District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico **Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 1 of 19

Form C-101 August 1, 2011 Permit 365412

APPLICATION FOR PERMIT TO DRILL, RE-ENTER, DEEPEN, PLUGBACK, OR ADD A ZONE

	ame and Address	TION COMPANY	,						2. 0	GRID Number 22893			
	e Lincoln Centre								3. A	PI Number			
	llas, TX 75240										5-5512	2	
4. Property Co	de 5944		5. Property I		9 24S 28E RB				6. V	Vell No.			
335	0944		P	RAIER IU	9 245 28E RB					123H			
						e Location							
UL - Lot	Section	Township	Ran		Lot Idn Fe	et From	N/S Line	Feet Fr		E/W Line		County	
L	11	24	5	28E	L	1801	S		232		W		Eddy
					8. Proposed Bott	om Hole Locati	on						
UL - Lot	Section	Township	Rang			et From	N/S Line	Feet Fre		E/W Line		County	
L	9	24S		28E	L	2316	S		110		W		Eddy
					9. Pool In	formation							
MALAGA;BO	NE SPRING, NOR	TH								428	800		
					Additional W	ell Information							
11. Work Type		12. Well Typ	e	1:	3. Cable/Rotary		14. Lease Type		15. Grour	nd Level Eleva	tion		
	w Well	0			,		State			2999			
16. Multiple		17. Proposed		18	8. Formation		19. Contractor		20. Spud				
N Depth to Grou		18	3384		Bone Spring				D : 1	6/19/2024			
Depth to Groui	nd water			D	istance from nearest fresh v	water well			Distance t	o nearest surfa	ce water	ſ	
We will be	using a closed-lo	op system in lie	eu of lined i	pits									-
	9												
Туре	Hole Size	Casing	1 Size		21. Proposed Casing Casing Weight/ft	Setting D		Sack	s of Ceme	nt		Estimated 1	TOC
Surf	17.5	13.3			54.5	550			950			0	
Int1	9.875	7.6			29.7	7553			1845			0	
Prod	6.75	5.	5		20	1838	4		1175			7353	
				c	asing/Cement Program	n: Additional Co	omments						
					<u> </u>								
					22. Proposed Blowou	t Provention P	oaram						
	Туре			W	orking Pressure		Test Pre	ssure			Manu	ufacturer	
	Annular				5000		300					meron	
	Double Ram				10000		500	0			Ca	meron	
	Pipe				10000		500	0			Ca	meron	
-						•							
		rmation given a	bove is true	and compl	ete to the best of my			OIL CONS	ERVATIO	N DIVISION			
knowledge a		d		C	- 40 45 44 0 (D) NMAC								
X, if applica		a with 19.15.14	1.9 (A) NIVIA		r 19.15.14.9 (B) NMAC								
Z , app													
Signature:													
Printed Name:	Electronica	ally filed by Bret	t A Jennings	s		Approved By:	Dean Mc						
Title:	Regulatory	/ Analyst				Title:		n Specialist	- A				
Email Address		ngs@matadorr				Approved Date:	6/4/2024			Expiration Da	ate: 6/4/	2026	
Date:	5/14/2024		Pho	one: 972-629	9-2160	Conditions of A	Approval Attach	ied					

Received by OCD: 5/14/2024 9:22:09 AM

 District I

 1625 N. French Dr., Hobbs, NM 88240

 Phome: (575) 393-6161 Fax: (575) 393-0720

 District III

 811 S. First St., Anesia, NM 88210

 Phome: (575) 748-1283 Fax: (575) 748-9720

 District III

 1000 Rio Brazos Road, Aztec, NM 87410

 Phome: (505) 334-6178 Fax: (505) 334-6170

 District III

 1220 S. St. Francis Dr., Santa Fe, NM 87505

 Phome: (505) 476-3462


State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

			WELL LO	JCATIO	N AND ACR	EAGE DEDIC	ATION PLA	Τ	
30-015-			42	² Pool Code		Malag	V; BON	LSOVINON.	North
⁴ Property C 335944				PRAT	⁵ Property N FER 10&9-	lame 24S-28E RB	/ -	1.1.2.1.4	Vell Number 123H
100 RID N	37			MATADO	^a Operator N OR PRODUC	Name FION COMPA	NY		'Elevation 2999'
					¹⁰ Surface Lo	ocation			
UL or lot no. L	Section 11	Township 24–S	Range 28–E	Lot Idn —	Feet from the 1801'	North/South line SOUTH	Feet from the 232'	East/West line WEST	County EDDY
			11	Bottom Ho	ole Location If D	oifferent From Sur	rface		
UL or lot no. L	Section 9	Township 24–S	Range 28-E	Lot Idn	Feet from the 2316'	North/South line	Feet from the 110'	East/West line WEST	County EDDY
¹² Dedicated Acres 320	¹³ Joint or 1	Infill ¹⁴	Consolidation Co	de ¹⁵ Ord	ler No.				

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico **Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

PERMIT CONDITIONS OF APPROVAL

		-
Operator Na	ame and Address:	API Number:
r i	/ATADOR PRODUCTION COMPANY [228937]	30-015-55122
(Dne Lincoln Centre	Well:
[Dallas, TX 75240	PRATER 10 9 24S 28E RB #123H
		•
OCD	Condition	
Reviewer		
dmcclure	Notify OCD 24 hours prior to casing & cement	
dmcclure	Will require a File As Drilled C-102 and a Directional Survey with the C-104	
dmcclure	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface	ace, the operator shall drill without interruption through the fresh
	water zone or zones and shall immediately set in cement the water protection string	
dmcclure	Cement is required to circulate on both surface and intermediate1 strings of casing	
dmcclure	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the	ne oil or diesel. This includes synthetic oils. Oil based mud,
	drilling fluids and solids must be contained in a steel closed loop system	
dmcclure	The Operator is to notify NMOCD by sundry (Form C-103) within ten (10) days of the well being spud	
dmcclure	If cement does not circulate on any string, a CBL is required for that string of casing	

Permit 365412

Page 3 of 19

.

\approx	
0	
~	
leas	
2	
0	
2	
Cont.	
0	
-	
a	
80	
-	
00	
9	
4	
N)	
0	
N	
4	
4	
<u>i</u> ii	
4	
1.1	
19	
2	

.

