Form 3160-3 FORM APPROVED OMB No. 1004-0137 (June 2015) Expires: January 31, 2018 **UNITED STATES** DEPARTMENT OF THE INTERIOR 5. Lease Serial No. BUREAU OF LAND MANAGEMENT APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. DRILL REENTER 1a. Type of work: 1b. Type of Well: Oil Well Gas Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing Single Zone Multiple Zone 2. Name of Operator 9. API Well No. 3a. Address 3b. Phone No. (include area code) 10. Field and Pool, or Exploratory 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. or Blk. and Survey or Area At surface At proposed prod. zone 14. Distance in miles and direction from nearest town or post office* 12. County or Parish 13. State 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, applied for, on this lease, ft. 22. Approximate date work will start* 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 23. Estimated duration 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see 2. A Drilling Plan. Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. SUPO must be filed with the appropriate Forest Service Office). 6. Such other site specific information and/or plans as may be requested by the 25. Signature Name (Printed/Typed) Date Title Approved by (Signature) Name (Printed/Typed) Date Title Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction

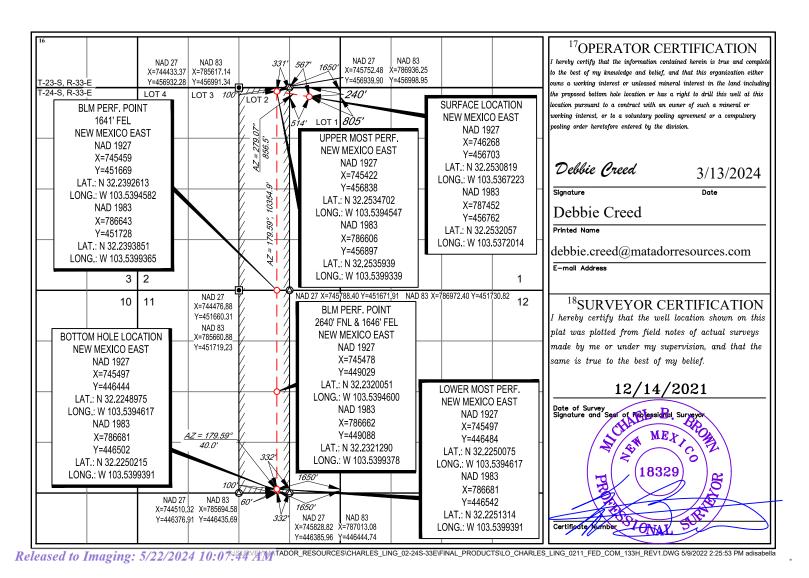
APPROVED WITH CONDITIONS Released to Imaging: 5/22/2024 10:07:44 AM Approval Date: 04/29/2024

*(Instructions on page 2)

1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

FORM C-102 Revised August 1, 2011 Submit one copy to appropriate **District Office**


AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Number		² Pool Code	³ Pool Name			
599		59900	TRIPLE X;BONE SPRIN	G		
⁴ Property Code		⁵ Pr	⁶ Well Number			
	CHARLES LING 0211 FED COM					
⁷ OGRID No.		⁸ O _I	perator Name	⁹ Elevation		
228937		MATADOR PRO	DUCTION COMPANY	3637'		
		¹⁰ Suri	face Location			

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
1	2	24-S	33-E	_	240'	NORTH	805'	EAST	LEA
			¹¹]	Bottom Ho	le Location If I	Different From Su	rface		
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
0	11	24-S	33-E	-	60'	SOUTH	1650'	EAST	LEA
¹² Dedicated Acres	¹³ Joint or l	Infill 14Co	nsolidation Co	de ¹⁵ Ord	er No.			•	
319.73									
319.73	¹³ Joint or 1	Infill 14Co	nsolidation Cod	de SOrd	er No.				

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

State of New Mexico
Energy, Minerals and Natural Resources Department

Submit Electronically
Via E-permitting

1,500

1,500

1,500

1,500

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator: Matador	Production C	ompany	OGRID: 2289	937	Date:_	05/06/2024
II. Type: Original	Amendment d	lue to □ 19.15.27.9.D	(6)(a) NMAC	□ 19.15.27.9.D(6)(b) NMAC □ O	ther,
If Other, please describe	e:					
III. Well(s): Provide the be recompleted from a s					vells proposed to	be drilled or proposed to
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water BBL/D
Charles Ling 0211 Fed Com #131H	TBD	03-02-24S-33E	380' FNL & 1,830' FWL	1,000	1,200	2,000
Charles Ling 0211 Fed Com #132H	TBD	03-02-24S-33E	350' FNL & 1,830' FWL	1,000	1,200	2,000
Charles Ling 0211 Fed Com #133H	TBD	01-02-24S-33E	240' FNL & 805' FEL	1,000	1,200	2,000
Charles Ling 0214 Fed Com #134H	TBD	01-02-24S-33E	270' FNL & 805' FEL	1,000	1,200	2,000

380' FNL &

1,860' FWL

350' FNL &

1,860' FWL

240' FNL &

835' FEL

270' FNL &

835' FEL

900

900

900

900

1,900

1,900

1,900

1,900

Charles Ling 0211 Fed

Charles Ling 0211 Fed

Charles Ling 0211 Fed

Charles Ling 0214 Fed

Com #221H

Com #222H

Com #223H

Com #224H

TBD

TBD

TBD

TBD

03-02-24S-33E

03-02-24S-33E

01-02-24S-33E

01-02-24S-33E

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	Spud Date	TD Reached Date	Completion Commencement Date	Initial Flow Back Date	First Production Date
Charles Ling 0211 Fed Com #131H	TBD	07/01/2024	07/26/2024	11/01/2024	01/26/2025	01/26/2025
Charles Ling 0211 Fed Com #132H	TBD	08/28/2024	09/22/2024	11/01/2024	02/01/2025	02/01/2025
Charles Ling 0211 Fed Com #133H	TBD	06/17/2024	07/12/2024	11/01/2024	01/20/2025	01/20/2025
Charles Ling 0214 Fed Com #134H	TBD	08/14/2024	09/16/2024	11/01/2024	01/26/2025	01/26/2025
Charles Ling 0211 Fed Com #221H	TBD	07/27/2024	08/23/2024	11/01/2024	01/29/2025	01/29/2025
Charles Ling 0211 Fed Com #222H	TBD	09/23/2024	10/20/2024	11/01/2024	02/04/2025	02/04/2025
Charles Ling 0211 Fed Com #223H	TBD	07/13/2024	08/09/2024	11/01/2024	01/23/2025	01/23/2025
Charles Ling 0214 Fed Com #224H	TBD	09/17/2024	10/24/2024	11/01/2024	01/29/2025	01/29/2025

VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture.

VII. Operational Practices: Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

		EFFECTIV	E AI KIL 1, 2022	
	2022, an operator the complete this section		ith its statewide natural gas	capture requirement for the applicable
Operator certification capture requirement	es that it is not requir t for the applicable r	red to complete this section eporting area.	on because Operator is in co	mpliance with its statewide natural gas
IX. Anticipated N	atural Gas Producti	ion:		
V	Vell	API	Anticipated Average Natural Gas Rate MCF/I	Anticipated Volume of Natural Gas for the First Year MCF
X. Natural Gas G	athering System (No	GGS):		
Operator System		ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in
production operation the segment or portant the segment of the s	ons to the existing or tion of the natural gas gas from the well prior the company of the compan	planned interconnect of the street gathering system will to the date of first product above will continue to the date of the d	he natural gas gathering syst which the well(s) will be condition. The its existing well(s) connect meet anticipated increases in the increased line pressure. The increased line pressure.	nticipated pipeline route(s) connecting the tem(s), and the maximum daily capacity of meeted. gather 100% of the anticipated natural gas ted to the same segment, or portion, of the n line pressure caused by the new well(s). SA 1978 for the information provided in full description of the specific information
		I the basis for such asserti		and opening monators

Section 3 - Certifications

Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

□ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system.

If Operator checks this box, Operator will select one of the following:

Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. □ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Oscar Jyry
Printed Name: Oscar Gonzalez
Title: Production Engineer
E-mail Address: ogonzalez@matadorresources.com
Date: 05/06/2024
Phone: 972 – 629 – 2147
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

Addendum to Natural Gas Management Plan for Matador's

Charles Ling 0211 Fed Com #131H, Charles Ling 0211 Fed Com #132H, Charles Ling 0211 Fed Com #133H, Charles Ling 0214 Fed Com #134H, Charles Ling 0211 Fed Com #221H, Charles Ling 0211 Fed Com #222H, Charles Ling 0211 Fed Com #223H, Charles Ling 0214 Fed Com #224H

VI. Separation Equipment

Flow from the wells will be routed via a flowline to a 48"x15' three phase separator dedicated to the well. The first stage separators are sized with input from BRE ProMax and API 12J. Anticipated production rates can be seen in the below table. Liquid retention times at expected maximum rates will be >3 minutes. Gas will be routed from the first stage separator to sales. Hydrocarbon liquids are dumped from the first stage separator and commingled to one or more heater treaters. The flash gas from the heater treater(s) could either be sent to sales or routed to a compressor if the sales line pressure is higher than the MAWP of the heater treater (125 psi). From the heater treaters, hydrocarbon liquid will be routed to the tanks where vapor is compressed by a VRU if technically feasible to either sales or a compressor if the sales line pressure is higher than the VRU's maximum discharge pressure (~150 psi). Therefore, Matador has sized our separation equipment to optimize gas capture and our separation equipment is of sufficient size to handle the expected volumes of gas.

Well Name	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water BBL/D
Charles Ling 0211 Fed Com #131H	1,000	1,200	2,000
Charles Ling 0211 Fed Com #132H	1,000	1,200	2,000
Charles Ling 0211 Fed Com #133H	1,000	1,200	2,000
Charles Ling 0214 Fed Com #134H	1,000	1,200	2,000
Charles Ling 0211 Fed Com #221H	900	1,500	1,900
Charles Ling 0211 Fed Com #222H	900	1,500	1,900
Charles Ling 0211 Fed Com #223H	900	1,500	1,900
Charles Ling 0214 Fed Com #224H	900	1,500	1.900

VII. Operation Practices

Although not a complete recitation of all our efforts to comply with a subsection A through F of 19.15.27.8 NMAC, a summary is as follows. During drilling, Matador will have a properly sized flare stack at least 100 feet from the nearest surface hole. During initial flowback we will route the flowback fluids into completion or storage tanks and, to the extent possible, flare rather than vent any gas. We will commence operation of a separator as soon as technically feasible, and have instructed our team that we want to connect the gas to sales as soon as possible but not later than 30 days after initial flowback.

Regarding production operations, we have designed our production facilities to be compliant with the requirements of Part E of 19.15.27.8 NMAC. We will instruct our team to perform the AVOs on the frequency required under the rules. While the well is producing, we will take steps to minimize flaring during maintenance, as set forth below, and we have a process in place for the measuring of any flared gas and the reporting of any reportable flaring events. VII. Best Management Practices

Steps are taken to minimize venting during active or planned maintenance when technically feasible including:

- Isolating the affected component and reducing pressure through process piping
- Blowing down the equipment being maintained to a control device
- Performing preventative maintenance and minimizing the duration of maintenance activities
- Shutting in sources of supply as possible
- Other steps that are available depending on the maintenance being performed

Charles Ling Fed Com 133H

SHL: 240' FNL & 805' FEL Section 2 BHL: 60' FSL & 1650' FEL Section 11

Township/Range: 24S 33E

Elevation Above Sea Level: 3637

Drilling Operation Plan

Proposed Drilling Depth: 22295' MD / 12055' TVD

Type of well: Horizontal well, no pilot hole

Permitted Well Type Oil

Geologic Name of Surface Formation: Quaternary Deposits

KOP Lat/Long (NAD83): 32.2537281991 N / 103.5397057230 W TD Lat/Long (NAD83): 32.2250208997 N / 103.5399382430 W

1. Estimated Tops

Formation	MD (ft)	TVD (ft)	Thickness (ft)	Lithology	Resource
Rustler	1,329	1,329	529	Anhydrite	Barren
Salado (Top of Salt)	1,858	1,858	1,879	Salt	Barren
Lamar (Base of Salt)	5,216	5,216	46	Salt	Barren
Bell Canyon	5,262	5,262	1,063	Sandstone	Oil/Natural Gas
Cherry Canyon	6,325	6,325	1,162	Sandstone	Oil/Natural Gas
Brushy Canyon	7,487	7,487	1,534	Sandstone	Oil/Natural Gas
Bone Spring Lime	9,021	9,021	1,008	Limestone	Oil/Natural Gas
1st Bone Spring Sand	10,029	10,029	408	Sandstone	Oil/Natural Gas
2nd Bone Spring Carbonate	10,437	10,437	318	Carbonate	Oil/Natural Gas
2nd Bone Spring Sand	10,755	10,755	485	Sandstone	Oil/Natural Gas
3rd Bone Spring Carbonate	11,293	11,240	753	Carbonate	Oil/Natural Gas
3rd Bone Spring Sand	12,184	11,993	264	Sandstone	Oil/Natural Gas
KOP	11,522	11,468	•	Shale	Oil/Natural Gas
TD	22,295	12,055	-	Shale	Oil/Natural Gas

2. Notable Zones

3rd Bone Spring is the goal. All perforations will be within the setback requirements as prescribed or permitted by the New Mexico Oil Conservation Division. OSE estimated ground water depth at this location is 175

3. Pressure Control

Equipment

A 18,000' 10,000-psi BOP stack consisting of 3 rams with 2 pipe rams, 1 blind ram, and one annular preventer will be utilized below surface casing to TD. See attachments for BOP and choke manifold diagrams.

An accumulator complying with Onshore Order #2 requirements for the pressure rating of the BOP stack will be present. A rotating head will also be installed as needed.

Drill Plan

Testing Procedure

BOP will be inspected and operated as required in Onshore Order #2. Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position.

A third party company will test the BOPs.

After setting surface casing, a minimum 10M BOPE system will be installed. Test pressures will be 250 psi low and 10,000 psi high with the annular preventer being tested to 250 psi low and 5000 psi high before drilling below surface shoe. In the event that the rig drills multiple wells on the pad and any seal subject to test pressures are broken, a full BOP test will be performed when the rig returns and the 10M BOPE system is re-installed.

Variance Request

Matador requests a variance to have the option of running a multi-bowl wellhead assembly for setting the Intermediate 1, and Production Strings. The BOPs will not be tested again unless any flanges are separated.

Matador requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. The hose is not required by the manufacturer to be anchored. If the specific hose is not available, then one of equal or higher rating will be used.

Matador requests a variance to have the option of batch drilling this well with other wells on the same pad. In the event that this well is batch drilled, the wellbore will be secured with a blind flange of like pressure. When the rig returns to this well and BOPs are installed, the operator will perform a full BOP test.

Matador requests a variance to drill this well using a 5M annular preventer with a 10M BOP ram stack. The "Well Control Plan For 10M MASP Section of Wellbore" is attached.

4. Casing & Cement

All casing will be API and new. See attached casing assumption worksheet.

String	Hole Size (in)	Set MD (ft)	Set TVD (ft)	Casing Size (in)	Wt. (lb/ft)	Grade	Joint	Collapse	Burst	Tension
Surface	17.5	0 - 1404	0 - 1404	13.375	54.5	J-55	BUTT	1.125	1.125	1.8
Intermediate 1	9.875	0 - 11372	0 - 11318	7.625	29.7	P-110	BUTT	1.125	1.125	1.8
Production	6.75	0 - 22295	0 - 12055	5.5	20	P-110	Hunting TLW-SC	1.125	1.125	1.8

- All casing strings will be tested in accordance with Onshore Order #2 III.B.1.h
- Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed
- All non-API joint connections will be of like or greater quality and as run specification sheets will be on location for review

Variance Request

Matador request a variance to wave the centralizer requirement for the 7-5/8" casing and the 5-1/2" SF/Flush casing in the 6-3/4" hole.

If a DV tool is used, depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above the current shoe. Lab reports with the 500 psi compressive strength time for the cement will be onsite for review.

