Form 3160-3 FORM APPROVED OMB No. 1004-0137 (June 2015) Expires: January 31, 2018 **UNITED STATES** DEPARTMENT OF THE INTERIOR 5. Lease Serial No. BUREAU OF LAND MANAGEMENT APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. DRILL REENTER 1a. Type of work: 1b. Type of Well: Oil Well Gas Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing Single Zone Multiple Zone 2. Name of Operator 9. API Well No. 30-005-64390 10. Field and Pool, or Exploratory 3a. Address 3b. Phone No. (include area code) 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. or Blk. and Survey or Area At surface At proposed prod. zone 14. Distance in miles and direction from nearest town or post office* 12. County or Parish 13. State 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see 2. A Drilling Plan. Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. SUPO must be filed with the appropriate Forest Service Office). 6. Such other site specific information and/or plans as may be requested by the 25. Signature Name (Printed/Typed) Date Title Approved by (Signature) Name (Printed/Typed) Date Title Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction

(Continued on page 2)

*(Instructions on page 2)

<u>District I</u>
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720
<u>District II</u>
811 S. First St., Artesia, NM 88210

Phone: (575) 748-1283 Fax: (575) 748-9720 <u>District IIII</u> 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

District IV

160

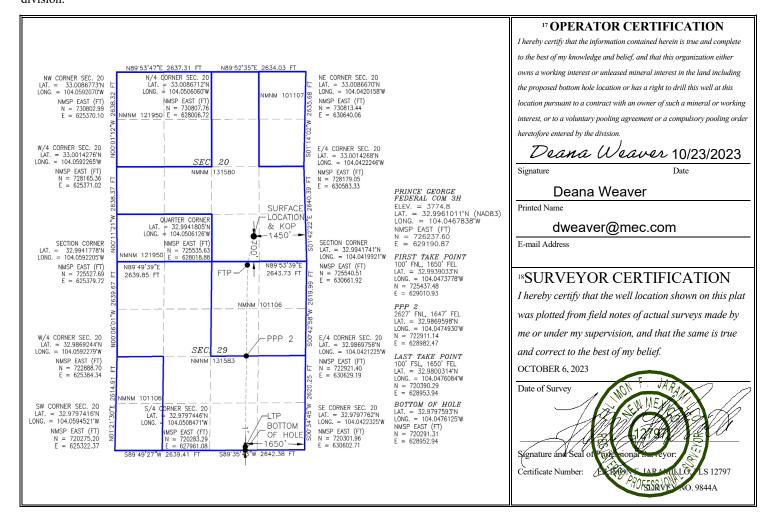
State of New Mexico

Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr.

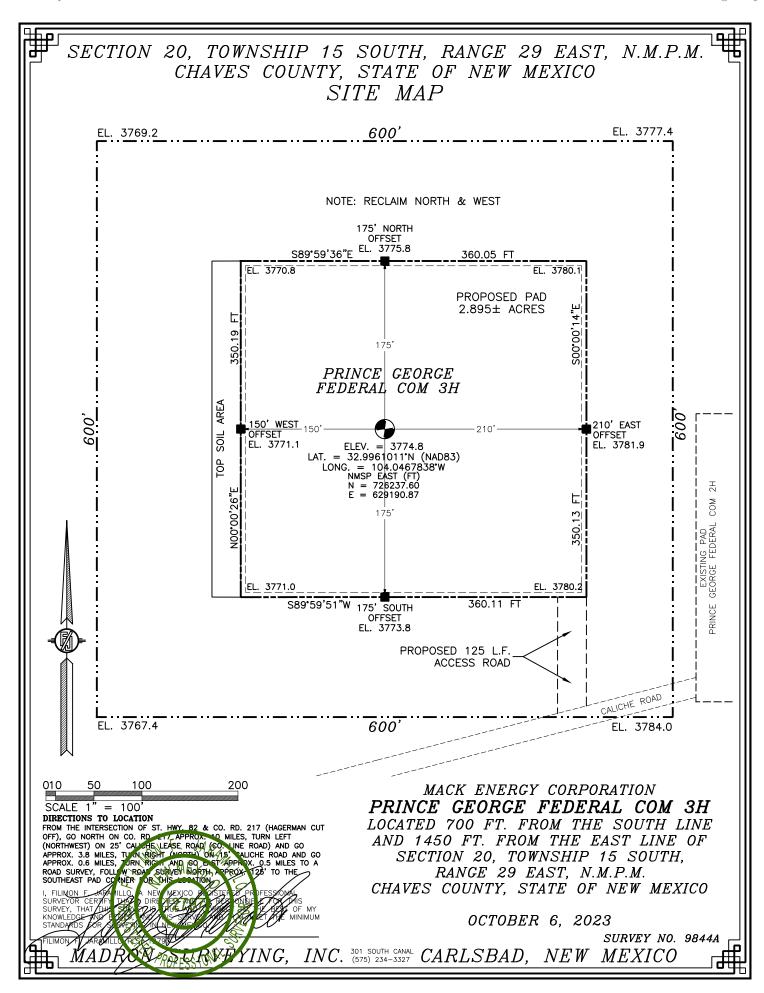
Santa Fe, NM 87505

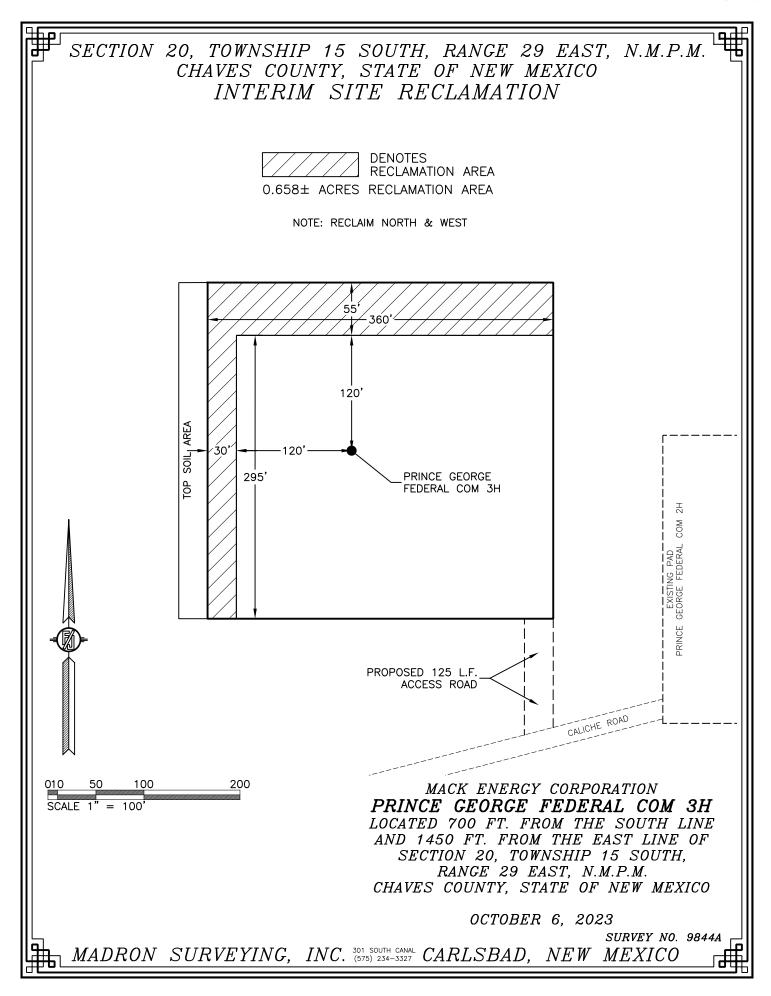
Form C-102
Revised August 1, 2011
Submit one copy to appropriate
District Office

☐ AMENDED REPORT

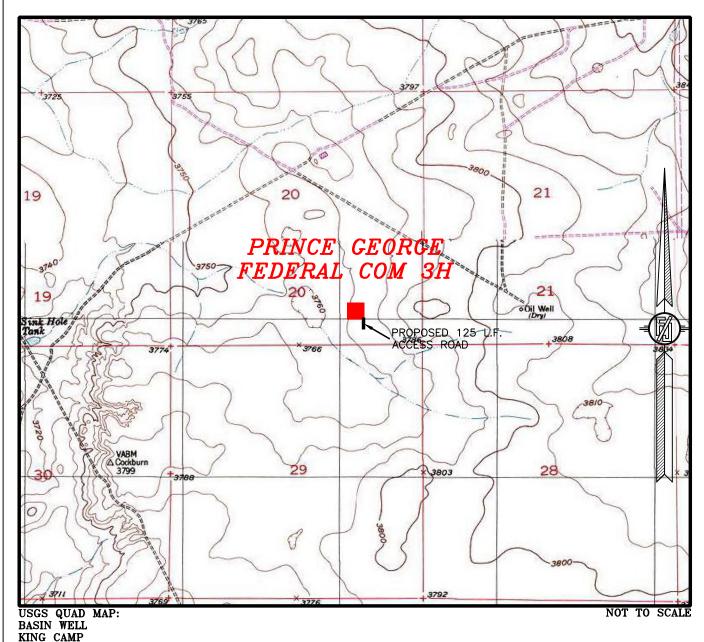

WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Number		² Pool Code	² Pool Code ³ Pool Name		
30-005-64390		52770			
⁴ Property Code		⁵ Pr	⁶ Well Number		
320814		PRINCE GEOF	3Н		
⁷ OGRID No.		8 O _I	⁹ Elevation		
13837		MACK ENER	GY CORPORATION	3774.8	


¹⁰ Surface Location


UL or lot no.	Section 20	Township 15 S	Range 29 E	Lot Idn	Feet from the 700	North/South line SOUTH	Feet from the 1450	East/West line EAST	County CHAVES
			п]	Bottom H	lole Location	If Different Fr	om Surface		
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
О	29	15 S	29E		1	SOUTH	1650	EAST	CHAVES
12 Dedicated Acre	s 13 Joint	or Infill 14	Consolidation	on Code 15 Order No.					

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.



Inten	t XX	As Dril	led										
API#													
	rator Nar CK ENE	ne: ERGY CO)RPOR/	1OITA	I		erty N NCE			FEDE	RAL C	ОМ	Well Number 3H
Kick (Off Point	(KOP)				l							
UL O	Section 20	Township 15S	Range 29E	Lot	Feet 700		From N		Feet 1450	Fro EA	m E/W	County CHAVE	<u> </u>
Latitu			23L		Longitu			11	1430		01	NAD 83	<u> </u>
02.0	700101	<u>. </u>			1.0							100	
First 7	Take Poin	t (FTP) Township	Range	Lot	Feet		From N	ı/s	Feet	Fro	m E/W	County	
B	29	15S	29E	201	100 Longitu	1	NORT		1650	EA		CHAVE	S
	93903	3				104.0473778 83							
Last T	ake Poin	t (LTP)											
UL O	Section 29	Township 15S	Range 29E	Lot	Feet 100	From		Feet 165		rom E/W	Coun	ty VES	
Latitu 32.9	olde 180031	4			Longitu 104.0	ude 04760	084	l			NAD 83		
											1		
Is this	well the	defining v	vell for th	e Horiz	ontal S _i	pacing	Unit?						
								_					
Is this	well an i	infill well?]								
	l is yes pl ng Unit.	ease prov	ide API if	availab	le, Opei	rator N	lame a	and v	vell nur	nber for	Defini	ng well fo	r Horizontal
API#													
Ope	rator Nar	ne:	1			Prop	erty N	ame:					Well Number
													KZ 06/29/2018

SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. CHAVES COUNTY, STATE OF NEW MEXICO LOCATION VERIFICATION MAP

MACK ENERGY CORPORATION

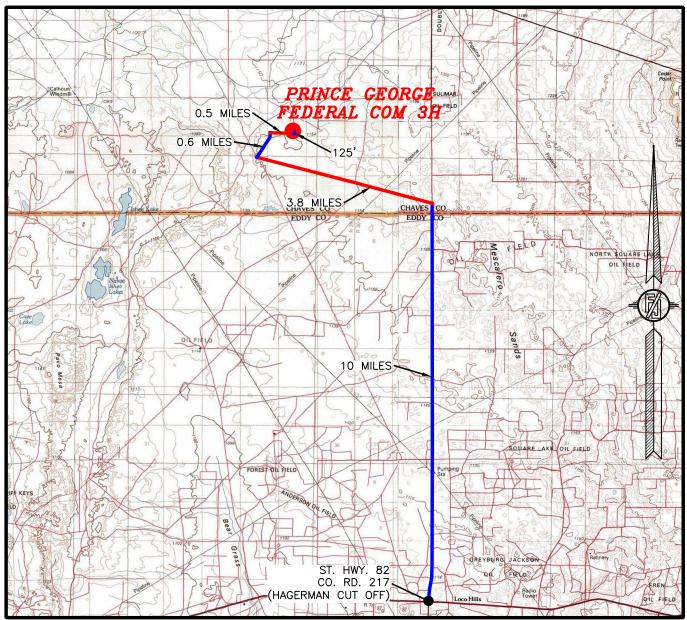
PRINCE GEORGE FEDERAL COM 3H

LOCATED 700 FT. FROM THE SOUTH LINE

AND 1450 FT. FROM THE EAST LINE OF

SECTION 20, TOWNSHIP 15 SOUTH,

RANGE 29 EAST, N.M.P.M.


CHAVES COUNTY, STATE OF NEW MEXICO

OCTOBER 6, 2023

SURVEY NO. 9844A

MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO

SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. CHAVES COUNTY, STATE OF NEW MEXICO VICINITY MAP

DISTANCES IN MILES

NOT TO SCALE

DIRECTIONS TO LOCATION

FROM THE INTERSECTION OF ST. HWY. 82 & CO. RD. 217 (HAGERMAN CUT OFF), GO NORTH ON CO. RD. 217 APPROX. 10 MILES, TURN LEFT (NORTHWEST) ON 25' CALICHE LEASE ROAD (CO. LINE ROAD) AND GO APPROX. 3.8 MILES, TURN RIGHT (NORTH) ON 15' CALICHE ROAD AND GO APPROX. 0.6 MILES, TURN RIGHT AND GO EAST APPROX. 0.5 MILES TO A ROAD SURVEY, FOLLOW ROAD SURVEY NORTH APPROX. 125' TO THE SOUTHEAST PAD CORNER FOR THIS LOCATION.

MACK ENERGY CORPORATION

PRINCE GEORGE FEDERAL COM 3H

LOCATED 700 FT. FROM THE SOUTH LINE

AND 1450 FT. FROM THE EAST LINE OF

SECTION 20, TOWNSHIP 15 SOUTH,

RANGE 29 EAST, N.M.P.M.

CHAVES COUNTY, STATE OF NEW MEXICO

OCTOBER 6, 2023

SURVEY NO. 9844A

MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO

SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. CHAVES COUNTY, STATE OF NEW MEXICO AERIAL PHOTO

NOT TO SCALE AERIAL PHOTO: GOOGLE EARTH JUN. 2019

MACK ENERGY CORPORATION

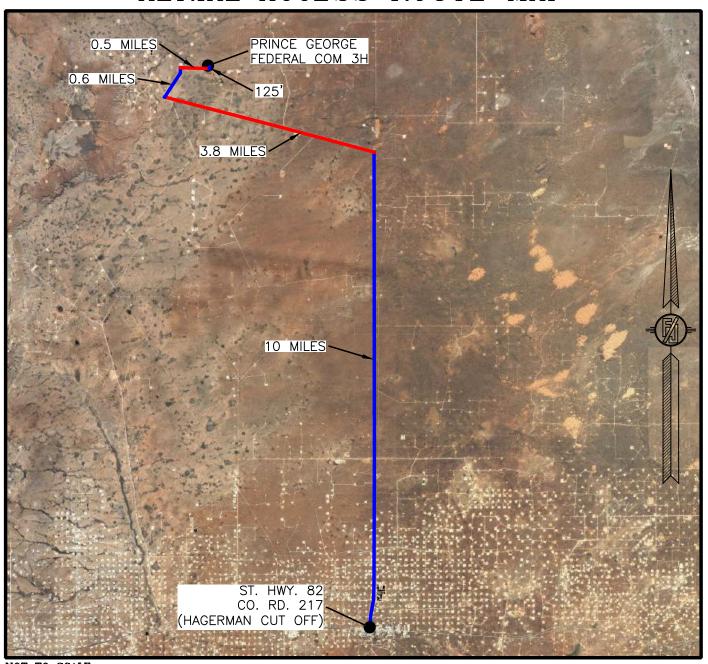
PRINCE GEORGE FEDERAL COM 3H

LOCATED 700 FT. FROM THE SOUTH LINE

AND 1450 FT. FROM THE EAST LINE OF

SECTION 20, TOWNSHIP 15 SOUTH,

RANGE 29 EAST, N.M.P.M.


