Form 3160-3 (June 2015) UNITED STATE DEPARTMENT OF THE I	OMB No. 10	FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018 5. Lease Serial No.				
BUREAU OF LAND MAN APPLICATION FOR PERMIT TO D	6. If Indian, Allotee or T	ribe Name				
1a. Type of work: DRILL	EENTER			7. If Unit or CA Agreem	ent, Name and No.	
1b. Type of Well: Oil Well Gas Well C 1c. Type of Completion: Hydraulic Fracturing S	8. Lease Name and Well	No.				
2. Name of Operator				9. API Well No.	025-52850	
3a. Address	3b. Phone N	lo. (include area cod	e)	10. Field and Pool, or Ex		
 4. Location of Well (<i>Report location clearly and in accordance</i> At surface At proposed prod. zone 		11. Sec., T. R. M. or Blk	. and Survey or Are			
14. Distance in miles and direction from nearest town or post off	fice*			12. County or Parish	13. State	
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	16. No of ac	cres in lease	17. Spaci	ng Unit dedicated to this w	vell	
 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 	19. Propose	d Depth	20. BLM	BLM/BIA Bond No. in file		
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22. Approxi	mate date work will	start*	23. Estimated duration		
	24. Attac	chments				
The following, completed in accordance with the requirements o (as applicable)	f Onshore Oil	and Gas Order No. 1	, and the I	Hydraulic Fracturing rule p	er 43 CFR 3162.3-3	
 Well plat certified by a registered surveyor. A Drilling Plan. 		4. Bond to cover th Item 20 above).	e operatior	ns unless covered by an exi	sting bond on file (se	
3. A Surface Use Plan (if the location is on National Forest Syste SUPO must be filed with the appropriate Forest Service Office	· · · · ·	5. Operator certific6. Such other site sp BLM.		rmation and/or plans as may	be requested by the	
25. Signature	Name	(Printed/Typed)		Date		
Title						
Approved by (Signature)	Name	(Printed/Typed)		Dat	e	
Title	ffice					
Application approval does not warrant or certify that the applicat applicant to conduct operations thereon. Conditions of approval, if any, are attached.	nt holds legal	or equitable title to th	nose rights	in the subject lease which	would entitle the	
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, r of the United States any false, fictitious or fraudulent statements					lepartment or agenc	

*(Instructions on page 2)

.

(Continued on page 2)

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 <u>District II</u> 811 S. First St., Artesia, NM 88210

Phone: (575) 748-1283 Fax: (575) 748-9720 District III

1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV

1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT WC-025 G-08

20.4	¹ API Number 30-025-52850			Code 9790)3		³ Pool Name	S2532350	G; LWR BON	
30-0	JZ3-32	550	278	έ%χ		XXXXXXXXXX	CARDER BONE	SPSPRNALE	8	
	ty Code		⁵ Property Name						⁶ Well Number	
3358	847			SD 15 2	2 FED COM P	404			404H	
⁷ OGR	ID No.		⁸ Operator Name ⁹ Elevation							
43	23		CHEVRON U.S.A. INC. 3193'						3193'	
				10 Sut	face Locat	ion		•		
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County	
В	15	26 SOUTH	32 EAST, N.M.P.M.		377'	NORTH	1815'	EAST	LEA	
			¹¹ Bottom I	Hole Locat	tion If Diff	erent From S	Surface			
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County	
0	22	26 SOUTH	32 EAST, N.M.P.M.		25'	SOUTH	2310'	EAST	LEA	
¹² Dedicated A	cres ¹³ Joi	nt or Infill	¹⁴ Consolidation Code	¹⁵ Order No.	•	•				
640		NFILL								

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

16	A B	C 1815'	¹⁷ OPERATOR CERTIFICATION
SD 15 22 FED COM P404 PROPOSED BOTTOM HOLE 404H WELL LOCATION	ן		I hereby certify that the information contained herein is true and complete
X= 708,765' X= 708,320'	1 /		to the best of my knowledge and belief, and that this organization either
Y= 382,251' LAT. 32,049133° N NAD 27 LAT. 32,020826° N NAD 27	Proposed -	\m	owns a working interest or unleased mineral interest in the land including
LAT. 32.049133° N LOD 27 LAT. 32.020826° N LOD 27 LAT. 32.020826° N LON 27 LAT. 32.020826° N	First Take Point	N 61°07'25" W	the proposed bottom hole location or has a right to drill this well at this
X= 749,952' X= 749,508'	100' FNL, 2,310' FEL	565.62'	location pursuant to a contract with an owner of such a mineral or
Y= 382,309' Y= 372,008' NAD83/2011 Y= 372,008' NAD83/201 LAT. 32.049258° N NAD83/2011 LAT. 32.020951° N			working interest, or to a voluntary pooling agreement or a compulsory
LONG. 103.660003° W LONG. 103.661645° W			pooling order heretofore entered by the division.
	ייש 15 ער 15	,248.27	Cindy Herrera-Murillo 09/20/2022
PROPOSED FIRST TAKE POINT PROPOSED LAST TAKE POINT		2,2/	Signature Date
X= 708,270' X= 708,320' Y= 382,525' Y= 372,026'		Ш Ш	Cindy Herrera-Murillo
LAT. 32.049893° N NAD 27 LAT. 32.021032° N NAD 27			Printed Name
LONG. 103.661125° W X= 749.457' LONG. 103.661176° W X= 749.507'	41		eeof@chevron.com
Y= 382 582' Y= 372 083'			
LAT. 32.050018° N NAD83/2011 LAT. 32.021157° N NAD83/201		o	E-mail Address
LONG. 103.661596° W			
PROPOSED MID POINT	E F	G H Proposed co Mid-Point	18SURVEYOR CERTIFICATION
X= 708,284' Y= 377,276'		Proposed	I hereby certify that the well location shown on this
Y= 577,276 NAD 27 LAT. 32.035466° N		₩id-Point	plat was plotted from field notes of actual surveys
LONG. 103.661184° W		52	made by me or under my supervision, and that the
X= 749,472' Y= 377,333'		2,3	
LAT. 32.035591° N			same is true and correct to the best of my belief.
LONG. 103.661654° W		3310"	03/31/2022 RT L. LASTRA
CORNER COORDINATES TABLE (NAD 27) A - X=705250.43, Y=382599.25	22		Date of Survey
B - X=707915.08, Y=382621.59			Signature and Seal of Pretessional Survey
C - X=709247.41, Y=382632.76 D - X=710579.74, Y=382643.92		ίω I	
E - X=705266.50 Y=377249.95			(23006) 06/09/2022
F - X=707930.44, Y=377273.21			
G - X=709262.41, Y=377284.84 H - X=710594.39, Y=377296.47	Proposed		- ASTA
I - X=705308.66, Y=371899.94	Last Take Point		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
J - X=707969.55, Y=371922.73 K - X=709300.00, Y=371934.13	100' FSL, 2,310' FEL		Certificate Number
L - X=7109300.00, 1=371934.13			
		<u></u>	

Released to Imaging: 4/25/2024 1:45:39 PM

VI. Separation Equipment:

Separation equipment installed at each Chevron facility is designed for maximum anticipated throughput and pressure to minimize waste. Separation equipment is designed and built according to ASME Sec VIII Div I to ensure gas is separated from liquid streams according to projected production.

VII./VIII. Operational & Best Management Practices:

1. General Requirements for Venting and Flaring of Natural Gas:

- In all circumstances, Chevron will flare rather than vent unless flaring is technically infeasible and venting of natural gas will avoid a risk of an immediate and substantial adverse impact on safety, public health, or the environment.
- Chevron installs and operates vapor recovery units (VRUs) in new facilities to minimize venting and flaring. If a VRU experiences operating issues, it is quickly assessed so that action can be taken to return the VRU to operation or, if necessary, facilities are shut-in to reduce the venting or flaring of natural gas.

2. During Drilling Operations:

- Flare stacks will be located a minimum of 110 feet from the nearest surface hole location.
- If an emergency or malfunction occurs, gas will be flared or vented to avoid a risk of an immediate and substantial adverse impact on public health, safety or the environment and be properly reported to the NMOCD pursuant to 19.15.27.8.G.
- Natural gas is captured or combusted if technically feasible using best industry practices and control technologies, such as the use of separators (e.g., Sand Commanders) during normal drilling and completions operations.

3. During Completions:

- Chevron typically does not complete traditional flowback, instead Chevron will flow produced oil, water, and gas to a centralized tank battery and continuously recover salable quality gas. If Chevron completes traditional flowback, Chevron conducts reduced emission completions as required by 40 CFR 60.5375a by routing gas to a gas flow line as soon as practicable once there is enough gas to operate a separator. Venting does not occur once there is enough gas to operate a separator
- Normally, during completions a flare is not on-site. A Snubbing Unit will have a flare on-site, and the flare volume will be estimated.
- If natural gas does not meet pipeline quality specification, the gas is sampled twice per week until the gas meets the specifications.

4. During Production:

- An audio, visual and olfactory (AVO) inspection will be performed daily (at minimum) for active wells and facilities to confirm that all production equipment is operating properly and there are no leaks or releases except as allowed in Subsection D of 19.15.27.8 NMAC. Inactive, temporarily abandoned, or shut-in wells and facilities will be inspected weekly. Inspection records will be kept for a minimum of five years and will be available upon request by the division.
- Monitor manual liquid unloading for wells on-site, takes all reasonable actions to achieve a stabilized rate and pressure at the earliest practical time and takes reasonable actions to minimize venting to the maximum extent practicable.
- In all circumstances, Chevron will flare rather than vent unless flaring is technically infeasible and venting of natural gas will avoid a risk of an immediate and substantial adverse impact on safety, public health, or the environment.
- Chevron's design for new facilities utilizes air-activated pneumatic controllers and pumps.
- If natural gas does not meet pipeline quality specification, the gas is sampled twice per week until the gas meets the specifications.
- Chevron does not produce oil or gas until all flowlines, tank batteries, and oil/gas takeaway are installed, tested, and determined operational.

5. Performance Standards

- Equipment installed at each facility is designed for maximum anticipated throughput and pressure to minimize waste. Tank pressure relief systems utilize a soft seated or metal seated PSVs, as appropriate, which are both designed to not leak.
- Flare stack has been designed for proper size and combustion efficiency. New flares will have a continuous pilot and will be located at least 100 feet from the well and storage tanks and will be securely anchored.
- New tanks will be equipped with an automatic gauging system.
- An audio, visual and olfactory (AVO) inspection will be performed daily (at minimum) for active wells and facilities to confirm that all production equipment is operating properly and there are no leaks or releases except as allowed in Subsection D of 19.15.27.8 NMAC. Inactive, temporarily abandoned, or shut-in wells and facilities will be inspected weekly. Inspection records will be kept for a minimum of five years and will be available upon request by the division.

6. Measurement or Estimation of Vented and Flared Natural Gas

- Chevron estimates or measures the volume of natural gas that is vented, flared, or beneficially used during drilling, operations, regardless of the reason or authorization for such venting or flaring.
- Where technically practicable, Chevron will install meters on flares installed after May 25, 2021. Meters will conform to industry standards. Bypassing the meter will only occur for inspecting and servicing of the meter.

Rece	vived l	bv (OCD: -	4/15/	2024	12:37:58	PM
------	---------	------	--------	-------	------	----------	----

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Date: 09/21/2022

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

<u>Section 1 – Plan Description</u> <u>Effective May 25, 2021</u>

OGRID: <u>4323</u>

I. Operator: <u>Chevron USA Inc</u>

II. Type: ⊠ Original □ Amendment due to □ 19.15.27.9.D(6)(a) NMAC □ 19.15.27.9.D(6)(b) NMAC □ Other.

If Other, please describe:

III. Well(s): Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water
						BBL/D
SD 15 22 Fed Com Pad 404 Well #303H	Pending	Unit Letter B: Sect 15 T26S R32E	377' FNL 1795' FEL	1050 BBL/D	2983 MCF/D	1670 BBL/D
SD 15 22 Fed Com Pad 404 Well 304H	Pending	Unit Letter B: Sect 15 T26S R32E	377' FNL 1735'FEL	1050 BBL/D	2983 MCF/D	1670 BBL/D
SD15 22 Fed Com Pad 404 Well #404H	Pending	Unit Letter B: Sect 15 T26S R32E	377' FNL 1815' FEL	1050 BBL/D	2983 MCF/D	1670 BBL/D
SD 15 22 Fed Com Pad 404 Well #405H	Pending	Unit Letter B: Sect 15 T26S R32E	377' FNL 1775' FEL	1050 BBL/D	2983 MCF/D	1670 BBL/D
SD 15 22 Fed Com Pad 404 Well #406H	Pending	Unit Letter B: Sect 15 T26S R32E	377' FNL 1755' FEL	1050 BBL/D	2983 MCF/D	1670 BBL/D

IV. Central Delivery Point Name: <u>Salado Draw Satellite 14</u> [See 19.15.27.9(D)(1) NMAC]

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	Spud Date	TD Reached	Completion	Initial Flow	First Production
			Date	Commencement Date	Back Date	Date
SD 15 22 Fed Com Pad 404 Well #303H	TBD	4/8/2025	N/A	N/A	N/A	N/A
SD 15 22 Fed Com Pad 404 Well #304H	TBD	4/28/2025	N/A	N/A	N/A	N/A
SD 15 22 Fed Com Pad 404 Well #404H	TBD	5/18/2025	N/A	N/A	N/A	N/A
SD15 22 Fed Com Pad 404 Well #405H	TBD	6/7/2025	N/A	N/A	N/A	N/A
SD 15 22 Fed Com Pad 404 Well #406H	TBD	6/27/2025	N/A	N/A	N/A	N/A

VI. Separation Equipment: 🛛 Attach a complete description of how Operator will size separation equipment to optimize gas capture.