-

Well Name: Prater 10&9-24S-28E RB #123H

STRING	FLUID TYPE	HOLE SZ	CSG SZ	CSG GRADE	CSG WT	DEPTH SET	TOP CSG	TTL SX CEMENT	EST TOC	ADDITIONAL INFO FOR CSG/CMT PROGRAM (Optional)
SURF	FRESH WTR	17.5	13.375	J-55	54.50	550	0	950	0	Option to drill surface hole with surface setting rig
INT 1	Diesel Brine Emulsion	9.875	7.625	P-110	29.70	7553	0	1845	0	Option to run DV tool and Packer.
PROD	OBM/Cut Brine	6.75	5.5	P-110	20.00	18384	0	1175	7353	

Matador Production Company

Rustler Breaks Prater Prater #123H

Wellbore #1

Plan: State Plan #1

Standard Planning Report

12 September, 2023

Detabases												
Database:		EDM 50	000.14 Ser	ver			Local Co-	ordinate Refe	rence:	Well Prater #12	23H	
Company:			r Productic		nv		TVD Refe			KB @ 3027.5us		
Project:		Rustler			,		MD Refere			KB @ 3027.5us		
Site:		Prater					North Ref			Grid		
Well:		Prater #	‡123H					Iculation Met	hod:	Minimum Curva	ature	
Wellbore:		Wellbor	e #1				,					
Design:		State P										
U U												
Project		Rustler I										
Map System:			Plane 1927		,		System Dat	um:	М	ean Sea Level		
Geo Datum:)						- I- ft	
Map Zone:	1		co East 30	01					U	sing geodetic so	ale factor	
Site		Prater										
Site Position:					Northir	ng:	447	572.64 usft	Latitude:			32° 13' 48.760 N
From:		Lat/L	ong		Easting	-	582	727.96 usft	Longitude:			104° 3' 56.859 W
Position Uncert	tainty:		0	0.0 usft	Slot Ra			13-3/16 "	Grid Conver	gence:		0.14 °
Well		Prater #1	23H									
Well Position		+N/-S		-0.3 usft	Nor	thing:		447,572.39	usft Lat	itude:		32° 13' 48.757 N
		+E/-W		30.1 usft	Eas	sting:		582,758.02	usft Lo	ngitude:		104° 3' 56.509 W
Position Uncert	tainty			0.0 usft	We	llhead Eleva	tion:		Gre	ound Level:		2,999.0 usfl
Wellbore		Wellbor	e #1									
Magnetics		Mod	el Name		Sample	Date	Declina (°)	tion	-	Angle °)		Strength 1T)
			IGRF20	15	ç	9/12/2023		6.51		59.91	47,2	53.65374370
Design		State Pla	an #1									
-		State Fig	all 17 1									
Audit Notes:												
Version:					Phase		PROTOTYPE	lie	e On Depth:		0.0	
Vertical Section	n:			Depth F	rom (TV	D)	+N/-S	+F	E/-W	Di	rection	
						•						
				-	usft)	,	(usft)	(u	sft)		(°)	
				-	isft) 0.0	•		(u		2	(°) 72.37	
Plan Survey To	al Brog	aram	Da		0.0		(usft)	(u	sft)	2		
Plan Survey To Depth Fr	-	-		-	0.0		(usft)	(u	sft)	2		
Plan Survey To Depth Fr (usft)	om	gram Depth (usfi	То		2023		(usft)	(u	sft)	2		
Depth Fr (usft)	om	Depth (usff	To) Surv	te 9/12/: rey (Wellb	0.0 2023 ore)		(usft) 0.0 Tool Name	(u	sft)).0	2		
Depth Fr	om	- Depth	To) Surv	te 9/12/:	0.0 2023 ore)		(usft) 0.0 Tool Name MWD	(u	sft)).0	2		
Depth Fr (usft)	om	Depth (usff	To) Surv	te 9/12/: rey (Wellb	0.0 2023 ore)		(usft) 0.0 Tool Name	(u	sft)).0	2		
Depth Fr (usft)	om	Depth (usff	To) Surv	te 9/12/: rey (Wellb	0.0 2023 ore)		(usft) 0.0 Tool Name MWD	(u	sft)).0	2		
Depth Fr (usft) 1 Plan Sections	om	Depth (usff	To) Surv	te 9/12/2 ey (Wellb ⊵ Plan #1 d	0.0 2023 ore) (Wellbore		(usft) 0.0 Tool Name MWD	(u	sft)).0 Remarks			
Depth Fr. (usft) 1 Plan Sections Measured	om 0.0	Depth (usft 18,38	To) Surv	te 9/12// rey (Wellb e Plan #1 o Vertic	0.0 2023 ore) (Wellbore		(usft) 0.0 Tool Name MWD	(u C	sft)).0	Turn	72.37	
Depth Fr (usft) 1 Plan Sections	om	Depth (usft 18,38	To) Surv 33.9 State	te 9/12/2 ey (Wellb ⊵ Plan #1 d	0.0 2023 ore) (Wellbore cal	ə #1)	(usft) 0.0 Tool Name MWD OWSG MWD	(u	sft)).0 Remarks Build		72.37 	Target
Depth Fr (usft) 1 Plan Sections Measured Depth (usft)	om 0.0 Inclin: (°	ation	To) Surv 33.9 State Azimuth (°)	te 9/12/2 rey (Wellb e Plan #1 Vertic Dep (ust	0.0 2023 ore) (Wellbore cal th	e #1) +N/-S (usft)	(usft) 0.0 Tool Name MWD OWSG MWD •+E/-W (usft)	- Standard Dogleg Rate (°/100usft)	sft) 0.0 Remarks Build Rate (°/100usft)	Turn Rate (°/100usft)	72.37 TFO (°)	Target
