/e that these and meet t	CORDA IESULT. guipment femsleg the releva	AIS AIS NCE WIT t supplied upment v int accept	II 4130 II 4130 Al Temp H THE TERMS by us are in c were fabricated	A0571 03561 PI Spec 16 erature ra OF THE ORDE	9N C te:"B" R

Contribute Reduce Relation RT, - Busingards at 10: 11:8728 Elergisci | 4:6707 PO Bas 362 Elergisci, Hurigery Preses, con 87088 (27) (Fico - de 80.568 (28) (a - pair integRed contracts by University and Contracts Advantage The Const of University as Registery Const (Registery Court No. Cg. 50-68-000500 (Ex 147) No. 1411155/008 Rate state Contractable 27, Russipeet ; 4220104-2000000)

.

HINES COULTING		Canto P Rables
GH +21-22 40	01128	With http://dope
80 +21-30 -00 8L +1853. nor	01+20 01+20	A L C L C C C
CH #21,15 PC	OISTR	
BL #1055, ber	CITE C	
GN +21.18 %t	01=04	THE CLEEP
RD + 814 30 Pd	101100	
CN Tele-Br. 226017	01100 \$8mm-10,5	122111
RD HELLEN ON	100150	TTTC
B. +1857. bae	188154	161111
GN +21.20 PC	DOI NO	
BL PIRSS Book	1000 AE 112111	
01 +21-36 HC	00108	111111
BL +1861- 2ide	1201 20	10 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
GN +21.35 FC	108128	111111
PL +1864 bar	08120	
All shares in the second second	승규는 것 같이 다 날 다 들어 있다.	1.1.1.1
TTO OTTO TO THE		111211
		711111E
		11111111
70 20 30 40	50 80 20 ED	001 100
9185188141 29159		1
		241(11)
7252+67255+67254 23		

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined

Would you like to utilize Lined Pit PWD options? N Produced Water Disposal (PWD) Location: PWD surface owner: Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit Pit liner description: **Pit liner manufacturers** Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule Lined pit reclamation description: Lined pit reclamation Leak detection system description: Leak detection system

PWD disturbance (acres):

Well Name: PINKIE PIE 22-21 FED COM

Well Number: 114H

Lined pit Monitor description:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit Monitor

Lined pit bond amount:

Additional bond information

Section 3 - Unlined

Would you like to utilize Unlined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD disturbance (acres):

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule

Unlined pit reclamation description:

Unlined pit reclamation

Unlined pit Monitor description:

Unlined pit Monitor

Do you propose to put the produced water to beneficial use?

Beneficial use user

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic

State

Unlined Produced Water Pit Estimated

Unlined pit: do you have a reclamation bond for the pit?

Well Name: PINKIE PIE 22-21 FED COM

Well Number: 114H

PWD disturbance (acres):

Injection well name:

Injection well API number:

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information

Section 4 -

Would you like to utilize Injection PWD options? N

Produced Water Disposal (PWD) Location:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

PWD surface owner:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection

Underground Injection Control (UIC) Permit?

UIC Permit

Section 5 - Surface

Would you like to utilize Surface Discharge PWD options? N

 Produced Water Disposal (PWD) Location:

 PWD surface owner:
 PWD disturbance (acres):

 Surface discharge PWD discharge volume (bbl/day):
 PWD disturbance (acres):

 Surface Discharge NPDES Permit?
 Surface Discharge NPDES Permit attachment:

 Surface Discharge site facilities information:
 Surface discharge site facilities map:

 Section 6 Section 6

Would you like to utilize Other PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner:

Other PWD discharge volume (bbl/day):

PWD disturbance (acres):

Well Name: PINKIE PIE 22-21 FED COM

Well Number: 114H

Other PWD type description:

Other PWD type

Have other regulatory requirements been met?

Other regulatory requirements

04/22/2024

APD ID: 10400092398	Submission Date: 05/22/2023	Highlighted data
Operator Name: CENTENNIAL RESOURCE PRO	DUCTION LLC	reflects the most recent changes
Well Name: PINKIE PIE 22-21 FED COM	Well Number: 114H	Show Final Text
Well Type: OIL WELL	Well Work Type: Drill	

Bond

Federal/Indian APD: FED

BLM Bond number:

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information

State of New Mexico Energy, Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 - Plan Description Effective May 25, 2021

I. Operator: PERMIAN RESOURCES OPERATING, LLC OGRID: 372165 Date: 4/2/2024

II. Type: \square Original \square Amendment due to \square 19.15.27.9.D(6)(a) NMAC \square 19.15.27.9.D(6)(b) NMAC \square Other. If Other, please describe:

III. Well(s): Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	ULSTR	Footages	Anticipated Oil	Anticipated Gas	Anticipated Prod Water
		_				

IV. Central Delivery Point Name: TBD

[See 19.15.27.9(D)(1) NMAC]

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or recompleted from a single well pad or connected to a central delivery point.