VII. Operational Practices: \boxtimes Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

VIII. Best Management Practices: 🛛 Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF	

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in	

XI. Map. \Box Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \Box will \Box will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \Box does \Box does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

 \Box Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \Box Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

<u>Section 3 - Certifications</u> <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \boxtimes Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \Box Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. \Box Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Cindy Herrera-Murillo Printed Name: Cindy Herrera-Murillo
Printed Name: Cindy Herrera-Murillo
Title: Sr HSE Regulatory affairs Coordinator
E-mail Address: eeof@chevron.com
Date: 09/21/2022
Phone: 575-263-0431
OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

Received by OCD: 4/15/2024 12:37:58 PM

Operator Name: CHEVRON USA INCORPORATED

Well Name: SD 15 22 FED COM P404

Well Number: 404H

Casing Attachments

Casing ID: 1 String SURFACE
Inspection Document:
Spec Document:
Tapered String Spec:
Casing Design Assumptions and Worksheet(s):
13.375_54.5ppf_J55_STC_20210720091246.pdf
Casing ID: 2 String INTERMEDIATE
Inspection Document:
Spec Document:
Tapered String Spec:
Casing Design Assumptions and Worksheet(s):
9.625_40.0lb_L80IC_BTC_20210720091414.pdf
Casing ID: 3 String PRODUCTION
Inspection Document:
Spec Document:
Tapered String Spec:
Casing Design Assumptions and Worksheet(s):

7_29ppf_TN110SS_TSH_Blue_20210720091535.pdf

Received by OCD: 4/15/2024 12:37:58 PM

Operator Name: CHEVRON USA INCORPORATED

Well Name: SD 15 22 FED COM P404

Well Number: 404H

Casing Attachments

Casing ID: 4	String	PRODUCTION
Inspection Document:		
Spec Document:		
Tapered String Spec:		
Casing Design Assump	otions and W	/orksheet(s):
5_18ppf_P110_Flu	ish_W513_20	0210720091704.pdf
Casing ID: 5	String	PRODUCTION
Inspection Document:	g	
Spec Document:		

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

4.5_11.6ppf_P110_TSH_W521_20210720091819.pdf

Section	4 - Ce	emen	L								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	0	0	0	0	0	0	N/A	N/A
SURFACE	Tail		0	855	558	1.33	14.8	742	25	CLASS C	EXTENDER, ANTIFOAM,RETARDE R
INTERMEDIATE	Lead		0	3515	553	2.49	11.9	1376	25	CLASS C	EXTENDER, ANTIFOAM, RETARDER,VISCOSIFI ER
INTERMEDIATE	Tail		3515	4515	323	1.33	14.8	429	50	CLASS C	EXTENDER, ANTIFORM, RETARDER,

Section 4 - Cement

Operator Name: CHEVRON USA INCORPORATED

Well Name: SD 15 22 FED COM P404

Well Number: 404H

				_						-	
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
		• •		•		•	•				VISCOSIFIER
PRODUCTION	Lead		0	8800	611	2.49	11.9	1521	25	CLASS C	EXTENDER, ANTIFOAM, RETARDER,VISCOSIFI ER
PRODUCTION	Tail		8800	9800	141	1.33	14.8	188	25	CLASS C	EXTENDER, ANTIFOAM, RETARDER,VISCOSIFI ER
PRODUCTION	Lead		9500	2075 2	996	1.33	14.8	1325	25	Class C	EXTENDER, ANTIFOAM, RETARDER, VISCOSIFIER

Section 5 - Circulating Medium

Mud System Type: Open

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: If an open reserve pit is not approved by OCD, a closed system will be used consisting of above ground steel tanks and all wastes accumulated during drilling operations will be contained in a portable trash cage and removed from location and deposited in an approved sanitary landfill. If an open reserve pit is in place, pit construction, operation, and closure will follow all applicable rules and regulation. Sanitary wastes will be contained in a chemical porta-toilet and then hauled to an approved sanitary landfill. All fluids and cuttings will be disposed of in accordance with New Mexico Oil Conservation Division rules and regulations. And transportating of E&P waste will follow EPA regulations and accompanying manifests. A mud test shall be performed every 24 hours after mudding up to determine, as applicable: density, viscosity, gel strength, filtration, and pH. Visual mud monitoring equipment shall be in place to detect volume changes indicating loss or gain of circulating fluid volume. When abnormal pressures are anticipated -- a pit volume totalizer (PVT), stroke counter, and flow sensor will be used to detect volume changes indicating loss or gain of circulating fluid volume.

Describe the mud monitoring system utilized: Visual mud monitoring equipment shall be in place to detect volume changes indicating loss or gain of circulating fluid volume. When abnormal pressures are anticipated -- a pit volume totalizer (PVT), stroke counter, and flow sensor will be used to detect volume changes indicating loss or gain of circulating fluid volume.

Circulating Medium Table

Operator Name: CHEVRON USA INCORPORATED

Well Name: SD 15 22 FED COM P404

Well Number: 404H

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (lbs/gal)	Density (Ibs/cu ft)	Gel Strength (lbs/100 sqft)	НА	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
9800	2075 2	OIL-BASED MUD	9	9.6							-Due to wellbore instability in the lateral, may exceed the MW weight window needed to maintain overburden stresses Viscosity 50-70 Filtration 5-10
855	4515	OTHER : BRINE	8.9	10							-Saturated brine would be used through salt sections. Viscosity 26-36 Filtration15-25
0	855	SPUD MUD	8.3	8.9							Viscosity 26-36 Filtration15-25
4515	9800	OTHER : WBM/BRINE	8.7	9							Viscosity 26-36 Filtration 15-25

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Production tests are not planned. Logs run include: Gamma Ray Log, Directional Survey

Coring Operations are not planned. List of open and cased hole logs run in the well:

GAMMA RAY LOG, DIRECTIONAL SURVEY,

Coring operation description for the well:

No coring

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 5153

Anticipated Surface Pressure: 2882

Anticipated Bottom Hole Temperature(F): 165

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Operator Name: CHEVRON USA INCORPORATED

Well Name: SD 15 22 FED COM P404

Well Number: 404H

Page 13 of 35

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations

Chevron_Standard_H2S_Contingency_Plan_20211215114107.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

DefPlan100ft_SD1522FEDCOMP404404H_R0_20220926084434.pdf

9pnt_SD_15_22_FED_COM_P404_404H_20220926084500.pdf

Other proposed operations facets description:

Chevron formally requests the variances below:

- Authorization to use the spudder rig to spud the well and set surface and intermediate casing. The drilling rig will move in less than 90 days to continue drilling operations. Rig layouts attached.

Other proposed operations facets attachment:

5_well_rig_layout_patterson2_20220921103131.pdf Gas_Management_Plan__SD_Pad_404_20220921103143.pdf Operational_Best_Management_Practices_V2_20220921103248.pdf CUSA_Spudder_Rig_Data_20220922081048.pdf

Other Variance attachment:

Chevron

Schlumberger

SD 15 22 FED COM P404 404H R0 mdv 22Jun22 Proposal Geodetic Report

(Def Plan)