CHAVES COUNTY, STATE OF NEW MEXICO

OCTOBER 6, 2023

SURVEY NO. 9844A

 $MADRON \ \ SURVEYING, \ \ INC. \ {\tiny 5075} \ {\tiny 234-3327} \ \ CARLSBAD, \ \ NEW \ \ MEXICO$

SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. CHAVES COUNTY, STATE OF NEW MEXICO AERIAL ACCESS ROUTE MAP

NOT TO SCALE AERIAL PHOTO: GOOGLE EARTH JUN. 2019

MACK ENERGY CORPORATION

PRINCE GEORGE FEDERAL COM 3H

LOCATED 700 FT. FROM THE SOUTH LINE

AND 1450 FT. FROM THE EAST LINE OF

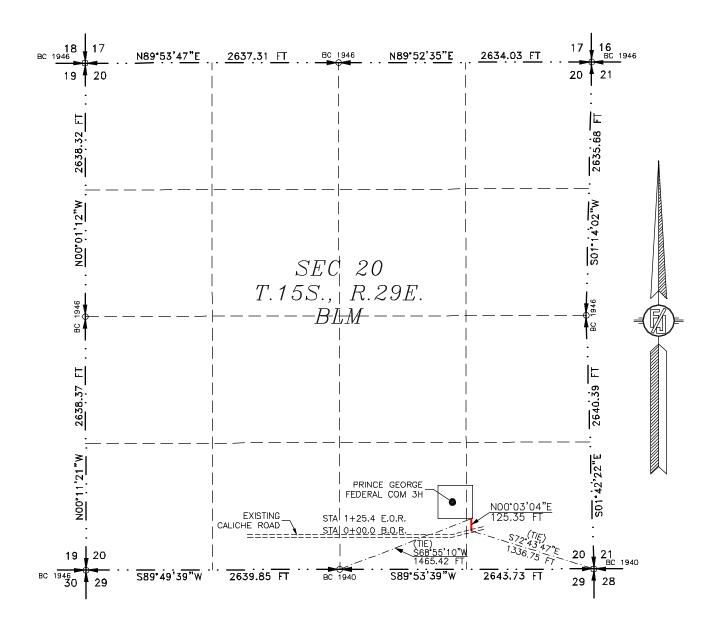
SECTION 20, TOWNSHIP 15 SOUTH,

RANGE 29 EAST, N.M.P.M.

CHAVES COUNTY, STATE OF NEW MEXICO

OCTOBER 6, 2023

SURVEY NO. 9844A


MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO

ACCESS ROAD PLAT


ACCESS ROAD FOR PRINCE GEORGE FEDERAL COM 3H

MACK ENERGY CORPORATION

CENTERLINE SURVEY OF AN ACCESS ROAD CROSSING SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. CHAVES COUNTY, STATE OF NEW MEXICO OCTOBER 6, 2023

SEE NEXT SHEET (2-2) FOR DESCRIPTION

GENERAL NOTES

1.) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT.

2.) BASIS OF BEARING AND DISTANCE IS NMSP EAST (NAD83) MODIFIED TO SURFACE COORDINATES. NAD 83 (FEET) AND NAVD 88 (FEET) COORDINATE SYSTEMS USED IN THE SURVEY.

SHEET: 1-2

MADRON SURVEYING,

SURVEYOR CERTIFICATE

I, FILIMON F. JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797, HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT THIS SURVEY AND PLAT MEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN THE STATE OF NEW MEXICO.

IN MEN SUPERIOR OF OCTOBER 2023

MADRON SURVEYING, INC.

MADRON SURVEYING, INC.
301 SOUTH CANAL
CARLSBAD, NEW MEXICO 88220
Phone (575) 234-3327

NEW MEXICO

SURVEY NO. 9844A

Released to Imaging: 6/12/2024 8:09:15 AM

ACCESS ROAD PLAT

ACCESS ROAD FOR PRINCE GEORGE FEDERAL COM 3H

MACK ENERGY CORPORATION

CENTERLINE SURVEY OF AN ACCESS ROAD CROSSING SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. CHAVES COUNTY, STATE OF NEW MEXICO OCTOBER 6, 2023

DESCRIPTION

A STRIP OF LAND 30 FEET WIDE CROSSING BUREAU OF LAND MANAGEMENT LAND IN SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M., CHAVES COUNTY, STATE OF NEW MEXICO AND BEING 15 FEET EACH SIDE OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY:

BEGINNING AT A POINT WITHIN THE SW/4 SE/4 OF SAID SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M., WHENCE THE SOUTHEAST CORNER OF SAID SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. BEARS S72'43'47"E, A DISTANCE OF 1336.75 FEET;

THENCE N00°03'04"E A DISTANCE OF 125.35 FEET THE TERMINUS OF THIS CENTERLINE SURVEY, WHENCE THE SOUTH QUARTER CORNER OF SAID SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. BEARS \$68*55'10"W, A DISTANCE OF 1465.42 FEET;

SAID STRIP OF LAND BEING 125.35 FEET OR 7.60 RODS IN LENGTH, CONTAINING 0.086 ACRES MORE OR LESS AND BEING ALLOCATED BY FORTIES AS FOLLOWS:

SW/4 SE/4 125.35 L.F. 7.60 RODS 0.086 ACRES

SURVEYOR CERTIFICATE

NEW M

GENERAL NOTES

- 1.) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT.
- 2.) BASIS OF BEARING AND DISTANCE IS NMSP EAST (NAD83) MODIFIED TO SURFACE COORDINATES. NAD 83 (FEET) AND NAVD 88 (FEET) COORDINATE SYSTEMS USED IN THE SURVEY.

SHEET: 2-2

MADRON SURVEYING, INC. (575)

I, FILIMON F. JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797, HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT THIS SURVEY AND PLAT MEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN THE STATE OF NEW MEXICO.

HIGHES CERTIFICATE IS EXECUTED AT CARLSBAD,

MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO 88220 Phone (575) 234-3327

SURVEY NO. 9844A

BAD, NEW MEXICO

I. Operator: Mack Energy Corporation

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Date: 9 / 21/2023

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

OGRID:

013837

II. Type: ▼ Original □	Amendment	due to □ 19.15.27.9.	D(6)(a) NMA	C □ 19.15.27.9.D(6)(b) NMAC 🗆 (Other.	
If Other, please describe:							
III. Well(s): Provide the be recompleted from a sir					vells proposed to	be drilled or prop	osed to
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Wa BBL/D	
Prince George Federal Com 3H		O Sec 20 T15S R29E	700 FSL 1650 FEL	100	100	1,000	
V. Anticipated Schedule proposed to be recomplete Well Name		gle well pad or conne			Initial I	Flow First Proc	luction
Prince George Federal Com 3H		2/1/2024	2/20/2024	7/31/2024	4 7/31/	2024 7/1/2024	
VI. Separation Equipme VII. Operational Practi Subsection A through F o VIII. Best Management during active and planned	ces: ⋈ Attac f 19.15.27.8 Practices:)	ch a complete descrip NMAC.	tion of the ac	tions Operator will	I take to comply	with the requiren	nents of

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

🛮 Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in
				-

XI. Map. \square Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the
production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of
the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural	gas gathering system 🗆 v	vill □ will not have	capacity to gather	100% of the anticipated	natural gas
production volume from the well p	prior to the date of first pro	oduction.			

XIII. Line Pressure. Operator \square does \square does not anticipate that its existing well(s) connected to the same segment, or portion,	of the
natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new we	ll(s).

_									
1 1	Attach (Onaratar	'a nlan	to monogo	nroduction	in recnance	to the inc	creased line p	raccure

XIV. Confidentiality: Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided	d in
Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific informa	tion
for which confidentiality is asserted and the basis for such assertion.	

(i)

Section 3 - Certifications <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal: 🗖 Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system: or ☐ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. If Operator checks this box, Operator will select one of the following: Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or Venting and Flaring Plan.

Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including: power generation on lease; (a) **(b)** power generation for grid; compression on lease; (c) (d) liquids removal on lease; reinjection for underground storage; (e) **(f)** reinjection for temporary storage; **(g)** reinjection for enhanced oil recovery; fuel cell production; and (h)

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

other alternative beneficial uses approved by the division.

- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Deana Weaver
Printed Name: Deana Weaver
Title: Regulatory Technician II
E-mail Address: dweaver@mec.com
Date: 9/21/2023
Phone: 575-748-1288
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

VI. Separation Equipment:

Mack Energy Corporation(MEC) production facilities include separation equipment designed to efficiently separate gas from liquid phases to optimize gas capture based on projected and estimated volumes from the targeted pool of our completion project. MEC will utilize flowback separation equipment and production separation equipment designed and built to industry specifications after the completion to optimize gas capture and send gas to sales or flare based on analytical composition. MEC operates facilities that are typically multi-well facilities. Production separation equipment is upgraded prior to new wells being completed, if determined to be undersized or inadequate. This equipment is already on-site and tied into our sales gas lines prior to the new drill operations.

VII. Operational Practices:

- 1. Subsection (A) Venting and Flaring of Natural Gas. MEC understands the requirements of NMAC 19.15.27.8 which outlines that the venting and flaring of natural gas during drilling, completion or production operations that constitutes waste as defined in 19.15.2 are prohibited.
- 2. Subsection (B) Venting and Flaring during drilling operations. This gas capture plan isn't for a well being drilled.
- 3. Subsection (C) Venting and flaring during completion or recompletion. Flowlines will be routed for flowback fluids into a completion or storage tank and if feasible under well conditions, flare rather than vent and commence operation of a separator as soon as it is technically feasible for a separator to function.
 - At any point in the well life (completion, production, inactive) an audio, visual and olfactory inspection be performed at prescribed intervals (weekly or monthly) pursuant to Subsection D of 19.15.27.8 NMAC, to confirm that all production equipment is operating properly and there are no leaks or releases.
- 4. Subsection (D) Venting and flaring during production operations o At any point in the well life (completion, production, inactive) an audio, visual and olfactory inspection be performed at prescribed intervals (weekly or monthly) pursuant to Subsection D of 19.15.27.8 NMAC, to confirm that all production equipment is operating properly and there are no leaks or releases.
 - Monitor manual liquid unloading for wells on-site or in close proximity (<30 minutes' drive time), take reasonable actions to achieve a stabilized rate and pressure at the earliest practical time, and take reasonable actions to minimize venting to the maximum extent practicable.
 - MEC will not vent or flare except during the approved activities listed in NMAC 19.15.27.8 (D)
 14.
- 5. Subsection (E) Performance standards o All tanks and separation equipment are designed for maximum throughput and pressure to minimize waste.
 - If a flare is utilized during production operations it will have a continuous pilot and is located more than 100 feet from any known well or storage tanks.
 - At any point in the well life (completion, production, inactive) an audio, visual and olfactory inspection be performed at prescribed intervals (weekly or monthly) pursuant to Subsection D of 19.15.27.8 NMAC, to confirm that all production equipment is operating properly and there are no leaks or releases.

- 6. Subsection (F) Measurement or estimation of vented and flared natural gas o Measurement equipment is installed to measure the volume of natural gas flared from process piping.
 - When measurement isn't practicable, estimation of vented and flared natural gas will be completed as noted in 19.15.27.8 (F) 5-6.

VIII. Best Management Practices:

- 1. MEC has adequate storage and takeaway capacity for wells it chooses to complete as the flowlines at the sites are already in place and tied into a gathering system.
- 2. MEC will flare rather than vent vessel blowdown gas when technically feasible during active and/or planned maintenance to equipment on-site.
- 3. MEC combusts natural gas that would otherwise be vented or flared, when technically feasible.
- 4. MEC will shut in wells in the event of a takeaway disruption, emergency situation, or other operations where venting or flaring may occur due to equipment failures.
- 5. MEC has a gas gathering system in place(CTB-887)a with multiple purchaser's to limit venting or flaring, due to purchaser shut downs.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report 05/17/2024

Submission Date: 10/31/2023

Highlighted data reflects the most recent changes

Well Name: PRINCE GEORGE FEDERAL COM

Operator Name: MACK ENERGY CORPORATION

Well Number: 3H

Well Type: OIL WELL

APD ID: 10400094607

Well Work Type: Drill

Show Final Text

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
13450146	QUÁTERNARY	3769	0	0	ALLUVIUM	NONE	N
13450147	TOP OF SALT	3559	210	210	SALT	NONE	N
13450148	BASE OF SALT	2939	830	830	SALT	NONE	N
13450152	YATES	2901	868	868	ANHYDRITE, SILTSTONE	NATURAL GAS, OIL	N
13450145	SEVEN RIVERS	2664	1105	1105	ANHYDRITE, SILTSTONE	NATURAL GAS, OIL	N
13450150	QUEEN	2177	1592	1592	ANHYDRITE, SILTSTONE	NATURAL GAS, OIL	N
13450151	GRAYBURG	1782	1987	1987	ANHYDRITE, DOLOMITE, SILTSTONE	NATURAL GAS, OIL	N
13450149	SAN ANDRES	1467	2302	2302	ANHYDRITE, DOLOMITE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 3M Rating Depth: 8856

Equipment: Rotating Head, Mud-Gas Separator

Requesting Variance? NO

Variance request:

Testing Procedure: The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. The estimated Bottom Hole at TD is 120 degrees and estimated maximum bottom hole pressure is 1504 psig (0.052*3154*9.2) less than 2900 bottom hole pressure.

Choke Diagram Attachment:

NEW_Choke_Manifold_3M_20230920122618.pdf

BOP Diagram Attachment:

NEW_BOP_3M_20230920122628.pdf

Well Name: PRINCE GEORGE FEDERAL COM Well Number: 3H

NEW_Choke_Manifold_3M_20230920122618.pdf

NEW_BOP_3M_20230920122628.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	200	0	200	3774	3574	200	J-55	48	ST&C	7.41 2	4.70 1	BUOY	52.8 7	BUOY	4.74
2	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	1200	0	1200	3769	2574	1200	J-55	36	ST&C	3.23 7	7.04		10.7 68	BUOY	7.04
3	PRODUCTI ON	8.75	7.0	NEW	API	N	0	2325	0	2325	3769	1449	2325	HCP -110	26	LT&C	6.02	3.35 7	BUOY	6.82 7	BUOY	3.31 7
4	PRODUCTI ON	8.75	7.0	NEW	API	N	2325	3375	2325	3145	1444	629	1050	HCP -110	26	BUTT	4.19 1	3.37 6	BUOY	8.43 3	BUOY	3.35 7
5	PRODUCTI ON	8.75	5.5	NEW	API	N	3375	8857	3145	3154	624	620	5482	HCP -110	17	BUTT	5.07 7	3.71 7	BUOY	7.23 4	BUOY	3.61

Casing Attachments

Casing ID: 1 String SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Surface_Csg_20231023140546.pdf

Operator Name: MACK ENERGY CORPORATION Well Name: PRINCE GEORGE FEDERAL COM Well Number: 3H **Casing Attachments** Casing ID: 2 INTERMEDIATE String **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): Inter_csg_20231023140638.pdf Casing ID: 3 **String PRODUCTION Inspection Document: Spec Document:**

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Production_Csg_20231023140742.pdf

Casing ID: 4 String **PRODUCTION**

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Production_Csg_20231023141336.pdf

Well Name: PRINCE GEORGE FEDERAL COM Well Number: 3H

Casing Attachments

Casing ID: 5

String

PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

 $Production_Csg_20231023141450.pdf$

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Тор МБ	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Lead		0	0	0	0	0	0		0	0