Depth Fr (usft) 1 Plan Sections Measured Depth (usft) 0.0	om 0.0 Inclin: (°	- Depth (usff 18,38 	To) Surv 33.9 State Azimuth (°) 0.0	te 9/12/2 rey (Wellb e Plan #1 Vertic Dep (ust	0.0 2023 ore) (Wellbore cal th th th th	€ #1) +N/-S (usft) 0.0	(usft) 0.0 Tool Name MWD OWSG MWD OWSG MWD	- Standard Dogleg Rate (°/100usft) 0.00	sft) 0.0 Remarks Build Rate (°/100usft) 0.00	Turn Rate (°/100usft) 0.00	72.37 TFO (°) 0.00	Target
Depth Fr (usft) 1 Plan Sections Measured Depth (usft) 0.0 1,000.0	om 0.0 Inclin: (°	ation 0.00 0.00	To) Surv 33.9 State Azimuth (°) 0.0 0.0	te 9/12/2 ey (Wellb e Plan #1 o Vertio Dep (ust 0 0 1,	0.0 2023 ore) (Wellbore cal th th th 0.0 000.0	€ #1) +N/-S (usft) 0.0 0.0	(usft) 0.0 Tool Name MWD OWSG MWD OWSG MWD	(u () () () () () () () () () () () () ()	sft) 0.0 Remarks Build Rate (°/100usft) 0.00 0.00	Turn Rate (°/100usft) 0.00 0.00	72.37 TFO (°) 0.00 0.00	Target
Plan Sections Measured Depth (usft) 0.0 1,000.0 1,528.8	om 0.0 Inclina (°	ation 0.00 5.29	To) Surv 33.9 State Azimuth (°) 0.0 330.3	te 9/12/2 ey (Wellb e Plan #1 d Vertid Dep (ust 0 0 1, 7 1,	0.0 2023 ore) (Wellbore cal th th th 0.0 000.0 528.0	⇒ #1) +N/-S (usft) 0.0 0.0 0.0 21.2	(usft) 0.0 Tool Name MWD OWSG MWD OWSG MWD	- Standard Dogleg Rate (°/100usft) 0.00 0.00 1.00	sft)).0 Remarks Build Rate (°/100usft) 0.00 0.00 1.00	Turn Rate (°/100usft) 0.00 0.00 0.00	72.37 TFO (°) 0.00 0.00 330.37	Target
Depth Fr (usft) 1 Plan Sections Measured Depth (usft) 0.0 1,000.0 1,528.8 7,300.3	om 0.0 Inclina (°	ation 0.00 5.29 5.29	To) Surv 33.9 State Azimuth (°) 0.0 0.0 330.3 330.3	te 9/12/2 ey (Wellb e Plan #1 (Dep (ust 0 1, 7 1, 7 7,	0.0 2023 ore) (Wellbore cal th th th 0.0 000.0 528.0 275.0	⇒ #1) +N/-S (usft) 0.0 0.0 21.2 483.5	(usft) 0.0 Tool Name MWD OWSG MWD OWSG MWD	- Standard Dogleg Rate (*/100usft) 0.00 0.00 1.00 0.00	sft)).0 Remarks Build Rate (°/100usft) 0.00 0.00 1.00 0.00	Turn Rate (°/100usft) 0.00 0.00 0.00 0.00	72.37 TFO (°) 0.00 0.00 330.37 0.00	
Depth Fr (usft) 1 Plan Sections Measured Depth (usft) 0.0 1,000.0 1,528.8 7,300.3 7,652.8	om 0.0 Inclina (°	Depth (usfi 18,38 ation 0.00 0.00 5.29 5.29 0.00	To) Surv 33.9 State Azimuth (°) 0.0 330.3 330.3 0.0	te 9/12/3 ey (Wellb ≥ Plan #1 0 Dep (ust 0 1, 7 1, 7 7, 0 7,	0.0 2023 ore) (Wellbore cal th th th 0.0 000.0 528.0 275.0 627.0	≠#1) +N/-S (usft) 0.0 0.0 21.2 483.5 497.7	(usft) 0.0 Tool Name MWD OWSG MWD OWSG MWD 	- Standard Dogleg Rate (°/100usft) 0.00 0.00 1.00 0.00 1.50	sft) 0.0 Remarks Build Rate (°/100usft) 0.00 0.00 1.00 0.00 -1.50	Turn Rate (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00	72.37 TFO (°) 0.00 0.00 330.37 0.00 180.00	Target KOP - Prater #123H
Depth Fr (usft) 1 Plan Sections Measured Depth (usft) 0.0 1,000.0 1,528.8 7,300.3 7,652.8 8,552.8	om 0.0 Inclin (°	2 Depth (usft 18,38 2 2 2 2 2 0.00 0.00 5.29 5.29 0.00 90.00	To Surv 33.9 State Azimuth (°) 0.0 0.0 330.3 330.3 0.0 269.7	te 9/12/3 tey (Wellb ⇒ Plan #1 1 → Plan	0.0 2023 ore) (Wellbore cal th ono 000.0 528.0 275.0 627.0 200.0	+N/-S (usft) 0.0 0.0 21.2 483.5 497.7 494.7	(usft) 0.0 Tool Name MWD OWSG MWD OWSG MWD (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	- Standard Dogleg Rate (°/100usft) 0.00 0.00 1.00 0.00 1.50 10.00	sft) 0.0 Remarks Build Rate (°/100usft) 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00	Turn Rate (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	72.37 TFO (°) 0.00 0.00 330.37 0.00 180.00 269.70	
Depth Fr (usft) 1 Plan Sections Measured Depth (usft) 0.0 1,000.0 1,528.8 7,300.3 7,652.8	om 0.0 Inclin (°	Depth (usfi 18,38 ation 0.00 0.00 5.29 5.29 0.00	To) Surv 33.9 State Azimuth (°) 0.0 330.3 330.3 0.0	te 9/12/3 ey (Wellb ≥ Plan #1 i Dep (ust 0 1, 7 1, 7 7, 0 7, 0 8, 0 8, 0 8,	0.0 2023 ore) (Wellbore cal th th th 0.0 000.0 528.0 275.0 627.0	≠#1) +N/-S (usft) 0.0 0.0 21.2 483.5 497.7	(usft) 0.0 Tool Name MWD OWSG MWD OWSG MWD 	- Standard Dogleg Rate (°/100usft) 0.00 0.00 1.00 0.00 1.50	sft) 0.0 Remarks Build Rate (°/100usft) 0.00 0.00 1.00 0.00 -1.50	Turn Rate (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	72.37 TFO (°) 0.00 0.00 330.37 0.00 180.00 269.70 0.00	