					(Def Plan	1)				
Deve of Date:	l				0			Minimum 0	(Looking and	
Report Date: Client:	Chev	24, 2022 - 03:04 (rop	+ 1*1VI			vey / DLS Comp tical Section Azi		Minimum Curvature 179.730 ° (Grid Nor		
Field:		_ea County (NAD	27)			tical Section Ori		0.000 ft, 0.000 ft	,	
Structure / Slot:		/ron SD P404 / 4				Reference Datu		RKB = 28ft		
Well:	SD 1	5 22 FED COM F	P404 404H			Reference Elev		3221.000 ft above N	ISL	
Borehole:	SD 1	5 22 FED COM F	P404 404H		Sea	bed / Ground Ele	evation:	3193.000 ft above N	1SL	
UWI / API#:		nown / Unknown			Mag	netic Declinatio		6.390 °		
Survey Name:			P404 404H R0 mdv	v 22Jun22		al Gravity Field S		998.4322mgn (9.80	665 Based)	
Survey Date:		23, 2022				vity Model:		GARM		
Tort / AHD / DDI / ERD Ratio: Coordinate Reference System:			5 ft / 6.384 / 1.085 State Plane, Easter	n Zana LIC Faat		al Magnetic Field		47431.832 nT 59.582 °		
Location Lat / Long:			W 103° 39' 34.320			netic Dip Angle		June 23, 2022		
Location Grid N/E Y/X:			708765.000 ftUS	02		netic Declinatio		HDGM 2022		
CRS Grid Convergence Angle:	0.357					th Reference:		Grid North		
Grid Scale Factor:	0.999	995901			Grid	d Convergence L		0.3576 °		
Version / Patch:	2.10.	.829.1				al Corr Mag Nort	h->Grid	6.0328 °		
					Nor	th: al Coord Referei	nced To:	Well Head		
Comments	MD (ft)	Incl (°)	Azim Grid	TVD (ft)	VSEC (ft)	NS (ft)	EW (ft)	DLS (°/100ft)	Northing (ftUS)	Easting Latitude Longitude (ftUS) (N/S ° ' ") (E/W ° ' ")
Surface	0.00	0.00	0.00	0.00	0.00	0.00	0.00	N/A	382251.00	708765.00 N 32 2 56.88 W 103 39 34.32
Dockum (DCKM)	50.00	0.00	303.20	50.00	0.00	0.00	0.00	0.00	382251.00	708765.00 N 32 2 56.88 W 103 39 34.32
	100.00	0.00	303.20	100.00	0.00	0.00	0.00	0.00	382251.00	708765.00 N 32 2 56.88 W 103 39 34.32
	200.00	0.00	303.20	200.00	0.00	0.00	0.00	0.00	382251.00	708765.00 N 32 2 56.88 W 103 39 34.32
	300.00 400.00	0.00	303.20 303.20	300.00 400.00	0.00	0.00 0.00	0.00	0.00	382251.00 382251.00	708765.00 N 32 2 56.88 W 103 39 34.32 708765.00 N 32 2 56.88 W 103 39 34.32
Dewey Lake (DWLK) Build 1.5°/100ft	500.00	0.00	303.20	500.00	0.00	0.00	0.00	0.00	382251.00	708765.00 N 32 2 56.88 W 103 39 34.32
	600.00	1.50	303.20	599.99	-0.72	0.72	-1.10	1.50	382251.72	708763.90 N 32 2 56.88 W 103 39 34.33
Rustler (RSLR)	680.31	2.70	303.20	680.24	-2.35	2.33	-3.56	1.50	382253.33	708761.44 N 32 2 56.90 W 103 39 34.36
	700.00	3.00	303.20	699.91	-2.89	2.87	-4.38	1.50	382253.87	708760.62 N 32 2 56.90 W 103 39 34.37
Los Medanos	800.00 830.41	4.50 4.96	303.20 303.20	799.69 830.00	-6.49 -7.88	6.45 7.82	-9.85 -11.95	1.50 1.50	382257.45 382258.82	708755.15 N 32 2 56.94 W 103 39 34.43 708753.05 N 32 2 56.95 W 103 39 34.46
Loo Modalloo	900.00	4.96	303.20	899.27	-7.88	11.46	-11.95	1.50	382258.82 382262.46	708753.05 N 32 2 56.95 W 103 39 34.46 708747.49 N 32 2 56.99 W 103 39 34.52
	1000.00	7.50	303.20	998.57	-18.02	17.89	-27.34	1.50	382268.89	708737.66 N 32 2 57.05 W 103 39 34.64
Hold	1033.33	8.00	303.20	1031.60	-20.50	20.35	-31.11	1.50	382271.35	708733.90 N 32 2 57.08 W 103 39 34.68
Salado (SLDO)	1058.22	8.00	303.20	1056.25	-22.41	22.25	-34.01	0.00	382273.25	708731.00 N 32 2 57.10 W 103 39 34.71
	1100.00 1200.00	8.00 8.00	303.20 303.20	1097.62 1196.65	-25.62 -33.29	25.43 33.05	-38.87 -50.52	0.00	382276.43 382284.05	708726.13 N 32 2 57.13 W 103 39 34.77 708714.49 N 32 2 57.21 W 103 39 34.91
	1300.00	8.00	303.20	1295.67	-33.29 -40.97	40.67	-50.52	0.00	382284.05 382291.67	708714.49 N 32 2 57.21 W 103 39 34.91 708702.84 N 32 2 57.28 W 103 39 35.04
	1400.00	8.00	303.20	1394.70	-48.64	48.29	-73.81	0.00	382299.29	708691.20 N 32 2 57.36 W 103 39 35.17
	1500.00	8.00	303.20	1493.73	-56.31	55.91	-85.45	0.00	382306.91	708679.55 N 32 2 57.43 W 103 39 35.31
	1600.00	8.00	303.20	1592.75	-63.99	63.53	-97.10	0.00	382314.53	708667.90 N 32 2 57.51 W 103 39 35.44
	1700.00	8.00	303.20	1691.78	-71.66	71.15	-108.75	0.00	382322.15	708656.26 N 32 2 57.59 W 103 39 35.58
	1800.00	8.00 8.00	303.20 303.20	1790.81	-79.34 -87.01	78.77 86.39	-120.39 -132.04	0.00	382329.77 382337.39	708644.61 N 32 2 57.66 W 103 39 35.71 708632.97 N 32 2 57.74 W 103 39 35.85
	1900.00 2000.00	8.00	303.20	1889.83 1988.86	-94.69	94.01	-132.04	0.00	382345.01	708621.32 N 32 2 57.82 W 103 39 35.98
	2100.00	8.00	303.20	2087.89	-102.36	101.63	-155.33	0.00	382352.63	708609.68 N 32 2 57.89 W 103 39 36.12
	2200.00	8.00	303.20	2186.91	-110.04	109.25	-166.98	0.00	382360.25	708598.03 N 32 2 57.97 W 103 39 36.25
	2300.00	8.00	303.20	2285.94	-117.71	116.87	-178.62	0.00	382367.87	708586.39 N 32 2 58.04 W 103 39 36.39
	2400.00	8.00	303.20	2384.97	-125.39	124.49	-190.27	0.00	382375.49	708574.74 N 32 2 58.12 W 103 39 36.52
	2500.00 2600.00	8.00 8.00	303.20 303.20	2484.00 2583.02	-133.06 -140.74	132.11 139.73	-201.91 -213.56	0.00 0.00	382383.11 382390.73	708563.10 N 32 2 58.20 W 103 39 36.66 708551.45 N 32 2 58.27 W 103 39 36.79
	2700.00	8.00	303.20	2682.05	-148.41	147.35	-225.20	0.00	382398.35	708539.81 N 32 2 58.35 W 103 39 36.93
Castile (CSTL)	2756.47	8.00	303.20	2737.97	-152.75	151.65	-231.78	0.00	382402.65	708533.23 N 32 2 58.39 W 103 39 37.00
	2800.00	8.00	303.20	2781.08	-156.09	154.97	-236.85	0.00	382405.96	708528.16 N 32 2 58.42 W 103 39 37.06
	2900.00	8.00	303.20	2880.10	-163.76	162.59	-248.50	0.00	382413.58	708516.51 N 32 2 58.50 W 103 39 37.20
	3000.00 3100.00	8.00 8.00	303.20 303.20	2979.13 3078.16	-171.44 -179.11	170.21 177.83	-260.14 -271.79	0.00 0.00	382421.20 382428.82	708504.87 N 32 2 58.58 W 103 39 37.33 708493.22 N 32 2 58.65 W 103 39 37.47
	3200.00	8.00	303.20	3177.18	-186.78	185.45	-283.43	0.00	382436.44	708481.58 N 32 2 58.73 W 103 39 37.60
	3300.00	8.00	303.20	3276.21	-194.46	193.07	-295.08	0.00	382444.06	708469.93 N 32 2 58.80 W 103 39 37.74
	3400.00	8.00	303.20	3375.24	-202.13	200.69	-306.73	0.00	382451.68	708458.29 N 32 2 58.88 W 103 39 37.87
	3500.00	8.00	303.20	3474.26	-209.81	208.31	-318.37	0.00	382459.30	708446.64 N 32 2 58.96 W 103 39 38.00 708435.00 N 32 2 59.03 W 103 39 38 14
	3600.00 3700.00	8.00 8.00	303.20 303.20	3573.29 3672.32	-217.48 -225.16	215.93 223.55	-330.02 -341.66	0.00 0.00	382466.92 382474.54	708435.00 N 32 2 59.03 W 103 39 38.14 708423.35 N 32 2 59.11 W 103 39 38.27
	3800.00	8.00	303.20	3771.34	-232.83	231.17	-353.31	0.00	382482.16	708411.71 N 32 2 59.19 W 103 39 38.21
	3900.00	8.00	303.20	3870.37	-240.51	238.79	-364.96	0.00	382489.78	708400.06 N 32 2 59.26 W 103 39 38.54
	4000.00	8.00	303.20	3969.40	-248.18	246.41	-376.60	0.00	382497.40	708388.41 N 32 2 59.34 W 103 39 38.68
	4100.00 4200.00	8.00 8.00	303.20 303.20	4068.42 4167.45	-255.86 -263.53	254.03 261.65	-388.25 -399.89	0.00 0.00	382505.02 382512.64	708376.77 N 32 2 59.41 W 103 39 38.81 708365.12 N 32 2 59.49 W 103 39 38.95
	4200.00	8.00	303.20 303.20	4167.45 4266.48	-263.53 -271.21	261.65 269.27	-399.89 -411.54	0.00	382512.64 382520.26	708365.12 N 32 2 59.49 W 103 39 38.95 708353.48 N 32 2 59.57 W 103 39 39.08
	4400.00	8.00	303.20	4365.50	-278.88	276.89	-423.18	0.00	382527.88	708341.83 N 32 2 59.64 W 103 39 39.22
Drop .75°/100ft	4484.17	8.00	303.20	4448.86	-285.34	283.30	-432.99	0.00	382534.29	708332.03 N 32 2 59.71 W 103 39 39.33
(4500.00	7.88	303.20	4464.53	-286.55	284.50	-434.82	0.75	382535.49	708330.20 N 32 2 59.72 W 103 39 39.35
Lamar (LMAR)	4576.26	7.31 7.13	303.20 303.20	4540.12	-292.11	290.02 291.65	-443.25	0.75 0.75	382541.01 382542.64	708321.77 N 32 2 59.77 W 103 39 39.45 708319.27 N 32 2 59.79 W 103 39 39.48
Bell Canyon (BLCN)	4600.00 4601.68	7.13 7.12	303.20 303.20	4563.68 4565.34	-293.75 -293.87	291.65 291.77	-445.75 -445.92	0.75	382542.64 382542.76	708319.27 N 32 2 59.79 W 103 39 39.48 708319.10 N 32 2 59.79 W 103 39 39.48
Son Ouriyon (DEON)	4700.00	6.38	303.20	4662.98	-300.24	297.77	-445.92	0.75	382549.08	708309.43 N 32 2 59.85 W 103 39 39.59
	4800.00	5.63	303.20	4762.43	-306.01	303.82	-464.35	0.75	382554.81	708300.67 N 32 2 59.91 W 103 39 39.69
	4900.00	4.88	303.20	4862.01	-311.06	308.84	-472.01	0.75	382559.83	708293.01 N 32 2 59.96 W 103 39 39.78
	5000.00	4.13	303.20	4961.70	-315.39	313.14	-478.59	0.75	382564.13	708286.43 N 32 3 0.00 W 103 39 39.86
	5100.00 5200.00	3.38 2.63	303.20 303.20	5061.48 5161.35	-319.01 -321.90	316.73 319.60	-484.07 -488.46	0.75 0.75	382567.71 382570.59	708280.95 N 32 3 0.04 W 103 39 39.92 708276.56 N 32 3 0.07 W 103 39 39.97
	5300.00	1.88	303.20	5261.27	-324.07	321.76	-400.40	0.75	382572.74	708273.27 N 32 3 0.09 W 103 39 39.97
	5400.00	1.13	303.20	5361.23	-325.52	323.19	-493.95	0.75	382574.18	708271.07 N 32 3 0.10 W 103 39 40.04
	5500.00	0.38	303.20	5461.22	-326.25	323.92	-495.06	0.75	382574.90	708269.96 N 32 3 0.11 W 103 39 40.05
Hold	5550.84	0.00	303.20	5512.06	-326.34	324.01	-495.20	0.75	382575.00	708269.82 N 32 3 0.11 W 103 39 40.05
Charry Conver (CRC+)	5600.00	0.00	303.20	5561.22	-326.34	324.01	-495.20	0.00	382575.00	708269.82 N 32 3 0.11 W 103 39 40.05
Cherry Canyon (CRCN)	5633.79 5700.00	0.00 0.00	303.20 303.20	5595.01 5661.22	-326.34 -326.34	324.01 324.01	-495.20 -495.20	0.00 0.00	382575.00 382575.00	708269.82 N 32 3 0.11 W 103 39 40.05 708269.82 N 32 3 0.11 W 103 39 40.05
	5800.00	0.00	303.20	5761.22	-326.34	324.01	-495.20	0.00	382575.00	708269.82 N 32 3 0.11 W 103 39 40.05 708269.82 N 32 3 0.11 W 103 39 40.05
	5900.00	0.00	303.20	5861.22	-326.34	324.01	-495.20	0.00	382575.00	708269.82 N 32 3 0.11 W 103 39 40.05
	6000.00	0.00	303.20	5961.22	-326.34	324.01	-495.20	0.00	382575.00	708269.82 N 32 3 0.11 W 103 39 40.05
	6100.00	0.00	303.20	6061.22	-326.34	324.01	-495.20	0.00	382575.00	708269.82 N 32 3 0.11 W 103 39 40.05
	6200.00	0.00	303.20 303.20	6161.22	-326.34	324.01	-495.20	0.00	382575.00	708269.82 N 32 3 0.11 W 103 39 40.05
	6300.00 6400.00	0.00	303.20 303.20	6261.22 6361.22	-326.34 -326.34	324.01 324.01	-495.20 -495.20	0.00 0.00	382575.00 382575.00	708269.82 N 32 3 0.11 W 103 39 40.05 708269.82 N 32 3 0.11 W 103 39 40.05
	6500.00	0.00	303.20	6461.22	-326.34	324.01	-495.20 -495.20	0.00	382575.00	708269.82 N 32 3 0.11 W 103 39 40.05 708269.82 N 32 3 0.11 W 103 39 40.05
	6600.00	0.00	303.20	6561.22	-326.34	324.01	-495.20	0.00	382575.00	708269.82 N 32 3 0.11 W 103 39 40.05
	6700.00	0.00	303.20	6661.22	-326.34	324.01	-495.20	0.00	382575.00	708269.82 N 32 3 0.11 W 103 39 40.05

...SD 15 22 FED COM P404 404H\SD 15 22 FED COM P404 404H\SD 15 22 FED COM P404 404H R0 mdv 22Jun22

.

