Form 3160-3 (June 2015)				FORM A OMB No	. 1004-0	137
UNITED STATES	3			Expires: Jai	nuary 31,	2018
DEPARTMENT OF THE I	NTER	IOR		5. Lease Serial No.		
BUREAU OF LAND MAN	AGEM	IENT		NMLC029387C		
APPLICATION FOR PERMIT TO D	RILL	OR REENTER		6. If Indian, Allotee	or Tribe N	√ame
				Â		
1a. Type of work:	EENTE	R		7. If Unit or CA Agre	eement, N	lame and No.
						N
	ther			8. Lease Name and M	Well No.	
ic. Type of Completion: Hydraulic Fracturing	ngle Zo	ne Multiple Zone		SILVER 29-28 FED	D COM	
· · · · · · · · · · · · · · · · · · ·				<u>1</u> 111H		
2. Name of Operator				9: API Well No.	X A	
CENTENNIAL RESOURCE PRODUCTION LLC			(Alexandre	 Alternative Alternative 	015-5	
3a. Address 300 N MARIENFIELD STREET SUITE 1000, MIDLAND, T	(432)		» (10, Field and Pool, o SHUGART/BONE :	-	•
4. Location of Well (Report location clearly and in accordance s	with any	State requirements.*)		11. Sec., T. R. M. or		Survey or Area
At surface SWNE / 1928 FNL / 2146 FEL / LAT 32.720	394 / L	.ONG -103.890039		SEC 29/T18S/R31E	E/NMP	
At proposed prod. zone NENE / 660 FNL / 100 FEL / LA	۲ 32.72	3913 / LONG -103.8662	17			
14. Distance in miles and direction from nearest town or post offi 2 miles	ce*			12. County or Parish EDDY		13. State NM
15. Distance from proposed* 1928 feet	16. No	o of acres in lease	17. Spaci	ng Unit dedicated to th	is well	
location to nearest 1920 leet property or lease line, ft.			240.0	8		
(Also to nearest drig. unit line, if any)			240.0			
18. Distance from proposed location*	19. Pr	oposed Depth	20, BLM/	BIA Bond No. in file		
to nearest well, drilling, completed, 33 feet applied for, on this lease, ft.	7895 (feet / 15412 feet	FED:			
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	1002	proximate date work will s	start*	23. Estimated duration	on	
3625 feet	05/01/	/2024		18 days		
	24, .	Attachments				
The following, completed in accordance with the requirements of (as applicable)	'Onshoi	re Oil and Gas Order No. 1	, and the H	lydraulic Fracturing ru	ile per 43	CFR 3162,3-3
 Well plat certified by a registered surveyor. A Drilling Plan. 		4. Bond to cover the Item 20 above).	e operation	s unless covered by an	existing l	oond on file (see
 A During Han. A Surface Use Plan (if the location is on National Forest System 	n Lands	r · · ·	ation.			
SUPO must be filed with the appropriate Forest Service Office				mation and/or plans as 1	may be re	quested by the
25. Signature		Name (Printed/Typed)		ł	Date	
(Electronic Submission)	T	FINLEE VIA / Ph: (432) (595-4222		05/24/20	023
Title Drilling Engineer						
Approved by (Signature) (Electronic Submission)		Name (Printed/Typed) CODY LAYTON / Ph: (57	(5) 234-59	1	Date 05/10/20)24
Title Assistant Field Manager Lands & Minerals		Office Carlsbad Field Office				
Application approval does not warrant or certify that the applican			ose rights	in the subject lease wh	ich would	d entitle the
applicant to conduct operations thereon. Conditions of approval, if any, are attached.						
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, m	ake it a	crime for any person know	ingly and	willfully to make to ar	ny departi	ment or agency
of the United States any false, fictitious or fraudulent statements of	or repres	sentations as to any matter	within its j	urisdiction.		

APPROVED WITH CONDITIONS

(Continued on page 2)

*(Instructions on page 2)

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

Additional Operator Remarks

Location of Well

0. SHL: SWNE / 1928 FNL / 2146 FEL / TWSP: 18S / RANGE: 31E / SECTION: 29 / LAT: 32.720394 / LONG: -103.890039 (TVD: 0 feet, MD: 0 feet) PPP: NWNE / 660 FNL / 2540 FEL / TWSP: 18S / RANGE: 31E / SECTION: 29 / LAT: 32.723876 / LONG: -103.890821 (TVD: 7895 feet, MD: 8253 feet) PPP: NENE / 660 FNL / 0 FEL / TWSP: 18S / RANGE: 31E / SECTION: 29 / LAT: 32.723889 / LONG: -103.883068 (TVD: 7895 feet, MD: 10229 feet) PPP: NENW / 660 FNL / 0 FEL / TWSP: 18S / RANGE: 31E / SECTION: 28 / LAT: 32.723902 / LONG: -103.87448 (TVD: 7895 feet, MD: 12070 feet) PPP: NENW / 660 FNL / 2642 FWL / TWSP: 18S / RANGE: 31E / SECTION: 28 / LAT: 32.723895 / LONG: -103.878774 (TVD: 7895 feet, MD: 11550 feet) PPP: NWNW / 660 FNL / 1321 FWL / TWSP: 18S / RANGE: 31E / SECTION: 28 / LAT: 32.723895 / LONG: -103.878774 (TVD: 7895 feet, MD: 11550 feet) BHL: NENE / 660 FNL / 100 FEL / TWSP: 18S / RANGE: 31E / SECTION: 28 / LAT: 32.723913 / LONG: -103.866217 (TVD: 7895 feet, MD: 15412 feet)

BLM Point of Contact

Name: JANET D ESTES Title: ADJUDICATOR Phone: (575) 234-6233 Email: JESTES@BLM.GOV

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

Rec	eived by)CD:	<u>6/17</u>	<mark>/20</mark>	24 7	7 :30 :	52-	1 <i>M</i> -					1									1							Pa	ige	5 of	95
[#] OPERATOR CERTIFICATION	I hereby certify that the information contained herean is true and complote to the bast of my heroredge and belief, and hat this orgeneration either owns a working tuerest of unleased mineral interest in the land including	the proposed contorn note location or hus a right to didit this well at this location pursuant to a contract with an orware of such a mineral or working interest. Or to a voluntary cooling	agreement or a compulsory pooling order	1. 1. 512312023	Signature Date	IINIGE VIA	tinlee.via@permianres.com	E-mail Address	¹⁸ SURVEYOR CERTIFICATION	I hereby certify that the well location shown on this plat was plotted from field notes of	actual surveys made by me or under my supervision, and that the same is true and	correct to the bast of my belief. Manuel 22 2022	Date of Survey	Signature and Scal of Professional Surveyor:	ŧ,	SAL BUCKE	4	A REAR AN	Į.	1	CONAL 2	Certificate Number.	NAD 83 (LPP #3) LATITUDE = 32°4326.05" (32.723902°) LONGITUDE = -103°52'28.15" (-105.874480°)	NAD 27 (LPP #5) LATITUDE = 52°4325.62" (32.725782°) I ONGTITINE = -144°5276.31" (-103.873978°)	STATE PLANE NAD 85 (N.M. EAST) N. 627392 36 : 68248 27 N. 627392 41 ANE NAD 77 03 M. EAST)	N: 627329.11' E: 641269.26' N: 72.93.17 E: 641269.26'	LATTUDE = 32°45'26.09" (32.723913°)	LONGIUDE = -105 21 28 28 (-103 866217*) NAD 27 (LTP/BHD.)	LATITUDE = 52°45'25.66" (32.723794°) LONGITUDE = ~103°51'56.57" (-103.865713°)	STATE PLANE NAD 83 (N.M. EAST) N: 627407.75' E: 684989.30'	STATE PLANE NAD 27 (N.M. EAST) N: 62734448' E: 64381029'	
Form C-102 Revised August 1, 2011 Submit one copy to appropriate	District Office		- Alter de la constante de la c		6 Well Number 111H	P Elevation 3624.71		EDDY		County EDDY		the division.	NAD 83 (SURFACE HOLE LOCATION) LATTTUDE = 32°43'13,42" (32.720594°)	LONGITUDE = -105°55'24.14" (-103.890039°)	NAD 27 (SURFACE HOLE LOCATION) LATITUDE = 32°43'12.99" (32.720275°)	LONGITUDE = -103°53'22.32" (-103.889534°) STATE P1 ANE NAD 83 (N.M. FAST)	N: 626095.78' E: 677668.88 STATE PLANE NAD 27 (N.M. EAST)	N: 626032.59' E: 656489.80' NAD 83 (FIRST TAKE POINT)	LATITUDE = 32°45'25.95" (32.723876°) LONGITUDE = -103°55'28.77" (-103.891326°) X 10 37 (77757 7 4 27 20077)	LATTUDE = 32°43'25.52" (32.723757°) LATTUDE = 32°43'25.52" (32.723757°) LONGITUDE = -103°53'26.95" (-103.896821°)	STATE PLANE NAD 83 (N.M. EAST) N: 627360.97 E: 677267.79	STATE PLANE NAD 27 (NM. EAST) N: 627297.75' E: 656088.74	NAD 83 (LPP #1) LATITUDE = 32°43'26.00" (52.723889°) LONGHTUDE = -103°52'59.04" (-103.883068°)	NAD 27 (LPP #1) LATITUDE = 32°43'25,57" (32.723770°) LONGTITIDE = -103°5257.23" (-103.887563°)	STATE PLANE NAD 83 (N.M. EAST) N: 627376.36 E: 679807.23 STATE PLANE NAD 27 (N. N. EAST)	N: 627313.13' E: 638628.20' NAD 82 /1 DD #23	LATITUDE = 32°43'26.02" (32.723895°)	LUNUILOUE = -105-22-45.09 (-105-27-47-1) NAD 27 (LPP #2)	LATITUDE = 32°43'25.59" (32.723776°) LONGITUDE = -103°52'41.77" (-103.878269°)	STATE PLANE NAD 83 (N.M. EAST) N: 627384.36' E: 681127.75'	STATE PLANE NAD 27 (N.M. EAST) N: 627321.12' E: 639948.75'	
			PLAT SPeed Name					the EastWest fine EAST		the East/West line EAST		or a non-standard unit has been approved by the division.			99	BHL 84-100	_ <u></u>				(*s0 M	911) ,s 1 <u>.</u> £1,50	79'0+9 200N	8		27-17-50 -5-1-1 :19 NM AND	SURFACE HOLF LOCATION	FIRST TAKE POINT	LEASE PENETRATION POINT. LAST TAKE POINT/	BOTTOM HOLE LOCATION	LINE.	
State of New Mexico Energy, Minerals & Natural Resources Department	NVISION : Dr. 5		IION	one Spring		, LLC		line Feetfrom the 2146	S	ine Feet from the I 00		non-standard unit	ره (ع		L6	20 LTP	2642' FWL 012212					 _ 		589'53'27"W 2641.27" (Meas.)		DKAWN B	SURFAC	F		l		
State of New Mexico als & Natural Resourc	, CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe. NM 87505		ACREAGE DI	Shugart; Bone	⁵ Property Name SIL VER 29-28 FED COM	[*] Operator Name PERMIAN RESOURCES OPERATING, LLC	"Surface Location	North/South line NORTH	Bottom Hole Location If Different From	North/South line NORTH	jo,		58954'04"W 5283.23' (Meas.)		15.	 	660' FNL 660' 1321' FML - 264	2642						5"W Keas.)	IE TABLE	LENGTH	1327,51'	2540.00	1320.81	1320.81	2541.58'	
State of line	CONSERV 1220 South Santa Fe		TION AND A	- 1	⁵ Propert SILVER 29-2	R Operation I AN RESOURC	"Surfac	Feet from the 1928	Hole Location	Feet from the 660		crests have been o			بر در ۲	WNWN	109230	NMLC	0029390A		('so M		32.049 200N	SB9 53'05"W 2641.08" (Meas.)	- BORE LINE	DIRECTION	AZ = 342.65*	AZ = 89.90°	1	0	AZ = 89.90°	
nergy, Mir	ΠΟ		WELL LOCATION AND	56400		PERM		Range Lot Idn 31E	7	Range Lot Idn 31E	¹⁴ Consolidation Code	tion until all inte	2640.93" (Neas.)		2040		0' FEL -	1 2146'					Utral (DS) -	589°53'09"W 2640.45" (Neas.)	E WELL	T	56' [12	57 1.5	-000		- [6	
			×_					Township Ra 18S 3		~ ~ ~	13 Joint or Infill	d to this comple	▲ 26	-	99	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	61 - 12	SHL				 Distances referenced on plat to section lines are perpendicular. Basis of Bearings is a Transver 	Mercator Projection with a Central Meridian of W103°55'00" (NAD 83)	583 2640.	LINE TABLE	TION LENGTH	25"W 2640.66"	6"W 2639.57			В	
District 1 1825 N. French Dr., Kobbs, NM 88240 Phone (575) 393-6161 Pax: (575) 393-0720 District []	811 S. First St., Artesia, NM 88210 Phone (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec. NM 87410 Phone (505) 334-6178 Pax: (505) 334-6170	2009-004.12 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462	¹ API Number	015-55236	⁴ Property Code 336003	RID No.		20. Section 29		Sectio 28		Vo allowable will be assigned to this completion until all interests have been consolidated	589'53'08"W 2639.13" (Meas.)				NMLC-0029387C-				NOTE	Distance Section If Basis of:	Mercato Meridian	58955337W 2640.88' (Meas.)	SECTION 1	LINE DIRECTION	L1 N00'05'25"W	L7 N00'05'16"W), 1000,		SCALE	
District I 1625 N. French Phone: (575) 3 District II	811 S. Fust St. Phone: (575) 7 District III 1000 Rio Braze Phone: (505) 3:	Phone: (505) 4'		30-01	336(336(72165 No.		UL or lot no. G		UL or lot no. A	¹² Dedicated Acres 240	No allowab	91		('soej M"S	á vra	-0+92 00N	-		(*so M	4, (We 22,25	2'0#92 200N		(1			,0007	,		

.

Released to Imaging: 7/12/2024 8:51:05 AM

	State of New MexicoSubmit Electronically Via E-permittingEnergy, Minerals and Natural Resources DepartmentVia E-permittingOil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505Submit Electronically Via E-permitting													
	NATUR	RAL GAS	MANAGEN	IENT PLAN										
This Natural Gas Management Plar	n must be su	bmitted with e	each Application fo	r Permit to Drill (A	PD) for a new or	recompleted well.								
	<u> </u>		– Plan Descr tive May 25, 2021	iption										
I. Operator: <u>Permian Resource</u>	s Operating,	LLC	OGRID:	372165	Date:	<u>05/13/2024</u>								
II. Type: ⊠ Original □ Amendm If Other, please describe:					NMAC □ Other.									
III. Well(s): Provide the following be recompleted from a single well [ell or set of wells p	roposed to be dril	lled or proposed to								
Well Name	API	ULSTR	Footages	s Anticipa ed Oil BBL/D	Gas	Anticipated Produced Water BBL/D								
	╎┛┛╴┤┛		+		┼ ═ ┋───									
	╎┲┲╋╶┼╞													
IV. Central Delivery Point Name: V. Anticipated Schedule: Provide proposed to be recompleted from a	the followin	g information	for each new or re		-	7.9(D)(1) NMAC] sed to be drilled or								
proposed to be recompleted from a	single well			very point.										
Well Name	API	Spud Date	TD Reached Date	Completion Commencement Date	Initial Flow Back Date	First Production Date								
Long John 29-30 Fed Com 111H	TBD		TBD	TBD	TBD	TBD								
Long John 29-30 Fed Com 112H	TBD		TBD	TBD	TBD	TBD								
Long John 29-30 Fed Com 121H	TBD		TBD	TBD	TBD	TBD								
Long John 29-30 Fed Com 122H	TBD		<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>								
Long John 29-30 Fed Com 131H	TBD		<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>								
Long John 29-30 Fed Com 132H	TBD		TBD TDD	TBD	TBD TBD	TBD TDD								
Silver 29-28 Fed Com 111H	TBD		<u>TBD</u>	TBD	TBD	TBD								

TBD

TBD

TBD

TBD

Page 1 of 6

TBD

TBD

TBD

<u>TBD</u>

TBD

TBD

Silver 29-28 Fed Com 112H

Silver 29-28 Fed Com 121H

Silver 29-28 Fed Com 122H	TBD	TBD	TBD	TBD	
Silver 29-28 Fed Com 131H	TBD	TBD	TBD	TBD	
Silver 29-28 Fed Com 132H	TBD	TBD	TBD	TBD	

VI. Separation Equipment: 🖂 Attach a complete description of how Operator will size separation equipment to optimize gas capture.

VII. Operational Practices: \boxtimes Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

VIII. Best Management Practices: 🛛 Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

 \Box Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF
Long John 29-30 Fed Com 111H	TBD	1180	430,020
Long John 29-30 Fed Com 112H	TBD	1180	430,020
Long John 29-30 Fed Com 121H	TBD	1180	430,020
Long John 29-30 Fed Com 122H	TBD	1180	430,020
Long John 29-30 Fed Com 131H	TBD	1180	430,020
Long John 29-30 Fed Com 132H	TBD	1180	430,020
Silver 29-28 Fed Com 111H	TBD	1180	430,020
Silver 29-28 Fed Com 112H	TBD	1180	430,020
Silver 29-28 Fed Com 121H	TBD	1180	430,020
Silver 29-28 Fed Com 122H	TBD	1180	430,020
Silver 29-28 Fed Com 131H	TBD	1180	430,020
Silver 29-28 Fed Com 132H	TBD	1180	430,020

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \boxtimes Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \Box will \Box will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \boxtimes does \square does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \boxtimes Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \boxtimes Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \Box Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In.
Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature:
Printed Name: Cassie Evans
Title: Regulatory Specialist
E-mail Address: Cassie.Evans@permianres.com
Date: 5/13/24
Phone: 432-313-1732
OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

NATURAL GAS MANAGEMENT PLAN DESCRIPTIONS

VI. Separation Equipment:

Permian utilizes a production forecast from our Reservoir Engineering team to appropriately size each permanent, 3-phase separator and heater treater utilized for production operations. Our goal is to maintain 5 minutes of retention time in the test vessel and 20 minutes in the heater treater at peak production rates. The gas produced is routed from the separator to the gas sales line.

VII. Operational Practices:

Drilling

During Permian's drilling operations it is uncommon for venting or flaring to occur. If flaring is needed due to safety concerns, gas will be routed to a flare and volumes will be estimated.

Flowback

During completion/recompletion flowback operations, after separation flowback begins and as soon as it is technically feasible, Permian routes gas though a permanent separator and the controlled facility where the gas is either sold or flared through a high-pressure flare if needed.

Production

Per 19.15.27.8.D, Permian's facilities are designed to minimize waste. Our produced gas will only be vented or flared in an emergency or malfunction situation, except as allowed for normal operations noted in 19.15.27.8.D(2) & (4). All gas that is flared is metered. All gas that may be vented will be estimated.

Performance Standards

Permian utilizes a production forecast from our Reservoir Engineering team to appropriately size each permanent, 3-phase separator and heater treater utilized for production operations.

All of Permian's permanent storage tanks associated with production operations which are routed to a flare or control device are equipped with an automatic gauging system.

All of Permian's flare stacks, both currently installed and for future installation, are:

- 1) Appropriately sized and designed to ensure proper combustion efficiency.
- 2) Equipped with an automatic ignitor or continuous pilot.
- 3) Anchored and located at least 100 feet from the well and storage tanks.

Permian's field operations and HSE teams have implemented an AVO inspection schedule that adheres to the requirements of 19.15.27.8.E(5).

All of our operations and facilities are designed to minimize waste. We routinely employ the following methods and practices:

- Closed loop systems
- Enclosed and properly sized tanks.

- Vapor recovery units to maximize recovery of low-pressure gas streams and potential unauthorized emissions.
- Low-emitting or electric engines whenever practical
- Combustors and flare stacks in the event of a malfunction or emergency
- Routine facility inspections to identify leaking components, functioning control devices, such as flares and combustors, and repair / replacement of malfunctioning components where applicable.

Measurement or Estimation

Permian measures or estimates the volumes of natural gas vented, flared and/or beneficially used for all of our drilling, completing, and producing wells. We utilize accepted industry standards and methodology which can be independently verified. Annual GOR testing is completed on our wells and will be submitted as required by the NMOCD. None of our equipment is designed to allow diversion around metering elements except during inspection, maintenance, and repair operations.

VIII. Best Management Practices:

Permian utilizes the following BMPs to minimize venting during active and planned maintenance activities:

- Use a closed-loop process wherever possible during planned maintenance activities, such as blowdowns, liquid removal, and work over operations.
- Employ low-emitting or electric engines for equipment, such as compressors.
- Adhere to a strict preventative maintenance program which includes routine facility inspections, identification of component malfunctions, and repairing or replacing components such as hatches, seals, valves, etc. where applicable.
- Utilize vapor recovery units (VRU's) to maximize recovery of volumes of low-pressure gas streams and potential unauthorized emissions.
- Route low pressure gas and emissions streams to a combustion device to prevent venting where necessary.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

F. S.

<u>Page 12 of</u> 95

APD ID: 10400092425Submission Date: 05/24/2023Highlighted data
reflects the most
recent changesOperator Name: CENTENNIAL RESOURCE PRODUCTION LLCHighlighted data
reflects the most
recent changesWell Name: SILVER 29-28 FED COMWell Number: 111HWell Type: OIL WELLWell Work Type: DrillShow Final Text

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
13408729	RUSTLER	3654	545	545	SANDSTONE	USEABLE WATER	N
13408730	TOP SALT	2879	775	775	ANHYDRITE, SALT	NONE	N
13408748	TANSILL	1734	1920	1920	ANHYDRITE, SHALE	NATURAL GAS, OIL	N
13408733	YATES	1559	2095	2095	SHALE	NATURAL GAS, OIL	N
13408749	SEVEN RIVERS	1109	2545	2545	LIMESTONE	NATURAL GAS, OIL	N
13408750	QUEEN	399	3255	3255	LIMESTONE	NATURAL GAS, OIL	N
13408751	GRAYBURG	-87	3741	3741	LIMESTONE	NATURAL GAS, OIL	N
13408732	CHERRY CANYON	-691	4345	4345	SANDSTONE	NATURAL GAS, OIL	N
13408752	BRUSHY CANYON	-1031	4685	4685	SANDSTONE	NATURAL GAS, OIL	N
13408739	BONE SPRING LIME	-2401	6055	6055	LIMESTONE	NATURAL GAS, OIL	N
13408743	FIRST BONE SPRING SAND	-4031	7685	7685	SANDSTONE, SHALE	NATURAL GAS, OIL	Y
13408744	BONE SPRING 2ND	-4831	8485	8485	SANDSTONE	NATURAL GAS, OIL	N
13408746	BONE SPRING 3RD	-5614	9268	9268	SANDSTONE	NATURAL GAS, OIL	N

Section 2 - Blowout Prevention

Well Name: SILVER 29-28 FED COM

Well Number: 111H

Page 13 of 95

Pressure Rating (PSI): 5M

Rating Depth: 8000

Equipment: BOPE with working pressure ratings in excess of anticipated maximum surface pressure will be utilized for well control from drill out of surface casing to TMD. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. All BOPE connections shall be flanged, welded or clamped. All choke lines shall be straight unless targeted with running tees or tee blocks are used, and choke lines shall be anchored to prevent whip and reduce vibrations. All valves in the choke line & the choke manifold shall be full opening as to not cause restrictions and to allow for straight fluid paths to minimize potential erosion. All gauges utilized in the well control system shall be of a type designed for drilling fluid service. A top drive inside BOP valve will be utilized at all times. Subs equipped with full opening valves sized to fit the drill pipe and collars will be available on the rig floor in the open position. The key to operate said valve equipped subs will be on the rig floor at all times. The accumulator system will have sufficient capacity to open the HCR and close all three sets of rams plus the annular preventer while retaining at least 300 psi above precharge on the closing manifold (accumulator system shall be capable of doing so without using the closing unit pumps). The fluid reservoir capacity will be double the usable fluid volume of the accumulator system capacity, and the fluid level will be maintained at the manufacturer's recommended level. Prior to connecting the closing unit to the BOP stack, an accumulator precharge pressure test shall be performed to ensure the precharge pressure is within 100 psi of the desired precharge pressure (only nitrogen gas will be used to precharge). Two independent power sources will be made available at all times to power the closing unit pumps so that the pumps can automatically start when the closing valve manifold pressure has decreased to the preset level. Closing unit pumps will be sized to allow opening of HCR and closing of annular preventer on 5" drill pipe achieving at least 200 psi above precharge pressure with the accumulator system isolated from service in less than two minutes. A valve shall be installed in the closing line as close to the annular preventer as possible to act as a locking device; the valve shall be maintained in the open position and shall be closed only when the power source for the accumulator system is inoperative. Remote controls capable of opening and closing all preventers & the HCR shall be readily accessible to the driller; master controls with the same capability will be operable at the accumulator. The wellhead will be a multibowl speed head allowing for hangoff of intermediate casing & isolation of the 133/8 x 95/8 annulus without breaking the connection between the BOP & wellhead to install an additional casing head. A wear bushing will be installed & inspected frequently to guard against internal wear to wellhead. VBRs (variable bore rams) will be run in upper rambody of BOP stack to provide redundancy to annular preventer while RIH w/ production casing;

Requesting Variance? YES

Variance request: Flex hose and offline cement variances, see attachments in section 8.

Testing Procedure: The BOP test shall be performed before drilling out of the surface casing shoe and will occur at a minimum: a. when initially installed b. whenever any seal subject to test pressure is broken c. following related repairs d. at 30 day intervals e. checked daily as to mechanical operating conditions. The ram type preventer(s) will be tested using a test plug to 250 psi (low) and 5,000 psi (high) (casinghead WP) with a test plug upon its installation onto the 13 surface casing. If a test plug is not used, the ram type preventer(s) shall be tested to 70% of the minimum internal yield pressure of the casing. The annular type preventer(s) shall be tested to 3500 psi. Pressure will be maintained for at least 10 minutes or until provisions of the test are met, whichever is longer. A Sundry Notice (Form 3160 5), along with a copy of the BOP test report, shall be submitted to the local BLM office within 5 working days following the test. If the bleed line is connected into the buffer tank (header), all BOP equipment including the buffer tank and associated valves will be rated at the required BOP pressure. The BLM office will be provided with a minimum of four (4) hours notice of BOP testing to allow witnessing. The BOP Configuration, choke manifold layout, and accumulator system, will be in compliance with Onshore Order 2 for a 5,000 psi system. A remote accumulator and a multi-bowl system will be used, please see attachment in section 8 for multi-bowl procedure. Pressures, capacities, and specific placement and use of the manual and/or hydraulic controls, accumulator controls, will be identified at the time of the BLM 'witnessed BOP test. Any remote controls will be capable of both opening and closing all preventers and shall be readily accessible.

