Sundry Print Repor

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Well Name: MR POTATO HEAD 11-14 Well Location: T24S / R29E / SEC 11 /

NENE / 32.2388914 / -103.9491936 FED COM

County or Parish/State: EDDY /

Well Number: 824H Type of Well: OIL WELL Allottee or Tribe Name:

Lease Number: NMNM88134 **Unit or CA Name: Unit or CA Number:**

NMNM143625

US Well Number: Operator: DEVON ENERGY

PRODUCTION COMPANY LP

Notice of Intent

Sundry ID: 2791193

Type of Submission: Notice of Intent Type of Action: APD Change

Date Sundry Submitted: 05/20/2024 Time Sundry Submitted: 06:49

Date proposed operation will begin: 05/20/2024

Procedure Description: Devon Energy Production Co., L.P. (Devon) respectfully requests to move the BHL on the subject well. Please see attached revised C102, drill plan (break test variance included), and directional plan. Permitted BHL: SWSE 20 FSL, 2310 FEL, 14-24S-29E Proposed BHL: SESE 20 FSL, 1030 FEL, 14-24S-29E No new leases have been added since approved APD. API ID: 10400086509

NOI Attachments

Procedure Description

WA018532805_MR_POTATO_HEAD_11_14_F_C_824H_WL_R1_20240520064829.pdf

10.750_40.5lb_H40_20240520064816.pdf

5.5_17lb_P110_BTC_20240520064816.pdf

MR_POTATO_HEAD_11_14_FED_COM_824H_Directional_Plan_04_24_24_20240520064816.pdf

8.625_32lb_P110HSCY_TLW_20240520064818.PDF

break_test_variance_BOP_1_15_24_20240520064817.pdf

MR_POTATO_HEAD_11_14_FED_COM_824H_R1_20240520064817.pdf

eived by OCD: 5/21/2024-1:32:34 PM Well Name: MR POTATO HEAD 11-14

FED COM

Well Location: T24S / R29E / SEC 11 /

NENE / 32.2388914 / -103.9491936

County or Parish/State: EDDY? of

Well Number: 824H

Type of Well: OIL WELL

Allottee or Tribe Name:

Lease Number: NMNM88134

Unit or CA Name:

Unit or CA Number: NMNM143625

US Well Number:

Operator: DEVON ENERGY PRODUCTION COMPANY LP

Conditions of Approval

Specialist Review

Mr Potato Head 11 14 Fed Com 824H Sundry ID 2791193 20240521103638.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: SHAYDA OMOUMI Signed on: MAY 20, 2024 06:49 AM

Name: DEVON ENERGY PRODUCTION COMPANY LP

Title: Regulatory Compliance Associate 3 Street Address: 333 W SHERIDAN AVE

City: OKLAHOMA CITY State: OK

Phone: (405) 235-3611

Email address: SHAYDA.OMOUMI@DVN.COM

Field

Representative Name:

Street Address:

City:

State:

Zip:

Phone:

Email address:

BLM Point of Contact

BLM POC Name: LONG VO BLM POC Title: Petroleum Engineer

BLM POC Phone: 5759885402 BLM POC Email Address: LVO@BLM.GOV

Disposition: Approved Disposition Date: 05/21/2024

Signature: Long Vo

Page 2 of 2

Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR

FORM APPROVED)
OMB No. 1004-0137	!
Expires: October 31, 20	2

BURI	EAU OF LAND MANAGEMENT	J. Lease Serial No.				
Do not use this f	OTICES AND REPORTS ON Worm for proposals to drill or to Jse Form 3160-3 (APD) for suc	re-enter an	6. If Indian, Allottee or	r Tribe Name		
abandoned wen.	ose romi oroc-o (Ar b) for suc	лі ріорозаіз.	7 IfII:: 4 - f C A / A	None and None		
	TRIPLICATE - Other instructions on page	9 2	/. If Unit of CA/Agree	ement, Name and/or No.		
1. Type of Well		8. Well Name and No.				
Oil Well Gas W	Vell Other					
2. Name of Operator			9. API Well No.			
3a. Address	3b. Phone No.	(include area code)	10. Field and Pool or I	Exploratory Area		
4. Location of Well (Footage, Sec., T.,R	.,M., or Survey Description)		11. Country or Parish,	State		
12. CHE	CK THE APPROPRIATE BOX(ES) TO INC	DICATE NATURE OF NO	TICE, REPORT OR OTH	IER DATA		
TYPE OF SUBMISSION		TYPE OF A	CTION			
Notice of Intent	Acidize Deep Alter Casing Hydra	=	oduction (Start/Resume)	Water Shut-Off Well Integrity		
Subsequent Report	Casing Repair New	Construction Re	ecomplete	Other		
Subsequent Report	Change Plans Plug	and Abandon Te	mporarily Abandon			
Final Abandonment Notice	Convert to Injection Plug	Back W	ater Disposal			
completed. Final Abandonment Not is ready for final inspection.)	ns. If the operation results in a multiple comices must be filed only after all requirements					
4. I hereby certify that the foregoing is	true and correct. Name (Printed/Typed)	Title				
Signature		Date				
	THE SPACE FOR FEDE	ERAL OR STATE C	FICE USE			
Approved by			I			
rr		Title	I	Date		
	ned. Approval of this notice does not warrant quitable title to those rights in the subject lead duct operations thereon.	or				
	B U.S.C Section 1212, make it a crime for an		villfully to make to any de	partment or agency of the United States		

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

(Form 3160-5, page 2)

Additional Information

Location of Well

0. SHL: NENE / 200 FNL / 796 FEL / TWSP: 24S / RANGE: 29E / SECTION: 11 / LAT: 32.2388914 / LONG: -103.9491936 (TVD: 0 feet, MD: 0 feet)

PPP: NWNE / 100 FNL / 2310 FEL / TWSP: 24S / RANGE: 29E / SECTION: 11 / LAT: 32.239154 / LONG: -103.9540898 (TVD: 10221 feet, MD: 10413 feet)

BHL: SWSE / 20 FSL / 2310 FEL / TWSP: 24S / RANGE: 29E / SECTION: 14 / LAT: 32.2103131 / LONG: -103.9541108 (TVD: 10915 feet, MD: 21410 feet)

<u>District 1</u>
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720
<u>District II</u>
811 S. First St., Artesia, NM 88210

Phone: (575) 748-1283 Fax: (575) 748-9720 <u>District III</u> 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

District IV

State of New Mexico

Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr.

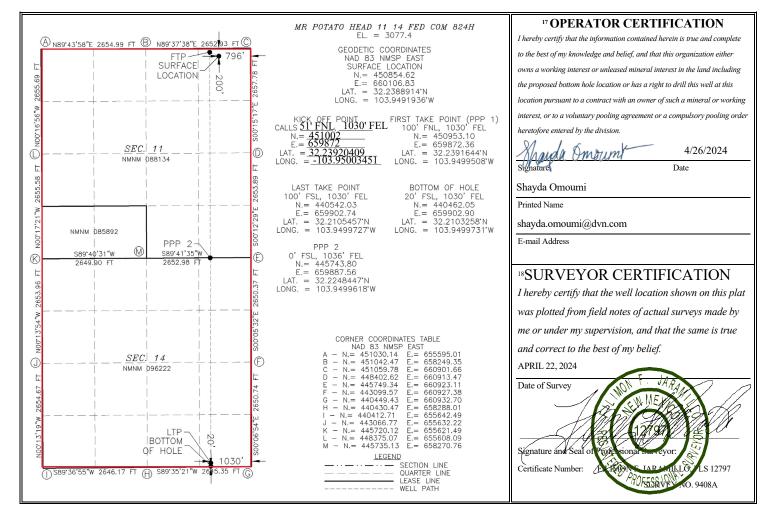
Santa Fe, NM 87505

Form C-102
Revised August 1, 2011
Submit one copy to appropriate
District Office

☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Number		² Pool Code		
		98220	Purple Sage; Wolfcamp	(Gas)
⁴ Property Code		⁵ Pr	⁶ Well Number	
326251		MR POTATO H	824H	
⁷ OGRID No.		8 O _I	⁹ Elevation	
6137		DEVON ENERGY PRO	3077.4	


¹⁰ Surface Location

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County		
A 11 24 S 29 E 200 NORTH 796							EAST	EDDY			
¹¹ Bottom Hole Location If Different From Surface											
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County		
P	14	24 S	29 E		20	SOUTH	1030	EAST	EDDY		

12 Dedicated Acres 13 Joint or Infill 14 Consolidation Code 15 Order No.

1280

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Inten	t X	As Dril	led											
API#														
DΕ\	rator Nar /ON EN MPANY	IERGY P	١		erty N POT <i>A</i>			AD 11	14	FED	СОМ	Well Number 824H		
Kick C	Off Point	(KOP)												
UL	Section	Township	Range	Lot	Feet		From N		Feet			n E/W	County	
A	11	24S	29E		51		NOR	TH	1030		Е	AST	EDDY	
Latitu					Longitu								NAD	
32.239	20409				-103.95	003451							83	
	Take Poin													
UL A	Section 11	Township 24S	Range 29E	Lot	Feet 100		From N		Feet 103		From	n E/W ST	County EDDY	
Latitu		210	ZUL		Longitu		10111	•••	100				NAD	
32.2	239164	4			103.9		508						83	
UL P Latitu	Section 14	Township 24S	Range 29E	Lot	Feet 100 Longitu	From	-	Feet 103		From I	-	Count EDD NAD		
	210545	7			_		727					83		
	32.2105457 103.9499727 83 Is this well the defining well for the Horizontal Spacing Unit? N													
If infil		infill well? lease provi	de API if a	Y availab	J ole, Oper	rator N	lame a	and v	vell n	umber	for [Definir	ng well fo	r Horizontal
API #)15-4672	2												
Ope	rator Nar	ne:	<u> </u>			Prope	erty N	ame						Well Number
DEV L.P.		RGY PROD	JCTION C	ОМРА	.NY,	MR POTATO HEAD 11-14 FED COM							623H	

KZ 06/29/2018

U. S. Steel Tubular Products 10.750" 40.50lb/ft (0.350" Wall) H40

MECHANICAL PROPERTIES	Pipe	втс	LTC	STC		
Minimum Yield Strength	40,000				psi	
Maximum Yield Strength	80,000				psi	
Minimum Tensile Strength	60,000				psi	
DIMENSIONS	Pipe	втс	LTC	STC		
Outside Diameter	10.750	0.000	0.000	11.750	in.	
Wall Thickness	0.350				in.	
Inside Diameter	10.050			10.050	in.	
Standard Drift	9.894	9.894	9.894	9.894	in.	
Alternate Drift					in.	
Nominal Linear Weight, T&C	40.50				lb/ft	
Plain End Weight	38.91				lb/ft	
PERFORMANCE	Pipe	втс	LTC	STC		
Minimum Collapse Pressure	1,390	1,390	1,390	1,390	psi	
Minimum Internal Yield Pressure	2,280	2,280	2,280	2,280	psi	
Minimum Pipe Body Yield Strength	457				1,000 lbs	
Joint Strength				314	1,000 lbs	
Reference Length				5,164	ft	
MAKE-UP DATA	Pipe	втс	LTC	STC		
Make-Up Loss				3.50	in.	
Minimum Make-Up Torque				2,360	ft-lb	
Maximum Make-Up Torque				3,930	ft-lb	