Received by OCD: 5/14/2024 9:22:09 AM

Planning Report

Database:	EDM 5000.14 Server	Local Co-ordinate Reference:	Well Prater #123H
Company:	Matador Production Company	TVD Reference:	KB @ 3027.5usft
Project:	Rustler Breaks	MD Reference:	KB @ 3027.5usft
Site:	Prater	North Reference:	Grid
Well:	Prater #123H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	State Plan #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
78.0	0.00	0.00	78.0	0.0	0.0	0.0	0.00	0.00	0.00
Salado									
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
Start Build 1.0									
1,039.4	0.39	330.37	1,039.4	0.1	-0.1	0.1	1.00	1.00	0.00
Castile									
1,100.0	1.00	330.37	1,100.0	0.8	-0.4	0.5	1.00	1.00	0.00
1,200.0	2.00	330.37	1,200.0	3.0	-1.7	1.8	1.00	1.00	0.00
1,300.0	3.00	330.37	1,299.9	6.8	-3.9	4.2	1.00	1.00	0.00
1,400.0	4.00	330.37	1,399.7	12.1	-6.9	7.4	1.00	1.00	0.00
1,500.0	5.00	330.37	1,499.4	19.0	-10.8	11.6	1.00	1.00	0.00
1,528.8	5.29	330.37	1,528.0	21.2	-12.1	12.9	1.00	1.00	0.00
	old at 1528.8 M								
1,600.0	5.29	330.37	1,598.9	26.9	-15.3	16.4	0.00	0.00	0.00
1,700.0	5.29	330.37	1,698.5	34.9	-19.9	21.3	0.00	0.00	0.00
1,800.0	5.29	330.37	1,798.1	42.9	-24.4	26.2	0.00	0.00	0.00
1,900.0	5.29	330.37	1,897.7	50.9	-29.0	31.0	0.00	0.00	0.00
2,000.0	5.29	330.37	1,997.2	58.9	-33.5	35.9	0.00	0.00	0.00
2,100.0	5.29	330.37	2,096.8	67.0	-38.1	40.8	0.00	0.00	0.00
2,200.0	5.29	330.37	2,196.4	75.0	-42.6	45.7	0.00	0.00	0.00
2,300.0	5.29	330.37	2,296.0	83.0	-47.2	50.6	0.00	0.00	0.00
2,400.0	5.29	330.37	2,395.5	91.0	-51.7	55.5	0.00	0.00	0.00
2,500.0	5.29	330.37	2,495.1	99.0	-56.3	60.3	0.00	0.00	0.00
2,576.3	5.29	330.37	2,571.1	105.1	-59.8	64.1	0.00	0.00	0.00
G30:CS14-CS	В								
2,599.9	5.29	330.37	2,594.6	107.0	-60.9	65.2	0.00	0.00	0.00
G26: Bell Cyn			-						
2,600.0	5.29	330.37	2,594.7	107.0	-60.9	65.2	0.00	0.00	0.00
2,700.0	5.29	330.37	2,694.3	115.0	-65.4	70.1	0.00	0.00	0.00
2,800.0	5.29	330.37	2,793.8	123.0	-70.0	75.0	0.00	0.00	0.00
2,900.0	5.29	330.37	2,893.4	131.0	-74.5	79.9	0.00	0.00	0.00
3,000.0	5.29	330.37	2,993.0	139.0	-79.1	84.8	0.00	0.00	0.00
3,100.0	5.29	330.37	3,092.6	147.1	-83.6	89.6	0.00	0.00	0.00
3,200.0	5.29	330.37	3,192.1	155.1	-88.2	94.5	0.00	0.00	0.00
3,300.0	5.29	330.37	3,291.7	163.1	-92.8	99.4	0.00	0.00	0.00
3,400.0	5.29	330.37	3,391.3	171.1	-97.3	104.3	0.00	0.00	0.00
3,412.5	5.29	330.37	3,403.7	172.1	-97.9	104.9	0.00	0.00	0.00
G16: Manzani			,						
3,465.7	5.29	330.37	3,456.7	176.3	-100.3	107.5	0.00	0.00	0.00
G13: Cherry C									
3,500.0	5.29	330.37	3,490.9	179.1	-101.9	109.2	0.00	0.00	0.00
3,600.0	5.29	330.37	3,590.4	187.1	-106.4	114.1	0.00	0.00	0.00
3,700.0	5.29	330.37	3,690.0	195.1	-111.0	118.9	0.00	0.00	0.00

Database:	EDM 5000.14 Server	Local Co-ordinate Reference:	Well Prater #123H
Company:	Matador Production Company	TVD Reference:	KB @ 3027.5usft
Project:	Rustler Breaks	MD Reference:	KB @ 3027.5usft
Site:	Prater	North Reference:	Grid
Well:	Prater #123H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	State Plan #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
3,800.0	5.29	330.37	3,789.6	203.1	-115.5	123.8	0.00	0.00	0.00
3,900.0	5.29	330.37	3,889.2	211.1	-120.1	128.7	0.00	0.00	0.00
4,000.0	5.29	330.37	3,988.7	219.2	-124.6	133.6	0.00	0.00	0.00
4,100.0	5.29	330.37	4,088.3	227.2	-129.2	138.5	0.00	0.00	0.00
4,200.0	5.29	330.37	4,187.9	235.2	-133.8	143.4	0.00	0.00	0.00
4,300.0	5.29	330.37	4,287.5	243.2	-138.3	148.2	0.00	0.00	0.00
4,400.0	5.29	330.37	4,387.0	251.2	-142.9	153.1	0.00	0.00	0.00
4,500.0	5.29	330.37	4,486.6	259.2	-147.4	158.0	0.00	0.00	0.00
4,600.0	5.29	330.37	4,586.2	267.2	-152.0	162.9	0.00	0.00	0.00
4,677.5	5.29	330.37	4,663.3	273.4	-155.5	166.7	0.00	0.00	0.00
G7: Brushy C	yn.								
4,700.0	5.29	330.37	4,685.8	275.2	-156.5	167.8	0.00	0.00	0.00
4,800.0	5.29	330.37	4,785.3	283.2	-161.1	172.7	0.00	0.00	0.00
4,900.0	5.29	330.37	4,884.9	291.2	-165.6	177.5	0.00	0.00	0.00
5,000.0	5.29	330.37	4,984.5	299.3	-170.2	182.4	0.00	0.00	0.00
5,100.0	5.29	330.37	5,084.1	307.3	-174.8	187.3	0.00	0.00	0.00
5,200.0	5.29	330.37	5,183.6	315.3	-179.3	192.2	0.00	0.00	0.00
5,300.0	5.29	330.37	5,283.2	323.3	-179.3	192.2	0.00	0.00	0.00
5,400.0	5.29	330.37	5,382.8	331.3	-188.4	202.0	0.00	0.00	0.00
5,500.0 5,600.0	5.29 5.29	330.37 330.37	5,482.4 5,581.9	339.3 347.3	-193.0 -197.5	206.8 211.7	0.00 0.00	0.00 0.00	0.00 0.00
5,700.0	5.29	330.37	5,681.5	355.3	-202.1	216.6	0.00	0.00	0.00
5,800.0	5.29	330.37	5,781.1	363.3	-206.7	221.5	0.00	0.00	0.00
5,900.0	5.29	330.37	5,880.6	371.4	-211.2	226.4	0.00	0.00	0.00
6,000.0	5.29	330.37	5,980.2	379.4	-215.8	231.3	0.00	0.00	0.00
6,100.0	5.29	330.37	6,079.8	387.4	-220.3	236.1	0.00	0.00	0.00
6,200.0	5.29	330.37	6,179.4	395.4	-224.9	241.0	0.00	0.00	0.00
6,300.0	5.29	330.37	6,278.9	403.4	-229.4	245.9	0.00	0.00	0.00
6,307.9	5.29	330.37	6,286.8	404.0	-229.8	246.3	0.00	0.00	0.00
G4: BSGL (CS									
6,400.0	5.29	330.37	6,378.5	411.4	-234.0	250.8	0.00	0.00	0.00
6,500.0	5.29	330.37	6,478.1	419.4	-238.5	255.7	0.00	0.00	0.00
6,550.8	5.29	330.37	6,528.6	423.5	-240.9	258.2	0.00	0.00	0.00
L8.2: U. Avalo 6,600.0	5.29	330.37	6,577.7	427.4	-243.1	260.6	0.00	0.00	0.00
6,656.2	5.29	330.37	6,633.7	431.9	-245.7	263.3	0.00	0.00	0.00
L6.3: Avalon (000.07	0,000.7	51.5	-240.7	200.0	0.00	0.00	0.00
6,700.0	5.29	330.37	6,677.2	435.4	-247.7	265.4	0.00	0.00	0.00
6,778.2	5.29	330.37	6,755.1	441.7	-251.2	269.3	0.00	0.00	0.00
L6.2: L. Avalo		200.07	2,700.1		20112	200.0	0.00	0.00	0.00
		200.07	6 770 0	440.4	050.0	070.0	0.00	0.00	0.00
6,800.0	5.29	330.37	6,776.8	443.4	-252.2	270.3	0.00	0.00	0.00
6,900.0	5.29	330.37	6,876.4	451.5	-256.8	275.2	0.00	0.00	0.00
6,992.2	5.29	330.37	6,968.2	458.8	-261.0	279.7	0.00	0.00	0.00
L5.3: FBSC	5.00	000.07	0.070.0	450 5	001.0	000 4	0.00	0.00	0.00
7,000.0	5.29	330.37	6,976.0	459.5	-261.3	280.1	0.00	0.00	0.00
7,100.0	5.29	330.37	7,075.5	467.5	-265.9	285.0	0.00	0.00	0.00
7,200.0	5.29	330.37	7,175.1	475.5	-270.4	289.9	0.00	0.00	0.00
7,225.3	5.29	330.37	7,200.3	477.5	-271.6	291.1	0.00	0.00	0.00
L5.1: FBSG									
7,300.3	5.29	330.37	7,275.0	483.5	-275.0	294.8	0.00	0.00	0.00
Start Drop -1.	50								
7,400.0	3.79	330.37	7,374.4	490.4	-278.9	298.9	1.50	-1.50	0.00
7,462.0	2.86	330.37	7,436.3	493.5	-280.7	300.9	1.50	-1.50	0.00