Choke Diagram Attachment:

Silver_29_Fed_Com_5M_Choke_Diagram_20230523132812.pdf

BOP Diagram Attachment:

Released 811 Juna 2098 F 201 2020 2012 4 915 BOP 1 Diagram 20230523132816.pdf

Well Name: SILVER 29-28 FED COM

Well Number: 111H

Silver_29_Fed_Com_5M_Choke_Diagram_20230523132812.pdf

Silver_29_Fed_Com_5K_BOP_Diagram_20230523132816.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	570	0	570	3625	3055	570	J-55	54.5	BUTT	4.01	1.69	DRY	6.94	DRY	6.51
2	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	4635	0	4635	3758	-959	4635	J-55	36	BUTT	2.89	1.65	DRY	2.39	DRY	2.11
1	PRODUCTI ON	8.75	5.5	NEW	API	N	0	8253	0	7895	3238	-4270		OTH ER	17	OTHER - GEOCONN	1.82	1.9	DRY	2.33	DRY	2.33
4	PRODUCTI ON	7.87 5	5.5	NEW	API	N	8253	15412	7895	7895	-4270	-4270	1	OTH ER		OTHER - GEOCONN	1.82	1.9	DRY	2.33	DRY	2.33

Casing Attachments

Casing ID: 1

SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

String

Silver_29_Fed_Com_Casing_Design_Assumptions_20230523133012.pdf

<u>Received by OCD: 6/17/2024 7:30:52 AM</u>

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Number: 111H

Casing Attachments

Casing ID: 2 String INTERMEDIATE
Inspection Document:
Spec Document:
Tapered String Spec:
Casing Design Assumptions and Worksheet(s):
Casing Design Assumptions and Worksneet(s):
Silver_29_Fed_Com_Casing_Design_Assumptions_20230523132957.pdf
Casing ID: 3 String PRODUCTION
Inspection Document:
Spec Document:
Tapered String Spec:
Casing Design Assumptions and Worksheet(s):
Silver_29_Fed_Com_Casing_Design_Assumptions_20230523133052.pdf
Silver_29_Fed_Com_Production_Casing_Spec_Sheet_20230523133134.pdf
Casing ID: 4 String PRODUCTION
Inspection Document:
Spec Document:
Tapered String Spec:
Casing Design Assumptions and Worksheet(s):
Silver_29_Fed_Com_Production_Casing_Spec_Sheet_20230523133221.pdf
Silver_29_Fed_Com_Casing_Design_Assumptions_20230523133221.pdf

Well Name: SILVER 29-28 FED COM

Well Number: 111H

Section	4 - Ce	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantīty(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	370	280 ,	1.88	12.9	520	100	Class C	EconoCem-HLC + 5% Salt + 5% Kol-Seal
SURFACE	Tail		370	570	450	1.34	14.8	600	50	Class C	Accelerator
INTERMEDIATE	Lead		0	3700	810	2.08	12.7	1680	50	Class C	Salt, Extender & LCM
INTERMEDIATE	Tail		3700	4635	330	1.34	14.8	440	50	Class C	Accelerator
PRODUCTION	Lead		4135	7509	490	2.41	11.5	1160	40	Class H	POZ, Extender, Fluid Loss, Dispersant, Retarder
PRODUCTION	Tail		7509	1541 2	1040	1.73	12.5	1790	25	Class H	POZ, Extender, Fluid Loss, Dispersant, Retarder
PRODUCTION	Lead		4135	7509	490	2.41	11.5	1160	40	Class H	POZ, Extender, Fluid Loss, Dispersant, Retarder
PRODUCTION	Tail		7509	1541 2	1040	1.73	12.5	1790	25	Class H	POZ, Extender, Fluid Loss, Dispersant, Retarder

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient quantities of mud materials will be on the well site at all times for the purpose of assuring well control and maintaining wellbore integrity. Surface interval will employ fresh water mud. The intermediate hole will utilize a saturated brine fluid to inhibit salt washout. The production hole will employ brine based and oil base fluid to inhibit formation reactivity and of the appropriate density to maintain well control.

Describe the mud monitoring system utilized: Centrifuge separation system. Open tank monitoring with EDR will be used for drilling fluids and return volumes. Open tank monitoring will be used for cement and cuttings return volumes. Mud properties will be monitored at least every 24 hours using industry accepted mud check practices.

Circulating Medium Table

Released to Imaging: 7/12/2024 8:51:05 AM

Well Name: SILVER 29-28 FED COM

Well Number: 111H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (Ibs/cu ft)	Gel Strength (lbs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	570	WATER-BASED MUD	8.6	9.5							
8253	1541 2	OIL-BASED MUD	9	10							
4635	8253	OTHER : Brine	9	10							
570	4635	SALT SATURATED	10	10							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Will utilize MWD/LWD (Gamma Ray logging) from intermediate hole to TD of the well.

List of open and cased hole logs run in the well:

DIRECTIONAL SURVEY, GAMMA RAY LOG,

Coring operation description for the well:

N/A

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 4110

Anticipated Surface Pressure: 2373

Anticipated Bottom Hole Temperature(F): 137

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations

H2S_Contingiency_Plan_Silver_29_28_Fed_Com_111H__112H__121H__122H__131H__132H_20230523133616.pdf

Well Name: SILVER 29-28 FED COM

Well Number: 111H

Page 18 of 95

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Silver_29_28_Fed_Com_111H___PWP0_20230523133730.pdf

Silver_29_28_Fed_Com_111H___PWP0_AC_Summary_20230523133729.pdf

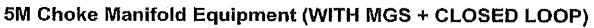
Other proposed operations facets description:

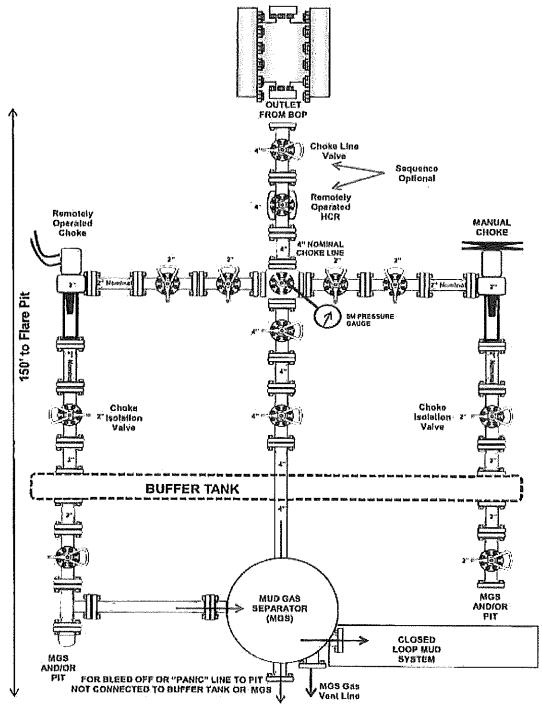
Please see attached Drilling plan including multi-bowl diagram and procedure, proposed WBD, and casing connection data sheet. We also plan to batch drill this well along with offline cementing, see details under variance request below. Permian Resources Operating, LLC requests to use a flex hose on H&P choke manifold for this well. The Flex Hose specifications are attached below.

Other proposed operations facets attachment:

Multibowl_Wellhead_Diagram_20230515132758.pdf

Silver_29_Fed_Com_111H_Proposed_WBD_20230523133843.pdf


Silver_29_Fed_Com_Production_Casing_Spec_Sheet_20230523133849.pdf

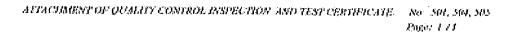

Silver_29_Fed_Com_Multiwell_Batch_Drilling_Procedure_20230523133902.pdf

Silver_29_28_Fed_Com_111H_drilling_packet_20240221094841.pdf


Other Variance attachment:

Offline_Cementing_Procedure_20230519095721.pdf Silver_29_Fed_Com_5M_Choke_Diagram_20230523133925.pdf

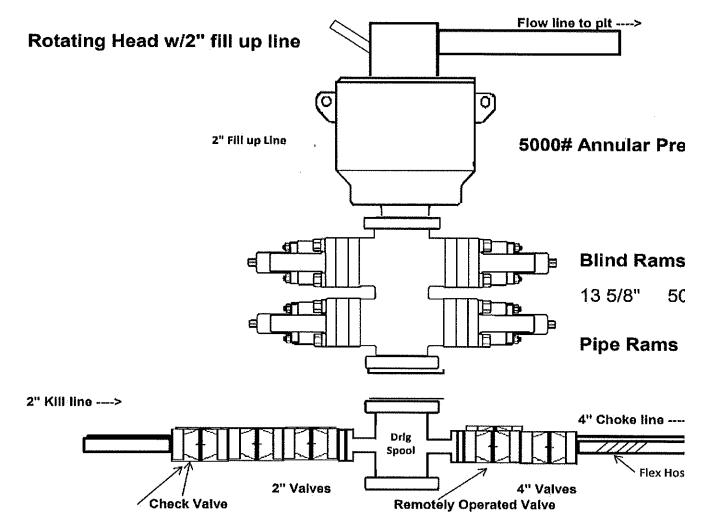
.


Insusinei Nn. Page: 97413	CONTITECH RUBBER	Notes and the second
	Industrial Kfi.	Page: 9/113

ContiTech

QUA INSPECTION	LITY CON		ATE		েলগা.	µ∮s-	ងលំង	
plachasea	ConbTech	DH & Marine I	Corp.		* 41 1 ⁴ *		4500400650	
CONTRECT HUSBER addir N	-, \$38239	HOSE TYPE	3'	ID:		Choke ar	nd Kvi Hose	
HOBE SERIAL Nº	67265	NOWINALIAC	TUAL L	enstii:		10,67	m i 10.77 m.	
W.P. 68,9 MPs 11	N003 (m)	T.R. 103;4	МГ⊛	1880	id fr	Dunation	ĢD	តៅ។.
1∵ւս⊮ատեր 10 Maa		See altachn	iont. () ខ្លួត	>			
to more 20 Mm COUPTINGS Typ		Sóh	જે માંગ		ę	lueite	Haat&P	
3" courting wit		9261	926	и	and conclusion watching for wa	SI 1 130	AOSTEN	. *
4 1/16" 10K API 5 w FU	ango end				An	814130	oaseos	
Not Designed F	'or Wall Te	eling					4P Spec 16 C	
						Tern	poralum rate	ייםיי)
<u>Al metal parts are loyenes</u> WE GEADEY TRAT THE ABOW	HOSE HAS DE	en Manufactu	RED IN A	CCORDA	ace Wat	H THE LEAK	ia of ti≈ order	
INSTEAD AND ERESSION 1 STATEMENT OF COMPANIEMEN conduces and specifications of secondaries with the Internated at	We nerecy o the above Fulci endents, codice i	wrify that the stu- baser Dister and t	sas dama <i>i</i> Ibal Ibese Bit mees	equiamen Feasier the refev	ii Ruppias Piptiens ant Bosse	erein lationat	i contamity with the of insected and the and design requirem	sled in i
Days 20. March 2014.	Inspector		Quali	y Crano		िल्तान् अस्ति । अस्त्रीयः इतिहासः	a Hortzan Maria Ingel Maria Ingel Maria Ingel	

Construction and an at the second of the loss of the second of the second secon


.

		Telescont
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Cherly Curveletas
- Fig		
EU - 1833/ 100/		
· GTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	At mill I trappendi	
	lengt and the state of the stat	
BL 11388 bi Mari		
61 +1869+ ing		
\$ [70] 20 [[34] AO		
2 1 70 1 20 1	[]][[]][[]][[]][[]][][]][[]][[]][[]][][]	(4) 计40
APPEND 67254. 47445 43		
and the second second		

ι.

5,000 psi BOP Schematic

Permian Resources Casing Design Criteria

A sundry will be requested if any lesser grade or different size casing is substituted. All casing will be centralized as specified in On Shore Order II. Casing will be tested as specified in On Shore Order II.

Casing Design Assumptions:

<u>Surface</u>

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - (1) Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - (1) Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate I

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - (1) Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.

- (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - (1) Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate or Intermediate II

- 1) Burst Design Loads
 - a) Gas Kick Profile
 - (1) Internal: Load profile based on influx encountered in lateral portion of wellbore with a maximum influx volume of 150 bbl and a kick intensity of 1.5 ppg using maximum anticipated MW of 9.9 ppg.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - (1) Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - (1) Internal: Lost circulation at the deepest TVD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Production

- 1) Burst Design Loads
 - a) Injection Down Casing
 - (1) Internal: Surface pressure plus injection fluid gradient.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test (Drilling)
 - (1) Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - c) Casing Pressure Test (Production)
 - (1) Internal: The design pressure test should be the greater of the planned test pressure prior to simulation down the casing, the regulatory test pressure, and the expected gas lift system pressure. The design test fluid should be the fluid associated with the pressure test having the greatest pressure.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - d) Tubing Leak
 - (1) Internal: SITP plus a packer fluid gradient to the top of packer.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
 - b) **Full Evacuation**
 - (1) Internal: Full void pipe.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpuli Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test.
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Permian Resources Casing Design Criteria

A sundry will be requested if any lesser grade or different size casing is substituted. All casing will be centralized as specified in On Shore Order II. Casing will be tested as specified in On Shore Order II.

Casing Design Assumptions:

<u>Surface</u>

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - (1) Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - (1) Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

<u>Intermediate I</u>

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - (1) Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.

- (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density,
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - (1) Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load,

Intermediate or Intermediate II

- 1) Burst Design Loads
 - a) Gas Kick Profile
 - (1) Internal: Load profile based on influx encountered in lateral portion of wellbore with a maximum influx volume of 150 bbl and a kick intensity of 1.5 ppg using maximum anticipated MW of 9.9 ppg.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - (1) Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore OII and Gas Order No. 2 and NM NMAC 19,15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - (1) Internal: Lost circulation at the deepest TVD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Production

- 1) Burst Design Loads
 - a) Injection Down Casing
 - (1) Internal: Surface pressure plus injection fluid gradient.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test (Drilling)
 - (1) Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19,15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - c) Casing Pressure Test (Production)
 - (1) Internal: The design pressure test should be the greater of the planned test pressure prior to simulation down the casing, the regulatory test pressure, and the expected gas lift system pressure. The design test fluid should be the fluid associated with the pressure test having the greatest pressure.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - d) Tubing Leak
 - (1) Internal: SITP plus a packer fluid gradient to the top of packer.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
 - b) Full Evacuation
 - (1) Internal: Full void pipe.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test.
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Permian Resources Casing Design Criteria

A sundry will be requested if any lesser grade or different size casing is substituted. All casing will be centralized as specified in On Shore Order II. Casing will be tested as specified in On Shore Order II.

Casing Design Assumptions:

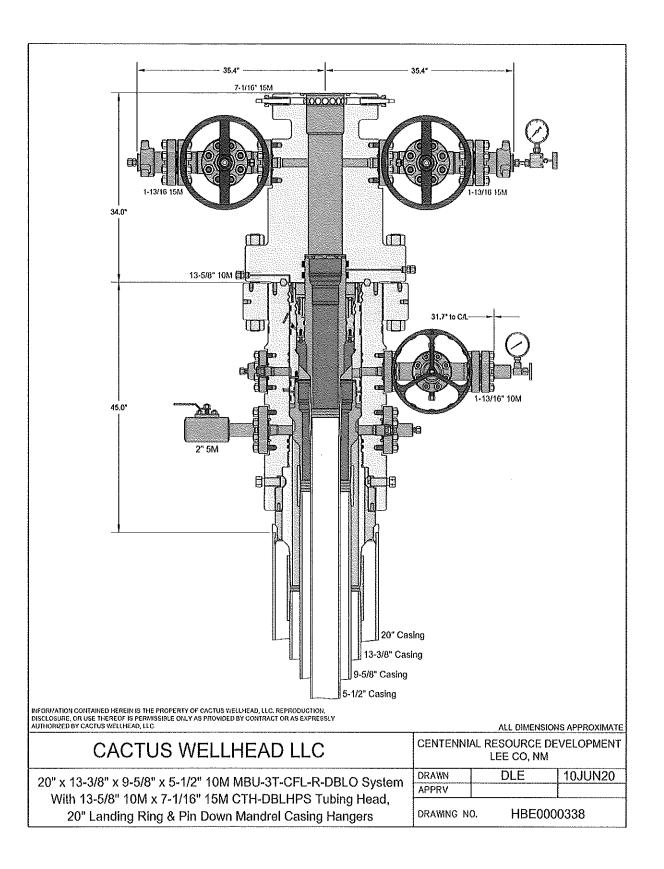
<u>Surface</u>

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - (1) Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - (1) Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

<u>Intermediate I</u>

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - (1) Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.

- (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - (1) Internal: Lost circulation at the TD of the next hole section and the fluid level fails to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load,


Intermediate or Intermediate II

- 1) Burst Design Loads
 - a) Gas Kick Profile
 - (1) Internal: Load profile based on influx encountered in lateral portion of wellbore with a maximum influx volume of 150 bbl and a kick intensity of 1.5 ppg using maximum anticipated MW of 9.9 ppg.
 - (2) External: Mud weight to TOC and cement mix water gradient (8,4 ppg) below TOC.
 - b) Casing Pressure Test
 - (1) Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - (1) Internal: Lost circulation at the deepest TVD of the next hole section and the fluid level fails to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Production