UNCONTROLLED

Notes

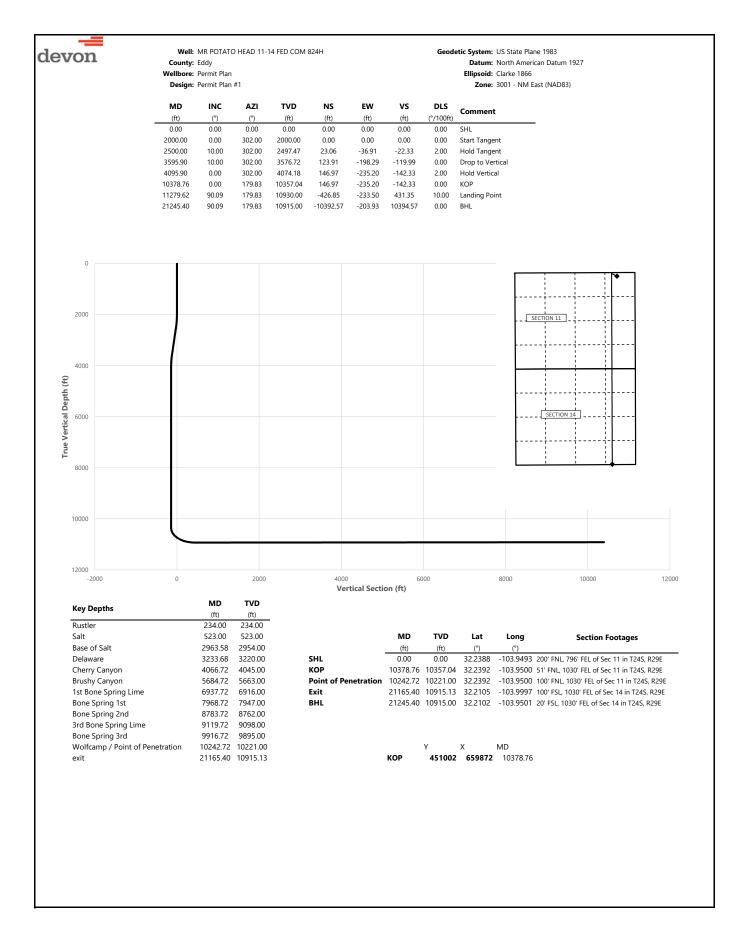
Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com

U. S. Steel Tubular Products 5.500" 17.00lbs/ft (0.304" Wall) P110

2/21/2019 8:12:22 AM


MECHANICAL PROPERTIES	Pipe	втс	LTC	STC	
Minimum Yield Strength	110,000				psi
Maximum Yield Strength	140,000				psi
Minimum Tensile Strength	125,000				psi
DIMENSIONS	Pipe	втс	LTC	STC	
Outside Diameter	5.500	6.050	6.050		in.
Wall Thickness	0.304				in.
Inside Diameter	4.892	4.892	4.892		in.
Standard Drift	4.767	4.767	4.767		in.
Alternate Drift					in.
Nominal Linear Weight, T&C	17.00				lbs/ft
Plain End Weight	16.89				lbs/ft
PERFORMANCE	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	7,480	7,480	7,480		psi
Minimum Internal Yield Pressure	10,640	10,640	10,640		psi
Minimum Pipe Body Yield Strength	546				1,000 lbs
Joint Strength		568	445		1,000 lbs
Reference Length		22,271	17,449		ft
MAKE-UP DATA	Pipe	втс	LTC	STC	
Make-Up Loss		4.13	3.50		in.
Minimum Make-Up Torque			3,470		ft-lbs
Maximum Make-Up Torque			5,780		ft-lbs

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

> U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S connections@uss.com Spring, Texas 77380

1-877-893-9461 www.usstubular.com

County: Eddy
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927 **Ellipsoid:** Clarke 1866

Zone: 3001 - NM East (NAD83)

	Design:	Permit Plan	n #1					Zone: 3001 - NM East
MD	INC	AZI	TVD	NS	EW	vs	DLS	
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	SHL
100.00	0.00	302.00	100.00	0.00	0.00	0.00	0.00	
200.00	0.00	302.00	200.00	0.00	0.00	0.00	0.00	
234.00	0.00	302.00	234.00	0.00	0.00	0.00	0.00	Rustler
300.00	0.00	302.00	300.00	0.00	0.00	0.00	0.00	
400.00	0.00	302.00	400.00	0.00	0.00	0.00	0.00	
500.00	0.00	302.00	500.00	0.00	0.00	0.00	0.00	C 1.
523.00	0.00	302.00	523.00	0.00	0.00	0.00	0.00	Salt
600.00 700.00	0.00	302.00 302.00	600.00 700.00	0.00	0.00	0.00	0.00	
800.00	0.00	302.00	800.00	0.00	0.00	0.00	0.00	
900.00	0.00	302.00	900.00	0.00	0.00	0.00	0.00	
1000.00	0.00	302.00	1000.00	0.00	0.00	0.00	0.00	
1100.00	0.00	302.00	1100.00	0.00	0.00	0.00	0.00	
1200.00	0.00	302.00	1200.00	0.00	0.00	0.00	0.00	
1300.00	0.00	302.00	1300.00	0.00	0.00	0.00	0.00	
1400.00	0.00	302.00	1400.00	0.00	0.00	0.00	0.00	
1500.00	0.00	302.00	1500.00	0.00	0.00	0.00	0.00	
1600.00	0.00	302.00	1600.00	0.00	0.00	0.00	0.00	
1700.00	0.00	302.00	1700.00	0.00	0.00	0.00	0.00	
1800.00	0.00	302.00	1800.00	0.00	0.00	0.00	0.00	
1900.00	0.00	302.00	1900.00	0.00	0.00	0.00	0.00	
2000.00	0.00	302.00	2000.00	0.00	0.00	0.00	0.00	Start Tangent
2100.00	2.00	302.00	2099.98	0.92	-1.48	-0.90	2.00	
2200.00 2300.00	4.00	302.00	2199.84	3.70	-5.92 12.21	-3.58	2.00	
2400.00 2400.00	6.00 8.00	302.00 302.00	2299.45 2398.70	8.32	-13.31 -23.64	-8.05 -14.31	2.00 2.00	
2500.00	10.00	302.00	2497.47	14.77 23.06	-25.04	-14.31	2.00	Hold Tangent
2600.00	10.00	302.00	2595.95	32.27	-51.64	-31.25	0.00	Tiold rangent
2700.00	10.00	302.00	2694.43	41.47	-66.36	-40.16	0.00	
2800.00	10.00	302.00	2792.91	50.67	-81.09	-49.07	0.00	
2900.00	10.00	302.00	2891.39	59.87	-95.81	-57.98	0.00	
2963.58	10.00	302.00	2954.00	65.72	-105.18	-63.65	0.00	Base of Salt
3000.00	10.00	302.00	2989.87	69.07	-110.54	-66.89	0.00	
3100.00	10.00	302.00	3088.35	78.27	-125.27	-75.80	0.00	
3200.00	10.00	302.00	3186.83	87.48	-139.99	-84.71	0.00	
3233.68	10.00	302.00	3220.00	90.58	-144.95	-87.71	0.00	Delaware
3300.00	10.00	302.00	3285.31	96.68	-154.72	-93.62	0.00	
3400.00	10.00	302.00	3383.79	105.88	-169.45	-102.54	0.00	
3500.00	10.00	302.00	3482.27	115.08	-184.17	-111.45	0.00	
3595.90	10.00	302.00	3576.72	123.91	-198.29	-119.99	0.00	Drop to Vertical
3600.00	9.92	302.00	3580.75	124.28	-198.90	-120.36	2.00	
3700.00	7.92	302.00	3679.54	132.50	-212.04	-128.31	2.00	
3800.00	5.92	302.00	3778.81 3878.43	138.88 143.42	-222.26 229.52	-134.49	2.00	
3900.00 4000.00	3.92 1.92	302.00 302.00	3878.43 3978.30	143.42	-229.53 -233.84	-138.89 -141.50	2.00 2.00	
4000.00 4066.72	0.58	302.00	4045.00	146.12	-235.04 -235.08	-141.50	2.00	Cherry Canyon
4066.72	0.00	302.00	4074.18	146.89	-235.08	-142.23	2.00	Hold Vertical
4100.00	0.00	179.83	4074.18	146.97	-235.20	-142.33	0.00	riola vertical
4200.00	0.00	179.83	4178.28	146.97	-235.20	-142.33	0.00	
4300.00	0.00	179.83	4278.28	146.97	-235.20	-142.33	0.00	
4400.00	0.00	179.83	4378.28	146.97	-235.20	-142.33	0.00	
4500.00	0.00	179.83	4478.28	146.97	-235.20	-142.33	0.00	
4600.00	0.00	179.83	4578.28	146.97	-235.20	-142.33	0.00	
4700.00	0.00	179.83	4678.28	146.97	-235.20	-142.33	0.00	
4800.00	0.00	179.83	4778.28	146.97	-235.20	-142.33	0.00	
4900.00	0.00	179.83	4878.28	146.97	-235.20	-142.33	0.00	
5000.00	0.00	179.83	4978.28	146.97	-235.20	-142.33	0.00	
5100.00	0.00	179.83	5078.28	146.97	-235.20	-142.33	0.00	
5200.00	0.00	179.83	5178.28	146.97	-235.20	-142.33	0.00	
5300.00	0.00	179.83	5278.28	146.97	-235.20	-142.33	0.00	
5400.00	0.00	179.83	5378.28	146.97	-235.20	-142.33	0.00	
5500.00	0.00	179.83	5478.28	146.97	-235.20	-142.33	0.00	
5600.00	0.00	179.83	5578.28	146.97	-235.20	-142.33	0.00	
	0.00	179.83	5663.00	146.97	-235.20	-142.33	0.00	Brushy Canyon
5684.72		170.00	5678.28	146.97	-235.20	-142.33	0.00	
5684.72 5700.00	0.00	179.83						
5684.72 5700.00 5800.00	0.00	179.83	5778.28	146.97	-235.20	-142.33	0.00	
5684.72 5700.00 5800.00 5900.00	0.00 0.00	179.83 179.83	5778.28 5878.28	146.97	-235.20	-142.33	0.00	
5684.72 5700.00 5800.00	0.00	179.83	5778.28					

County: Eddy
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927 Ellipsoid: Clarke 1866

Zone: 3001 - NM East (NAD83)