9/12/2023 11:20:11AM

COMPASS 5000.14 Build 83

Database:	EDM 5000.14 Server	Local Co-ordinate Reference:	Well Prater #123H
Company:	Matador Production Company	TVD Reference:	KB @ 3027.5usft
Project:	Rustler Breaks	MD Reference:	KB @ 3027.5usft
Site:	Prater	North Reference:	Grid
Well:	Prater #123H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	State Plan #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
L4.3: SBSC									
7,500.0	2.29	330.37	7,474.2	495.0	-281.5	301.8	1.50	-1.50	0.00
7,600.0	0.79	330.37	7,574.2	497.3	-282.9	303.2	1.50	-1.50	0.00
7,652.8	0.00	0.00	7,627.0	497.7	-283.0	303.4	1.50	-1.50	56.11
	10.00 - KOP - Pra								
7,700.0	4.72	269.70	7,674.1	497.6	-285.0	305.3	10.00	10.00	-191.35
7,750.0	9.72	269.70	7,723.7	497.6	-291.3	311.6	10.00	10.00	0.00
7,800.0	14.72	269.70	7,772.6	497.6	-301.8	322.2	10.00	10.00	0.00
7,850.0	19.72	269.70	7,820.3	497.5	-316.6	336.9	10.00	10.00	0.00
7,893.8	24.10	269.70	7,861.0	497.4	-333.0	353.3	10.00	10.00	0.00
FTP - Prater	·#123H								
7,900.0	24.72	269.70	7,866.6	497.4	-335.5	355.8	10.00	10.00	0.00
7,950.0	29.72	269.70	7,911.0	497.3	-358.4	378.7	10.00	10.00	0.00
7,996.9	34.41	269.70	7,950.8	497.1	-383.3	403.5	10.00	10.00	0.00
L4.1: SBSG									
8,000.0	34.72	269.70	7,953.3	497.1	-385.1	405.3	10.00	10.00	0.00
8,050.0	39.72	269.70	7,993.1	497.0	-415.3	435.5	10.00	10.00	0.00
8,100.0	44.72	269.70	8,030.2	496.8	-448.9	469.0	10.00	10.00	0.00
8,150.0	49.72	269.70	8,064.1	496.6	-485.6	505.7	10.00	10.00	0.00
8,200.0	54.72	269.70	8,094.7	496.4	-525.1	545.1	10.00	10.00	0.00
8,250.0	59.72	269.70	8,121.8	496.2	-567.1	587.1	10.00	10.00	0.00
8,300.0	64.72	269.70	8,145.1	495.9	-611.3	631.3	10.00	10.00	0.00
8,350.0	69.72	269.70	8,164.4	495.7	-657.4	677.3	10.00	10.00	0.00
8,400.0	74.72	269.70	8,179.7	495.4	-705.0	724.9	10.00	10.00	0.00
8,450.0	79.72	269.70	8,190.8	495.2	-753.7	773.6	10.00	10.00	0.00
8,500.0	84.72	269.70	8,197.5	494.9	-803.3	823.0	10.00	10.00	0.00
8,552.8	90.00	269.70	8,200.0	494.7	-856.0	875.7	10.00	10.00	0.00
Start 87.0 h	old at 8552.8 MD								
8,600.0	90.00	269.70	8,200.0	494.4	-903.2	922.9	0.00	0.00	0.00
8,639.8	90.00	269.70	8,200.0	494.2	-943.0	962.6	0.00	0.00	0.00
Start 9744.1	hold at 8639.8 M	<i>I</i> D							
8,700.0	90.00	269.70	8,200.0	493.9	-1,003.2	1,022.7	0.00	0.00	0.00
8,800.0	90.00	269.70	8,200.0	493.4	-1,103.2	1,122.6	0.00	0.00	0.00
8,900.0	90.00	269.70	8,200.0	492.8	-1,203.2	1,222.5	0.00	0.00	0.00
9,000.0	90.00	269.70	8,200.0	492.3	-1,303.2	1,322.4	0.00	0.00	0.00
9,100.0	90.00	269.70	8,200.0	491.8	-1,403.2	1,422.3	0.00	0.00	0.00
9,200.0	90.00	269.70	8,200.0	491.3	-1,503.2	1,522.2	0.00	0.00	0.00
9,300.0	90.00	269.70	8,200.0	490.7	-1,603.2	1,622.1	0.00	0.00	0.00
9,400.0	90.00	269.70	8,200.0	490.2	-1,703.2	1,722.0	0.00	0.00	0.00
9,500.0	90.00	269.70	8,200.0	489.7	-1,803.2	1,821.9	0.00	0.00	0.00
9,600.0	90.00	269.70	8,200.0	489.2	-1,903.2	1,921.8	0.00	0.00	0.00
9,700.0	90.00	269.70	8,200.0	488.6	-2,003.2	2,021.7	0.00	0.00	0.00
9,800.0	90.00	269.70	8,200.0	488.1	-2,103.2	2,121.5	0.00	0.00	0.00
9,900.0	90.00	269.70	8,200.0	487.6	-2,203.2	2,221.4	0.00	0.00	0.00
10,000.0	90.00	269.70	8,200.0	487.1	-2,303.2	2,321.3	0.00	0.00	0.00
10,100.0	90.00	269.70	8,200.0	486.5	-2,403.2	2,421.2	0.00	0.00	0.00
10,200.0	90.00	269.70	8,200.0	486.0	-2,503.2	2,521.1	0.00	0.00	0.00
10,300.0	90.00	269.70	8,200.0	485.5	-2,603.2	2,621.0	0.00	0.00	0.00
10,400.0	90.00	269.70	8,200.0	485.0	-2,703.2	2,720.9	0.00	0.00	0.00
10,500.0	90.00	269.70	8,200.0	484.5	-2,803.2	2,820.8	0.00	0.00	0.00
10,600.0	90.00	269.70	8,200.0	483.9	-2,903.2	2,920.7	0.00	0.00	0.00
10,700.0	90.00	269.70	8,200.0	483.4	-3,003.1	3,020.6	0.00	0.00	0.00
10,700.0	90.00	269.70	8,200.0	482.9	-3,103.1	3,020.0	0.00	0.00	0.00