- 1) Burst Design Loads
 - a) Injection Down Casing
 - (1) Internal: Surface pressure plus injection fluid gradient.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test (Drilling)
 - (1) Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - c) Casing Pressure Test (Production)
 - (1) Internal: The design pressure test should be the greater of the planned test pressure prior to simulation down the casing, the regulatory test pressure, and the expected gas lift system pressure. The design test fluid should be the fluid associated with the pressure test having the greatest pressure.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - d) Tubing Leak
 - (1) Internal: SITP plus a packer fluid gradient to the top of packer.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
 - b) Full Evacuation
 - (1) Internal: Full void pipe.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test.
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Metal One	Dino, QAAU DI (ADV OF (COUU)		Page		
meta One	Pipe: SeAH P110RY 95%PBW (_	95%RBW+SC-C	
	Coupling: P110RY (SMY		Date	3-Fi	eb-21
	Connection Data	Sheet	Rev.		0
	Geometry	1	_i_i		
		Impe	rial	<u></u> <u></u>	•
	Pipe Body		and a superior of the state of the state of the state of the		
	Grade 11	P110RY	- Second of the second s	P110RY	<u></u>
	SMYS Ploe OD (D)	110 5.500	ksi	110	ksi
GEOCONN-SC	Weight	17.00	in	139.70	<u></u>
02000111-30	Wall Thickness (t)	0,304	lb/ft	25.33	kg/m
	Pipe ID (d)	4.892	<u>in</u> In	124.26	mm
Wsc1	Drift Dia	4.767		124.20	<u>mm</u>
		an and a second s			
D.	Connection	-			
	Coupling SMYS	110	ksi	110	ksi
T Sd	SC-Coupling OD (Wsc1)	6.050	in	153.67	mm
	Coupling Length (NL)	8.350	ín	212.09	៣៣
	Make up Loss	4,125	In	104.78	mm
	Pipe Critical Area	4.96	in²	3,202	nm²
	Box Critical Area	6.10	in ²	3,937	mm ²
	Thread Taper	1	1/16(3	4" per ft \	
	Number of Threads Performance Performance Properties for Pi S.M.Y.S. *1	546	5 kips	<u>. S.I.</u> 2:428	kn
	Number of Threads Performance Performance Properties for Pi S.M.Y.S. *1	pe Body	5	(P)	-
	Number of Threads Performance Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1	pe Body 546 11,550	5 kips psi	<u>S.I.</u> 2:428 79.66	MPa
	Number of Threads Performance Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1	pe Body 546 11,550 7,480	S kips psi psi	S.I. 2:428 79.66 51.59	kn
U = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	Number of Threads Performance Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. '1 Collapse Strength *1 Note S.M.Y.S.= Speci	pe Body 546 11,550 7,480 Iffed Minimum YIELD	kips psi psi Strength of Pipe k	S.I. 2:428 79.66 51.59 ody	MPa
	Number of Threads Performance S.M.Y.S.*1 M.I.Y.P. '1 Collapse Strength *1 Note S.M.Y.S.= Spect M.I.Y.P. = MinIn	pe Body 546 11,550 7,480 fied Minimum YIELD num Internal Yield Pre	kips psi psi Strength of Pipe Is assure of Pipe box	S.I. 2:428 79.66 51.59 ody	MPa
	Number of Threads Performance Performance Properties for Pi S.M.Y.S.*1 M.I.Y.P. '1 Collapse Strength *1 Note Note S.M.Y.S.= M.I.Y.P. M.I.Y.P. = Minin *1: SeAH P110RY 95%RBW: SMYS	pe Body 546 11,550 7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550	kips psi psi Strength of Pipe Is assure of Pipe box	S.I. 2:428 79.66 51.59 ody	MPa
	Number of Threads Performance Performance Properties for Pi S.M.Y.S.*1 M.I.Y.P. '1 Collapse Strength *1 Note S.M.Y.S.= Spect M.I.Y.P. = Minin *1: SeAH Pt 10RY 95% RBW; SMY3 Performance Properties for C	pe Body 546 11,550 7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550 onnection	kips psi psi Strength of Pipe k assure of Pipe box psi	S.I. 2:428 79.66 51.59 ody y	MPa
	Number of Threads Performance Performance Properties for Pi S.M.Y.S.*1 M.I.Y.P. '1 Collapse Strength *1 Note Note S.M.Y.S.= M.I.Y.P. M.I.Y.P. = Minin *1: SeAH P110RY 95%RBW: SMYS	pe Body 546 11,550 7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550 onnection	kips psi psi Strength of Pipe k assure of Pipe boo psi 100%	S.I. 2:428 79.66 51:59 ody iy of S.M.Y.S.	MPa
	Number of Threads Performance Performance Properties for Pi S.M.Y.S.*1 M.I.Y.P. '1 Collapse Strength *1 Note S.M.Y.S.= Spect M.I.Y.P. = Minin *1: SeAH P110RY 95%RBW: SMY3 Performance Properties for C Min. Connection Joint Strength	pe Body 546 11,550 7,480 Ified Minimum YIELD num Internal Yield Pre 5110ksi, MIYP11,550 onnection	kips psi psi Strength of Pipe k assure of Pipe boo psi 100% 100%	S.I. 2.428 79.66 51.59 ody y of S.M.Y.S. of S.M.Y.S.	MPa
	Number of Threads Performance Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spect M.I.Y.P. = Minin *1: SeAH Pt10RY 95%RBW: SMYS Performance Properties for C Min. Connection Joint Strength Min. Compression Yield	pe Body 546 11,550 7,460 fied Mintmum YIELD num Internäl Yield Pre 5110ksi, MIYP11,550 onnection	kips psi psi Strength of Pipe k sesure of Pipe boo pol 100% 100% of M1.Y	2.428 S.I. 79.66 51.59 51.59 50 ody 51.59 of S.M.Y.S. of S.M.Y.S. P 51.59	MPa
	Number of Threads Performance Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spect M.I.Y.P. = Minin *1: SeAH Pt 10RY 95%RBW: SMYS Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure	pe Body 546 11,550 7,460 fied Mintmum YIELD num Internäl Yield Pre 5110ksi, MIYP11,550 onnection	kips psi psi Strength of Pipe to psi 100% 100% of M.I.Y. 100% of Collap	2.428 S.I. 79.66 51.59 51.59 50 ody 51.59 of S.M.Y.S. of S.M.Y.S. P 51.59	MPa
	Number of Threads Performance Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minin *1: SeAH Pt 10RY 95%RBW: SMYS Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure	pe Body 546 11,550 7,460 fied Mintmum YIELD num Internäl Yield Pre 5110ksi, MIYP11,550 onnection	kips psi psi Strength of Pipe to psi 100% 100% of M.I.Y. 100% of Collap	S.I. 2:428 79.66 51.59 ody body of S.M.Y.S. of S.M.Y.S. P. se Strength	MPa
	Number of Threads Performance S.M.Y.S.*1 M.I.Y.P. '1 Collapse Strength *1 Note S.M.Y.S.= Spect M.I.Y.P. = Minin *1: SeAH P110RY 95% RBW: SMY3 Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft)	pe Body 546 11,550 7,460 fied Mintmum YIELD num Internäl Yield Pre 5110ksi, MIYP11,550 onnection	kips psi psi Strength of Pipe to psi 100% 100% of M.I.Y. 100% of Collap	S.I. 2:428 79.66 51.59 ody body of S.M.Y.S. of S.M.Y.S. P. se Strength	MPa
	Number of Threads Performance Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minin *1: SeAH Pt 10RY 95%RBW: SMYS Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure	pe Body 546 11,550 7,460 fied Minimum YIELD num Internál Yield Pre 5110ksi, MIYP11,550 onnection	kips psi psi Strength of Pipe too psi 100% 100% of M.I.Y. 100% of Collap	S.I. 2:428 79.66 51.59 ody by of S.M.Y.S. of S.M.Y.S. P. se Strength 90	KN MPa MPa
	Number of Threads Performance SiM Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spector M.I.Y.P. = Minina *1: SeAH Pt 10RY 95%RBW: SMYS Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque	pe Body 546 11,550 7,460 fied Mintmum YIELD num Internäl Yield Pre 5110ksi, MIYP11,550 onnection	kips psi psi Strength of Pipe to psi 100% 100% of M.LY 100% of Collap	S.I. 2:428 79.66 51.59 ody body by of S.M.Y.S. of S.M.Y.S. P se Strength 90 14,600	KN MPa MPa
	Number of Threads Performance Performance Properties for Pi S.M.Y.S.*1 M.I.Y.P. '1 Collapse Strength *1 Note S.M.Y.S.= Spect M.I.Y.P. = Minin *1: SeAH Pt10RY 95%RBW: SMY: Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100R) Recommended Torque	pe Body 546 11,550 7,460 16ed Minimum YIELD num Internal Yield Pre 5110ksi, MIYP11,550 onnection 10,800	kips psi psi Strength of Pipe to psi 100% 100% of M1.Y 100% of Collap si ft-lb ft-lb	S.I. 2:428 79.66 51.59 ody of S.M.Y.S. of S.M.Y.S. P se Strength 90 14,600 16,200	kn MPa MPa MPa
	Number of Threads Performance S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spect M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spect M.I.Y.P. = Minin *1: SeAH P110RY 95%RBW: SMYS Performance Properties for C Min. Connection Joint Strength Min. Conscion Joint Strength Max. DLS (deg. /100ft) Recommended Torque Min. Opti. Max. Operational Max.	pe Body 546 11,550 7,460 Fied Minimum YIELD aum Internal Yield Pre 5110ksi, MIYP11,550 onnection 10,800 12,000 12,000 13,200 15,600	kips psi psi Strength of Pipe Is assure of Pipe boo psi 100% 100% of M1.Y 100% of M1.Y 100% of Collap >) ft-lb ft-lb ft-lb ft-lb	S.I. 2:428 79.66 51.59 ody body by of S.M.Y.S. of S.M.Y.S. P se Strength 90 14,600	KN MPa MPa
	Number of Threads Performance Performance Properties for Pi	pe Body	5	(P)	
	Number of Threads Performance Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. '1 Collapse Strength *1 Note S.M.Y.S.= Speci	pe Body 546 11,550 7,480 Iffed Minimum YIELD	kips psi psi Strength of Pipe k	S.I. 2:428 79.66 51.59 ody	MPa
	Number of Threads Performance S.M.Y.S.*1 M.I.Y.P. '1 Collapse Strength *1 Note S.M.Y.S.= Spect M.I.Y.P. = MinIn	pe Body 546 11,550 7,480 fied Minimum YIELD num Internal Yield Pre	kips psi psi Strength of Pipe Is assure of Pipe box	S.I. 2:428 79.66 51.59 ody	MPa
	Number of Threads Performance Performance Properties for Pi S.M.Y.S.*1 M.I.Y.P. '1 Collapse Strength *1 Note Note S.M.Y.S.= M.I.Y.P. M.I.Y.P. = Minin *1: SeAH P110RY 95%RBW: SMYS	pe Body 546 11,550 7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550	kips psi psi Strength of Pipe Is assure of Pipe box	S.I. 2:428 79.66 51.59 ody	MPa
	Number of Threads Performance Performance Properties for Pi S.M.Y.S.*1 M.I.Y.P. '1 Collapse Strength *1 Note S.M.Y.S.= Spect M.I.Y.P. = Minin *1: SeAH Pt 10RY 95% RBW; SMY3 Performance Properties for C	pe Body 546 11,550 7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550 onnection	kips psi psi Strength of Pipe k assure of Pipe box psi	S.I. 2:428 79.66 51.59 ody	MPa
	Number of Threads Performance Performance Properties for Pi S.M.Y.S.*1 M.I.Y.P. '1 Collapse Strength *1 Note S.M.Y.S.= Spect M.I.Y.P. = Minin *1: SeAH P110RY 95%RBW: SMY3 Performance Properties for C Min. Connection Joint Strength	pe Body 546 11,550 7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550 onnection	kips psi psi Strength of Pipe k assure of Pipe box psi	S.I. 2:428 79.66 51.59 ody y	MPa
	Number of Threads Performance Performance Properties for Pi S.M.Y.S.*1 M.I.Y.P. '1 Collapse Strength *1 Note S.M.Y.S.= Spect M.I.Y.P. = Minin *1: SeAH P110RY 95%RBW: SMY3 Performance Properties for C Min. Connection Joint Strength	pe Body 546 11,550 7,480 ified Minimum YIELD num Internal Yield Pre S110ksi, MIYP11,550 onnection	kips psi psi Strength of Pipe k assure of Pipe boo psi 100%	S.I. 2:428 79.66 51:59 ody iy of S.M.Y.S.	MPa
	Number of Threads Performance Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spect M.I.Y.P. = Minin *1: SeAH Pt10RY 95%RBW: SMYS Performance Properties for C Min. Connection Joint Strength Min. Compression Yield	pe Body 546 11,550 7,480 Ified Minimum YIELD num Internal Yield Pre 5110ksi, MIYP11,550 onnection	kips psi psi Strength of Pipe k assure of Pipe boo psi 100% 100%	S.I. 2.428 79.66 51.59 ody y of S.M.Y.S. of S.M.Y.S.	MPa
	Number of Threads Performance Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spect M.I.Y.P. = Minin *1: SeAH Pt 10RY 95%RBW: SMYS Performance Properties for C Min. Connection Joint Strength Min. Conversion Yield Internal Pressure	pe Body 546 11,550 7,460 fied Mintmum YIELD num Internäl Yield Pre 5110ksi, MIYP11,550 onnection	kips psi psi Strength of Pipe k sesure of Pipe boo pol 100% 100% of M1.Y	2.428 S.I. 79.66 51.59 51.59 50 ody 51.59 of S.M.Y.S. of S.M.Y.S. P 51.59	MPa
	Number of Threads Performance Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minin *1: SeAH Pt 10RY 95%RBW: SMYS Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure	pe Body 546 11,550 7,460 fied Mintmum YIELD num Internäl Yield Pre 5110ksi, MIYP11,550 onnection	kips psi psi Strength of Pipe to psi 100% 100% of M.I.Y. 100% of Collap	S.I. 2:428 79.66 51.59 ody body of S.M.Y.S. of S.M.Y.S. P. se Strength	MPa
	Number of Threads Performance Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minin *1: SeAH Pt 10RY 95%RBW: SMYS Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure	pe Body 546 11,550 7,460 fied Mintmum YIELD num Internäl Yield Pre 5110ksi, MIYP11,550 onnection	kips psi psi Strength of Pipe to psi 100% 100% of M.I.Y. 100% of Collap	S.I. 2:428 79.66 51.59 ody body of S.M.Y.S. of S.M.Y.S. P. se Strength	MPa
	Number of Threads Performance Performance Properties for Pi S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minin *1: SeAH Pt 10RY 95%RBW: SMYS Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure	pe Body 546 11,550 7,460 fied Mintmum YIELD num Internäl Yield Pre 5110ksi, MIYP11,550 onnection	kips psi psi Strength of Pipe to psi 100% 100% of M.I.Y. 100% of Collap	S.I. 2:428 79.66 51.59 ody body of S.M.Y.S. of S.M.Y.S. P. se Strength	MPa
	Number of Threads Performance S.M.Y.S.*1 M.I.Y.P. '1 Collapse Strength *1 Note S.M.Y.S.= Spect M.I.Y.P. = Minin *1: SeAH P110RY 95%RBW: SMV3 Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft)	pe Body 546 11,550 7,460 fied Mintmum YIELD num Internäl Yield Pre 5110ksi, MIYP11,550 onnection	kips psi psi Strength of Pipe to psi 100% 100% of M.I.Y. 100% of Collap	S.I. 2:428 79.66 51.59 ody body of S.M.Y.S. of S.M.Y.S. P. se Strength	MPa
	Number of Threads Performance S.M.Y.S.*1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spect M.I.Y.P. = Minin *1: SeAH Pt10RY 95%RBW: SMY: Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100R)	pe Body 546 11,550 7,460 fied Minimum YIELD num Internál Yield Pre 5110ksi, MIYP11,550 onnection	kips psi psi Strength of Pipe too psi 100% 100% of M.I.Y. 100% of Collap	S.I. 2:428 79.66 51.59 ody by of S.M.Y.S. of S.M.Y.S. P. se Strength 90	MPa
	Number of Threads Performance S.M.Y.S.*1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spect M.I.Y.P. = Minin *1: SeAH Pt10RY 95%RBW: SMY: Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100R)	pe Body 546 11,550 7,460 fied Minimum YIELD num Internál Yield Pre 5110ksi, MIYP11,550 onnection	kips psi psi Strength of Pipe too psi 100% 100% of M.I.Y. 100% of Collap	S.I. 2:428 79.66 51.59 ody by of S.M.Y.S. of S.M.Y.S. P. se Strength 90	KN MPa MPa
	Number of Threads Performance S.M.Y.S.*1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spect M.I.Y.P. = Minin *1: SeAH Pt10RY 95%RBW: SMY: Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100R)	pe Body 546 11,550 7,460 fied Minimum YIELD num Internál Yield Pre 5110ksi, MIYP11,550 onnection	kips psi psi Strength of Pipe too psi 100% 100% of M.I.Y. 100% of Collap	S.I. 2:428 79.66 51.59 ody by of S.M.Y.S. of S.M.Y.S. P. se Strength 90	KN MPa MPa
	Number of Threads Performance Performance Properties for Pl S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spec M.I.Y.P. = Minin *1: SeAH Pt 10RY 95%RBW: SMYS Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque	pe Body 546 11,550 7,460 16ed Minimum YIELD num Internal Yield Pre 5110ksi, MIYP11,550 onnection 10,800	kips psi psi Strength of Pipe to psi 100% 100% of M.LY 100% of Collap	S.I. 2:428 79.66 51.59 ody body by of S.M.Y.S. of S.M.Y.S. P se Strength 90	KN MPa MPa
	Number of Threads Performance SiM Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spector M.I.Y.P. = Minine *1: SeAH Pt 10RY 95%RBW: SMYS Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque	pe Body 546 11,550 7,460 16ed Minimum YIELD num Internal Yield Pre 5110ksi, MIYP11,550 onnection 10,800	kips psi psi Strength of Pipe to psi 100% 100% of M.LY 100% of Collap	S.I. 2:428 79.66 51.59 ody body by of S.M.Y.S. of S.M.Y.S. P se Strength 90	KN MPa MPa
	Number of Threads Performance SiM Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spector M.I.Y.P. = Minine *1: SeAH Pt 10RY 95%RBW: SMYS Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque	pe Body 546 11,550 7,460 16ed Minimum YIELD num Internal Yield Pre 5110ksi, MIYP11,550 onnection 10,800	kips psi psi Strength of Pipe to psi 100% 100% of M.LY 100% of Collap	S.I. 2:428 79.66 51.59 ody body by of S.M.Y.S. of S.M.Y.S. P se Strength 90	KN MPa MPa
	Number of Threads Performance S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spect M.I.Y.P. = Minint *1: SeAH Pt 10RY 95%RBW: SMYS Performance Properties for C Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti.	pe Body 546 11,550 7,460 16ed Minimum YIELD num Internal Yield Pre 5110ksi, MIYP11,550 onnection 10,800 12,000	Kips psi psi Strength of Pipe to psi 100% 100% of M1.Y 100% of Collap 20 ft-lb ft-lb	S.I. 2:428 79.66 51.59 ody of S.M.Y.S. of S.M.Y.S. P se Strength 90 14,600 16,200	kn MPa MPa MPa
	Number of Threads Performance S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Spect M.I.Y.P. = Minint *1: SeAH Pt 10RY 95%RBW: SMYS Performance Properties for C Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti.	pe Body 546 11,550 7,460 16ed Minimum YIELD num Internal Yield Pre 5110ksi, MIYP11,550 onnection 10,800 12,000	Kips psi psi Strength of Pipe to psi 100% 100% of M1.Y 100% of Collap 20 ft-lb ft-lb	S.I. 2:428 79.66 51.59 ody of S.M.Y.S. of S.M.Y.S. P se Strength 90 14,600 16,200	kn MPa MPa MPa
	Number of Threads Performance S.M.Y.S. *1 M.I.Y.P. *1 Collapse Swenoth *1 Note S.M.Y.S.= Spector M.I.Y.P. *1 Collapse Swenoth *1 Note S.M.Y.S.= Spector M.I.Y.P. = MinIn *1: SeAH P110RY 95%RBW: SMYS Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100R) Recommended Torque Min. Opti. Max.	pe Body 546 11,550 7,480 16ed Minimum YIELD num Internal Yield Pre 5110ksi, MIYP11,550 onnection 10,800 12,000 13,200	Kips psi psi Strength of Pipe to psi 100% 100% of M1.Y 100% of M1.Y 100% of Collap	S.I. 2:428 79.66 51.59 ody of S.M.Y.S. P se Strength 90 14,600 16,200 17,800	kn MPa MPa MPa
	Number of Threads Performance S.M.Y.S. *1 M.I.Y.P. *1 Collapse Swenoth *1 Note S.M.Y.S.= Spector M.I.Y.P. *1 Collapse Swenoth *1 Note S.M.Y.S.= Spector M.I.Y.P. = MinIn *1: SeAH P110RY 95%RBW: SMYS Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100R) Recommended Torque Min. Opti. Max.	pe Body 546 11,550 7,460 Fied Minimum YIELD aum Internal Yield Pre 5110ksi, MIYP11,550 onnection 10,800 12,000 12,000 13,200 15,600	kips psi psi Strength of Pipe to psi 100% 100% of Pipe boc psi 100% 100% of Ollap >) 100% of Collap >) 100% of Collap >)	S.I. 2:428 79.66 51.59 ody of S.M.Y.S. P se Strength 90 14,600 16,200 17,800	kn MPa MPa MPa

Permian Resources Multi-Well Pad Batch Drilling Procedure

<u>Surface Casing</u> - PR intends to Batch set all 13-3/8" casing to a depth approved in the APD. 17-1/2" Surface Holes will be batch drilled by a rig. Appropriate notifications will be made prior to spudding the well, running and cementing casing and prior to skidding to the rig to the next well on pad.

- 1. Drill 17-1/2" Surface hole to Approved Depth with Rig and perform wellbore cleanup cycles. Trip out and rack back drilling BHA.
- 2. Run and land 13-3/8" 54.5# J55 BTC casing see Illustration 1-1 Below to depth approved in APD.
- 3. Set packoff and test to 5k psi
- 4. Offline Cement
- 5. Install wellhead with pressure gauge and nightcap. Nightcap is shown on final wellhead Stack up Illustration #2-2.
- 6. Skid Rig to adjacent well to drill Surface hole.
- 7. Surface casing test will be performed by the rig in order to allow ample time for Cement to develop 500psi compressive strength. Casing test to 0.22 psi/ft or 1500 psi whichever is

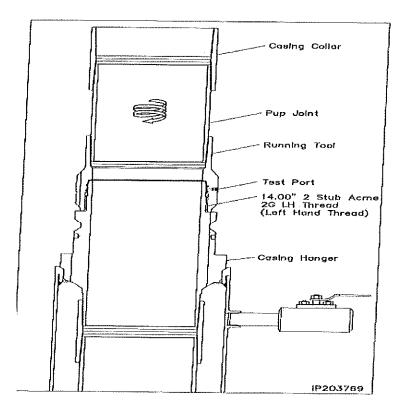
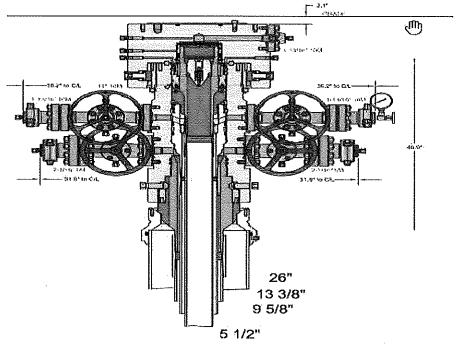
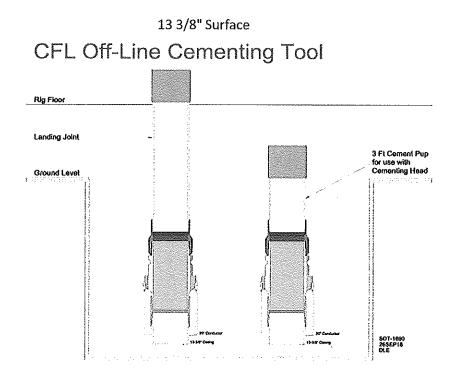



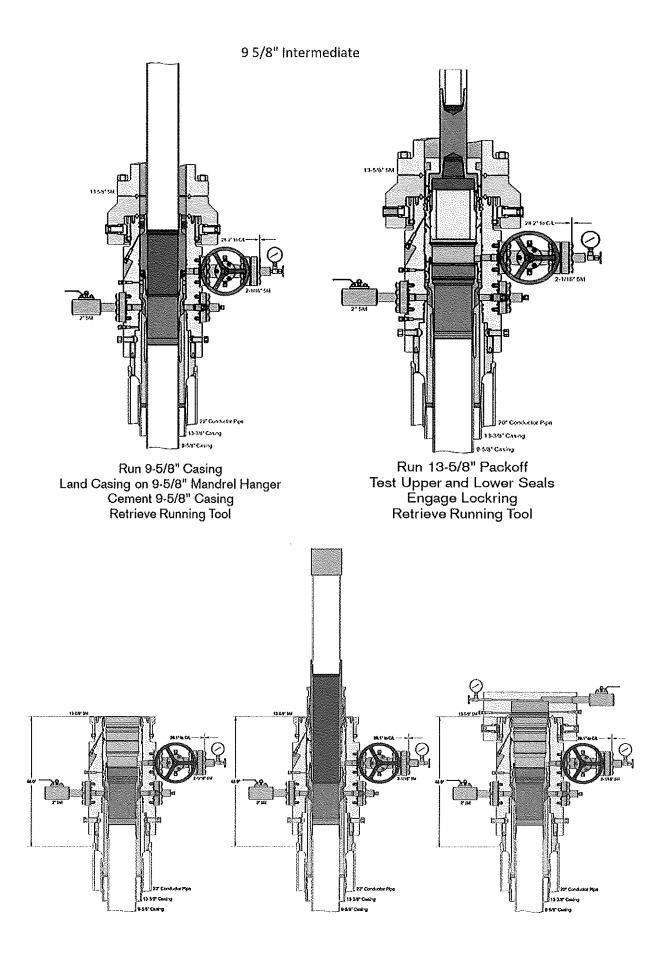
Illustration 1-1

Intermediate Casing – PR intends to Batch set all intermediate casing strings to a depth approved in the APD, typically set into Lamar. 12-1/4" Intermediate Holes will be batch drilled by the rig. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

- 1. Rig will remove the nightcap and install and test BOPE.
- 2. Test Surface casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 3. Install wear bushing then drill out 13-3/8" shoe-track plus 20' and conduct FIT to minimum of the MW equivalent anticipated to control the formation pressure to the next casing point.
- 4. Drill Intermediate hole to approved casing point. Trip out of hole with BHA to run Casing.
- 5. Remove wear bushing then run and land Intermediate Casing with mandrel hanger in wellhead.
- 6. Cement casing to surface with floats holding.
- 7. Washout stack then run wash tool in wellhead and wash hanger and pack-off setting area.
- 8. Install pack-off and test void to 5,000 psi for 15 minutes. Nightcap shown on final wellhead stack up illustration 2-2 on page 3.
- 9. Test casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 10. Install nightcap skid rig to adjacent well to drill Intermediate hole.

SKID PHASE


<u>Production Casing</u> – PR intends to Batch set all Production casings with Rig. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.


- 1. Big Rig will remove the nightcap and install and test BOPE.
- 2. Install wear bushing then drill Intermediate shoe-track plus 20' and conduct FIT to minimum MW equivalent to control the formation pressure to TD of well.
- 3. Drill Vertical hole to KOP Trip out for Curve BHA.
- 4. Drill Curve, landing in production interval Trip for Lateral BHA.
- 5. Drill Lateral / Production hole to Permitted BHL, perform cleanup cycles and trip out to run 51/2" Production Casing.
- 6. Remove wear bushing then run 5-1/2" production casing to TD landing casing mandrel in wellhead.
- 7. Cement 5-1/2" Production string with floats holding.
- 8. Run in with wash tool and wash wellhead area install pack-off and test void to 5,000psi for 15 minutes.
- 9. Install BPV in 5-1/2" mandrel hanger Nipple down BOPE and install nightcap.
- 10. Test nightcap void to 5,000psi for 30 minutes per illustration 2-2
- 11. Skid rig to adjacent well on pad to drill production hole.

Permian Resources Offline Cementing Procedure

13-3/8" & 9-5/8" Casing

- 1. Drill hole to Total Depth with Rig and perform wellbore cleanup cycles.
- 2. Run and casing to Depth.
- 3. Land casing with mandrel.
- 4. Circulate 1.5 csg capacity.
- 5. Flow test Confirm well is static and floats are holding.
- 6. Set Annular packoff and pressure test. Test to 5k.
- 7. Nipple down BOP and install cap flange.
- 8. Skid rig to next well on pad
- 9. Remove cap flange (confirm well is static before removal)
 - a) If well is not static use the casing outlet valves to kill well
 - b) Drillers method will be used in well control event
 - c) High pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - d) Kill mud will be circulated once influx is circulated out of hole
 - e) Confirm well is static and remove cap flange to start offline cement operations
- 10. Install offline cement tool.
- 11. Rig up cementers.
- 12. Circulate bottoms up with cement truck
- 13. Commence planned cement job, take returns through the annulus wellhead valve
- 14. After plug is bumped confirm floats hold and well is static
- 15. Rig down cementers and equipment
- 16. Install night cap with pressure gauge to monitor.

PERMIAN

RESOURCES

NEW MEXICO

(SP) EDDY SILVER 29-28 FED COM SILVER 29-28 FED COM 111H

OWB

Plan: PWP0

Standard Planning Report - Geographic

11 May, 2023

Permian Resources

Planning Report - Geographic

RESOU									
Database: Company: Project: Site: Nell: Nellbore: Design:		CO 28 FED COM 28 FED COM 11	11 H	Local Co-ordi TVD Referenc MD Reference North Referen Survey Calcul	ce: 0; nce:	Gi Gi Gi	/ell SILVER 29-2 L @ 3624,7usft L @ 3624,7usft rid inimum Curvatu		111H
Project	(SP) EDDY		······	·····	• • • • • • • • • • • • • • • •			•••••	
oco batani.	US State Plan North America New Mexico E	n Datum 1983		System Datum:	:	Mea	in Sea Level		
Site	SILVER 29-2	8 FED COM			·····				
Site Position: From: Position Uncertainty:	Мар	0.0 usft	Northing: Easting: Slot Radius:	677,503	3,98 usft Lo	titude: ingitude: id Converge	nce:		32° 43' 13.377 103° 53' 26.069 V 0.24
Well	SILVER 29-2	8 FED COM 111	H						
Well Position	+N/-S +E/-W	0.0 usft 0.0 usft	,		626,095.78 usi 677,668.88 usi		ude: ltude:		32° 43' 13.417 103° 53' 24.139 V
Position Uncertainty		0.0 usft	Wellhead Eleva	tion:		Grou	nd Level:		3,624.7 us
Magnetics		ame F200510	Sample Date 12/31/2009	Declination (?)	7.93	Dip An (ግ		()	irength T) 55.11260804
Magnetics Design Audit Notes: Version:	Model N	F200510 Depth F	12/31/2009		7.93	(*) 1 Depth:	60.65	() 49,0 .0 .110n	וד)
Wellbore Magnetics Design Audit Notes: Version: Vertical Section;	Model N	F200510 Depth F	12/31/2009 Phase: /	(°) PROTOTYPE +N/-S	7.93 Tie On +E/-W	(*) 1 Depth:	60.65 0 Direc	(i 49,0 .0 ;tion)	וד)
Magnetics Design Audit Notes: Version:	Model N IGRI PWP0 gram Depth To (usft)	F200510 Depth F	12/31/2009 Phase: 1 rom (TVD) isf() 0.0 2023	(º) PROTOTYPE +N/-S (usff)	7.93 Tíe On +E/-W (usft) 0.0	(*) 1 Depth:	60.65 0 Direc (⁶	(i 49,0 .0 ;tion)	וד)
Magnetics Design Audit Notes: Version: Vertical Section; Plan Survey Tool Pro Depth From (usft)	Model N IGRI PWP0 gram Depth To (usft)	F200510 Depth F (t Date 5/11/2 Survey (Wellb	12/31/2009 Phase: 1 rom (TVD) isf() 0.0 2023	(*) PROTOTYPE +N/-S (usft) 0.0 Tool Name MWD+IFR1+MS	7.93 Tíe On +E/-W (usft) 0.0	(*) 1 Depth: /	60.65 0 Direc (⁶	(i 49,0 .0 ;tion)	וד)
Magnetics Design Audit Notes: Version: Vertical Section; Plan Survey Tool Pro Depth From (usft) 1 0.0 Plan Sections Measured	Model N. IGRI PWP0 gram Depth To (usft) 15,411.6	F200510 Depth F (t Date 5/11/2 Survey (Wellb	12/31/2009 Phase: 1 rom (TVD) isft) 0.0 2023 ore) cal th +N/-S	(*) PROTOTYPE +N/-S (usft) 0.0 Tool Name MWD+IFR1+MS OWSG_Rev2_ MV +E/-W	7.93 Tie On +E/-W (usft) 0.0 F WD + IFR1 + Dogleg Rate	(*) 1 Depth: 7 Remarks Bulld Rate	60.65 0 Direc (⁶	(i 49,0 .0 ;tion)	וד)
Magnetics Design Audit Notes: Version: Vertical Section: Plan Survey Tool Pro Depth From (usft) 1 0.0 Plan Sections Measured Depth Inclir	Model N. IGRI PWP0 gram Depth To (usft) 15,411.6	F200510 Depth F (I Date 5/11/2 Survey (Wellb S PWP0 (OWB) S PWP0 (OWB)	12/31/2009 Phase: 1 rom (TVD) isft) 0.0 2023 ore) cal th +N/-S	(*) PROTOTYPE +N/-S (usft) 0.0 Tool Name MWD+IFR1+MS OWSG_Rev2_ MV +E/-W	7.93 Tie On +E/-W (usft) 0.0 F WD + IFR1 + Dogleg Rate	(*) 1 Depth: 7 Remarks Bulld Rate	60.65 0 Direc (° 79.	(i 49,0 .0 :tlon) 84 	rr) 55.11260804
Magnetics Design Audit Notes: Version: Vertical Section: Plan Survey Tool Pro Depth From (usft) 1 0.0 Plan Sections Measured Depth Inclir (usft) (0.0 2,000.0	Model N. IGRI PWP0 gram Depth To (usft) 15,411.6 15,411.6	F200510 Depth F (I Date 5/11/2 Survey (Wellb S PWP0 (OWB) PWP0 (OWB) Vertinnuth Dep *) (ust 0.00 0.00 2,	12/31/2009 Phase: 1 rom (TVD) 1 isft) 0.0 2023 0 cal 1 th +N/-S ith (usft) 0.0 0.0 0.0 0.0 0.0 0.0	(*) PROTOTYPE +N/-S (usft) 0.0 Tool Name MWD+IFR1+MS OWSG_Rev2_ MV +E/-W (usft) 0.0 0.0 0.0	7.93 Tie On +E/-W (usft) 0.0 F WD + IFR1 + Dogleg Rate 100usft) (* 0.00 0.00	(*) Depth: Remarks Build Rate //100usft) 0.00 0.00	60.65 0 Direc (* 79, 79, 79, 79, 79, 79, 79, 79, 79, 79,	(i 49,0 .0 tilon) 84 TFO (?) 0.00 0.00	rr) 55.11260804
Magnetics Design Audit Notes: Version: Vertical Section: Plan Survey Tool Pro Depth From (usft) 1 0.0 Plan Sections Measured Depth Inclir (usft) (0.0 2,000.0 2,500.0	Model N. IGRI PWP0 gram Depth To (usft) 15,411.6 15,411.6 0.00 0.00 0.00 10.00	F200510 Depth F (L Date 5/11/2 Survey (Wellb S PWP0 (OWB) S PWP0 (OWB) S PWP0 (OWB) 0.00 0.00 0.00 2, 344.50 2,	12/31/2009 Phase: 1 rom (TVD) 1 isft) 0.0 2023 0 cal +N/-S th +N/-S th (usft) 0.0 0.0 000.0 0.0 000.0 0.0 497.5 41.9	(°) PROTOTYPE +N/-S (usft) 0.0 Tool Name MWD+IFR1+MS OWSG_Rev2_ MV +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 -11.6	7.93 Tie On +E/-W (usft) 0.0 F WD + IFR1 + Dogleg Rate 100usft) (* 0.00 0.00 2.00	(*) h Depth: / Remarks Bulld Rate /100usft) 0,00 0,00 2,00	60.65 0 Direc (° 79. 79. 79. 79. (°/100usft) 0.00 0.00 0.00 0.00	() .0 .10 .0 .84 	rr) 55.11260804
Magnetics Design Audit Notes: Version: Vertical Section: Plan Survey Tool Pro Depth From (usft) 1 0.0 Plan Sections Measured Depth Inclir (usft) (0.0 2,000.0 2,500.0 7,509.0	Model N. IGRI PWP0 gram Depth To (usft) 15,411.6 15,411.6 0.00 0.00 0.00 10.00	F200510 Depth F (I Date 5/11/2 Survey (Wellb S PWP0 (OWB) PWP0 (OWB) Vertin Nuth Dep *) (Usi 0.00 0.00 2, 344.50 2, 344.50 7,	12/31/2009 Phase: 1 rom (TVD) 1 isft) 0.0 2023 0re) cal +N/-S th +N/-S th +N/-S th +N/-S 0.0 0.0 0.00 0.0 0.00 0.0 430.4 860.1	(*) PROTOTYPE +N/-S (usft) 0.0 Tool Name MWD+IFR1+MS OWSG_Rev2_ MV +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 -11.6 -244.1	7.93 Tie On +E/-W (usft) 0.0 F WD + IFR1 + Dogleg Rate 100usft) (° 0.00 0.00 2.00 0.00 0.00	(*) 1 Depth: 7 Remarks Build Rate 7/100usft) 0.00 0.00 2.00 0.00	60.65 0 Direc (° 79. 79. 79. 79. 79. 79. 79. 79. 79. 79.	() .0 .1tion) 84 TFO (') 0.00 0.00 344,50 0.00	IT) 55.11260804
Magnetics Design Audit Notes: Version: Vertical Section: Plan Survey Tool Pro Depth From (usft) 1 0.0 Plan Sections Measured Depth Inclir (usft) (0.0 2,000.0 2,500.0	Model N. IGRI PWP0 gram Depth To (usft) 15,411.6 15,411.6 0.00 0.00 0.00 10.00	F200510 Depth F (I Date 5/11/2 Survey (Wellb S PWP0 (OWB) PWP0 (OWB) Werth Dep (Usi 0.00 0.00 2, 344.50 2, 344.50 7, 70.80 7,	12/31/2009 Phase: 1 rom (TVD) 1 isft) 0.0 2023 0 cal +N/-S th +N/-S th (usft) 0.0 0.0 000.0 0.0 000.0 0.0 497.5 41.9	(°) PROTOTYPE +N/-S (usft) 0.0 Tool Name MWD+IFR1+MS OWSG_Rev2_ MV +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 -11.6	7.93 Tie On +E/-W (usft) 0.0 F WD + IFR1 + Dogleg Rate 100usft) (* 0.00 0.00 2.00	(*) h Depth: / Remarks Bulld Rate /100usft) 0,00 0,00 2,00	60.65 0 Direc (° 79. 79. 79. 79. (°/100usft) 0.00 0.00 0.00 0.00	() .0 .10 .0 .84 	rr) 55.11260804