PRODUCTION	Lead	0	0	0	0	0	0	0	0

SURFACE	Lead	0	200	100	1.61	14.4	160		RFC+12% PF53+2%PF1+5 pps PF42+.125pps PF29	20bbls Gelled Water 50sx of 11# Scavenger Cement
SURFACE	Tail	0	200	250	1.34	14.8	160	100	Class C+1% PF1	20bbls Gelled Water 50sx of 11# Scavenger Cement
INTERMEDIATE	Lead	0	1200	220	1.72	13.5	417	100	Class C + 45 PF20+.4pps PF45+.125 PF29	20bbls Gelled Water 50sx of 11# Scavenger Cement
INTERMEDIATE	Tail	0	1200	200	1.34	14.8	417	100	Class C + 1% PF 1	20bbls Gelled Water 50sx of 11# Scavenger Cement
PRODUCTION	Lead	0	8857	300	2.82	13.5	2235	35	Class C 4% PF20+4pps PF45+125pps	20bbls Gelled Water 20bbls Chemical Wash 50sx of 11#

Well Name: PRINCE GEORGE FEDERAL COM Well Number: 3H

String Type	Lead/Tail	Stage Tool Depth	Тор МD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Tail		0	8857	1710	1.34	14.2	2235	35	50/50 Poz C + 5% (BWOW) PF44 +2%	20bbls Gelled Water 20bbls Chemical Wash 50sx of 11# scavenger Cement

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: BOPE Brine Water

Describe the mud monitoring system utilized: Parson PVT with Pit Volume Recorder

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	200	SPUD MUD	9.6	10	74.8		11		160000	10	
210	1200	LSND/GEL	9.6	10	74.8		11		160000	10	
1200	8857	LSND/GEL	9.6	10	74.8		11		160000	10	

Well Name: PRINCE GEORGE FEDERAL COM Well Number: 3H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

None

List of open and cased hole logs run in the well:

CALIPER, CNL/FDC, FORMATION DENSITY COMPENSATED LOG, GAMMA RAY LOG,

Coring operation description for the well:

Will evaluate after logging to determine if side coring is necessary

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 1504 Anticipated Surface Pressure: 792

Anticipated Bottom Hole Temperature(F): 95

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? NO

Hydrogen sulfide drilling operations

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Escape_Route_20230921102635.pdf

Gas_Management_20230921102945.pdf

H2S_Plan_20230922085554.pdf

Preliminary_Horizontal_Well_Plan__1_20231023142010.pdf

KOP 20231023142042.pdf

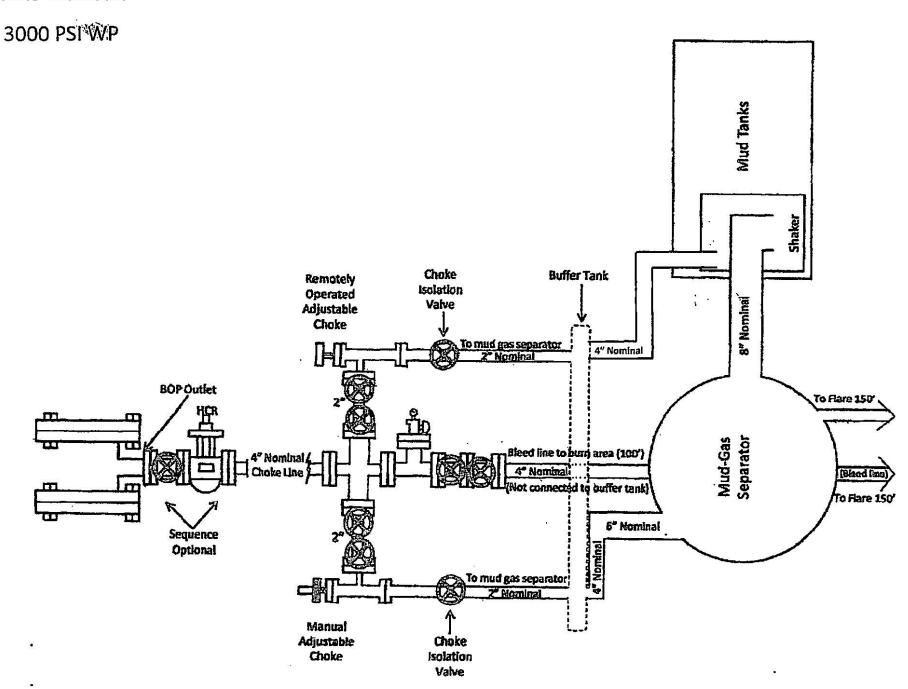
Drill_Plan_20231031104007.pdf

H2S_Plan_20231031104118.pdf

Other proposed operations facets description:

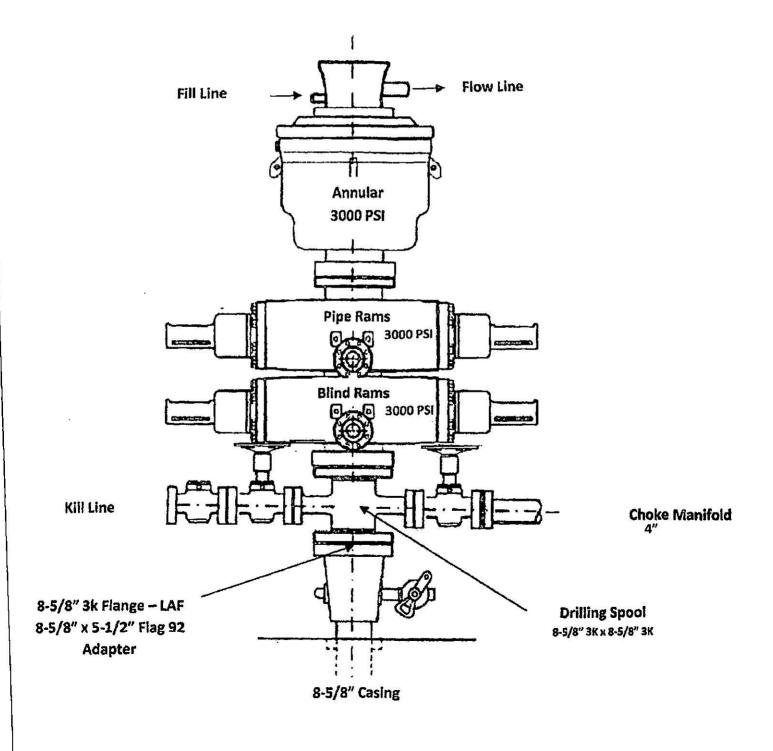
Other proposed operations facets attachment:

Other Variance attachment:


Variance_request_20230921102516.pdf

Cactus_Wellhead_installation_Procedure_20230921102537.pdf

Well Name: PRINCE GEORGE FEDERAL COM Well Number: 3H


CCC__Rig_6_20230921102546.pdf Flex_Hose_Cert_20240126114940.pdf

Choke Manifold

BOP Diagram

Dual Ram BOP 3000 PSI WP

Prince George Federal Com #3H Casing Design Well: String Size & Function: 9 5/8 in surface intermediate x 1200 ft 1200 ft **Total Depth:** TVD: **Pressure Gradient for Calculations** (While drilling) Mud weight, collapse: 10 #/gal Safety Factor Collapse: 1.125 Mud weight, burst: 10 #/gal Safety Factor Burst: 1.25 Safety Factor Joint Strength 1.8 10 #/gal Mud weight for joint strength: 624 psi, joint strength: BHP @ TD for: collapse: 624 psi Burst: 624 psi 10_#/gal Partially evacuated hole? Pressure gradient remaining: 500 psi Max. Shut in surface pressure: 1200 ft 0 ft Make up Torque ft-lbs Total ft = 1200 1st segment O.D. Weight Grade Threads opt. min. mx. ST&C 2,960 4,930 9.625 inches **36** #/ft J-55 3,940 Body Yield Collapse Resistance Internal Yield Joint Strength Drift **2,020** psi **3,520** psi 394,000# **564** ,000 # 8.765 2nd segment ft to ft Make up Torque ft-lbs Total ft = 0 O.D. Weight Grade Threads opt. min inches #/ft Collapse Resistance Internal Yield Joint Strength Body Yield Drift ,000 # ,000 # psi psi Make up Torque ft-lbs Total ft = 0 3rd segment 0 ft to 0 ft O.D. Weight Grade Threads opt. min. inches #/ft Collapse Resistance Internal Yield Joint Strength Body Yield Drift psi psi .000 # .000 # 4th segment 0 ft to 0 ft Make up Torque ft-lbs Total ft = 0 O.D. Weight Grade Threads min. mx. opt. inches #/ft Collapse Resistance Internal Yield Joint Strength Body Yield Drift ,000 # psi psi ,000 # 0 ft Make up Torque ft-lbs Total ft = 5th segment 0 ft O.D. Grade Threads Weight opt. min. mx. inches #/ft Collapse Resistance Internal Yield Joint Strength Drift Body Yield ,000 # .000 # psi psi Total ft = 6th segment 0 ft to 0 ft Make up Torque ft-lbs 0 opt. O.D. Weight Grade Threads min. mx. #/ft Internal Yield Body Yield Collapse Resistance Drift Joint Strenath psi psi ,000# ,000 # 1200 Select S.F. Actual Desire 1st segment bottom collapse 3.237179 >= 1.125 1200 ft to 0 ft burst-b 7.04 1.25 0 J-55 9.625 ST&C 7.04 burst-t Top of segment 1 (ft) 0 S.F. Actual Desire 2nd segment from bottom #DIV/0! 1.125 Select collapse 1.25 0 burst-b 0 ft 0 ft burst-t 0 0 1.8 jnt strngth 10.76785

			Top of segm	ent 2 (ft)		S.F.	Actual		Desire
Select	3rc	d segme	ent from bottor	n	co	llapse	#DIV/0!	>=	1.125
					bu	ırst-b	0	>=	1.25
	0 ft	to	0 ft		bu	ırst-t	0		
	0	0	0	0	jnt	t strngth	0	>=	1.8
			Top of segm	ent 3 (ft)		S.F.	Actual		Desire
Select	4th	segme	nt from bottor	n	co	llapse	#DIV/0!	>=	1.125
					bu	ırst-b	0	>=	1.25
	0 ft	to	0 ft		bu	ırst-t	0		
	0	0	0	0	jnt	t strngth	0	>=	1.8
			Top of segm	ent 4 (ft)		S.F.	Actual		Desire
Select	5th	segme	nt from bottor	n	co	llapse	#DIV/0!	>=	1.125
					bu	ırst-b	0	>=	1.25
	0 ft	to	ft		bu	ırst-t	0		
	0	0	0	0	jnt	t strngth	0	>=	1.8
			Top of segm	ent 5 (ft)		S.F.	Actual		Desire
Select	6th	segme	nt from bottor	n	co	llapse	#DIV/0!	>=	1.125
					bu	ırst-b	0	>=	1.25
	0 ft	to	ft		bu	ırst-t	0		
	0	0	0	0	jnt	t strngth	0	>=	1.8
			Top of segm	ent 6 (ft)	jnt	t strngth		>=	1.8

use in colapse calculations across different pressured formations

Three grad	lient pressı	ire function					
Depth of e	evaluation:	1,200 ft			516	psi @	1,200 ft
To	op of salt:	2,400 ft	fx #1	516	-		
Bas	se of salt:	3,700 ft	fx #2	900			
TD of inte	ermediate:	4,600 ft	fx #3	540			
Pressure g fx #1 0.43	radient to be fx #2 0.75	e used above fx #3 0.45	each top to	be used as	a function	of depth.	ex. psi/ft

- 1) Calculate neutral point for buckling with temperature affects computed also
- 2) Surface burst calculations & kick tolerance in surface pressure for burst
- 3) Do a comparison test to determine which value is lower joint strength or body yield to use in tensile strength calculations
- 4) Raise joint strength safety factor up to next level on page #2
- 5) Sour service what pipe can be used with proper degrading of strength factors and as function of temp

Adjust for best combination of safety factors

	Secondary
S.F. Collapse bottom of segment:	
S.F. Collapse top of segment:	#DIV/0!
S.F. Burst bottom of segment:	
S.F. Burst top of segment	
S.F. Joint strength bottom of segment:	260.582
S.F. Joint strength top of segment:	
S.F. Body yield strength bottom of segment:	373.016
S.F. Body yield strength top of segment:	15.4139

Collapse calculations for 1st segment - casing evacuated

Buoyancy factor collapse:	0.847	
calculations for bottom of segment @	1200 ft	
hydrostatic pressure collapse - backside:	624 psi	
Axial load @ bottom of section	0 lbs	previous segments
Axial load factor:	0	load/(pipe body yield strength)
Collapse strength reduction factor:	1	Messrs, Westcott, Dunlop, Kemler,1940
Adjusted collapse rating of segment:	2020 psi	
Actual safety factor	3.23718	adjusted casing rating / actual pressure

0 ft calculations for top of segment @ hydrostatic pressure collapse - backside: 0 psi 36590.4 lbs Axial load @ top of section previous segments + (this segment x BF) Axial load factor: 0.06488 load/(pipe body yield strength) Collapse strength reduction factor: 0.98117 Messrs, Westcott, Dunlop, Kemler, 1940 Adjusted collapse rating of segment: 1981.96 psi #DIV/0! Actual safety factor adjusted casing rating / actual pressure

Burst calculations for 1st segment - Completion fracture treatment

calculations for bottom of segment @ Differential burst pressure Burst rating of segment	1200 ft 500 psi 3520 psi	(frac. presmud pres.) + max. surf. pres.
Actual safety factor	7.04	casing rating / differential burst pressure
calculations for top of segment @	0 ft	
Differential burst pressure	500 psi	(frac. presmud pres.) + max. surf. pres.
Burst rating of segment	3520 psi	
Actual safety factor	7.04	casing rating / differential burst pressure

Joint strength calculations for 1st segment

Buoyancy factor for joint strength calc.:	0.847	
calculations for bottom of segment @	1200 ft	
Axial load @ bottom of section	1512 lbs	weight of previous segments
Joint Strength of segment	394000 lbs	
Body Yield Strength of segment	564000 lbs	
Actual safety factor joint strength	260.582	csg joint strength / axial load
Actual safety factor body yield	373.016	csg body yield strength / axial load
calculations for top of segment @	O ft	
Axial load @ top of section	36590.4 lbs	weight of previous segments + (this segment x BF)
Joint Strength of segment	394000 lbs	
Body Yield Strength of segment	564000 lbs	
Actual safety factor joint strength	10.7679	csg joint strength / axial load
Actual safety factor body yield	15.4139	csg body yield strength / axial load

Adjust for best combination of safety factors

Secondary

S.F. Collapse bottom of segment:

S.F. Collapse top of segment: #DIV/0!

S.F. Burst bottom of segment:

S.F. Burst top of segment

Buoyancy factor collapse:

S.F. Joint strength bottom of segment:

S.F. Joint strength top of segment:

S.F. Body yield strength bottom of segment:

S.F. Body yield strength top of segment:

0

S.F. Body yield strength top of segment:

0

0.847

Collapse calculations for 2nd segment - casing evacuated

calculations for bottom of segment @ 0 ft hydrostatic pressure collapse - backside: 0 psi 36590.4 lbs Axial load @ bottom of section load @ top of last segment #DIV/0! Axial load factor: load/(pipe body yield strength) Collapse strength reduction factor: #DIV/0! Messrs, Westcott, Dunlop, Kemler,1940 #DIV/0! psi Adjusted collapse rating of segment: #DIV/0! Actual safety factor adjusted casing rating / actual pressure calculations for top of segment @ 0 ft 0 psi hydrostatic pressure collapse - backside: 36590.4 lbs Axial load @ top of section previous segments + (this segment x BF) Axial load factor: #DIV/0! load/(pipe body yield strength) Collapse strength reduction factor: #DIV/0! Messrs, Westcott, Dunlop, Kemler, 1940 Adjusted collapse rating of segment: #DIV/0! psi #DIV/0! adjusted casing rating / actual pressure Actual safety factor

Burst calculations for 2nd segment - Completion fracture treatment

calculations for bottom of segment @	0 ft	
Differential burst pressure	500 psi	(frac. presmud pres.) + max. surf. pres.
Burst rating of segment	0 psi	
Actual safety factor	0	casing rating / differential burst pressure
calculations for top of segment @	0 ft	

Differential burst pressure	500 psi	(frac. presmud pres.) + max. surf. pres.
Burst rating of segment	0 psi	
Actual safety factor	0	casing rating / differential burst pressure

Joint strength calculations for 2nd segment

Buoyancy factor	for joint strength calc.:	0.847

calculations for bottom of segment @	0 ft	
Axial load @ bottom of section	36590.4 lbs	weight of previous segments

Joint Strength of segment 0 lbs Body Yield Strength of segment 0 lbs

Actual safety factor joint strength 0 csg joint strength / axial load
Actual safety factor body yield 0 csg body yield strength / axial load

calculations for top of segment @ 0 ft

Axial load @ top of section 36590.4 lbs weight of previous segments + (this segment x BF)

Joint Strength of segment 0 lbs Body Yield Strength of segment 0 lbs

Actual safety factor joint strength 0 csg joint strength / axial load
Actual safety factor body yield 0 csg body yield strength / axial load

Adjust for best combination of safety factors

Secondary

0

S.F. Collapse bottom of segment:

S.F. Collapse top of segment: #DIV/0!