Database:	EDM 5000.14 Server	Local Co-ordinate Reference:	Well Prater #123H
Company:	Matador Production Company	TVD Reference:	KB @ 3027.5usft
Project:	Rustler Breaks	MD Reference:	KB @ 3027.5usft
Site:	Prater	North Reference:	Grid
Well:	Prater #123H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	State Plan #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,900.0	90.00	269.70	8,200.0	482.4	-3,203.1	3,220.4	0.00	0.00	0.00
11,000.0	90.00	269.70	8,200.0	481.8	-3,303.1	3,320.2	0.00	0.00	0.00
11,100.0	90.00	269.70	8,200.0	481.3	-3,403.1	3,420.1	0.00	0.00	0.00
11,200.0	90.00	269.70	8,200.0	480.8	-3,503.1	3,520.0	0.00	0.00	0.00
11,300.0	90.00	269.70	8,200.0	480.3	-3,603.1	3,619.9	0.00	0.00	0.00
11,400.0	90.00	269.70	8,200.0	479.7	-3,703.1	3,719.8	0.00	0.00	0.00
11,500.0	90.00	269.70	8,200.0	479.2	-3,803.1	3,819.7	0.00	0.00	0.00
11,600.0	90.00	269.70	8,200.0	478.7	-3,903.1	3,919.6	0.00	0.00	0.00
11,700.0	90.00	269.70	8,200.0	478.2	-4,003.1	4,019.5	0.00	0.00	0.00
11,800.0	90.00	269.70	8,200.0	477.6	-4,103.1	4,119.4	0.00	0.00	0.00
11,900.0	90.00	269.70	8,200.0	477.1	-4,203.1	4,219.3	0.00	0.00	0.00
12,000.0	90.00	269.70	8,200.0	476.6	-4,303.1	4,319.2	0.00	0.00	0.00
12,100.0	90.00	269.70	8,200.0	476.1	-4,403.1	4,419.1	0.00	0.00	0.00
12,200.0	90.00	269.70	8,200.0	475.5	-4,503.1	4,518.9	0.00	0.00	0.00
12,300.0	90.00	269.70	8,200.0	475.0	-4,603.1	4,618.8	0.00	0.00	0.00
12,400.0	90.00	269.70	8,200.0	474.5	-4,703.1	4,718.7	0.00	0.00	0.00
12,500.0	90.00	269.70	8,200.0	474.0	-4,803.1	4,818.6	0.00	0.00	0.00
12,600.0	90.00	269.70	8,200.0	473.5	-4,903.1	4,918.5	0.00	0.00	0.00
12,700.0	90.00	269.70	8,200.0	472.9	-5,003.1	5,018.4	0.00	0.00	0.00
12,800.0	90.00	269.70	8,200.0	472.4	-5,103.1	5,118.3	0.00	0.00	0.00
12,900.0	90.00	269.70	8,200.0	471.9	-5,203.1	5,218.2	0.00	0.00	0.00
13,000.0	90.00	269.70	8,200.0	471.4	-5,303.1	5,318.1	0.00	0.00	0.00
13,100.0	90.00	269.70	8,200.0	470.8	-5,403.1	5,418.0	0.00	0.00	0.00
13,200.0	90.00	269.70	8,200.0	470.3	-5,503.1	5,517.9	0.00	0.00	0.00
13,300.0	90.00	269.70	8,200.0	469.8	-5,603.1	5,617.7	0.00	0.00	0.00
13,400.0	90.00	269.70	8,200.0	469.3	-5,703.1	5,717.6	0.00	0.00	0.00
13,500.0	90.00	269.70	8,200.0	468.7	-5,803.1	5,817.5	0.00	0.00	0.00
13,600.0	90.00	269.70	8,200.0	468.2	-5,903.1	5,917.4	0.00	0.00	0.00
13,700.0	90.00	269.70	8,200.0	467.7	-6,003.1	6,017.3	0.00	0.00	0.00
13,800.0	90.00	269.70	8,200.0	467.2	-6,103.1	6,117.2	0.00	0.00	0.00
13,900.0	90.00	269.70	8,200.0	466.6	-6,203.1	6,217.1	0.00	0.00	0.00
14,000.0	90.00	269.70	8,200.0	466.1	-6,303.1	6,317.0	0.00	0.00	0.00
14,100.0	90.00	269.70	8,200.0	465.6	-6,403.1	6,416.9	0.00	0.00	0.00
14,200.0	90.00	269.70	8,200.0	465.1	-6,503.1	6,516.8	0.00	0.00	0.00
14,300.0	90.00	269.70	8,200.0	464.6	-6,603.1	6,616.7	0.00	0.00	0.00
14,400.0	90.00	269.70	8,200.0	464.0	-6,703.1	6,716.6	0.00	0.00	0.00
14,500.0	90.00	269.70	8,200.0	463.5	-6,803.1	6,816.4	0.00	0.00	0.00
14,600.0	90.00	269.70	8,200.0	463.0	-6,903.1	6,916.3	0.00	0.00	0.00
14,700.0	90.00	269.70	8,200.0	462.5	-7,003.1	7,016.2	0.00	0.00	0.00
14,800.0	90.00	269.70	8,200.0	461.9	-7,103.1	7,116.1	0.00	0.00	0.00
14,900.0	90.00	269.70	8,200.0	461.4	-7,203.1	7,216.0	0.00	0.00	0.00
15,000.0	90.00	269.70	8,200.0	460.9	-7,303.1	7,315.9	0.00	0.00	0.00
15,100.0	90.00	269.70	8,200.0	460.4	-7,403.1	7,415.8	0.00	0.00	0.00
15,200.0	90.00	269.70	8,200.0	459.8	-7,503.1	7,515.7	0.00	0.00	0.00
15,300.0	90.00	269.70	8,200.0	459.3	-7,603.1	7,615.6	0.00	0.00	0.00
15,400.0	90.00	269.70	8,200.0	458.8	-7,703.1	7,715.5	0.00	0.00	0.00
15,500.0	90.00	269.70	8,200.0	458.3	-7,803.1	7,815.4	0.00	0.00	0.00
15,600.0	90.00	269.70	8,200.0	457.7	-7,903.1	7,915.3	0.00	0.00	0.00
15,700.0	90.00	269.70	8,200.0	457.2	-8,003.1	8,015.1	0.00	0.00	0.00
15,800.0	90.00	269.70	8,200.0	456.7	-8,103.1	8,115.0	0.00	0.00	0.00
15,900.0	90.00	269.70	8,200.0	456.2	-8,203.1	8,214.9	0.00	0.00	0.00
16,000.0	90.00	269.70	8,200.0	455.7	-8,303.1	8,314.8	0.00	0.00	0.00
16,100.0	90.00	269.70	8,200.0	455.1	-8,403.1	8,414.7	0.00	0.00	0.00