5/11/2023 10:57:49AM

Received by OCD: 6/17/2024 7:30:52 AM

OWB

PWP0

Planning Report - Geographic

									1 64 6 11 12
	R	E	S	O	U	R	С	Ε	S
	Salatinista								
	Databa	se:				1	Con	npa	SS
	Compa	ny:				1	NEV	٧N	IEXICO
	Project					1	(SP) E(DDY
1	Site:						SIL	/EF	29-28 FED COM

SILVER 29-28 FED COM 111H

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Weil SILVER 29-28 FED COM 111H GL @ 3624.7usft GL @ 3624.7usft Grid Minimum Curvature

Planned Survey

Well:

Wellbore: Design:

Measured Depth (usft)	Inclination	Azimuth	Vertical Depth (usft)	+N/-S	+E/-W	Map Northing (usft)	Map Easting (usft)		
- Calculation and a second	(°)	(*)		(usft)	(usft)			Latitude	Longitude
0.0		0,00	0.0	0.0	0.0	626,095.78	677,668.88	32° 43' 13.417 N	103° 53' 24,139 W
100.0 200.0		0.00 0.00	100.0 200.0	0.0 0.0	0.0 0.0	626,095.78 626,095.78	677,668.88 677,668.88	32° 43' 13.417 N	103° 53' 24.139 W
300.0		0.00	300.0	0.0	0.0	626,095.78	677,668.88	32° 43' 13.417 N 32° 43' 13.417 N	103° 53' 24.139 W 103° 53' 24.139 W
400.0		0,00	400.0	0.0	0.0	626,095.78	677,668.88	32° 43' 13.417 N	103° 53' 24,139 W
500.0		0.00	500.0	0.0	0.0	626,095.78	677,668.88	32° 43' 13.417 N	103° 53' 24.139 W
600.0		0.00	600.0	0.0	0.0	626,095.78	677,668.88	32° 43' 13.417 N	103° 53' 24.139 W
700.0		0.00	700.0	0,0	0.0	626,095.78	677,668.88	32° 43' 13.417 N	103° 53' 24,139 W
800.0	0.00	0.00	800.0	0.0	0.0	626,095.78	677,668.88	32° 43' 13,417 N	103° 53' 24.139 W
900.0	0.00	0.00	900.0	0.0	0.0	626,095.78	677,668.88	32° 43' 13.417 N	103° 53' 24.139 W
1,000.0	0.00	0.00	1,000.0	0.0	0.0	626,095.78	677,668.88	32° 43' 13.417 N	103° 53' 24.139 W
1,100.0		0.00	1,100.0	0.0	0,0	626,095.78	677,668.88	32° 43' 13.417 N	103° 53' 24.139 W
1,200.0		0.00	1,200.0	0,0	0,0	626,095.78	677,668.88	32° 43' 13.417 N	103° 53' 24.139 W
1,300.0		0.00	1,300.0	0.0	0.0	626,095.78	677,668.88	32° 43' 13.417 N	103° 53' 24.139 W
1,400.0		0.00	1,400.0	0.0	0.0	626,095.78	677,668.88	32° 43' 13.417 N	103° 53' 24.139 W
1,500.0		0.00	1,500.0	0.0	0.0	626,095.78	677,668,88	32° 43' 13.417 N	103° 53' 24.139 W
1,600.0		0.00	1,600.0	0.0	0.0	626,095,78	677,668,88	32° 43' 13.417 N	103° 53' 24.139 W
1,700.0		0.00	1,700.0	0.0	0.0	626,095.78	677,668.88	32° 43' 13.417 N	103° 53' 24.139 W
1,800.0		0.00	1,800.0	0.0	0.0	626,095.78	677,668.88	32° 43' 13,417 N	103° 53' 24.139 W
1,900.0 2,000.0		0.00 0.00	1,900.0 2,000.0	0.0 0.0	0.0 0,0	626,095.78 626,095,78	677,668,88	32° 43' 13.417 N	103° 53' 24.139 W
2,000.0		0.00 344,50	2,000.0	1.7	-0,5	626,095,78	677,668,88 677,668,41	32° 43′ 13.417 N 32° 43′ 13.434 N	103° 53' 24.139 W 103° 53' 24.144 W
2,100.0		344,50 344,50	2,100.0	6.7	-0.5	626,102.51	677,667.01	32° 43' 13.484 N	103° 53' 24.144 W
2,300.0		344.50	2,299.5	15.1	-4.2	626,110.91	677,664,68	32° 43′ 13.567 N	103° 53' 24.187 W
2,400.0		344.50	2,398.7	26.9	-7.5	626,122.65	677,661,42	32° 43' 13.683 N	103° 53' 24.225 W
2,500.0		344.50	2,497.5	41.9	-11.6	626,137.72	677,657.24	32° 43' 13.833 N	103° 53' 24.273 W
2,600.0		344,50	2,595,9	58.7	-16.3	626,154.46	677,652.60	32° 43' 13.998 N	103° 53' 24.327 W
2,700.0		344.50	2,694.4	75.4	-20.9	626,171,19	677,647,96	32° 43' 14.164 N	103° 53' 24.380 W
2,800.0	10.00	344.50	2,792.9	92.1	-25.6	626,187.92	677,643,32	32° 43' 14.330 N	103° 53' 24.434 W
2,900.0	10.00	344.50	2,891.4	108.9	-30.2	626,204.66	677,638.68	32° 43' 14.496 N	103° 53' 24.487 W
3,000.0	10.00	344.50	2,989.9	125.6	-34.8	626,221.39	677,634.04	32° 43' 14.661 N	103° 53' 24.541 W
3,100.0		344,50	3,088.3	142,3	-39,5	626,238.12	677,629.40	32° 43' 14.827 N	103° 53' 24.594 W
3,200.0		344.50	3,186.8	159.1	-44.1	626,254.86	677,624.76	32° 43' 14.993 N	103° 53' 24.648 W
3,300.0		344.50	3,285.3	175.8	-48.8	626,271.59	677,620.12	32° 43' 15.159 N	103° 53' 24.701 W
3,400.0		344.50	3,383.8	192.5	-53.4	626,288.32	677,615.48	32° 43' 15.325 N	103° 53' 24.755 W
3,500.0		344.50	3,482.3	209.3	-58.0	626,305.06	677,610.84	32° 43' 15.490 N	103° 53' 24.808 W
3,600.0		344.50	3,580.8	226.0	-62.7	626,321.79	677,606.20	32° 43' 15.656 N	103° 53' 24.862 W
3,700.0		344.50	3,679.2	242.7	-67.3	626,338.52	677,601.56	32° 43' 15.822 N	103° 53' 24.915 W
3,800.0		344.50	3,777.7	259.5	-72.0	626,355.26	677,596.92	32° 43' 15.988 N	103° 53' 24.969 W
3,900.0 4,000.0		344.50 344.50	3,876.2 3,974.7	276.2 292.9	-76.6 -81.2	626,371.99 626,388.72	677,592.28 677,587.64	32° 43' 16.153 N 32° 43' 16.319 N	103° 53' 25.022 W 103° 53' 25.076 W
4,000.0	10.00	344.50 344.50	4,073.2	309.7	-85.9	626,405.46	677,583.00	32° 43' 16.485 N	103° 53' 25.129 W
4,200.0		344.50	4,171.6	326.4	-90.5	626,422.19	677,578.35	32° 43' 16.651 N	103° 53' 25.183 W
4,300.0		344.50	4,270.1	343.1	-95,2	626,438.92	677,573.71	32° 43' 16.816 N	103° 53' 25.236 W
4,400.0		344.50	4,368.6	359,9	-99,8	626,455.66	677,569.07	32° 43' 16.982 N	103° 53' 25,290 W
4,500.0		344.50	4,467.1	376.6	-104.4	626,472.39	677,564.43	32° 43' 17.148 N	103° 53' 25.343 W
4,600.0		344.50	4,565.6	393.3	-109.1	626,489.12	677,559.79	32° 43' 17,314 N	103° 53' 25.397 W
4,700.0		344.50	4,664.0	410.1	-113.7	626,505.86	677,555.15	32° 43' 17.480 N	103° 53' 25.450 W
4,800.0		344.50	4,762.5	426.8	-118,4	626,522,59	677,550.51	32° 43' 17.645 N	103° 53' 25.504 W
4,900.0		344.50	4,861.0	443.5	-123.0	626,539.32	677,545.87	32° 43' 17.811 N	103° 53' 25.557 W
5,000.0	10.00	344.50	4,959.5	460.3	-127.6	626,556.06	677,541.23	32° 43' 17.977 N	103° 53' 25.611 W
5,100.0	10.00	344.50	5,058.0	477.0	-132.3	626,572,79	677,536,59	32° 43' 18.143 N	103° 53' 25.664 W
5,200.0		344,50	5,156.4	493.7	-136,9	626,589,52	677,531.95	32° 43' 18.308 N	103° 53' 25.718 W
5,300.0		344.50	5,254.9	510.5	-141.6	626,606.26	677,527.31	32° 43' 18.474 N	103° 53' 25.771 W
5,400.0	10.00	344.50	5,353.4	527.2	-146.2	626,622.99	677,522.67	32° 43' 18.640 N	103° 53' 25,825 W

5/11/2023 10:57:49AM

Released to Imaging: 7/12/2024 8:51:05 AM

Permian Resources Planning Report - Geographic

RESOURCES

	Amaran		Well SILVER 29-28 FED COM 111H
Dataoase;	Compass	Local Co-ordinate Reference:	Well SILVER 29-28 FED COM TITH
Company:	NEW MEXICO	TVD Reference:	GL @ 3624.7usft
Project:	(SP) EDDY	MD Reference:	GL @ 3624.7usft
Site:	SILVER 29-28 FED COM	North Reference:	Grid
Well:	SILVER 29-28 FED COM 111H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Deslgn:	PWP0		

Planned Survey

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
(usft)	(*)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude
5,500.0	10.00	344.50	5,451.9	543.9	-150.8	626,639,72	677,518.03	32° 43' 18.806 N	103° 53' 25.878 W
5,600.0	10.00	344.50	5,550.4	560.7	-155.5	626,656.45	677,513.39	32° 43' 18.971 N	103° 53' 25.932 W
5,700.0	10.00	344.50	5,648.9	577.4	-160.1	626,673.19	677,508.75	32° 43' 19.137 N	103° 53' 25.985 W
5,800.0	10.00	344.50	5,747.3	594.1	-164.8	626,689.92	677,504.11	32° 43' 19.303 N	103° 53' 26,039 W
5,900.0	10.00	344.50	5,845.8	610.9	-169.4	626,706.65	677,499.47	32° 43' 19.469 N	103° 53' 26.092 W
6,000.0	10.00	344.50	5,944.3	627.6	-174.1	626,723.39	677,494.83	32° 43' 19.635 N	103° 53' 26.146 W
6,100.0	10.00	344.50	6,042.8	644.3	-178.7	626,740.12	677,490.18	32° 43' 19.800 N	103° 53' 26.199 W
6,200.0	10.00	344.50	6,141.3	661.1	-183.3	626,756.85	677,485.54	32° 43' 19.966 N	103° 53' 26.253 W
6,300.0	10.00	344.50	6,239.7	677.8	-188.0	626,773.59	677,480,90	32° 43' 20.132 N	103° 53' 26.306 W
6,400.0	10.00	344.50	6,338.2	694.5	-192.6	626,790.32	677,476.26	32° 43' 20.298 N	103° 53' 26.360 W
6,500.0	10.00	344.50	6,436.7	711.3	-197.3	626,807.05	677,471.62	32° 43' 20.463 N	103° 53' 26.413 W
6,600.0	10.00	344.50	6,535.2	728.0	-201.9	626,823.79	677,466.98	32° 43' 20.629 N	103° 53' 26.467 W
6,700,0	10.00	344,50	6,633.7	744.7	-206.5	626,840.52	677,462,34	32° 43' 20.795 N	103° 53' 26,520 W
6,800.0	10.00	344.50	6,732.1	761.5	-211.2	626,857.25	677,457.70	32° 43' 20.961 N	103° 53' 26.574 W
6,900.0	10.00	344.50	6,830.6	778.2	-215.8	626,873.99	677,453.06	32° 43' 21.126 N	103° 53' 26.627 W
7,000.0	10.00	344.50	6,929,1	794.9	-220.5	626,890.72	677,448.42	32° 43' 21.292 N	' 103° 53' 26,681 W
7,100.0	10.00	344.50	7,027.6	811.7	-225.1	626,907.45	677,443.78	32° 43' 21,458 N	103° 53' 26,734 W
7,200.0	10.00	344.50	7,126.1	828.4	-229.7	626,924.19	677,439.14	32° 43' 21.624 N	103° 53' 26.788 W
7,300.0	10.00	344.50	7,224.5	845.1	-234.4	626,940.92	677,434.50	32° 43' 21.789 N	103° 53' 26.841 W
7,400.0	10.00	344,50	7,323.0	861.9	-239.0	626,957,65	677,429.86	32° 43' 21.955 N	103° 53' 26.895 W
7,500.0	10.00	344,50	7,421.5	878.6	-243.7	626,974.39	677,425.22	32° 43' 22.121 N	103° 53' 26.948 W
7,509.0	10.00	344.50	7,430.4	880.1	-244.1	626,975.89	677,424.80	32° 43' 22.136 N	103° 53' 26.953 W
7,600.0	15.23	30.55	7,519.3	898.1	-240.1	626,993.86	677,428.78	32° 43' 22.314 N	103° 53' 26.906 W
7,700.0	25.49	49,14	7,613.1	923.6	-217.1	627,019.34	677,451.82	32° 43' 22.565 N	103° 53' 26.635 W
7,800.0	36.78	57,19	7,698.6	954.0	-175.5	627,049.75	677,493.41	32° 43' 22.864 N	103° 53' 26.146 W
7,900.0	48.38	61.81	7,772.1	988.0	-117.1	627,083.76	677,551.73	32° 43' 23,198 N	103° 53' 25.462 W
SILVER :	29-28 FED CO	M 111H - FTF	•						
8,000.0	60.11	65,00	7,830.4	1,024.1	-44.6	627,119.88	677,624.23	32° 43' 23,552 N	103° 53' 24.612 W
8,100.0	71.90	67.50	7,871.0	1,060.7	38.9	627,156.52	677,707.73	32° 43' 23,912 N	103° 53' 23.632 W
8,200.0	83.72	69.69	7,892.1	1,096.3	129.7	627,192.09	677,798.58	32° 43' 24.260 N	103° 53' 22.567 W
8,253.0	89.99	70.80	7,895.0	1,114.2	179.5	627,209.96	677,848.36	32° 43' 24.435 N	103° 53' 21.983 W
EOC/FT	e								
8,253.1	90.00	70.80	7,895.0	1,114.2	179.6	627,210.00	677,848.46	32° 43' 24,435 N	103° 53' 21.982 W
8,300.0	90.00	71.74	7,895.0	1,129.3	224.0	627,225.06	677,892.87	32° 43' 24.582 N	103° 53' 21.462 W
8,400.0	90.00	73.74	7,895.0	1,158.9	319.5	627,254.73	677,988.36	32° 43' 24.872 N	103° 53' 20.342 W
8,500.0	90.00	75.74	7,895.0	1,185.3	416.0	627,281.05	678,084,83	32° 43' 25,128 N	103° 53' 19.212 W
8,600.0	90.00	77.74	7,895.0	1,208.2	513.3	627,303,99	678,182.16	32° 43' 25,351 N	103° 53' 18.071 W
8,700.0	90.00	79.74	7,895.0	1,227.7	611,4	627,323,52	678,280.23	32° 43' 25.540 N	103° 53' 16.922 W
8,800.0	90.00	81,74	7,895.0	1,243.8	710.0	627,339.62	678,378.92	32° 43' 25.695 N	103° 53' 15.766 W
8,900.0	90.00	83.74	7,895.0	1,256.5	809.2	627,352.26	678,478.11	32° 43' 25,816 N	103° 53' 14.605 W
9,000.0	90.00	85.74	7,895.0	1,265.6	908.8	627,361.43	678,577.69	32° 43' 25,903 N	103° 53' 13.439 W
9,100.0	90.00	87.74	7,895.0	1,271.3	1,008.6	627,367.12	678,677.52	32° 43' 25,955 N	103° 53' 12.270 W
9,195.4	90.00	89.65	7,895.0	1,273.5	1,104.0	627,369.30	678,772.87	32° 43' 25.973 N	103° 53' 11.153 W
9,200.0	90.00	89,65	7,895.0	1,273.5	1,108.6	627,369.32	678,777.49	32° 43' 25.973 N	103° 53' 11,099 W
9,300.0	90.00	89.65	7,895,0	1,274.2	1,208.6	627,369.94	678,877.49	32° 43' 25,975 N	103° 53' 9,929 W
9,400.0	90.00	89.65	7,895.0	1,274.8	1,308.6	627,370.56	678,977.48	32° 43' 25.977 N	103° 53' 8.758 W
9,500.0	90.00	89.65	7,895.0	1,275.4	1,408.6	627,371.18	679,077.48	32° 43' 25.979 N	103° 53' 7.588 W
9,600.0	90.00	89,65	7,895.0	1,276.0	1,508.6	627,371.80	679,177.48	32° 43' 25.981 N	103° 53' 6.417 W
9,700.0	90.00	89.65	7,895.0	1,276.6	1,608,6	627,372,42	679,277.48	32° 43' 25.982 N	103° 53' 5.246 W
9,800.0	90.00	89.65	7,895.0	1,277.3	1,708.6	627,373.04	679,377.48	32° 43' 25.984 N	103° 53' 4.076 W
9,900.0	90.00	89.65	7,895.0	1,277.9	1,808.6	627,373.65	679,477.48	32° 43' 25.986 N	103° 53' 2,905 W
10,000.0	90.00	89,65	7,895.0	1,278.5	1,908.6	627,374.27	679,577.47	32° 43' 25,988 N	103° 53' 1.735 W
10,100.0	90.00	89.65	7,895.0	1,279.1	2,008,6	627,374.89	679,677.47	32° 43' 25.990 N	103° 53' 0.564 W
10,100.0									

5/11/2023 10:57:49AM

Received by OCD: 6/17/2024 7:30:52 AM

RESOURCES

Permian Resources

Planning Report - Geographic

Database:	Compass	Local Co-ordinate Reference: Well SILVER 29-28 FED COM 111H	
Company:	NEW MEXICO	TVD Reference: GL @ 3624.7usft	
Project:	(SP) EDDY	MD Reference: GL @ 3624.7usft	
Site:	SILVER 29-28 FED COM	North Reference: Grid	
Well:	SILVER 29-28 FED COM 111H	Survey Calculation Method: Minimum Curvature	
Wellbore:	OWB		
Design:	PWP0		