Received by OCD: 4/15/2024 12:37:58 PM

No. No. No. No. No.	Comments	MD (ft)	Incl (°)	Azim Grid (°)	TVD (ft)	VSEC (ft)	NS (ft)	EW (ft)	DLS (°/100ft)	Northing (ftUS)	Easting Latitude Longitude (ftUS) (N/S ° ' ") (E/W ° ' ")
1000 1000 10000 1000 1000 10		6800.00	0.00	303.20	6761.22	-326.34	324.01	-495.20	0.00	382575.00	708269.82 N 32 3 0.11 W 103 39 40.05
<tt> No. No.<</tt>											
Ander Caper ACO No.9 No.9 No.9											
<tt> 1000 1010 1010 1010 <td< td=""><td>Brushy Canyon (BCN)</td><td>7132.18</td><td>0.00</td><td>303.20</td><td>7093.40</td><td>-326.34</td><td>324.01</td><td>-495.20</td><td></td><td>382575.00</td><td>708269.82 N 32 3 0.11 W 103 39 40.05</td></td<></tt>	Brushy Canyon (BCN)	7132.18	0.00	303.20	7093.40	-326.34	324.01	-495.20		382575.00	708269.82 N 32 3 0.11 W 103 39 40.05
<tt></tt>											
<tt></tt>											
<tt> The set of the se</tt>		7500.00	0.00	303.20	7461.22	-326.34		-495.20	0.00	382575.00	708269.82 N 32 3 0.11 W 103 39 40.05
<tt> No.0 0.0</tt>											
Note Note Note Note No											
Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											
No. No. <td></td>											
Babb Babb Babb Babb Ba											
<tt> BUX BUX BUX BUX BUX BUX<</tt>											
BOD BOD BOD BOD BOD <td></td>											
<tt> Intro No.0 N.3.2 M.10 A.3.4 M.10 A.3.4 M.10 A.3.4 M.10 A.3.4 M.10 M.10 M.10 M.10</tt>											
<tt></tt>											
MDD MDD MDD MDD MDD	Bone Spring (BSGL)	8796.61	0.00	303.20	8757.83		324.01	-495.20	0.00	382575.00	
bit bit <td>Upper Avalon (AVU)</td> <td></td>	Upper Avalon (AVU)										
MAXE MAXE MAXE MAXE M											
Line Acade (NL) Line Acade (NL) Note of the Second Seco											
No. 0 0.00 0.00 0.00 0	Lower Avalon (AVL)										
bit bit< bit< bit< bit<											
Bit 0 0 0 0		9400.00	0.00	303.20	9361.22	-326.34	324.01	-495.20	0.00	382575.00	708269.82 N 32 3 0.11 W 103 39 40.05
Biolog Cond Cond Cond Cond <th< td=""><td></td><td>9500.00</td><td>0.00</td><td>303.20</td><td>9461.22</td><td>-326.34</td><td>324.01</td><td>-495.20</td><td></td><td>382575.00</td><td></td></th<>		9500.00	0.00	303.20	9461.22	-326.34	324.01	-495.20		382575.00	
No.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0											
bit of 17/10/h 6000 3000 1000 3000 1000 3000 10000 1000 10000											
Ind gase (apr) (apr) (apr) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b		9800.84	0.00	303.20	9762.06	-326.34	324.01	-495.20	0.00	382575.00	708269.82 N 32 3 0.11 W 103 39 40.05
 960.00 952 97.9 Case 97.9 Case											
100000 1920 1974 00070 1974 00070 1974 00070 1974 00070 1974 00070 1974 00070 1974 00070 1974 00070 1974 00070 1974 00070 1974	First Bone Upper IG11 (FBU_IG11)										
10000 202 17.92 1007.9 4.02.0 100.0 100.0 20.9 100.0 20.9 100.0 20.9 100.0 20.9 100.0 20.9 100.0 20.9 100.0 20.9 100.0 20.9 100.0 20.9 100.0 20.9 100.0 20.9 100.0 20.9 100.0 20.9 100.0 20.9 100.0 20.9 100.0 20.9 100.0 20.9 100.0											
1 1	FTP Cross										
1000.00 1000.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
1000000 100000 10000000 10000000 10000000 <											
 10001200 1000130 179.85 1000130 100010 1000100 1000100		10400.00	59.92	179.85	10257.84	-40.59	38.26	-494.43	10.00	382289.25	708270.59 N 32 2 57.29 W 103 39 40.06
Second Rote (pager 1727) (603.32 7.7	Second Bone Upper (SBU)										
 1960.00 1962.00 1978.2 1978.00 <	Second Bone Upper TGT2 (SBU_TGT2)										
Lunding Paint 1070.05 95.00 778.06 703.00 25.16 -23.34 44.05 40.00 351.97 77.07 8 2 25.43 97.03 40.03 40.00 451.00 453.40 44.00 44.00 44.00 450.00 377.00 87.00 2 25.43 97.03 40.03 40.00 457.00 457.00 457.00 457.00 457.00 457.00 457.00 47.00 47.00 44.00 44.00 44.00 44.00 457.00 47.00 47.00 44.00 <td>0000110 D0110 000001 1012 (020_1012)</td> <td></td>	0000110 D0110 000001 1012 (020_1012)										
10000 90.50 170.85 1033.47 34.67 -44.81 40.84 00.00 3100.20 770.72 N<2 2.87.8 M<103.340.05 1100.00 00.50 170.85 1003.16 44.77 -44.80 -40.23 0.00 3100.24 770.72 N<2 2.87.8 N<103.340.05 N<103.340.15 N<103.340.15 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
1000.0 09.50 178.65 1033.30 46.77 -46.81 -00.3 31802.20 70827.48 N.3 2.8.7.4 V103.84 0.05 11000.0 00.50 179.85 1030.34 645.77 -464.80 -422.3 0.00 31802.25 70827.78 N.3 2.8.48 V103.84 0.05 11000.0 00.50 179.85 1030.84 945.75 -464.80 -422.3 0.00 31802.25 70827.2 N.3 2.8.47.8 V103.84 0.05 11000.0 0.50 179.85 1030.84 945.75 -464.80 -451.78 0.00 31602.25 70827.4 N.3 2.4.7.8 V103.84 0.10 11000.0 0.50 179.85 1030.28 146.7.7 -464.80 -461.8 0.00 3100.29 70827.4 N.3 2.4.9.8 V103.84 0.10 11000.0 0.50 179.85 1032.43 144.74 -144.80 -460.8 0.00 3000.00 70827.4 N.3 2.4.9.8 V103.84 0.10 103.9.9.9.1 103.9.9.9.1<	Landing Point										
1100.0 90.00 179.85 1032-4.0 44.77 -44.80 -42.86 0.00 3170-23 1782-7.8 N.3 2 5.4.4 M 103 340.0 1100.0 0.00 179.85 1033.82 744.10 -426.3 0.00 3160.24 7782.77 N.3 2 5.4.4 M 103 340.0 1100.0 0.00 179.85 1033.82 748.77 -44.80 -407.0 3160.24 7782.77 N.3 2 4.4.5 M 103 340.0 1100.00 0.00 179.85 1032.87 1146.74 -144.80 -40.12 0.00 3170.23 7782.73 N.3 2 4.4.5 M 103 340.0 1100.00 0.00 179.85 1032.44 1146.74 -144.80 -40.12 0.00 3170.23 N.3 2 4.4.5 M 103 340.1 1100.00 0.00 179.85 1032.41 1146.74 -144.80 -40.12 0.00 3770.14 N.3 2 4.4.5 M 103 340.1 1100.00 0.00 179.85 1032.41 144.57											
112000 90.50 179.85 10300.69 74.76 74.86 442.23 0.00 38142.26 70.877.3 N<2		11000.00	90.50	179.85	10332.43	545.77	-548.10	-492.86		381702.93	708272.16 N 32 2 51.48 W 103 39 40.09
113000 90.50 179.85 192.85 494.76 -494.08 -491.77 0.00 38120.26 702.73 N<2											
1140.00 90.50 179.85 1028.94 94.75 -144.80 -41.79 0.00 8712.26 N 12 2.47.2 N 12.9 2.47.2 <td></td>											
1100.00 0.05 179.85 1032.20 1145.74 -149.67 -409.25 0.00 38102.98 70627.40 N 2 2.45.65 100.39.40 0.39.40 2 2.45.65 100.39.40 0.39.40 2 2.45.65 100.39.40 0.39.40 2 2.45.65 100.39.40 0.39.45 2 2.45.65 100.39.40 0.39.45 100.25.65 100.25.65 100.25.75 1.45.65 -440.65 0.00 38000.29 70627.46 1.8 2 2.45.65 100.35.45 100.25.75 1.74.65 149.65 0.00 38000.30 70627.51 N 2 2.36.65 100.35.45 110.35.45 120.00 0.50 179.85 100.25.11 146.64 -489.35 0.00 38000.30 70627.61 N 2 2.36.65 100.36.45 110.35.45 120.00 3800.30 70627.55 N 2 2.36.65 100.36.45 100.36.45 140.15 140.16 140.16 140.16 140.16 140.16 140.16 140.16											
1100.0 00.50 170.86 102.83.3 124.57 -134.60 400.72 0.00 38102.99 7087.44 N 2 24.55 W 100 39 0.12 1100.00 00.50 177.85 10232.45 1445.71 -144.60 400.72 0.00 38900.00 7077.45 N 2 24.55 W 100 39 0.12 1200.00 00.50 177.85 1023.17 145.47 -144.60 400.16 0.00 38900.00 7077.33 N 2 22.95 W 100 39 0.12 1200.00 00.50 177.85 10230.21 194.57 -146.64 -469.5 0.00 38900.00 7027.33 N 2 23.65 W 100 39 0.15 1200.00 00.50 177.85 10316.7 244.63 -468.41 0.00 38900.00 7027.58 N 2 23.66 W 100 39 0.15 1200.00 00.50 177.85 10316.7 244.63 -468.5 0.00 37900.00 7027.75 N 2 23.67											
1180.00 90.50 172.85 1922.45 1946.00 490.7 0.00 38062.99 7027.33 0.2 2.45.7 100.39.40.02 11900.00 90.50 177.85 1922.57 1446.05 480.45 0.00 3807.01 7027.44 N.2 2.45.7 NI0.39.40.12 12000.00 90.50 177.85 1922.10 146.72 -146.05 480.61 0.00 38040.01 7027.44 N.2 2.45.7 NI0.39.40.12 12000.00 90.50 177.85 1022.10 1945.72 -146.04 -469.5 0.00 38040.01 7027.74 N.2 2.95.67 NI0.39.40.14 12000.00 90.50 177.85 1031.62 245.71 -246.03 -486.57 0.00 38000.01 7027.72 N.2 2.95.64 NI0.39.40.14 12000.00 90.50 177.85 1031.62 244.62 -486.71 -00.00 38000.01 7027.72 N.2 2.95.64 NIO.39.40.14 12000.00 90.50 177.85											
1200000 96.90 179.85 1032.37 154.73 -1648.06 -489.91 0.00 30070.30 7082.74 N 2 41.9 VI0.394.01.3 120000 95.90 179.85 1032.14 1746.72 -1648.05 -489.95 0.00 30603.03 7082.75.3 N 2 29.16 VI0.394.01.3 120000 0.60 179.85 1032.12 184.71 -1648.04 -489.33 0.00 30603.03 7082.75.8 N 2 27.85 VI0.394.01.3 120000 0.60 179.85 10316.7 2246.03 -489.37 0.00 30003.05 7082.75 N 2 25.66 VI0.394.01 -489.37 0.00 37090.10 7082.77 N 2 24.96 VI0.394.01 -489.37 0.00 37090.10 7082.77 N 2 24.96 VI0.394.01 -497.90 0.00 37790.10 7082.77 N 2 24.97 VI0.394.01 -497.90 -498.30 0.00 37990.11											
110000 96.90 179.85 1032147 174.72 -174.80 -489.91 000 30603.30 7082.75 N 2 20.80 V 00.80 170.85 1002.147 -174.80 -489.85 000 30603.30 7082.75 N 2 38.62 VII 30.94 0.01 120000 0.60 179.85 103116.3 204.71 -1948.04 -489.81 0.00 30030.50 7082.75 N 2 28.64 VII 30.94 0.01 120000 0.50 179.85 103116.3 2044.71 -2146.03 -488.81 0.00 37903.01 7082.77.81 N 2 35.64 VII 30.94 0.15 120000 0.50 179.85 10314.92 244.69 -244.01 -487.50 0.00 37903.10 7082.77.81 N 2 35.64 VII 30.94 0.01 1039.94 0.15 1031.00 0.00 1798.51 N 2 25.77 N 2 25.77 N 2 25.77 N 2 25.77											
12200.0 90.90 179.85 102.1 1746.05 -188.65 0.00 389403.4 702275.8 N<2											
12300.0 90.90 179.85 1032.0 194.71 -194.64 -482.31 0.00 3894.04 N 22 2 38.62 100 39.94.01 12500.0 90.90 179.85 10320.22 214.67 -244.63 -488.64 0.00 38903.03 70827.61 N 22 2 36.8 V103 39.0.15 12500.0 90.90 179.85 10316.42 224.67 -244.63 -488.64 0.00 38010.00 70827.61 N 22 2 36.8 V103 39.0.15 12000.0 90.90 179.85 10316.42 224.61 -224.61 -488.64 0.00 37807.01 70827.7 N 22 2 36.8 V103 39.0.17 13000.0 90.90 179.85 10314.2 246.68 -244.61 -486.50 0.00 37805.11 70827.78 N 32 2 38.7 V103 39.0.17 13000.0 90.90 179.85 10312.3 246.68 -244.61 -486.8 0.00 37805.17 70827.8 N 32 2 27.7 V103 39.0.17 13000.0 <td></td>											
1 1 1 1 0											
1200.00 90.00 179.85 10318.48 2:44.07 -2:44.03 -48.57 0.00 380'13.06 708276.47 N 2 2:5.6 W 103 394.015 1200.00 90.50 177.85 10316.7 2:248.03 -488.30 0.00 37903.08 708276.39 N 2 2:5.6 W 103 394.015 1300.00 90.50 177.85 10315.45 2:446.69 -2446.02 -488.74 0.00 37907.10 708277.52 N 2 2:8.0 W 103 394.015 1300.00 90.50 177.85 10314.92 2:45.68 -2448.01 -487.73 0.00 37905.11 708277.65 N 2 2:7.7 W 103 394.015 1300.00 90.50 177.85 10313.25 2:45.68 -2484.00 -486.70 0.00 37903.11 708276.87 N 2 2:7.7 W 103 394.015 1300.00 90.50 177.85 1031.62 7045.68 -248.00 -486.27 0.00 37903.11 708276.48 N											
12700.00 90.50 179.85 10317.61 2248.02 -248.03 -488.30 0.00 38003.07 708276.72 N 2 2.46.8 W103.394.016 12800.00 90.50 179.85 10315.8 2446.07 -2486.02 -497.77 0.00 379803.08 708277.25 N 2 2.8.6 W103.394.016 13000.00 90.50 179.85 10314.12 246.68 -2480.01 -497.50 0.00 379803.10 708277.27 N 2 2.9.0 W103.394.017 13000.00 90.50 177.85 10311.2 2446.69 -2486.00 -486.70 0.00 379603.11 708276.22 N 2 2.9.7 W103.394.016 13000.00 90.50 1778.85 10311.2 2494.61 -446.63 0.00 379217.8 N 2 2.9.7 W103.394.016 13000.00 90.50 1778.65 10316.61 2494.67 -2484.00 -486.43 0.00 379217.8 3 2 2.9.7											
1290.00 90.50 179.85 10315.86 244.69 -248.01 -487.57 0.00 37980.30 70277.25 N<2											
1300.00 90.50 179.85 1031.499 245.69 -264.601 -487.50 0.00 37803.10 70827.7 N<2											
13100.00 90.50 179.85 10314.12 245.68 -248.61 -478.23 0.00 37803.11 07827.8 N<2											
13300.0 90.50 179.85 10312.30 246.68 -248.00 -468.70 0.00 379403.12 7027.82.N N 22 2.87.7 N 339.9.16 Second Bone Upper TGT2 (SEU_TGT2) 1346.58 90.50 179.85 10311.50 3030.95 -3033.27 -468.20 0.00 37921.76 70827.88 N 22 2.26.78 N 32 2.26.78 N 32 2.26.78 N 32 2.26.78 N 33 2.26.78 N 33 2.25.75 N 33 9.04.93 9.04.95 9.03.31 70827.91 N 32 2.27.77 N 0.33.94.01 13800.00 90.50 179.85 10308.62 344.66 -3447.98 -485.59 0.00 37903.16 70827.40 N 32 2.27.9 N 33.94.021 13900.00 90.50 179.85 10036.27 3446.65 -3447.96 -486.50 0.00 37803.16 7022.91 N 32 2.21.9 N		13100.00	90.50	179.85	10314.12	2645.68	-2648.01	-487.23	0.00	379603.10	708277.79 N 32 2 30.70 W 103 39 40.17
Second Bone Upper TG72 (SBU_TG72) 1340.0 90.50 179.85 10310 7 2046.27 -2498.00 -486.20 0.00 379303.13 70827.85 N 32 2 27.73 N 103 39 40.19 Second Bone Upper TG72 (SBU_TG72) 13600.00 90.50 179.85 10300.75 3045.67 -3047.99 -486.16 0.00 379203.15 70827.84 N 32 2 2.57.5 W 103 39 40.19 13600.00 90.50 179.85 10308.76 3145.66 -3247.98 -485.58 0.00 379803.16 70827.94 N 32 2 2.37.7 W 103 39 40.21 13800.00 90.50 179.85 10306.12 7345.65 -3547.97 -484.52 0.00 37803.16 70628.27 N 32 2 2.1.9 W 103 39 40.21 14000.00 90.50 179.85 10305.42 3347.66 -3247.98 -484.52 0.00 37803.17 70628.17 N 32 2 1.8.3 W 103 39 40.21 14000.00 90.50 179.85 10305.64 3745.64 -3747.96 -484.52 0.00											