Matador request option to perform a bradenhead cement squeeze on Intermediate 1 string.

Matador request a variance to utilize a surface setting rig. If this is used, Matador request the option to drill either 17.5" or 20" surface hole.

String	Туре	Sacks	Yield	Cu. Ft.	Weight	Percent Excess	Top of Cement (ft)	Class	Blend
Surface	Lead	660	1.75	1145	13.5	50%	0	С	5% NaCl + LCM
Surface	Tail	250	1.38	348	14.8	50%	1104	С	5% NaCl + LCM
Intermediate 1	Lead	870	3.66	3184	10.3	25%	0	A/C	Fluid Loss + Dispersant + Retarder + LCM
intermediate i	Tail	200	1.41	286	13.2	25%	10372	A/C	Fluid Loss + Dispersant + Retarder + LCM
Production	Tail	870	1.19	1033	14.2	10%	11172	Н	Fluid Loss + Dispersant + Retarder + LCM

5. Mud Program

An electronic Pason mud monitoring system complying with Onshore Order 2 will be used. All necessary mud products (barite, bentonite, LCM) for weight addition and fluid loss control will be on location at all times. Mud program is subject to change due to hole conditions.

Hole Section	Hole Size (in)	Mud Type	Interval MD (ft)	Density (lb/gal)	Viscosity	Fluid Loss
Surface	17.5	Spud Mud	0 - 1404	8.4 - 8.8	28-30	NC
Intermediate 1	9.875	Brine Diesel Emulsion	1404 - 11372	8.4 - 9.4	28-30	NC
Production	6.75	OBM	11372 - 22295	9.1 - 9.5	50-65	<20

6. Cores, Test, & Logs

No core or drill stem test is planned.

No electric logs are planned at this time. GR will be collected through the MWD tools from Intermediate casing to TD. CBL with CCL will be run as far as gravity will let it fall to top of curve.

7. Down Hole Conditions

Drill Plan

No abnormal pressure or temperature is expected. Bottom hole pressure is 5955 psi. Maximum anticipated surface pressure is 3303 psi. Expected bottom hole temperature is 164 F.

In accordance with Onshore Order 6, Matador does not anticipate that there will be enough H2S from the surface to the Bone Spring formations to meet the BLM's minimum requirements for the submission of a "H2S Drilling Operation Plan" or "Public Protection Plan" for the drilling and completion of this well. Since we have a H2S safety package on all wells, attached is a "H2S Drilling Operations Plan". Adequate flare lines will be installed off the mud/gas separator where gas may be flared safely. All personnel will be familiar with all aspects of safe operation of the equipment being used.

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_C=1.125

- Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that.
 External force will be equal to the mud gradient in which the casing will be run, which is a more
 conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

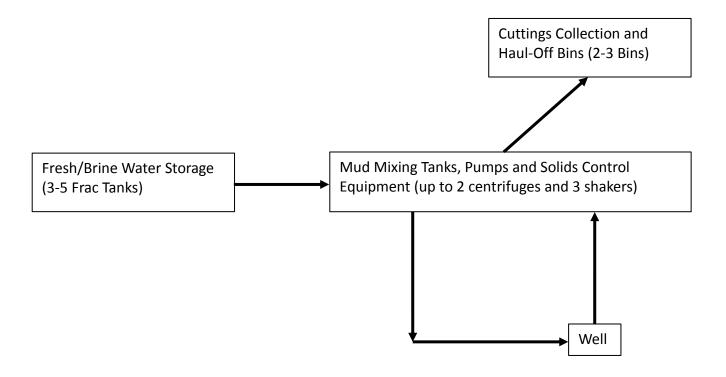
 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy.

Production Casing

Collapse: DFc=1.125

• Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run. The effects of axial load on collapse will be considered.

Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
gradient in which the casing will be run above that and an internal force equal to mud gradient of
displacement fluid (0.43 psi/ft).


Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run, which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.50 psi/ft with an external force equal to the mud gradient in which the casing will be run, which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy.

Closed-Loop System

Operating and Maintenance Plan:

During drilling operations, third party service companies will utilize solids control equipment to remove cuttings from the drilling fluids and collect it in haul-off bins. Equipment will be closely monitored at all times while drilling by the derrick man and the service company employees.

Closure Plan:

During drilling operations, third party service companies will haul off drill solids and fluids to an approved disposal facility. At the end of the well, all closed loop equipment will be removed from the location.

Matador Production Company

Antelope Ridge Charles Ling Charles Ling 0211 Fed Com #133H

Wellbore #1 BLM Plan #1

Anticollision Report

15 August, 2022

Anticollision Report

TVD Reference:

MD Reference:

Company: Matador Production Company

Project: Antelope Ridge
Reference Site: Charles Ling
Site Error: 0.0 usft

Reference Well: Charles Ling 0211 Fed Com #133H

Well Error: 0.0 usft
Reference Wellbore Wellbore #1
Reference Design: BLM Plan #1

Local Co-ordinate Reference:

Well Charles Ling 0211 Fed Com #133H KB @ 3665.5usft

KB @ 3665.5usft KB @ 3665.5usft

North Reference: Grid

Survey Calculation Method: Minimum Curvature
Output errors are at 2.00 sigma

Database: EDM 5000.14 Server
Offset TVD Reference: Offset Datum

Reference BLM Plan #1

Filter type: NO GLOBAL FILTER: Using user defined selection & filtering criteria

Interpolation Method: Stations Error Model: ISCWSA

 Depth Range:
 Unlimited
 Scan Method:
 Closest Approach 3D

 Results Limited by:
 Maximum center-center distance of 10,000.0 usft
 Error Surface:
 Pedal Curve

 Warning Levels Evaluated at:
 2.00 Sigma
 Casing Method:
 Not applied

Survey Tool Program Date 6/3/2022

From To

(usft) (usft) Survey (Wellbore) Tool Name Description

0.0 22,295.5 BLM Plan #1 (Wellbore #1) MWD OWSG MWD - Standard

ummary						
Site Name Offset Well - Wellbore - Design	Reference Measured Depth (usft)	Offset Measured Depth (usft)	Dista Between Centres (usft)	nce Between Ellipses (usft)	Separation Factor	Warning
Charles Ling						
Charles Ling 02 Fed Com #203H - Wellbore #1 - BLM Pl Charles Ling 02 Fed Com #203H - Wellbore #1 - BLM Pl Charles Ling 02 Fed Com #203H - Wellbore #1 - BLM Pl	1,000.0 5,400.0 6,900.0	1,001.0 5,386.2 6,886.1	114.1 140.5 153.1	107.4 100.3 100.9	16.997 3.502 2.929	ES
Charles Ling 02 Fed Com #204H - Wellbore #1 - BLM Pl Charles Ling 02 Fed Com #204H - Wellbore #1 - BLM Pl	1,970.1 2,000.0	1,958.8 1,988.5	81.8 81.9	68.2 68.1	6.030 5.941	CC ES
Charles Ling 02 Fed Com #204H - Wellbore #1 - BLM Pl Charles Ling 0211 Fed Com #223H - Wellbore #1 - BLM Charles Ling 0211 Fed Com #223H - Wellbore #1 - BLM	17,014.7 800.0 11,618.9	17,168.9 799.0 11,621.6	677.3 30.0 89.6	494.0 24.7 7.3	3.696 5.689	
Charles Ling 0214 Fed Com #134H - Wellbore #1 - BLM Charles Ling 0214 Fed Com #134H - Wellbore #1 - BLM Charles Ling 0214 Fed Com #134H - Wellbore #1 - BLM	1,119.4 1,200.0	1,121.6 1,202.2	29.9 30.3	22.4 22.1	3.963 3.727	CC
Charles Ling 0214 Fed Com #134H - Wellbore #1 - BLM Charles Ling 0214 Fed Com #224H - Wellbore #1 - BLM	1,300.0 653.9	1,301.9 681.5	32.5 12.6	23.7 8.2		CC, ES, SF
Charles Ling Fed Com #213H - Wellbore #1 - Actual Charles Ling Fed Com #213H - Wellbore #1 - Actual Charles Ling Fed Com #214H - Wellbore #1 - Actual	17,231.0 22,296.4 17,278.8	12,032.6 17,144.0 12.080.7	573.6 680.0 663.9	435.1 444.9 525.1	4.141 2.892 4.783	
Charles Ling Fed Com #214H - Wellbore #1 - Actual	22,255.9	17,093.0	690.2	434.0		ES, SF
Offset Wells in Antelope Ridge						
Macho State #001H - Wellbore #1 - Actual Roy Batty Federal Com #003H - Wellbore #1 - Actual Roy Batty Federal Com #003H - Wellbore #1 - Actual Roy Batty Federal Com #003H - Wellbore #1 - Actual	11,112.3 20,795.8 20,800.0 21,700.0	14,536.0 12,187.2 12,184.0 11,388.6	405.5 898.0 898.0 917.1	269.0 794.8 794.8 806.5	2.971 8.699 8.697 8.297	ES

Offset Design Charles Ling - Charles Ling 02 Fed Com #203H - Wellbore #1 - BLM Plan #1											Offset Site Error:	0.0 usft		
Survey Progr	am: 0-M	WD											Offset Well Error:	0.0 usft
Refere	eference Offset Semi Major Axis Distance													
Measured	Vertical	Measured	Vertical	Reference	Offset	Highside	Offset Wellbor	e Centre	Between	Between	Minimum	Separation	Warning	
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft)	+E/-W (usft)	Centres (usft)	Ellipses (usft)	Separation (usft)	Factor		
0.0	0.0	1.0	1.0	0.0	0.0	-105.64	-30.8	-109.9	114.1					
100.0	100.0	101.0	101.0	0.1	0.1	-105.64	-30.8	-109.9	114.1	113.8	0.26	439.004		
200.0	200.0	201.0	201.0	0.5	0.5	-105.64	-30.8	-109.9	114.1	113.1	0.98	116.799		
300.0	300.0	301.0	301.0	8.0	8.0	-105.64	-30.8	-109.9	114.1	112.4	1.69	67.360		
400.0	400.0	401.0	401.0	1.2	1.2	-105.64	-30.8	-109.9	114.1	111.7	2.41	47.328		
500.0	500.0	501.0	501.0	1.6	1.6	-105.64	-30.8	-109.9	114.1	111.0	3.13	36.479		

Matador Production Company

Antelope Ridge Charles Ling Charles Ling 0211 Fed Com #133H

Wellbore #1

Plan: BLM Plan #1

Standard Planning Report

15 August, 2022

EDM 5000.14 Server Database:

Company: Matador Production Company

Project: Antelope Ridge Site: Charles Ling

Well: Charles Ling 0211 Fed Com #133H

Wellbore: Wellbore #1 BLM Plan #1 Design:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Charles Ling 0211 Fed Com #133H

KB @ 3665.5usft KB @ 3665.5usft

Grid

Minimum Curvature

Project Antelope Ridge

Map System: US State Plane 1927 (Exact solution) Geo Datum:

New Mexico East 3001 Map Zone:

NAD 1927 (NADCON CONUS)

System Datum:

Mean Sea Level

Using geodetic scale factor

Charles Ling Site

Northing: 456,691.00 usft Site Position: 32° 15' 7.715 N Latitude: From: Мар Easting: 787,267.00 usft Longitude: 103° 24' 14.816 W Slot Radius: **Grid Convergence: Position Uncertainty:** 0.0 usft 13-3/16 " 0.50

Well Charles Ling 0211 Fed Com #133H

Well Position +N/-S 456,703.01 usft Latitude: 32° 15' 11.095 N 12.0 usft Northing: +E/-W -40,998.9 usft Easting: 746,267.94 usft Longitude: 103° 32' 12.200 W

0.0 usft Wellhead Elevation: **Ground Level:** 3,637.0 usft **Position Uncertainty**

Wellbore Wellbore #1 Dip Angle Magnetics **Model Name** Sample Date Declination Field Strength (°) (°) (nT) IGRF2015 47.451.69620119 5/18/2022 6.40 60.03

BLM Plan #1 Design Audit Notes: Version: Phase: **PROTOTYPE** Tie On Depth: 0.0 Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°) 0 0 0.0 0.0 179.59

Plan Survey Tool Program 6/3/2022 Date

Depth From Depth To

(usft) (usft) Survey (Wellbore)

Tool Name Remarks

0.0 22,295.5 BLM Plan #1 (Wellbore #1) MWD

OWSG MWD - Standard

Plan Sections Vertical Build Measured Dogleg Turn Depth Inclination Azimuth Depth +N/-S +E/-W Rate Rate Rate **TFO** (usft) (usft) (°/100usft) (°/100usft) (°/100usft) (°) (°) (usft) (usft) (°) Target 0.00 0.0 0.00 0.00 0.0 0.0 0.0 0.00 0.00 0.00 1,000.0 1,000.0 0.00 0.00 0.0 0.0 0.00 0.00 0.00 0.00 1,800.0 8.00 283.41 1,797.4 12.9 -54.2 1.00 1.00 0.00 283.41 6.864.4 8.00 283.41 6.812.5 176.4 -739.8 0.00 0.00 0.00 0.00 -776.0 7,397.7 0.00 0.00 7,344.1 185.0 1.50 -1 50 0.00 180 00 11,522.1 0.00 0.00 11,468.5 185.0 -776.0 0.00 0.00 0.00 0.00 VP - Charles Ling 021 12,421.3 89.92 185.20 12,041.5 -384.8 -827.9 10.00 10.00 0.00 185.20 12,701.8 89.92 12,041.9 -664.9 -839.6 2.00 0.00 -2.00 179.59 22.295.7 89.92 179.59 12.055.5 -10.258.6 -770.9 0.00 0.00 0.00 0.00 BHL - Charles Ling 02

Database: EDM 5000.14 Server
Company: Matador Production Company

Project: Antelope Ridge
Site: Charles Ling

Well: Charles Ling 0211 Fed Com #133H

Wellbore: Wellbore #1
Design: BLM Plan #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