S.F. Burst bottom of segment:

S.F. Burst top of segment

S.F. Joint strength bottom of segment: 0

S.F. Joint strength top of segment:

S.F. Body yield strength bottom of segment: 0

S.F. Body yield strength top of segment:

Collapse calculations for 3rd segment - casing evacuated

Buoyancy factor collapse: 0.847

calculations for bottom of segment @ 0 ft hydrostatic pressure collapse - backside: 0 psi

Axial load @ bottom of section 36590.4 lbs load @ top of last segment

Axial load factor: #DIV/0! load/(pipe body yield strength)

Collapse strength reduction factor: #DIV/0! Messrs, Westcott, Dunlop, Kemler,1940

Adjusted collapse rating of segment: #DIV/0! psi

Actual safety factor #DIV/0! adjusted casing rating / actual pressure

calculations for top of segment @ 0 ft hydrostatic pressure collapse - backside: 0 psi

Axial load @ top of section 36590.4 lbs previous segments + (this segment x BF)

Axial load factor: #DIV/0! load/(pipe body yield strength)

Collapse strength reduction factor: #DIV/0! Messrs, Westcott, Dunlop, Kemler,1940

Adjusted collapse rating of segment: #DIV/0! psi
Actual safety factor #DIV/0!

Actual safety factor #DIV/0! adjusted casing rating / actual pressure

Burst calculations for 3rd segment - Completion fracture treatment

calculations for bottom of segment @	υıι	
Differential burst pressure	500 psi	(frac. presmud pres.) + max. surf. pres.
Burst rating of segment	0 psi	

Actual safety factor 0 casing rating / differential burst pressure

calculations for top of segment @ 0 ft

Differential burst pressure 500 psi (frac. pres.-mud pres.) + max. surf. pres.

Burst rating of segment 0 psi

Actual safety factor 0 casing rating / differential burst pressure

Joint strength calculations for 3rd segment

Buoyancy factor for joint strength calc.:

calculations for bottom of segment @	0 ft	
	00500 4	

Axial load @ bottom of section 36590.4 lbs load @ top of last segment

Joint Strength of segment 0 lbs

Body Yield Strength of segment 0 lbs

Actual safety factor joint strength 0 csg joint strength / axial load
Actual safety factor body yield 0 csg body yield strength / axial load

calculations for top of segment @ 0 ft

Axial load @ top of section 36590.4 lbs weight of previous segments + (this segment x BF)

S.F. Body yield strength bottom of segment:

S.F. Body yield strength top of segment:

Joint Strength of segment 0 lbs Body Yield Strength of segment 0 lbs Actual safety factor joint strength 0 csg joint strength / axial load Actual safety factor body yield 0 csg body yield strength / axial load Adjust for best combination of safety factors Secondary S.F. Collapse bottom of segment: S.F. Collapse top of segment: #DIV/0! S.F. Burst bottom of segment: S.F. Burst top of segment S.F. Joint strength bottom of segment: 0 S.F. Joint strength top of segment:

0

0

Collapse calculations for 4th segment - casing evacuated

0.847 Buoyancy factor collapse: calculations for bottom of segment @ 0 ft hydrostatic pressure collapse - backside: 0 psi 36590.4 lbs Axial load @ bottom of section load @ top of last segment #DIV/0! load/(pipe body yield strength) Axial load factor: Collapse strength reduction factor: #DIV/0! Messrs, Westcott, Dunlop, Kemler,1940 Adjusted collapse rating of segment: #DIV/0! psi #DIV/0! Actual safety factor adjusted casing rating / actual pressure 0 ft calculations for top of segment @ hydrostatic pressure collapse - backside: 0 psi 36590.4 lbs previous segments + (this segment x BF) Axial load @ top of section Axial load factor: #DIV/0! load/(pipe body yield strength) #DIV/0! Messrs, Westcott, Dunlop, Kemler,1940 Collapse strength reduction factor: Adjusted collapse rating of segment: #DIV/0! psi Actual safety factor #DIV/0! adjusted casing rating / actual pressure

Burst calculations for 4th segment - Completion fracture treatment

calculations for bottom of segment @ Differential burst pressure	0 ft 500 psi	(frac. presmud pres.) + max. surf. pres.
Burst rating of segment	0 psi	
Actual safety factor	0	casing rating / differential burst pressure
calculations for top of segment @	0 ft	
Differential burst pressure	500 psi	(frac. presmud pres.) + max. surf. pres.
Burst rating of segment	0 psi	
Actual safety factor	0	casing rating / differential burst pressure

Joint strength calculations for 4th segment

Buoyancy factor for joint strength calc.: 0.847 calculations for bottom of segment @ 0 ft 36590.4 lbs Axial load @ bottom of section load @ top of last segment 0 lbs Joint Strength of segment Body Yield Strength of segment 0 lbs Actual safety factor joint strength 0 csg joint strength / axial load Actual safety factor body yield 0 csg body yield strength / axial load calculations for top of segment @ 0 ft 36590.4 lbs weight of previous segments + (this segment x BF) Axial load @ top of section 0 lbs Joint Strength of segment Body Yield Strength of segment 0 lbs Actual safety factor joint strength U csg joint strength / axial load Actual safety factor body yield 0 csg body yield strength / axial load

Adjust for best combination of safety factors

Secondary

S.F. Collapse bottom of segment:

S.F. Collapse top of segment: #DIV/0!

S.F. Burst bottom of segment:

S.F. Burst top of segment

S.F. Joint strength bottom of segment: 0
S.F. Joint strength top of segment:

S.F. Body yield strength bottom of segment: 0
S.F. Body yield strength top of segment: 0

Collapse calculations for 5th segment - casing evacuated

Buoyancy factor collapse:	0.847	
calculations for bottom of segment @	0 ft	
hydrostatic pressure collapse - backside:	: 0 psi	
Axial load @ bottom of section	36590.4 lbs	load @ top of last segment
Axial load factor:	#DIV/0!	load/(pipe body yield strength)
Collapse strength reduction factor:	#DIV/0!	Messrs, Westcott, Dunlop, Kemler,1940
Adjusted collapse rating of segment:	#DIV/0! psi	
Actual safety factor	#DIV/0!	adjusted casing rating / actual pressure
calculations for top of segment @	0 ft	
hydrostatic pressure collapse - backside:	0 psi	
Axial load @ top of section	36590.4 lbs	previous segments + (this segment x BF)
Axial load factor:	#DIV/0!	load/(pipe body yield strength)
Collapse strength reduction factor:	#DIV/0!	Messrs, Westcott, Dunlop, Kemler,1940
Adjusted collapse rating of segment:	#DIV/0! psi	
Actual safety factor	#DIV/0!	adjusted casing rating / actual pressure

Burst calculations for 5th segment - Completion fracture treatment

calculations for bottom of segment @	0 ft	
Differential burst pressure	500 psi	(frac. presmud pres.) + max. surf. pres.
Burst rating of segment	0 psi	
Actual safety factor	0	casing rating / differential burst pressure
calculations for top of segment @	0 ft	
Differential burst pressure	500 psi	(frac. presmud pres.) + max. surf. pres.
Burst rating of segment	0 psi	
Actual safety factor	0	casing rating / differential burst pressure

Joint strength calculations for 5th segment

Buoyancy factor for joint strength calc.:	0.847	
calculations for bottom of segment @	0 ft	
Axial load @ bottom of section	36590.4 lbs	load @ top of last segment
Joint Strength of segment	0 lbs	
Body Yield Strength of segment	0 lbs	
Actual safety factor joint strength	0	csg joint strength / axial load
Actual safety factor body yield	0	csg body yield strength / axial load
calculations for top of segment @	0 ft	
Axial load @ top of section	36590.4 lbs	weight of previous segments + (this segment x BF)
Joint Strength of segment	0 lbs	
Body Yield Strength of segment	0 lbs	
Actual safety factor joint strength	0	csg joint strength / axial load
Actual safety factor body yield	0	csg body yield strength / axial load

Adjust for best combination of safety factors

	Occordary
S.F. Collapse bottom of segment: S.F. Collapse top of segment:	#DIV/0!
S.F. Burst bottom of segment:	
S.F. Burst top of segment	
S.F. Joint strength bottom of segment:	0
S.F. Joint strength top of segment:	
S.F. Body yield strength bottom of segment:	0
S.F. Body yield strength top of segment:	0

Collapse calculations for 6th segment - casing evacuated

Buoyancy factor collapse:	0.847	
calculations for bottom of segment @	0 ft	
hydrostatic pressure collapse - backside:	0 psi	
Axial load @ bottom of section	36590.4 lbs	load @ top of last segment
Axial load factor:	#DIV/0!	load/(pipe body yield strength)
Collapse strength reduction factor:	#DIV/0!	Messrs, Westcott, Dunlop, Kemler,1940
Adjusted collapse rating of segment:	#DIV/0! psi	
Actual safety factor	#DIV/0!	adjusted casing rating / actual pressure
calculations for top of segment @	0 ft	
hydrostatic pressure collapse - backside:	0 psi	
Axial load @ top of section	36590.4 lbs	previous segments + (this segment x BF)
Axial load factor:	#DIV/0!	load/(pipe body yield strength)
Collapse strength reduction factor:	#DIV/0!	Messrs, Westcott, Dunlop, Kemler,1940
Adjusted collapse rating of segment:	#DIV/0! psi	·
Actual safety factor	#DIV/0!	adjusted casing rating / actual pressure

Burst calculations for 6th segment - Completion fracture treatment

calculations for bottom of segment @ Differential burst pressure	0 ft 500 psi	(frac. presmud pres.) + max. surf. pres.
Burst rating of segment Actual safety factor	0 psi 0	casing rating / differential burst pressure
calculations for top of segment @	0 ft	
Differential burst pressure	500 psi	(frac. presmud pres.) + max. surf. pres.
Burst rating of segment	0 psi	
Actual safety factor	0	casing rating / differential burst pressure

Joint strength calculations for 6th segment

Buoyancy factor for joint strength calc.:	0.847	
calculations for bottom of segment @	0 ft	
Axial load @ bottom of section	36590.4 lbs	load @ top of last segment
Joint Strength of segment	0 lbs	
Body Yield Strength of segment	0 lbs	
Actual safety factor joint strength	0	csg joint strength / axial load
Actual safety factor body yield	0	csg body yield strength / axial load
calculations for top of segment @	0 ft	
Axial load @ top of section	36590.4 lbs	weight of previous segments + (this segment x BF)
Joint Strength of segment	0 lbs	
Body Yield Strength of segment	0 lbs	
Actual safety factor joint strength	0	csg joint strength / axial load
Actual safety factor body yield	0	csg body yield strength / axial load

Casing Design Well: Prince George Federal Com #3H

String Size & Function: 5 1/2"x 7" in Production x

Total Depth: 8857 ft **TVD:** 3155 ft

Pressure Gradient for Calculations (While drilling)

Mud weight, collapse: 10.3 #/gal Safety Factor Collapse: 1.125

Mud weight, <u>burst</u>: 10.3 #/gal Safety Factor Burst: 1.25

Mud weight for joint strength: 10.3 #/gal Safety Factor Joint Strength 1.8

BHP @ TD for: collapse: <u>1689.818</u> psi Burst: <u>1689.818</u> psi, joint strength: <u>1689.818</u> psi

Partially evacuated hole? Pressure gradient remaining: 10 #/gal

Max. Shut in surface pressure: 3000 psi

1st segment	8857 ft to 3375 ft		Mal	ke up Torqu	Total ft =	5482		
O.D.	Weight	Grade	Threads	opt.	min.	mx.		
5.5 inches	17 #/ft	HCP-110	Buttress	4,620	3,470	5,780	Andrews	
Collapse Resistance	Internal Yield	Joint St	rength	Body	/ Yield	Drift		
8,580 psi	10,640 psi-lrcr	568	,000 #	546	,000 #	4.767		

2nd segment	3375 ft to	to 2325 ft		Make up Torque ft-lbs			Total ft =	1050
O.D.	Weight	Grade	Threads	opt.	min.	mx.		
7 inches	26 #/ft	HCP-110	Buttress	6,930	5,200	8,660		
Collapse Resistance	Internal Yield	Joint St	rength	Body	Yield	Drift		
7,800 psi	9,950 psi-lrcr	853	,000#	830	,000 #	6.151		

3rd segment	2325 ft to 0 ft		Mal	Make up Torque ft-lbs			2325	
O.D.	Weight	Grade	Threads	opt.	min.	mx.		,
7 inches	26 #/ft	HCP-110	LT&C	6930	5200	8660		
Collapse Resistance	Internal Yield	Joint St	trength	Bod	y Yield	Drift		
7,800 psi	9,950 psi	693	,000 #	83	0 ,000 #	6.151		

4th segment	0 ft to 0 ft			Make up Tord	Total ft =			
O.D. inches	Weight #/ft	Grade	Threads	opt.	min.	mx.	page 100 miles	
Collapse Resistance psi	Internal Yield psi	Joint Strength ,000 #		E	ody Yield ,000#	Drift	- Communication	

5th segment	0 ft to	(0 ft		Make up Torque ft-lbs		
O.D.	Weight	Grade	Threads	opt.	min.	mx.	
inches	#/ft						
Collapse Resistance	Internal Yield	Joint S	trength	В	ody Yield	Drift	
psi	psi		,000#		,000 #		

6th segment	0 ft to	0 ft		N	Make up Torque ft-lbs		
O.D.	Weight	Grade	Threads	opt.	min.	mx.	
inches	#/ft						
Collapse Resistance	Internal Yield	Joint S	Strength	В	ody Yield	Drift	1
psi	psi		,000 #		,000 #		

Select 1st segment bottom	8857	S.F.	Actual		Desire
		collapse	5.07747	>=	1.125
8857 ft to 3375 ft		burst-b	3.7179	>=	1.25
5.5 0 HCP-110 Buttress		burst-t	3.610023		
Top of segment 1 (ft)	3375	S.F.	Actual		Desire
Select 2nd segment from bottom		collapse	4.190842	>=	1.125
		burst-b	3.375914	>=	1.25
3375 ft to 2325 ft		burst-t	3.357256		
7 26 HCP-110 Buttress		jnt strngth	7.234972	>=	1.8

			Top of segment	2 (ft)	2325	S.F.	Actual		Desire
Select	3rd	l segme	nt from bottom			collapse	6.020708	>=	1.125
						burst-b	3.357256	>=	1.25
23	325 ft	to	0 ft			burst-t	3.316667		
	7	26	HCP-110 LT&	С		jnt strngth	8.403498	>=	1.8
			Top of segment	3 (ft)	0	S.F.	Actual		Desire
Select	4th	segme	nt from bottom			collapse	#DIV/0!	>=	1.125
						burst-b	0	>=	1.25
	0 ft	to	0 ft			burst-t	0		
	0	0	0	0		jnt strngth	6.82723	>=	1.8
			Top of segment	4 (ft)		S.F.	Actual		Desire
Select	5th	segme	nt from bottom			collapse	#DIV/0!	>=	1.125
						burst-b	0	>=	1.25
	0 ft	to	ft			burst-t	0		
	0	0	0	0		jnt strngth	0	>=	1.8
			Top of segment	5 (ft)		S.F.	Actual		Desire
Select	6th	segme	nt from bottom			collapse	#DIV/0!	>=	1.125
						burst-b	0	>=	1.25
	0 ft	to	ft			burst-t	0		
	0	0	0	0		jnt strngth	0	>=	1.8
			Top of segment	6 (ft)		jnt strngth		>=	1.8

use in colapse calculations across different pressured formations

Three gradient pressu	re function			
Depth of evaluation:	1,200 ft		516 psi @	1,200 ft
Top of salt:	2,400 ft fx #1	516		
Base of salt:	3,700 ft fx #2	900		
TD of intermediate:	4,600 ft fx #3	540		
Pressure gradient to be fx #1	used above each top fx #3 0.45	o be used as a f	unction of depth. 6	ex. psi/ft