	Design:	Permit Plan	1#1					Zone: 3001 - NM East (NAD83)
MD	INC	AZI	TVD	NS	EW	vs	DLS	
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
6200.00	0.00	179.83	6178.28	146.97	-235.20	-142.33	0.00	
6300.00	0.00	179.83	6278.28	146.97	-235.20	-142.33	0.00	
6400.00	0.00	179.83	6378.28	146.97	-235.20	-142.33	0.00	
6500.00	0.00	179.83	6478.28	146.97	-235.20	-142.33	0.00	
6600.00	0.00	179.83	6578.28	146.97	-235.20	-142.33	0.00	
6700.00	0.00	179.83	6678.28	146.97	-235.20	-142.33	0.00	
6800.00	0.00	179.83	6778.28	146.97	-235.20	-142.33	0.00	
6900.00	0.00	179.83	6878.28	146.97	-235.20	-142.33	0.00	
6937.72	0.00	179.83	6916.00	146.97	-235.20	-142.33	0.00	1st Bone Spring Lime
7000.00	0.00	179.83	6978.28	146.97	-235.20	-142.33	0.00	
7100.00	0.00	179.83	7078.28	146.97	-235.20	-142.33	0.00	
7200.00	0.00	179.83	7178.28	146.97	-235.20	-142.33	0.00	
7300.00	0.00	179.83	7278.28	146.97	-235.20	-142.33	0.00	
7400.00	0.00	179.83	7378.28	146.97	-235.20	-142.33	0.00	
7500.00	0.00	179.83	7478.28	146.97	-235.20	-142.33	0.00	
7600.00	0.00	179.83	7578.28	146.97	-235.20	-142.33	0.00	
7700.00	0.00	179.83 179.83	7678.28	146.97	-235.20	-142.33	0.00	
7800.00 7900.00	0.00	179.83	7778.28 7878.28	146.97 146.97	-235.20 -235.20	-142.33 -142.33	0.00	
7968.72	0.00	179.83	7947.00	146.97	-235.20	-142.33	0.00	Bone Spring 1st
8000.00	0.00	179.83	7978.28	146.97	-235.20	-142.33	0.00	bone spring 1st
8100.00	0.00	179.83	8078.28	146.97	-235.20	-142.33	0.00	
8200.00	0.00	179.83	8178.28	146.97	-235.20	-142.33	0.00	
8300.00	0.00	179.83	8278.28	146.97	-235.20	-142.33	0.00	
8400.00	0.00	179.83	8378.28	146.97	-235.20	-142.33	0.00	
8500.00	0.00	179.83	8478.28	146.97	-235.20	-142.33	0.00	
8600.00	0.00	179.83	8578.28	146.97	-235.20	-142.33	0.00	
8700.00	0.00	179.83	8678.28	146.97	-235.20	-142.33	0.00	
8783.72	0.00	179.83	8762.00	146.97	-235.20	-142.33	0.00	Bone Spring 2nd
8800.00	0.00	179.83	8778.28	146.97	-235.20	-142.33	0.00	
8900.00	0.00	179.83	8878.28	146.97	-235.20	-142.33	0.00	
9000.00	0.00	179.83	8978.28	146.97	-235.20	-142.33	0.00	
9100.00	0.00	179.83	9078.28	146.97	-235.20	-142.33	0.00	
9119.72	0.00	179.83	9098.00	146.97	-235.20	-142.33	0.00	3rd Bone Spring Lime
9200.00	0.00	179.83	9178.28	146.97	-235.20	-142.33	0.00	
9300.00	0.00	179.83	9278.28	146.97	-235.20	-142.33	0.00	
9400.00	0.00	179.83	9378.28	146.97	-235.20	-142.33	0.00	
9500.00	0.00	179.83	9478.28	146.97	-235.20	-142.33	0.00	
9600.00	0.00	179.83	9578.28	146.97	-235.20	-142.33	0.00	
9700.00	0.00	179.83	9678.28	146.97	-235.20	-142.33	0.00	
9800.00	0.00	179.83	9778.28	146.97	-235.20	-142.33	0.00	
9900.00	0.00	179.83	9878.28	146.97	-235.20	-142.33	0.00	
9916.72	0.00	179.83	9895.00	146.97	-235.20	-142.33	0.00	Bone Spring 3rd
10000.00	0.00	179.83	9978.28	146.97	-235.20	-142.33	0.00	
10100.00	0.00	179.83	10078.28	146.97	-235.20	-142.33	0.00	
10200.00 10242.72	0.00	179.83 179.83	10178.28 10221.00	146.97 146.97	-235.20 -235.20	-142.33 -142.33	0.00	Wolfcamp / Point of Penetration
10242.72	0.00	179.83	10221.00	146.97	-235.20	-142.33 -142.33	0.00	woncamp / Form or Fenetration
10300.00	0.00	179.83	10278.28	146.97	-235.20	-142.33	0.00	KOP
10376.76	2.12	179.83	10337.04	146.58	-235.20	-142.33	10.00	i.c.
10500.00	12.12	179.83	10477.38	134.19	-235.17	-129.55	10.00	
10600.00	22.12	179.83	10572.82	104.79	-235.08	-100.15	10.00	
10700.00	32.12	179.83	10661.71	59.25	-234.94	-54.63	10.00	
10800.00	42.12	179.83	10741.35	-1.03	-234.76	5.63	10.00	
10900.00	52.12	179.83	10809.30	-74.21	-234.55	78.80	10.00	
11000.00	62.12	179.83	10863.52	-158.09	-234.30	162.66	10.00	
11100.00	72.12	179.83	10902.34	-250.11	-234.02	254.65	10.00	
11200.00	82.12	179.83	10924.60	-347.47	-233.73	351.99	10.00	
11279.62	90.09	179.83	10930.00	-426.85	-233.50	431.35	10.00	Landing Point
11300.00	90.09	179.83	10929.97	-447.22	-233.44	451.72	0.00	
11400.00	90.09	179.83	10929.82	-547.22	-233.14	551.69	0.00	
11500.00	90.09	179.83	10929.67	-647.22	-232.85	651.67	0.00	
11600.00	90.09	179.83	10929.52	-747.22	-232.55	751.64	0.00	
11700.00	90.09	179.83	10929.37	-847.22	-232.25	851.61	0.00	
11800.00	90.09	179.83	10929.22	-947.22	-231.96	951.59	0.00	
11900.00	90.09	179.83	10929.07	-1047.22	-231.66	1051.56	0.00	
12000.00	90.09	179.83	10928.92	-1147.22	-231.36	1151.54	0.00	
12100.00	90.09	179.83		-1247.22	-231.06	1251.51	0.00	
12200.00	90.09	179.83		-1347.22	-230.77	1351.49	0.00	
12300.00	90.09	179.83	10928.47	-1447.22	-230.47	1451.46	0.00	

County: Eddy Wellbore: Permit Plan

Design: Permit Plan #1 Geodetic System: US State Plane 1983 Datum: North American Datum 1927

Ellipsoid: Clarke 1866

	Design: Permit Plan #1						Zone: 3001 - NM East (NAD83)					Zone: 3001 - NM East (NAD83)					
MD (ft)	INC (°)	AZI (°)	TVD (ft)	NS (ft)	EW (ft)	VS (ft)	DLS (°/100ft)	Comment									
12400.00	90.09	179.83	10928.32	-1547.22	-230.17	1551.44	0.00										
12500.00	90.09	179.83	10928.16	-1647.22	-229.88	1651.41	0.00										
12600.00	90.09	179.83	10928.01	-1747.22	-229.58	1751.38	0.00										
12700.00	90.09	179.83	10927.86	-1847.22	-229.28	1851.36	0.00										
12800.00 12900.00	90.09 90.09	179.83 179.83	10927.71 10927.56	-1947.21 -2047.21	-228.99 -228.69	1951.33 2051.31	0.00										
13000.00	90.09	179.83	10927.30	-2147.21	-228.39	2151.28	0.00										
13100.00	90.09	179.83	10927.26	-2247.21	-228.09	2251.26	0.00										
13200.00	90.09	179.83	10927.11	-2347.21	-227.80	2351.23	0.00										
13300.00	90.09	179.83	10926.96	-2447.21	-227.50	2451.20	0.00										
13400.00	90.09	179.83	10926.81	-2547.21	-227.20	2551.18	0.00										
13500.00	90.09	179.83	10926.66	-2647.21	-226.91	2651.15	0.00										
13600.00	90.09	179.83	10926.51	-2747.21	-226.61	2751.13	0.00										
13700.00 13800.00	90.09 90.09	179.83 179.83	10926.36 10926.21	-2847.21 -2947.21	-226.31 -226.02	2851.10 2951.08	0.00										
13900.00	90.09	179.83	10926.21	-3047.21	-225.72	3051.05	0.00										
14000.00	90.09	179.83	10925.91	-3147.21	-225.42	3151.03	0.00										
14100.00	90.09	179.83	10925.76	-3247.21	-225.12	3251.00	0.00										
14200.00	90.09	179.83	10925.61	-3347.21	-224.83	3350.97	0.00										
14300.00	90.09	179.83	10925.46	-3447.21	-224.53	3450.95	0.00										
14400.00	90.09	179.83	10925.31	-3547.21	-224.23	3550.92	0.00										
14500.00	90.09	179.83	10925.16	-3647.21	-223.94	3650.90	0.00										
14600.00	90.09	179.83	10925.01	-3747.20	-223.64	3750.87	0.00										
14700.00 14800.00	90.09 90.09	179.83 179.83	10924.86 10924.71	-3847.20 -3947.20	-223.34 -223.05	3850.85 3950.82	0.00										
14900.00	90.09	179.83	10924.71	-4047.20	-223.03	4050.79	0.00										
15000.00	90.09	179.83	10924.41	-4147.20	-222.45	4150.77	0.00										
15100.00	90.09	179.83	10924.25	-4247.20	-222.16	4250.74	0.00										
15200.00	90.09	179.83	10924.10	-4347.20	-221.86	4350.72	0.00										
15300.00	90.09	179.83	10923.95	-4447.20	-221.56	4450.69	0.00										
15400.00	90.09	179.83	10923.80	-4547.20	-221.26	4550.67	0.00										
15500.00	90.09	179.83	10923.65	-4647.20	-220.97	4650.64	0.00										
15600.00 15700.00	90.09 90.09	179.83 179.83	10923.50 10923.35	-4747.20	-220.67	4750.62 4850.59	0.00										
15800.00	90.09	179.83	10923.35	-4847.20 -4947.20	-220.37 -220.08	4950.59	0.00										
15900.00	90.09	179.83	10923.05	-5047.20	-219.78	5050.54	0.00										
16000.00	90.09	179.83	10922.90	-5147.20	-219.48	5150.51	0.00										
16100.00	90.09	179.83	10922.75	-5247.20	-219.19	5250.49	0.00										
16200.00	90.09	179.83	10922.60	-5347.20	-218.89	5350.46	0.00										
16300.00	90.09	179.83	10922.45	-5447.20	-218.59	5450.44	0.00										
16400.00	90.09	179.83	10922.30	-5547.19	-218.29	5550.41	0.00										
16500.00	90.09	179.83	10922.15	-5647.19	-218.00	5650.38	0.00										
16600.00 16700.00	90.09 90.09	179.83 179.83	10922.00 10921.85	-5747.19 -5847.19	-217.70 -217.40	5750.36 5850.33	0.00										
16800.00	90.09	179.83	10921.70	-5947.19	-217.40	5950.33	0.00										
16900.00	90.09	179.83	10921.55	-6047.19	-216.81	6050.28	0.00										
17000.00	90.09	179.83	10921.40	-6147.19	-216.51	6150.26	0.00										
17100.00	90.09	179.83	10921.25	-6247.19	-216.22	6250.23	0.00										
17200.00	90.09	179.83	10921.10	-6347.19	-215.92	6350.20	0.00										
17300.00	90.09	179.83	10920.95	-6447.19	-215.62	6450.18	0.00										
17400.00	90.09	179.83	10920.80	-6547.19	-215.32	6550.15	0.00										
17500.00 17600.00	90.09	179.83 179.83	10920.65	-6647.19	-215.03 -214.73	6650.13 6750.10	0.00										
17600.00	90.09 90.09	179.83	10920.50 10920.34	-6747.19 -6847.19	-214.73 -214.43	6850.08	0.00										
17700.00	90.09	179.83	10920.34	-6947.19	-214.43	6950.05	0.00										
17900.00	90.09	179.83	10920.04	-7047.19	-213.84	7050.03	0.00										
18000.00	90.09	179.83	10919.89	-7147.19	-213.54	7150.00	0.00										
18100.00	90.09	179.83	10919.74	-7247.19	-213.25	7249.97	0.00										
18200.00	90.09	179.83	10919.59	-7347.18	-212.95	7349.95	0.00										
18300.00	90.09	179.83	10919.44	-7447.18	-212.65	7449.92	0.00										
18400.00	90.09	179.83	10919.29	-7547.18	-212.36	7549.90	0.00										
18500.00 18600.00	90.09 90.09	179.83 179.83	10919.14 10918.99	-7647.18 -7747.18	-212.06 -211.76	7649.87 7749.85	0.00										
18700.00	90.09	179.83	10918.99	-7747.18 -7847.18	-211.76 -211.46	7749.85 7849.82	0.00										
18800.00	90.09	179.83	10918.69	-7947.18	-211.40	7949.79	0.00										
18900.00	90.09	179.83	10918.54	-8047.18	-210.87	8049.77	0.00										
19000.00	90.09	179.83	10918.39	-8147.18	-210.57	8149.74	0.00										
19100.00	90.09	179.83	10918.24	-8247.18	-210.28	8249.72	0.00										
19200.00	90.09	179.83	10918.09	-8347.18	-209.98	8349.69	0.00										
19300.00	90.09	179.83	10917.94	-8447.18	-209.68	8449.67	0.00										

County: Eddy
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927

Ellipsoid: Clarke 1866
Zone: 3001 - NM East (NAD83)

MD	MD INC AZI TVD NS EW		VS	DLS	Comment			
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
19400.00	90.09	179.83	10917.79	-8547.18	-209.39	8549.64	0.00	
19500.00	90.09	179.83	10917.64	-8647.18	-209.09	8649.62	0.00	
19600.00	90.09	179.83	10917.49	-8747.18	-208.79	8749.59	0.00	
19700.00	90.09	179.83	10917.34	-8847.18	-208.49	8849.56	0.00	
19800.00	90.09	179.83	10917.19	-8947.18	-208.20	8949.54	0.00	
19900.00	90.09	179.83	10917.04	-9047.18	-207.90	9049.51	0.00	
20000.00	90.09	179.83	10916.89	-9147.17	-207.60	9149.49	0.00	
20100.00	90.09	179.83	10916.74	-9247.17	-207.31	9249.46	0.00	
20200.00	90.09	179.83	10916.59	-9347.17	-207.01	9349.44	0.00	
20300.00	90.09	179.83	10916.43	-9447.17	-206.71	9449.41	0.00	
20400.00	90.09	179.83	10916.28	-9547.17	-206.42	9549.38	0.00	
20500.00	90.09	179.83	10916.13	-9647.17	-206.12	9649.36	0.00	
20600.00	90.09	179.83	10915.98	-9747.17	-205.82	9749.33	0.00	
20700.00	90.09	179.83	10915.83	-9847.17	-205.52	9849.31	0.00	
20800.00	90.09	179.83	10915.68	-9947.17	-205.23	9949.28	0.00	
20900.00	90.09	179.83	10915.53	-10047.17	-204.93	10049.26	0.00	
21000.00	90.09	179.83	10915.38	-10147.17	-204.63	10149.23	0.00	
21100.00	90.09	179.83	10915.23	-10247.17	-204.34	10249.21	0.00	
21165.40	90.09	179.83	10915.13	-10312.57	-204.14	10314.59	0.00	exit
21200.00	90.09	179.83	10915.08	-10347.17	-204.04	10349.18	0.00	
21245.40	90.09	179.83	10915.00	-10392.57	-203.93	10394.57	0.00	BHL