eference: KB @ 3665.5usft

KB @ 3665.5usft KB @ 3665.5usft

Well Charles Ling 0211 Fed Com #133H

Grid

Survey Calculation Method: Minimum Curvature

nned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00		0.0				0.00	0.00
			600.0		0.0	0.0	0.00		
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
Start Build			,						
1,100.0	1.00	283.41	1,100.0	0.2	-0.8	-0.2	1.00	1.00	0.00
1,200.0	2.00	283.41	1,200.0	0.2	-3.4	-0.2	1.00	1.00	0.00
1,291.1	2.91	283.41	1,200.0	1.7	-7.2		1.00	1.00	0.00
		203.41	1,291.0	1.7	-1.2	-1.8	1.00	1.00	0.00
Depth (Rus	•								
1,300.0	3.00	283.41	1,299.9	1.8	-7.6	-1.9	1.00	1.00	0.00
1,400.0	4.00	283.41	1,399.7	3.2	-13.6	-3.3	1.00	1.00	0.00
1,500.0	5.00	283.41	1,499.4	5.1	-21.2	-5.2	1.00	1.00	0.00
1,600.0	6.00	283.41	1,598.9	7.3	-30.5	-7.5	1.00	1.00	0.00
1,700.0	7.00	283.41	1,698.3	9.9	-41.5	-10.2	1.00	1.00	0.00
1,800.0	8.00	283.41	1,797.4	12.9	-54.2	-13.3	1.00	1.00	0.00
Start 5064.4	4 hold at 1800.0 N	1D							
1,814.8	8.00	283.41	1,812.0	13.4	-56.2	-13.8	0.00	0.00	0.00
Depth (Sala	•								
1,900.0	8.00	283.41	1,896.4	16.2	-67.8	-16.6	0.00	0.00	0.00
2,000.0	8.00	283.41	1,995.5	19.4	-81.3	-20.0	0.00	0.00	0.00
2,100.0	8.00	283.41	2,094.5	22.6	-94.9	-23.3	0.00	0.00	0.00
2,200.0	8.00	283.41	2,193.5	25.8	-108.4	-26.6	0.00	0.00	0.00
0.000.0	0.00	000.44	0.000 5	20.4	101.0	20.0	0.00	0.00	0.00
2,300.0	8.00	283.41	2,292.5	29.1	-121.9	-29.9	0.00	0.00	0.00
2,400.0	8.00	283.41	2,391.6	32.3	-135.5	-33.3	0.00	0.00	0.00
2,500.0	8.00	283.41	2,490.6	35.5	-149.0	-36.6	0.00	0.00	0.00
2,600.0	8.00	283.41	2,589.6	38.8	-162.5	-39.9	0.00	0.00	0.00
2,700.0	8.00	283.41	2,688.6	42.0	-176.1	-43.2	0.00	0.00	0.00
2,800.0	8.00	283.41	2,787.7	45.2	-189.6	-46.6	0.00	0.00	0.00
2,900.0	8.00	283.41	2,886.7	48.4	-203.2	-49.9	0.00	0.00	0.00
3,000.0	8.00	283.41	2,985.7	51.7	-203.2 -216.7	-53.2	0.00	0.00	0.00
	8.00	283.41	2,965.7 3.084.8	51.7 54.9			0.00		0.00
3,100.0			-,		-230.2	-56.5		0.00	
3,200.0	8.00	283.41	3,183.8	58.1	-243.8	-59.9	0.00	0.00	0.00
3,300.0	8.00	283.41	3,282.8	61.3	-257.3	-63.2	0.00	0.00	0.00
3,400.0	8.00	283.41	3,381.8	64.6	-270.8	-66.5	0.00	0.00	0.00
3,500.0	8.00	283.41	3,480.9	67.8	-284.4	-69.8	0.00	0.00	0.00
3,600.0	8.00	283.41	3,579.9	71.0	-297.9	-73.2	0.00	0.00	0.00
3,700.0	8.00	283.41	3,678.9	74.3	-311.5	-76.5	0.00	0.00	0.00
3,796.1	8.00	283.41	3,774.1	77.4	-324.5	-79.7	0.00	0.00	0.00
Depth (Cas									
3,800.0	8.00	283.41	3,777.9	77.5	-325.0	-79.8	0.00	0.00	0.00
3,900.0	8.00	283.41	3,877.0	80.7	-338.5	-83.1	0.00	0.00	0.00
4,000.0	8.00	283.41	3,976.0	83.9	-352.1	-86.5	0.00	0.00	0.00
4,100.0	8.00	283.41	4,075.0	87.2	-365.6	-89.8	0.00	0.00	0.00
4,200.0	8.00	283.41	4,174.0	90.4	-379.1	-93.1	0.00	0.00	0.00
4,300.0 4,400.0	8.00	283.41	4,273.1	93.6	-392.7	-96.4	0.00	0.00	0.00
	8.00	283.41	4,372.1	96.8	-406.2	-99.8	0.00	0.00	0.00

Database: EDM 5000.14 Server
Company: Matador Production Company

Project: Antelope Ridge
Site: Charles Ling

Well: Charles Ling 0211 Fed Com #133H

Wellbore: Wellbore #1
Design: BLM Plan #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well Charles Ling 0211 Fed Com #133H

KB @ 3665.5usft KB @ 3665.5usft

Grid

nned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
4,500.0	8.00	283.41	4,471.1	100.1	-419.8	-103.1	0.00	0.00	0.00
4,600.0	8.00	283.41	4,570.2	103.3	-433.3	-106.4	0.00	0.00	0.00
4,700.0	8.00	283.41	4,669.2	106.5	-446.8	-109.7	0.00	0.00	0.00
4,800.0	8.00	283.41	4,768.2	109.8	-460.4	-113.0	0.00	0.00	0.00
4,900.0	8.00	283.41	4,867.2	113.0	-473.9	-116.4	0.00	0.00	0.00
5,000.0	8.00	283.41	4,966.3	116.2	-487.5	-119.7	0.00	0.00	0.00
5,100.0	8.00	283.41	5,065.3	119.4	-501.0	-123.0		0.00	0.00
5,200.0	8.00	283.41	5,164.3	122.7	-514.5	-126.3	0.00	0.00	0.00
5,262.5	8.00	283.41	5,226.2	124.7	-523.0	-128.4	0.00	0.00	0.00
Depth (G30: 5,300.0 5,306.9	8.00	283.41	5,263.3	125.9	-528.1	-129.7	0.00	0.00	0.00
	8.00	283.41	5,270.2	126.1	-529.0	-129.9	0.00	0.00	0.00
Depth (G26: 5,400.0	Bell Cyn.) 8.00	283.41	5,362.4	129.1	-541.6	-133.0	0.00	0.00	0.00
5,500.0	8.00	283.41	5,461.4	132.4	-555.1	-136.3	0.00	0.00	0.00
5,600.0	8.00	283.41	5,560.4	135.6	-568.7	-139.6	0.00	0.00	0.00
5,700.0	8.00	283.41	5,659.4	138.8	-582.2	-143.0	0.00	0.00	0.00
5,800.0	8.00	283.41	5,758.5	142.0	-595.8	-146.3	0.00	0.00	0.00
5,900.0	8.00	283.41	5,857.5	145.3	-609.3	-149.6	0.00	0.00	0.00
6,000.0	8.00	283.41	5,956.5	148.5	-622.8	-152.9	0.00	0.00	0.00
6,100.0	8.00	283.41	6,055.6	151.7	-636.4	-156.3	0.00	0.00	0.00
6,200.0	8.00	283.41	6,154.6	154.9	-649.9	-159.6	0.00	0.00	0.00
6,212.8	8.00	283.41	6,167.2	155.4	-651.6	-160.0	0.00	0.00	0.00
•	Cherry Cyn.)								
6,300.0 6,400.0 6,500.0 6,600.0 6,700.0	8.00 8.00 8.00 8.00	283.41 283.41 283.41 283.41	6,253.6 6,352.6 6,451.7 6,550.7 6,649.7	158.2 161.4 164.6 167.9 171.1	-663.4 -677.0 -690.5 -704.1 -717.6	-162.9 -166.2 -169.6 -172.9 -176.2	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
6,800.0 6,864.4	8.00 8.00	283.41 283.41	6,748.7 6,812.5	174.3 176.4	-731.1 -739.8	-179.5 -181.7	0.00	0.00	0.00 0.00
Start Drop -	1.50								
6,900.0	7.47	283.41	6,847.8	177.5	-744.5	-182.8	1.50	-1.50	0.00
7,000.0	5.97	283.41	6,947.1	180.2	-755.9	-185.6	1.50	-1.50	0.00
7,100.0	4.47	283.41	7,046.7	182.3	-764.7	-187.8	1.50	-1.50	0.00
7,200.0	2.97	283.41	7,146.5	183.8	-771.0	-189.3	1.50	-1.50	0.00
7,300.0	1.47	283.41	7,246.4	184.7	-774.8	-190.3	1.50	-1.50	0.00
7,397.7	0.00	0.00	7,344.1	185.0	-776.0	-190.6	1.50	-1.50	0.00
	hold at 7397.7 M								
7,400.0	0.00	0.00	7,346.4	185.0	-776.0	-190.6	0.00	0.00	0.00
7,500.0	0.00	0.00	7,446.4	185.0	-776.0	-190.6	0.00	0.00	0.00
7,590.9	0.00	0.00	7,537.3	185.0	-776.0	-190.6	0.00	0.00	0.00
Depth (G7: E	Brushy Cyn.)								
7,600.0	0.00	0.00	7,546.4	185.0	-776.0	-190.6	0.00	0.00	0.00
7,700.0	0.00	0.00	7,646.4	185.0	-776.0	-190.6	0.00	0.00	0.00
7,800.0	0.00	0.00	7,746.4	185.0	-776.0	-190.6	0.00	0.00	0.00
7,900.0	0.00	0.00	7,846.4	185.0	-776.0	-190.6	0.00	0.00	0.00
8,000.0	0.00	0.00	7,946.4	185.0	-776.0	-190.6	0.00	0.00	0.00
8,100.0	0.00	0.00	8,046.4	185.0	-776.0	-190.6	0.00	0.00	0.00
8,200.0	0.00	0.00	8,146.4	185.0	-776.0	-190.6	0.00	0.00	0.00
8,300.0	0.00	0.00	8,246.4	185.0	-776.0	-190.6	0.00	0.00	0.00
8,400.0	0.00	0.00	8,346.4	185.0	-776.0	-190.6	0.00	0.00	0.00
8,500.0	0.00	0.00	8,446.4	185.0	-776.0	-190.6	0.00	0.00	0.00

Database: EDM 5000.14 Server
Company: Matador Production Company

Project: Antelope Ridge
Site: Charles Ling

Well: Charles Ling 0211 Fed Com #133H

Wellbore: Wellbore #1

Design: BLM Plan #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well Charles Ling 0211 Fed Com #133H

KB @ 3665.5usft KB @ 3665.5usft

Grid

	DLIVI FIAIT#1								
d Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
8,600.0	0.00	0.00	8,546.4	185.0	-776.0	-190.6	0.00	0.00	0.00
8,700.0		0.00	8,646.4	185.0	-776.0	-190.6	0.00	0.00	0.00
8,800.0		0.00	8,746.4	185.0	-776.0	-190.6	0.00	0.00	0.00
8,836.9		0.00	8,783.3	185.0	-776.0	-190.6	0.00	0.00	0.00
		0.00	0,700.0	100.0	-110.0	-100.0	0.00	0.00	0.00
	L. Brushy Cyn.)	0.00	0.040.4	105.0	770.0	400.0	0.00	0.00	0.00
8,900.0	0.00	0.00	8,846.4	185.0	-776.0	-190.6	0.00	0.00	0.00
9,000.0	0.00	0.00	8,946.4	185.0	-776.0	-190.6	0.00	0.00	0.00
9,014.9		0.00	8,961.3	185.0	-776.0	-190.6	0.00	0.00	0.00
		0.00	0,001.0	100.0	770.0	100.0	0.00	0.00	0.00
	BSGL (CS9))	0.00	0.040.4	405.0	770.0	400.0	0.00	0.00	0.00
9,100.0		0.00	9,046.4	185.0	-776.0	-190.6	0.00	0.00	0.00
9,200.0		0.00	9,146.4	185.0	-776.0	-190.6	0.00	0.00	0.00
9,300.0	0.00	0.00	9,246.4	185.0	-776.0	-190.6	0.00	0.00	0.00
9,317.9	0.00	0.00	9,264.3	185.0	-776.0	-190.6	0.00	0.00	0.00
			0,201.0	.00.0	7.70.0	100.0	0.00	0.00	0.00
	2: U. Avalon Shale	•	0.040.4	405.0	770.0	400.0	0.00	0.00	0.00
9,400.0	0.00	0.00	9,346.4	185.0	-776.0	-190.6	0.00	0.00	0.00
9,500.0		0.00	9,446.4	185.0	-776.0	-190.6	0.00	0.00	0.00
9,600.0		0.00	9,546.4	185.0	-776.0	-190.6	0.00	0.00	0.00
9,700.0	0.00	0.00	9,646.4	185.0	-776.0	-190.6	0.00	0.00	0.00
9,800.0	0.00	0.00	9,746.4	185.0	-776.0	-190.6	0.00	0.00	0.00
9,900.0		0.00	9,846.4	185.0	-776.0	-190.6	0.00	0.00	0.00
9,984.9	0.00	0.00	9,931.3	185.0	-776.0	-190.6	0.00	0.00	0.00
· · · · · ·		0.00	9,931.3	100.0	-770.0	-190.0	0.00	0.00	0.00
Depth (L5.	•								
10,000.0		0.00	9,946.4	185.0	-776.0	-190.6	0.00	0.00	0.00
10,082.9	0.00	0.00	10,029.3	185.0	-776.0	-190.6	0.00	0.00	0.00
Depth (L5.	1: FBSG)								
10,100.0	0.00	0.00	10,046.4	185.0	-776.0	-190.6	0.00	0.00	0.00
			,						
10,200.0		0.00	10,146.4	185.0	-776.0	-190.6	0.00	0.00	0.00
10,212.9		0.00	10,159.3	185.0	-776.0	-190.6	0.00	0.00	0.00
Depth (M. I	•								
10,300.0		0.00	10,246.4	185.0	-776.0	-190.6	0.00	0.00	0.00
10,387.9	0.00	0.00	10,334.3	185.0	-776.0	-190.6	0.00	0.00	0.00
Depth (L4.3	3: SBSC)								
40 400 0	0.00	0.00	40.040.4	405.0	770.0	400.0	0.00	0.00	0.00
10,400.0		0.00	10,346.4	185.0	-776.0	-190.6	0.00	0.00	0.00
10,500.0		0.00	10,446.4	185.0	-776.0	-190.6	0.00	0.00	0.00
10,600.0		0.00	10,546.4	185.0	-776.0	-190.6	0.00	0.00	0.00
10,700.0		0.00	10,646.4	185.0	-776.0	-190.6	0.00	0.00	0.00
10,753.9	0.00	0.00	10,700.3	185.0	-776.0	-190.6	0.00	0.00	0.00
Depth (L4.	1: SBSG)								
10.000.0	0.00	0.00	10.740.4	105.0	770.0	400.0	0.00	0.00	0.00
10,800.0		0.00	10,746.4	185.0	-776.0	-190.6	0.00	0.00	0.00
10,900.0		0.00	10,846.4	185.0	-776.0	-190.6	0.00	0.00	0.00
11,000.0		0.00	10,946.4	185.0	-776.0	-190.6	0.00	0.00	0.00
11,100.0		0.00	11,046.4	185.0	-776.0	-190.6	0.00	0.00	0.00
11,127.9		0.00	11,074.3	185.0	-776.0	-190.6	0.00	0.00	0.00
Depth (L4.	1: SBSG C)								
11,200.0	0.00	0.00	11,146.4	185.0	-776.0	-190.6	0.00	0.00	0.00
11,200.0				185.0				0.00	
		0.00	11,240.3	100.0	-776.0	-190.6	0.00	0.00	0.00
Depth (L3.	•								
11,300.0		0.00	11,246.4	185.0	-776.0	-190.6	0.00	0.00	0.00
11,400.0		0.00	11,346.4	185.0	-776.0	-190.6	0.00	0.00	0.00
11,500.0	0.00	0.00	11,446.4	185.0	-776.0	-190.6	0.00	0.00	0.00
11,522.1	0.00	0.00	11,468.5	185.0	-776.0	-190.6	0.00	0.00	0.00
				100.0	-110.0	-190.0	0.00	0.00	0.00
	10.00 - VP - Charle								
11,600.0	7.79	185.20	11,546.1	179.7	-776.5	-185.3	10.00	10.00	0.00

Database: EDM 5000.14 Server
Company: Matador Production Company

Project: Antelope Ridge
Site: Charles Ling

Well: Charles Ling 0211 Fed Com #133H

Wellbore: Wellbore #1

Design: BLM Plan #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well Charles Ling 0211 Fed Com #133H