- 1) Calculate neutral point for buckling with temperature affects computed also
- 2) Surface burst calculations & kick tolerance in surface pressure for burst
- 3) Do a comparison test to determine which value is lower joint strength or body yield to use in tensile strength calculations
- 4) Raise joint strength safety factor up to next level on page #2
- 5) Sour service what pipe can be used with proper degrading of strength factors and as function of temp

Adjust for best combination of safety factors

	Secondary
S.F. Collapse bottom of segment:	
S.F. Collapse top of segment:	4.52308
S.F. Burst bottom of segment:	
S.F. Burst top of segment	
S.F. Joint strength bottom of segment:	795.518
S.F. Joint strength top of segment:	
S.F. Body yield strength bottom of segment:	764.706
S.F. Body yield strength top of segment:	6.95474

Collapse calculations for 1st segment - casing evacuated

Buoyancy factor collapse:	0.84241	
calculations for bottom of segment @	3155 ft	
hydrostatic pressure collapse - backside:	1689.82 psi	
Axial load @ bottom of section	0 lbs	previous segments
Axial load factor:	0	load/(pipe body yield strength)
Collapse strength reduction factor:	1	Messrs, Westcott, Dunlop, Kemler,1940
Adjusted collapse rating of segment:	8580 psi	
Actual safety factor	5.07747	adjusted casing rating / actual pressure

Casing Design Well: Prince George Federal Com #3H

String Size & Function: 13 3/8 in surface x intermediate

Total Depth: 200 ft

Pressure Gradient for Calculations (While drilling)

Mud weight, collapse: 9.6 #/gal Safety Factor Collapse: 1.125

Mud weight, <u>burst</u>: 9.6 #/gal Safety Factor Burst: 1.25

Mud weight for joint strength: 9.6 #/gal Safety Factor Joint Strength 1.8

BHP @ TD for: collapse: 99.84 psi Burst: 99.84 psi, joint strength: 99.84 psi

Partially evacuated hole? Pressure gradient remaining: 10 #/gal

Max. Shut in surface pressure: 500 psi

1st segment	200 ft to		0 ft	Mak	e up Torque	e ft-lbs	Total ft =	200
O.D. 13.375 inches	Weight 48 #/ft	Grade J-55	Threads ST&C	opt. 3,220	min. 2,420	mx. 4,030		
Collapse Resistance 740	Internal Yield 2,370 psi		Strength 3,000#		Yield ,000#	Drift 12.559		

2nd segment	0 ft to		0 ft	1	Make up Tor	que ft-lbs	Total ft =	
O.D.	Weight	Grade	Threads	opt.	min.	mx.		
inches	#/ft							
Collapse Resistance	Internal Yield	Joint 9	Strength	В	ody Yield	Drift		
psi	psi		,000 #		,000 #			

3rd segment	0 ft to	0 ft	Make up Torque	e ft-lbs
O.D.	Weight	Grade Threads	opt. min.	mx.
inches	#/ft			
Collapse Resistance	Internal Yield	Joint Strength	Body Yield	Drift
psi	psi	,000 #	,000 #	

4th segment	0 ft to	() ft	ı	Make up Torq	ue ft-lbs	Total ft =
O.D.	Weight	Grade	Threads	opt.	min.	mx.	
inches	#/ft						
Collapse Resistance	Internal Yield	Joint S	trength	В	ody Yield	Drift	
psi	psi		,000 #		,000 #		

5th segment	0 ft to	0 ft	Make up Torq	ue ft-lbs	Total ft =
O.D.	Weight	Grade Threads	opt. min.	mx.	
inches	#/ft				
Collapse Resistance	Internal Yield	Joint Strength	Body Yield	Drift	
psi	psi	,000 #	,000 #		

6th segment	0 ft to	0 ft	Make up Torq	ue ft-lbs
O.D.	Weight	Grade Threads	opt. min.	mx.
inches	#/ft			
Collapse Resistance	Internal Yield	Joint Strength	Body Yield	Drift
psi	psi	,000 #	,000 #	

Select 1st segment b	ottom	200 S.F.	Actual		Desire
		collapse	7.411859	>=	1.125
200 ft to	0 ft	burst-b	4.700889	>=	1.25
13.375 0 J-5	55 ST&C	burst-t	4.74		
То	p of segment 1 (ft)	0 S. F.	Actual		Desire
Select 2nd segment f	rom bottom	collapse	#DIV/0!	>=	1.125
		burst-b	0	>=	1.25
0 ft to	0 ft	burst-t	0		
0 0	0 (jnt strngt	h 52.86966	>=	1.8

Casing Design Well: Prince George Federal Com #3H

String Size & Function: 5 1/2"x 7" in Production x

Total Depth: 8857 ft **TVD:** 3155 ft

Pressure Gradient for Calculations (While drilling)

Mud weight, collapse: 10.3 #/gal Safety Factor Collapse: 1.125

Mud weight, burst: 10.3 #/gal Safety Factor Burst: 1.25

Mud weight for joint strength: 10.3 #/gal Safety Factor Joint Strength 1.8

BHP @ TD for: collapse: <u>1689.818</u> psi Burst: <u>1689.818</u> psi, joint strength: <u>1689.818</u> psi

Partially evacuated hole? Pressure gradient remaining: 10 #/gal

Max. Shut in surface pressure: 3000 psi

1st segment	8857 ft to	3375	ft	Make	up Torque	Total ft =	5482	
O.D.	Weight	Grade	Threads	opt.	min.	mx.		<u>-</u>
5.5 inches	17 #/ft	HCP-110	Buttress	4,620	3,470	5,780		
Collapse Resistance	Internal Yield	Joint St	rength	Body `	Yield	Drift		
8,580 psi	10,640 psi-lrcr	568	,000 #	546	,000 #	4.767		

2nd segment	3375 ft to	2325	ft	Mak	e up Torque	Total ft =	1050	
O.D.	Weight	Grade	Threads	opt.	min.	mx.		
7 inches	26 #/ft	HCP-110	Buttress	6,930	5,200	8,660		
Collapse Resistance	Internal Yield	Joint St	rength	Body	Yield	Drift		
7,800 psi	9,950 psi-lrcr	853	,000 #	830	,000 #	6.151		

3rd segment	2325 ft to	0	ft	Mal	ke up Torqu	Total ft =	2325	
O.D.	Weight	Grade	Threads	opt.	min.	mx.		
7 inches	26 #/ft	HCP-110	LT&C	6930	5200	8660		
Collapse Resistance	Internal Yield	Joint St	trength	Bod	y Yield	Drift		
7,800 psi	9,950 psi	693	,000 #	83	0 ,000 #	6.151		

4th segment	0 ft to	(0 ft		Make up Tord	Total ft =		
O.D. inches	Weight #/ft	Grade	Threads	opt.	min.	mx.	page 100 miles	
Collapse Resistance psi	Internal Yield psi	Joint S	Strength ,000 #	E	ody Yield ,000#	Drift	- Communication	

5th segment	0 ft to	(0 ft Ma			Make up Torque ft-lbs		
O.D.	Weight	Grade	Threads	opt.	min.	mx.		
inches	#/ft							
Collapse Resistance	Internal Yield	Joint S	Joint Strength		ody Yield	Drift		
psi	psi		,000#		,000 #			

6th segment	0 ft to	0 ft		Make up Torq	Total ft =		
O.D.	Weight	Grade Thread	s opt.	min.	mx.		
inches	#/ft						
Collapse Resistance	Internal Yield	Joint Strength		Body Yield	Drift	1	
psi	psi	,000 #		,000 #			

Select 1st segment bottom	8857	S.F.	Actual		Desire
		collapse	5.07747	>=	1.125
8857 ft to 3375 ft		burst-b	3.7179	>=	1.25
5.5 0 HCP-110 Buttress		burst-t	3.610023		
Top of segment 1 (ft)	3375	S.F.	Actual		Desire
Select 2nd segment from bottom		collapse	4.190842	>=	1.125
		burst-b	3.375914	>=	1.25
3375 ft to 2325 ft		burst-t	3.357256		
7 26 HCP-110 Buttress		jnt strngth	7.234972	>=	1.8

			Тор	of segmen	nt 2 (ft)	2325	S.F.	Actual		Desire
Select	3rc	l segn	nent fro	m bottom			collapse	6.020708	>=	1.125
							burst-b	3.357256	>=	1.25
232	25 ft	to		0 ft			burst-t	3.316667		
	7	:	26 HCF	P-110 LT	&C		jnt strngth	8.403498	>=	1.8
			Тор	of segmer	nt 3 (ft)	0	S.F.	Actual		Desire
Select	4th	segn	nent fro	m bottom			collapse	#DIV/0!	>=	1.125
		_					burst-b	0	>=	1.25
	0 ft	to		0 ft			burst-t	0		
	0		0	0	0		jnt strngth	6.82723	>=	1.8
			Тор	of segmen	nt 4 (ft)		S.F.	Actual		Desire
Select	5th	segn	nent fro	m bottom			collapse	#DIV/0!	>=	1.125
							burst-b	0	>=	1.25
	0 ft	to		ft			burst-t	0		
	0		0	0	0		jnt strngth	0	>=	1.8
			Тор	of segmer	nt 5 (ft)		S.F.	Actual		Desire
Select	6th	segn	nent fro	m bottom			collapse	#DIV/0!	>=	1.125
		_					burst-b	0	>=	1.25
	0 ft	to		ft			burst-t	0		
	0		0	0	0		jnt strngth	0	>=	1.8
			Тор	of segmer	nt 6 (ft)		jnt strngth		>=	1.8
			. 00	c. coginio	• (11)		j ourigur			

use in colapse calculations across different pressured formations

use in cola	pse calculat	ions across c	illierent pres	ssured format	10118			
Three grad	lient press	ure function						
Depth of e	evaluation:	1,200 ft	t		516	psi @	1,200 ft	•
To	op of salt:	2,400 ft	fx #1	516				
Bas	se of salt:	3,700 ft	fx #2	900				
TD of inte	ermediate:	4,600 ft	fx #3	540				
Pressure g	radient to be	e used above	each top to	be used as a	a function	of depth.	ex. psi/ft	
fx #1	fx #2	fx #3						
0.43	0.75	0.45						

- 1) Calculate neutral point for buckling with temperature affects computed also
- 2) Surface burst calculations & kick tolerance in surface pressure for burst
- 3) Do a comparison test to determine which value is lower joint strength or body yield to use in tensile strength calculations
- 4) Raise joint strength safety factor up to next level on page #2
- 5) Sour service what pipe can be used with proper degrading of strength factors and as function of temp

Adjust for best combination of safety factors

	Secondary
S.F. Collapse bottom of segment: S.F. Collapse top of segment:	4.52308
S.F. Burst top of segment S.F. Burst top of segment	
S.F. Joint strength bottom of segment: S.F. Joint strength top of segment:	795.518
S.F. Body yield strength bottom of segment: S.F. Body yield strength top of segment:	764.706 6.95474

Collapse calculations for 1st segment - casing evacuated

Buoyancy factor collapse:	0.84241	
calculations for bottom of segment @	3155 ft	
hydrostatic pressure collapse - backside:	1689.82 psi	
Axial load @ bottom of section	0 lbs	previous segments
Axial load factor:	0	load/(pipe body yield strength)
Collapse strength reduction factor:	1	Messrs, Westcott, Dunlop, Kemler,1940
Adjusted collapse rating of segment:	8580 psi	
Actual safety factor	5.07747	adjusted casing rating / actual pressure

Casing Design Well: Prince George Federal Com #3H

String Size & Function: 5 1/2"x 7" in Production x

 Total Depth:
 8857 ft
 TVD:
 3155 ft

Pressure Gradient for Calculations (While drilling)

Mud weight, <u>collapse</u>: 10.3 #/gal Safety Factor Collapse: 1.125

Mud weight, burst: 10.3 #/gal Safety Factor Burst: 1.25

Mud weight for joint strength: 10.3 #/gal Safety Factor Joint Strength 1.8

BHP @ TD for: collapse: <u>1689.818</u> psi Burst: <u>1689.818</u> psi, joint strength: <u>1689.818</u> psi

Partially evacuated hole? Pressure gradient remaining: 10 #/gal

Max. Shut in surface pressure: 3000 psi

1st segment	8857 ft to	3375	ft	Make	up Torque	Total ft =	5482	
O.D.	Weight	Grade	Threads	opt.	min.	mx.		
5.5 inches	17 #/ft	HCP-110	Buttress	4,620	3,470	5,780		
Collapse Resistance	Internal Yield	Joint St	rength	Body `	Yield	Drift		
8,580 psi	10,640 psi-lrcr	568	,000 #	546	,000 #	4.767		

2nd segment	3375 ft to	2325	ft	Mak	e up Torque	e ft-lbs	Total ft =	1050
O.D.	Weight	Grade	Threads	opt.	min.	mx.		
7 inches	26 #/ft	HCP-110	Buttress	6,930	5,200	8,660		
Collapse Resistance	Internal Yield	Joint St	rength	Body	Yield	Drift		
7,800 psi	9,950 psi-lrcr	853	,000#	830	,000 #	6.151		

3rd segment	2325 ft to	0	ft	Mal	ke up Torqu	e ft-lbs	Total ft =	2325
O.D.	Weight	Grade	Threads	opt.	min.	mx.		
7 inches	26 #/ft	HCP-110	LT&C	6930	5200	8660		
Collapse Resistance	Internal Yield	Joint St	trength	Bod	y Yield	Drift		
7,800 psi	9,950 psi	693	,000 #	83	0 ,000 #	6.151		

4th segment	0 ft to		0 ft	N	Make up Torq	ue ft-lbs	Total ft =	
O.D. inches	Weight #/ft	Grade	Threads	opt.	min.	mx.	Account	
Collapse Resistance	Internal Yield	Joint 9	Strength	В	ody Yield	Drift	3	
psi	psi		,000 #		,000 #			

5th segment	0 ft to	() ft	N	/lake up Toro	ue ft-lbs	Total ft =	
O.D. inches	Weight #/ft	Grade	Threads	opt.	min.	mx.		
Collapse Resistance psi	Internal Yield psi	Joint S	trength ,000#	В	ody Yield ,000 #	Drift		

6th segment	0 ft to		0 ft	N	//ake up Torq	ue ft-lbs	Total ft =
O.D.	Weight	Grade	Threads	opt.	min.	mx.	
inches	#/ft						
Collapse Resistance	Internal Yield	Joint S	Strength	В	ody Yield	Drift	1
psi	psi		,000 #		,000 #		

Select 1st segment bottom	8857	S.F.	Actual		Desire
		collapse	5.07747	>=	1.125
8857 ft to 3375 ft		burst-b	3.7179	>=	1.25
5.5 0 HCP-110 Buttress		burst-t	3.610023		
Top of segment 1 (ft)	3375	S.F.	Actual		Desire
Select 2nd segment from bottom		collapse	4.190842	>=	1.125
		burst-b	3.375914	>=	1.25
3375 ft to 2325 ft		burst-t	3.357256		
7 26 HCP-110 Buttress		jnt strngth	7.234972	>=	1.8

			Top of segment	2 (ft)	2325	S.F.	Actual		Desire
Select	3rd	l segme	nt from bottom			collapse	6.020708	>=	1.125
						burst-b	3.357256	>=	1.25
23	325 ft	to	0 ft			burst-t	3.316667		
	7	26	HCP-110 LT&	С		jnt strngth	8.403498	>=	1.8
			Top of segment	3 (ft)	0	S.F.	Actual		Desire
Select	4th	segme	nt from bottom			collapse	#DIV/0!	>=	1.125
						burst-b	0	>=	1.25
	0 ft	to	0 ft			burst-t	0		
	0	0	0	0		jnt strngth	6.82723	>=	1.8
			Top of segment	4 (ft)		S.F.	Actual		Desire
Select	5th	segme	nt from bottom			collapse	#DIV/0!	>=	1.125
						burst-b	0	>=	1.25
	0 ft	to	ft			burst-t	0		
	0	0	0	0		jnt strngth	0	>=	1.8
			Top of segment	5 (ft)		S.F.	Actual		Desire
Select	6th	segme	nt from bottom			collapse	#DIV/0!	>=	1.125
						burst-b	0	>=	1.25
	0 ft	to	ft			burst-t	0		
	0	0	0	0		jnt strngth	0	>=	1.8
			Top of segment	6 (ft)		jnt strngth		>=	1.8

use in colapse calculations across different pressured formations

use in cola	pse calculat	10115 ac1055	umerent pre	essured format	10115			
Three grad	lient press	ure function						
Depth of e	evaluation:	1,200 f	ft		516	psi @	1,200 ft	•
To	p of salt:	2,400 f	ft fx #1	516				
Bas	se of salt:	3,700 f	ft fx #2	900				
TD of inte	ermediate:	4,600 f	ft fx #3	540				
Pressure g	radient to be	e used above	e each top t	o be used as a	function	of depth.	ex. psi/ft	
fx #1	fx #2	fx #3						
0.43	0.75	0.45						
		-						