Database:	EDM 5000.14 Server	Local Co-ordinate Reference:	Well Prater #123H
Company:	Matador Production Company	TVD Reference:	KB @ 3027.5usft
Project:	Rustler Breaks	MD Reference:	KB @ 3027.5usft
Site:	Prater	North Reference:	Grid
Well:	Prater #123H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	State Plan #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
16,300.0	90.00	269.70	8,200.0	454.1	-8,603.1	8,614.5	0.00	0.00	0.00
16,400.0	90.00	269.70	8,200.0	453.6	-8,703.1	8,714.4	0.00	0.00	0.00
16,500.0	90.00	269.70	8,200.0	453.0	-8,803.1	8,814.3	0.00	0.00	0.00
16,600.0	90.00	269.70	8,200.0	452.5	-8,903.1	8,914.2	0.00	0.00	0.00
16,700.0	90.00	269.70	8,200.0	452.0	-9,003.1	9,014.1	0.00	0.00	0.00
16,800.0	90.00	269.70	8,200.0	451.5	-9,103.1	9,113.9	0.00	0.00	0.00
16,900.0	90.00	269.70	8,200.0	450.9	-9,203.1	9,213.8	0.00	0.00	0.00
17,000.0	90.00	269.70	8,200.0	450.4	-9,303.1	9,313.7	0.00	0.00	0.00
17,100.0	90.00	269.70	8,200.0	449.9	-9,403.1	9,413.6	0.00	0.00	0.00
17,200.0	90.00	269.70	8,200.0	449.4	-9,503.1	9,513.5	0.00	0.00	0.00
17,300.0	90.00	269.70	8,200.0	448.8	-9,603.1	9,613.4	0.00	0.00	0.00
17,400.0	90.00	269.70	8,200.0	448.3	-9,703.1	9,713.3	0.00	0.00	0.00
17,500.0	90.00	269.70	8,200.0	447.8	-9,803.1	9,813.2	0.00	0.00	0.00
17,600.0	90.00	269.70	8,200.0	447.3	-9,903.1	9,913.1	0.00	0.00	0.00
17,700.0	90.00	269.70	8,200.0	446.8	-10,003.1	10,013.0	0.00	0.00	0.00
17,800.0	90.00	269.70	8,200.0	446.2	-10,103.1	10,112.9	0.00	0.00	0.00
17,900.0	90.00	269.70	8,200.0	445.7	-10,203.1	10,212.8	0.00	0.00	0.00
18,000.0	90.00	269.70	8,200.0	445.2	-10,303.0	10,312.6	0.00	0.00	0.00
18,100.0	90.00	269.70	8,200.0	444.7	-10,403.0	10,412.5	0.00	0.00	0.00
18,200.0	90.00	269.70	8,200.0	444.1	-10,503.0	10,512.4	0.00	0.00	0.00
18,300.0	90.00	269.70	8,200.0	443.6	-10,603.0	10,612.3	0.00	0.00	0.00
18,383.9	90.00	269.70	8,200.0	442.3	-10,686.9	10,696.1	0.00	0.00	0.00
TD at 18383	9 - BHL - Prater	#123H							

Design	Targets
--------	---------

Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
KOP - Prater #123H - plan hits target cent - Point	0.00 ter	0.00	7,627.0	497.7	-283.0	448,070.00	582,475.00	32° 13' 53.688 N	104° 3' 59.790 W
FTP - Prater #123H - plan misses target o - Point	0.00 center by 0.2u	0.00 Isft at 7893.8	7,861.0 Jusft MD (78	497.2 61.0 TVD, 497	-332.9 7.4 N, -333.0 E	448,069.60 E)	582,425.14	32° 13' 53.685 N	104° 4' 0.370 W
BHL - Prater #123H - plan hits target cent - Point	0.00 ter	0.00	8,200.0	442.3	-10,686.9	448,014.72	572,070.74	32° 13' 53.381 N	104° 6' 0.921 W

Received by OCD: 5/14/2024 9:22:09 AM

Planning Report

Database:	EDM 5000.14 Server	Local Co-ordinate Reference:	Well Prater #123H
Company:	Matador Production Company	TVD Reference:	KB @ 3027.5usft
Project:	Rustler Breaks	MD Reference:	KB @ 3027.5usft
Site:	Prater	North Reference:	Grid
Well:	Prater #123H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	State Plan #1		

Formations

Measured Depth (usft)	Vertical Depth (usft)	Name	Lithology	Dip (°)	Dip Direction (°)
78.0	78.0	Salado			
1,039.4	1,039.4	Castile			
2,576.3	2,571.1	G30:CS14-CSB			
2,599.9	2,594.6	G26: Bell Cyn.			
3,412.5	3,403.7	G16: Manzanita			
3,465.7	3,456.7	G13: Cherry Cyn.			
4,677.5	4,663.3	G7: Brushy Cyn.			
6,307.9	6,286.8	G4: BSGL (CS9			
6,550.8	6,528.6	L8.2: U. Avalon Shale			
6,656.2	6,633.7	L6.3: Avalon Carb			
6,778.2	6,755.1	L6.2: L. Avalon Shale			
6,992.2	6,968.2	L5.3: FBSC			
7,225.3	7,200.3	L5.1: FBSG			
7,462.0	7,436.3	L4.3: SBSC			
7,996.9	7,950.8	L4.1: SBSG			

an Annotations				
Measured	Vertical	Local Coor	dinates	
Depth (usft)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Comment
1,000.0	1,000.0	0.0	0.0	Start Build 1.00
1,528.8	1,528.0	21.2	-12.1	Start 5771.5 hold at 1528.8 MD
7,300.3	7,275.0	483.5	-275.0	Start Drop -1.50
7,652.8	7,627.0	497.7	-283.0	Start Build 10.00
8,552.8	8,200.0	494.7	-856.0	Start 87.0 hold at 8552.8 MD
8,639.8	8,200.0	494.2	-943.0	Start 9744.1 hold at 8639.8 MD
18,383.9	8,200.0	442.3	-10,686.9	TD at 18383.9