KB @ 3665.5usft KB @ 3665.5usft

Grid

Measured Vertical Vertical Dogleg Build Depth Inclination Azimuth Depth +N/-S +E/-W Section Rate Rate	
(usft) (°) (°) (usft) (usft) (usft) (°/100usft) (°/100usft)	Turn Rate (°/100usft)
11,700.0 17.79 185.20 11,643.5 157.7 -778.5 -163.3 10.00 10.00 11,800.0 27.79 185.20 11,735.6 119.2 -782.0 -124.8 10.00 10.00 11,900.0 37.79 185.20 11,819.6 65.3 -786.9 -71.0 10.00 10.00	0.00
12,000.0 47.79 185.20 11,892.9 -2.2 -793.0 -3.4 10.00 10.00 12,100.0 57.79 185.20 11,953.3 -81.4 -800.3 75.7 10.00 10.00 12,184.3 66.21 185.20 11,992.8 -155.5 -807.0 149.7 10.00 10.00	0.00
Depth (L. TBSG)	
12,200.0 67.79 185.20 11,998.9 -169.9 -808.3 164.1 10.00 10.00 12,300.0 77.79 185.20 12,028.5 -264.9 -817.0 259.0 10.00 10.00	
12,400.0 87.79 185.20 12,041.0 -363.6 -825.9 357.7 10.00 10.00 12,421.3 89.92 185.20 12,041.5 -384.8 -827.9 378.9 10.00 10.00	
Start DLS 2.00 TFO -90.02	
12,500.0 89.92 183.63 12,041.6 -463.2 -833.9 457.3 2.00 0.0 12,600.0 89.92 181.63 12,041.7 -563.1 -838.5 557.1 2.00 0.0 12,700.0 89.92 179.63 12,041.9 -663.1 -839.6 657.1 2.00 0.0	0 -2.00
12,700.0 89.92 179.63 12,041.9 -663.1 -839.6 657.1 2.00 0.0 12,701.8 89.92 179.59 12,041.9 -664.9 -839.6 658.9 2.00 0.0	
Start 9593.9 hold at 12701.8 MD	-2.00
12,800.0 89.92 179.59 12,042.0 -763.1 -838.9 757.1 0.00 0.00 12,900.0 89.92 179.59 12,042.1 -863.1 -838.2 857.1 0.00 0.00	
13,000.0 89.92 179.59 12,042.3 -963.1 -837.4 957.1 0.00 0.0 13,100.0 89.92 179.59 12,042.4 -1,063.1 -836.7 1,057.1 0.00 0.0	0.00
13,200.0 89.92 179.59 12,042.6 -1,163.1 -836.0 1,157.1 0.00 0.0	
13,300.0 89.92 179.59 12,042.7 -1,263.1 -835.3 1,257.1 0.00 0.0	
13,400.0 89.92 179.59 12,042.8 -1,363.1 -834.6 1,357.1 0.00 0.0	0.00
13,500.0 89.92 179.59 12,043.0 -1,463.1 -833.9 1,457.1 0.00 0.00 13,600.0 89.92 179.59 12,043.1 -1,563.1 -833.2 1,557.1 0.00 0.00	
13,700.0 89.92 179.59 12,043.3 -1,663.1 -832.4 1,657.1 0.00 0.0	0.00
13,800.0 89.92 179.59 12,043.4 -1,763.1 -831.7 1,757.1 0.00 0.0	0.00
13,900.0 89.92 179.59 12,043.6 -1,863.1 -831.0 1,857.1 0.00 0.0	
14,000.0 89.92 179.59 12,043.7 -1,963.1 -830.3 1,957.1 0.00 0.00 14,100.0 89.92 179.59 12,043.8 -2,063.1 -829.6 2,057.1 0.00 0.00	
14,200.0 89.92 179.59 12,044.0 -2,163.1 -828.9 2,157.1 0.00 0.0	0.00
14,300.0 89.92 179.59 12,044.1 -2,263.1 -828.1 2,257.1 0.00 0.0	
14,400.0 89.92 179.59 12,044.3 -2,363.1 -827.4 2,357.1 0.00 0.0	
14,500.0 89.92 179.59 12,044.4 -2,463.1 -826.7 2,457.1 0.00 0.0 14,600.0 89.92 179.59 12,044.6 -2,563.1 -826.0 2,557.1 0.00 0.0	
14,700.0 89.92 179.59 12,044.7 -2,663.1 -825.3 2,657.1 0.00 0.0	
14,800.0 89.92 179.59 12,044.8 -2,763.1 -824.6 2,757.1 0.00 0.0	
14,900.0 89.92 179.59 12,045.0 -2,863.1 -823.8 2,857.1 0.00 0.0	
15,000.0 89.92 179.59 12,045.1 -2,963.1 -823.1 2,957.1 0.00 0.00 15,100.0 89.92 179.59 12,045.3 -3,063.1 -822.4 3,057.1 0.00 0.00	
15,200.0 89.92 179.59 12,045.4 -3,163.1 -821.7 3,157.1 0.00 0.0	0.00
15,300.0 89.92 179.59 12,045.5 -3,263.1 -821.0 3,257.1 0.00 0.0	
15,400.0 89.92 179.59 12,045.7 -3,363.1 -820.3 3,357.1 0.00 0.0	
15,500.0 89.92 179.59 12,045.8 -3,463.1 -819.6 3,457.1 0.00 0.0	
15,600.0 89.92 179.59 12,046.0 -3,563.0 -818.8 3,557.1 0.00 0.0	
15,700.0 89.92 179.59 12,046.1 -3,663.0 -818.1 3,657.1 0.00 0.0	
15,800.0 89.92 179.59 12,046.3 -3,763.0 -817.4 3,757.1 0.00 0.0	
15,900.0 89.92 179.59 12,046.4 -3,863.0 -816.7 3,857.1 0.00 0.0 16,000.0 89.92 179.59 12,046.5 -3,963.0 -816.0 3,957.1 0.00 0.0	
16,000.0 89.92 179.59 12,046.5 -3,963.0 -816.0 3,957.1 0.00 0.0 16,100.0 89.92 179.59 12,046.7 -4,063.0 -815.3 4,057.1 0.00 0.0	
16,200.0 89.92 179.59 12,046.8 -4,163.0 -814.5 4,157.1 0.00 0.0 16,300.0 89.92 179.59 12,047.0 -4,263.0 -813.8 4,257.1 0.00 0.0	

Database: EDM 5000.14 Server
Company: Matador Production Company

Project: Antelope Ridge
Site: Charles Ling

Well: Charles Ling 0211 Fed Com #133H

Wellbore: Wellbore #1
Design: BLM Plan #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well Charles Ling 0211 Fed Com #133H

KB @ 3665.5usft KB @ 3665.5usft

Grid

agn:	DLIVI FIAIT#1								
nned Survey									
Measured Depth (usft)	Inclination	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
16,400.0	89.92	179.59	12,047.1	-4,363.0	-813.1	4,357.1	0.00	0.00	0.00
16,500.0	89.92	179.59	12,047.3	-4,463.0	-812.4	4,457.1	0.00	0.00	0.00
16,600.0		179.59			-811.7				
16,600.0	89.92	179.59	12,047.4	-4,563.0	-811.7	4,557.1	0.00	0.00	0.00
16,700.0	89.92	179.59	12,047.5	-4,663.0	-811.0	4,657.1	0.00	0.00	0.00
16,800.0	89.92	179.59	12,047.7	-4,763.0	-810.2	4,757.1	0.00	0.00	0.00
								0.00	0.00
16,900.0	89.92	179.59	12,047.8	-4,863.0	-809.5	4,857.1	0.00		
17,000.0	89.92	179.59	12,048.0	-4,963.0	-808.8	4,957.1	0.00	0.00	0.00
17,069.9	89.92	179.59	12,048.1	-5,032.9	-808.3	5,027.0	0.00	0.00	0.00
Enter NMLC (0063798 - Charl	es Ling Fed Co	om #133H						
17,100.0	89.92	179.59	12,048.1	-5,063.0	-808.1	5,057.1	0.00	0.00	0.00
17,200.0	89.92	179.59	12,048.3	-5,163.0	-807.4	5,157.1	0.00	0.00	0.00
17,300.0	89.92	179.59	12,048.4	-5,263.0	-806.7	5,257.1	0.00	0.00	0.00
,									
17,400.0	89.92	179.59	12,048.5	-5,363.0	-806.0	5,357.1	0.00	0.00	0.00
17,500.0	89.92	179.59	12,048.7	-5,463.0	-805.2	5,457.1	0.00	0.00	0.00
17,600.0	89.92	179.59	12.048.8	-5,563.0	-804.5	5.557.1	0.00	0.00	0.00
,			,			- ,			
17,700.0	89.92	179.59	12,049.0	-5,663.0	-803.8	5,657.1	0.00	0.00	0.00
17,800.0	89.92	179.59	12,049.1	-5,763.0	-803.1	5,757.1	0.00	0.00	0.00
17,900.0	89.92	179.59	12,049.2	-5,863.0	-802.4	5,857.1	0.00	0.00	0.00
18,000.0	89.92	179.59	12,049.4	-5,963.0	-801.7	5,957.1	0.00	0.00	0.00
18,100.0	89.92	179.59	12,049.5	-6,063.0	-800.9	6,057.1	0.00	0.00	0.00
18,200.0	89.92	179.59	12,049.7	-6,163.0	-800.2	6,157.1	0.00	0.00	0.00
18,300.0	89.92	179.59	12,049.8	-6,263.0	-799.5	6,257.1	0.00	0.00	0.00
18,400.0	89.92	179.59	12,050.0	-6,363.0	-798.8	6,357.1	0.00	0.00	0.00
18,500.0	89.92	179.59	12,050.1	-6,463.0	-798.1	6,457.1	0.00	0.00	0.00
18,600.0	89.92	179.59	12,050.2	-6,563.0	-797.4	6,557.1	0.00	0.00	0.00
18,700.0	89.92	179.59	12,050.4	-6,663.0	-796.6	6,657.1	0.00	0.00	0.00
18,800.0	89.92	179.59	12,050.5	-6,763.0	-795.9	6,757.1	0.00	0.00	0.00
18,900.0		179.59	12,050.7						
	89.92			-6,863.0	-795.2	6,857.1	0.00	0.00	0.00
19,000.0	89.92	179.59	12,050.8	-6,963.0	-794.5	6,957.1	0.00	0.00	0.00
19,100.0	89.92	179.59	12,051.0	-7,063.0	-793.8	7,057.1	0.00	0.00	0.00
19,200.0	89.92	179.59	12,051.1	-7,163.0	-793.1	7,157.1	0.00	0.00	0.00
19,300.0	89.92	179.59	12,051.2	-7,262.9	-792.4	7,257.1	0.00	0.00	0.00
19,400.0	89.92	179.59	12,051.4	-7,362.9	-791.6	7,257.1	0.00	0.00	0.00
						,		0.00	
19,500.0	89.92	179.59	12,051.5	-7,462.9	-790.9	7,457.1	0.00	0.00	0.00
19,600.0	89.92	179.59	12,051.7	-7,562.9	-790.2	7,557.1	0.00	0.00	0.00
19,700.0	89.92	179.59	12,051.8	-7,662.9	-789.5	7,657.1	0.00	0.00	0.00
19,709.4	89.92	179.59	12,051.8	-7,672.3	-789.4	7,666.5	0.00	0.00	0.00
	163798 - Charles			.,5,2.0	7 00. 1	. ,500.5	0.00	0.00	0.00
				7 700 0	700.0	7 7 7 7	0.00	0.00	0.00
19,800.0 19,900.0	89.92 89.92	179.59 179.59	12,051.9 12,052.1	-7,762.9 -7,862.9	-788.8 -788.1	7,757.1 7,857.1	0.00 0.00	0.00 0.00	0.00 0.00
					-1 OO. I				
20,000.0	89.92	179.59	12,052.2	-7,962.9	-787.3	7,957.1	0.00	0.00	0.00
20,100.0	89.92	179.59	12,052.4	-8,062.9	-786.6	8,057.1	0.00	0.00	0.00
20,200.0	89.92	179.59	12,052.5	-8,162.9	-785.9	8,157.1	0.00	0.00	0.00
20,300.0	89.92	179.59	12,052.7	-8,262.9	-785.2	8,257.1	0.00	0.00	0.00
20,400.0	89.92	179.59	12,052.7	-8,362.9	-784.5	8,357.1	0.00	0.00	0.00
20,400.0	09.92	179.59			-/04.3	0,337.1	0.00	0.00	0.00
20,500.0	89.92	179.59	12,052.9	-8,462.9	-783.8	8,457.1	0.00	0.00	0.00
20,600.0	89.92	179.59	12,053.1	-8,562.9	-783.0	8,557.1	0.00	0.00	0.00
20,700.0	89.92	179.59	12,053.2	-8,662.9	-782.3	8,657.1	0.00	0.00	0.00
20,800.0	89.92	179.59	12,053.4	-8,762.9	-781.6	8,757.1	0.00	0.00	0.00
20,900.0	89.92	179.59	12,053.5	-8,862.9	-780.9	8,857.1	0.00	0.00	0.00
21,000.0	89.92	179.59	12,053.7	-8,962.9	-780.2	8,957.1	0.00	0.00	0.00
21,100.0	89.92	179.59	12,053.8	-9,062.9	-779.5	9,057.1	0.00	0.00	0.00
21,200.0	89.92	179.59	12,053.9	-9,162.9	-778.8	9,157.1	0.00	0.00	0.00
		179.59	12,054.1	-9,262.9	-778.0	9,257.1	0.00	0.00	0.00

EDM 5000.14 Server Database: Company: Matador Production Company

Project: Antelope Ridge Site: Charles Ling

Well: Charles Ling 0211 Fed Com #133H

Wellbore: Wellbore #1 Design: BLM Plan #1 Local Co-ordinate Reference:

Survey Calculation Method:

TVD Reference: MD Reference: North Reference: Well Charles Ling 0211 Fed Com #133H

KB @ 3665.5usft KB @ 3665.5usft

Grid Minimum Curvature

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
21,400.0	89.92	179.59	12,054.2	-9,362.9	-777.3	9,357.1	0.00	0.00	0.00
21,500.0	89.92	179.59	12,054.4	-9,462.9	-776.6	9,457.1	0.00	0.00	0.00
21,600.0	89.92	179.59	12,054.5	-9,562.9	-775.9	9,557.1	0.00	0.00	0.00
21,700.0	89.92	179.59	12,054.7	-9,662.9	-775.2	9,657.1	0.00	0.00	0.00
21,800.0	89.92	179.59	12,054.8	-9,762.9	-774.5	9,757.1	0.00	0.00	0.00
21,900.0	89.92	179.59	12,054.9	-9,862.9	-773.7	9,857.1	0.00	0.00	0.00
22,000.0	89.92	179.59	12,055.1	-9,962.9	-773.0	9,957.1	0.00	0.00	0.00
22,100.0	89.92	179.59	12,055.2	-10,062.9	-772.3	10,057.1	0.00	0.00	0.00
22,200.0	89.92	179.59	12,055.4	-10,162.9	-771.6	10,157.1	0.00	0.00	0.00
22,295.7	89.92	179.59	12,055.5	-10,258.6	-770.9	10,252.8	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
VP - Charles Ling 0211 F - plan hits target cent - Point	0.00 er	0.01	11,468.5	185.0	-776.0	456,888.00	745,492.00	32° 15' 12.982 N	103° 32' 21.219 W
Enter NMLC 0063798 - (- plan misses target (- Point	0.00 center by 0.2u	0.01 sft at 17069	12,048.1 .9usft MD (1	-5,032.9 2048.1 TVD, -	-808.1 -5032.9 N, -80	451,670.13 8.3 E)	745,459.81	32° 14' 21.352 N	103° 32' 22.043 W
Exit NMLC 0063798 - Cl - plan misses target o - Point	0.00 center by 0.2u	0.00 sft at 19709	12,051.8 .4usft MD (1	-7,672.3 2051.8 TVD, -	-789.2 -7672.3 N, -78	449,030.51 9.4 E)	745,478.68	32° 13' 55.230 N	103° 32' 22.051 W
BHL - Charles Ling 0211 - plan hits target cent - Point	0.00 er	0.00	12,055.5	-10,258.6	-770.9	446,444.00	745,497.00	32° 13' 29.634 N	103° 32' 22.060 W

Database: EDM 5000.14 Server

Company: Matador Production Company

Project: Antelope Ridge Site: Charles Ling

Well: Charles Ling 0211 Fed Com #133H

Wellbore: Wellbore #1
Design: BLM Plan #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Charles Ling 0211 Fed Com #133H