TEC-LOCK WEDGE

8.625" 32.00 LB/FT (.352" Wall) BORUSAN MANNESMANNP110 HSCY

Pipe Body Data

Nominal OD:	8.625	in
Nominal Wall:	.352	in
Nominal Weight:	32.00	lb/ft
Plain End Weight:	31.13	lb/ft
Material Grade:	P110 HSCY	
Mill/Specification:	BORUSAN M	ANNESMANN
Yield Strength:	125,000	psi
Tensile Strength:	125,000	psi
Nominal ID:	7.921	in
API Drift Diameter:	7.796	in
Special Drift Diameter:	7.875	in
RBW:	87.5 %	
Body Yield:	1,144,000	lbf
Burst:	8,930	psi
Collapse:	4,230	psi

Connection Data

Standard OD:	9.000	in	
Pin Bored ID:	7.921	in	
Critical Section Area:	8.61433	in²	
Tensile Efficiency:	94.2 %		
Compressive Efficiency:	100.0 %		
Longitudinal Yield Strength:	1,077,000	lbf	
Compressive Limit:	1,144,000	lbf	
Internal Pressure Rating:	8,930	psi	
External Pressure Rating:	4,230	psi	
Maximum Bend:	62.6	°/100	

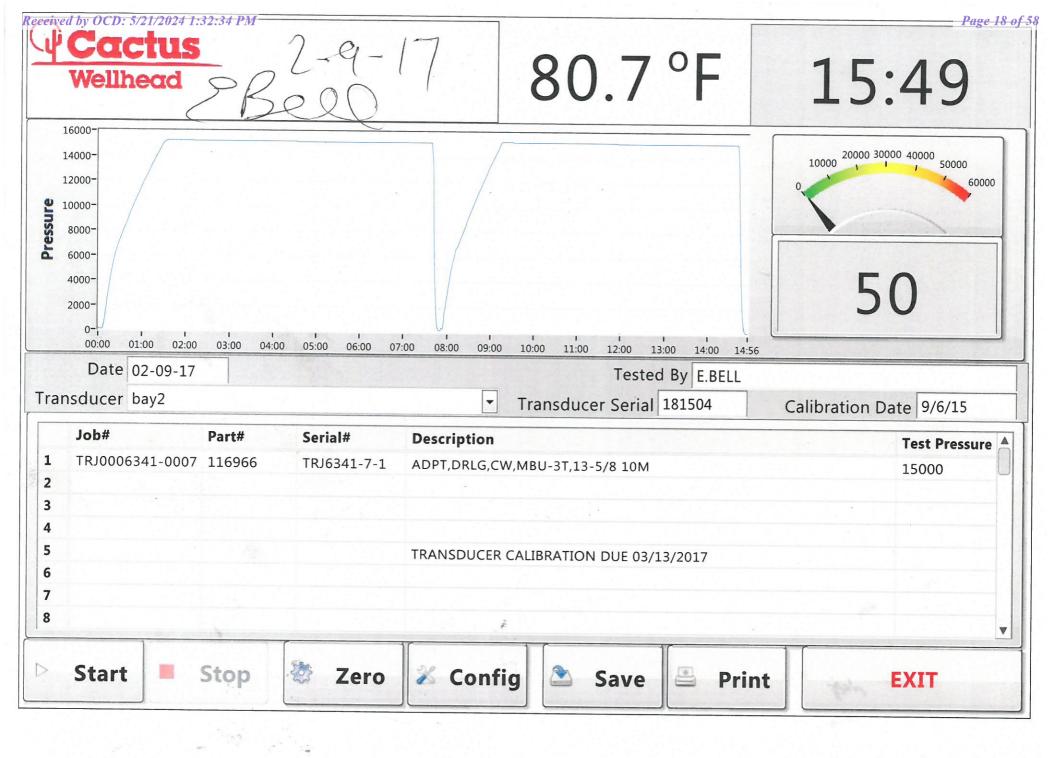
Operational Data

29,900	ft*lbf
37,375	ft*lbf
80,900	ft*lbf
89,900	ft*lbf
5.97	in
	37,375 80,900 89,900

Notes

Operational Torque is equivalent to the Maximum Make-Up Torque.

Generated on 9/18/2018 1:14:29 PM


Please visit http://www.huntingplc.com for the latest technical information.

Section 2 - Blowout Preventer Testing Procedure

Variance Request

Devon Energy requests to only test BOP connection breaks after drilling out of surface casing and while skidding between wells which conforms to API Standard 53 and industry standards. This test will include the Top Pipe Rams, HCR, Kill Line Check Valve, QDC (quick disconnect to wellhead) and Shell of the 10M BOPE to 5M for 10 minutes. If a break to the flex hose that runs to the choke manifold is required due to repositioning from a skid, the HCR will remain open during the shell test to include that additional break. The variance only pertains to intermediate hole-sections and no deeper than the Bone Springs Formation where 5M BOP tests are required. The initial BOP test will follow 43 CFR 3172, and subsequent tests following a skid will only test connections that are broken. The annular preventer will be tested to 100% working pressure. This variance will meet or exceed 43 CFR 3172 per the following: Devon Energy will perform a full BOP test per 43 CFR 3172 before drilling out of the intermediate casing string(s) and starting the production hole, before starting any hole section that requires a 10M test, before the expiration of the allotted 14-days for 5M intermediate batch drilling or when the drilling rig is fully mobilized to a new well pad, whichever is sooner. We will utilize a 200' TVD tolerance between intermediate shoes as the cutoff for a full BOP test. The BLM will be contacted 4hrs prior to a BOPE test. The BLM will be notified if and when a well control event is encountered. Break test will be a 14 day interval and not a 30 day full BOPE test interval. If in the event break testing is not utilized, then a full BOPE test would be conducted.

- 1. Well Control Response:
- 1. Primary barrier remains fluid
- 2. In the event of an influx due to being underbalanced and after a realized gain or flow, the order of closing BOPE is as follows:
 - a) Annular first
 - b) If annular were to not hold, Upper pipe rams second (which were tested on the skid BOP test)
 - c) If the Upper Pipe Rams were to not hold, Lower Pipe Rams would be third

1. Geologic Formations

TVD of target	10915	Pilot hole depth	N/A
MD at TD:	21245	Deepest expected fresh water	

Basin

Formation	Depth (TVD) from KB	Water/Mineral Bearing/Target Zone?	Hazards*
Rustler	234		
Salt	523		
Base of Salt	2954		
Delaware	3220		
Cherry Canyon	4045		
Brushy Canyon	5663		
1st Bone Spring Lime	6916		
Bone Spring 1st	7947		
Bone Spring 2nd	8762		
3rd Bone Spring Lime	9098		
Bone Spring 3rd	9895		
Wolfcamp	10221		

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program (Primary Design)

	9	Wt			Casing	Interval	Casing	Interval
Hole Size	Csg. Size	(PPF)	Grade Conn		From (MD)	To (MD)	From (TVD)	To (TVD)
14 3/4	10 3/4	40 1/2	H40	ВТС	0	259	0	259
9 7/8	8 5/8	32	P110	TLW	0	10279	0	10279
7 7/8	5 1/2	17	P110	ВТС	0	21245	0	10915

[•] All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for contingency casing.

3. Cementing Program (Primary Design)

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy canyon to surface.

Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures.

Casing	# Sks	TOC	Wt.	Yld (ft3/sack)	Slurry Description
Surface	176	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	409	Surf	13.0	2.3	2nd State: Bradenhead Squeeze - Lead: Class C Cement + additives
III I	533	5684	13.2	2 1.44 Tail: Class H / C + additive	
Production	117	8379	9	3.27	Lead: Class H /C + additives
Froduction	1438	10379	13.2	1.44	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Prod	10%

4. Pressure Control Equipment (Three String Design)

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Ty	ype	✓	Tested to:								
			Anı	nular	X	50% of rated working pressure								
Int 1	13-5/8"	5M	Blind	d Ram	X									
IIIt I	13-3/6	JIVI	Pipe	Ram		5M								
			Doub	le Ram	X	3101								
			Other*											
	13-5/8"	5M		Annul	ar (5M)	X	50% of rated working pressure							
Due de eti e e			Blind Ram		X	5M								
Production			Pipe Ram											
												Doub	le Ram	X
			Other*											
			Annular (5M)											
			Blind Ram											
			Pipe Ram											
			Double Ram											
			Other*											
N A variance is requested for	the use of a	a diverter or	the surface	casing. See	attached for s	chematic.								
Y A variance is requested to 1	A variance is requested to run a 5 M annular on a 10M system													

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring
---	-----------------------------

6. Logging and Testing Procedures

Logging, (Coring and Testing
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the
X	Completion Report and shumitted to the BLM.
	No logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain.
	Coring? If yes, explain.

Additional logs planned		Interval		
	Resistivity	Int. shoe to KOP		
	Density	Int. shoe to KOP		
X	CBL	Production casing		
X	Mud log	Intermediate shoe to TD		
	PEX			

7. Drilling Conditions

Condition	Specfiy what type and where?				
BH pressure at deepest TVD	5960				
Abnormal temperature	No				

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

N H2S is present

N	H2S is present			
Y	H2S plan attached			

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachme	ents
X	Directional Plan
	Other, describe

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT Sundry Print Report

County or Parish/State: EDDY /

Well Name: MR POTATO HEAD 11-14

FED COM

Well Location: T24S / R29E / SEC 11 /

NENE / 32.2388914 / -103.9491936

Well Number: 824H

Type of Well: OIL WELL

Allottee or Tribe Name:

Lease Number: NMNM88134

Unit or CA Name:

Unit or CA Number:

NMNM143625

US Well Number:

Operator: DEVON ENERGY PRODUCTION COMPANY LP

Notice of Intent

Sundry ID: 2791193

Type of Submission: Notice of Intent Type of Action: APD Change

Date Sundry Submitted: 05/20/2024 Time Sundry Submitted: 06:49

Date proposed operation will begin: 05/20/2024

Procedure Description: Devon Energy Production Co., L.P. (Devon) respectfully requests to move the BHL on the subject well. Please see attached revised C102, drill plan (break test variance included), and directional plan. Permitted BHL: SWSE 20 FSL, 2310 FEL, 14-24S-29E Proposed BHL: SESE 20 FSL, 1030 FEL, 14-24S-29E No new leases have been added since approved APD. API ID: 10400086509

NOI Attachments

Procedure Description

WA018532805_MR_POTATO_HEAD_11_14_F_C_824H_WL_R1_20240520064829.pdf

10.750_40.5lb_H40_20240520064816.pdf

5.5_17lb_P110_BTC_20240520064816.pdf

MR_POTATO_HEAD_11_14_FED_COM_824H_Directional_Plan_04_24_24_20240520064816.pdf

8.625_32lb_P110HSCY_TLW_20240520064818.PDF

break_test_variance_BOP_1_15_24_20240520064817.pdf

MR_POTATO_HEAD_11_14_FED_COM_824H_R1_20240520064817.pdf

eived by OCD: 5/21/2024 1:32:34 PM Well Name: MR POTATO HEAD 11-14

FED COM

Well Location: T24S / R29E / SEC 11 / NENE / 32.2388914 / -103.9491936

County or Parish/State: Page 25 of

Well Number: 824H

Type of Well: OIL WELL

Allottee or Tribe Name:

Lease Number: NMNM88134

Unit or CA Name:

Unit or CA Number: NMNM143625

US Well Number:

Operator: DEVON ENERGY PRODUCTION COMPANY LP

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Signed on: MAY 20, 2024 06:49 AM Operator Electronic Signature: SHAYDA OMOUMI