Planned Survey

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude
10,229.0	90.00	89.65	7,895.0	1,279.9	2,137.6	627,375.69	679,806.47	32° 43' 25,993 N	103° 52' 59.054 W
LPP 1									
10,300.0	90.00	89.65	7,895.0	1,280.3	2,208.6	627,376.13	679,877.47	32° 43' 25.994 N	103° 52' 58.223 W
10,400.0	90.00	89.65	7,895.0	1,281.0	2,308.6	627,376.75	679,977.47	32° 43' 25.996 N	103° 52' 57.052 W
10,500.0	90.00	89,65	7,895.0	1,281.6	2,408.6	627,377.37	680,077.46	32° 43' 25.998 N	103° 52' 55,882 W
10,600.0	90.00	89.65	7,895.0	1,282.2	2,508.6	627,377.98	680,177.46	32° 43' 26.000 N	103° 52' 54.711 W
10,700.0	90.00	89.65	7,895.0	1,282.8	2,608.6	627,378.60	680,277.46	32° 43' 26.002 N	103° 52' 53.540 W
10,800.0	90.00	89.65	7,895.0	1,283,4	2,708.6	627,379.22	680,377.46	32° 43' 26.004 N	103° 52' 52.370 W
10,900.0	90.00	89.65	7,895.0	1,284.1	2,808.6	627,379.84	680,477.46	32° 43' 26.005 N	103° 52' 51.199 W
11,000.0	90.00	89.65	7,895.0	1,284.7	2,908.6	627,380.46	680,577.45	32° 43' 26.007 N	103° 52' 50.029 W
11,100.0	90.00	89.65	7,895.0	1,285.3	3,008.6	627,381.08	680,677.45	32° 43' 26.009 N	103° 52' 48.858 W
11,200.0	90.00	89.65	7,895.0	1,285.9	3,108.6	627,381.70	680,777,45	32° 43' 26,011 N	103° 52' 47.687 W
11,300.0	90.00	89.65	7,895.0	1,286.5	3,208.6	627,382.32	680,877,45	32° 43' 26.013 N	103° 52' 46.517 W
11,400.0	90.00	89.65	7,895.0	1,287.2	3,308.6	627,382.93	680,977.45	32° 43' 26.015 N	103° 52' 45.346 W
11,500.0	90.00	89.65	7,895.0	1,287.8	3,408.6	627,383.55	681,077.44	32° 43' 26.017 N	103° 52' 44.176 W
11,550.0	90.00	89.65	7,895.0	1,288,1	3,458.6	627,383.86	681,127.44	32° 43' 26,018 N	103° 52' 43.590 W
LLP 2									
11,600.0	90.00	89.65	7,895.0	1,288.4	3,508.6	627,384.17	681,177.44	32° 43' 26.019 N	103° 52' 43.005 W
11,700.0		89.65	7,895.0	1,289.0	3,608.6	627,384,79	681,277,44	32° 43' 26.021 N	103° 52' 41.834 W
11,800.0		89.65	7,895.0	1,289.6	3,708.6	627,385.41	681,377,44	32° 43' 26,022 N	103° 52' 40.664 W
11,900.0		89.65	7,895.0	1,290.2	3,808.6	627,386.03	681,477,44	32° 43' 26.024 N	103° 52' 39.493 W
12,000.0		89.65	7,895.0	1,290.9	3,908.6	627,386.65	681,577.44	32° 43' 26.026 N	103° 52' 38.323 W
12,070.0		89.65	7,895.0	1,291.3	3,978.6	627,387.08	681,647,43	32° 43' 26.027 N	103° 52' 37.503 W
LLP 3			,	•		,	,		
12,100.0	90,00	89.65	7,895.0	1,291.5	4,008.6	627,387,26	681,677.43	32° 43' 26.028 N	103° 52' 37,152 W
12,200.0	90.00	89.65	7,895.0	1,292.1	4,108.6	627,387.88	681,777.43	32° 43' 26.030 N	103° 52' 35.981 W
12,300.0	90.00	89.65	7,895.0	1,292.7	4,208.6	627,388.50	681,877.43	32° 43' 26.032 N	103° 52' 34.811 W
12,400.0	90.00	89,65	7,895.0	1,293.3	4,308.6	627,389.12	681,977.43	32° 43' 26.034 N	103° 52' 33.640 W
12,500.0	90,00	89,65	7,895.0	1,294.0	4,408.6	627,389.74	682,077.43	32° 43' 26.035 N	103° 52' 32.470 W
12,600.0	90.00	89.65	7,895.0	1,294.6	4,508.5	627,390.36	682,177.42	32° 43' 26.037 N	103° 52' 31.299 W
12,300.0	90.00	89.65	7,895.0	1,295.2	4,608.5	627,390.98	682,277.42	32° 43' 26.039 N	103° 52' 30.128 W
12,800.0	90,00	89,65	7,895.0	1,295.8	4,708.5	627,391.60	682,377.42	32° 43' 26.041 N	103° 52' 28.958 W
12,000.0	90.00	89.65	7,895.0	1,296.4	4,808.5	627,392.21	682,477.42	32° 43' 26.043 N	103° 52' 27.787 W
13,000.0	90.00	89.65	7,895.0	1,297.0	4,808.5	627,392.83	682,577.42	32° 43' 26.045 N	103° 52' 26.617 W
13,100.0	90.00	89.65	7,895.0	1,297.0	5,008.5	627,393.45	682,677.41	32° 43' 26.046 N	103° 52' 25.446 W
13,200.0	90.00	89,65	7,895.0	1,298.3	5,008.5	627,394.07	682,777.41		103° 52' 23.448 W
13,300.0	90.00	89,65	7,895.0	1,298.9	5,208.5	627,394.69	682,877.41	32° 43' 26.048 N 32° 43' 26.050 N	
13,400.0	90.00	89.65	7,895.0	1,298.5	5,308.5	627,395.31			103° 52' 23.105 W 103° 52' 21.934 W
13,400.0	90.00	89.65	7,895.0	1,295.5	5,408.5	627,395.93	682,977.41 683,077.41	32° 43' 26.052 N	
13,600.0	90.00	89.65 89,65	7,895.0	1,300.1	5,508.5	•		32° 43' 26.054 N	103° 52' 20.764 W
13,700.0	90.00	89,65	7,895,0	1,300.8	5,608.5	627,396.54	683,177.40	32° 43' 26.056 N	103° 52' 19.593 W
						627,397.16	683,277,40	32° 43' 26.057 N	103° 52' 18,422 W
13,800.0	90.00	89.65	7,895.0	1,302.0	5,708.5 5,000 F	627,397.78	683,377.40	32° 43' 26.059 N	103° 52' 17.252 W
13,900.0 14,000.0	90.00 90.00	89.65 89.65	7,895.0 7,895.0	1,302.6 1,303.2	5,808.5 5 009 5	627,398.40	683,477.40	32° 43' 26.061 N	103° 52' 16.081 W
					5,908.5	627,399.02	683,577.40	32° 43' 26,063 N	103° 52' 14.911 W
14,100.0	90.00	89.65	7,895.0	1,303,9	6,008.5	627,399.64	683,677.39	32° 43' 26.065 N	103° 52' 13.740 W
14,200.0 14,300.0	90.00	89.65	7,895.0	1,304.5	6,108.5	627,400.26	683,777.39	32° 43' 26.066 N	103° 52' 12.569 W
•	90.00	89.65	7,895.0	1,305.1	6,208.5	627,400.88	683,877.39	32° 43' 26.068 N	103° 52' 11.399 W
14,400.0	90.00	89.65	7,895.0	1,305.7	6,308.5	627,401.49	683,977.39	32° 43' 26,070 N	103° 52' 10.228 V
14,500.0	90.00	89.65	7,895.0	1,306.3	6,408.5	627,402.11	684,077.39	32° 43' 26,072 N	103° 52' 9.058 V
14,600.0	90.00	89.65	7,895.0	1,306.9	6,508.5	627,402.73	684,177.39	32° 43' 26.074 N	103° 52' 7.887 W
14,700.0	90,00	89.65	7,895.0	1,307.6	6,608.5	627,403.35	684,277.38	32° 43' 26.075 N	103° 52' 6.716 W
14,800.0	90.00	89.65	7,895.0	1,308.2	6,708,5	627,403.97	684,377,38	32° 43' 26.077 N	103° 52' 5.546 W
14,900.0	90.00	89.65	7,895.0	1,308.8	6,808.5	627,404.59	684,477.38	32° 43' 26.079 N	103° 52' 4.375 W
15,000.0	90.00	89,65	7,895.0	1,309.4	6,908.5	627,405.21	684,577.38	32° 43' 26.081 N	103° 52' 3.205 W

5/11/2023 10:57:49AM

Page 5

COMPASS 5000.15 Build 91E

Received by OCD: 6/17/2024 7:30:52 AM PERMIAN

RESOURCES

Permian Resources

Planning Report - Geographic

Database:	Compass	Local Co-ordinate Reference:	Well SILVER 29-28 FED COM 111H
Company:	NEW MEXICO	TVD Reference:	GL @ 3624.7usft
Project:	(SP) EDDY	MD Reference:	GL @ 3624.7usft
Site:	SILVER 29-28 FED COM	North Reference:	Grid
Well:	SILVER 29-28 FED COM 111H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	PWP0		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
15,100.0	90.00	89.65	7,895.0	1,310.0	7,008.5	627,405.82	684,677,38	32° 43' 26,082 N	103° 52' 2.034 W
15,200.0	90.00	89.65	7,895.0	1,310.7	7,108.5	627,406.44	684,777.37	32° 43' 26.084 N	103° 52' 0.864 W
15,300.0	90.00	89.65	7,895.0	1,311.3	7,208.5	627,407.06	684,877.37	32° 43' 26.086 N	103° 51' 59.693 W
15,400.0	90.00	89.65	7,895.0	1,311.9	7,308.5	627,407.68	684,977,37	32° 43' 26.088 N	103° 51' 58.522 W
15,411.9	90.00	89.65	7,895.0	1.312.0	7,320.4	627,407.75	684,989,27	32° 43' 26.088 N	103° 51' 58.383 W

Design Targets Target Name Northing - hit/miss target Dip Angle Dip Dir. TVD +N/-S +E/-W Easting - Shape (°) (*) (usft) (usft) (usft) (usft) (usft) Latitude Longitude SILVER 29-28 FED CON 0.00 0.00 7,895.0 1,265.2 -401.1 627,360.97 677,267.79 32° 43' 25.953 N 103° 53' 28.772 W - plan misses target center by 415.4usft at 7900.0usft MD (7772.1 TVD, 988.0 N, -117.1 E) - Point SILVER 29-28 FED CON 0.00 0.00 7,895.0 1,312.0 7,320.4 627,407.75 684,989.30 32° 43' 26.088 N 103° 51' 58.383 W - plan hits target center - Point

Measured	Vertical	Local Coord	dinates	
Depth	Depth	+N/-S	+E/-W	
(usft)	(usft)	(usft)	(usft)	Comment
8,253.0	7,895.0	1,114.2	179.5	EOC/FTP
10,229.0	7,895.0	1,279.9	2,137.6	LPP 1
11,550.0	7,895.0	1,288.1	3,458.6	LLP 2
12,070.0	7,895.0	1,291.3	3,978.6	LLP 3
15,411.9	7,895.0	1,312.0	7,320.4	LTP/BHL

Released to Imaging: 7/12/2024 8:51:05 AM

NEW MEXICO

(SP) EDDY SILVER 29-28 FED COM SILVER 29-28 FED COM 111H

OWB PWP0

Anticollision Summary Report

11 May, 2023

Received by OCD: 6/17/2024 7:30:52 AM

PERMIAN *RESOURCES*

Permian Resources

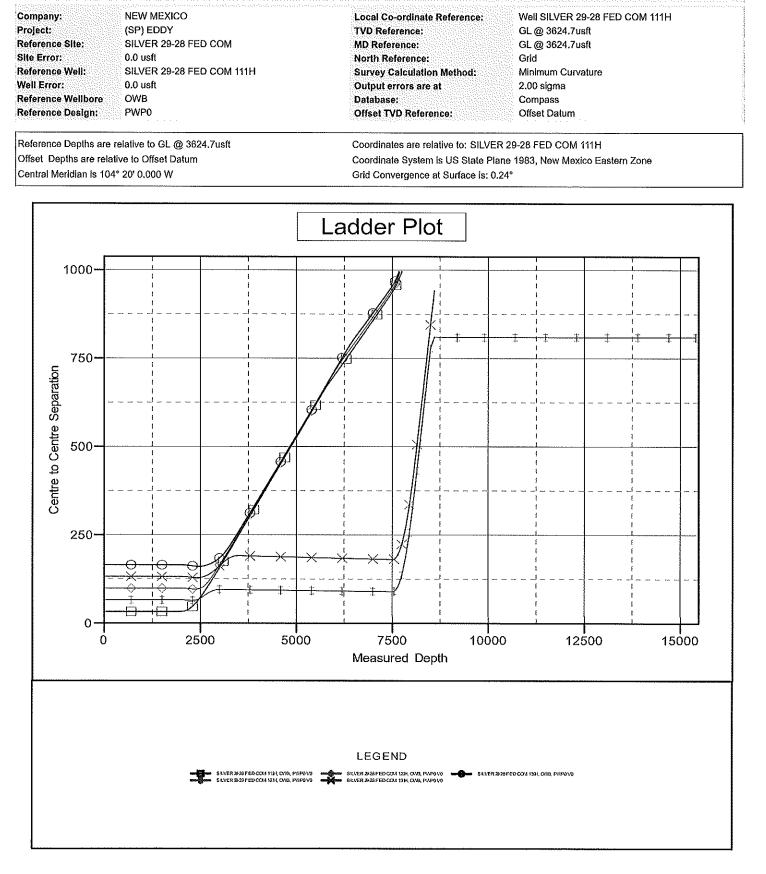
Anticollision Summary Report

nterpolation Method: Depth Range:	Stations Unlimited	Error Model: Scan Method:	ISCWSA Closest Approach 3D
Reference Filter type:	PWP0 NO GLOBAL FILTER; Using user defined sete	notion & filtering criteria	
Reference Design;	PWP0	Offset TVD Reference:	Offset Datum
Reference Wellbore	OWB	Database:	Compass
Neil Error:	0,0 usft	Oulput errors are at	2.00 sigma
Reference Well:	SILVER 29-28 FED COM 111H	Survey Calculation Method:	Minimum Curvature
Site Error:	0,0 usft	North Reference:	Grid
Reference Site:	SILVER 29-28 FED COM	MD Reference:	GL @ 3624.7usft
Project:	(SP) EDDY	TVD Reference:	GL @ 3624.7usft
Company:	NEW MEXICO	Local Co-ordinate Reference:	Well SILVER 29-28 FED COM 111H

 Warning Levels Evaluated at:
 2.00
 Sigma
 Casing Method:
 Not applied

Survey Tool Program From To (usft) (usft)	Date 5/11/2023 Survey (Wellbore)	Tool Name	Description
0.0 15,411.6	PWP0 (OWB)	MWD+IFR1+MS	OWSG_Rev2_MWD + IFR1 + Multi-Station Correction

immary						
Site Name Offset Well - Wellbore - Dasign	Reference Measured Depth (usfl)	Offset Measured Depth (usft)	Dista Between Centres (usft)	nce Between Eilipses (usft)	Separation Factor	Warning
SILVER 29-28 FED COM				14911/		
SILVER 29-28 FED COM 112H - OWB - PWP0	2,000.0	2,000.0	33.0	18.7	2.301	CC, ES
SILVER 29-28 FED COM 112H - OWB - PWP0	2,100.0	2,098.8	34.3	19.3	2.284	SF
SILVER 29-28 FED COM 121H - OWB - PWP0	2,300.9	2,300.6	64.1	47.6	3.886	CC
SILVER 29-28 FED COM 121H - OWB - PWP0	7,509.9	7,515.2	89.5	34.7	1.633	ES
SILVER 29-28 FED COM 121H - OWB - PWP0	7,525.0	7,530.3	89.6	34.7	1.633	SF
SILVER 29-28 FED COM 122H - OWB - PWP0	2,368.6	2,368.2	96,1	79.1	5.663	CC
SILVER 29-28 FED COM 122H - OWB - PWP0	2,400.0	2,399.3	96.2	79.0	5.595	ES
SILVER 29-28 FED COM 122H - OWB - PWP0	2,500.0	2,498.1	98.1	80.2	5.482	SF
SILVER 29-28 FED COM 131H - OWB - PWP0	2,425.8	2,425.0	128.1	110.8	7.375	CC, ES
SILVER 29-28 FED COM 131H - OWB - PWP0	7,525.0	7,536.0	180.4	125.6	3,293	SF
SILVER 29-28 FED COM 132H - OWB - PWP0	2,476.2	2,475.0	160.2	142.4	9,033	CC
SILVER 29-28 FED COM 132H - OWB - PWP0	2,500,0	2,498.5	160.2	142.3	8.950	ES
SILVER 29-28 FED COM 132H - OWB - PWP0	2,800.0	2,793.9	169.7	149.7	8.473	SF


Released to Imaging: 7/12/2024 8:51:05 AM

Received by OCD: 6/17/2024 7:30:52 AM

PERMIAN

RESOURCES

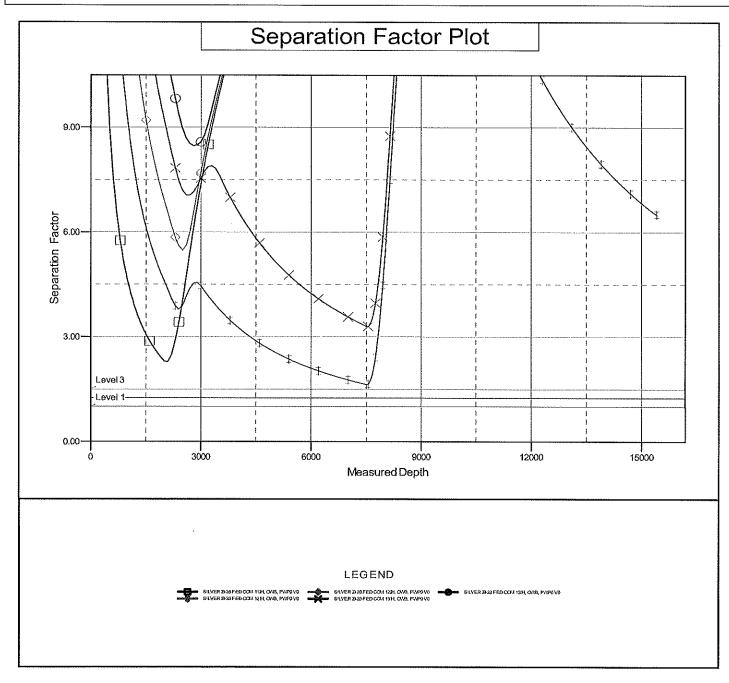
Anticollision Summary Report

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

) 3

Received by OCD: 6/17/2024 7:30:52 AM PERMIAN

RESOURCES


Pe	rmian	Resour	rces

Anticollision Summary Report

Reference Depths are	relative to GL @ 3624.7usft	Coordinates are relative to: SILVE	R 29-28 FED COM 111H
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum
Reference Wellbore	OWB	Database:	Compass
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Well;	SILVER 29-28 FED COM 111H	Survey Calculation Method:	Minimum Curvature
Site Error:	0.0 usft	North Reference:	Grid
Reference Site:	SILVER 29-28 FED COM	MD Reference:	GL @ 3624.7usft
Project:	(SP) EDDY	TVD Reference:	GL @ 3624.7usft
Company:	NEW MEXICO	Local Co-ordinate Reference:	Well SILVER 29-28 FED COM 111H

Offset Depths are relative to Offset Datum Central Meridian is 104° 20' 0.000 W

Coordinate System is US State Plane 1983, New Mexico Eastern Zone Grid Convergence at Surface is: 0.24°

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	CENTENNIAL RESOURCE PRODUCTION LLC
WELL NAME & NO.:	SILVER 29-28 FED COM 111H
SURFACE HOLE FOOTAGE:	1928'/N & 2146'/E
 BOTTOM HOLE FOOTAGE	660'/N & 100'/E
LOCATION:	Section 29, T.18 S., R.31 E., NMP
COUNTY:	Eddy County, New Mexico

COA

H2S	• Yes	C No	
Potash	None	C Secretary	C R-111-P
Cave/Karst Potential	• Low	C Medium	C High
Cave/Karst Potential	Critical		
Variance	(* None	👎 Flex Hose	C Other
Wellhead	Conventional	Multibowl	C Both
Wellhead Variance	C Diverter		
Other	□ 4 String	Capitan Reef	Г WIPP
Other	Fluid Filled	☐ Pilot Hole	☐ Open Annulus
Cementing	Contingency	EchoMeter	F Primary Cement
	Cement Squeeze		Squeeze
Special Requirements	☐ Water Disposal	COM	🗖 Unit
Special Requirements	☐ Batch Sundry		
Special Requirements		I Offline	□ Casing
Variance		Cementing	Clearance

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated AT SPUD. As a result, the Hydrogen Sulfide area must meet 43 CFR part 3170 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

Primary Casing Design:

 The 13-3/8 inch surface casing shall be set at approximately 730 feet per BLM Geologist (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. The surface hole shall be 17 1/2 inch in diameter.

- a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of $\underline{\mathbf{8}}$ hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The 9-5/8 inch intermediate casing shall be set at approximately 4720 feet per BLM Geologist. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Casing test must be conducted in accordance with 43 CFR 3170. Surface pressure applied will vary based on fluid in the casing and burst conditions.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash. Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the 13-3/8 inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in Onshore Order 1 and 2.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

Offline Cementing

Contact the BLM prior to the commencement of any offline cementing procedure.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Eddy County
 EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,
 BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822

- Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per 43 CFR part 3170 Subpart 3172 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a

digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24</u> <u>hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after

Page 6 of 8

.

installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per **43 CFR**

part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JS 3/19/2024

H₂S CONTINGENCY PLAN

FOR

Permian Resources Corporation Silver 29-28 Fed Com 111H, 112H, 121H, 122H, 131H, 132H Eddy County, New Mexico

> 04-20-2023 This plan is subject to updating

Released to Imaging: 7/12/2024 8:51:05 AM

Received by OCD: 6/17/2024 7:30:52 AM

Permian Reso	urces Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	·	Silver 29-28 Fed Com 111H, 112H,	
		121H, 122H, 131H, 132H	
L			
		Table of Contents	
Sectio	n 1.0 – Introduction		3
l.	Purpose		
 II.	Scope & Applicability	ť	
		on	3
	Activation Requirement		
	Emergency Evacuation		
III.	Emergency Response Ad	tivities	
		us Conditions	
		S Release Event	
	Local & State Law Enfor		
1.	General Public	oement	
11.	New Mexico Oil Conserv	vation Division	
IV.	New Mexico Environme		
V.	Bureau of Land Manage	•	
		t List	
1.	Permian Resources Mar		
 II.	Eddy County Sheriff		
 III.	New Mexico State High	way Patrol	
IV.	Fire / EMS		
V.	Carlsbad Memorial Hos	pital	
VI.	Emergency Response Co		
VII.	New Mexico Oil Conserv		
VIII.	New Mexico Environme		
IX.	Bureau of Land Manage	•	
X.	Other Agencies		
	_	formation	9-12
<u> </u>	Site Safety Information	<i>yon maa</i> aa	
0.	Directions to Location		
III.	Plat of Location includin	or GPS Coordinates	
IV.	Routes of Ingress & Egre	-	
V.	ROE Map	255 (1411.1.)	
VI.	Residences in ROE		
VII.	Public Roads in ROE		
		ation	13-15
l.		of Hydrogen Sulfide Gas	
	•	/ Toxicological Information	
111.	Environmental Hazards		
		ation	15-17
	OSHA Information		
1. .		vation Division & Bureau of Land Managem	pent
		ents	
		ve Equipment	
Appen			
	Appendix A – H ₂ S SDS		
И.	Appendix B – SO ₂ SDS		

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Silver 29-28 Fed Com 111H, 112H,	
	121H, 122H, 131H, 132H	

Section 1.0 – Introduction

I. Purpose

The purpose of this contingency plan (Plan) is to provide Permian Resources Corporation. (Permian Resources) with an organized plan of action for alerting and protecting Permian Resources employees, the general public, and any potential first responders prior to any intentional release or immediately following the accidental / unintentional release of a potentially hazardous volume / concentration of Hydrogen Sulfide Gas (H2S).

II. Scope & Applicability

This Plan applies to all planned, unplanned, uncontrolled and/or unauthorized releases of hazardous concentrations of H_2S or any associated hazardous byproducts of combustion, occurring at any Permian Resources owned or operated facilities including but not limited to: wells, flowlines, pipelines, tank batteries, production facilities, SWD facilities, compressor stations, gas processing plants, drilling / completions / workover operations, and any other applicable company owned property.

Section 2.0 - Plan Implementation

I. Activation Requirements

In accordance with the requirements of Bureau of Land Management Onshore Order #6 and NMAC 19.15.11, this Plan shall be activated in advance of any authorized, planned, unplanned, uncontrolled, or unauthorized release of a hazardous volume / concentration of H₂S gas, or SO², which could potentially adversely impact the workers, general public or the environment.

II. Emergency Evacuation

In the event of an unplanned, uncontrolled, or unauthorized release of a hazardous volume / concentration of H_2S gas, the first priority is to ensure the safety of the workers and general public. Upon discovery and subsequent determination of an applicable release, which cannot be quickly mitigated, immediately by using 911, notify local authorities to begin the process of alerting the general public, evacuate any residents within the Radius of Exposure (ROE), and limit any general public or employee access to any areas within the ROE of the affected facility.

III. Emergency Response Activities

The purpose of emergency response actions is to take steps to quickly mitigate / stop the ongoing release of the hazardous source of H₂S. Upon discovery of any hazardous release, immediately notify Permian Resources management to activate the Emergency Response Team (ERT). Once Permian Resources supervision arrives and assesses the situation, a work plan identifying the proper procedures shall be developed to stop the release.

Section 3.0 - Potential Hazardous Conditions & Response Actions

During a planned or unplanned release of H₂S, there are several hazardous conditions that are presented both to employees, the general public, and emergency responders. These specific hazardous conditions

Received by OCD: 6/17/2024 7:30:52 AM

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Silver 29-28 Fed Com 111H, 112H,	
	121H, 122H, 131H, 132H	

H ₂ S concentration <10 ppm detected by location monitors	
General Actions During Condition 1	
Notify Site Supervisor / Permian Resources Person-in-Charge (PIC) of any observed increase in ambient H ₂ S concentrations	
All personnel check safety equipment is in adequate working order & store in accessible location	
Sensitize crews with safety meetings.	
Limit visitors and non-essential personnel on location	
Continuously monitor H ₂ S concentrations and check calibration of sensors	
Ensure H ₂ S scavenger is on location.	
H₂S CONDITION 2: MODERATE DANGER TO LIFE AND HEALTH → WARNING SIGN YELLOW	
H_2S concentration >10 ppm and < 30 ppm in atmosphere detected by location monitors:	
General Actions During Condition 2	
Sound H ₂ S alarm and/or display yellow flag.	
Account for on-site personnel	
Upon sounding of an area or personal H ₂ S monitor alarm when 10 ppm is reached, proceed to a safe briefing area upwind of the location immediately (see MA-4, Figure 5-1).	
Don proper respiratory protection.	
Alert other affected personnel	
If trained and safe to do so undertake measures to control source H2S discharge and eliminate possible ignition sources. Initiate Emergency Shutdown procedures as deemed necessary to correct or control the specific situation.	۵
Account for on-site personnel at safe briefing area.	
Stay in safe briefing area if not working to correct the situation.	
Keep Site Supervisor / Permian Resources PIC informed. Notify applicable government agencies (Appendix A) If off-site impact; notify any neighbors within Radius of Exposure (ROE), Fig 5.11	
Continuously monitor H ₂ S until readings below 10 ppm.	D

I

.