Second Bone Upper TG72 (SBU_TG72) 1348.5 2 9.0.0 179.85 10310.63 3030.95 -3033.27 -466.20 0.00 379271.86 708278.2 N 2 2.6.8 W 1/03.39.0.19 13800.00 90.50 179.85 10300.85 3145.66 -3147.99 -485.89 0.00 37900.16 708278.4 N 2 2.2.67.4 W 103.39.0.19 13800.00 90.50 179.85 10308.89 3245.66 -3347.88 -485.26 0.00 378903.16 708278.4 N 2 2.2.7.7 W 103.39.0.21 13800.00 90.50 179.85 10306.27 3545.65 -3447.78 -485.29 0.00 378903.16 708278.4 N 2 2.2.7.9 W 103.39.0.21 14000.00 90.50 179.85 10305.27 7545.65 -3447.78 -484.82 0.00 378603.18 70828.0 N 2 2.18.8 W 103.39.0.21 14000.00 90.50 179.85 10302.78 70845.64 -3447.76 -484.22 0.00 376803.19 70828.1											
13500.00 90.50 179.85 13049.67 -3047.99 -486.86 0.00 37910.31 70287.81 N<22	Second Bone Upper TGT2 (SBU TGT2)										
1370.00 90.50 179.85 10308.89 3245.66 -3247.98 -485.62 0.00 37900.16 708279.40 N 32 22.77.8 W 103.394.020 13800.00 90.50 179.85 10306.27 3345.65 -3447.98 -485.09 0.00 378003.17 70829.27 N 32 22.7.8 W 103.394.021 14000.00 90.50 179.85 10305.427 3345.65 -3447.98 -485.09 0.00 378003.17 70829.27 N 32 22.1.8 W 103.394.021 14000.00 90.50 179.85 10305.45 3445.64 -3447.96 -484.25 0.00 37803.21 70829.74 N 32 2 19.82 W 103.394.021 14200.00 90.50 179.85 10303.65 3445.64 -3447.96 -484.28 0.00 37803.21 70828.17 N 32 2 19.82 W 103.394.021 14300.00 90.50 179.85 10303.61 4047.95 -483.48 0.00 37803.21 708281.1 N 32 2 18.8 W 103.394.021 14500.00 90.50 179.85 10301.41 4445.62 -4447		13500.00	90.50	179.85	10310.63	3045.67	-3047.99	-486.16	0.00	379203.14	708278.86 N 32 2 26.74 W 103 39 40.19
18800 00 90.50 179.85 10300.02 3345.66 -3347.98 -485.36 0.00 378903.16 708279.68 N 2 22.27 W V103.39.02.01 14000.00 90.50 179.85 10306.27 3545.65 -3547.97 -484.82 0.00 37803.17 708279.3 N 32 22.18 W 103.94.02.01 14000.00 90.50 179.85 10306.47 345.64 -347.96 -484.82 0.00 378603.19 70828.04 N 2 21.81 W 103.94.02.01 14000.00 90.50 179.85 10304.62 345.64 -347.96 -484.82 0.00 378603.19 70828.17 N 2 21.82 W103.94.02.01 14000.00 90.50 179.85 10302.65 345.64 -347.96 -484.02 0.00 37803.21 70828.17 N 2 21.84 W103.394.02.01 14000.00 90.50 179.85 10301.04 445.62 -447.96 -482.04 0.00 37803.21 70828.15 N 2 21.86 W103.394.02.01											
13800.00 90.50 179.85 10307.14 3445.65 -3447.98 -485.09 0.00 37800.17 70827.93 N<32											
14000.00 90.50 179.85 10306.27 3546.65 -3547.97 -484.82 0.00 378703.18 708280.20 N 32 21.80 W103 39 40.21 14100.00 90.50 179.85 10305.40 3745.64 -3747.96 -484.55 0.00 378603.19 708280.7 N 32 21.80 W103 39 40.21 14300.00 90.50 179.85 10303.66 3845.64 -3847.96 -484.22 0.00 37803.21 708281.17 N 22 21.83 W103 39 40.22 14400.00 90.50 179.85 10301.61 4045.63 -4047.95 -483.75 0.00 37803.21 708281.51 N 32 21.68 W103 39 40.23 14500.00 90.50 179.85 10301.01 4145.62 -4147.95 -483.71 0.00 37803.21 708281.51 N 32 21.86 W103 39 40.24 14700.00 90.50 179.85 10299.30 4345.62 -4247.94 -482.94 0.00 377803.26 708282.51 N 32 21.86 W103 39 40.24 14900.00<											
14200.00 90.50 179.85 10304.53 3745.64 -3747.96 -484.28 0.00 378603.20 708207.4 N 2 2.9.82 W103 39.0.22 14300.00 90.50 179.85 10302.78 3945.63 -3947.96 -484.02 0.00 37803.21 708281.01 N 3.2 2.18.8 W103 39.0.22 14400.00 90.50 179.85 10301.91 4045.63 -4047.95 -483.48 0.00 37803.21 708281.1 N 3.2 2.16.8 W103 39.0.22 14600.00 90.50 179.85 10301.01 4146.52 -4147.95 -483.24 0.00 378103.24 708281.81 N 3.2 2.16.8 W103 39.0.23 14700.00 90.50 179.85 10290.01 4346.62 -4247.94 -482.94 0.00 377803.26 70828.26 N 3.2 2.18.8 W103 39.0.25 IFP1. Drop 2'100ft 14900.00 90.50 179.85 10298.42 4445.51 -4427.93 -482.41 0.00 37780.57 70828.26 N 3.2 2.18.8 W103 39.0.25					10306.27						
14300.00 90.50 179.85 10303.66 3845.64 -3847.96 -484.02 0.00 378403.21 708281.01 N 32 2 18.83 W103 39.0.22 14400.00 90.50 179.85 10302.78 3945.63 -3947.96 -483.75 0.00 378303.21 708281.27 N 32 2 17.84 W103 39.0.23 14600.00 90.50 179.85 10301.04 4416.62 -4147.95 -483.21 0.00 378103.23 708281.81 N 2 2 15.86 W103 39.0.23 14700.00 90.50 179.85 10300.17 4245.62 -4147.95 -482.24 0.00 377803.26 708281.81 N 2 2 15.86 W103 39.0.23 14900.00 90.50 179.85 10299.30 4445.62 -4347.94 -482.24 0.00 377803.26 708282.56 N 2 2 1.88 W103 39.0.25 1600.0 90.50 179.85 10298.42 4445.61 -4447.62 -482.20 0.00 3777603.27 </td <td></td>											
14400.00 90.50 179.85 10302.78 3945.63 -3947.96 -483.75 0.00 378303.21 708281.27 N 32 2 17.84 V103 39.40.23 14500.00 90.50 179.85 10301.91 4045.63 -4047.95 -483.48 0.00 378103.21 708281.27 N 32 2 16.85 W103 39.40.23 14600.00 90.50 179.85 10301.01 4445.62 -4147.95 -483.24 0.00 378103.25 708281.81 N 32 2 16.86 W103 39.40.23 14700.00 90.50 179.85 10290.01 4245.62 -4147.95 -482.94 0.00 377803.25 708282.81 N 2 2 1.88 W103 39.40.23 14900.00 90.50 179.85 10298.42 4445.61 -4447.93 -482.41 0.00 37780.56 70828.21 N 2 2 1.86 W103 39.40.25 1F91. Drop 2'/100f 14902.76 90.50 179.85 10298.42 4485.61 -4467.62 -482.40											
Hadon on book 90.50 179.85 10301.04 4145.62 -4147.95 -438.21 0.00 378103.23 708281.81 N 32 2 15.86 M 103 39 40.23 14700.00 90.50 179.85 10300.17 4245.62 -4247.94 -482.94 0.00 378003.24 708281.81 N 32 2 15.86 W 103 39 40.24 14900.00 90.50 179.85 10299.30 4345.62 -4347.94 -482.64 0.00 377803.26 708282.61 N 32 2 15.86 W 103 39 40.24 14900.76 90.50 179.85 10298.42 4445.61 -4447.93 -482.41 0.00 377803.26 708282.61 N 32 2 15.86 W 103 39 40.25 Hold 14909.69 89.76 179.85 10298.32 4485.30 -4487.62 -482.40 0.00 377603.57 70828.72 N 32 2 15.9 W 103 39 40.26 Hold 14939.69 89.76 179.85 10298.42 4487.63 -482.40 <		14400.00	90.50	179.85	10302.78	3945.63	-3947.96	-483.75	0.00	378303.21	708281.27 N 32 2 17.84 W 103 39 40.23
14700.00 90.50 179.85 10300.17 4245.62 -4247.94 -482.94 0.00 37803.24 708282.08 N 32 2 14.87 V103 39.02.44 14800.00 90.50 179.85 10299.30 4345.62 -4347.94 -482.68 0.00 377803.25 708282.5 N 32 2 14.87 V103 39.02.44 14900.00 90.50 179.85 10298.42 4445.61 -4447.93 -482.40 0.00 377800.50 708282.62 N 32 2 12.88 V103 39.02.24 Hold 14902.76 90.50 179.85 10298.42 4448.50 -4450.69 -482.40 0.00 377800.50 708282.62 N 32 2 12.88 V103 39.02.55 Hold 14902.76 90.50 179.85 10298.57 4456.61 -4647.93 -482.40 0.00 37760.37 708282.78 N 32 2 10.90 V103 39.02.55 1500.00 397.60 70828.78 N 32 2 10.90 V103 39.02.56 1500.00 37760.32 70828.18 N 32 2 10.90 V103 39.02.56 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
14800.00 90.50 179.85 10299.30 4346.22 -4347.94 -482.68 0.00 377903.25 708282.35 N 32 2 13.88 W 103 39 40.24 IFP1, Drop 2'/100ft 14900.07 90.50 179.85 10298.40 4445.61 -4447.93 -482.40 0.00 377803.26 708282.6 N 32 2 13.88 W 103 39 40.25 Hold 14902.076 90.50 179.85 10298.40 4445.61 -4457.62 -482.30 0.00 377803.26 708282.72 N 32 2 12.68 W 103 39 40.25 Hold 14909.60 89.76 179.85 10298.92 4485.61 -4467.62 -482.30 2.00 3777603.27 708282.8 N 32 2 1.90 W 103 39 40.25 1500.00 89.76 179.85 10298.98 4645.61 -4467.93 -481.48 0.00 377603.27 708283.4 N 32 2 1.90 W 103 39 40.26 1500.00 89.76 179.85 10298.98 4645.61 -447.93 -481.62 0.00 377603.27 708283.4 N 32											
14900.00 90.50 179.85 10298.42 4446.61 -4447.93 -482.41 0.00 377803.26 708282.61 N 2 2.88 M103 39.40.25 IFP1, Drop 2'100ft 14902.76 90.50 179.85 10298.42 4446.61 -4447.96 -482.40 0.00 377803.26 708282.8 N 32 2.12.80 W103 39.40.25 Hold 14939.69 99.76 179.85 10298.57 4485.61 -4487.93 -482.14 0.00 377703.26 708282.8 N 32 2.12.80 W103 39.40.25 15100.00 89.76 179.85 10298.92 4485.61 -4467.93 -481.42 0.00 377703.26 708282.8 N 32 2.1.80 W103 39.40.26 15100.00 89.76 179.85 10299.40 474.661 -4447.93 -481.62 0.00 377603.27 70828.4 N 32 2.9.92 W103 39.40.26 1500.00 89.76 179.85 10299.40 4745.61 -4947.93 -4											
Hold 1499.69 89.76 179.85 10298.92 4485.30 -4487.62 -482.30 2.00 377763.57 708282.72 N 32 2 12.50 W103 394.025 15000.00 89.76 179.85 10298.92 4465.61 -4547.93 -482.14 0.00 377763.57 708282.72 N 32 2 12.50 W103 394.025 15100.00 89.76 179.85 10298.98 4645.61 -4647.93 -481.48 0.00 377603.27 70828.38 N 32 2 19.91 W103 394.025 15200.00 89.76 179.85 10299.40 4745.61 -4747.93 -481.62 0.00 377603.27 70828.34 N 32 2 9.92 W103 394.026 15300.00 89.76 179.85 10299.42 4945.61 -4447.93 -481.62 0.00 377603.27 70828.37 N 32 2 9.82 W103 394.026 15400.00 89.76 179.85 10300.42 4945.61 -4947.93 -481.02 0.00		14900.00	90.50	179.85	10298.42	4445.61	-4447.93	-482.41	0.00	377803.26	708282.61 N 32 2 12.89 W 103 39 40.25
h h< h h h h h h h h h h h h <											
h15100.00 89.76 179.85 10299.98 464.61 -464.793 -481.88 0.00 377603.27 708283.14 N 32 2 10.91 M103 39 40.26 15000.00 89.76 179.85 10299.82 4445.61 -4747.93 -481.62 0.00 377603.27 708283.14 N 32 2 9.92 W103 39 40.26 15300.00 89.76 179.85 10299.82 4486.61 -4947.93 -481.02 0.00 377403.28 708283.9 N 32 2 9.92 W103 39 40.26 MP, Turn 2'100ft 15427.99 89.76 179.85 10300.24 4946.61 -4947.93 -481.02 0.00 377403.28 708283.9 N 2 2 2 9.92 W103 39 40.26 Hold 15427.99 89.76 179.85 10300.40 4984.75 -4987.07 -481.02 0.00 37720.28 708283.9 N 2 2 7.66 W103 39 40.26 Hold 15439.14 89.76 179.61 10300.40 4984.75 -4987.07 -480.07 20 377203.29 708284.0 N 2 2 7.	noid										
https://https//https://htttps//https://https://https://https://https://https://											
15400.00 89.76 179.85 10300.24 4945.61 -4947.83 -481.09 0.00 37730.32 708283.38 N 2 2 7.49 M103 39.0.27 MP, Turn 2'100ft 15427.29 89.76 179.85 10300.35 4972.89 -4975.21 -481.02 0.00 377203.28 708283.38 N 32 2 7.64 W103 39.0.27 Hold 15439.14 89.76 179.61 10300.40 4984.75 -4897.07 -480.57 0.00 377203.29 708284.06 N 2 2 7.66 W103 39.0.27 Hold 15500.00 89.76 179.61 10300.65 5045.61 -5047.93 -480.55 0.00 377203.29 708284.47 N 32 2 7.66 W103 39.0.27 1500.00 89.76 179.61 10301.47 5245.60 -5147.92 -479.80 0.00 37703.31 708285.14 N 32 2 4.97 W103 394.027 15700.00 89.76 1		15200.00	89.76	179.85	10299.40	4745.61	-4747.93	-481.62	0.00	377503.27	708283.40 N 32 2 9.92 W 103 39 40.26
MP, Turn 2'/100ft 15427.29 89.76 179.85 10300.35 4972.89 -4975.21 -481.02 0.00 377276.00 708284.00 N 32 2 7.67 W 103 39 40.27 Hold 15439.14 89.76 179.61 10300.40 4984.75 -4987.07 -480.97 2.00 377264.15 708284.06 N 32 2 7.67 W 103 39 40.27 15500.00 89.76 179.61 10300.65 5045.61 -5047.93 -480.55 0.00 377203.29 708284.7 N 32 2 7.67 W 103 39 40.27 15600.00 89.76 179.61 10301.06 5145.60 -5147.92 -479.88 0.00 377103.30 708284.7 N 32 2 5.96 W 103 39 40.27 15600.00 89.76 179.61 10301.47 5245.60 -5247.92 -479.20 0.00 377103.31 708285.82 N 32 2 5.96 W 103 39 40.27 15700.00 89.76 179.61 <td></td>											
Hold 15439.14 89.76 179.61 10300.40 4984.75 -4987.07 -480.97 2.00 377264.15 708284.06 N 32 2 7.56 W 103 39 40.27 15500.00 89.76 179.61 10300.65 5045.61 -5047.93 -480.55 0.00 377203.29 708284.74 N 2 2.65 W 103 39 40.27 15600.00 89.76 179.61 10301.65 5145.60 -5147.92 -479.88 0.00 377103.30 708284.74 N 32 2 6.56 W 103 39 40.27 15700.00 89.76 179.61 10301.47 5245.60 -5247.92 -479.88 0.00 377103.31 708284.74 N 32 2 4.56 W 103 39 40.27 15700.00 89.76 179.61 10301.47 5245.60 -5247.92 -479.80 0.00 377103.31 708284.28 N 2 2 4.97 W 103 39 40.27	MP, Turn 2°/100ft										
15600.00 89.76 179.61 10301.06 5145.60 -5147.92 -479.88 0.00 377103.30 708285.14 N 32 2 5.96 W 103 39 40.27 15700.00 89.76 179.61 10301.47 5245.60 -5247.92 -479.20 0.00 377003.31 708285.82 N 32 2 4.97 W 103 39 40.27		15439.14	89.76	179.61	10300.40	4984.75	-4987.07	-480.97	2.00	377264.15	708284.06 N 32 2 7.56 W 103 39 40.27
15700.00 89.76 179.61 10301.47 5245.60 -5247.92 -479.20 0.00 377003.31 708285.82 N 32 2 4.97 W 103 39 40.27											
						5345.60				376903.31	