Name: DEVON ENERGY PRODUCTION COMPANY LP

Title: Regulatory Compliance Associate 3 Street Address: 333 W SHERIDAN AVE

City: OKLAHOMA CITY State: OK

Phone: (405) 235-3611

Email address: SHAYDA.OMOUMI@DVN.COM

Field

Representative Name:

Street Address:

City:

State:

Zip:

Phone:

Email address:

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: Devon Energy Production Company LP

LEASE NO.: NMNM088134

LOCATION: Section 11, T.24 S., R.29 E., NMPM COUNTY: Eddy County, New Mexico

WELL NAME & NO.: Mr Potato Head 11-14 Fed Com 824H

SURFACE HOLE FOOTAGE: 200'/N & 796'/E
BOTTOM HOLE FOOTAGE 20'/S & 1030'/E
ATS/API ID: ATS-22-1531
APD ID: 10400086509

Sundry ID: 2791193

COA

H2S	No 🔻		
Potash	None 🔻		
Cave/Karst	Medium 🔻		
Potential	_		
Cave/Karst	☐ Critical		
Potential			
Variance	None None	Flex Hose	C Other
Wellhead	Conventional and Multibov	vI 🔽	
Other	□4 String	Capitan Reef	□WIPP
		None	
		. Tone	
Other	Pilot Hole	☐ Open Annulus	
	None 🔻		
Cementing	Contingency Squeeze	Echo-Meter	Primary Cement
	None	None -	Squeeze
			Int 1
Special	□ Water	☑ COM	☐ Unit
Requirements	Disposal/Injection		
Special	☐ Batch Sundry		
Requirements			
Special	✓ Break Testing	✓ Offline	☐ Casing
Requirements		Cementing	Clearance
Variance			

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet **43 CFR part 3170 Subpart 3176**, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The 10-3/4 inch surface casing shall be set at approximately 400 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt when present, and below usable fresh water) and cemented to the surface. The surface hole shall be 14 3/4 inch in diameter.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Option 2:

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- a. First stage: Operator will cement with intent to reach the top of the Brushy Canyon at 5663' (533 sxs Class H/C+ additives).
- b. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified. (Squeeze 409 sxs Class C)
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Operator has proposed to pump down 10-3/4" X 8-5/8" annulus after primary cementing stage. Operator must run a CBL from TD of the 8-5/8" casing to surface. Submit results to the BLM. Operator may conduct a negative and positive pressure test during completion to remediate sustained casing pressure.

If cement does not tie-back into the previous casing shoe, a third stage remediation BH may be performed. The appropriate BLM office shall be notified.

- ❖ In Medium Cave/Karst Areas if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string.
 Operator shall provide method of verification.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi. Annular which shall be tested to 3500 (70% Working Pressure) psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 8-5/8 inch intermediate casing shoe shall be 5000 (5M) psi.

Option 2:

Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the 10-3/4 inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR part 3170 Subpart 3171
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.

• In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

BOPE Break Testing Variance (Approved)

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR part 3170 Subpart 3172.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Operator has been (**Approved**) to pump the proposed cement program offline in the **Intermediate(s) interval**.

Offline cementing should commence within 24 hours of landing the casing for the interval.

Notify the BLM 4hrs prior to cementing offline at Eddy County: 575-361-2822.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

☑ Eddy County

EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,

BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report when present.
- A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test
 - d. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including

- lead cement), whichever is greater. However, if the float does not hold, cutoff cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.
- C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Long Vo (LVO) 5/21/2024

Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

FORM APPROVE	±D
OMB No. 1004-01	37
Expires: October 31,	202

Lease Serial N

SUNDRY NOTICES AND REPORTS ON WELLS Do not use this form for proposals to drill or to re-enter an abandoned well. Use Form 3160-3 (APD) for such proposals. SUBMIT IN TRIPLICATE - Other instructions on page 2			6. If Indian, Allottee or Tribe Name			
				7. If Unit of CA/Agreer	ment,	Name and/or No.
1. Type of Well						
Oil Well Gas Well Other				8. Well Name and No.		
2. Name of Operator				9. API Well No.		
3a. Address 3b. Phor	ne No. (inclu	de area code)		10. Field and Pool or Exploratory Area		
4. Location of Well (Footage, Sec., T.,R.,M., or Survey Description)				11. Country or Parish, S	State	
12. CHECK THE APPROPRIATE BOX(ES)	TO INDICAT	E NATURE OF	NOTIO	CE, REPORT OR OTH	ER D	ATA
TYPE OF SUBMISSION		ТҮРЕ О	F ACT	ΓΙΟΝ		
Acidize	Deepen		Produ	uction (Start/Resume)		Water Shut-Off
Notice of Intent Acture	Hydraulic 1	Fracturing		amation		Well Integrity
Cooing Bonoir	New Const	~ =	-			
Subsequent Report Casing Repair	Plug and A			omplete Other Other porarily Abandon		
Final Abandonment Notice Convert to Injection	Plug Back			r Disposal		
Describe Proposed or Completed Operation: Clearly state all pertinent de						·
completed. Final Abandonment Notices must be filed only after all requires ready for final inspection.)	ements, men	ading reciamano.	ii, iiave	e occur completed and the	c opei	ator has determined that the site
4. I hereby certify that the foregoing is true and correct. Name (Printed/Type	ed)					
	Title					
Signature	Date					
THE SPACE FOR	FEDERA	L OR STATE	E OF	ICE USE		
Approved by						
•		T. 1				
		Title		D	ate	
Conditions of approval, if any, are attached. Approval of this notice does not vertify that the applicant holds legal or equitable title to those rights in the subwhich would entitle the applicant to conduct operations thereon.		Office				
Fitle 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime iny false, fictitious or fraudulent statements or representations as to any matter.			nd willf	fully to make to any dep	artme	ent or agency of the United States

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

(Form 3160-5, page 2)

Additional Information

Location of Well

0. SHL: NENE / 200 FNL / 796 FEL / TWSP: 24S / RANGE: 29E / SECTION: 11 / LAT: 32.2388914 / LONG: -103.9491936 (TVD: 0 feet, MD: 0 feet)

PPP: NWNE / 100 FNL / 2310 FEL / TWSP: 24S / RANGE: 29E / SECTION: 11 / LAT: 32.239154 / LONG: -103.9540898 (TVD: 10221 feet, MD: 10413 feet)

BHL: SWSE / 20 FSL / 2310 FEL / TWSP: 24S / RANGE: 29E / SECTION: 14 / LAT: 32.2103131 / LONG: -103.9541108 (TVD: 10915 feet, MD: 21410 feet)

<u>District 1</u>
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720
<u>District II</u>
811 S. First St., Artesia, NM 88210

Phone: (575) 748-1283 Fax: (575) 748-9720 <u>District IIII</u> 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

District IV

State of New Mexico

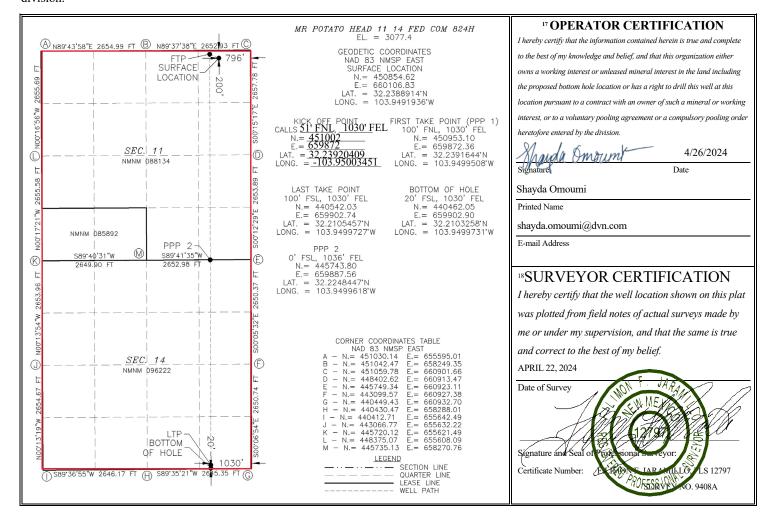
Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr.

Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT


¹ API Numbe	er	² Pool Code	³ Pool Name					
		98220	(Gas)					
⁴ Property Code		⁵ Pr	operty Name	⁶ Well Number				
326251		MR POTATO HEAD 11 14 FED COM 824H						
⁷ OGRID No.		⁸ Operator Name ⁹ Elevation						
6137		DEVON ENERGY PRODUCTION COMPANY, L.P. 3077.4						

¹⁰ Surface Location

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
A	11	24 S	29 E		200	NORTH	796	EAST	EDDY
¹¹ Bottom Hole Location If Different From Surface									
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County

P	14	24 S	29 E		20	SOUTH	1030	EAST	EDDY
12 Dedicated Acres	13 Joint	or Infill	¹⁴ Consolidatio	n Code			15 Order No.		
1280									

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Intent	X	As Dril	led											
API#														
DEV	rator Na /ON EN MPANY	IERGY P	RODUC	J		erty N POTA			AD 11	14	FED	СОМ	Well Number 824H	
Kick C	Off Point	(KOP)												
UL	Section	Township	Range	Lot	Feet		From N	I/S	Feet	:	From	n E/W	County	
Α	11	245	29E		51		NOR	TH	1030)	Е	AST	EDDY	
Latitu	ide				Longitu	de							NAD	
32.239	20409				-103.95	00345	1						83	
First T	ake Poir	nt (FTP)	Range	Lot	Feet		From N	1/5	Feet		Erom	n E/W	County	
A	11	24S	29E	Lot	100		NORT		103		EAS		EDDY	
Latitu 32.2	ide 239164	4			Longitu 103.9		508		l				NAD 83	
Last T	ake Poin	t (LTP)												
UL P	Section 14	Township 24S	Range 29E	Lot	Feet 100		n N/S JTH	Feet 103		From EAS	-	Count		
132.2	^{ide} 210545	57			Longitu 103.9		727					NAD 83		
Is this	well the	defining v	vell for the	e Horiz	ontal Sp	pacing	; Unit?		N					
Is this	well an	infill well?		Υ]									
	l is yes p ng Unit.	lease provi	ide API if a	availab	le, Oper	ator I	Name a	and w	vell n	umbei	for [Definiı	ng well fo	r Horizontal
API #	15-4672	2]											
Ope	rator Na	me:	I			Prop	erty N	ame	•					Well Number
	ON ENE	RGY PROD	UCTION C	ОМРА	NY,		-			1-14 F	ED C	MC		623H

KZ 06/29/2018

U. S. Steel Tubular Products 10.750" 40.50lb/ft (0.350" Wall) H40

11/4/2021 10:14:32 AM

Ш
\perp
0
α
\vdash
Z
0
Ö
Ž
$\overline{}$

MECHANICAL PROPERTIES	Pipe	втс	LTC	STC		
Minimum Yield Strength	40,000				psi	
Maximum Yield Strength	80,000				psi	
Minimum Tensile Strength	60,000				psi	
DIMENSIONS	Pipe	втс	LTC	STC		
Outside Diameter	10.750	0.000	0.000	11.750	in.	
Wall Thickness	0.350				in.	
Inside Diameter	10.050			10.050	in.	
Standard Drift	9.894	9.894	9.894	9.894	in.	
Alternate Drift					in.	
Nominal Linear Weight, T&C	40.50				lb/ft	
Plain End Weight	38.91				lb/ft	
PERFORMANCE	Pipe	втс	LTC	STC		
Minimum Collapse Pressure						
William Collapse i ressare	1,390	1,390	1,390	1,390	psi	
Minimum Internal Yield Pressure	1,390 2,280	1,390 2,280	1,390 2,280	1,390 2,280	psi psi	
·	,	•	•	*	•	
Minimum Internal Yield Pressure	2,280	2,280	2,280	2,280	psi	
Minimum Internal Yield Pressure Minimum Pipe Body Yield Strength	2,280 457	2,280	2,280	2,280	psi 1,000 lbs	
Minimum Internal Yield Pressure Minimum Pipe Body Yield Strength Joint Strength	2,280 457 	2,280 	2,280	2,280 314	psi 1,000 lbs 1,000 lbs	
Minimum Internal Yield Pressure Minimum Pipe Body Yield Strength Joint Strength Reference Length	2,280 457 	2,280 	2,280 	2,280 314 5,164	psi 1,000 lbs 1,000 lbs	
Minimum Internal Yield Pressure Minimum Pipe Body Yield Strength Joint Strength Reference Length MAKE-UP DATA	2,280 457 Pipe	2,280 BTC	2,280 LTC	2,280 314 5,164 STC	psi 1,000 lbs 1,000 lbs ft	