- 1) Calculate neutral point for buckling with temperature affects computed also
- 2) Surface burst calculations & kick tolerance in surface pressure for burst
- 3) Do a comparison test to determine which value is lower joint strength or body yield to use in tensile strength calculations
- 4) Raise joint strength safety factor up to next level on page #2
- 5) Sour service what pipe can be used with proper degrading of strength factors and as function of temp

Adjust for best combination of safety factors

	Secondary
S.F. Collapse bottom of segment:	
S.F. Collapse top of segment:	4.52308
S.F. Burst bottom of segment:	
S.F. Burst top of segment	
S.F. Joint strength bottom of segment:	795.518
S.F. Joint strength top of segment:	
S.F. Body yield strength bottom of segment:	764.706
S.F. Body yield strength top of segment:	6.95474

Collapse calculations for 1st segment - casing evacuated

Buoyancy factor collapse:	0.84241	
calculations for bottom of segment @	3155 ft	
hydrostatic pressure collapse - backside:	1689.82 psi	
Axial load @ bottom of section	0 lbs	previous segments
Axial load factor:	0	load/(pipe body yield strength)
Collapse strength reduction factor:	1	Messrs, Westcott, Dunlop, Kemler,1940
Adjusted collapse rating of segment:	8580 psi	
Actual safety factor	5.07747	adjusted casing rating / actual pressure

Prince George Federal Com #3H NMNM-101106 SHL: 700 FSL & 1450 FEL, SWSE, Sec. 20 T15S R29E

BHL : 1 FSL & 1650 FEL, SWSE, Sec. 29 T15S R29E

Chaves County, NM

DRILLING PROGRAM

1. Geologic Name of Surface Formation

Quaternary

2. Estimated Tops of Important Geologic Markers:

Top of Salt	210
Base of Salt	830'
Yates	868'
Seven Rivers	1105'
Queen	1592'
Grayburg	1987'
San Andres	2302'

3. Estimated Depths of Anticipated Fresh Water, Oil and Gas:

Water Sand	150'	Fresh Water
Yates	868'	Oil/Gas
Seven Rivers	1105'	Oil/Gas
Queen	1592'	Oil/Gas
Grayburg	1987'	Oil/Gas
San Andres	2302'	Oil/Gas

No other formations are expected to give up oil, gas or fresh water in measurable quantities. Setting 13 3/8" casing to 210' and circulating cement back to surface will protect the surface fresh water sand. Salt section and shallower zones above TD, which contain commercial quantities of oil and/or gas, will have cement circulated across them by cementing 5 ½" production casing, sufficient cement will be pumped to circulate back to surface.

4. Casing Program:

Hole Size	Interval	OD Casi	ing Wt, Grade, Jt, cond, collapse/burst/tension
17 1/2"	0-200'	13 3/8"	48#, J-55, ST&C, New, 7.411859/4.700889/4.74
13 3/8"	0-1200'	9 5/8"	36#, J-55,ST&C,New, 3.237179/7.04/7.04
8 3/4"	0-2325'	7"	26#, HCP-110, LT&C, New, 6.020708/3.357256/3.316667
8 3/4"	2325'-3375'	7"	26#, HCP-110, Buttress, New, 4.190842/ 3.375914/ 3.357256
8 3/4"	3375-8857	5 ½" 1	17#, HCP-110, Buttress, New, 5,07747/3,7179/3,610023

5. Cement Program:

13 3/8" Surface Casing: Lead 100sx, RFC+12%PF53+2%PF1+5ppsPF42+.125ppsPF29, yld 1.61, wt 14.4 ppg, 7.357gals/sx. Tail: 250sx, Class C+1% PF1, yld 1.34, wt 14.8 ppg, 6.323 gals/sx, excess 100%

Prince George Federal Com #3H NMNM-101106 SHL: 700 FSL & 1450 FEL, SWSE, Sec. 20 T15S R29E BHL: 1 FSL & 1650 FEL, SWSE, Sec. 29 T15S R29E

Chaves County, NM

9 5/8" Intermediate Casing: Lead 220sx, Class C+45 P20+.4pps PF45+.125 PF29, yld 1.72, wt 13.5 ppg, 9.102gals/sx, excess 100%, slurry top Surface. Tail 200sx, Class C+1%PF1, yld 1.34, wt 14.8 ppg, 6.323gals/sx, excess 100%, slurry top Surface.

7" & 5 ½" Production Casing: Lead 300sx Class C 4% PF 20+4 pps PF45 +1.25pps PF29, yld 2.82, wt 13.5 ppg, 16.421gals/sx, excess 35%, slurry top Surface, Tail 1710sx, 50/50 Poz C + 5% (BWOW) PF44+2% PF204+.2% PF606+.1% PF153+.4pps PF44, yield 1.34, wt 14.2, 6.091gals/sx, 35% excess, slurry top 2,200'.

6. Minimum Specifications for Pressure Control:

The blowout preventer equipment (BOP) shown in Exhibit #10 will consist of a double ram-type (3000 psi WP) minimum preventer. This unit will be hydraulically operated and the ram type preventer will be equipped with blind rams on top of 4 1/2" drill pipe rams on bottom. The 11" BOP will be nippled up on the 8 5/8" surface casing and tested by a 3rd party to 2000 psi used continuously until TD is reached. All BOP's and accessory equipment will be tested to 2000 psi before drilling out of intermediate casing. Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment (Exhibit #10) will include a Kelly cock and floor safety valve and choke lines and choke manifold (Exhibit #11) with a minimum 3000 psi WP rating

7. Types and Characteristics of the Proposed Mud System:

The well will be drilled to TD with a combination of fresh and cut brine mud system. The applicable depths and properties of this system are as follows:

DEPTH	TYPE	WEIGHT	VISCOSITY	WATERLOSS
0-200'	Fresh Water	8.5	28	N.C.
200'-1,200'	Cut Brine	9.1	29	N.C.
1,200-8,857	Cut Brine	9.1	29	N.C.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the well site at all times.

8. Auxiliary Well Control and Monitoring Equipment:

- A. Kelly cock will be kept in the drill string at all times.
- B. A full opening drill pipe-stabbing valve with proper drill pipe connections will be on the rig floor at all times.

9. Logging, Testing and Coring Program:

- A. The electric logging program will consist of GR-Dual Laterolog, Spectral Density, Dual Spaced Neutron, CSNG Log from T.D. to 8 5/8 casing shoe.
- B. Drill Stem test is not anticipated.

Prince George Federal Com #3H NMNM-101106 SHL: 700 FSL & 1450 FEL, SWSE, Sec. 20 T15S R29E BHL: 1 FSL & 1650 FEL, SWSE, Sec. 29 T15S R29E

Chaves County, NM

- C. No conventional coring is anticipated.
- D. Further testing procedures will be determined at TD.

10. Abnormal Conditions, Pressures, Temperatures and Potential Hazards:

No abnormal pressures or temperatures are anticipated. The estimated bottom hole at TD is 120 degrees and estimated maximum bottom hole pressure is 1504 psig. Low levels of Hydrogen sulfide have been monitors in producing wells in the area, so H2S may be present while drilling of the well; a plan is attached to the Drilling program. No major loss of circulation zones has been reported in offsetting wells.

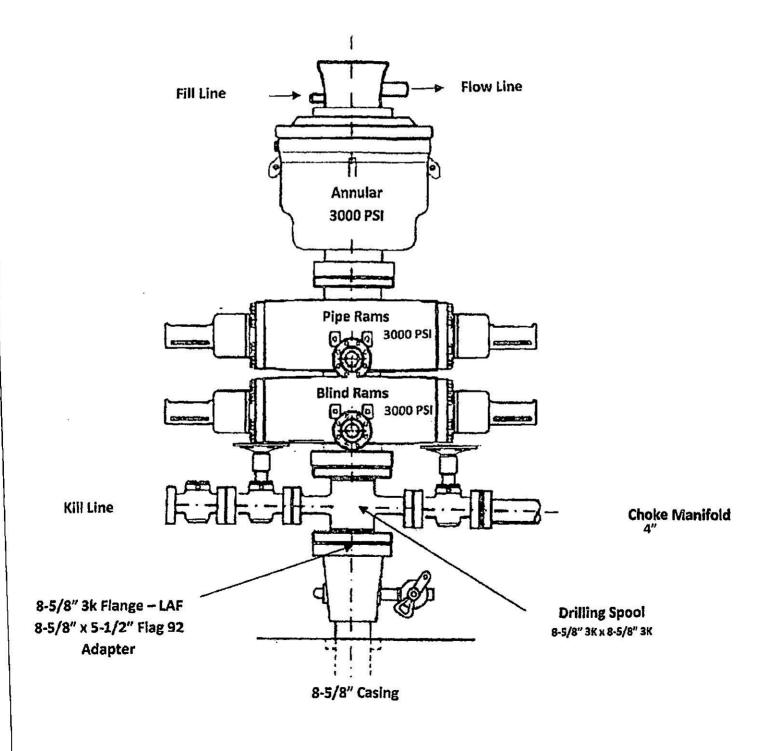
11. Anticipated Starting Date and Duration of Operations:

Road and location work will not begin until approval has been received from the BLM. The anticipated spud date is February 1, 2024. Once commenced, the drilling operation should be finished in approximately 20 days. If the well is productive, an additional 30 days will be required for completion and testing before a decision is made to install permanent facilities.

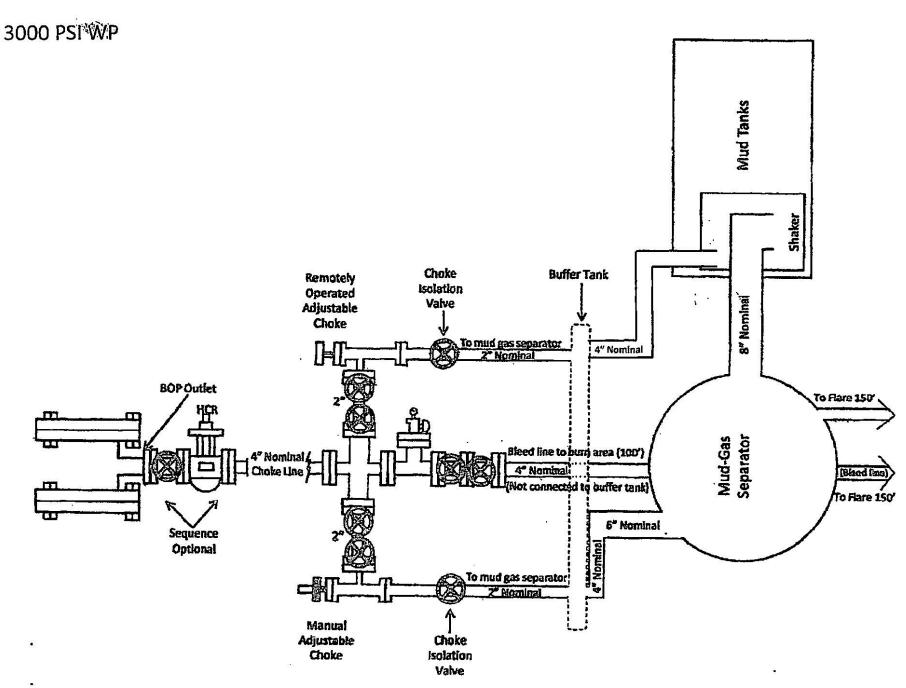
Attachment to Exhibit #10 NOTES REGARDING THE BLOWOUT PREVENTERS Prince George Federal Com #3H Chaves County, New Mexico

- 1. Drilling nipple to be so constructed that it can be removed without use of a welder through rotary table opening, with minimum I.D. equal to preventer bore.
- 2. Wear ring to be properly installed in head.
- 3. Blow out preventer and all fittings must be in good condition, 2000 psi WP minimum.
- 4. All fittings to be flanged.
- 5. Safety valve must be available on rig floor at all times with proper connections, valve to be full 2000 psi WP minimum.
- 6. All choke and fill lines to be securely anchored especially ends of choke lines.
- 7. Equipment through which bit must pass shall be at least as large as the diameter of the casing being drilled through.
- 8. Kelly cock on Kelly.
- 9. Extension wrenches and hands wheels to be properly installed.

Prince George Federal Com #3H NMNM-101106 SHL: 700 FSL & 1450 FEL, SWSE, Sec. 20 T15S R29E


BHL: 1 FSL & 1650 FEL, SWSE, Sec. 29 T15S R29E

Chaves County, NM


- 10. Blow out preventer control to be located as close to driller's position as feasible.
- 11. Blow out preventer closing equipment to include minimum 40-gallon accumulator, two independent sources of pump power on each closing unit installation all API specifications.

BOP Diagram

Dual Ram BOP 3000 PSI WP

Choke Manifold

Prince George Federal Com #3H, Plan 1 (Plan #1)

OperatorMack Energy CorpUnitsfeet, °/100ft08:53 Thursday, October 19, 2023 Page 1 of 4FieldRound TankCountyChavesVertical Section Azimuth180.64

Well Name Prince George Federal Com #3H State New Mexico Survey Calculation Method Minimum Curvature
Plan 1 Country USA Database Access

Location SL: 700 FSL & 1450 FEL Section 20-T15S-R29E BHL: Map Zone UTM Lat Long Ref