...SD 15 22 FED COM P404 404H\SD 15 22 FED COM P404 404H\SD 15 22 FED COM P404 404H R0 mdv 22Jun22

.

Comments	MD	Incl	Azim Grid	TVD	VSEC	NS	EW	DLS	Northing	Easting	Latitude	Longitude
	(ft) 15900.00	(°) 89.76	(°) 179.61	(ft) 10302.30	(ft) 5445.60	(ft) -5447.91	(ft) -477.85	(°/100ft) 0.00	(ftUS) 376803.32	(ftUS) 708287.17 N	(N/S ° ' ")	(E/W ° ' ")
	16000.00	89.76	179.61	10302.30	5545.60	-5547.91	-477.17	0.00	376703.33	708287.85 N		
	16100.00	89.76	179.61	10303.12	5645.60	-5647.91	-476.49	0.00	376603.34	708288.53 N		
	16200.00	89.76	179.61	10303.53	5745.60	-5747.90	-475.82	0.00	376503.34	708289.20 N		
	16300.00	89.76	179.61	10303.94	5845.60	-5847.90	-475.14	0.00	376403.35	708289.88 N		
	16400.00	89.76	179.61	10303.34	5945.60	-5947.90	-474.46	0.00	376303.36	708290.56 N		
	16500.00	89.76	179.61	10304.35	6045.59	-6047.89	-473.79	0.00	376203.36	708291.23 N		
	16600.00	89.76	179.61	10305.18	6145.59	-6147.89	-473.11	0.00	376103.37	708291.23 N		
	16700.00	89.76	179.61	10305.59	6245.59	-6247.89	-472.44	0.00	376003.38	708292.58 N		
	16800.00	89.76	179.61	10306.00	6345.59	-6347.88	-471.76	0.00	375903.39	708293.26 N		
	16900.00	89.76	179.61	10306.41	6445.59	-6447.88	-471.08	0.00	375803.40	708293.94 N		
	17000.00	89.76	179.61	10306.82	6545.59	-6547.88	-470.41	0.00	375703.40	708294.61 N		
	17100.00	89.76	179.61	10307.23	6645.59	-6647.88	-469.73	0.00	375603.41	708295.29 N		
	17200.00	89.76	179.61	10307.64	6745.59	-6747.87	-469.05	0.00	375503.42	708295.97 N		
	17300.00	89.76	179.61	10308.06	6845.59	-6847.87	-468.38	0.00	375403.43	708296.64 N		
	17400.00	89.76	179.61	10308.47	6945.58	-6947.87	-467.70	0.00	375303.43	708297.32 N		
	17500.00	89.76	179.61	10308.88	7045.58	-7047.86	-467.02	0.00	375203.44	708298.00 N		
	17600.00	89.76	179.61	10309.29	7145.58	-7147.86	-466.35	0.00	375103.45	708298.67 N		
	17700.00	89.76	179.61	10309.29	7245.58	-7247.86	-465.67	0.00	375003.45	708299.35 N		
	17800.00	89.76	179.61	10309.70	7345.58	-7347.85	-464.99	0.00	374903.46	708300.03 N		
	17900.00	89.76	179.61	10310.11	7445.58	-7447.85	-464.32	0.00	374903.46	708300.03 N		
Second Bone Upper TGT2 (SBU TGT2)	17957.47	89.76	179.61	10310.32	7503.05	-7505.32	-463.93	0.00	374746.00	708301.09 N		
Second Bone Opper 1G12 (SBO_1G12)	18000.00	89.76	179.61	10310.93	7545.58	-7547.85	-463.64	0.00	374703.48	708301.38 N		
	18100.00	89.76	179.61	10310.93	7645.58	-7647.84	-462.96	0.00	374603.48	708302.06 N		
	18200.00	89.76	179.61	10311.76	7745.58	-7747.84	-462.29	0.00	374503.49	708302.73 N		
	18300.00	89.76	179.61	10312.17	7845.58	-7847.84	-461.61	0.00	374503.49	708303.41 N		
	18400.00	89.76	179.61	10312.17	7945.57	-7947.83	-460.93	0.00	374303.51	708304.08 N		
	18500.00	89.76	179.61	10312.99	8045.57	-8047.83	-460.93	0.00	374203.51	708304.08 N		
	18600.00	89.76	179.61	10312.99	8145.57	-8147.83	-459.58	0.00	374203.51	708305.44 N		
	18700.00	89.76	179.61	10313.40	8245.57	-8247.83	-458.91	0.00	374003.53	708306.11 N		
	18800.00	89.76	179.61	10313.81	8345.57	-8347.82	-458.23	0.00	373903.54	708306.79 N		
	18900.00	89.76	179.61	10314.23	8445.57	-8447.82	-457.55	0.00	373803.54	708307.47 N		
	19000.00	89.76	179.61	10315.05	8545.57	-8547.82	-456.88	0.00	373703.55	708308.14 N		
	19100.00	89.76	179.61	10315.46	8645.57	-8647.81	-456.20	0.00	373603.56	708308.82 N		
	19200.00	89.76	179.61	10315.87	8745.57	-8747.81	-455.52	0.00	373503.56	708309.50 N		
	19300.00	89.76	179.61	10316.28	8845.56	-8847.81	-454.85	0.00	373403.57	708310.17 N		
	19300.00	89.76	179.61	10316.69	8945.56	-8947.80	-454.65	0.00	373303.58	708310.17 N		
	19500.00	89.76	179.61	10317.11	9045.56	-9047.80	-453.49	0.00	373203.59	708311.53 N		
	19600.00	89.76	179.61	10317.52	9145.56	-9147.80	-452.82	0.00	373103.60	708312.20 N		
	19700.00	89.76	179.61	10317.93	9245.56	-9247.79	-452.82	0.00	373003.60	708312.20 N 708312.88 N		
	19800.00	89.76	179.61	10318.34	9345.56	-9347.79	-451.46	0.00	372903.61	708313.56 N		
	19900.00	89.76	179.61	10318.34	9445.56	-9447.79	-450.79	0.00	372803.62	708314.23 N		
	20000.00	89.76	179.61	10319.16	9545.56	-9547.78	-450.19	0.00	372703.63	708314.23 N 708314.91 N		
	20100.00	89.76	179.61	10319.16	9645.56	-9647.78	-449.43	0.00	372603.63	708315.58 N		
			179.61		9745.56	-9747.78	-449.43	0.00	372503.64	708316.26 N		
	20200.00 20300.00	89.76 89.76	179.61	10319.99 10320.40	9845.55	-9747.78	-448.08	0.00	372503.64	708316.26 N 708316.94 N		
	20300.00	89.76	179.61	10320.40	9945.55 9945.55	-9947.77	-446.06	0.00	372303.66	708317.61 N		
	20500.00	89.76	179.61 179.61	10321.22	10045.55	-10047.77	-446.73	0.00	372203.66	708318.29 N		
I TR Creat	20600.00	89.76		10321.63	10145.55	-10147.77	-446.05	0.00	372103.67	708318.97 N		
LTP Cross	20677.64	89.76	179.61 179.61	10321.95	10223.19	-10225.40	-445.53	0.00	372026.04	708319.49 N		N 103 39 40.24 N 103 39 40.24
	20700.00	89.76		10322.04	10245.55	-10247.76	-445.38	0.00	372003.68			
SD 15 22 FED COM P404 404H BHL	20752.68	89.76	179.61	10322.26	10298.23	-10300.44	-445.02	0.00	371951.00	708320.00 N	32 1 14.97 \	w 103 39 40.24