Notes

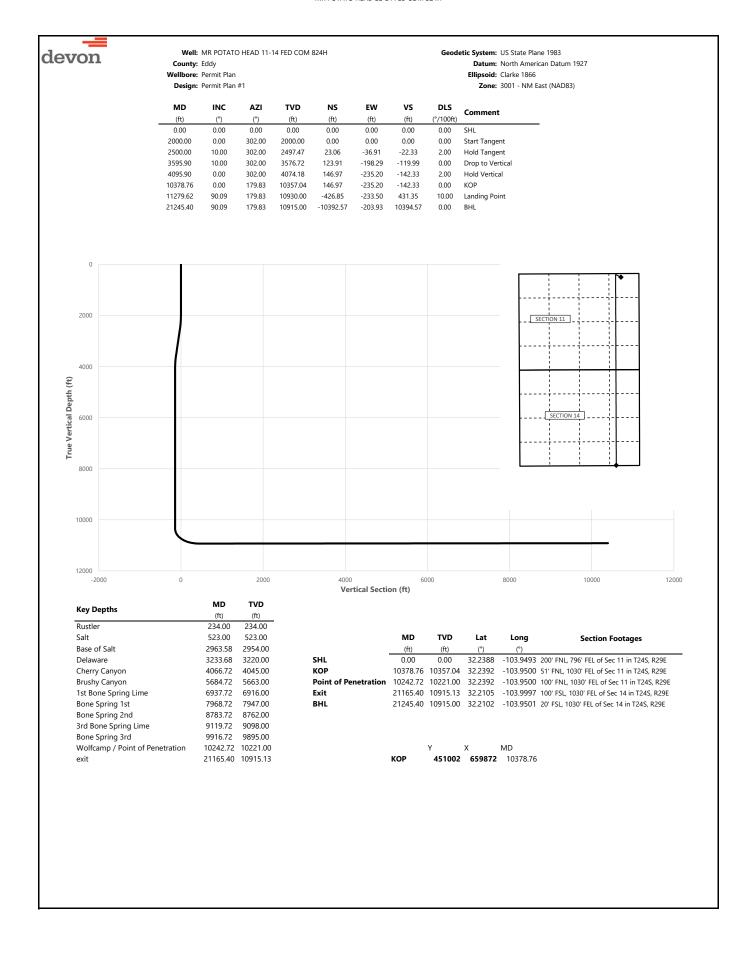
Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com

U. S. Steel Tubular Products 5.500" 17.00lbs/ft (0.304" Wall) P110

2/21/2019 8:12:22 AM


MECHANICAL PROPERTIES	Pipe	втс	LTC	STC	
Minimum Yield Strength	110,000				psi
Maximum Yield Strength	140,000				psi
Minimum Tensile Strength	125,000				psi
DIMENSIONS	Pipe	втс	LTC	STC	
Outside Diameter	5.500	6.050	6.050		in.
Wall Thickness	0.304				in.
Inside Diameter	4.892	4.892	4.892		in.
Standard Drift	4.767	4.767	4.767		in.
Alternate Drift					in.
Nominal Linear Weight, T&C	17.00				lbs/ft
Plain End Weight	16.89				lbs/ft
PERFORMANCE	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	7,480	7,480	7,480		psi
Minimum Internal Yield Pressure	10,640	10,640	10,640		psi
Minimum Pipe Body Yield Strength	546				1,000 lbs
Joint Strength		568	445		1,000 lbs
Reference Length		22,271	17,449		ft
MAKE-UP DATA	Pipe	втс	LTC	STC	
Make-Up Loss		4.13	3.50		in.
Minimum Make-Up Torque			3,470		ft-lbs
Maximum Make-Up Torque			5,780		ft-lbs

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

> U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S connections@uss.com Spring, Texas 77380

1-877-893-9461 www.usstubular.com

County: Eddy
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927 **Ellipsoid:** Clarke 1866

Zone: 3001 - NM East (NAD83)

	Design:	Permit Plan	#1					Zone: 3001 - NM East (NAD83)
MD	INC	AZI	TVD	NS	EW	vs	DLS	
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	SHL
100.00	0.00	302.00	100.00	0.00	0.00	0.00	0.00	
200.00	0.00	302.00	200.00	0.00	0.00	0.00	0.00	D. II
234.00	0.00	302.00	234.00	0.00	0.00	0.00	0.00	Rustler
300.00 400.00	0.00	302.00 302.00	300.00 400.00	0.00	0.00	0.00	0.00	
500.00	0.00	302.00	500.00	0.00	0.00	0.00	0.00	
523.00	0.00	302.00	523.00	0.00	0.00	0.00	0.00	Salt
600.00	0.00	302.00	600.00	0.00	0.00	0.00	0.00	
700.00	0.00	302.00	700.00	0.00	0.00	0.00	0.00	
800.00	0.00	302.00	800.00	0.00	0.00	0.00	0.00	
900.00	0.00	302.00	900.00	0.00	0.00	0.00	0.00	
1000.00	0.00	302.00	1000.00	0.00	0.00	0.00	0.00	
1100.00 1200.00	0.00	302.00 302.00	1100.00 1200.00	0.00	0.00	0.00	0.00	
1300.00	0.00	302.00	1300.00	0.00	0.00	0.00	0.00	
1400.00	0.00	302.00	1400.00	0.00	0.00	0.00	0.00	
1500.00	0.00	302.00	1500.00	0.00	0.00	0.00	0.00	
1600.00	0.00	302.00	1600.00	0.00	0.00	0.00	0.00	
1700.00	0.00	302.00	1700.00	0.00	0.00	0.00	0.00	
1800.00	0.00	302.00	1800.00	0.00	0.00	0.00	0.00	
1900.00	0.00	302.00	1900.00	0.00	0.00	0.00	0.00	
2000.00	0.00	302.00	2000.00	0.00	0.00	0.00	0.00	Start Tangent
2100.00	2.00	302.00	2099.98	0.92	-1.48	-0.90	2.00	
2200.00 2300.00	4.00 6.00	302.00 302.00	2199.84 2299.45	3.70 8.32	-5.92 -13.31	-3.58 -8.05	2.00 2.00	
2400.00	8.00	302.00	2398.70	14.77	-13.51	-6.03 -14.31	2.00	
2500.00	10.00	302.00	2497.47	23.06	-36.91	-22.33	2.00	Hold Tangent
2600.00	10.00	302.00	2595.95	32.27	-51.64	-31.25	0.00	.
2700.00	10.00	302.00	2694.43	41.47	-66.36	-40.16	0.00	
2800.00	10.00	302.00	2792.91	50.67	-81.09	-49.07	0.00	
2900.00	10.00	302.00	2891.39	59.87	-95.81	-57.98	0.00	
2963.58	10.00	302.00	2954.00	65.72	-105.18	-63.65	0.00	Base of Salt
3000.00	10.00	302.00	2989.87	69.07	-110.54	-66.89	0.00	
3100.00 3200.00	10.00 10.00	302.00 302.00	3088.35 3186.83	78.27 87.48	-125.27 -139.99	-75.80 -84.71	0.00	
3233.68	10.00	302.00	3220.00	90.58	-144.95	-87.71	0.00	Delaware
3300.00	10.00	302.00	3285.31	96.68	-154.72	-93.62	0.00	Sciuvare
3400.00	10.00	302.00	3383.79	105.88	-169.45	-102.54	0.00	
3500.00	10.00	302.00	3482.27	115.08	-184.17	-111.45	0.00	
3595.90	10.00	302.00	3576.72	123.91	-198.29	-119.99	0.00	Drop to Vertical
3600.00	9.92	302.00	3580.75	124.28	-198.90	-120.36	2.00	
3700.00	7.92	302.00	3679.54	132.50	-212.04	-128.31	2.00	
3800.00 3900.00	5.92	302.00	3778.81	138.88	-222.26	-134.49	2.00	
4000.00	3.92 1.92	302.00 302.00	3878.43 3978.30	143.42 146.12	-229.53 -233.84	-138.89 -141.50	2.00 2.00	
4066.72	0.58	302.00	4045.00	146.89	-235.04	-141.30	2.00	Cherry Canyon
4095.90	0.00	302.00	4074.18	146.97	-235.20	-142.33	2.00	Hold Vertical
4100.00	0.00	179.83	4078.28	146.97	-235.20	-142.33	0.00	
4200.00	0.00	179.83	4178.28	146.97	-235.20	-142.33	0.00	
4300.00	0.00	179.83	4278.28	146.97	-235.20	-142.33	0.00	
4400.00	0.00	179.83	4378.28	146.97	-235.20	-142.33	0.00	
4500.00	0.00	179.83	4478.28	146.97	-235.20	-142.33	0.00	
4600.00 4700.00	0.00	179.83 179.83	4578.28 4678.28	146.97 146.97	-235.20	-142.33	0.00	
4800.00	0.00	179.83	4778.28	146.97	-235.20 -235.20	-142.33 -142.33	0.00	
4900.00	0.00	179.83	4878.28	146.97	-235.20	-142.33	0.00	
5000.00	0.00	179.83	4978.28	146.97	-235.20	-142.33	0.00	
5100.00	0.00	179.83	5078.28	146.97	-235.20	-142.33	0.00	
5200.00	0.00	179.83	5178.28	146.97	-235.20	-142.33	0.00	
5300.00	0.00	179.83	5278.28	146.97	-235.20	-142.33	0.00	
5400.00	0.00	179.83	5378.28	146.97	-235.20	-142.33	0.00	
5500.00	0.00	179.83	5478.28	146.97	-235.20	-142.33	0.00	
5600.00	0.00	179.83	5578.28	146.97	-235.20	-142.33	0.00	Prijeby Canyon
5684.72 5700.00	0.00	179.83 179.83	5663.00 5678.28	146.97 146.97	-235.20 -235.20	-142.33 -142.33	0.00	Brushy Canyon
5800.00	0.00	179.83	5778.28	146.97	-235.20	-142.33	0.00	
5900.00	0.00	179.83	5878.28	146.97	-235.20	-142.33	0.00	
6000.00	0.00	179.83	5978.28	146.97	-235.20	-142.33	0.00	
6100.00	0.00	179.83	6078.28	146.97	-235.20	-142.33	0.00	

County: Eddy
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927 **Ellipsoid:** Clarke 1866

Zone: 3001 - NM East (NAD83)