1 FSL & 1650 FEL Section 29-T15S-R29E

 Site
 Surface X 1932693.7
 Surface Long

 Slot Name
 UWI
 Surface Y 11978454.8
 Surface Lat

 Well Number 3H
 API
 Surface Z 3792.3
 Global Z Ref KB

 Project
 MD/TVD Ref KB
 Ground Level 3774.8
 Local North Ref Grid

MD*	INC*	AZI*	TVD*	N*	E*	DLS*	V. S.*	MapE*	MapN* S	SysTVD*
*** TIE (at MD	= 2320.00)	dog	ft	ft	ft	°/100ff	ft	ft	ft	ft
2320.00	0.00	0.0	2320.00	0.00	0.00		0.00	1932693.70	11978454.80	1472.30
2350.00	0.00	0.0	2350.00	0.00	0.00	0.00	0.00	1932693.70	11978454.80	1442.30
2400.00	0.00	0.0	2400.00	0.00	0.00	0.00	0.00	1932693.70	11978454.80	1392.30
*** KOP 8 DEG										
2420.00	0.00	0.0	2420.00	0.00	0.00	0.00	0.00	1932693.70	11978454.80	1372.30
2450.00	2.40	198.2	2449.99	-0.60	-0.20	8.00	0.60	1932693.50	11978454.20	1342.31
2500.00	6.40	198.2	2499.83	-4.24	-1.39	8.00	4.26	1932692.31	11978450.56	1292.47
2550.00	10.40	198.2	2549.29	-11.18	-3.68	8.00	11.22	1932690.03	11978443.62	1243.01
2600.00	14.40	198.2	2598.11	-21.38	-7.03	8.00	21.45	1932686.67	11978433.43	1194.19
2650.00	18.40	198.2	2646.07	-34.78	-11.44	8.00	34.91	1932682.26	11978420.02	1146.23
2700.00	22.40	198.2	2692.92	-51.34	-16.88	8.00	51.52	1932676.82	11978403.46	1099.38
2750.00	26.40	198.2	2738.45	-70.95	-23.33	8.00	71.21	1932670.37	11978383.85	1053.85
2800.00	30.40	198.2	2782.42	-93.54	-30.75	8.00	93.88	1932662.95	11978361.26	1009.88
2850.00	34.40	198.2	2824.63	-118.99	-39.12	8.00	119.42	1932654.58	11978335.81	967.67
2900.00	38.40	198.2	2864.86	-147.17	-48.39	8.00	147.70	1932645.31	11978307.63	927.44
2950.00	42.40	198.2	2902.93	-177.95	-58.51	8.00	178.59	1932635.19	11978276.85	889.37
3000.00	46.40	198.2	2938.65	-211.17	-69.43	8.00	211.94	1932624.27	11978243.63	853.65
3050.00	50.40	198.2	2971.84	-246.68	-81.11	8.00	247.58	1932612.59	11978208.12	820.46
3100.00	54.40	198.2	3002.34	-284.31	-93.48	8.00	285.34	1932600.22	11978170.49	789.96
*** 55 DEGREI	E TANGEN	Γ (at MD =	3107.50)							
3107.50	55.00	198.2	3006.67	-290.12	-95.39	8.00	291.17	1932598.31	11978164.68	785.63
3150.00	55.00	198.2	3031.05	-323.20	-106.26	0.00	324.36	1932587.44	11978131.60	761.25
3200.00	55.00	198.2	3059.73	-362.11	-119.05	0.00	363.41	1932574.65	11978092.69	732.57
3250.00	55.00	198.2	3088.41	-401.01	-131.85	0.00	402.46	1932561.85	11978053.79	703.89
3300.00	55.00	198.2	3117.09	-439.92	-144.64	0.00	441.51	1932549.06	11978014.88	675.21
*** 10 DEGREI	E BUILD (a	t MD = 330	07.50)							
3307.50	55.00	198.2	3121.39	-445.76	-146.56	0.00	447.37	1932547.14	11978009.04	670.91
3350.00	58.75	195.8	3144.61	-479.79	-156.95	10.00	481.51	1932536.75	11977975.01	647.69
3400.00	63.20	193.2	3168.87	-522.11	-167.87	10.00	523.95	1932525.83	11977932.69	623.43
3450.00	67.70	190.8	3189.64	-566.58	-177.32	10.00	568.52	1932516.38	11977888.22	602.66
3500.00	72.24	188.6	3206.76	-612.87	-185.21	10.00	614.90	1932508.49	11977841.93	585.54
3550.00	76.80	186.4	3220.11	-660.63	-191.50	10.00	662.73	1932502.20	11977794.17	572.19
3600.00	81.37	184.4	3229.57	-709.49	-196.12	10.00	711.64	1932497.58	11977745.31	562.73
3650.00	85.96	182.4	3235.09	-759.08	-199.05	10.00	761.26	1932494.65	11977695.72	557.21
*** LANDING F		MD = 3694.								
3694.00	90.00	180.6	3236.64	-803.03	-200.21	10.00	805.21	1932493.49	11977651.77	555.66
3700.00	90.00	180.6	3236.64	-809.03	-200.28	0.00	811.22	1932493.42	11977645.77	555.66
3750.00	90.00	180.6	3236.64	-859.03	-200.83	0.00	861.22	1932492.87	11977595.77	555.66

Lat Long Ref

Prince George Federal Com #3H, Plan 1 (Plan #1)

OperatorMack Energy CorpUnitsfeet, °/100ft08:53 Thursday, October 19, 2023 Page 2 of 4FieldRound TankCountyChavesVertical Section Azimuth180.64

Well Name Prince George Federal Com #3H State New Mexico Survey Calculation Method Minimum Curvature
Plan 1 Country USA Database Access

Location SL: 700 FSL & 1450 FEL Section 20-T15S-R29E BHL: Map Zone UTM

1 FSL & 1650 FEL Section 29-T15S-R29E

Site Surface X 1932693.7 Surface Long
Slot Name UWI Surface Y 11978454.8 Surface Lat
Well Number 3H API Surface Z 3792.3 Global Z Ref KB
Project MD/TVD Ref KB Ground Level 3774.8 Local North Ref Grid

MD*	INC*	AZI*	TVD*	N*	E*	DLS*	V. S.*	MapE*	MapN* S	sysTVD*
3800.00	90.00	180.6	3236.64	-909.02	-201.39	°/100ff 0.00	911.22	1932492.31	11977545.78	555.66
3850.00	90.00	180.6	3236.64	-959.02	-201.95	0.00	961.22	1932491.75	11977495.78	555.66
3900.00	90.00	180.6	3236.64	-1009.02	-202.51	0.00	1011.22	1932491.19	11977445.78	555.66
3950.00	90.00	180.6	3236.64	-1059.01	-203.07	0.00	1061.22	1932490.63	11977395.79	555.66
4000.00	90.00	180.6	3236.64	-1109.01	-203.63	0.00	1111.22	1932490.07	11977345.79	555.66
4050.00	90.00	180.6	3236.64	-1159.01	-204.19	0.00	1161.22	1932489.51	11977295.79	555.66
4100.00	90.00	180.6	3236.64	-1209.01	-204.74	0.00	1211.22	1932488.96	11977245.80	555.66
4150.00	90.00	180.6	3236.64	-1259.00	-205.30	0.00	1261.22	1932488.40	11977195.80	555.66
4200.00	90.00	180.6	3236.64	-1309.00	-205.86	0.00	1311.22	1932487.84	11977145.80	555.66
4250.00	90.00	180.6	3236.64	-1359.00	-206.42	0.00	1361.22	1932487.28	11977095.80	555.66
4300.00	90.00	180.6	3236.64	-1408.99	-206.98	0.00	1411.22	1932486.72	11977045.81	555.66
4350.00	90.00	180.6	3236.64	-1458.99	-207.54	0.00	1461.22	1932486.16	11976995.81	555.66
4400.00	90.00	180.6	3236.64	-1508.99	-208.10	0.00	1511.22	1932485.61	11976945.81	555.66
4450.00	90.00	180.6	3236.64	-1558.98	-208.65	0.00	1561.22	1932485.05	11976895.82	555.66
4500.00	90.00	180.6	3236.64	-1608.98	-209.21	0.00	1611.22	1932484.49	11976845.82	555.66
4550.00	90.00	180.6	3236.64	-1658.98	-209.77	0.00	1661.22	1932483.93	11976795.82	555.66
4600.00	90.00	180.6	3236.64	-1708.97	-210.33	0.00	1711.22	1932483.37	11976745.83	555.66
4650.00	90.00	180.6	3236.64	-1758.97	-210.89	0.00	1761.22	1932482.81	11976695.83	555.66
4700.00	90.00	180.6	3236.64	-1808.97	-211.45	0.00	1811.22	1932482.25	11976645.83	555.66
4750.00	90.00	180.6	3236.64	-1858.96	-212.00	0.00	1861.22	1932481.70	11976595.84	555.66
4800.00	90.00	180.6	3236.64	-1908.96	-212.56	0.00	1911.22	1932481.14	11976545.84	555.66
4850.00	90.00	180.6	3236.64	-1958.96	-213.12	0.00	1961.22	1932480.58	11976495.84	555.66
4900.00	90.00	180.6	3236.64	-2008.96	-213.68	0.00	2011.22	1932480.02	11976445.84	555.66
4950.00	90.00	180.6	3236.64	-2058.95	-214.24	0.00	2061.22	1932479.46	11976395.85	555.66
5000.00	90.00	180.6	3236.64	-2108.95	-214.80	0.00	2111.22	1932478.90	11976345.85	555.66
5050.00	90.00	180.6	3236.64	-2158.95	-215.36	0.00	2161.22	1932478.34	11976295.85	555.66
5100.00	90.00	180.6	3236.64	-2208.94	-215.91	0.00	2211.22	1932477.79	11976245.86	555.66
5150.00	90.00	180.6	3236.64	-2258.94	-216.47	0.00	2261.22	1932477.23	11976195.86	555.66
*** HOLD FLAT	•	-								
5172.00	90.00	180.6	3236.64	-2280.93	-216.72	0.00	2283.21	1932476.98	11976173.87	555.66
5200.00	90.40	180.6	3236.54	-2308.94	-217.03	1.43	2311.22	1932476.67	11976145.86	555.76
5250.00	91.12	180.6	3235.88	-2358.93	-217.59	1.43	2361.21	1932476.11	11976095.87	556.42
*** 1.43 DEGR		•	•							
5262.90	91.30	180.6	3235.60	-2371.83	-217.73	1.43	2374.11	1932475.97	11976082.97	556.70
5300.00	91.30	180.6	3234.76	-2408.91	-218.15	0.00	2411.20	1932475.55	11976045.89	557.54
5350.00	91.30	180.6	3233.63	-2458.90	-218.71	0.00	2461.19	1932474.99	11975995.90	558.67
5400.00	91.30	180.6	3232.49	-2508.88	-219.26	0.00	2511.17	1932474.44	11975945.92	559.81
Page 2 of 4					SES V5	79			MANA/A/ D	nakinhole com

Lat Long Ref

Prince George Federal Com #3H, Plan 1 (Plan #1)

Operator Mack Energy Corp Units feet, °/100ft 08:53 Thursday, October 19, 2023 Page 3 of 4 Field Round Tank **County** Chaves Vertical Section Azimuth 180.64

Well Name Prince George Federal Com #3H State New Mexico **Survey Calculation Method** Minimum Curvature **Country** USA **Database** Access

Surface X 1932693.7

Location SL: 700 FSL & 1450 FEL Section 20-T15S-R29E BHL:

Map Zone UTM 1 FSL & 1650 FEL Section 29-T15S-R29E

Surface Long Surface Y 11978454.8 UWI **Slot Name Surface Lat** Well Number 3H **API Surface Z** 3792.3 Global Z Ref KB **Project** MD/TVD Ref KB **Ground Level** 3774.8 Local North Ref Grid

MD*	INC*	AZI*	TVD*	N*	E*	DLS*	V. S.*	MapE*	MapN* S	sysTVD*
5450.00	91.30	180.6	3231.36	-2558.86	-219.82	°/100 ft 0.00	2561.16	1932473.88	11975895.94	560.94
5500.00	91.30	180.6	3230.23	-2608.85	-220.38	0.00	2611.15	1932473.32	11975845.95	562.07
5550.00	91.30	180.6	3229.09	-2658.83	-220.94	0.00	2661.13	1932472.76	11975795.97	563.21
5600.00	91.30	180.6	3227.96	-2708.82	-221.50	0.00	2711.12	1932472.20	11975745.98	564.34
5650.00	91.30	180.6	3226.82	-2758.80	-222.06	0.00	2761.11	1932471.64	11975696.00	565.48
5700.00	91.30	180.6	3225.69	-2808.78	-222.61	0.00	2811.10	1932471.09	11975646.02	566.61
5750.00	91.30	180.6	3224.55	-2858.77	-223.17	0.00	2861.08	1932470.53	11975596.03	567.75
5800.00	91.30	180.6	3223.42	-2908.75	-223.73	0.00	2911.07	1932469.97	11975546.05	568.88
5850.00	91.30	180.6	3222.28	-2958.74	-224.29	0.00	2961.06	1932469.41	11975496.06	570.02
5900.00	91.30	180.6	3221.15	-3008.72	-224.85	0.00	3011.04	1932468.85	11975446.08	571.15
5950.00	91.30	180.6	3220.02	-3058.70	-225.41	0.00	3061.03	1932468.29	11975396.10	572.28
6000.00	91.30	180.6	3218.88	-3108.69	-225.96	0.00	3111.02	1932467.74	11975346.11	573.42
6050.00	91.30	180.6	3217.75	-3158.67	-226.52	0.00	3161.01	1932467.18	11975296.13	574.55
6100.00	91.30	180.6	3216.61	-3208.66	-227.08	0.00	3210.99	1932466.62	11975246.14	575.69
6150.00	91.30	180.6	3215.48	-3258.64	-227.64	0.00	3260.98	1932466.06	11975196.16	576.82
6200.00	91.30	180.6	3214.34	-3308.63	-228.20	0.00	3310.97	1932465.50	11975146.18	577.96
6250.00	91.30	180.6	3213.21	-3358.61	-228.76	0.00	3360.95	1932464.94	11975096.19	579.09
6300.00	91.30	180.6	3212.08	-3408.59	-229.31	0.00	3410.94	1932464.39	11975046.21	580.22
6350.00	91.30	180.6	3210.94	-3458.58	-229.87	0.00	3460.93	1932463.83	11974996.22	581.36
6400.00	91.30	180.6	3209.81	-3508.56	-230.43	0.00	3510.92	1932463.27	11974946.24	582.49
6450.00	91.30	180.6	3208.67	-3558.55	-230.99	0.00	3560.90	1932462.71	11974896.25	583.63
6500.00	91.30	180.6	3207.54	-3608.53	-231.55	0.00	3610.89	1932462.15	11974846.27	584.76
6550.00	91.30	180.6	3206.40	-3658.51	-232.11	0.00	3660.88	1932461.59	11974796.29	585.90
6600.00	91.30	180.6	3205.27	-3708.50	-232.66	0.00	3710.86	1932461.04	11974746.30	587.03
6650.00	91.30	180.6	3204.13	-3758.48	-233.22	0.00	3760.85	1932460.48	11974696.32	588.17
6700.00	91.30	180.6	3203.00	-3808.47	-233.78	0.00	3810.84	1932459.92	11974646.33	589.30
6750.00	91.30	180.6	3201.87	-3858.45	-234.34	0.00	3860.83	1932459.36	11974596.35	590.43
6800.00	91.30	180.6	3200.73	-3908.43	-234.90	0.00	3910.81	1932458.80	11974546.37	591.57
6850.00	91.30	180.6	3199.60	-3958.42	-235.46	0.00	3960.80	1932458.24	11974496.38	592.70
6900.00	91.30	180.6	3198.46	-4008.40	-236.01	0.00	4010.79	1932457.69	11974446.40	593.84
6950.00	91.30	180.6	3197.33	-4058.39	-236.57	0.00	4060.77	1932457.13	11974396.41	594.97
7000.00	91.30	180.6	3196.19	-4108.37	-237.13	0.00	4110.76	1932456.57	11974346.43	596.11
7050.00	91.30	180.6	3195.06	-4158.35	-237.69	0.00	4160.75	1932456.01	11974296.45	597.24
7100.00	91.30	180.6	3193.93	-4208.34	-238.25	0.00	4210.74	1932455.45	11974246.46	598.37
7150.00	91.30	180.6	3192.79	-4258.32	-238.81	0.00	4260.72	1932454.89	11974196.48	599.51
7200.00	91.30	180.6	3191.66	-4308.31	-239.37	0.00	4310.71	1932454.34	11974146.49	600.64
7250.00	91.30	180.6	3190.52	-4358.29	-239.92	0.00	4360.70	1932453.78	11974096.51	601.78

Lat Long Ref

Prince George Federal Com #3H, Plan 1 (Plan #1)

Operator Mack Energy Corp Units feet, °/100ft 08:53 Thursday, October 19, 2023 Page 4 of 4 Field Round Tank **County** Chaves Vertical Section Azimuth 180.64

Well Name Prince George Federal Com #3H State New Mexico **Survey Calculation Method** Minimum Curvature **Country** USA **Database** Access

Map Zone UTM Location SL: 700 FSL & 1450 FEL Section 20-T15S-R29E BHL:

1 FSL & 1650 FEL Section 29-T15S-R29E

Surface X 1932693.7 **Surface Long** UWI **Surface Y** 11978454.8 **Slot Name Surface Lat** Well Number 3H **API Surface Z** 3792.3

Global Z Ref KB **Project** MD/TVD Ref KB **Ground Level** 3774.8 Local North Ref Grid