Survey Type:

Def Plan

Survey Error Model: Survey Program: ISCWSA Rev 3 *** 3-D 97.071% Confidence 3.0000 sigma

Description	Part	MD From (ft)	MD To (ft)	EOU Freq (ft)	Hole Size Casing Diameter (in) (in)		Expected Max Inclination (deg)	Survey Tool Type	Borehole / Survey
	1	0.000	28.000	1/100.000	30.000	30.000		B001Mb_MWD+HRGM-Depth Only	SD 15 22 FED COM P404 404H / SD 15 22 FED COM P404 404H R0 mdv 22Jun22
	1	28.000	20752.682	1/100.000	30.000	30.000		B001Mb_MWD+HRGM	SD 15 22 FED COM P404 404H / SD 15 22 FED COM P404 404H

.

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	CHEVRON USA INCORPORATED
WELL NAME & NO.:	SD 15 22 FED COM P404 404H
SURFACE HOLE FOOTAGE:	377'/N & 1815'/E
BOTTOM HOLE FOOTAGE	25'/S & 2310'/E
LOCATION:	Section 15, T.26 S., R.32 E., NMP
COUNTY:	Lea County, New Mexico

COA

H2S	• Yes	C No	
Potash	None	C Secretary	C R-111-P
Cave/Karst Potential	C Low	• Medium	C High
Cave/Karst Potential	Critical		
Variance	C None	• Flex Hose	C Other
Wellhead	Conventional	• Multibowl	C Both
Wellhead Variance	C Diverter		
Other	□4 String	Capitan Reef	□ WIPP
Other	□ Fluid Filled	🗆 Pilot Hole	Open Annulus
Cementing	Contingency	EchoMeter	Primary Cement
	Cement Squeeze		Squeeze
Special Requirements	Water Disposal	COM	🗖 Unit
Special Requirements	Batch Sundry		
Special Requirements	Break Testing	□ Offline	Casing
Variance		Cementing	Clearance

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated AT SPUD. As a result, the Hydrogen Sulfide area must meet 43 CFR part 3170 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

Primary Casing Design:

1. The **13-3/8** inch surface casing shall be set at approximately **855 feet** (a minimum of **25 feet (Lea County)** into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. The surface hole shall be **16** inch in diameter.

Page 1 of 8

- a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Operator is approved to use contingency cementing for the Intermediate and Production section. Operator shall notify the BLM before proceeding with contingency operation.

- 2. The minimum required fill of cement behind the **9-5/8** inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash. Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.
 - In <u>Medium Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 3. The minimum required fill of cement behind the 7 inch intermediate casing is:
 - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash. Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

Approval Date: 04/12/2024

- 4. The minimum required fill of cement behind the $5 \times 4-1/2$ inch production liner is:
 - Cement should tie-back 100 feet into the previous casing. Operator shall provide method of verification.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the 13-3/8 inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in **43 CFR 3172.6(b)(9)** must be followed.

D. SPECIAL REQUIREMENT (S)

(Note: For a minimum 5M BOPE or less (Utilizing a 10M BOPE system) BOPE Break Testing Variance

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (**575-706-2779**) prior to the commencement of any BOPE Break Testing operations.

Page 3 of 8

- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-689-5981 Lea County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR 3170.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Eddy County

EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,

BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822

Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43 CFR part 3170 Subpart 3172** as soon as 2nd Rig is rigged up on well.

- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.

- d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
- e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
 - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
 - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - e. The results of the test shall be reported to the appropriate BLM office.
 - f. All tests are required to be recorded on a calibrated test chart. A copy of the

BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.

- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JS 12/5/2023

Approval Date: 04/12/2024

Training

MCBU Drilling and Completions H₂S training requirements are intended to define the minimum level of training required for employees, contractors and visitors to enter or perform work at MCBU Drilling and Completions locations that have known concentrations of H₂S.

Awareness Level

Employees and visitors to MCBU Drilling and Completions locations that have known concentrations of H_2S , who are not required to perform work in H_2S areas, will be provided with an awareness level of H_2S training prior to entering any H_2S areas. At a minimum, awareness level training will include:

- 1. Physical and chemical properties of H₂S
- 2. Health hazards of H₂S
- 3. Personal protective equipment
- 4. Information regarding potential sources of H₂S
- 5. Alarms and emergency evacuation procedures

Awareness level training will be developed and conducted by personnel who are qualified either by specific training, educational experience and/or work-related background.

Advanced Level H₂S Training

Employees and contractors required to work in areas that may contain H₂S will be provided with Advanced Level H₂S training prior to initial assignment. In addition to the Awareness Level requirements, Advanced Level H₂S training will include:

- 1. H₂S safe work practice procedures;
- 2. Emergency contingency plan procedures;
- 3. Methods to detect the presence or release of H₂S (e.g., alarms, monitoring equipment), including hands-on training with direct reading and personal monitoring H₂S equipment.
- Basic overview of respiratory protective equipment suitable for use in H₂S environments. Note: Employees who work at sites that participate in the Chevron Respirator User program will require separate respirator training as required by the MCBU Respiratory Protection Program;
- Basic overview of emergency rescue techniques, first aid, CPR and medical evaluation procedures. Employees who may be required to perform "standby" duties are required to receive additional first aid and CPR training, which is not covered in the Advanced Level H₂S training;
- 6. Proficiency examination covering all course material.

Advanced H₂S training courses will be instructed by personnel who have successfully completed an appropriate H₂S train-the-trainer development course (ANSI/ASSE Z390.1-2006) or who possess significant past experience through educational or work-related background.

H₂S Training Certification

All employees and visitors will be issued an H_2S training certification card (or certificate) upon successful completion of the appropriate H_2S training course. Personnel working in an H_2S environment will carry a current H_2S training certification card as proof of having received the proper training on their person at all times.

Briefing Area

A minimum of two briefing areas will be established in locations that at least one area will be upwind from the well at all times. Upon recognition of an emergency situation, all personnel should assemble at the designated upwind briefing areas for instructions.

H₂S Equipment

Respiratory Protection

- a) Six 30 minute SCBAs 2 at each briefing area and 2 in the Safety Trailer.
- b) Eight 5 minute EBAs 5 in the dog house at the rig floor, 1 at the accumulator, 1 at the shale shakers and 1 at the mud pits.

Visual Warning System

- a) One color code sign, displaying all possible conditions, will be placed at the entrance to the location with a flag displaying the current condition.
- b) Two windsocks will be on location, one on the dog house and one on the Drill Site Manager's Trailer.

H₂S Detection and Monitoring System

- a) H₂S monitoring system (sensor head, warning light and siren) placed throughout rig.
 - Drilling Rig Locations: at a minimum, in the area of the Shale shaker, rig floor, and bell nipple.
 - Workover Rig Locations: at a minimum, in the area of the Cellar, rig floor and circulating tanks or shale shaker.

Well Control Equipment

- a) Flare Line 150' from wellhead with igniter.
- b) Choke manifold with a remotely operated choke.
- c) Mud / gas separator

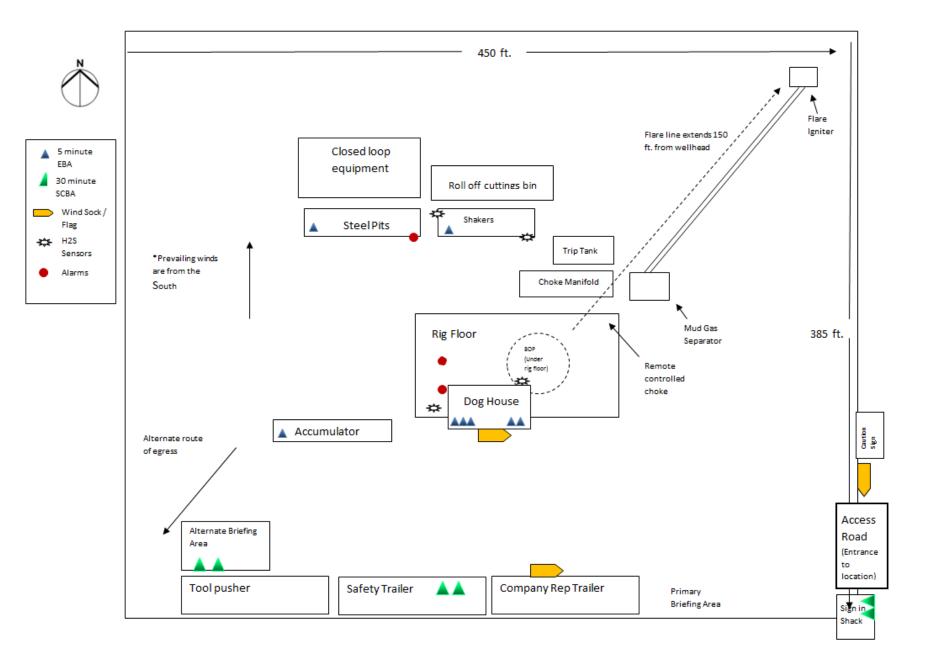
Mud Program

In the event of drilling, completions, workover and well servicing operations involving a hydrogen sulfide concentration of 100 ppm or greater the following shall be considered:

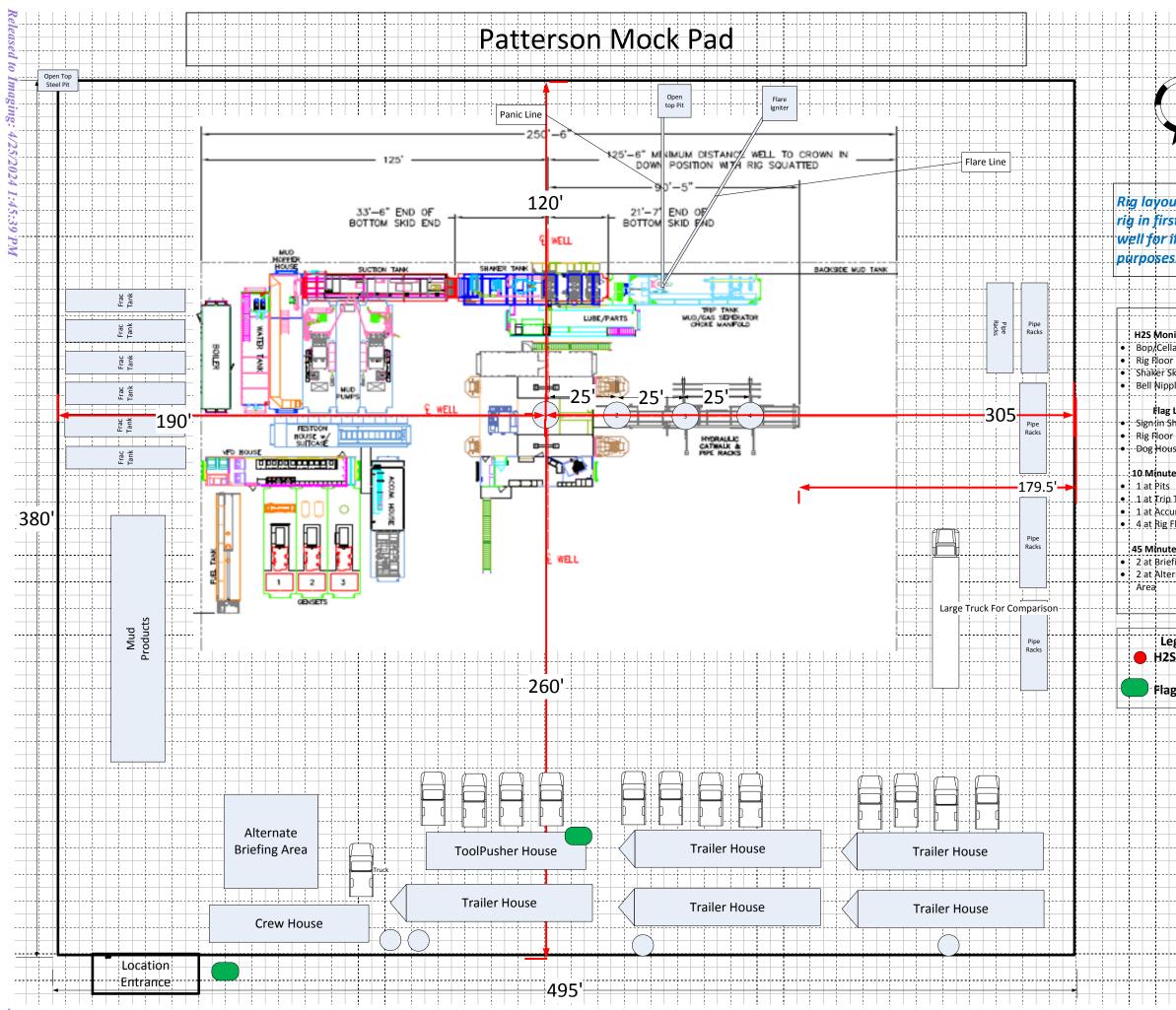
- 1. Use of a degasser
- 2. Use of a zinc based mud treatment
- 3. Increasing mud weight

Public Safety - Emergency Assistance

Agency	Telephone Number
Lea County Sheriff's Department	575-396-3611
Fire Department:	
Carlsbad	575-885-3125
Artesia	575-746-5050
Lea County Regional Medical Center	575-492-5000
Jal Community Hospital	505-395-2511
Lea County Emergency Management	575-396-8602
Poison Control Center	800-222-1222



Chevron MCBU D&C Emergency Notifications


Below are lists of contacts to be used in emergency situations.

	Name	Title	Office Number	Cell Phone
1.	TBD	Drilling Engineer		
2.	Sergio Hernandez	Superintendent	713 372 1402	
5.	Dennis Mchugh	Drilling Manager	(713) 372-4496	
6.	Kyle Eastman	Operations Manager	713-372-5863	
7.	TBD	D&C HES		
8.	TBD	Completion Engineer		

Released to Imaging: 4/25/2024 1:45:39 PM

					 !		
7	ř						
1	V))				
		<u>/</u> .					
_							
	sl ar						
	us				: II		
				01			
]	
ito ar	pr L	oca	ntio	ns	 		
kić ole							
10	cat	ion	c .				
	ck						
se					 		
e E	sca	pe	Ра	cks			
	ınk.						_
ım	ula						
lo	or						
e E fin	sca g A	n pe rea	Ра	cks			
rna	ate	Bri	efir	ng			
			_			}	
g	en	_	_			}	
ge S I	en Mo	d	_			}	
g (en Mc	d oni	to				
g(5 3	en Mc	d oni	to	 r			
gi S I	en Mc	d 2ni	to	 r			
g(5 5	en Mc	d 2ni	to	 r			
g(5_1	en Mo	d 2ni	to	 r			
g(5 	en Mo	d 2ni	to	 r			
g(5_1	en Mc	d	to	 r			
g 5_1 	en Mo	d oni 	to	 r			
g 5_1 	en Mo	d oni 	to	r			
g 5 1 		d	to	r			
g 5 1 		d >ni 	10	r			
g 5 1 		d >ni 	10	r			
8 		d >ni 	10	r			
8 		d >ni 	10	r			
g 5 1 		d	10	r			

Page 30 of 35

Intent As Drilled		
API #		
Operator Name:	Property Name:	Well Number

Kick Off Point (KOP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
Latitu	de				Longitude				NAD

First Take Point (FTP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
Latitu	de				Longitude				NAD

Last Take Point (LTP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
Latitu	de				Longituc	le			NAD

Is this well the defining well for the Horizontal Spacing Unit?	

Is this well an infill well?

If infill is yes please provide API if available, Operator Name and well number for Defining well for Horizontal Spacing Unit.

API #		
Operator Name:	Property Name:	Well Number

KZ 06/29/2018

Received by OCD: 4/15/2024 12:37:58 PM

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400088298

Operator Name: CHEVRON USA INCORPORATED

Well Name: SD 15 22 FED COM P404

Well Type: OIL WELL

Well Number: 404H

Highlighted data reflects the most recent changes

04/15/2024

Drilling Plan Data Report

Show Final Text

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
13244926	RUSTLER	3163	680	830	DOLOMITE, SILTSTONE	NONE	N
13244927	SALADO	2107	1056	1056	HALITE	NONE	N
13244928	CASTILE	425	2738	2738	ANHYDRITE	NONE	N
13244929	LAMAR	-1377	4540	4540	LIMESTONE	NONE	N
13244934	BELL CANYON	-1402	4565	4565	SANDSTONE	NONE	N
13244935	CHERRY CANYON	-2432	5595	5616	SANDSTONE	NONE	N
13244936	BRUSHY CANYON	-3930	7093	7113	SANDSTONE	NONE	N
13244931	BONE SPRING LIME	-5595	8758	8796	LIMESTONE	NATURAL GAS, OIL	N
13244937	AVALON SAND	-5596	8759	8797	LIMESTONE, SHALE	NATURAL GAS, OIL	N
13244939	BONE SPRING 1ST	-6637	9800	9838	LIMESTONE, SANDSTONE, SHALE	NONE	N
13244925	BONE SPRING 2ND	-7114	10277	10315	SANDSTONE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M

Rating Depth: 10322

Equipment: Chevron will have a minimum of a 5,000 psi rig stack (see proposed schematic) for drill out below surface casing. The stack will be tested as specified in the attached testing requirements. Batch drilling of the surface, production, and production liner will take place. A full BOP test will be performed per hole section, unless approval from BLM is received otherwise (see variance request below). Flex choke hose will be used for all wells on the pad (see attached specs and variance). BOP test will be conducted by a third party.

Requesting Variance? NO

Variance request:

Testing Procedure: The stack will be tested as specified in the attached testing requirements. Batch drilling

Submission Date: 09/26/2022

Well Work Type: Drill

Well Name: SD 15 22 FED COM P404

Well Number: 404H

of the surface, production, and production liner will take place. A full BOP test will be performed per hole section, unless approval from BLM is received otherwise (see variance request). Flex choke hose will be used for all wells on the pad (see attached specs and variance). BOP test pressures and other documented tests may be recorded and documented via utilization of the IPT 'Suretec' Digital BOP Test Method in lieu of the standard test chart. In the event the IPT system is unavailable, the standard test chart will be used.

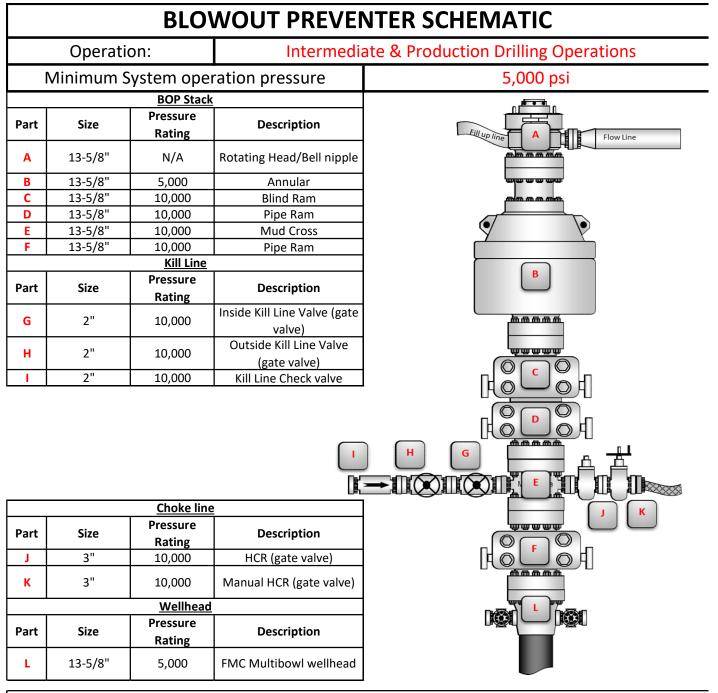
Choke Diagram Attachment:

BLM_5M_Choke_Manifold_Diagram_20210720091028.pdf

BLM_Choke_Hose_Test_Specs_and_Pressure_Test_Continental_20231017121543.pdf

BOP Diagram Attachment:

NM Slim Hole Wellhead 6650 psi UH S 20210721102517.pdf


BLM_5M_Annular_10M_Rams_Stackup_and_Test_Plan_20211215112307.pdf

Sundry_Break_Testing_and_WOC_500_psi_SD_P404_20220921094601.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	16	13.625	NEW	API	N	0	855	0	855	3193	2338	855	J-55	54.5	ST&C	4.33	2.02	BUOY	18.3 1	BUOY	18.3 1
2	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	4515	0	4515	3132	-1322	4515	L-80		OTHER - BTC	2.28	2.38	BUOY	5.07	BUOY	5.07
3	PRODUCTI ON	8.75	7.0	NEW	API	N	0	9800	0	9762	3202	-6569		OTH ER		OTHER - BLUE	2.83	3.95	BUOY	3.28	BUOY	3.28
4	PRODUCTI ON	6.12 5	5.0	NEW	API	N	9500	10250	9250	10162	-6057	-6969	750	P- 110		OTHER - W- 513	2.23	3.71	BUOY	2.01	BUOY	2.01
5	PRODUCTI ON	6.12 5	4.5	NEW	API	N	10250	20752	10162	10322	-6969	-7129	10502	P- 110		OTHER - W- 521	2.23	3.71	BUOY	2.01	BUOY	2.01

Casing Attachments

BOP Installation Checklist: The following items must be verified and checked off prior to pressure testing BOP equipment

The installed BOP equipment meets at least the minimum requirements (rating, type, size, configuration) as shown on this schematic. Components may be substituted for equivalent equipment rated to higher pressures. Additional components may be put into place as long as they meet or exceed the minimum pressure rating of the system.

All valves on the kill line and choke line will be full opening and will allow straight flow through.

Manual (hand wheels) or automatic locking devices will be installed on all ram preventers. Hand wheels will also be install on all manual valves on the choke and kill line.

A valve will be installed in the closing line as close as possible to the annular preventer to act as a locking device. This valve will remain open unless accumulator is inoperative.

Upper kelly cock valve with handle will be available on rig floor along with saved valve and subs to fit all drill string connections in use.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	333371
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
pkautz	Will require a File As Drilled C-102 and a Directional Survey with the C-104	4/25/2024
pkautz	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string	4/25/2024
pkautz	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system	4/25/2024
pkautz	Cement is required to circulate on both surface and intermediate1 strings of casing	4/25/2024
pkautz	If cement does not circulate on any string, a CBL is required for that string of casing	4/25/2024
pkautz	REQUIRES NAME CHANGE	4/25/2024

Released to Imaging: 4/25/2024 1:45:39 PM

Page 35 of 35

.

Action 333371