Submit Electronically

Via E-permitting

State of New Mexico Energy, Minerals and Natural Resources Department

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

<u>Section 1 – Plan Description</u> Effective May 25, 2021

I. Operator: <u>Matador Production Company</u>

OGRID: 228937

Date: <u>09/14/2023</u>

II. Type: ⊠Original □ Amendment due to □ 19.15.27.9.D(6)(a) NMAC □ 19.15.27.9.D(6)(b) NMAC □ Other.

If Other, please describe: _

III. Well(s): Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water BBL/D
Emmett 10&9-24S-28E RB 132H	TBD	D11-24S-28E	966' FNL 34' FWL	1,950	3,900	1,125
Emmett 10&9-24S-28E RB 112H	TBD	D 11-24S-28E	965' FNL 114' FWL	1,425	4,950	4,500
Emmett 10&9-24S-28E RB 122H	TBD	D11-24S-28E	964' FNL 144' FWL	1,388	2,888	4,500
Prater 10&9-24S-28E RB 133H	TBD	L11-24S-28E	1,691' FSL 201' FWL	1,950	3,900	1,125
Prater 10&9-24S-28E RB 113H	TBD	L 11-24S-28E	1,801' FSL 202' FWL	1,425	4,950	4,500
Prater 10&9-24S-28E RB 123H	TBD	L11-24S-28E	1,801' FSL 232' FWL	1,388	2,888	4,500
Prater 10&9-24S-28E RB 134H	TBD	L11-24S-28E	1,691' FSL 231' FWL	1,950	3,900	1,125
Prater 10&9-24S-28E RB 114H	TBD	L 11-24S-28E	1,771' FNL 202' FWL	1,425	4,950	4,500
Prater 10&9-24S-28E RB 124H	TBD	L11-24S-28E	1,771' FSL 232' FWL	1,388	2,888	4,500

IV. Central Delivery Point Name: Guitar TB

[See 19.15.27.9(D)(1) NMAC]

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	Spud Date	TD Reached	Completion	Initial Flow	First Production
			Date	Commencement Date	Back Date	Date
Emmett 10&9-24S-28E RB	TBD					
132H		TBD	TBD	TBD	TBD	TBD
Emmett 10&9-24S-28E RB	TBD					
112H		06/18/2024	07/05/2024	08/27/2024	09/27/2024	09/27/2024
Emmett 10&9-24S-28E RB	TBD					
122H		08/08/2024	08/23/2024	08/27/2024	09/27/2024	09/27/2024
Prater 10&9-24S-28E RB	TBD					
133H		TBD	TBD	TBD	TBD	TBD

eived by OCD: 5/14/2	02 4^BP.22:09	AM07/12/2024	07/27/2024	08/27/2024	09/27/2024	09/27/2024 Page 14 of 1
Prater 10&9-24S-28E RB						8 9
113H						
Prater 10&9-24S-28E RB	TBD					
123H		06/27/2024	07/11/2024	08/27/2024	09/27/2024	09/27/2024
Prater 10&9-24S-28E RB	TBD					
134H		TBD	TBD	TBD	TBD	TBD
Prater 10&9-24S-28E RB	TBD					
114H		06/06/2024	06/23/2024	08/27/2024	09/27/2024	09/27/2024
Prater 10&9-24S-28E RB	TBD					
124H		07/12/2024	07/27/2024	08/27/2024	09/27/2024	09/27/2024

VI. Separation Equipment: 🛛 Attach a complete description of how Operator will size separation equipment to optimize gas capture.

VII. Operational Practices: \boxtimes Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

VIII. Best Management Practices: 🛛 Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \Box Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \Box will \Box will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \Box does \Box does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \Box Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

<u>Section 3 - Certifications</u> <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal: \square Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \Box Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. \Box Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Omar Enriquez					
Printed Name: Omar Enriquez					
Title: Sr. Staff Facilities Engineer					
E-mail Address: <u>oenriquez@matadorresources.com</u>					
Date: 09/14/2024					
Phone: (972)-587-4638					
OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)					
Approved By:					
Title:					
Approval Date:					
Conditions of Approval:					

Addendum to Natural Gas Management Plan for Matador's

<u>Guitar TB</u>

VI. Separation Equipment

Flow from the wells will be routed via a flowline to a 48"x15' three phase separator dedicated to the well. The first stage separators are sized with input from BRE ProMax and API 12J. Anticipated production rates can be seen in the below table. Liquid retention times at expected maximum rates will be >3 minutes. Gas will be routed from the first stage separator to sales. Hydrocarbon liquids are dumped from the first stage separator and commingled to one or more heater treaters. The flash gas from the heater treater(s) could either be sent to sales or routed to a compressor if the sales line pressure is higher than the MAWP of the heater treater (125 psi). From the heater treaters, hydrocarbon liquid will be routed to the tanks where vapor is compressed by a VRU if technically feasible to either sales or a compressor if the sales line pressure is higher than the VRU's maximum discharge pressure (~150 psi). Therefore, Matador has sized our separation equipment to optimize gas capture and our separation equipment is of sufficient size to handle the expected volumes of gas.

Well Name	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water BBL/D
Emmett 10&9-24S-28E RB 132H	1,950	3,900	1,125
Emmett 10&9-24S-28E RB 112H	1,425	4,950	4,500
Emmett 10&9-24S-28E RB 122H	1,388	2,888	4,500
Prater 10&9-24S-28E RB 133H	1,950	3,900	1,125
Prater 10&9-24S-28E RB 113H	1,425	4,950	4,500
Prater 10&9-24S-28E RB 123H	1,388	2,888	4,500
Prater 10&9-24S-28E RB 134H	1,950	3,900	1,125
Prater 10&9-24S-28E RB 114H	1,425	4,950	4,500
Prater 10&9-24S-28E RB 124H	1,388	2,888	4,500

VII. Operation Practices

Although not a complete recitation of all our efforts to comply with subsection A through F of 19.15.27.8 NMAC, a summary is as follows. During initial flowback we will route the flowback fluids into completion or storage tanks and, to the extent possible, flare rather than vent any gas. We will commence operation of a separator as soon as technically feasible and have instructed our team that we want to connect the gas to sales as soon as possible but not later than 30 days after initial flowback.

Regarding production operations, we have designed our production facilities to be compliant with the requirements of Part E of 19.15.27.8 NMAC. We will instruct our team to perform the AVOs on the frequency required under the rules. While the well is producing, we will take steps to minimize flaring during maintenance, as set forth below, and we have a process in place for the measuring of any flared gas and the reporting of any reportable flaring events.

VII. Best Management Practices

Steps are taken to minimize venting during active or planned maintenance when technically feasible including:

- Isolating the affected component and reducing pressure through process piping
- Blowing down the equipment being maintained to a control device
- Performing preventative maintenance and minimizing the duration of maintenance activities
- Shutting in sources of supply as possible
- Other steps that are available depending on the maintenance being performed