Well Name	API	Spud Date	TD Reached Date	Completion Commencement Date	Initial Flow Back Date	First Production Date
Pinkie Pie 22-21 Fed Com 111H		TBD	TBD	TBD	TBD	TBD
Pinkie Pie 22-21 Fed Com 112H		TBD	TBD	TBD	TBD	TBD
Pinkie Pie 22-21 Fed Com 113H		TBD	TBD	TBD	TBD	TBD
Pinkie Pie 22-21 Fed Com 114H		TBD	TBD	TBD	TBD	TBD

1

Pinkie Pie 22-21 Fed Com 121H	TBD	TBD	TBD	TBD	TBD
Pinkie Pie 22-21 Fed Com 122H	TBD	TBD	TBD	TBD	TBD
Pinkie Pie 22-21 Fed Com 123H	TBD	TBD	TBD	TBD	TBD
Pinkie Pie 22-21 Fed Com 124H	TBD	TBD	TBD	TBD	TBD
Pinkie Pie 22-21 Fed Com 131H	TBD	TBD	TBD	TBD	TBD
Pinkie Pie 22-21 Fed Com 132H	TBD	TBD	TBD	TBD	TBD
Pinkie Pie 22-21 Fed Com 133H	TBD	TBD	TBD	TBD	TBD
Pinkie Pie 22-21 Fed Com 134H	TBD	TBD	TBD	TBD	TBD

VI. Separation Equipment: Attach a complete description of how Operator will seize separation equipment to optimize gas capture.

VII. Operations Practices: ⊠ Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Section 2 - Enhanced Plan Effective April 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

 \Box Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well Name	API	Anticipated Average Natural Gas Rate	Anticipated Volume of Natural Gas for the First Year
-			
-			
-			

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Volume of Natural Gas for the First Year
TBD	TBD	TBD	TBD	TBD

XI. Map. \boxtimes Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas system(s) to which the well(s) will be connected.

XII. Line Capacity. Operator \boxtimes does \square does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

□ Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \boxtimes Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC and attached a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

Section 3 - Certifications

Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \Box Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \square Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system.

If Operator checks this box, Operator will select one of the following:

Well Shut-In. \boxtimes Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) Power generation on lease;
- (**b**) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
 - (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
 - (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, not later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file and update for each Natural Gas Management Plan until the Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
 - (c) OCD may deny or conditionally approve and APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

	5
Signature:	Ashley) Brown
Printed Name:	Ashley Brown
Title:	Regulatory Lead
Email Address:	ashley.brown@permianres.com
Date:	4/3/2024
Phone:	(432) 400-2972
	OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)
Approved By:	
Title:	
Approval Date:	
Conditions of Apr	

NATURAL GAS MANAGEMENT PLAN DESCRIPTIONS

VI. Separation Equipment:

Permian utilizes a production forecast from our Reservoir Engineering team to appropriately size each permanent, 3-phase separator and heater treater utilized for production operations. Our goal is to maintain 5 minutes of retention time in the test vessel and 20 minutes in the heater treater at peak production rates. The gas produced is routed from the separator to the gas sales line.

VII. Operational Practices:

Drilling

During Permian's drilling operations it is uncommon for venting or flaring to occur. If flaring is needed due to safety concerns, gas will be routed to a flare and volumes will be estimated.

Flowback

During completion/recompletion flowback operations, after separation flowback begins and as soon as it is technically feasible, Permian routes gas though a permanent separator and the controlled facility where the gas is either sold or flared through a high-pressure flare if needed.

Production

Per 19.15.27.8.D, Permian's facilities are designed to minimize waste. Our produced gas will only be vented or flared in an emergency or malfunction situation, except as allowed for normal operations noted in 19.15.27.8.D(2) & (4). All gas that is flared is metered. All gas that may be vented will be estimated.

Performance Standards

Permian utilizes a production forecast from our Reservoir Engineering team to appropriately size each permanent, 3-phase separator and heater treater utilized for production operations.

All of Permian's permanent storage tanks associated with production operations which are routed to a flare or control device are equipped with an automatic gauging system.