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Silver 29-28 Fed Com 111H, 112H,	
	121H, 122H, 131H, 132H	

H ₂ S CONDITION 3: EXTREME DANGER TO LIFE AND HEALTH \rightarrow WARNING SIGN RED	
> 30 ppm H ₂ S concentration in air detected by location monitors: Extreme danger to life	
General Actions During Condition 3	
Sound H ₂ S alarm and/or display red flag.	
Account for on-site personnel	
Move away from H_2S source and get out of the affected area.	
Proceed to designated safe briefing area; alert other affected personnel.	
Account for personnel at safe briefing area.	
If trained and safe to do so undertake measures to control source H2S discharge and eliminate possible ignition sources. Initiate Emergency Shutdown procedures as deemed necessary to correct or control the specific situation.	D
Notify vehicles or situation and divert all traffic away from location.	
Permian Resources Peron-in-Charge will make appropriate community notifications.	
Red warning flag must be on display until the situation has been corrected and the Permian Resources Person-in-Charge determines it is safe to resume operations under Condition 1 .	
Notify management of the condition and action taken. If H ₂ S concentration is increasing and steps to correct the situation are not successful – or at any time if well control is questionable – alert all responsible parties for possible activation of the H ₂ S Contingency Plan. If well control at the surface is lost, determine if situation warrants igniting the well.	
If uncontrolled flow at the surface occurs, the Permian Resources PIC, with approval, if possible, from those coordinating the emergency (as specified in the site-specific H ₂ S Contingency Plan) are responsible for determining if the situation warrants igniting the flow of the uncontrolled well. This decision should be made only as a last resort and in a situation where it is obvious that human life is in danger and there is no hope of controlling the flow under prevailing conditions.	
If the flow is ignited, burning H ₂ S will be converted to sulfur dioxide (SO ₂), which is also highly toxic. Do not assume that area is safe after the flow is ignited. If the well is ignited, evacuation of the area is mandatory, because SO ₂ will remain in low-lying places under no-wind conditions.	
 Keep Site Supervisor / Permian Resources PIC informed. Notify applicable government agencies and local law enforcement (Appendix A) If off-site impact; notify any neighbors within the Radius of Exposure (ROE), see example in Figure 5-11. 	D
Continuously monitor H ₂ S until readings fall below 10 ppm.	
Evacuated area shall not be re-entered except by trained and authorized personnel utilizing appropriate respiratory protection; or until "all clear" sounded by Permian Resources PIC / Site Supervisor.	
IF ABOVE ACTIONS CANNOT BE ACCOMPLISHED IN TIME TO PREVENT EXPOSURE TO THE PUBLIC	

•

Eddy County, New Mexico

Alert public (directly or through appropriate government agencies) who may be subject to potentially harmful exposure levels.	
Make recommendations to public officials regarding blocking unauthorized access to the unsafe area and assist as appropriate.	
Make recommendations to public officials regarding evacuating the public and assist as appropriate.	D
Monitor ambient air in the area of exposure (after following abatement measures) to determine when it is safe for re-entry.	

Section 4.0 - Notification of H₂S Release Event

I. Local & State Law Enforcement

Prior to the planned / controlled release of a hazardous concentration of H_2S gas or any associated byproducts of the combustion of H_2S gas, notify local law enforcement agencies regarding the contents of this plan.

In the event of the discovery of an unplanned/uncontrolled release of a hazardous concentration of H₂S gas or any associated byproducts of combustion, immediately notify local and/or state law enforcement agencies of the situation and ask for their assistance.

II. General Public

In the event of a planned or unplanned release of a hazardous concentration of H₂S gas or any associated byproducts of combustion, notify local law enforcement agencies and ask for their assistance in alerting the general public and limiting access to any public roads that may be impacted by such a release.

III. New Mexico Oil Conservation Division

The Permian Resources HSE Department will make any applicable notification to the New Mexico OCD regarding any release of a hazardous concentration of H₂S Gas or any associated byproducts of combustion.

IV. New Mexico Environment Department

The Permian Resources HSE Department will make any applicable notifications to the NMED regarding any release of a hazardous concentration of H₂S gas or any associated byproducts of combustion.

V. Bureau of Land Management

The Permian Resources Regulatory Department will make any applicable notifications to the BLM regarding any release of a hazardous concentration of H₂S gas or any associated byproducts of combustion.

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Silver 29-28 Fed Com 111H, 112H,	
	121H, 122H, 131H, 132H	

Section 5.0 - Emergency Contact List

	EMERGENCY	CONTACT LIS		
Р	ERMIAN RESOUR	CES CORPORATI	ON.	
POSITION	NAME	OFFICE	CELL	ALT PHONE
	Oper	ations		
Operations Superintendent	Rick Lawson		432.530.3188	
TX Operations Superintendent	Josh Graham	432.940.3191	432.940.3191	a da ante en la companya da ante en la com Ante en la companya da ante en la companya
NM Operations SuperIntendent	Manual Mata	432.664.0278	575.408.0216	
Drilling Manager	Jason Fitzgerald	432.315.0146	318.347.3916	
Drilling Engineer	Ronny Hise	432.315.0144	432.770.4786	
Production Manager	Levi Harris	432,219.8568	720.261.4633	
SVP Development Ops	Clayton Smith	720.499.1416	361,215,2494	
SVP Production Ops	Casey McCain	432.695.4239	432.664.6140	
	· · · · · · · · · · · · · · · · · · ·	egulatory		
H&S Manager	Adam Hicks	720.499.2377	903.426.4556	
Regulatory Manager	Sarah Ferreyros	720.499.1454	720.854.9020	
Environmental Manager	Montgomery Floyd	432-315-0123	432-425-8321	
			1	
HSE Consultant	Blake Wisdom		918-323-2343	n ten papakan birt. Bilan
	Local, State, &	Federal Agend	cies	
Eddy County Sheriff		575-887-7551	and the second second	911
New Mexico State Highway Patrol	in the state part of the	505-757-2297	en e	911
Carlsbad Fire / EMS		575-885-3125		911
Carlsbad Memorial Hospital		575-887-4100		
Secorp – Safety Contractor	Ricky Stephens		(325)-262-0707	
New Mexico Oil Conservation Division – District 1 Office – Hobbs, NM.		575-393-6161		
New Mexico Environment Department – District III Office – Hobbs, NM		575-397-6910		
New Mexico Oll Conservation Division – Hobbs, NM	24 Hour Emergency	575-393-6161		
Bureau of Land Management – Carlsbad, NM		575-234-5972		
U.S. Fish & Wildlife		502-248-6911	1	Landare 1

Section 6.0 – Drilling Location Information

I. Site Safety Information

1. Safe Briefing Area

a. There shall be two areas that will be designated as "SAFE BRIEFING AREAS". If H₂S is detected in concentrations equal to or in excess of 10 ppm all personnel not assigned emergency duties are to assemble in the designated Safe Briefing area for instructions. These two areas shall be positioned in accessible locations to facilitate the availability of self-contained breathing air devices. The briefing areas shall be positioned no less than 250' from the wellhead and in such locations that at least one briefing area will be upwind from the well at all times.

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Silver 29-28 Fed Com 111H, 112H,	
	121H, 122H, 131H, 132H	

2. Wind Indicators

- a. 4 Windsocks will be installed at strategic points on the facility.
- 3. Danger Signs
 - a. A warning sign indicating the possible well conditions will be displayed at the location entrance.

DANGER POISONOUS GAS HYDROGEN SULFIDE DO NOT APPROACH IF AMBER LIGHTS ARE FLASHING

4. <u>H₂S Detectors and Alarms</u>

a. Continuous monitoring type H₂S detectors, capable of sensing a minimum of 5ppm H₂S in air will be located centrally located at the tanks, heater treater, and combustor. Continuous monitoring type SO₂ detector will also be located at the combustor. The automatic H₂S alarm/flashing light will be located at the site entrance and in front of tank battery.

5. Safety Trailer

a. A safety trailer equipped with an emergency cascade breathing air system with 2 ea. Work/escape packs, a stretcher, 2 OSHA approved full body harnesses, and a 20# Class ABC fire extinguisher shall be available at the site in close proximity to the safe briefing area. The cascade system shall be able to be deployed to the drill floor when needed to provide safe breathing air to the workers as needed.

6. Well Control Equipment

- a. The location shall have a flare line to a remote automatic ignitor and back up flare gun, placed 150' from the wellhead.
- b. The location shall be equipped with a remotely operated choke system and a mud gas separator.

7. Mud Program

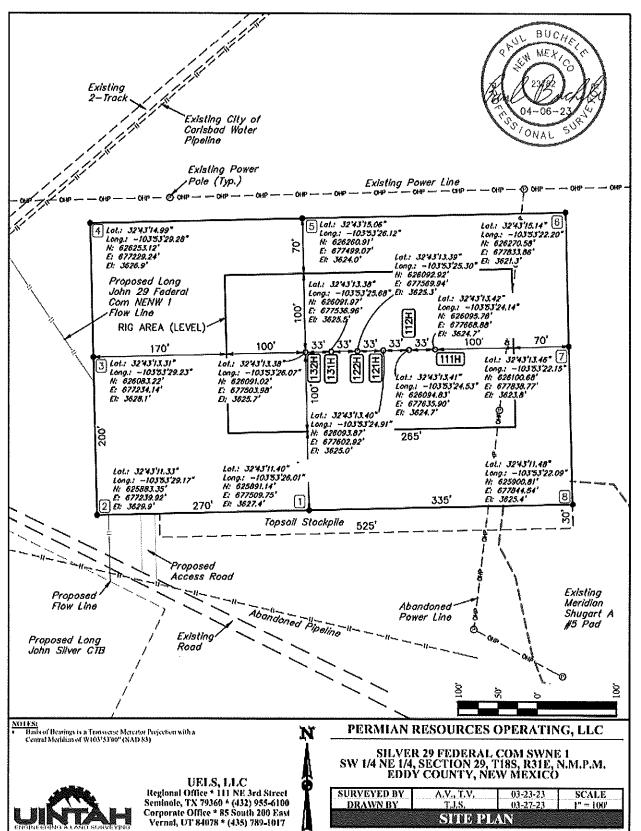
a. Company shall have a mud program that contains sufficient weight and additives to control $H_2S.$

8. <u>Metallurgy</u>

a. All drill strings, casing, tubing, wellhead, BOP, spools, kill lines, choke manifold and lines, and valves shall be suitable for anticipated H₂S volume and pressure.

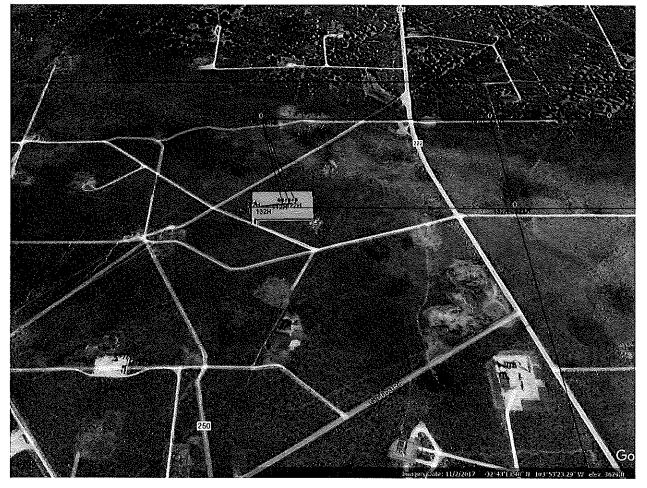
9. Communication

a. The location shall be equipped with a means of effective communication such as a cell phones, intercoms, satellite phones or landlines.


Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Silver 29-28 Fed Com 111H, 112H,	
	121H, 122H, 131H, 132H	

II. Directions to Location

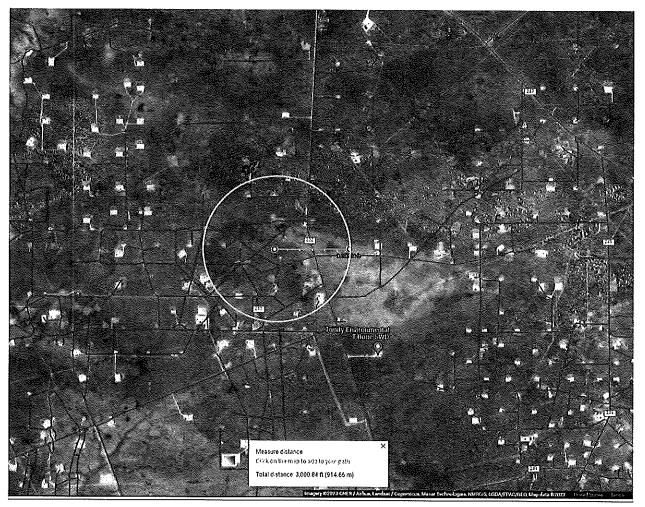
BEGINNING AT THE INTERSECTION OF MALJAMAR ROAD AND US HIGHWAY 82 IN MALJAMAR, NEW MEXICO, PROCEED IN A WESTERLY DIRECTION ALONG US HIGHWAY 82 APPROXIMATELY 8.0 MILES TO THE JUNCTION OF THIS ROAD AND SHUGART ROAD TO THE SOUTH; TURN LEFT AND PROCEED IN A SOUTHERLY DIRECTION APPROXIMATELY 6.6 MILES TO THE JUNCTION OF THIS ROAD AND AN EXISTING ROAD TO THE WEST; TURN RIGHT AND PROCEED IN AN WESTERLY DIRECTION APPROXIMATELY 0.3 MILES TO THE JUNCTION OF THIS ROAD AND AN EXISTING ROAD TO THE NORTH; TURN RIGHT AND PROCEED IN A NORTHERLY DIRECTION APPROXIMATELY 0.1 MILES TO THE BEGINNING OF THE PROPOSED ACCESS ROAD TO THE NORTH; FOLLOW ROAD FLAGS IN A NORTHERLY DIRECTION APPROXIMATELY 78' TO THE PROPOSED LOCATION. TOTAL DISTANCE FROM MALJAMAR, NEW MEXICO TO THE PROPOSED WELL LOCATION **IS APPROXIMATELY 15.0 MILES.**


Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Silver 29-28 Fed Com 111H, 112H,	
	121H, 122H, 131H, 132H	

Plat of Location

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Silver 29-28 Fed Com 111H, 112H,	
	121H, 122H, 131H, 132H	

1. Routes of Ingress & Egress (MAP)



2. Residences in proximity to the 3000' Radius of Exposure (ROE) (MAP)

There are no residences or public gathering places with the 3000' ROE, 100 PPM, 300 PPM, or 500 PPM ROE.

Permian Resources Corporation	H ₂ S Contingency Plan Silver 29-28 Fed Com 111H, 112H,	Eddy County, New Mexico
	121H, 122H, 131H, 132H	

Map of 3000' ROE Perimeter

100 PPM, 300 PPM, & 500 PPM Max ROE under worst case scenario

Enter H₂S in PPM	1500	
Enter Gas flow in mcf/day (maximum worst case conditions)	2500	
500 ppm radius of exposure (public,road)	<u>105</u>	feet
300 ppm radius of exposure	<u>146</u>	feet
100 ppm radius of exposure (public area)	<u>230</u>	feet

Location NAD 83 GPS Coordinates Lat: 32.720394, Long: 103.890039

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Silver 29-28 Fed Com 111H, 112H,	
	121H, 122H, 131H, 132H	

3. Public Roads in proximity of the Radius of Exposure (ROE)

There are no public roads that would be within the 500 PPM ROE. The closest public road is New Mexico Highway 222, which is 1450' from the location.

Section 7.0 – Hazard Communication

I. Physical Characteristics of Hydrogen Sulfide Gas

Hydrogen sulfide (H₂S) is a colorless, poisonous gas that is soluble in water. It can be present in crude oils, condensates, natural gas and wastewater streams.

 H_2S is heavier than air with a vapor density of 1.189 (air = 1.0); however, H_2S is most often mixed with other gases. These mixtures of H_2S and other gases can be heavier or lighter than air. If the H_2S -containing mixture is heavier, it can collect in low areas such as ditches, ravines, firewalls, and pits; in storage tanks; and in areas of poor ventilation. Please see physical properties in **Table 7.0**.

With H₂S the sense of smell is rapidly lost allowing lethal concentrations to be accumulated without warning. The toxicity of hydrogen sulfide at varying concentrations is indicated in the **Table 7.1**.

Warning: Do not use the mouth-to-mouth method if a victim ingested or inhaled hydrogen sulfide. Give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device.

Table 7.0. Physical Properties of H₂S

Properties of H2S			Description		
Vapor Density > 1 = 1.189 Air = 1	places and b	uild in conce	ntration.	can cause it to settle i associated with oil and	
Flammable Range 4.3%-46% 43000 ppm – 460000 ppm	}		mmable / explos ed by volume in	sive when these air.	

Although H₂S is primarily a respiratory hazard, it is also flammable and forms an explosive mixture at concentrations of 4.3%–46.0% (40,000ppm – 460,000 ppm) by volume in air.

H₂S can be encountered when:

- Venting and draining equipment.
- Opening equipment (separators, pumps, and tanks).
- Opening piping connections ("line breaking").
- Gauging and sampling storage tanks.
- Entering confined spaces.
- Working around wastewater pits, skimmers, and treatment facilities.
- II. Human Health Hazards Toxicological Information

121H, 122H, 131H, 132H

Table 7.1. Hazards & Toxicity

Concentration	Symptoms/Effects
(ppm)	
0.00011-0.00033 ppm	Typical background concentrations
0.01-1.5 ppm	Odor threshold (when rotten egg smell is first noticeable to some). Odor becomes more offensive at 3-5 ppm. Above 30 ppm, odor described as sweet or sickeningly sweet.
2-5 ppm 20 ppm	Prolonged exposure may cause nausea, tearing of the eyes, headaches or loss of sleep. Airway problems (bronchial constriction) in some asthma patients. Possible fatigue, loss of appetite, headache, irritability, poor memory, dizziness.
50-100 ppm	Slight conjunctivitis ("gas eye") and respiratory tract irritation after 1 hour. May cause digestive upset and loss of appetite.
10D ppm	Coughing, eye irritation, loss of smell after 2-15 minutes (olfactory fatigue). Altered breathing, drowsiness after 15-30 minutes. Throat irritation after 1 hour. Gradual increase in severity of symptoms over several hours. Death may occur after 48 hours.
100-150 ppm	Loss of smell (olfactory fatigue or paralysis).
200-300 ppm	Marked conjunctivitis and respiratory tract irritation after 1 hour. Pulmonary edema may occur from prolonged exposure.
500-700 ppm	Staggering, collapse in 5 minutes. Serious damage to the eyes in 30 minutes. Death after 30-60 minutes.
700-1000 ppm	Rapid unconsciousness, "knockdown" or immediate collapse within 1 to 2 breaths, breathing stops, death within minutes.
1000-2000 ppm	Nearly instant death

111. **Environmental Hazards**

H₂S and its associated byproducts from combustion presents a serious environmental hazard. Sulphur Dioxide SO₂ is produced as a constituent of flaring H₂S Gas and can present hazards associated, which are

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Silver 29-28 Fed Com 111H, 112H,	
	121H, 122H, 131H, 132H	

similar to H_2S . Although SO_2 is heavier than air, it will be picked up by a breeze and carried downwind at elevated temperatures. Since Sulfur Dioxide is extremely irritating to the eyes and mucous membranes of the upper respiratory tract, it has exceptionally good warning powers in this respect. The following table indicates the toxic nature of the gas. Please see the attached SDS in Appendix B for reference.

	SULFUR DIOXIDE TOXICITY		
Concentration		Effects	
%SO2	PPM		
0.0005	3 to 5	Pungent odor-normally a person can detect SO_2 in this range.	
0.0012	12	Throat irritation, coughing, and constriction of the chest tearing and smarting of eyes.	
0.15	150	So irritating that it can only be endured for a few minutes.	
0.05	500	Causes a sense of suffocation, even with first breath.	

Section 8.0 - Regulatory Information

- I. OSHA & NIOSH Information
- II. Table 8.0. OSHA & NIOSH H₂S Information

PEL, IDLH, TLV	Description
NIOSH PEL 10 PPM	 PEL Is the Permissible Exposure Limit that an employee may be exposed up to 8 hr / day.
OSHA General Industry Ceiling PEL – 20 PPM	The maximum exposure limit, which cannot be exceeded for any length of time.
IDLH 100 PPM	Immediately Dangerous to Life and Health
Permian Resources PEL 10 PPM	 Permian Resources Policy Regarding H2S for employee safety

III. New Mexico OCD & BLM – H₂S Concentration Threshold Requirements

New Mexico NMAC 19.15.11 and Onshore Order #6 identify two Radii of Exposure (ROE) that identify potential danger to the public and require additional compliance measures. Permian Resources is required to install safety devices, establish safety procedures and develop a written H₂S contingency plan for sites where the H₂S concentrations are as follows.

Table 8.1. Calculating	g H₂S	Radius	of	Exposure
------------------------	-------	--------	----	----------

H₂S Radius of Exposure	Description	Control and Equipment Requirements
100 ppm	Distance from a release to where the H ₂ S concentration in the air will dilute below 100ppm	ROE > 50-ft and includes any part of a "public area" (residence, school, business, etc., or any area that can be expected to be populated).

Permian Resources Corporation	H₂S Contingency Plan Silver 29-28 Fed Com 111H, 112H,	Eddy County, New Mexico
	121H, 122H, 131H, 132H	

		ROE > 3,000-ft
500 ppm	Distance from a release to where the H ₂ S concentration in the air will dilute below 500ppm	ROE > 50-ft and includes any part of a public road (public roads are tax supported roads or any road used for public access or use)

Calculating H₂S Radius of Exposure

The ROE of an H₂S release is calculated to determine if a potentially hazardous volume of H₂S gas at 100 or 500 parts per million (ppm) is within a regulated distance requiring further action. If information about the concentration of H₂S and the potential gas release volume is known, the location of the Muster Areas will be set, and safety measures will be implemented based on the calculated radius of exposure (ROE). NMAC 19.15.11 – Hydrogen Sulfide Safety defines the ROE as the radius constructed with the gas's point of escape as its center and its length calculated by the following Pasquill-Gifford equations:

To determine the extent of the **<u>100 ppm ROE</u>**:

 $x = [(1.589) \text{ (mole fraction H}_2S)(Q)]^{(.6258)}$.

To determine the extent of the 500 ppm ROE:

 $x = [(0.4546) \text{ (mole fraction H}_2S)(Q)]^{(.6258)}$.

Table 8.2. Calculating H2S Radius of Exposure

ROE Variable	Description
X =	ROE in feet
Q =	Max volume of gas released determined to be released in cubic feet per day (ft ³ /d) normalized to standard temperature and pressure, 60°F and 14.65 psia
Mole fraction H ₂ S =	Mole fraction of H ₂ S in the gaseous mixture released.

The volume used as the escape rate in determining the ROE is specified in the rule as follows:

- The maximum daily volume rate of gas containing H₂S handled by that system element for which the ROE is calculated.
- For existing gas wells, the current adjusted open-flow rate, or the operator's estimate of the well's capacity to flow against zero back-pressure at the wellhead.

New Mexico Oil Conservation Division & BLM Site Requirements under NMAC 19.15.11 & Onshore Order #6

 Two cleared areas will be designated as Safe Briefing Areas. During an emergency, personnel will assemble in one of these areas for instructions from the Permian Resources Person-in-Charge. Prevailing wind direction should be considered in locating the briefing areas 200' or more on either side of the well head. One area should offset the other at an angle of 45° to 90° with respect to prevailing wind direction to allow for wind shifts during the work period.

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Silver 29-28 Fed Com 111H, 112H,	
	121H, 122H, 131H, 132H	

- In the event of either an intentional or accidental releases of hydrogen sulfide, safeguards to protect the general public from the harmful effects of hydrogen sulfide must be in place for operations. A summary of the provisions in each of three H₂S ROE cases is included in **Table 8.3**.
 - CASE 1 -100 ppm ROE < 50'
 - CASE 2 100 ppm ROE is 50' or greater, but < 3000' and does not penetrate public area.
 - CASE 3 -100 ppm ROE is 50' or greater and penetrates a public area or 500 ppm ROE includes a public road. Also if 100 ppm ROE > 3000' regardless of public area.

NMAC 19.15.11 & BLM COMPLIANCE REQUIREMENTS	S - DRILLI	ING & PRO	DUCTION
PROVISION	CASE 1	CASE 2	CASE 3
H ₂ S Concentration Test	x	Х	X
H-9	X	Х	X
Training	x	Х	x
District Office Notification	X	Х	X
Drill Stem Tests Restricted	X*	X*	X
BOP Test	X*	X*	X
Materials		Х	X
Warning and Marker	_	Х	X
Security		x	X
Contingency Plan			X
Control and Equipment Safety			X
Monitors		X**	X**
Mud (ph Control or Scavenger)			X*
Wind Indicators		X**	X
Protective Breathing Equipment		X**	X
Choke Manifold, Secondary Remote Control, and Mud-Gas Separator			X
Flare Stacks			X*

Section 9.0 - Training Requirements

Training

The following elements are considered a minimum level of training for personnel assigned to operations who may encounter H_2S as part of routine or maintenance work.

- The hazards, characteristics, and properties of hydrogen sulfide (H₂S) and (SO₂).
- Sources of H₂S and SO₂.
- Proper use of H₂S and SO₂ detection methods used at the workplace.
- Recognition of, and proper response to, the warning signals initiated by H₂S and SO₂ detection systems in use at the workplace.
- Symptoms of H₂S exposure; symptoms of SO₂ exposure
- Rescue techniques and first aid to victims of H₂S and SO₂ exposure.
- Proper use and maintenance of breathing equipment for working in H₂S and SO₂ atmospheres, as appropriate theory and hands-on practice, with demonstrated proficiency (29 *CFR* Part 1910.134).

		Eddy County, New Mexico
Sil	lver 29-28 Fed Com 111H, 112H,	
	121H, 122H, 131H, 132H	

- Workplace practices and relevant maintenance procedures that have been established to protect personnel from the hazards of H₂S and SO₂.
- Wind direction awareness and routes of egress.
- Confined space and enclosed facility entry procedures (if applicable).
- Emergency response procedures that have been developed for the facility or operations.
- Locations and use of safety equipment.
- Locations of safe briefing areas.

Refresher training will be conducted annually.

Section 10.0 - Personal Protective Equipment

I. Personal H₂S Monitors

All personnel engaged in planned or unplanned work activity to mitigate the release of a hazardous concentration of H₂S shall have on their person a personal H2S monitor.

- II. Fixed H₂S Detection and Alarms
 - 4 channel H₂S monitor
 - 4 wireless H₂S monitors
 - H₂S alarm system (Audible/Red strobe)
 - Personal gas monitor for each person on location
 - Gas sample tubes
 - Flame Resistant Clothing

All personnel engaged in planned or unplanned work activity associated with this Plan shall have on the appropriate level of FRC clothing.

IV. <u>Respiratory Protection</u>

111.

The following respiratory protection equipment shall be available at each drilling location.