	Design:	Permit Plan	ı #1					Zone: 3001 - NM East (NAD83)
MD (ft)	INC (°)	AZI (°)	TVD (ft)	NS (ft)	EW (ft)	VS (ft)	DLS (°/100ft)	Comment
6200.00	0.00	179.83	6178.28	146.97	-235.20	-142.33	0.00	
6300.00	0.00	179.83	6278.28	146.97	-235.20	-142.33	0.00	
6400.00	0.00	179.83	6378.28	146.97	-235.20	-142.33	0.00	
6500.00	0.00	179.83	6478.28	146.97	-235.20	-142.33	0.00	
6600.00	0.00	179.83	6578.28	146.97	-235.20	-142.33	0.00	
6700.00 6800.00	0.00	179.83 179.83	6678.28 6778.28	146.97 146.97	-235.20 -235.20	-142.33 -142.33	0.00	
6900.00	0.00	179.83	6878.28	146.97	-235.20	-142.33	0.00	
6937.72	0.00	179.83	6916.00	146.97	-235.20	-142.33	0.00	1st Bone Spring Lime
7000.00	0.00	179.83	6978.28	146.97	-235.20	-142.33	0.00	
7100.00	0.00	179.83	7078.28	146.97	-235.20	-142.33	0.00	
7200.00	0.00	179.83	7178.28	146.97	-235.20	-142.33	0.00	
7300.00	0.00	179.83	7278.28	146.97	-235.20	-142.33	0.00	
7400.00	0.00	179.83	7378.28	146.97	-235.20	-142.33	0.00	
7500.00 7600.00	0.00	179.83 179.83	7478.28 7578.28	146.97	-235.20	-142.33 -142.33	0.00	
7700.00	0.00	179.83	7678.28	146.97 146.97	-235.20 -235.20	-142.33	0.00	
7800.00	0.00	179.83	7778.28	146.97	-235.20	-142.33	0.00	
7900.00	0.00	179.83	7878.28	146.97	-235.20	-142.33	0.00	
7968.72	0.00	179.83	7947.00	146.97	-235.20	-142.33	0.00	Bone Spring 1st
8000.00	0.00	179.83	7978.28	146.97	-235.20	-142.33	0.00	
8100.00	0.00	179.83	8078.28	146.97	-235.20	-142.33	0.00	
8200.00	0.00	179.83	8178.28	146.97	-235.20	-142.33	0.00	
8300.00	0.00	179.83	8278.28	146.97	-235.20	-142.33	0.00	
8400.00	0.00	179.83	8378.28	146.97	-235.20	-142.33	0.00	
8500.00 8600.00	0.00	179.83 179.83	8478.28 8578.28	146.97 146.97	-235.20 -235.20	-142.33 -142.33	0.00	
8700.00	0.00	179.83	8678.28	146.97	-235.20	-142.33	0.00	
8783.72	0.00	179.83	8762.00	146.97	-235.20	-142.33	0.00	Bone Spring 2nd
8800.00	0.00	179.83	8778.28	146.97	-235.20	-142.33	0.00	
8900.00	0.00	179.83	8878.28	146.97	-235.20	-142.33	0.00	
9000.00	0.00	179.83	8978.28	146.97	-235.20	-142.33	0.00	
9100.00	0.00	179.83	9078.28	146.97	-235.20	-142.33	0.00	
9119.72	0.00	179.83	9098.00	146.97	-235.20	-142.33	0.00	3rd Bone Spring Lime
9200.00 9300.00	0.00	179.83	9178.28	146.97	-235.20	-142.33	0.00	
9400.00	0.00	179.83 179.83	9278.28 9378.28	146.97 146.97	-235.20 -235.20	-142.33 -142.33	0.00	
9500.00	0.00	179.83	9478.28	146.97	-235.20	-142.33	0.00	
9600.00	0.00	179.83	9578.28	146.97	-235.20	-142.33	0.00	
9700.00	0.00	179.83	9678.28	146.97	-235.20	-142.33	0.00	
9800.00	0.00	179.83	9778.28	146.97	-235.20	-142.33	0.00	
9900.00	0.00	179.83	9878.28	146.97	-235.20	-142.33	0.00	
9916.72	0.00	179.83	9895.00	146.97	-235.20	-142.33	0.00	Bone Spring 3rd
10000.00	0.00	179.83	9978.28	146.97	-235.20	-142.33	0.00	
10100.00 10200.00	0.00	179.83 179.83	10078.28 10178.28	146.97 146.97	-235.20 -235.20	-142.33 -142.33	0.00	
10242.72	0.00	179.83	10221.00	146.97	-235.20	-142.33	0.00	Wolfcamp / Point of Penetration
10300.00	0.00	179.83	10278.28	146.97	-235.20	-142.33	0.00	Woncamp / Form of Feneration
10378.76	0.00	179.83	10357.04	146.97	-235.20	-142.33	0.00	KOP
10400.00	2.12	179.83	10378.28	146.58	-235.20	-141.93	10.00	
10500.00	12.12	179.83	10477.38	134.19	-235.17	-129.55	10.00	
10600.00	22.12	179.83	10572.82	104.79	-235.08	-100.15	10.00	
10700.00	32.12	179.83	10661.71	59.25	-234.94	-54.63	10.00	
10800.00	42.12	179.83	10741.35	-1.03 -74.21	-234.76	5.63	10.00	
10900.00 11000.00	52.12 62.12	179.83 179.83	10809.30 10863.52	-74.21 -158.09	-234.55 -234.30	78.80 162.66	10.00 10.00	
11100.00	72.12	179.83	10902.34	-250.11	-234.02	254.65	10.00	
11200.00	82.12	179.83	10924.60	-347.47	-233.73	351.99	10.00	
11279.62	90.09	179.83	10930.00	-426.85	-233.50	431.35	10.00	Landing Point
11300.00	90.09	179.83	10929.97	-447.22	-233.44	451.72	0.00	
11400.00	90.09	179.83	10929.82	-547.22	-233.14	551.69	0.00	
11500.00	90.09	179.83	10929.67	-647.22	-232.85	651.67	0.00	
11600.00	90.09	179.83	10929.52	-747.22	-232.55	751.64	0.00	
11700.00	90.09	179.83	10929.37	-847.22	-232.25	851.61	0.00	
11800.00 11900.00	90.09 90.09	179.83 179.83	10929.22 10929.07	-947.22 -1047.22	-231.96 -231.66	951.59 1051.56	0.00	
12000.00	90.09	179.83		-1047.22	-231.00	1151.54	0.00	
12100.00	90.09	179.83	10928.77	-1247.22	-231.06	1251.51	0.00	
12200.00	90.09	179.83		-1347.22	-230.77	1351.49	0.00	
12300.00	90.09	179.83	10928.47	-1447.22	-230.47	1451.46	0.00	

County: Eddy
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927 **Ellipsoid:** Clarke 1866

	Design: Permit Plan #1						Zone: 3001 - NM East (NAD83)				
MD (ft)	INC (°)	AZI (°)	TVD (ft)	NS (ft)	EW (ft)	VS (ft)	DLS (°/100ft)	Comment			
12400.00	90.09	179.83	10928.32	-1547.22	-230.17	1551.44	0.00				
12500.00	90.09	179.83	10928.16	-1647.22	-229.88	1651.41	0.00				
12600.00	90.09	179.83	10928.01	-1747.22	-229.58	1751.38	0.00				
12700.00	90.09	179.83	10927.86	-1847.22	-229.28	1851.36	0.00				
12800.00 12900.00	90.09 90.09	179.83 179.83	10927.71 10927.56	-1947.21 -2047.21	-228.99 -228.69	1951.33 2051.31	0.00				
13000.00	90.09	179.83	10927.30	-2147.21	-228.39	2151.28	0.00				
13100.00	90.09	179.83	10927.26	-2247.21	-228.09	2251.26	0.00				
13200.00	90.09	179.83	10927.11	-2347.21	-227.80	2351.23	0.00				
13300.00	90.09	179.83	10926.96	-2447.21	-227.50	2451.20	0.00				
13400.00	90.09	179.83	10926.81	-2547.21	-227.20	2551.18	0.00				
13500.00	90.09	179.83	10926.66	-2647.21	-226.91	2651.15	0.00				
13600.00	90.09	179.83	10926.51	-2747.21	-226.61	2751.13	0.00				
13700.00 13800.00	90.09 90.09	179.83 179.83	10926.36 10926.21	-2847.21 -2947.21	-226.31 -226.02	2851.10 2951.08	0.00				
13900.00	90.09	179.83	10926.21	-3047.21	-225.72	3051.05	0.00				
14000.00	90.09	179.83	10925.91	-3147.21	-225.42	3151.03	0.00				
14100.00	90.09	179.83	10925.76	-3247.21	-225.12	3251.00	0.00				
14200.00	90.09	179.83	10925.61	-3347.21	-224.83	3350.97	0.00				
14300.00	90.09	179.83	10925.46	-3447.21	-224.53	3450.95	0.00				
14400.00	90.09	179.83	10925.31	-3547.21	-224.23	3550.92	0.00				
14500.00	90.09	179.83	10925.16	-3647.21	-223.94	3650.90	0.00				
14600.00	90.09	179.83	10925.01	-3747.20	-223.64	3750.87	0.00				
14700.00 14800.00	90.09 90.09	179.83 179.83	10924.86 10924.71	-3847.20 -3947.20	-223.34 -223.05	3850.85 3950.82	0.00				
14900.00	90.09	179.83	10924.71	-4047.20	-223.03	4050.79	0.00				
15000.00	90.09	179.83	10924.41	-4147.20	-222.45	4150.77	0.00				
15100.00	90.09	179.83	10924.25	-4247.20	-222.16	4250.74	0.00				
15200.00	90.09	179.83	10924.10	-4347.20	-221.86	4350.72	0.00				
15300.00	90.09	179.83	10923.95	-4447.20	-221.56	4450.69	0.00				
15400.00	90.09	179.83	10923.80	-4547.20	-221.26	4550.67	0.00				
15500.00	90.09	179.83	10923.65	-4647.20	-220.97	4650.64	0.00				
15600.00 15700.00	90.09 90.09	179.83 179.83	10923.50 10923.35	-4747.20	-220.67	4750.62 4850.59	0.00				
15800.00	90.09	179.83	10923.35	-4847.20 -4947.20	-220.37 -220.08	4950.59	0.00				
15900.00	90.09	179.83	10923.05	-5047.20	-219.78	5050.54	0.00				
16000.00	90.09	179.83	10922.90	-5147.20	-219.48	5150.51	0.00				
16100.00	90.09	179.83	10922.75	-5247.20	-219.19	5250.49	0.00				
16200.00	90.09	179.83	10922.60	-5347.20	-218.89	5350.46	0.00				
16300.00	90.09	179.83	10922.45	-5447.20	-218.59	5450.44	0.00				
16400.00	90.09	179.83	10922.30	-5547.19	-218.29	5550.41	0.00				
16500.00	90.09	179.83	10922.15	-5647.19	-218.00	5650.38	0.00				
16600.00 16700.00	90.09 90.09	179.83 179.83	10922.00 10921.85	-5747.19 -5847.19	-217.70 -217.40	5750.36 5850.33	0.00				
16800.00	90.09	179.83	10921.70	-5947.19	-217.40	5950.33	0.00				
16900.00	90.09	179.83	10921.55	-6047.19	-216.81	6050.28	0.00				
17000.00	90.09	179.83	10921.40	-6147.19	-216.51	6150.26	0.00				
17100.00	90.09	179.83	10921.25	-6247.19	-216.22	6250.23	0.00				
17200.00	90.09	179.83	10921.10	-6347.19	-215.92	6350.20	0.00				
17300.00	90.09	179.83	10920.95	-6447.19	-215.62	6450.18	0.00				
17400.00	90.09	179.83	10920.80	-6547.19	-215.32	6550.15	0.00				
17500.00 17600.00	90.09	179.83 179.83	10920.65	-6647.19	-215.03 -214.73	6650.13 6750.10	0.00				
17600.00	90.09 90.09	179.83	10920.50 10920.34	-6747.19 -6847.19	-214.73 -214.43	6850.08	0.00				
17700.00	90.09	179.83	10920.34	-6947.19	-214.43 -214.14	6950.05	0.00				
17900.00	90.09	179.83	10920.04	-7047.19	-213.84	7050.03	0.00				
18000.00	90.09	179.83	10919.89	-7147.19	-213.54	7150.00	0.00				
18100.00	90.09	179.83	10919.74	-7247.19	-213.25	7249.97	0.00				
18200.00	90.09	179.83	10919.59	-7347.18	-212.95	7349.95	0.00				
18300.00	90.09	179.83	10919.44	-7447.18	-212.65	7449.92	0.00				
18400.00	90.09	179.83	10919.29	-7547.18	-212.36	7549.90	0.00				
18500.00 18600.00	90.09 90.09	179.83 179.83	10919.14 10918.99	-7647.18 -7747.18	-212.06 -211.76	7649.87 7749.85	0.00				
18700.00	90.09	179.83	10918.99	-7747.18 -7847.18	-211.76 -211.46	7749.85 7849.82	0.00				
18800.00	90.09	179.83	10918.69	-7947.18	-211.40	7949.79	0.00				
18900.00	90.09	179.83	10918.54	-8047.18	-210.87	8049.77	0.00				
19000.00	90.09	179.83	10918.39	-8147.18	-210.57	8149.74	0.00				
19100.00	90.09	179.83	10918.24	-8247.18	-210.28	8249.72	0.00				
19200.00	90.09	179.83	10918.09	-8347.18	-209.98	8349.69	0.00				
19300.00	90.09	179.83	10917.94	-8447.18	-209.68	8449.67	0.00				

County: Eddy
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927

Ellipsoid: Clarke 1866 Zone: 3001 - NM East (NAD83)