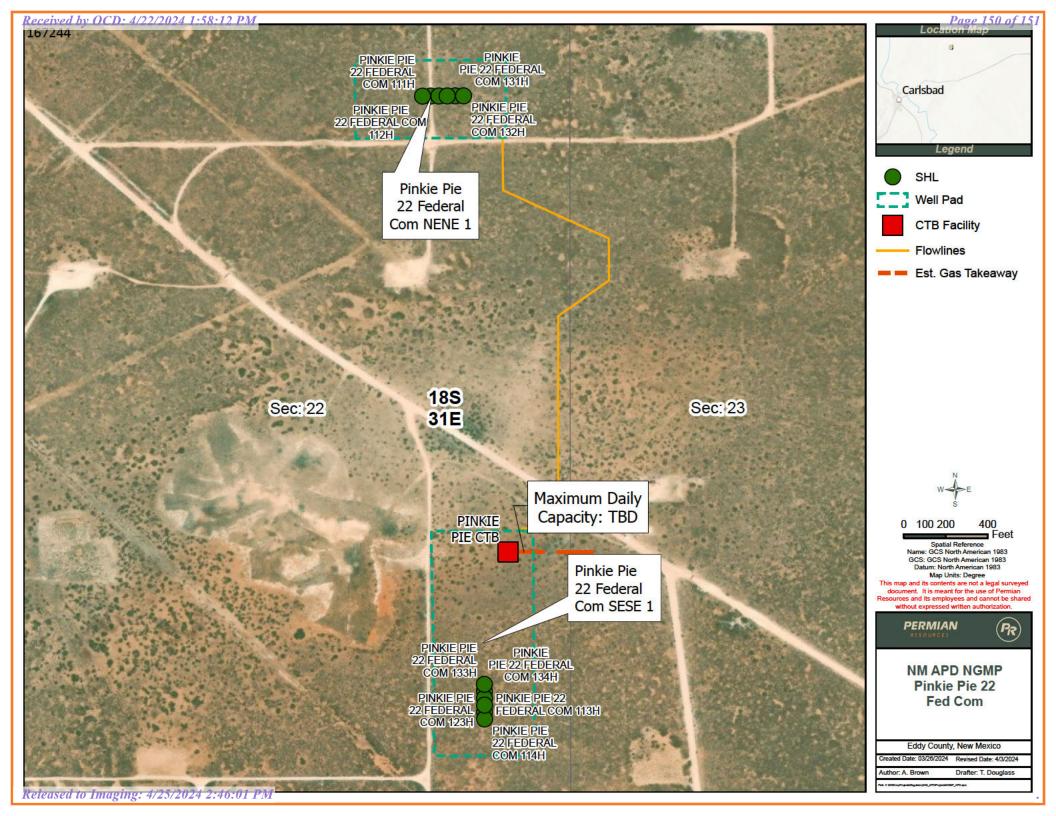
All of Permian's flare stacks, both currently installed and for future installation, are:

- 1) Appropriately sized and designed to ensure proper combustion efficiency.
- 2) Equipped with an automatic ignitor or continuous pilot.
- 3) Anchored and located at least 100 feet from the well and storage tanks.

Permian's field operations and HSE teams have implemented an AVO inspection schedule that adheres to the requirements of 19.15.27.8.E(5).

All of our operations and facilities are designed to minimize waste. We routinely employ the following methods and practices:

- Closed loop systems
- Enclosed and properly sized tanks.
- Vapor recovery units to maximize recovery of low-pressure gas streams and potential unauthorized emissions.
- Low-emitting or electric engines whenever practical
- Combustors and flare stacks in the event of a malfunction or emergency
- Routine facility inspections to identify leaking components, functioning control devices, such as flares and combustors, and repair / replacement of malfunctioning components where applicable.


Measurement or Estimation

Permian measures or estimates the volumes of natural gas vented, flared and/or beneficially used for all of our drilling, completing, and producing wells. We utilize accepted industry standards and methodology which can be independently verified. Annual GOR testing is completed on our wells and will be submitted as required by the NMOCD. None of our equipment is designed to allow diversion around metering elements except during inspection, maintenance, and repair operations.

VIII. Best Management Practices:

Permian utilizes the following BMPs to minimize venting during active and planned maintenance activities:

- Use a closed-loop process wherever possible during planned maintenance activities, such as blowdowns, liquid removal, and work over operations.
- Employ low-emitting or electric engines for equipment, such as compressors.
- Adhere to a strict preventative maintenance program which includes routine facility inspections, identification of component malfunctions, and repairing or replacing components such as hatches, seals, valves, etc. where applicable.
- Utilize vapor recovery units (VRU's) to maximize recovery of volumes of low-pressure gas streams and potential unauthorized emissions.
- Route low pressure gas and emissions streams to a combustion device to prevent venting where necessary.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 151 of 151 CONDITIONS

Action 336119

CONDITIONS

Operator:	OGRID:
Permian Resources Operating, LLC	372165
300 N. Marienfeld St Ste 1000	Action Number:
Midland, TX 79701	336119
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
ward.rikala	Notify OCD 24 hours prior to casing & cement	4/25/2024
ward.rikala	Will require a File As Drilled C-102 and a Directional Survey with the C-104	4/25/2024
ward.rikala	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string	4/25/2024
ward.rikala	Cement is required to circulate on both surface and intermediate1 strings of casing	4/25/2024
ward.rikala	If cement does not circulate on any string, a CBL is required for that string of casing	4/25/2024
ward.rikala	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system	4/25/2024