- Working cascade system available on rig floor and pit system & 750' of air line hose
- Four (4) breathing air manifolds
- Four (4) 30-minute rescue packs
- Five (5) work/Escape units
- Five (5) escape units
- One (1) filler hose for the work/escape/rescue units

Supplied air (airline or SCBA) respiratory protection against hydrogen sulfide exposure is required in the following situations:

- When routine or maintenance work tasks involve exposure to H₂S concentrations of 10 ppm or greater.
- When a fixed location area monitor alarms, and re-entry to the work area is required to complete a job.
- When confined spaces are to be entered without knowledge of H₂S levels present, or if initial measurements are to be taken of H₂S levels.
- During rescue of employees suspected of H₂S overexposure.
- For specific tasks identified with significant exposure potential and outlined in local program guidelines.

Permian Resources Corporation	H₂S Contingency Plan	Eddy County, New Mexico
	Silver 29-28 Fed Com 111H, 112H,	
	121H, 122H, 131H, 132H	

- All respiratory equipment for hydrogen sulfide must be of the supplied-air type, equipped with pressure-demand regulators and operated in the pressure-demand mode only. This is the only type of respiratory protection recommended for hydrogen sulfide application. Equipment should be approved by NIOSH/MSHA or other recognized national authority as required. If airline units are used, a five-minute egress bottle should also be carried.
- Gas masks or other air-purifying respirators MUST NEVER BE USED FOR HYDROGEN SULFIDE due to the poor warning properties of the gas.
- Use of respiratory protection should be accompanied by a written respiratory protection program.

Appendix A H₂S SDS

		H₂S Contingency Plar Silver 29-28 Fed Com 111H, 121H, 122H, 131H, 132	, 112H,
1111	APRAXA	Hydrogen sulfide Safety Data Sheet E-4611 according to the Hazardous Products Regulation (February Date of Issue: 10-15-1979 Revision date: 08-10-201	
	en 14 Identificati		
Product		: Substance	na e sena na provinska na predsta predsta pr Na sena na predsta na predsta pr
Name	0.111	: Hydrogen sulfide	
CAS No		: 7783-06-4	
Formula		: H2S	
Product	ans of Identification	: Hydrogen sullide : Core Products	
	Recommended use ended uses and restric	and restrictions on use this transformed and the second structure to the secon	ooloo ahaa ka waxaa ka k
Praxalr C 1200 1 Mississa	canada Inc. City Centra Drive uga - Canada L6B 1M 803-1600 - F 1-905-80		ala non ta nana sola ing ang panalan ng anting at ting ta kang ta ng panalan ng pang pang pang pang pang pang p T
	Emergency telepho cy number	te number : 1-800-363-0042 Call emergency number 24 hours a day involving this product, For rouline information, contact your sup	r only for spills, leaks, fire, exposure, or accidents
Emergen	cy number	: 1-800-363-0042 Call emergency number 24 hours a day involving this product. For routine information, contect your su	r only for spills, leaks, fire, exposure, or accidents
Emergen S IM I	cy number 911 24 Hazardi ide	: 1-800-363-0042 Call emergency number 24 hours a day involving this product. For routine information, contect your su	r only for spills, leaks, fire, exposure, or accidents pplier or Praxair sales representative.
Emergen SECAL 2.1.	cy number 911 24 Hazardi ide	: 1-800-363-0042 Call emergency number 24 hours a day involving this product. For routine information, contact your sup httfication	r only for spills, leaks, fire, exposure, or accidents pplier or Praxair sales representative.
Emergen SECHI 2.1. GHS·CA Flam. Ga	cy number ON 24 Hazard Clef Classification of the classification s 1	: 1-800-363-0042 Call emergency number 24 hours a day Involving this product. For routine information, contact your sup http://catton substance or mixture	r only for spills, leaks, fire, exposure, or accidents pplier or Praxair sales representative.
Emergen 2.1. GHS-CA Flam. Ga Liquellad Acute To	cy number ONEXELEXANCE des Classification of the classification s 1 gas x. 2 (Inhalation: gas)	: 1-800-363-0042 Call emergency number 24 hours a day Involving this product. For routing information, contact your sup nufficiation substance or mixture H220 H280 H330	r only for spills, leaks, fire, exposure, or accidents pplier or Praxair sales representative.
Emergen 2.1. GHS-CA Flam, Ga Llquelad Acute To STOT Sf	cy number ONEXELEXANCERCE Classification of the classification s 1 gas x, 2 (Inhelation: gas) 3	: 1-800-363-0042 Call emergency number 24 hours a day Involving this product. For routine information, contect your sup httification substance or mixture H220 H330 H335	r only for spills, leaks, fire, exposure, or accidents pplier or Praxair sales representative.
Emergen 2.1. GHS-CA Flam, Ga Liquella Acute To STOT SE 2.2.	cy number ONEXELEXANCERCE Classification of the classification s 1 gas x, 2 (Inhelation: gas) 3	: 1-800-363-0042 Call emergency number 24 hours a day Involving this product. For routing information, contact your sup nufficiation substance or mixture H220 H280 H330	r only for spills, leaks, fire, exposure, or accidents pplier or Praxair sales representative.
Emergen 2.1. GHS-CA Flam, Ga Liquella Acute To STOT SE 2.2.	cy number ONEXELEXATCH dig Classification of the classification s 1 gas x, 2 (Inhalation: gas) 3 GHS Label elemente	: 1-800-363-0042 Call emergency number 24 hours a day Involving this product. For routine information, contect your sup httification substance or mixture H220 H330 H335	r only for spills, leaks, fire, exposure, or accidents pplier or Praxair sales representative.
Emergen 2.1, GHS-CA Flam, Ga Llquela Acute To STOT SE 2.2, GHS-CA	cy number ONEXELEXATCH dig Classification of the classification s 1 gas x, 2 (Inhalation: gas) 3 GHS Label elemente	: 1-800-363-0042 Call emergency number 24 hours a day Involving this product. For routine information, contect your sup httification substance or mixture H220 H330 H335	r only for spills, leaks, fire, exposure, or accidents pplier or Praxair sales representative.
Emergen 2.1, GHS-CA Flam, Ga Llquellad Acute To STOT SE 2.2, GHS-CA	cy number ONEXELEXANCERCE Classification of the classification s 1 gas X. 2 (Inhelation: gas) CHS Labet elements labelling ictograms	 : 1-800-363-0042 Call emergency number 24 hours a day involving this product. For routing information, contact your sup substance or mixture H220 H220 H330 H335 : Including precautionary statements : Coord of the statements 	r only for spills, leaks, fire, exposure, or accidents pplier or Praxair sales representative.
Emergen 2.1. GHS-CA Flam, Ga LiqueNed Acute To STOT SE 2.2. GHS-CA Hazard p Signal wo	cy number ONEXELEXANCERCE Classification of the classification s 1 gas X. 2 (Inhelation: gas) CHS Labet elements labelling ictograms	 : 1-600-363-0042 Call emergency number 24 hours a day involving this product. For routine information, contect your sup attification Substance or mixture H220 H260 H330 H335 : Including precautionary statements : Official offi	r only for spills, leaks, fire, exposure, or accidents pplier or Praxair sales representative.
Emergen 2.1. GHS-CA Flam, Ga Llquella 3TOT Sf 2.2. GHS-CA Hazard p Signal wo Hazard s	cy number ONEXELEXANCECCE Classification of the classification s 1 gas x. 2 (Inhelation: gas) 3 GHS Label elements labelling iclograms	 : 1-800-363-0042 Call emergency number 24 hours a day hydving this product. For routine information, contect your sup substance or mixture H220 H280 H330 H335 including precautionary statements including precautionary	r only for spills, loaks, fire, exposure, or accidents ppiler or Praxair sales representative.

n Resources Corporation	Silver 29-28	Contingency I 3 Fed Com 11 122H, 131H,	1H, 112H,	Eddy County, New Mexico
PRAXAIR	Hydrogen su Safety Data Shee according to the Hazardous Pi Date of Issue: 10-15-1970	t E-4611		15; 10-15-2013
	Avoid release Wear protection Leaking gas fi In case of lead Store locked L Dispose of con Protect from s Close valve af Do not open v When returnin	only outdoors or in a to the environment re gloves, protective re: Do not extinguish kage, eliminate all igup ntents/container in a unlight when ambler ter each use and wh alve until connected	, unless leak can be si lition sources cordance with contain t temperature exceeds en empty to equipment prepared k tight valve outlet cap	er Supplier/owner Instructions 52°C (125°F) I for use
2.3. Other hazards Other hazards not contributing to the classification 2.4. Unknown acute toxicity (GH No data available	: Contact with I	quid may cause cold	burns/frostbite.	nan an
SECTION 3: Composition/info 3.1. Substances	mation on ingredie	nts		
Name Hydrogen sullide (Main constituent)	CAS No. (CAS No) 7783-06-4	% (Vol.) 100	Common Name (s Hydrogen sulfide (H2	i ynönyms) 3) / Hydrogen sulphide / Sulfur hydride / Dihydrogen sulphide / Hydrogensulfide
3.2. Mixtures		ikantaan karata		
			10711170072711979744651441498-0469209900-0444	
SECTION 4% Sinsteald measure 4.1. Description of first aid meas				
First-aid measures after inhalation	: Remove to fre			iable for breathing. If not breathing, recnnel should give oxygen. Call a
First-ald measures after skin contact	warm water no skin. Maintain returned to the	ot to exceed 105°F (4 skin warming for at affected area, in ca	1°C). Water temperat least 15 minutes or un	nediately warm frostbile area with ure should be tolerable to normal ill normal coloring and sensation have e, remove clothing while showering as scon as possible
First-ald measures after eye contact	: Immediately fit away from the	ish eyes thoroughly	with water for at least	15 minutes. Hold the eyellds open and shed thoroughly. Contact an
First-ald measures after ingestion	: Ingestion is no	t considered a poter	tial route of exposure,	
4.2. Most important symptoms an No additional information available	nd effects (acute and del	ayed)		
4.3. Immediate medical attention Other medical advice or treatment		•		traditional distribution and the state of th
SECTION 5: Fire-fighting meas 5.1. Suitable extinguishing media				
Suitable extinguishing media		a, Dry chemical, Wat		tlingulshing media appropriate for
5.2, Unsuitable extinguishing me No additional information available	dia Ministrikishikishikishiki	andy to the static base of the base of		

•

Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
•	Silver 29-28 Fed Com 111H, 112H,	Eddy county, new mexico
	121H, 122H, 131H, 132H	
i i i i i i i i i i i i i i i i i i i	Hydrogen sulfide Safety Data Sheet E-4611 according to the Hazardous Products Regulation (February 11, 2015)	
	Dale of issue: 10-15-1979 Revision dale: 08-10-2016 Supersedes	: 10-16-2013
5.3. Specific hazards arising fr Fire hazard	om the hazardous product : EXTREMELY FLAMMABLE GAS. If venting or leaking ga flames. Flammable vapors may spread from leak, creating Vapors can be ignited by pilot lights, other flames, smoking equipment, static discharge, or other ignition sources at loo point. Explosive atmospheres may linger. Before entering i check the atmosphere with an appropriate device.	s catches fire, do not extinguish an explosive reignition hazerd. g, sparks, heaters, electrical actions distant from product handling
Explosion hazard	: EXTREMELY FLAMMABLE GAS, Forms explosive mixtu	
Reactivity Reactivity in case of fire	No reactivity hazard other than the effects described in sul No reactivity hazard other than the effects described in sul	
5.4. Special protective equipme Firefighting instructions	ent and precautions for fire-fighters : DANGERt Toxic, flammable liquefied gas	
	Evacuate all personnel from the danger area. Use self-con and protective clothing, immediately cool containers with w flow of gas if safe to do so, while continuing cooling water safe to do so. Remove conteiners from area of fire if safe t comply with their provincial and local fire code regulations.	rater from maximum distance. Stop spray. Remove Ignition sources if o do so. On-site fire brigades must
Special protective equipment for fire fig	hters : Standard protective clothing and equipment (Self Containe fighters.	d Breathing Apparatus) for fire
Other Information	: Containers are equipped with a pressure relief device. (Ex- by TC.).	ceptions may exist where authorized
SECTION 6: Accidental release	se measures	
6.1. Personal precautions, prot General measures	ective equipment and emergency procedures : DANGERI Toxic, flammable liquefied gas. Forms explo- agents. Immediately evacuate all personnel from danger a apparatus where needed. Remove all sources of Ignition If fog or fine water spray, taking care not to spread liquid with Ventilate area or move container to a well-ventilated area. leak and could explode if reignited by sparks or flames. Ex Before entering area, especially confined areas, check atm	sive mixtures with air and oxidizing rea. Use self-contained breathing safe to do so. Reduce vapors with I water. Shut off flow if safe to do so. Flammable vapors may spread from plosive atmospheres may linger.
6.2 Methods and materials for Methods for cleaning up	containment and cleaning up : Try to stop release, Reduce vapour with fog or line water s contaminating the surrounding environment. Prevent soil a contents/container in accordance with local/regional/nation supplier for any special requirements.	pray. Prevent waste from ind water politifico. Discose of
	s on 8: Exposure controls/personal protection	hanalahlananan antong kungu
SECTION 7: Handling and sto		
7.1. Precautions for safe handli Precautions for safe handling	ng : Leak-check system with soapy water; never use a flame	
	All piped systems and associated equipment must be ground	nded
	Keep away from heat, hot surfaces, sparks, open flames a smoking. Use only non-sparking tools. Use only explosion	nd other ignition sources, No -proof equipment
	Wear leather safety gloves and safety shoes when handling physical damage; do not drag, roll, slide or drop. While mo removable valve cover. Never attempt to lift a cylinder by protect the valve. When moving cylinders, even for short d truck, etc.) designed to transport cylinders. Never insert an bar) into cap openings; doing so may damage the valve an strap wrench to remove over-tight or rusted caps. Slowly o open, discontinue use and contact your supplier. Close the keep closed even when empty. Never apply flame or local container. High temperatures may damage the container a device to fall prematurely, venting the container contents. I product, see section 16.	ving cylinder, always keep in place its cap; the cap is intended solely to Istances, use a cart (trolley, hand object (e.g. wrench, screwdriver, pry d cause a leak. Use an adjustable pen the valve. If the valve is hard to container valve after each use; zed heat directly to any part of the nd could cause the pressure relief
This document is only controlled while on	the Praxeir Canada Inc. websile and a copy of this controlled version is available for racy of any version of this document after it has been downloaded or removed from	or download. Prexair cannot assure the

Released to Imaging: 7/12/2024 8:51:05 AM

H₂S Contingency Plan
Silver 29-28 Fed Com 111H, 112H,
121H, 122H, 131H, 132H

Hydrogen sulfide

Safety Data Sheet E-4611 according to the Hazardous Products Regulation (February 11, 2015) Date of Issue: 10-15-1979

Revision date: 08-10-2016 Supersedes: 10-15-2013

7.2. Conditions for sale storage, including any incompatibilities

Storage conditions

Store only where temperature will not exceed 125°F (52°C). Post "No Smoking/No Open Flames" signs in storage and use areas. There must be no sources of ignition. Separate packages and protect against potential fire and/or explosion damage following appropriate codes and requirements (e.g. NFPA 30, NFPA 55, NFPA 70, and/or NFPA 221 in the U.S.) or according to requirements determined by the Authority Having Jurisdiction (AHJ). Always secure containers upright to keep them from falling or being knocked over. Install valve protection cap, if provided, firmly in place by hand when the container is not in use. Store full and empty containers separately. Use a first-in, first-out inventory system to prevent storing full containers for long periods. For other precautions in using this product, see section 16

OTHER PRECAUTIONS FOR HANDLING, STORAGE, AND USE: When handling product under pressure, use piping and equipment adequately designed to withstand the pressures to be encountered. Never work on a pressurized system. Use a back flow preventive device in the ploing. Gases can cause rapid sufficial to because of oxygen deficiency; store and use with adequate ventilation. If a leak occurs, close the container valve and blow down the system in a safe and environmentally correct manner in compliance with all international, federal/national, state/provincial, and local laws; then repair the leak. Never place a container where it may become part of an electrical circuit,

SECTION 84 Expo	sure controls/personal protection		
8.1. Control parar	neters		1
Hydrogen sulfide (77	93-06-4)		******
USA - ACGIH	ACGIH TLV-TWA (ppm)	1 ppm	1
LISA - ACOLH	ACGIH T(V-STEL (nom)	É num	ŧ.,

USA - ACGIH	ACGIH TLV-TWA (ppm)	1 ppm
USA - ACGIH	ACGIH TLV-STEL (ppm)	6 ppm
USA - OSHA	OSHA PEL (Celling) (ppm)	20 ppm
Canada (Quebec)	VECD (mg/m ³)	21 mg/m ³
Canada (Quebec)	VECD (ppm)	15 ppm
Canada (Quebec)	VEMP (mg/m³)	14 mg/m²
Canada (Quebec)	VEMP (ppm)	10 ppm
Alberta	OEL Celling (mg/m ³)	21 mg/m³
Alberta	OEL Celling (ppm)	15 ppm
Alberta	OEL TWA (mg/m²)	14 mg/m²
Alberta	OEL TWA (ppm)	10 ppm
British Columbia	OEL Ceiling (ppm)	10 ppm
Manitoba	OEL STEL (ppm)	5 ppm
Manitoba	OEL TWA (ppm)	1 ppm
New Brunswick	OEL STEL (mg/m³)	21 mg/m³
New Brunswick	OEL STEL (ppm)	15 ppm
New Brunswick	OEL TWA (mg/m³)	14 mg/m³
New Brunswick	OEL TWA (ppm)	10 ppm
New Foundland & Labrador	OEL STEL (ppm)	5 ppm
New Foundland & Labrador	OEL TWA (ppm)	1 ppm
Nova Scotla	OEL STEL (ppm)	5 ppm
Nova Scotla	OEL TWA (ppm)	1 ppm
Nunavut	OEL Celling (mg/m ¹)	28 mg/m³
Nunavul	OEL Celling (ppm)	20 ppm
Nunavul	OEL STEL (mg/m²)	21 mg/m³
Nunavut	OEL STEL (ppm)	15 ppm
Nunavut	OEL TWA (mg/m³)	14 mg/m³
Nunavut	OEL TWA (ppm)	10 ppm
Northwest Territories	OEL STEL (ppm)	15 ppm

This document is only controlled while on the Prexeir Canada inc. website and a copy of this controlled version is available for download. Prexeir cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

4/9

H₂S Contingency Plan Silver 29-28 Fed Com 111H, 112H, 121H, 122H, 131H, 132H

Hydrogen sulfide

PRAXAIR S

Safety Data Sheet E-4611 according to the Hazardous Products Regulation (February 11, 2015) Date of Issue: 10-15-1979 Revision date; 08-10-2016 Supersedos: 10-15-2013

Hydrogen sulfide (7783-0)6-4)	
Northwest Territories	OEL TWA (ppm)	10 ppm
Ontario	OEL STEL (ppm)	15 ррл
Ontario	OEL TWA (ppm)	10 ppm
Prince Edward Island	OEL STEL (ppm)	6 ppm
Prince Edward Island	OEL TWA (ppm)	1 ppm
Québec	VECD (mg/m³)	21 mg/m³
Québec	VECD (ppm)	15 ppm
Québec	VEMP (mg/m ³)	14 mg/m³
Québec	VEMP (ppm)	10 ppm
Saskalchewan	OEL STEL (ppm)	15 ppm
Saskalchewan	OEL TWA (ppm)	10 ppm
Yukon	OEL STEL (mg/m³)	27 mg/m ³
Yukon	OEL STEL (ppm)	15 ppm
Yukon	OEL TWA (mg/m ³)	15 mg/m³
Yukon	OEL TWA (ppm)	10 ppm

Appropriate engineering controls

: Use corrosion-resistant equipment. Use an explosion-proof local exhaust system. Local exhaust and general ventilation must be adequate to meet exposure standards. MECHANICAL (GENERAL): Inadequate - Use only in a closed system. Use explosion proof equipment and lighting.

8.3. Methodividual protection measures/Personal protective equipment Methodistant Met

Personal protective equipment	: Safety glasses. Face shield. Gloves.
Hand protection	: Wear work gloves when handling conteiners. Wear heavy rubber gloves where contact with product may occur.
Eye protection	Wear goggles and a face shield when transfilling or breaking transfer connections, Setect in accordance with the current CSA standard 294.3, "Industrial Eye and Face Protection", and any provincial regulations, local bylaws or guidelines.
Respiratory protection	Respiratory protection: Use respirable fume respirator or air supplied respirator when working in confined space or where local exhaust or ventilation does not keep exposure below TLV. Select in accordance with provincial regulations, local bylaws or guidelines. Selection should be based on the current CSA standard 294.4, "Selection, Care, and Use of Respirators," Respirators should also be approved by NIOSH and MSHA. For emergencies or instances with unknown exposure levels, use a self-contained breathing apparatus (SCBA).
Thermal hazard protection	: Wear cold insulating gloves when transfilling or breaking transfer connections. Standard EN 511 - Cold insulating gloves.
Other Information	: Other protection : Safety shoes for general handling at customer sites. Metatarsal shoes and cuffless trousers for cylinder handling at packaging and filling plants. Select in accordance with the current CSA standard Z195, "Protective Foot Wear", and any provincial regulations, local bylaws or guidelines. For working with flammable and oxidizing materials, consider the use of flame resistant anti-static safety clothing.
SECTION 9: Physical and che	mical properties
9.1. Information on basic physic	al and chemical properties
Physical state	: Gas
Annéarance	2. Coloriese das Coloriese ilquid et lou temperature or under bish pressure

Physical state	; 685
Appearance	: Coloriess gas. Coloriess ilquid at low temperature or under high pressure.
Molecular mass	: 34 g/mol
Colour	: Colouriess.
Odour	: Odour can persist. Poor warning properties at low concentrations. Rotten eggs,
Odour threshold	: Odour threshold is subjective and inadequate to warn of overexposure.

This document is only controlled while on the Praxeir Canada Inc. website and a copy of this controlled version is available for download. Praxeir cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

5/9

ermian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
	Silver 29-28 Fed Com 111H, 112H,	,,,,
	121H, 122H, 131H, 132H	
PRAXAIR Safe	chrogen sulfide ety Data Sheet E-4611 ing to the Hazardous Products Regulation (February 11, 2016) (Issue: 10-15-1979 Revision date: 08-10-2016 Supersedes : Not applicable. : Not applicable. : Not applicable. : -86 °C : -86 °C : -80.3 °C : Not applicable. : 100.4 °C : 260 °C : No data available : No data available : 100.4 °C : 260 °C : No data available : No data available : 100.4 °C : 260 °C : No data available : No data available : 806 kPa : No data available : 8940 kPa	: 10-15-2013
Relative vapour density at 20 °C Relative density Relative density of saturated gas/air mixture Density Relative gas density Solubility Log Pow Log Kow Viscosity, kinematic Viscosity, kinematic Viscosity, kinematic (calculated value) (40 °C) Explosive properties Oxidizing properties Flammability (solid, gas)	 badu kPa >= No data avallable No data avallable No data avallable No data avallable 1.2 Water: 3980 mg/l Not applicable. None. 4.3 - 46 vol % 	1
SECTION 10: Stability and reactivit	ground level	
	 No reactivity hazard other than the effects described in sut Stable under normal conditions, May react violently with oxidants. Can form explosive mixtu: Avoid moisture in installation systems. Keep away from here – No smoking. Ammonia, Bases, Bromine pentafluoride, Chlorine trifluorid Copper, (powdered), Fluorine, Lead, Lead oxide, Mercury, nitrogen sulfide, Organic compounds, Oxidizing agents. Ox (and moisture), Water. 	-sections below, ire with air, aVsparks/open flames/hot surfaces, e. chromium trioxide, (and heat), Nitric acid, Nitrogen trifluoride,
Hazardous decomposition products	(and moisture), water. : Thermal decomposition may produce : Sulfur, Hydrogen,	
SECTION 11: Toxicological information	ation	
11.1. Information on toxicological effect	<mark>is</mark> the first first of the solution of the first first first first of the solution of the star	
Acute toxicity (oral) Acute toxicity (dermal)	: Not classified : Not classified	
This document is only controlled while on the Prax	alr Canada Inc. website and a copy of this controlled version is available f	or download. Prexair cannol assure the a our website.

H₂S Contingency Plan Silver 29-28 Fed Com 111H, 112H, 121H, 122H, 131H, 132H

Hydrogen sulfide Safety Data Sheet E-461

Safety Data Sheet E-4611 according to the Hazardous Products Regulation (February 11, 2015) Date of Issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

; Inhalation:gas: FATAL IF INHALED.
0.99 mg/l (Exposure time: 1 h)
356 ppm/4h
356.0000000 ppmv/4h
0.99000000 mg/l/4h
0.99000000 mg/l/4h
pH: Not applicable, : Not classified pH: Not applicable,
: Not classified
: MAY CAUSE RESPIRATORY IRRITATION.

Specific target organ toxicity (repeated exposure)

Aspiration hazard

: Not classified

: Not classified

DXIC TO AQUATIC LIFE. g/l (Exposure lime: 96 h - Species: Lepomis macrochirus (flow-through)) /l (Exposure time: 96 h - Species: Pimephales prometas (flow-through)) /l (Exposure time: 96 h - Species: Pimephales prometas (flow-through)) // (Exposure time: 96 h - Species: Pimephales prometas (flow-through))
// (Exposure time: 96 h - Species: Plmephales promelas [flow-through])
// (Exposure time: 96 h - Species: Plmephales promelas [flow-through])
able for inorganic gases.
able for inorganic gases.
cumulation expected)
able,
able.
vallable.
vallable.
able.
able.
of its high volatility, the product is unlikely to cause ground or water pollution.