MD*	INC*	AZI*	TVD*	N*	E*	DLS*	V. S.*	MapE*	MapN* S	SysTVD*
7300.00	91.30	180.6	3189.39	-4408.27	-240.48	0.00	4410.68	1932453.22	11974046.53	602.91
7350.00	91.30	180.6	3188.25	-4458.26	-241.04	0.00	4460.67	1932452.66	11973996.54	604.05
7400.00	91.30	180.6	3187.12	-4508.24	-241.60	0.00	4510.66	1932452.10	11973946.56	605.18
7450.00	91.30	180.6	3185.98	-4558.23	-242.16	0.00	4560.65	1932451.54	11973896.57	606.32
7500.00	91.30	180.6	3184.85	-4608.21	-242.72	0.00	4610.63	1932450.98	11973846.59	607.45
7550.00	91.30	180.6	3183.72	-4658.19	-243.27	0.00	4660.62	1932450.43	11973796.61	608.58
7600.00	91.30	180.6	3182.58	-4708.18	-243.83	0.00	4710.61	1932449.87	11973746.62	609.72
7650.00	91.30	180.6	3181.45	-4758.16	-244.39	0.00	4760.59	1932449.31	11973696.64	610.85
7700.00	91.30	180.6	3180.31	-4808.15	-244.95	0.00	4810.58	1932448.75	11973646.65	611.99
7750.00	91.30	180.6	3179.18	-4858.13	-245.51	0.00	4860.57	1932448.19	11973596.67	613.12
7800.00	91.30	180.6	3178.04	-4908.11	-246.07	0.00	4910.56	1932447.63	11973546.69	614.26
7850.00	91.30	180.6	3176.91	-4958.10	-246.62	0.00	4960.54	1932447.08	11973496.70	615.39
7900.00	91.30	180.6	3175.78	-5008.08	-247.18	0.00	5010.53	1932446.52	11973446.72	616.52
7950.00	91.30	180.6	3174.64	-5058.07	-247.74	0.00	5060.52	1932445.96	11973396.73	617.66
8000.00	91.30	180.6	3173.51	-5108.05	-248.30	0.00	5110.50	1932445.40	11973346.75	618.79
8050.00	91.30	180.6	3172.37	-5158.03	-248.86	0.00	5160.49	1932444.84	11973296.77	619.93
8100.00	91.30	180.6	3171.24	-5208.02	-249.42	0.00	5210.48	1932444.28	11973246.78	621.06
8150.00	91.30	180.6	3170.10	-5258.00	-249.97	0.00	5260.47	1932443.73	11973196.80	622.20
8200.00	91.30	180.6	3168.97	-5307.99	-250.53	0.00	5310.45	1932443.17	11973146.81	623.33
8250.00	91.30	180.6	3167.84	-5357.97	-251.09	0.00	5360.44	1932442.61	11973096.83	624.46
8300.00	91.30	180.6	3166.70	-5407.95	-251.65	0.00	5410.43	1932442.05	11973046.85	625.60
8350.00	91.30	180.6	3165.57	-5457.94	-252.21	0.00	5460.41	1932441.49	11972996.86	626.73
8400.00	91.30	180.6	3164.43	-5507.92	-252.77	0.00	5510.40	1932440.93	11972946.88	627.87
8450.00	91.30	180.6	3163.30	-5557.91	-253.32	0.00	5560.39	1932440.38	11972896.89	629.00
8500.00	91.30	180.6	3162.16	-5607.89	-253.88	0.00	5610.38	1932439.82	11972846.91	630.14
8550.00	91.30	180.6	3161.03	-5657.87	-254.44	0.00	5660.36	1932439.26	11972796.93	631.27
8600.00	91.30	180.6	3159.89	-5707.86	-255.00	0.00	5710.35	1932438.70	11972746.94	632.41
8650.00	91.30	180.6	3158.76	-5757.84	-255.56	0.00	5760.34	1932438.14	11972696.96	633.54
8700.00	91.30	180.6	3157.63	-5807.83	-256.12	0.00	5810.32	1932437.58	11972646.97	634.67
8750.00	91.30	180.6	3156.49	-5857.81	-256.67	0.00	5860.31	1932437.03	11972596.99	635.81
8800.00	91.30	180.6	3155.36	-5907.79	-257.23	0.00	5910.30	1932436.47	11972547.01	636.94
8850.00	91.30	180.6	3154.22	-5957.78	-257.79	0.00	5960.29	1932435.91	11972497.02	638.08
*** TD (at MD	,									
8856.90	91.30	180.6	3154.07	-5964.68	-257.87	0.00	5967.19	1932435.83	11972490.12	638.23

PECOS DISTRICT DRILLING OPERATIONS CONDITIONS OF APPROVAL

OPERATOR'S NAME: | Mack Energy Corporation

LEASE NO.: | NMNM-101106

WELL NAME & NO.: | Prince George Federal Com 3H

SURFACE HOLE FOOTAGE: 0700' FSL & 1450' FEL

BOTTOM HOLE FOOTAGE | 0001' FSL & 1650' FEWL Sec. 29, T. 15 S., R 29 E.

LOCATION: | Section 20, T. 15 S., R 29 E., NMPM

COUNTY: Chaves County, New Mexico

Communitization Agreement

- The operator will submit a Communitization Agreement to the Roswell Field Office, 2909 West 2nd Street Roswell, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- · If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- · In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

The Gamma Ray and Neutron well logs must be run from total depth to surface and e-mailed to Aleksandr Knapowski at cknapowski@blm.gov or hard copy mailed to 2909 West Second Street Roswell, NM 88201 to his attention.

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Chaves and Roosevelt Counties

Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201. During office hours call (575) 627-0272. After hours cll (575) 627-0205.

A. Hydrogen Sulfide

- 1. Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.
- 2. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. If the drilling rig is removed without approval an Incident of Non-Compliance will be written and will be a "Major" violation.
- 3. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area.
- 4. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

B. CASING

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Wait on cement (WOC) for Water Basin:

After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least $\underline{8}$ hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.

Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

High Cave/Karst

Possibility of water flows in the Rustler, Queen, Salado, and Artesia Group. Possibility of lost circulation in the Rustler, Artesia Group, and San Andres.

- 1. The 13-3/8 inch surface casing shall be set at approximately 220 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 feet above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the **9-5/8** inch intermediate casing is:
 - ⊠ Cement to surface. If cement does not circulate see B.1.a, c-d above.

Centralizers required on horizontal leg, must be type for horizontal service and a minimum of one every other joint.

- 3. The minimum required fill of cement behind the $7 \times 5-1/2$ inch production casing is:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.

4. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. If the BLM inspector questions the straightness of the hose, a BLM engineer will be contacted and will review in the field or via picture supplied by inspector to determine if changes are required (operator shall expect delays if this occurs).
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 3000 (3M) psi (testing to 2,000 psi).
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Operator shall perform the intermediate casing integrity test to 70% of the casing burst. This will test the multi-bowl seals.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

- 3. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer.
 - c. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - d. The results of the test shall be reported to the appropriate BLM office.
 - e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
 - f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.

D. DRILL STEM TEST

If drill stem tests are performed, Onshore Order 2.III.D shall be followed.

E. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JAM 03072024

Prince George Federal Com #3H NMNM-101106 SHL: 700 FSL & 1650 FEL, SWSE, Sec. 20 T15S R29E BHL: 1 FSL & 1650 FEL, SWSE, Sec. 29 T15S R29E

Chaves County, NM

Mack Energy Corporation Onshore Order #6 Hydrogen Sulfide Drilling Operation Plan

I. HYDROGEN SULFIDE TRAINING

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- 1. The hazards an characteristics of hydrogen sulfide (H2S)
- 2. The proper use and maintenance of personal protective equipment and life support systems.
- 3. The proper use of H2S detectors alarms warning systems, briefing areas, evacuation procedures, and prevailing winds.
- 4. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- 1. The effects of H2S on metal components. If high tensile tubular are to be used, personnel well be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- 3. The contents and requirements of the H2S Drilling Operations Plan and Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H2S zone (within 3 days or 500 feet) and weekly H2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H2S Drilling Operations Plan and the Public Protection Plan. The concentrations of H2S of wells in this area from surface to TD are low enough that a contingency plan is not required.

II. H2S SAFETY EQUIPMENT AND SYSTEMS

Note: All H2S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonable expected to contain H2S.

1. Well Control Equipment:

- A. Flare line.
- B. Choke manifold.
- C. Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit.
- D. Auxiliary equipment may include if applicable: annular preventer & rotating head.

Prince George Federal Com #3H NMNM-101106 SHL: 700 FSL & 1650 FEL, SWSE, Sec. 20 T15S R29E BHL: 1 FSL & 1650 FEL, SWSE, Sec. 29 T15S R29E

Chaves County, NM

2. Protective equipment for essential personnel:

A. Mark II Survive air 30-minute units located in the doghouse and at briefing areas, as indicated on well site diagram.

3. H2S detection and monitoring equipment:

A. 1 portable H2S monitors positioned on location for best coverage and response. These units have warning lights and audible sirens when H2S levels of 20 PPM are reached.

4. Visual warning systems:

- A. Wind direction indicators as shown on well site diagram (Exhibit #8).
- B. Caution/Danger signs (Exhibit #7) shall be posted on roads providing direct access to location. Signs will be painted a high visibility yellow with black lettering of sufficient size to be readable at a reasonable distance from the immediate location. Bilingual signs will be used, when appropriate. See example attached.

5. Mud program:

A. The mud program has been designed to minimize the volume of H2S circulated to surface. Proper mud weight, safe drilling practices and the use of H2S scavengers will minimize hazards when penetrating H2S bearing zones.

6. Metallurgy:

- A. All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.
- B. All elastomers used for packing and seals shall be H2S trim.

7. Communication:

- A. Radio communications in company vehicles including cellular telephone and 2-way radio.
- B. Land line (telephone) communication at Office.

8. Well testing:

A. Drill stem testing will be performed with a minimum number of personnel in the immediate vicinity, which are necessary to safely and adequately conduct the test. The drill stem testing will be conducted during daylight hours and formation fluids will not be flowed to the surface. All drill-stem-testing operations conducted in an H2S environment will use the closed chamber method of testing.

Prince George Federal Com #3H NMNM-101106

SHL: 700 FSL & 1650 FEL, SWSE, Sec. 20 T15S R29E BHL: 1 FSL & 1650 FEL, SWSE, Sec. 29 T15S R29E

Chaves County, NM

EXHIBIT #7

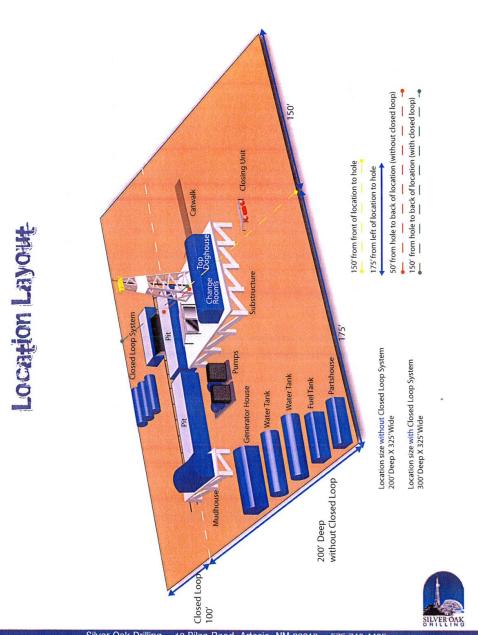
WARNING

YOU ARE ENTERING AN H2S

AUTHORIZED PERSONNEL ONLY

- 1. BEARDS OR CONTACT LENSES NOT ALLOWED
- 2. HARD HATS REQUIRED
- 3. SMOKING IN DESIGNATED AREAS ONLY
- 4. BE WIND CONSCIOUS AT ALL TIMES
- 5. CHECK WITH MACK ENERGY FOREMAN AT OFFICE

MACK ENERGY CORPORATION


1-575-748-1288

Prevailing Wind Direction Flare Line Summer - Southeast Winter - Northeast North Closed equipn Mud Substructure -Cat Walk Pump 0 and Doghouse Company Trailer Primary Briefing Area H2S Monitors with alarms at the bell nipple Access Road Escape Route Wind Direction Indicators Safe Briefing areas with caution signs and breathing equipment min 150 feet from w

Warning sign @ access road entrance

B. There will be no drill stem testing.

DRILLING LOCATION H2S SAFTY EQUIPMENT Exhibit # 8

Silver Oak Drilling ~ 10 Bilco Road, Artesia, NM 88210 ~ 575.746.4405 info@silveroakdrilling.com ~ www.silveroakdrilling.com

Mack Energy Corporation Call List, Chaves County

Artesia (575)	Cellular	Office	
Jim Krogman	432-934-1596	748-1288	
_	432-934-7586		

Agency Call List (575)

Roswell

State Police	622-7200
City Police	624-6770
Sheriff's Office	624-7590
Ambulance	624-7590
Fire Department	624-7590
LEPC (Local Emergency Planning Committee	624-6770
NMOCD	748-1283
Bureau of Land Management	627-0272

Emergency Services

Series services	
Boots & Coots IWC	1-800-256-9688 or (281)931-8884
Cudd pressure Control	(915)699-0139 or (915)563-3356
Halliburton	746-2757
Par Five	748-9539
Flight For Life-Lubbock, TX	(806)743-9911
Aerocare-Lubbock, TX	(806)747-8923
Med Flight Air Amb-Albuquerque	e, NM(505)842-4433
Lifeguard Air Med Svc. Albuquero	que, NM(505)272-3115

Drilling Program Page 12

Inten [.]	t XX	As Dril	led											
API#														
-	rator Nar CK ENE	ne: ERGY CO	DRPORA	ATIOI	N	Property Name: PRINCE GEORGE FEDERAL COM						ОМ	Well Number 3H	
Kick C	Off Point	(KOP)												
UL O	Section 20	Township 15S	Range 29E	Lot	Feet 700		From N		Feet 145		From	n E/W ST	County CHAVE	:S
Latitu 32.9	olde 196101	1		I	Longitu 104.0		1360						NAD 83	
First 1	Take Poin	it (FTP)												
UL B	Section 29	Township 15S	Range 29E	Lot	Feet 100		From N		Feet 165		From E/W EAST		County CHAVES	
Latitu 32.9	olde 193903	3		l	_	Longitude NAD 83								
Last T	ake Poin	t (LTP)												
UL O	Section 29	Township 15S	Range 29E	Lot	Feet 100		m N/S OUTH	Feet 165		From EAS	-	Count	•	
Latitu 32.9	ode 980031	4	1	l	_	ongitude NAD NAD 83								
ls this	well the	defining v	vell for th	e Hori	zontal Sp	oacin	g Unit?	. []				
ls this	well an	infill well?												
	l is yes p ng Unit.	lease prov	ide API if	availal	ole, Oper	ator	Name a	and v	vell n	umbei	r for [Definir	ng well fo	or Horizontal
API#														
Ope	rator Nar	ne:				Property Name:						Well Number		
														K7 06/29/2019

KZ 06/29/2018

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

APD ID: 10400094607

Submission Date: 10/31/2023

Highlighted data reflects the most recent changes

Operator Name: MACK ENERGY CORPORATION

Well Name: PRINCE GEORGE FEDERAL COM

Well Number: 3H

Well Type: OIL WELL

Well Work Type: Drill

Show Final Text

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
13450146	QUÁTERNARY	3769	0	0	ALLUVIUM	NONE	N
13450147	TOP OF SALT	3559	210	210	SALT	NONE	N
13450148	BASE OF SALT	2939	830	830	SALT	NONE	N
13450152	YATES	2901	868	868	ANHYDRITE, SILTSTONE	NATURAL GAS, OIL	N
13450145	SEVEN RIVERS	2664	1105	1105	ANHYDRITE, SILTSTONE	NATURAL GAS, OIL	N
13450150	QUEEN	2177	1592	1592	ANHYDRITE, SILTSTONE	NATURAL GAS, OIL	N
13450151	GRAYBURG	1782	1987	1987	ANHYDRITE, DOLOMITE, SILTSTONE	NATURAL GAS, OIL	N
13450149	SAN ANDRES	1467	2302	2302	ANHYDRITE, DOLOMITE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 3M Rating Depth: 8856

Equipment: Rotating Head, Mud-Gas Separator

Requesting Variance? NO

Variance request:

Testing Procedure: The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. The estimated Bottom Hole at TD is 120 degrees and estimated maximum bottom hole pressure is 1504 psig (0.052*3154*9.2) less than 2900 bottom hole pressure.

Choke Diagram Attachment:

NEW_Choke_Manifold_3M_20230920122618.pdf

BOP Diagram Attachment:

NEW_BOP_3M_20230920122628.pdf

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 345612

CONDITIONS

Operator:	OGRID:		
MACK ENERGY CORP	13837		
P.O. Box 960	Action Number:		
Artesia, NM 882110960	345612		
	Action Type:		
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)		

CONDITIONS

Created By	Condition	Condition Date
ward.rikala	Notify OCD 24 hours prior to casing & cement	6/12/2024
ward.rikala	Will require a File As Drilled C-102 and a Directional Survey with the C-104	6/12/2024
ward.rikala	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string	6/12/2024
ward.rikala	Cement is required to circulate on both surface and intermediate1 strings of casing	6/12/2024
ward.rikala	If cement does not circulate on any string, a CBL is required for that string of casing	6/12/2024
ward.rikala	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system	6/12/2024