KB @ 3665.5usft KB @ 3665.5usft

Grid

ormations						
	Measured Depth (usft)	Vertical Depth (usft)	Name	Lithology	Dip (°)	Dip Direction (°)
	1,291.1	1,291.0	Depth (Rustler)		-0.08	179.59
	1,814.8	1,812.0	Depth (Salado)		-0.08	179.59
	3,796.1	3,774.1	Depth (Castile (T))		-0.08	179.59
	5,262.5	5,226.2	Depth (G30:CS14-CSB)		-0.08	179.59
	5,306.9	5,270.2	Depth (G26: Bell Cyn.)		-0.08	179.59
	6,212.8	6,167.2	Depth (G13: Cherry Cyn.)		-0.08	179.59
	7,590.9	7,537.3	Depth (G7: Brushy Cyn.)		-0.08	179.59
	8,836.9	8,783.3	Depth (G5: L. Brushy Cyn.)		-0.08	179.59
	9,014.9	8,961.3	Depth (G4: BSGL (CS9))		-0.08	179.59
	9,317.9	9,264.3	Depth (L8.2: U. Avalon Shale)		-0.08	179.59
	9,984.9	9,931.3	Depth (L5.3: FBSC)		-0.08	179.59
	10,082.9	10,029.3	Depth (L5.1: FBSG)		-0.08	179.59
	10,212.9	10,159.3	Depth (M. FBSG)		-0.08	179.59
	10,387.9	10,334.3	Depth (L4.3: SBSC)		-0.08	179.59
	10,753.9	10,700.3	Depth (L4.1: SBSG)		-0.08	179.59
	11,127.9	11,074.3	Depth (L4.1: SBSG C)		-0.08	179.59
	11,293.9	11,240.3	Depth (L3.3: TBSC)		-0.08	179.59
	12,184.3	11,992.8	Depth (L. TBSG)		-0.08	179.59

Plan Annotations						
Meası Dep		Vertical Depth	Local Coord			
(ust		(usft)	+N/-S (usft)	+E/-W (usft)	Comment	
1,	0.000	1,000.0	0.0	0.0	Start Build 1.00	
1,	0.008	1,797.4	12.9	-54.2	Start 5064.4 hold at 1800.0 MD	
6,	864.4	6,812.5	176.4	-739.8	Start Drop -1.50	
7,5	397.7	7,344.1	185.0	-776.0	Start 4124.4 hold at 7397.7 MD	
11,	522.1	11,468.5	185.0	-776.0	Start Build 10.00	
12,	421.3	12,041.5	-384.8	-827.9	Start DLS 2.00 TFO -90.02	
12,	701.8	12,041.9	-664.9	-839.6	Start 9593.9 hold at 12701.8 MD	
22,	295.7	12,055.5	-10,258.6	-770.9	TD at 22295.7	

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: MATADOR PRODUCTION COMPANY
WELL NAME & NO.:
APD ID: 10400089330

SURFACE HOLE FOOTAGE: 240'/N & 805'/E
BOTTOM HOLE FOOTAGE 60'/S & 1650'/E
SURFACE LOCATION: Section 2, T.24 S., R.33 E. NMP.
COUNTY: Lea County, New Mexico

COA

H_2S	• Yes	O No	
Potash	None	O Secretary	O R-111-P
Cave/Karst Potential	• Low	O Medium	O High
Cave/Karst Potential	O Critical		
Variance	O None	• Flex Hose	Other
Wellhead	Conventional	Multibowl	O Both
Other	□4 String	☐ Capitan Reef	□WIPP
Other	☐ Offline Cementing	☐ Pilot Hole	☐ Break testing
Special Requirements	☐ Water Disposal	☑ COM	□ Unit

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H₂S) Drilling Plan shall be activated **AT SPUD**. As a result, the Hydrogen Sulfide area must meet **43 CFR 3176** requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING DESIGN

- 1. The 13-3/8 inch surface casing shall be set at approximately 1,404 ft. (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 ft. above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic-type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or <u>500</u> psi compressive strength, whichever is greater. (This is to include the lead cement)

- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 psi compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Note: Operator has requested to have option to drill either 17-1/2" or 20" surface hole. Both hole sizes meet title 43 CFR 3172 clearance requirements between casing-coupling and hole. This option is granted; adjust cement volume accordingly.

2. The 7-5/8 inch intermediate casing shall be set at approximately 11,372 ft. (11,318 ft. TVD) The minimum required fill of cement behind the 7-5/8 inch intermediate casing is:

<u>Option 1 (Single stage):</u> Cement to surface. If cement does not circulate see B.1.a, c-d above.

<u>Option 2 (Two-stage):</u> Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- **First stage to DV tool:** Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- Second stage above DV tool: Cement to surface. If cement does not circulate see B.1.a, c-d above.

Note: Excess cement volume is below the CFO's recommendation of 25%. More cement might be needed.

Note: Intermediate casing must be kept fluid-filled to meet the CFO's minimum collapse design requirements.

- 3. Operator has proposed to set 5-1/2 in. production casing at approximately 22,295 ft. (12,055 ft. TVD). The minimum required fill of cement behind the 5-1/2 in. production casing is:
 - Cement should tie-back **at least 200 feet** into previous casing string. Operator shall provide method of verification.

Note: Excess cement volume is below the CFO's recommendation of 25%. More cement might be needed.

C. PRESSURE CONTROL

- 1. Variance approved to use **flex line** from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5M annular preventer with a 10M BOP stack. The BOP/BOPE and annular preventer shall be pressure-tested in accordance with title 43 CFR 3172 and API Standard 53.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in the **title** 43 CFR 3172.6(b)(9) must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County

EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,

BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822

✓ Lea CountyCall the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575)689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per title 43 CFR 3172
 - as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in the **title 43 CFR 3172** and **API STD 53 Sec. 5.3**.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in the title 43 CFR 3172.6(b)(9) must be followed.
 - e. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including

- lead cement), whichever is greater. However, if the float does not hold, cutoff cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to **43 CFR 3172** with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000-psi chart for a 2-3M BOP/BOP, on a 10000-psi chart for a 5M BOP/BOPE and on a 15000-psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one-hour chart. A circular chart shall have a maximum 2-hour clock. If a twelve hour or twenty-four-hour chart is used, tester shall make a notation that it is run with a two-hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low-pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crewintensive operations.

SA 04/16/2024

Hydrogen Sulfide Drilling Operations Plan Matador Resources

1 H2S safety instructions to the following:

- Characteristics of H2S
- Physical effects and hazards
- Principal and operation of H2S detectors, warning system and briefing areas
- Evacuation procedures, routes and first aid
- Proper use of safety equipment & life support systems
- Essential personnel meeting medical evaluation criteria will receive additional training on the proper use of 30min pressure demand air packs

2 H2S Detection and Alarm Systems:

- H2S sensor/detectors to be located on the drilling rig floor, in the base of the sub structure / cellar area, on the mud pits in the shale shaker area. Additional H2S detectors may be placed as deemed necessary
- An audio alarm system will be installed on the derrick floor and in the doghouse

3 Windsocks and / Wind Streamers:

- Windsocks at mud pit area should be high enough to be visible
- Windsock on the rig floor and / top of doghouse should be high enough to be visible

4 Condition Flags and Signs:

- Warning sign on access road to location
- Flags to be displayed on sign at entrance to location
 - o Green Flag Normal Safe Operation Condition
 - Yellow Flag Potential Pressure and Danger
 - Red Flag Danger (H2S present in dangerous concentrations) Only H2S trained personnel admitted on location

5 Well Control Equipment:

• See Exhibit E-1

6 Communication:

- While working under masks chalkboards will be used for communications
- Hand signals will be used where chalk board is inappropriate
- Two way radio will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at most drilling foreman's trailer or living quarters.

7 Drilling Stem Testing:

• No DST cores are planned at this time

- 8 Drilling contractor supervisor will be required to be familiar with the effects H2S has on tubulars good and other mechanical equipment
- 9 If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary
- 11 Emergency Contacts
 - See exhibit E-6

HYDROGEN SULFIDE CONTINGENCY PLAN Drilling, Testing, & Completion

MRC ENERGY CO.

Reviewers	Operations Manager	
	Operations Supt.	
	Staff RES	
	Field Supt.	
	Blake HermesEngineering	

H2S Contingency Plan # 0165 Revision# 0

This H2S Contingency Plan is subject to updating

Effective date: July 8, 2015

TABLE OF CONTENTS

I.	INTRODUCTION	3
II.	PURPOSE	4
	 A. Operating Procedures B. Procedures to be Initiated Prior to reaching H2S Continuous Plan Compliance 	5 6
	H2S Contingency Plan Compliance C. Drilling Below Contingency Plan Depth D. Procedures program	7 7
III.	CONDITIONS & H ₂ S EMERGENCY PROCEDURES	10
IV.	 A. Definition of Operational "Conditions" B. H2S Emergency Procedures; In Scope Personnel C. Instructions for Igniting the Well D. Coring E. Normal Operations SAFETY EQUIPMENT 	10 12 16 17 18 21
V.	TOXICITY OF VARIOUS GASES	23
VI.	PROPERTIES OF GASES	24
VII.	TREATMENT PROCEDURES FOR H2S POISONING	25
VIII.	BREATHING AIR EQUIPMENT DRILLS ON/OFF DUTY	26
IX.	HYDROGEN SULFIDE TRAINING CURRICULUM	27
х.	FIT TEST	29
XI.	H2S EQUIPMENT LIST	30
XII.	EMERGENCY PHONE NUMBERS	32
XIII.	EVACUATION OF GENERAL PUBLIC	37
XIV.	SEPCO EMERGENCY PHONE NUMBERS AND DIRECTIONS TO WELL SITE	38
XV.	ROE MAP (RADIUS OF EXPOSURE)	39
XVI.	RESIDENCE LIST WITHIN ROE	40

INTRODUCTION

The H2S equipment will be rigged up 2 days prior to reaching a potential H2S containing zone. Drilling into any potential H2S zone shall not commence until the on-site MRC Drilling Supervisor has confirmed this plan in place.

The onsite Drilling Foreman will give Total Safety one week (7 days) notice to prepare for rig up of H2S equipment)

To be effective, the plan requires the cooperation and effort of each person participating in the drilling of an H₂S well. Each person must know his/her responsibilities and all emergency and safety procedures. He/she should thoroughly understand and be able to use with accuracy, all safety equipment while performing his/her normal duties, if the circumstance should arise. He/she should therefore familiarize himself/herself with the location of all safety equipment and check to see that it is properly stored, easily accessible at all times, and routinely maintained.

It is the intention of MRC ENERGY CO. and the Drilling Contractor to make every effort to provide adequate safeguards against harm to persons on the rig and in the immediate vicinity from the effects of hydrogen sulfide, which may be released into the atmosphere under emergency conditions. However, the initiative rests with the individual in utilizing the safeguards provided. The ideas and suggestions of the individuals involved in the drilling of this well are highly welcomed and act as a fundamental tool for providing the safest working conditions possible.

The drilling representative is required to enforce these procedures. They are set up for your safety and the safety of all others.

II. PURPOSE

It is MRC Energy Co.'s intent to provide a safe working place, not only for its employees, but also for other contractors who are aiding in the drilling of this well. The safety of the general public is of utmost concern. All precautions will be taken to keep a safe working environment and protect the public.

There is a possibility of encountering toxic hydrogen sulfide gas. Safety procedures must be adhered to in order to protect all personnel connected with the operations as well as people living within the area.

The MRC Energy Co. representative will enforce all aspects of the H2S Contingency Plan. This job will become easier by a careful study of the following pages and training and informing all personnel that will be working on the well, their duties and responsibilities.

A. OPERATING PROCEDURES

DEFINITIONS:

For purpose of this plan, on-site personnel shall be referred to as "In Scope Personnel" or "Out of Scope Personnel", per the following definitions:

In Scope Personnel – Personnel who will be working or otherwise present in potential H2S release areas, including the rig floor, cellar, pits, and shaker areas.

Out of Scope Personnel – Personnel who will not be working or Otherwise present in potential H2S areas. Such personnel include rig Site visitor, delivery and camp services personnel.

GENERAL:

Before this H₂S contingency plan becomes operational, all regularly assigned In Scope Personnel (primarily the MRC, drilling contractor, and certain service personnel,) shall be thoroughly trained in the use of breathing equipment, emergency procedures, and responsibilities. Total Safety Technician or a designee assigned by the MRC Drilling Foreman shall keep a list of all personnel who have been through the on-site H₂S training program at the drill site.

All In Scope Personnel shall be given H2S training and the steps to be taken during H2S conditions under which the well may be drilled. General information will be explained about toxic gases, as well as the physiological effects of H₂S and the various classified operating conditions. In addition, the reader will be informed his/her general responsibility concerning safety equipment and emergency procedures.

The Total Safety H₂S Safety Technician or MRC on-site RSE Technician shall make available the H2S Contingency Plan for all personnel to review.

Without exception, all personnel that arrive on location must proceed directly to and sign-in with the on-site MRC RSE Technician. In Scope Personnel will be required to complete an on-site H2S training and respirator fit testing before starting work, or produce evidence that they have received equivalent training. Out of Scope Personnel will be required to complete a site H2S awareness and general safety briefing. This briefing will consist of a H2S hazard overview, alarm review and required response to alarms.

B. PROCEDURES TO BE INITIATED PRIOR TO H2S CONTINGENCY PLAN COMPLIANCE:

A list of emergency phone numbers and contacts will be on location and posted at the following locations:

- 1. MRC ENERGY CO.'S Representative's Office
- 2. Drilling Contractor's, Toolpusher Office
- 3. Living Quarters Area

All safety equipment and H₂S related hardware must be set up as required by MRC Energy Co. with regard to location of briefing areas, breathing equipment, etc. All safety equipment must be inspected periodically (at least weekly) with particular attention to resuscitators and breathing equipment.

In Scope Personnel working in the well site area will be assigned breathing apparatus. Operator and drilling contractor personnel required to work in the following areas will be provided with Self Contained Breathing Apparatus:

- 1. Rig Floor
- 2. Mud Pits
- 3. Derrick
- 4. Shale Shaker
- 5. Cellar

The Total Safety H₂S Safety Technician will be responsible for rigging up all H₂S continuous monitoring-type detectors. The Total Safety Technician will monitor and bump test the detector units periodically (at least at least once a week to test alarm function during drilling conditions. In the event H₂S is detected, or when drilling in a zone confirmed to contain H₂S, the units shall be bump tested at least once every 24 hours. A bump test/calibration log will be kept on location. All results will be reported to the MRC on-site Drilling Foreman.

All Total Safety H2S equipment will be maintained and inspected by a Total Safety Technician on at least a Weekly basis.

C. DRILLING BELOW CONTINGENCY PLAN DEPTH

H2S response drills will be held at least once per week if possible or as often as necessary to acquaint the crews and service company personnel of their responsibilities and the proper procedures to shut-in a well. Initial drills will be performed until crews demonstrate competency donning and working under mask. After the MRC Energy Co.'s representative is satisfied with initial blowout drill procedures, a drill will be conducted weekly with each crew, as necessary. The H2S Safety Technician or designee will conduct safety talks and maintain the safety equipment, consult and carry out the instructions of the drilling supervisor. All personnel allowed in the well work area during drilling or testing operations will be instructed in the use of breathing equipment until supervisory personnel are satisfied that they are capable of using it.

After familiarization, each person must perform a drill with breathing equipment. The drill should include getting the breathing equipment, donning the breathing apparatus, and performing expected duties for a short period. A record shall be kept of all personnel drilled and the date of the drill. H2S training records will be kept on location for all personnel.

Rig crews and service company personnel shall be made aware of the location of spare air bottles, resuscitation equipment, portable fire extinguishers, H_2S monitors and detectors. Knowledge of the location of the H_2S monitors and detectors are vital in determining as our gas location and the severity of the emergency conditions.

After any device has initially detected H2S, all areas of poor ventilation shall be inspected periodically by means of a portable H₂S detector instrument. The buddy system will be utilized. (When an alarm sounds, personnel will don an SCBA, shut the well in, and proceed to SBA for roll call. The H2S Technician or designee will mask up, with a buddy and will verify source of H2S and report back to the on-site MRC Foreman.)