MD	INC	AZI	TVD	NS	EW	VS	DLS	Comment
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	
19400.00	90.09	179.83	10917.79	-8547.18	-209.39	8549.64	0.00	-
19500.00	90.09	179.83	10917.64	-8647.18	-209.09	8649.62	0.00	
19600.00	90.09	179.83	10917.49	-8747.18	-208.79	8749.59	0.00	
19700.00	90.09	179.83	10917.34	-8847.18	-208.49	8849.56	0.00	
19800.00	90.09	179.83	10917.19	-8947.18	-208.20	8949.54	0.00	
19900.00	90.09	179.83	10917.04	-9047.18	-207.90	9049.51	0.00	
20000.00	90.09	179.83	10916.89	-9147.17	-207.60	9149.49	0.00	
20100.00	90.09	179.83	10916.74	-9247.17	-207.31	9249.46	0.00	
20200.00	90.09	179.83	10916.59	-9347.17	-207.01	9349.44	0.00	
20300.00	90.09	179.83	10916.43	-9447.17	-206.71	9449.41	0.00	
20400.00	90.09	179.83	10916.28	-9547.17	-206.42	9549.38	0.00	
20500.00	90.09	179.83	10916.13	-9647.17	-206.12	9649.36	0.00	
20600.00	90.09	179.83	10915.98	-9747.17	-205.82	9749.33	0.00	
20700.00	90.09	179.83	10915.83	-9847.17	-205.52	9849.31	0.00	
20800.00	90.09	179.83	10915.68	-9947.17	-205.23	9949.28	0.00	
20900.00	90.09	179.83	10915.53	-10047.17	-204.93	10049.26	0.00	
21000.00	90.09	179.83	10915.38	-10147.17	-204.63	10149.23	0.00	
21100.00	90.09	179.83	10915.23	-10247.17	-204.34	10249.21	0.00	
21165.40	90.09	179.83	10915.13	-10312.57	-204.14	10314.59	0.00	exit
21200.00	90.09	179.83	10915.08	-10347.17	-204.04	10349.18	0.00	
21245.40	90.09	179.83	10915.00	-10392.57	-203.93	10394.57	0.00	BHL

TEC-LOCK WEDGE

8.625" 32.00 LB/FT (.352" Wall) BORUSAN MANNESMANNP110 HSCY

Pipe Body Data

Nominal OD:	8.625	in
Nominal Wall:	.352	in
Nominal Weight:	32.00	lb/ft
Plain End Weight:	31.13	lb/ft
Material Grade:	P110 HSCY	
Mill/Specification:	BORUSAN M	ANNESMANN
Yield Strength:	125,000	psi
Tensile Strength:	125,000	psi
Nominal ID:	7.921	in
API Drift Diameter:	7.796	in
Special Drift Diameter:	7.875	in
RBW:	87.5 %	
Body Yield:	1,144,000	lbf
Burst:	8,930	psi
Collapse:	4,230	psi

Connection Data

Standard OD:	9.000	in	
Pin Bored ID:	7.921	in	
Critical Section Area:	8.61433	in²	
Tensile Efficiency:	94.2 %		
Compressive Efficiency:	100.0 %		
Longitudinal Yield Strength:	1,077,000	lbf	
Compressive Limit:	1,144,000	lbf	
Internal Pressure Rating:	8,930	psi	
External Pressure Rating:	4,230	psi	
Maximum Bend:	62.6	°/100	

Operational Data

29,900	ft*lbf
37,375	ft*lbf
80,900	ft*lbf
89,900	ft*lbf
5.97	in
	37,375 80,900 89,900

Notes

Operational Torque is equivalent to the Maximum Make-Up Torque.

Generated on 9/18/2018 1:14:29 PM

Please visit http://www.huntingplc.com for the latest technical information.

Section 2 - Blowout Preventer Testing Procedure

Variance Request

Devon Energy requests to only test BOP connection breaks after drilling out of surface casing and while skidding between wells which conforms to API Standard 53 and industry standards. This test will include the Top Pipe Rams, HCR, Kill Line Check Valve, QDC (quick disconnect to wellhead) and Shell of the 10M BOPE to 5M for 10 minutes. If a break to the flex hose that runs to the choke manifold is required due to repositioning from a skid, the HCR will remain open during the shell test to include that additional break. The variance only pertains to intermediate hole-sections and no deeper than the Bone Springs Formation where 5M BOP tests are required. The initial BOP test will follow 43 CFR 3172, and subsequent tests following a skid will only test connections that are broken. The annular preventer will be tested to 100% working pressure. This variance will meet or exceed 43 CFR 3172 per the following: Devon Energy will perform a full BOP test per 43 CFR 3172 before drilling out of the intermediate casing string(s) and starting the production hole, before starting any hole section that requires a 10M test, before the expiration of the allotted 14-days for 5M intermediate batch drilling or when the drilling rig is fully mobilized to a new well pad, whichever is sooner. We will utilize a 200' TVD tolerance between intermediate shoes as the cutoff for a full BOP test. The BLM will be contacted 4hrs prior to a BOPE test. The BLM will be notified if and when a well control event is encountered. Break test will be a 14 day interval and not a 30 day full BOPE test interval. If in the event break testing is not utilized, then a full BOPE test would be conducted.

- 1. Well Control Response:
- 1. Primary barrier remains fluid
- 2. In the event of an influx due to being underbalanced and after a realized gain or flow, the order of closing BOPE is as follows:
 - a) Annular first
 - b) If annular were to not hold, Upper pipe rams second (which were tested on the skid BOP test)
 - c) If the Upper Pipe Rams were to not hold, Lower Pipe Rams would be third

1. Geologic Formations

TVD of target	10915	Pilot hole depth	N/A
MD at TD:	21245	Deepest expected fresh water	

Basin

Dasin			
Formation	Depth (TVD) from KB	Water/Mineral Bearing/Target Zone?	Hazards*
Rustler	234		
Salt	523		
Base of Salt	2954		
Delaware	3220		
Cherry Canyon	4045		
Brushy Canyon	5663		
1st Bone Spring Lime	6916		
Bone Spring 1st	7947		
Bone Spring 2nd	8762		
3rd Bone Spring Lime	9098		
Bone Spring 3rd	9895		
Wolfcamp	10221		

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program (Primary Design)

		Wt				Interval	Casing	Interval
Hole Size	Csg. Size	(PPF)	Grade	Conn	From (MD)	To (MD)	From (TVD)	To (TVD)
14 3/4	10 3/4	40 1/2	H40	ВТС	0	259	0	259
9 7/8	8 5/8	32	P110	TLW	0	10279	0	10279
7 7/8	5 1/2	17	P110	ВТС	0	21245	0	10915

[•] All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for contingency casing.

3. Cementing Program (Primary Design)

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy canyon to surface.

Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures.

Casing	# Sks	TOC	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	176	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	409	Surf	13.0	2.3	2nd State: Bradenhead Squeeze - Lead: Class C Cement + additives
1111.1	533	5684	13.2	1.44	Tail: Class H / C + additives
Production	117	8379	9	3.27	Lead: Class H /C + additives
Floduction	1438	10379	13.2	1.44	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Prod	10%

4. Pressure Control Equipment (Three String Design)

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		✓	Tested to:
			Anı	nular	X	50% of rated working pressure
Int 1	13-5/8"	5M	Bline	l Ram	X	
IIIt I	13-3/6	3101	Pipe	Ram		5M
			Doub	le Ram	X	J1V1
			Other*			
	13-5/8"		Annular (5M)		X	50% of rated working pressure
Production		5 M	Blind Ram		X	
Production		5M	Pipe Ram			5M
			Double Ram		X	5M
			Other*			
			Annular (5M)			
		Blind Ram		l Ram		
	Pipe Ram					
			Double Ram			
			Other*			
N A variance is requested for	A variance is requested for the use of a diverter on the surface casing. See attached for schematic.					
Y A variance is requested to run a 5 M annular on a 10M system						

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring
---	-----------------------------

6. Logging and Testing Procedures

Logging, (Logging, Coring and Testing					
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the					
X	Completion Report and sbumitted to the BLM.					
	No logs are planned based on well control or offset log information.					
	Drill stem test? If yes, explain.					
	Coring? If yes, explain.					

Additional l	ogs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
X	CBL	Production casing
X	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	5960
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

N H2S is present
Y H2S plan attached.

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachm	ients
X	Directional Plan
	Other, describe

Mr Potato Head 11-14 Fed Com 824H

10 3/4	surf	ace csg in a	14 3/4	inch hole.		Design I	Factors			Surfac	e	
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	40.50		h 40	btc	28.21	7.43	0.41	400	13	0.68	14.04	16,200
"B"				btc				0				0
	w/8.4#/g	mud, 30min Sfc Csg Test	psig: 1,421	Tail Cmt	does not	circ to sfc.	Totals:	400				16,200
Comparison o	f Proposed to Mir	nimum Required Cem	ent Volumes									
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
14 3/4	0.5563	176	253	223	14	9.00	3345	5M				2.00
Burst Frac Grad	dient(s) for Segme	nt(s) A, B = , b All >	0.70, OK.									

#/ft					Design	Factors			Int 1		
	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
32.00		p 110	tlw	3.27	0.75	1.5	10,279	2	2.51	1.26	328,928
							0				0
w/8.4#/g	g mud, 30min Sfc Csg Test p	osig: 2,261				Totals:	10,279	_			328,928
	The cement v	olume(s) are inten	nded to achieve a top of	0	ft from su	ırface or a	400				overlap.
Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
0.1261	533	768	1304	-41	10.50	3552	5M				0.44
		5663				sum of sx	Σ CuFt				Σ%excess
	32	30				942	1708				31
yld > 1.35											
	Annular Volume 0.1261	Annular 1 Stage Volume Cmt Sx 0.1261 533	w/8.4#/g mud, 30min Sfc Csg Test psig: 2,261 The cement volume(s) are inter Annular Volume Cmt Sx 0.1261 533 768 5663 32 30	w/8.4#/g mud, 30min Sfc Csg Test psig: 2,261 The cement volume(s) are intended to achieve a top of Annular 1 Stage 1 Stage Min Volume Cmt Sx CuFt Cmt Cu Ft 0.1261 533 768 1304 5663 32 30	w/8.4#/g mud, 30min Sfc Csg Test psig: 2,261 The cement volume(s) are intended to achieve a top of 1 Stage Annular Volume Cmt Sx CuFt Cmt Cu Ft % Excess 0.1261 533 768 1304 -41	w/8.4#/g mud, 30min Sfc Csg Test psig: 2,261 The cement volume(s) are intended to achieve a top of 0 ft from su Annular 1 Stage 1 Stage Min 1 Stage Drilling Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt 0.1261 533 768 1304 -41 10.50 5663 32 30	w/8.4#/g mud, 30min Sfc Csg Test psig: 2,261 Totals: Totals: Totals: Totals: Totals: Totals: The cement volume(s) are intended to achieve a top of Annular 1 Stage 1 Stage Min 1 Stage Prilling Calc Wulder Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP 0.1261 533 768 1304 -41 10.50 3552 0.1261 533 768 1304 -41 10.50 3552 3552 32 30 30 942	No. No.	W/8.4#/g mud, 30min Sfc Csg Test psig: 2,261	W/8.4#/g mud, 30min Sfc Csg Test psig: 2,261	W/8.4#/g mud, 30min Sfc Csg Test psig: 2,261 Totals: 10,279

5 1/2	casii	ng inside the	8 5/8	_		Design Fac	ctors			Prod 1		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	17.00		p 110	btc	2.94	1.26	1.79	21,245	2	3.00	2.11	361,165
"B"								0				0
	w/8.4#/	g mud, 30min Sfc Csg Test	psig: 2,401				Totals:	21,245				361,165
		The cement	volume(s) are inter	nded to achieve a top of	10079	ft from su	rface or a	200				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
7 7/8	0.1733	1555	2453	1935	27	10.50						0.91
Class 'C' tail cm	it yld > 1.35											

0			5 1/2			Design Factors					<choose casing=""></choose>		
Segment	#/ft	Grade		Coupling	#N/A	Collapse	Burst	Length	B@s	a-B	a-C	Weight	
"A"				0.00				0				0	
"B"				0.00				0				0	
	w/8.4#/g	mud, 30min Sfc Csg Test	osig:				Totals:	0				0	
		Cmt vol ca	alc below includes th	is csg, TOC intended	#N/A	ft from su	rface or a	#N/A				overlap.	
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist	
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg	
0		#N/A	#N/A	0	#N/A								
ŧN/A			Capitan Reef est	top XXXX.									

Carlsbad Field Office 5/21/2024

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 346412

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	346412
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Create	ed By		Condition Date
ward	d.rikala	All original COA's still apply. Additionally, if cement is not circulated to surface during cementing operations, then a CBL is required.	6/10/2024