D. PROCEDURES PROGRAM

1. Drill Site

- a. The drilling rig will be located to allow prevailing winds to blow across the reserve pit.
- b. A Safe Briefing Area will be provided with a breathing air cascade trailer and or 30-minute SCBA's at the Primary Area. Personnel will assemble at the most up-wind station under alarm conditions, or when so ordered by the MRC Energy Co. representative, the Contractor representative, or

- the Total Safety H₂S Safety Technician. Windsocks or streamers will be anchored to various strategic places on a pole about 10 feet high, so it is in easy view from the rig floor at all times.
- c. Warning signs will be posted on the perimeters. "No Smoking" signs will be posted by MRC Energy Co.as well.
- d. One multi-channel automatic H₂S monitor will be provided by Total Safety and the detector heads will be at the shale shaker, bell nipple, mud pits, rig floor, and quarter's area. The monitor will be located inside HSE or Company man trailer. Should the alarm be shut off to silence the sirens, the blinker light must continue to warn of H₂S presence. The Total Safety H2S Safety Technician or designee will continuously monitor the detectors and will reactivate the alarm if H₂S concentrations increase to a dangerous level.
- e. A method of escape will be open at all times.
- f. If available, land line telephone service will be provided or cell phones provided. (Primary communications provided)
- g. A rig communication system will be provided, as needed.
- h. A gas trap, choke manifold, and degasser will be installed.
- i. A kill line, securely anchored and of ample strength, will be laid to the well-head from a safe location. This line is to be used only in an emergency.

General

- a. The MRC Energy Co. representative and/or the Contractor's Toolpusher will be available at all times. The drilling supervisor, while on duty, will have complete charge of the rig and location operations and will take whatever action is deemed necessary to insure personnel safety, to protect the well, and to prevent damage.
 - b. A Mud Engineer will be on location at all times when drilling takes place at the depth H₂S may be expected. The mud engineer will be able to verify the presence or absence of H2S.

III. CONDITIONS AND EMERGENCY PROCEDURES A. DEFINITION OF OPERATIONAL "CONDITIONS"

CONDITION I "POSSIBLE DANGER"

Warning Flags

Green

Alarms

No Alarm. Less than 10 ppm

Characterized By: Drilling operations in zones that may

contain hydrogen sulfide. This condition remains in effect unless H₂S is detected and it becomes necessary to go to Condition II.

General Action:

a. Be alert for a condition change

b. Check all safety equipment for availability and proper functioning.

c. Perform all drills for familiarization and proficiency.

CONDITION II

"MODERATE DANGER"

Warning Flags

Yellow

Alarms:

Actuates at 10 ppm. Continuous flashing

light.

Characterized By:

Drilling operations in zones containing hydrogen sulfide. This condition will remain in effect until adding chemicals to the mud system neutralizes the hydrogen sulfide or it becomes necessary to go to

Condition III.

General Action:

- a. Be alert for a condition change
- b. WHEN DRILLING AHEAD Driller and designated crewmember
 will don 30 min SCBA, shut-in the
 well and immediately proceed to the
 Safe Briefing Area.

WHEN TRIPPING – Driller and two designated crewmembers will don 30 min SCBA, shut in the well and immediately proceed to the Safe Briefing Area. The Derrickman will

don a 5-minute escape pack, descend to the rig floor, don a 30-min SCBA (if necessary) and immediately proceed to the Safe Briefing Area.

- c. All In Scope Personnel will proceed directly to the appropriate Safe Briefing Area.
- d. Remain in safe briefing area, take roll call and wait for instructions
- e. Contact the Total H2S Technician if not on location.
- f. Personnel shall ensure that their breathing apparatus is properly fitted and operational before entering an H₂S contaminated area to provide assistance to anyone who may be injured or overcome by toxic gases.
- g. All Out of Scope Personnel will report to the appropriate Safe Briefing Area.

CONDITION III "EXTREME DANGER"

Warning Flags

Red

Alarms

Actuate at 15 ppm. Continuous Sirens and Flashing Lights

Characterized by:

Critical well operations which pose an immediate threat of H_2S exposure to on-site personnel and a potential threat to the public.

General Action:

a. WHEN DRILLING AHEAD Driller and designated crewmember
will don 30 min SCBA, shut-in the
well and immediately proceed to the
Safe Briefing Area.

WHEN TRIPPING – Driller and two designated crewmembers will don 30

min SCBA, shut in the well and immediately proceed to the Safe Briefing Area. The Derrickman will don a 5-minute escape pack, descend to the rig floor, don a 30-min SCBA (if necessary) and immediately proceed to the Safe Briefing Area.

- b. All In Scope Personnel should don SCBA if nearby and immediately proceed to Safe Briefing Area. If SCBA in not nearby at time of alarm, DO NOT GO TOWARDS RIG AREA, but proceed directly to the Safe Briefing Area
- c. All out of Scope Personnel shall evacuate the location.
- d. Remain in the Safe Briefing Area, take roll call and wait for instructions.
- e. Contact the Total H2S Technician if not on location.
- f. Personnel shall ensure that their breathing apparatus is properly fitted and operational before entering an H₂S contaminated area to provide assistance to anyone who may be injured or overcome by toxic gases. Use the buddy system.
- g. Remain in safe briefing area, take roll call and wait for instructions.
- h. A cascade breathing air systems shall be mobilized and utilized to conduct any additional on rig work required to correct the H2S release condition.
- i. If well is ignited do not assume area is safe. SO2 is hazardous and not all H2S will burn.

H₂S EMERGENCY PROCEDURES; IN SCOPE PERSONNEL

A. Day To Day Drilling Operations

- 1. Upon discovering a release of H₂S gas in the ambient air by warning alarms or in any other way **Do Not Panic**.
- 2. Hold your breath donning the nearest Self Contained Breathing Apparatus and rapidly move up or across-wind away from the areas where H₂S sensing devices are in place, to the closest available safe briefing area. Continue to use breathing apparatus until it has been determined that the exposure of H₂S gas in the ambient air no longer exists. **Do Not Panic!**
- 3. Utilize the "Buddy System", i.e.; select and pair up each person participating in the drilling of an H₂S well prior to an emergency situation.
- 4. Help anyone who is overcome or affected by the H₂S gas by taking him/her up-wind out of the contaminated area. (This should be done utilizing an SCBA and with a buddy.)
- 5. Take necessary steps to confirm the release of the H₂S gas into the ambient air.
 - When an H2S alarm activates, two designated personnel using the buddy system, while wearing their self contained breathing apparatus, will determine by the read-out on the fixed monitor which sensing device has detected the release of the H₂S gas.
 - They will utilize the hand-held sniffer type device at the particular sensing point disclosed on the fixed monitor to corroborate the fact that H₂S gas has actually been released. This will rule out the possibility of a false alarm. This will be done with a buddy and under mask after reporting to the Safe Briefing Area for roll call and instructions by on-site MRC Foreman.
- 6. Refer to the Emergency Phone Numbers and call emergency personnel.
- 7. Take the necessary steps to suppress the release of H_2S gas into the ambient air. Comply with the MRC Energy Co. Representative to physically suppress the release of H_2S gas at the actual release point.

8. Check all of MRC Energy Co.'s monitoring devices and increase gasmonitoring activities with the portable hand-operated H₂S and gas detector units.

Do Not Panic!

The MRC Energy Co. representative will assess the situation and with assistance of the Contractor's Representative and Total Safety's H_2S Safety Technician or on site designee, will assign duties to each person to bring the situation under control.

B. RESPONSIBILITIES OF WELL-SITE PERSONNEL

In the event of a release of potentially hazardous amounts of H_2S , all personnel will immediately don their protective breathing apparatus, the well will be shut in and personnel will proceed upwind to the nearest designated safe briefing area for roll call and instructions by MRC Foreman. Consideration will be given to evacuating Out of Scope Personnel, as situation warrants.

1. MRC ENERGY CO.'S Well-site Representatives

- a. If MRC Energy Co.'s well-site representative is incapacitated or not on location, this responsibility will fall to the Toolpusher/Driller.
- b. Immediately upon assessing the situation, set this plan into Action by initiating the proper procedures to contain the gas and notify the appropriate people and agencies.
- c. Ensure that the alarm area indicated by the fixed H₂S Monitor is checked and verified with a portable H₂S detector. (Safety Technician if on location or MRC assigned designee with a buddy utilizing SCBA's)
- d. Consult Pusher/driller of remedial actions as needed.
- e. Ensure that non-essential personnel proceed to the safe briefing area.
- f. Ensure location entrance barricades are positioned. Keep the number of persons on location to a minimum during hazardous operations.

- g. Consult each contractor, Service Company and all others allowed to enter the site, that H2S gas may be encountered and the potential hazards that may exist.
- h. Authorize the evacuation of local residents if H_2S threatens Their safety.
 - i. Non essential personnel should be evacuated from location if Situation warrants.

2. Toolpusher

- a. Toolpusher/Driller will assume responsibilities of MRC Energy Co.'s well-site representative if that person is incapacitated or not on location.
- b. Ensure that the alarm area indicated by the fixed H₂S monitor is checked and verified with a portable H₂S gas detector. (Alarm area indicated by the monitor will be Checked by the H2S Technician and a buddy, under mask.) This will be done after checking in and roll call at the Upwind Safe Briefing Area.
- c. Confer with MRC Energy Co.'s well-site representative or superintendent and direct remedial action to suppress the H₂S and control the well.
- d. Ensure that personnel at the safe briefing area are instructed on emergency actions required.
- e. Ensure that personnel at the drill floor area are instructed on emergency actions required.
- f. Ensure that all personnel observe the appropriate safety and emergency procedures.
- g. Ensure that all persons are accounted for and provided emergency assistance as necessary.

3. Mud Engineer

- a. Run a sulfide check on the flowline mud.
- b. Take steps to determine the source of the H₂S and suppress it. Lime and H₂S scavenger shall be added to the mud as necessary.

4. Total H₂S Safety Technician, if on location, or MRC Designee

- a. H2S Safety Technician or designee don nearest SCBA and report to Safe Briefing Area for roll call, take a buddy masked up and check monitor and verify with a portable H₂S detector the alarm area indicated by the fixed H₂S monitor. Advise the Toolpusher/Driller and MRC Energy Co.'s well-site representative of findings. Record all findings.
- b. If H₂S is flared, check for sulfur dioxide (SO₂) near the flare as necessary. Take hourly readings at different perimeters, log readings and record on location.
- c. Ensure that personnel at the safe briefing area are instructed on emergency actions required.
- d. Ensure that the appropriate warning flags are displayed.
- e. Ensure that all personnel are in S.C.B.A. as necessary.
- f. Ensure that all persons are accounted for and provide emergency assistance as necessary.
- g. Be prepared to evacuate rig if order is issued.

5. General Personnel & Visitors

a. All In Scope Personnel, if not specifically designated to shut the well in or control the well, shall proceed to the (upwind) safe briefing area. All Out of Scope Personnel shall immediately proceed to the appropriate (upwind) safe briefing area or evacuate the site as conditions warrant.

- b. During any emergency, use the "buddy" system to prevent anyone from entering or being left in a gas area alone, even wearing breathing apparatus.
- c. Provide assistance to anyone who may be injured or overcome by toxic gases. Personnel shall ensure that their breathing apparatus is properly fitted and operational before entering a potentially H₂S contaminated area.
- d. Remain in safe briefing area and wait for instructions.

C. INSTRUCTIONS FOR IGNITING THE WELL

1. The Toolpusher/Driller will confer with MRC Energy Co.'s well-site representative who will secure the approval of the "Texas Wells Delivery Manager, prior to igniting the well, if at all possible.

The Toolpusher/Driller will be responsible for igniting the well in the event of severe well control problems. This decision should be made only as a last resort in situations where it is clear that:

- a. Human life and property are endangered, or
- b. There is no hope of controlling the well under current conditions.
- 2. Once the decision has been made, the following procedures should be followed:
 - a. Two people wearing self-contained breathing apparatus will be needed for the actual lighting of the well. They must first establish the flammable perimeter by using an explosimeter. This should be established at 30% to 40% of the lower flammable limits.
 - b. After the flammable perimeter has been established and everyone removed from the area, the ignition team should select a site upwind of the well from which to ignite the well. This site should offer the maximum protection and have a clear path for retreat from the area.

- c. The ignition team should have safety belts and lifeline attached and manned before attempting ignition. If the leak is not ignited on the first attempt, move in 20 to 30 feet and fire again. Continue to monitor with the explosimeter and NEVER fire from an area with over 75% of the Lower Explosive Limit (LEL). If having trouble igniting the well, try firing 40 degrees to 90 degrees on either side of the well.
- d. If ignition is not possible due to the makeup of the gas, the toxic perimeter must be established and evacuation continued until the well is contained.
- e. All personnel must act only as directed by the person in charge of the operations.

NOTE: After the well is ignited, burning hydrogen sulfide (H₂S) will convert to sulfur dioxide (SO₂), which is also a highly toxic gas.

DO NOT ASSUME THE AREA IS SAFE AFTER THE WELL IS IGNITED

D. CORING PROCEDURES

Only essential personnel shall be on the rig floor. Ten (10) stands prior to retrieving core barrel; all personnel on drill floor and in derrick shall confirm self-Contained breathing apparatus available and ready for use.

A Total H2S Technician will don a SCBA with a buddy assigned from the rig crew, and continuously monitor for H2S at each connection. Any levels detected will require operations to be shut down and all involved personnel to don SCBAs. Precautions will remain in place until barrel is laid down.

All involved personnel will don SCBAs when removing the inner barrel from the outer barrel. SCBAs can be removed once the absence of H2S in confirmed by the Total H2S Technician.

Cores will be appropriately marked and sealed for transportation.

Normal Operations

1. Responsibilities of well-site personnel

a. Well-site Representative

- 1. Notify H₂S Technician of expected date to reach Contingency Plan implementation depth (Two (2) days prior to reaching suspected H₂S bearing zone) or prior to starting well work.
- 2. Ensure H₂S Safety Technician completes rig-up procedures prior to reaching Contingency Plan effective depth.
- 3. Restrict the number of personnel at the drilling rig or well site to a minimum while drilling, starting well work, testing or coring.
- 4. Ensure weekly H₂S drills/training are performed, if possible.

B. Toolpusher

- 1. Ensure that necessary H₂S safety equipment is provided on the rig, and that it is properly inspected and maintained.
- 2. Ensure that all personnel that work in the well area, are thoroughly trained in the use of H₂S safety equipment and periodic drills are held to maintain an adequate level of proficiency.

C. In Scope Personnel

- 1. Remain clean-shaven. Beards and long sideburns do not allow a proper facepiece seal.
- 2. Receive H₂S safety training on location, or confirm prior training by certification that is one year within date.
- 3. Familiarize yourself with the rig's Contingency Plan.
- 4. Inspect and practice putting on your breathing apparatus.

- 5. Know the location of the "safe briefing areas".
- 6. Keep yourself "wind conscious". Be prepared to quickly move upwind and away in the event of any emergency involving release of H₂S.

D. Total Safety H₂S Safety Technician or MRC Designee

- 1. Conduct training as necessary to ensure all personnel working in well area are familiar with the contingency procedures and the operation of emergency equipment.
- 2. Check all H₂S safety equipment to ensure that it is ready for emergency use:
 - Check pressure weekly for each shift on breathing apparatus (both 30-minute and hippacks) to make sure they are charged to full volume.
 - Check pressure on cascade air bottles, if on location, to see that they are capable of recharging breathing apparatus.
 - Check oxygen resuscitator, if on location, to ensure that it is charged to full volume.
 - Check H₂S detectors weekly for each shift (fixed and portable), and explosimeter, to ensure they are working properly.
- 3. Provide a weekly report to MRC Energy Co.'s well-site representative documenting:
 - Calibrations performed on H₂S detectors.
 - Proper location and working order of H₂S safety equipment.
 - Attendance of all personnel, trained or retrained, and their company.
 - Weekly drills, if held and a list of personnel participating and summary of actions.

OUT OF SCOPE PERSONNEL

MRC Energy Co. policy will not require Out of Scope Personnel to be clean shaven, have processed medical questionnaires, fit testing, or have certified H2S Training.

SAFETY EQUIPMENT

All respirators will be designed, selected, used and maintained in conformance with ANSI Z88.2, American National Standard for respiratory protection.

Personal protective equipment must be provided and used. Those who are expected to use respiratory equipment in case of an emergency will be carefully instructed in the proper use and told why the equipment is being used. Careful attention will be given to the minute details in order to avoid possible misuse of the equipment during periods of extreme stress.

Self-contained breathing apparatus provides complete respiratory and eye protection in any concentration of toxic gases and under any condition of oxygen deficiency. The wearer is independent of the surrounding atmosphere because he/she is breathing with a system admitting no outside air. It consists of a full face mask, breathing tube, pressure demand regulator, air supply cylinder, and harness. Pure breathing air from the supply cylinder flows to the mask automatically through the pressure demand regulator which reduces the pressure to a breathing level. Upon inhalation, air flows into the mask at a rate precisely regulated to the user's demand. Upon exhalation, the flow to the mask stops and the exhaled breath passes through a valve in the face piece to the surrounding atmosphere. The apparatus includes an alarm & gauge which warns the wearer to leave the contaminated area for a new cylinder of air or cylinder refill.

The derrickman is provided with a full face piece unit attached to a 5– minute escape cylinder. He will also have his own self-contained 30-minute unit breathing apparatus located on the drilling floor. He will use the 5-minute unit to exit the derrick to the floor, donning the 30-minute unit located on the floor, if needed.

All respiratory protective equipment, when not in use, should be stored in a clean, cool, dry place, and out of direct sunlight to retard the deterioration of rubber parts. After each use, the mask assembly will be scrubbed with soap and water, rinsed thoroughly, and dried. Air cylinders can be recharged to a full condition from a cascade system.

Personnel in each crew will be trained in the proper techniques of bottle filling.

The primary piece of equipment to be utilized, should anyone be overcome by hydrogen sulfide, is the oxygen resuscitator, if on location.

When asphyxiation occurs, the victim must be moved to fresh air and immediately given artificial respiration. In order to assure readiness, the bottles of oxygen will be checked at regular intervals and an extra tank kept on hand.

Hand-operated pump-type detectors incorporating detector tubes will give more accurate readings of hydrogen sulfide. The pump-type draws air to be tested through the detector tube containing lead acetate-silica gel granules. Presence of hydrogen sulfide in the air sample is shown by the development of a dark brown stain on the granules, which is the

scale reading of the concentration of hydrogen sulfide. By changing the type of detector tube used, this detector may also be used for sulfur dioxide (SO_2) detection when hydrogen sulfide (H_2S) is being burned in the flare area.

Provisions must be made for the storage of all safety equipment as is evident from the foregoing discussion. All equipment must be stored in an available location so that anyone engaged in normal work situations is no more than "one breath away' from a mask.

V – TOXICITY OF VARIOUS GASES

l athal	Chemical	Specific		
Lethal Common Name ppm ⁴	Formula	Gravity ¹	PEL (OSHA) ²	STEL ³
Hydrogen Cyanide 300	HCN	0.94	10	150
Hydrogen Sulfide	H ₂ S	1.18	20 Pea	ak- 50ppm
Note: The ACGIH(7) red	commends a TW	A(6) value of 10	opm as the TLV(5) for	H2S and an STEL of
15ppm. Sulfur Dioxide 1000	SO ₂	2.21	2	5 ppm
Chlorine	CL_2	2.45	1	
Carbon Monoxide 1000	СО	0.97	35	200/1 Hour
Carbon Dioxide 10%	CO ₂	1.52	5000	5%
Methane	CH ₄	0.55	90000	

 $^{^{1}}$ Air = 1.0

TLV – Threshold Limit Value; a concentration recommended by the American Conference of Governmental Industrial Hygienists (ACGIH)

TWA – Time Weighted Average; the average concentration of contaminant one can be exposed to over a given eight-hour period.

ACGIH – (American Conference of Governmental Industrial Hygienists) is an organization comprised of Occupational Health Professionals believed by many to be the top experts in the field of Industrial Hygiene. They are recognized as an expert rexource by OSHA. The ACGIH releases a biannual publication "Threshold Limit Values and Biological Indices" that many safety professionals consider to be the authoritative document on airborne contaminants.

Reference: API RP-49, September 1974 - Reissued August 1978

² Permissible - Concentration at which is believed that all workers may repeatedly be exposed, day after day, without adverse effect.

³ **STEL -** Short Term Exposure Limit. A 15-minute time weighted average.

⁴ **Lethal -** Concentration that will cause death with short-term exposure.

VI. PROPERTIES OF GASES

A. CARBON DIOXIDE

- 1. Carbon Dioxide (CO₂) is usually considered inert and is commonly used to extinguish fires. It is 1.52 times heavier than air and will concentrate in low areas of still air. Humans cannot breathe air containing more than 10% CO₂ without losing conscience or becoming disorientation in a few minutes. Continued exposure to CO₂ after being affected will cause convulsions, coma, and respiratory failure.
- 2. The threshold limit of CO_2 is 5000 ppm. Short-term exposure to 50,000 ppm (5%) is reasonable. This gas is colorless, odorless, and can be tolerated in relatively high concentrations.

B. HYDROGEN SULFIDE

- 1. Hydrogen Sulfide (H_2S) is a colorless, transparent, flammable gas. It is heavier than air and, hence, may accumulate in low places.
- 2. Although the slightest presence of H₂S in the air is normally detectable by its characteristic "rotten egg" odor, it is dangerous to rely on the odor as a means of detecting excessive concentrations because the sense of smell is rapidly lost, allowing lethal concentrations to be accumulated without warning. The following table indicates the poisonous nature of H₂S.

CONCENTRATION		TRATION	EFFECTS	
% H ₂ S	PPM	GR/100 SCF ¹		
0.001	10	.65	Safe for 8 hours without respirator. Obvious and unpleasant odor.	
0.0015	15	0.975	Safe for 15 minutes of exposure without respirator.	
0.01	100	6.48	Kills smell in 3-15 minutes; may sting eyes and throat.	
0.02	200	12.96	Kills smell quickly; stings eyes and throat.	
0.05	500	32.96	Dizziness; breathing ceases in a few minutes; need prompt artificial respiration.	
0.07	700	45.92	Rapid Unconsciousness; death will result if not rescued promptly.	
0.1	1000	64.80	Instant unconsciousness, followed by death within minutes.	

¹ Grains per 100 Cubic Feet

VII. Treatment Procedures for Hydrogen Sulfide Poisoning

- A. Remove the victim to fresh air.
- B. If breathing has ceased or is labored, begin resuscitation immediately.

Note: This is the quickest and preferred method of clearing victim's lungs of contaminated air; however, under disaster conditions, it may not be practical to move the victim to fresh air. In such instances, where those rendering first aid must continue to wear masks, a resuscitator should be used.

- C. Apply resuscitator to help purge H₂S from the blood stream.
- D. Keep the victim at rest and prevent chilling.
- E. Get victim under physician's care as soon as possible.

C. <u>SULPHUR DIOXIDE</u>

- 1. Sulfur Dioxide (SO₂) is a colorless, non-flammable, transparent gas.
- 2. SO₂ is produced during the burning of H₂S. Although SO₂ is heavier than air, it can be picked up by a breeze and carried downwind at elevated temperatures. Since SO₂ is extremely irritating to the eyes and mucous membranes of the upper respiratory tract, it has exceptionally good warning powers in this respect. The following table indicates the toxic nature of SO₂:

CONCENTRATION		EFFECTS	
% SO ₂	PPM		
0.0005	3 to 5	Pungent odor, normally a person can detect SO_2 in this range.	
0.0012	12	Throat irritation, coughing, constriction of the chest, tearing and smarting of eyes.	
0.015	150	So irritating that it can only be endured for a few minutes.	
.05	500	Causes a sense of suffocation, event with the first breath.	

VIII. BREATHING AIR EQUIPMENT DRILLS FOR ON & OFF DUTY PERSONNEL

An H₂S Drill and Training Session must be given once a week to ALL on-duty personnel with off duty personnel. On-duty and Off-duty personnel will reverse roles on alternate drills.

An H2S drill and training session must be given once a week to all off-duty personnel in coincidence with on-duty personnel reversing roles on alternate drills.

The purpose of this drill is to instruct the crews in the operation and use of breathing air and H₂S related emergency equipment and to allow the personnel to become acquainted with using the equipment under working conditions. The crews should be trained to put on the breathing air equipment within one minute when required or requested to do so.

The following procedure should be used for weekly drills. The MRC supervisor must be satisfied that the crews are proficient with the equipment.

- 1. All personnel should be informed that a drill will be held.
- 2. The Total H2S Safety Technician or a designee assigned by the MRC Drilling Foreman should initiate the drill by signaling as he/she would if H2S was detected.
- 3. Personnel should don their breathing apparatus.
- 4. Once the breathing air equipment is on, the H2S Technician should check all personnel to insure proper operation.

A training and information session will be conducted after each drill to answer any H₂S related questions and to cover any gaps identified from one of the following topics:

- · Condition II, and III alerts and steps to be taken by all personnel.
- The importance of wind direction when dealing with H_2S .
- · Proper use and storage of all types of breathing equipment.
- Proper use and storage of oxygen resuscitators.
- Proper use and storage of H₂S detectors (Mini Checks or equivalent).
- The "buddy system" and the procedure for rescuing a person overcome by H_2S .
- · Responsibilities and duties.
- · Location of H₂S safety equipment.
- Other parts of the "H₂S Contingency Plan" that should be reviewed.

NOTE: A record of attendance must be kept for weekly drills and training sessions.

IX. HYDROGEN SULFIDE TRAINING CURRICULUM

(FOR EMPLOYERS, VISITORS, AND CONTRACTORS)

EACH PERSON WILL BE INFORMED ON THE RESTRICTIONS OF HAVING BEARDS AND CONTACT LENS. THEY WILL ALSO BE INFORMED OF THE AVAILABILITY OF SPECTACLE KITS.

AFTER THE H2S EQUIPMENT IS RIGGED UP, ALL IN SCOPE PERSONNEL WILL BE H2S TRAINED AND PUT THROUGH A DRILL. ANY DEFICIENCIES WILL BE CORRECTED.

Training Completion cards are good for one year and will indicate date of completion or expiration. Personnel previously trained on another facility and visiting, must attend a "supplemental briefing" on H2S equipment and procedures before beginning duty. Visitors who remain on the location more than 24 hours must receive full H2S training given all crew members. A "supplemental briefing" will include but not be limited to: Location of respirators, familiarization with safe briefing areas, alarms with instruction on responsibilities in the event of a release and hazards of H2S and (SO2, if applicable). A training and drill log will be kept.

Topics for full H2S training shall include the following equipment if on location, but not be limited to the following:

1. **Brief Introduction on H2S**

- A. Slide or Computer presentation (If Available)
- B. H2S material will be distributed
- C. Re-emphasize the properties, toxicity, and hazards of H2S
- D. Source of SO2 (if applicable)

2. **H2S Detection**

- A. Description of H2S sensors
- B. Description of warning system (how it works & it's location)
- C. Actual location of H2S sensors
- D. Instruction on use of pump type detector (Gastec)
- E. Use of card detectors, ampoules, or dosimeters
- F. Use of combustible gas detector
- G. Other personnel detectors used
- H. Alarm conditions I & II,
- I. SO2 alarms (if applicable)

3. **H2S Protection**

- A. Types of breathing apparatus provided (30-minute SCBA & 5-minute SCBA (with voice diaphragms for communication if supplied)
- B. Principle of how breathing apparatus works
- C. Demonstration on how to use breathing apparatus
- D. Location of breathing apparatus

4. Cascade System

- A. Description of cascade system
- B. How system works
- C. Cascade location of rig with reference to briefing areas
- D. How to use cascade system (with 5-minute hose work line units & refill, if supplied)
- E. Importance of wind direction and actual location of Windsocks
- F. Purpose of compressor/function (if one is on site)

5. **H2S Rescue and First Aid**

- A. Importance of wind direction
- B. Safe briefing area
- C. Buddy system
- D. H2S symptoms
- E. Methods of rescue

6. **Hands on Training**

- A. Donning/familiarization of SCBA 30-minue unit
- B. Donning/familiarization of SKADA 5- MIN. Packs
- C. Familiarization of cascades
- D. Use of O2 resuscitator
- E. Alarm conditions upwind briefing areas, etc...
- F. Duties and responsibilities of all personnel
- G. Procedures for evacuation
- H. Search and Rescue teams

7. Certification

A. Testing on material covered

TOTAL SAFETY US INC., FIT TEST

X. EMPLOYEE INFORMATION Employee Name: _____ Date: _____ Date of Employee Medical Evaluation: _____ Medical Status (circle): Unrestricted Limitations on Use Use Not Authorized RESPIRATOR INFORMATIOIN Respirator Type (Dustmask, SCBA, etc):_____ Size: (circle): XS S M L XLFIT TEST INFORMATION Type of Fit Test Performed: Quantitative Porta Count Fit Factor: Fittester 3000 Fit Factor:____ Qualitative Passed / Failed **Irritant Smoke** Passed / Failed Isoamyl Acetate (Banana Oil) Saccharin Passed / Failed **Bitrex** Passed / Failed

I hereby certify that this fittest was conducted in accordance with the OSHA Fit Testing Protocols found in Appendix A of 1910.134.

Fit Tester Name (Print):	
,	
Signature:	Date:

XI. H₂S SAFETY SERVICES

HYDROGEN SULFIDE SAFETY PACKAGE – Contained on location in Total Safety H2S Equipment Trailer, unless otherwise noted:

RESPIRATORY SAFETY SYSTEMS

QTY DESCRIPTION

- 30-Minute Pressure Demand SCBA (4-Primary Safe Briefing Area, 4-Secondary Safe Briefing Area, 4-floor with one of these for derrick man)
- 9 Hose Line 5-minute Work Unit w/Escape Cylinder (1 in derrick, 6 on drill floor, 1 in mud pit wt area, 1 in shaker area)

The following shall be part of the package if requested by the MRC Foremen (at least one trailer with cascade system is required to be located in the MRC Magnolia asset for use as needed)

- 1 Breathing air cascade of 10 bottles w/regulator
- 2 Refill lines to refill 30-minute units on location
- 1 6-Man manifold that can be rigged up to work area on floor, if needed
- 6 25 foot hose lines
- 2 50 foot hose lines
- 100 Feet of hose line to rig cascade up to 12 man manifold on floor
- 12 30-minute Self Contained Breathing apparatus

DETECTION AND ALARM SAFETY SYSTEM

- H2S Fixed Monitor w/8Channels (Loc determined at rig up) suggested. (Mud pit area, shaker area, bell nipple area, floor/driller area, & outside quarters)
- 5 H2S Sensors
- Explosion Proof Alarms (Light and Siren)
 (1 on floor, 1 in work area, 1 in trailer area where quarters are located)
- 2 Personal H2S monitors
- 1 Portable Tri-Gas Hand Held Meter (O2, LEL, H2S)
- 1 Sensidyne/Gastech Manual Pump Type Detector
- 8 Boxes H2S Tubes Various Ranges
- 2 Boxes SO2 Tubes Various Ranges
- 1 Calibration Gas
- 1 Set Paper Work for Records: Training, Cal, Inspection, other

ADDITIONAL SAFETY RELATED EQUIPMENT

QTY DESCRIPTION

- Windsocks with Pole and Bracket
- 1 Set Well Condition Sign w/Green, Yellow, Red Flags
- 1 Primary Safe Briefing Area Sign
- 1 Secondary Safe Briefing Area Sign
- 6 Operating Condition Signs for Work Areas & Living Quarters

TRAILER WITH BREATHING AIR CASCADE WILL ALSO INCLUDE THE FOLLOWING:

This equipment will be part of the H2S equipment stored in the trailer, when on location

- 1 First aid kit
- 1 Fire Blanket
- 1 Eye wash station
- 2 Safety Harness w/150' safety line

XII. EMERGENCY PHONE NUMBERS (Updated March 18, 2009)

EMERGENCY PHONE NUMBERS

MRC Energy Co. Emergency Phone #
MRC Energy Co. Permian Operations Phone-----MRC Energy Co. Production
113 Daw Rd
Mansfield LA 71052

Title	Names	Phone	Cell
Operations Manager			
Operation Supt.			
Operations			
Supervisor			
Operations			
Supervisor			
Office Supervisor			
HSE			
Scheduler Planner			

Hydrogen Sulfide Safety Consultants

ing an open painted parety constitution			
Total Safety W. Bender	575-392-2973	After Hours 24 Hour Call	
Blvd. Hobbs, NM		Center Through Office	
		Number	
Tommy Throckmorton	575-392-2973	940-268-9614	
Operations Manager			
Rodney Jourdan Sales	575-392-2973	432-349-3928	
Contact			

MRC Energy Co. MEDICAL RESPONSE PLAN AND IT'S MEDICAL PROTOCOLS WILL BE FOLLOWED

MEDICAL COORDINATOR # -----

Emergency Numbers & Directions

Hospitals (911)

Artesia General Hospital		
702 N. 13 th St.	Main Phone Number	575-748-3333
Artesia, NM 88210		
Nor-Lea General Hospital		
1600 N. Main Ave.	Main Phone Number	575-396-6611
Lovington, NM 88260		
Lea Regional Medical		
Center	Main Phone Number	575-492-5260
5419 N. Lovington Hwy		
Hobbs, NM 88240		
Carlsbad General Hospital		
2430 W. Pierce St.	Main Phone Number	575-887-4100
Carlsbad, NM		
Lovelace Regional Hospital		
117 E. 19 th St	Main Phone Number	575-627-7000
Roswell, NM 88201		
Winkler Co. Memorial		
Hospital	Main Phone Number	432-586-8299
821 Jeffee Dr.		
Kermit, Texas 79745		
Reeves County Hospital		
2323 Texas St.	Main Phone Number	432-447-3551
Pecos, Texas 79772		

State Police (911)

Texas DPS Loving co.		
225 N.Pecos	Office Number	432-377-2411
Mentone, Texas 79754		
Texas DPS Winkler Co.		
100 E Winkler	Office Number	432-586-3465
Kermit, Texas 79745		
Texas DPS Pecos Co.		
148 N I-20 Frontage RD	Office Number	432-447-3532
Pecos, Texas 79772		
New Mexico State Police		
3300 W. Main St	Office Number	575-748-9718
Artesia, NM		
New Mexico State Police		
304 N. Canyon St	Office Number	575-885-3137
Carlsbad, NM 88220		
New Mexico State Police		
5100 Jack Gomez Blvd.	Office Number	575-392-5588
Hobbs, NM 88240		

Local Law Enforcement (911) (Sheriff)

Edeal Eaw Empleement ()	/ (Bilelili)	
Reeves Co. Sheriff	Off N. N.	422 445 4001
500 N. Oak ST	Office Number	432-445-4901
Pecos, Texas 79722		
Winkler Co. Sheriff		
1300 Bellaire St.	Office Number	432-586-3461
Kermit, Texas 79745		
Loving Co. Sheriff		
Courthouse	Office Number	432-377-2411
Mentone, Texas		
Lea Co. Sheriff		
1417 S. Commercial St.	Office Number	
Lovington, NM 88260		
Eddy Co. Sheriff		
305 N 7th St.	Office Number	575-766-9888
Artesia, NM 88210		
Eddy Co. Sheriff		
305 N 7th St.	Office Number	575-746-9888
Carlsbad, NM 88220		

Federal & State Agencies

	1	,
OSHA Lubbock Area		
Office	Main Number	806-472-7681 EXT 7685
1205 Texas Av. Room 806		
Lubbock, Texas 79401		
New Mexico Environment		
Department	Joe Fresquez	575-623-3935
400 N Pennsylvania		
Roswell, NM 88201		
Texas Railroad		
Commission	Main Number	844-773-0305
Midland, Texas		
BLM Carlsbad, NM Field		
Office	Main Number	575-234-5972
620 E. Green ST		
Carlsbad, NM 88220		
BLM Hobbs Field Station		
414 W. Taylor Rd.	Main Number	575-393-3612
Hobbs, NM 88240		
BLM Roswell District		
Office	Main Number	575-627-0272
2909 W. Second St.		
Roswell, NM 88201		
TECQ Texas Commission		
on Environmental Quality	Main Number	800-832-8224
	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
New Mexico OCD		
U.S. Environmental		
Protection Agency Region	Main Number	214-655-2222
6	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
Texas/New Mexico		
National Response Center		
Toxic Chemicals & Oil	Main Number	800-424-8802
Spills		
~ P		

Rig Company

Tag Company		

XIII. EVACUATION OF THE GENERAL PUBLIC

The procedure to be used in alerting nearby persons in the event of any occurrence that could pose a threat to life or property will be arranged and completed with public officials in detail, prior to drilling into the hydrogen sulfide formations.

In the event of an actual emergency, the following steps will be immediately taken:

- The MRC Energy Co.'s representative will dispatch sufficient personnel to immediately warn each resident and transients down-wind within radius of exposure from the well site. Then warn all residence in the radius of exposure. Additional evacuation zones may be necessary as the situation warrants.
- 2. The MRC Energy Co.'s representative will immediately notify proper authorities, including the Sheriff's Office, Highway Patrol, and any other public officials as described above and will enlist their assistance in warning residents and transients in the calculated radius of exposure.
- 3. The MRC Energy Co.'s representative will dispatch sufficient personnel to divert traffic in the vicinity away from the potentially dangerous area. A guard to the entrance of the well site will be posted to monitor essential and non essential traffic.

4. General:

- A. The area included within the radius of exposure is considered to be the zone of maximum potential hazard from a hydrogen sulfide gas escape. Immediate evacuation of public areas, in accordance with the provisions of this contingency plan, is imperative. When it is determined that conditions exist which create an additional area (beyond the initial zone of maximum potential hazard) vulnerable to possible hazard, public areas in the additional hazardous area will be evacuated in accordance with the contingency plan.
- B. In the event of a disaster, after the public areas have been evacuated and traffic stopped, it is expected that local civil authorities will have arrived and within a few hours will have assumed direction of and control of the public, including all public areas. MRC Energy Co. will cooperate with these authorities to the fullest extent and will exert every effort by careful advice to such authorities to prevent panic or rumors.
- C. MRC Energy Co. will dispatch appropriate management personnel at the disaster site as soon as possible. The company's personnel

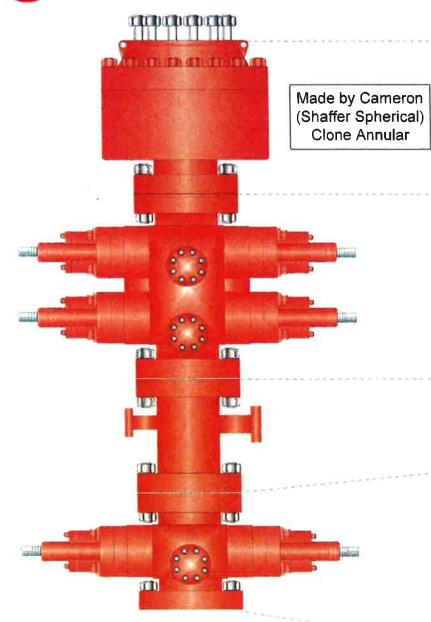

- will cooperate with and provide such information to civil authorities as they might require.
- D. One of the products of the combustion of hydrogen sulfide is sulfur dioxide (SO₂). Under certain conditions this gas may be equally as dangerous as H₂S. A pump type detector device, which determines the percent of SO₂ in air through concentrations in ppm, will be available. Although normal air movement is sufficient to dissipate this material to safe levels, the SO₂ detector should be utilized to check concentrations in the proximity of the well once every hour, or as necessary and the situation warrants. Also, if any low areas are suspected of having high concentrations, personnel should be made aware of these areas, and steps should be taken to determine whether or not these low areas are hazardous.

Exhibit E-6: H2S Contingency Plan Emergency Contacts Matador Resources Company

Company Office			
Matador Resources Company	(972)-371-5200		
Key Personnel			
Name	Title	Office	Mobile
Billy Goodwin	Vice President Drilling	972-371-5210	817-522-2928
Gary Martin	Drilling Superintendent		601-669-1774
Dee Smith	Drilling Superintendent	972-371-5447	972-822-1010
Blake Hermes	Drilling Engineer	972-371-5485	713-876-8558
	Construction Superintendent		
	Construction Superintendent		
<u>Artesia</u>			
Ambulance		911	
State Police		575-746-2703	
City Police		575-746-2703	
Sheriff's Office		575-746-9888	
Fire Department		575-746-2701	
Local Emergency Planning Committee		575-746-2122	
New Mexico Oil Conservation Division		575-748-1283	
Carlsbad			
Ambulance		911	
State Police		575-885-3137	
City Police		575-885-2111	
Sheriff's Office		575-887-7551	
Fire Department		575-887-3798	
ocal Emergency Planning Committee		575-887-6544	
New Mexico Oil Conservation Division		575-887-6544	
Santa Fe			
New Mexico Emergency Response Comission (Santa Fe)		505-476-9600	
New Mexico Emergency Response Comission (Santa Fe) 24 hrs		505-827-9126	
New Mexico State Emergency Operations Center		505-476-9635	
<u>National</u>			
National Emegency Response Center (Washington, D.C.)		800-424-8802	
Medical			
Flight for Life- 4000 24th St.; Lubbock, TX	X	806-743-9911	
Aerocare- R3, Box 49F; Lubbock, TX		806-747-8923	
Med Flight Air Amb- 2301 Yale Blvd S.E.,	, , ,	505-842-4433	
SB Air Med Service- 2505 Clark Carr Loop	o S.E.; Albuquerque, NM	505-842-4949	
<u>Other</u>			
Boots & Coots IWC		800-256-9688	or 281-931-8884
Cudd Pressure Control		432-699-0139	or 432-563-3356
Haliburton		575-746-2757	
B.J. Services		575-746-3569	

RIG: 297

PATTERSON-UTI # ____PS2-628

STYLE: New Shaffer Spherical

BORE ___13_5/8" PRESSURE ___5,000

HEIGHT: ___48_1/2" WEIGHT: ___13,800 lbs

PATTERSON-UTI # PC2-128

STYLE: New Cameron Type U

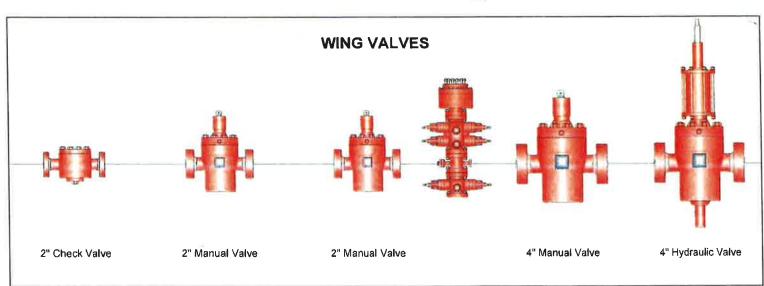
BORE 13 5/8" PRESSURE 10,000

RAMS: TOP 5" Pipe BTM Blinds

HEIGHT: 66 5/8" WEIGHT: 24,000 lbs

Length 40" Outlets 4" 10M

DSA 4" 10M x 2" 10M


PATTERSON-UTI # PC2-228

STYLE: New Cameron Type U

BORE 13 5/8" PRESSURE 10,000

RAMS: 5" Pipe

HEIGHT: 41 5/8" WEIGHT: 13,000 lbs

Well Control Plan For 10M MASP Section of Wellbore

Component and Preventer Compatibility Table:

The table below covers the drilling and casing of the 10M MASP portion of the well and outlines the tubulars and the compatible preventers in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Component	OD	Preventer	RWP
Drill pipe	4"		
HWDP	4"		
Jars/Agitator	4.75-5"	Lower 3.5-5.5" VBR	10M
Drill collars and MWD tools	4.75-5.25"	Upper 3.5-5.5" VBR	TOW
Mud Motor	4.75-5.25"		
Production casing	4.5-5.5"		
ALL	0-13.625"	Annular	5M
Open-hole	-	Blind Rams	10M

VBR = Variable Bore Ram with compatible range listed in chart

HWDP = Heavy Weight Drill Pipe

MWD = Measurement While Drilling

Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the Bottom Hole Assembly (BHA) through the Blowout Preventers (BOP). The maximum pressure at which well control is transferred from the annular to another compatible ram is 3,000 psi.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps and stop rotary
- 4. Shut-in well with the annular preventer (The Hydraulic Control Remote (HCR) valve and choke will already be in the closed position)
- 5. Confirm shut-in
- 6. Notify tool pusher and company representative
- 7. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
- 8. Regroup and identify forward plan
- 9. If pressure has increased or is anticipated to increase above 3,000 psi, confirm spacing and close the upper pipe rams

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close
- 3. Space out drill string

Well Control Plan For 10M MASP Section of Wellbore

- 4. Shut-in well with annular preventer (The HCR valve and choke will already be in the closed position)
- 5. Confirm shut-in
- 6. Notify tool pusher and company representative
- 7. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
- 8. Regroup and identify forward plan
- 9. If pressure has increased or is anticipated to increase above 3,000 psi, confirm spacing and close the upper pipe rams

General Procedure While Running Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full opening safety valve and close
- 3. Space out string
- 4. Shut-in well with annular preventer (The HCR valve and choke will already be in the closed position)
- 5. Confirm shut-in
- 6. Notify tool pusher and company representative
- 7. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
- 8. Regroup and identify forward plan
- 9. If pressure has increased or is anticipated to increase above 3,000 psi, confirm spacing and close the upper pipe rams

General Procedure with No Pipe In Hole

- 1. At any point when the BOP stack is clear of pipe or BHA, the well will be shut in with blind rams, the HCR valve will be open, and choke will be closed. If pressure increase is observed:
- 2. Sound alarm (alert crew)
- 3. Confirm shut-in
- 4. Notify tool pusher and company representative
- 5. Read and record the following:
 - SICP
 - Time of shut in
- 6. Regroup and identify forward plan

General Procedure While Pulling BHA through Stack

- 1. Prior to pulling last joint/stand of drill pipe through the stack, perform flow check. If flowing:
 - a. Sound alarm (alert crew)
 - b. Stab full opening safety valve and close
 - c. Space out drill string
 - d. Shut-in well with annular preventer (The HCR valve and choke will already be in the closed position)
 - e. Confirm shut-in
 - f. Notify tool pusher and company representative
 - g. Read and record the following:
 - SIDPP and SICP

Well Control Plan For 10M MASP Section of Wellbore

- Pit gain
- Time of shut in
- h. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combo immediately available:
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full opening safety valve and close
 - c. Space out drill string with the upset just beneath the compatible pipe ram
 - d. Shut-in well using compatible pipe rams (The HCR valve and choke will already be in the closed position)
 - e. Confirm shut-in
 - f. Notify tool pusher and company representative
 - g. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
 - h. Regroup and identify forward plan
- 3. With BHA in the stack and no compatible ram preventer and pipe combo immediately available:
 - a. Sound alarm (alert crew)
 - b. If possible to pick up high enough, pull BHA clear of the stack
 - i. Follow "No Pipe in Hole" procedure above
 - c. If impossible to pick up high enough to pull string clear of the stack:
 - Stab crossover, make up one joint/stand of drill pipe, and full opening safety valve and close
 - ii. Space out drill string with the upset just beneath the compatible pipe ram
 - iii. Shut-in well using compatible pipe rams (The HCR valve and choke will already be in the closed position)
 - iv. Confirm shut-in
 - v. Notify tool pusher and company representative
 - vi. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
 - vii. Regroup and identify forward plan

Well Control Drills

Well control drills are specific to the rig equipment, personnel, and operations. Each crew will execute one drill weekly relevant to ongoing operations, but will make a reasonable attempt to vary the type of drills. The drills will be recorded in the daily drilling log.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 342936

CONDITIONS

Operator:	OGRID:
MATADOR PRODUCTION COMPANY	228937
One Lincoln Centre	Action Number:
Dallas, TX 75240	342936
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
pkautz	Will require a File As Drilled C-102 and a Directional Survey with the C-104	5/22/2024
pkautz	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string	5/22/2024
pkautz	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system	
pkautz	Cement is required to circulate on both surface and intermediate1 strings of casing	5/22/2024
pkautz	If cement does not circulate on any string, a CBL is required for that string of casing	5/22/2024