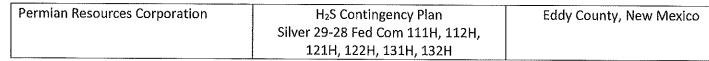
This document is only controlled while on the Praxeir Canada Inc. website and a copy of this controlled version is available for download. Prexair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID ; E-4611

7/9

mian	Resources Corporation	H ₂ S Contingency Plan Silver 29-28 Fed Com 111H, 112H, 121H, 122H, 131H, 132H	Eddy County, New Mexico
	PRAXAIR S	Hydrogen sulfide Safety Data Sheet E-4611 xcording to the Hazardous Products Regulation (February 11, 2015) ate of Issue: 10-15-1979 Revision date: 08-10-2016 Supersedas	: 10-15-2013
	SECTION 13: Disposal conside 13.1. Disposal methods	rations	
	Waste disposal recommendations	: Do not attempt to dispose of residual or unused quantities.	
	SECTION 14: Transport inform	ation	
	14.1. Basic shipping description		
	In accordance with TDG		
	LDG pression states and stat	nen (Antole), eren (an element element element (element), element (element), element element (element), element Antole	
		· 101052	
	UN-No. (TDG) TDG Primary Hazard Classes	: UN1053 : 2.3 - Class 2.3 - Toxic Gas,	
	TDG Subsidiary Classes	: 2.1	
	Proper shipping name	: HYDROGEN SULPHIDE	
	ERAP Index	: 500 x : 0	
	Explosive Limit and Limited Quantity Inde: Passenger Carrying Ship Index	: Forbidden	
	Passenger Carrying Road Vehicle or Pass		
	Carrying Rallway Vehicle Index	-	
	14.3. Air and sea transport		
	IMDG Baarraataa ahaaraa ahaaraa ahaaraa	n an	ana ang ana ang ang ang ang ang ang ang
	UN-No. (IMDG)	: 1053	
	Proper Shipping Name (IMDG)	: HYDROGEN SULPHIDE	
	Class (IMDG) MFAG-No	: 2 - Gases : 117	
	TATA MANAGAMMANA ANA ANA ANA		
	UN-No. (IATA)	: 1053	
	Proper Shipping Name (IATA)	: Hydrogen sulphide	
	Class (IATA)	: 2	
	SECTION 15: Regulatory inform	ation	
	Hydrogen sulfide (7783-06-4)	ning and tell	
	Listed on the Canadian DSL (Domestic S		
	15.2. International regulations		
	Hydrogen sulfide (7783-06-4) Listed on the AICS (Australian Inventory	of Chamleal Substances)	Herner and a state of the state
	Listed on IECSC (Inventory of Existing C	hemical Substances Produced or Imported in China)	
	Listed on the EEC Inventory EINECS (Er Listed on the Japanese ENCS (Existing	uropean Inventory of Existing Commercial Chemical Substances) 8 New Chemical Substances) Inventory	
	Listed on the Korean ECL (Existing Cher	nicals List)	
	Listed on NZIoC (New Zealand Inventory Listed on PICCS (Philippines Inventory of	f Chemicals and Chemical Substances)	
	Listed on the United States TSCA (Toxio Listed on INSQ (Mexican national Invent		
	SECTION 16: Other information		
	Date of Issue Revision date	: 15/10/1979 : 10/08/2016	
	Supersedes	: 15/10/2013	
	indication of changes		
	Indication of changes: Training advice	: Users of breathing apparatus must be trained. Ensure oper	ators understand the toxicity hazard.
	▼	Ensure operators understand the flammability hazard.	
	The document is only controlled white the	Provair Canada has washring and a same of this sector find sector in the sector	as developed. Desuglar
		Praxelr Canada Inc. website and a copy of this controlled version is available fr y of any version of this document after it has been downloaded or removed from	
	maging of booling		


Permian Resources Corporation	H ₂ S Contingency Plan	Eddy County, New Mexico
		Eddy County, New Mexico
	Silver 29-28 Fed Com 111H, 112H,	
	121H, 122H, 131H, 132H	
	Hydrogen sulfide	
PRAXAI R	Safety Data Sheet E-4611	
	according to the Hazardous Products Regulation (February 11, 2015) Date of Issue: 10-15-1979 Revision date: 08-10-2016 Superseder	s: 10-15-2013
Other Information	: When you mix two or more chemicals, you can create add and evaluate the safety information for each component b Consult an industrial hygienist or other trained person who Before using any plastics, confirm their compatibility with t	efore you produce the mixture. In you evaluate the end product.
	Praxair asks users of this product to study this SDS and b and safety information. To promote safe use of this produc agents, and contractors of the information in this SDS and and safety information, (2) furnish this information to each each purchaser to notify its employees and customers of t information	cl, a user should (1) notify employees, of any other known product hazards purchaser of the product, and (3) ask
	The opinions expressed herein are those of qualified expe believe that the information contained herein is current as Since the use of this information and the conditions of use Canada Inc, it is the user's obligation to determine the con Praxair Canada Inc, SDSs are furnished on sale or deliver independent distributors and suppliers who package and s SDSs for these products, contact your Praxair sales repre supplier, or download from www.praxair.ca. If you have qu would like the document number and date of the latest SD Praxair suppliers in your area, phone or write Praxair Can Address: Praxair Canada Inc, 1 City Centre Drive, Suite 1:	of the date of this Safety Data Sheet, are not within the control of Praxelr dillons of safe use of the product. y by Praxelr Canada Inc, or the sell our products. To obtain current sentative, local distributor, or estions regarding Praxelr SDSs, S, or would like the names of the ada Inc, (Phone: 1-886-267-5149;
	PRAXAIR and the Flowing Airstream design are trademar Technology, Inc. In the United States and/or other countrie	ks or registered trademarks of Praxeir s.
NFPA health hezard	: 4 - Very short exposure could cause death or serious residual injury even though prompt medical attention was given.	
NFPA fre hazard	 4 - Will rapidly or completely vaporize at normal pressure and temperature, or is readily dispersed in air and will burn readily. 	
NFPA reactivity	: 0 - Normally stable, even under fire exposure conditions, and are not reactive with water.	$\mathbf{\nabla}$
HMIS III Rating		
Health	: 2 Moderate Hazard - Temporary or minor injury may occur	
Flammability	 4 Severe Hazard - Flammable gases, or very volatile flammable	
Physical	2 Moderate Hazard - Materials that are unstable and may normal temperature and pressure with low risk for explosi- water or form peroxides upon exposure to air.	undergo violent chemical changes at
SDS Canada (GHS) • Praxair		

This information is based on our current knowledge and is intended to describe the product for the purposes of health, safely and environmental requirements only. It should not therefore be construed as guaranteeing any specific property of the product.

This document is only controlled while on the Prexeir Canada Inc. website and a copy of this controlled version is available for download. Prexeir cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

•

Appendix B SO₂SDS

Safety Data Sheet

Material Name: SULFUR DIOXIDE

Section 1 - PRODUCT AND COMPANY IDENTIFICATION Material Name SULFUR DIOXIDE Synonyms MTG MSDS 80; SULFUROUS ACID ANHYDRIDE; SULFUROUS OXIDE; SULPHUR DIOXIDE; SULFUROUS ANHYDRIDE; FERMENTICIDE LIQUID; SULFUR DIOXIDE(SO2); SULFUR OXIDE; SULFUR OXIDE(SO2) **Chemical Family** inorganic, gas **Product Description** Classification determined in accordance with Compressed Gas Association standards. Product Use Industrial and Specialty Gas Applications. Restrictions on Use None known. Details of the supplier of the safety data sheet MATHESON TRI-GAS, INC. 3 Mountainview Road Warren, NJ 07059 General Information: 1-800-416-2505 Emergency #: 1-800-424-9300 (CHEMTREC) Outside the US: 703-527-3887 (Call collect)

Section 2 - HAZARDS IDENTIFICATION

Classification in accordance with paragraph (d) of 29 CFR 1910.1200. Gases Under Pressure - Liquefied gas Acute Toxicity - Inhalation - Gas - Category 3 Skin Corrosion/Initiation - Category IB Serious Eye Damage/Eye Irritation - Category 1 Simple Asphyxiant GHS Labet Elements Symbol(s)

Signal Word Danger Hazard Statement(s) Contains gas under pressure; may explode if heated. Toxic if inhaled. Causes severe skin burns and eye damage. May displace oxygen and cause rapid suffocation. Precautionary Statement(s) Prevention Use only outdoors or in a well-ventilated area. Wear protective gloves/protective clothing/eye protection/face protection.

Page 1 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

SDS ID: MAT22290

H₂S Contingency Plan Silver 29-28 Fed Com 111H, 112H, 121H, 122H, 131H, 132H

IATHESON

ask. . . The Gas Professionals"

Safety Data Sheet

Material Name: SULFUR DIOXIDE

SDS ID: MAT22290 Wash thoroughly after handling, Do not breathe dusts or mists. Response IF INHALED: Remove person to fresh air and keep comfortable for breathing. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. IF ON SKIN (or hair): Remove/take off immediately all contaminated clothing. Rinse skin with water/shower. Wash contaminated clothing before reuse. IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. Immediately call a POISON CENTER or doctor. Specific treatment (see label). Storage Store in a well-ventilated place. Keep container tightly closed. Store locked up. Protect from sunlight, Disposal Dispose of contents/container in accordance with local/regional/national/international regulations. Other Høzards Contact with liquified gas may cause frostbite.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS			
CAS	Component Name	Percent	
7446-09-5	Sulfur dioxide	100.0	
[[140-077-3	Section 4 - FIRST AID MEASURES	100.0	

Inhalation

IF INHALED: Remove person to fresh air and keep at rest in a position comfortable for breathing. Get immediate medical attention.

Skin

IF ON SKIN (or hair): Remove/take off immediately all contaminated clothing. Rinse skin with water/shower. Wash contaminated clothing before reuse. If frostbile or freezing occur, immediately flush with plenty of lukewarm water (105-115°F; 41-46°C). If warm water is not available, gently wrap affected parts in blankets. DO NOT induce vomiting. Get immediate medical attention.

Eyes

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Get immediate medical attention.

Ingestion

IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. Get immediate medical attention.

Most Important Symptoms/Effects

Acute

Toxic if inhaled, frostbite, suffocation, respiratory tract burns, skin burns, eye burns Delayed

No information on significant adverse effects.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically and supportively.

Note to Physicians

For inhalation, consider oxygen.

Page 2 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

Permian Resources Corporation

H₂S Contingency Plan Silver 29-28 Fed Com 111H, 112H, 121H, 122H, 131H, 132H

SDS ID: MAT22290

Safety Data Sheet

Mater	ial Name: SULFUR DIO	XIDE			
		Section	5	ω	FI

	Section 5 - FII	RE FIGHTING MEASURES
Extinguishing A		
Suitable Exting carbon dioxide, Unsuitable Exti None known.	uishing Media regular dry chemical, Large fires: inguishing Media	Use regular foam or flood with fine water spray.
Negligible fire h	s Arising from the Chemical azard, nbustion Products	
sulfur oxides		
Fire Fighting M		
Move container	from fire area if it can be done wi	thout risk. Cool containers with water spray until well after the fire
- is out. Stay away - Special Protecti	y from the ends of tanks. Keep un ive Equipment and Preeautions	necessary people away, isolate hazard area and deny entry.
Wear full protec	tive fire fighting gear including s	eff contained breathing apparatus (SCBA) for protection against
possible exposu	ю.	
		ENTAL RELEASE MEASURES
Personal Preca	utions, Protective Equipment a	nd Emergency Procedures
Wear personal p	rotective clothing and equipment, laterials for Containment and C	see Section X.
Keep unnecessar	ry people away, isolate hazard are	a and deny entry. Stay upwind and keep out of low areas.
Ventilate closed	spaces before entering. Evacuation	on radius: 150 feet. Stop leak if possible without personal risk.
Reduce vapors w	with water spray. Do not get water	directly on material.
Environmental		
Avoid release to	the environment.	
		NDLING AND STORAGE
handling. Use or protection/face p drink or smoke y Conditions for 2	es, on skin, or on clothing. Do not ly outdoors or in a well-ventilate rotection. Contaminated work clo	
Protect from sun	light.	
Store and handle	in accordance with all current re-	gulations and standards. Protect from physical damage. Store
outside or in a de	stached building. Keep separated	from incompatible substances.
Incompatible M		pide, metal oxides, metals, oxidizing materials, peroxides, reducing
agents	ne materiais, naiogens, metar care	noc, mean oxides, means, oxidizing materials, peroxides, reducing
	retion 8 - EXPOSURE CO	NTROLS / PERSONAL PROTECTION
Component Exp		TAR BARARDA F B BEALTADIATARES & BARF R ELA, S BARIA
Sulfur dioxide	7446-09-5]
ACGIH:	0.25 ppm STEL	

Page 3 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

Permian Resources Corporation

H₂S Contingency Plan Silver 29-28 Fed Com 111H, 112H, 121H, 122H, 131H, 132H

ask. . . The Gas Professionals"

Safety Data Sheet

Material Name: SULFUR DIOXIDE

NIOSH:	2 ppm TWA ; 5 mg/m3 TWA
	5 ppm STEL ; 13 mg/m3 STEL
	100 ppm IDL11
OSHA (US):	5 ppm TWA ; 13 mg/m3 TWA
Mexico:	0.25 ppm STEL {PPT-CT }

ACGIII - Threshold Limit Values - Biological Exposure Indices (BEI) There are no biological limit values for any of this product's components.

Engineering Controls

Provide local exhaust or process enclosure ventilation system. Ensure compliance with applicable exposure limits. Individual Protection Measures, such as Personal Protective Equipment

Eye/face protection

Wear splash resistant safety goggles with a faceshield. Contact lenses should not be worn. Provide an emergency eye wash fountain and quick drench shower in the immediate work area.

Skin Protection

Wear appropriate chemical resistant clothing. Wear chemical resistant clothing to prevent skin contact. **Respiratory Protection**

Any self-contained breathing apparatus that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode.

Glove Recommendations

Wear appropriate chemical resistant gloves.

Sect	ion 9 - PHYSICAL /	AND CHEMICAL PROPERT	TIES
Appearance	colorless gas	Physical State	gas
Odor	irritating odor	Cotor	colorless
Odør Threshold	3 - 5 ppm	pH	(Acidie în solution)
Melting Paint	-73 °C (-99 °t ^r)	Boiling Paint	-10 °C (14 °F)
Boiling Point Range	Not available	Freezing point	Not available
Evaporation Rate	>I (Butyl acetate = 1)	Flammability (solid, gas)	Not available
Autoignition Temperature	Not available	Flash Point	(Not flammable)
Lower Explosive Limit	Not available	Decomposition temperature	Not available
Upper Explosive Limit	Not avaitable	Vapor Pressure	2432 mmHg @ 20 ℃
Vapor Density (air=1)	2.26	Specific Gravity (water=1)	1.462 at -10 °C

Page 4 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

SDS ID: MAT22290

H₂S Contingency Plan Silver 29-28 Fed Com 111H, 112H, 121H, 122H, 131H, 132H

MATHESON

ask. . . The Gas Professionals'*

Safety Data Sheet

Material Name: SULFUR DIOXIDE

SDS ID: MAT22290

Water Solubility							
trace outhinity	22.8 % (@ 0 °C)	Partition coefficient: n- octanol/water	Not available				
Viscosity	Not available	Kinematic viscosity	Not available				
Solubility (Other)	Not available	Density	Not available				
Physical Form	liquified gas	Molecular Formula	\$-02				
Molecular Weight	64.06						
Solvent Solubility Soluble alcohol, acetic acid, sulfur	ic acid, ether, chloroform,	Benzene, sulfuryt chloride, nitrobe	nzenes, Toluene, accione				
	Section 10 - STAB	ILITY AND REACTIVITY					
Chemical Stability Stable at normal temperatures and pressure. Possibility of Hazardous Reactions Will not polymerize. Conditions to Avoid Minimize contact with material. Containers may rupture or explode if exposed to heat. Incompatible Materials bases, combustible materials, halogens, metal carbide, metal oxides, metals, oxidizing materials, peroxides, reducing agents Hazardous decomposition products oxides of sulfur							
Information on Likely R		DLOGICAL INFORMATIC)N				
Infistation	•	m, burns, difficulty breathing					

Page 5 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

H₂S Contingency Plan Silver 29-28 Fed Com 111H, 112H, 121H, 122H, 131H, 132H

SDS ID: MAT22290

MATHESON

ask. . . The Gas Professionals"

Safety Data Sheet

Material Name: SULFUR DIOXIDE

Toxic if inhaled, frostbite, suffocation, respiratory tract burns, skin burns, eye burns Delayed Effects No information on significant adverse effects. Irritation/Corrosivity Data respiratory tract burns, skin burns, eye burns Respiratory Sensitization No data available. Dermal Sensitization No data available. Component Carcinogenicity

Sulfur dioxide	7446-09-5
ACGIH:	A4 - Not Classifiable as a Human Carcinogen
IARC:	Monograph 54 [1992] (Group 3 (not classifiable))
Germ Cell Mut	avenicity

No data available. Tumarigenic Data No data available Reproductive Toxicity No data available. Specific Target Organ Toxicity - Single Exposure No target organs identified. Specific Target Organ Toxicity - Repeated Exposure No target organs identified. Aspiration hazard Not applicable. Medical Conditions Aggravated by Exposure respiratory disorders

Section 12 - ECOLOGICAL INFORMATION

Component Analysis - Aquatic Toxicity No LOLI ecotoxicity data are available for this product's components. Persistence and Degradability No data available. Bioaccumulative Potential No data available. Mobility No data available. Section 13 - DISPOSAL CONSIDERATIONS

Disposal Methods

Dispose of contents/container in accordance with local/regional/national/international regulations.

Component Waste Numbers

The U.S. EPA has not published waste numbers for this product's components.

Section 14 - TRANSPORT INFORMATION

US DOT Information:

Shipping Name: SULFUR DIOXIDE

Page 6 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

ved by OCD: 6/17/2024 7:30:						Page 9
ermian Resources Corporati	on	Silv	ver 29	-28 F	ntingency Plan ed Com 111H, 112H, 2H, 131H, 132H	Eddy County, New Mexico
MATH askThe Gas						
			Safet	y Da	ta Sheet	
Material Name: SUL(Hazard Class: J UN/NA #: UNH Required Labe	.3 179	E				SDS ID: MAT22290
IMDG Informa Shipping Name Hazard Class: J UN#: UN1079 Required Label	SULPHUR E	жили	;			
TDG Informati Shipping Name Hazard Class: 2 UN1: UN1079 Required Label International B This material do bulk.	SULFUR DI .3 (s): 2.3 ilk Chemical	Code	icals rec	quired t	y the IBC Code to be identified as	s dangerous chemicals in
		ection 1	5 - RE	GUL/	ATORY INFORMATION	
U.S. Federal Ro This material co (40 CFR 355 Ap require an OSH/	tains one or m pendix A), SA	RA Secti	c follow on 313 (ring che (40 CF)	micals required to be identified ur 3 372.65), CERCLA (40 CFR 302	nder SARA Section 302 .4), TSCA 12(b), and/or
Sulfur dioxide	7446-09-5					
SARA 302:	500 lb TPQ					
OSHA (safety):	1000 fb TQ ((Liquid)				
SARA 304:	500 lb EPCR	LA RQ				
Gas Under Press Asphyxiant U.S. State Regu	ire; Acute toxi ations	icity; Ski	n Corros	sion/Irri	C) reporting categories tation; Serious Eye Damage/Eye I e following state hazardous substa	· · ·
Component		са м/		ίΝ	РА	
Sulfur dioxide	7446-09-5	Yes Ye	s Yes	Yes	Yes	
	ARNING	chemical	ls inctud	ling Sul	fur dioxide , which is known to th	e State of California to
cause birth defee	s or other repr	roductive	harm. F	or more	information go to www.P65Wan	nings.ca.gov.
Page 7 of 9			ue date			

Permian Resources C	orporation	H ₂ S Contingency Plan Silver 29-28 Fed Com 111H, 112H, 121H, 122H, 131H, 132H	Eddy County, New Mexico
() (IATHESON		
ask	The Gas Professionals	- .'''	

Safety Data Sheet

			Salety Data		
lal Name: SULF	UR DIOXI	DE			SDS ID: MAT22
Sulfur dioxide	7446-09-5	5			
Repro/Dev. Tox	developm	entel toyle	zity , 7/29/2011		
Component Ana	L		ay, 7272011		
Sulfur dioxide (7	19318 - 1610e 1446-09-5)	mory			
US CA AU		U JP-1	ENCS JP - ISHL	KR KECI - Annex 1	KR KECI - Annex 2
Yes DSL Yes	Yes El		Yes		
		IN Yes	res	Yes	No
1445 B144 L PAVE 244		II			
KR - REACH CC	A MX	NZ PH	TH-TECI TV	V, CN VN (Draft)	
No	Yes	Yes Yes	s Yes Ye	s Yes	
		Sect	ion 16 - OTHE	R INFORMATIO	N
NFPA Ratings					13
Health: 3 Fire: 01					
	: Adamana 1	⇒ Slight 2	2 = Moderate 3 = S	erious 4 = Severe	
Summary of Chi	inges				
Summary of Chi SDS update: 02/1 Key / Legend	inges 0/2016				
Summary of Chi SDS update: 02/1 Key / Legend ACGIH - Americ	inges 0/2016 an Conferer	nce of Gov	vernmental Industr	ial Hygienists; ADR - I	Suropean Road Transport; AU -
Summary of Chi SDS update: 02/1 Key / Legend ACGIH - Americ Australia; BOD -	inges 0/2016 an Conferer Biochemics	al Oxygen	Demand; C - Cels	ius: CA - Canada: CA/	MA/MN/NJ/PA -
Summary of Chi SDS update: 02/1 Key / Legend ACGHH - Americ Australia; BOD - California/Massac	inges 0/2016 an Conferer Biochemics sbusetts/Mi	al Oxygen nnesota/N	Demand; C - Cels ew Jersey/Pennsyl	ius; ĈA - Canada; CA/l vania*; CAS - Chemica	MA/MN/NJ/PA - I Abstracts Service: CERCLA -
Summary of Chi SDS update: 02/1 Key / Legend ACGIH - Americ Australia; BOD - California/Massac Comprehensive H	inges 0/2016 an Conferer Biochemics shusetts/Mis nvironment	al Oxygen nnesota/N tal Respon	Demand; C - Cels ew Jersey/Pennsyl use, Compensation,	ius; CA - Canada; CA/l vania*; CAS - Chemics and Liability Act; CFR	MA/MN/NJ/PA - 1 Abstracts Service: CERCLA - 2 - Code of Federal Regulations
Summary of Chi SDS update: 02/1 Key / Legend ACGHH - Amerie Australia; BOD - California/Massac Comprehensive H (US); CLP - Clas: Deutsche Forschu	inges 0/2016 an Conferer Biochemics chusetts/Mis nvironment sification, L angsgemein:	al Oxygen nnesota/N tal Respon .abelling, 1 schaft; DC	Demand; C - Cels cw Jersey/Pennsyl use, Compensation, and Packaging; CN DT - Department of	ius; CA - Canada; CA/i vania*; CAS - Chemies , and Liability Act; CFR I - China; CPR - Contre (Transportation; DSD -	MA/MN/NJ/PA - al Abstracts Service; CERCLA - t - Code of Federal Regulations alled Products Regulations; DFG - Dangerous Substance Directive;
Summary of Chi SDS update: 02/1 Key / Legend ACGIH - Americ Australia; BOD - California/Massac Comprehensive H (US); CLP - Clas: Dentsche Forschu DSL - Domestie S	inges 0/2016 an Conferer Biochemic: chusetts/Mi nvironment sification, L ingsgemein: Substances l	al Oxygen anesota/N tal Respon .abeiling, r schaft; DC List; EC –	Demand; C - Cels ew Jersey/Pennsyl use, Compensation, and Packaging; CN DT - Department of European Commi	ius; CA - Canada; CA/I vania*; CAS - Chemies , and Liability Act; CFR I - China; CPR - Contre (Transportation; DSD - ssion; EEC - European	MA/MN/NJ/PA - al Abstracts Service; CERCLA - k - Code of Federal Regulations alled Products Regulations; DFG - Dangerous Substance Directive; Economic Community; EIN -
Summary of Chi SDS update: 02/1 Key / Legend ACGIH - Americ Australia; BOD - California/Massac Comprehensive H (US); CLP - Class Deutsche Forschu DSL - Domestie S European Invento	inges 0/2016 an Conferer Biochemics chusetts/Mi nvironment sification, L ingsgemein: Substances I ry of (Exist	al Oxygen anesota/N tal Respon abelling, r schaft; DC List; EC – ling Comm	Demand; C - Cels ew Jersey/Pennsyl use, Compensation, and Packaging; CN DT - Department of European Commi- nercial Chemical S	ius; CA - Canada; CAA vania*; CAS - Chemice , and Liability Act; CFR I - China; CPR - Contre (Transportation; DSD - ssion; EEC - European ubstances); FINFCS - 1	MA/MN/NJ/PA - I Abstracts Service; CERCLA - t - Code of Federal Regulations Med Products Regulations; DFG - Dangerous Substance Directive; Economic Community; EIN - Furnocan Inventory of Eviction
Summary of Chi SDS update: 02/1 Key / Legend ACGHH - Americ Australia; BOD - California/Massac Comprehensive H (US); CLP - Class Deutsche Forschu DSL - Domestic S European Invento Commercial Cher	inges 0/2016 an Conferer Blochemics chusetts/Mi nvironment sification, L ingsgemeins ubstances ry of (Exist nical Subst	al Oxygen nnesota/N- tal Respon .abeiling, r schaft; DC List; EC – ling Comn nnees; EN-	Demand; C - Cels ew Jersey/Pennsyl sse, Compensation, and Packaging; CN DT - Department of European Commi- nercial Chemical S CS - Japan Existin	ius; CA - Canada; CAA vania*; CAS - Chemice and Liability Act; CFB I - China; CPR - Contre (Transportation; DSD - ssion; EEC - European ubstances); EINECS - I g and New Chemical Si	MA/MN/NJ/PA - al Abstracts Service; CERCLA - t - Code of Federal Regulations alled Products Regulations; DFG - Dangerous Substance Directive; Economic Community; EIN - European Inventory of Existing abstance Inventory: EPA -
Summary of Chi SDS update: 02/1 Key / Legend ACGHH - Americ Australia; BOD - California/Massac Comprehensive H (US); CLP - Class Dentsche Forschu DSL - Domestic S European Invento Commercial Cher Euvironmental Pr	inges 0/2016 an Conferer Biochemics chusetts/Mi nvironment sification, L ingsgemeins isubstances i substances i ry of (Exist nical Substa otection Ag	al Oxygen nnesota/N tal Respon abeiling, t schaft; DC List; EC – ting Comn ances; EN gency; EU	Demand; C - Cels ew Jersey/Pennsyl ise, Compensation, and Packaging; CN DT - Department of European Commi- nercial Chemical S CS - Japan Existin - European Union	ius; CA - Canada; CAA vania*; CAS - Chemica , and Liability Act; CFB I - China; CPR - Contre (Transportation; DSD - ssion; EEC - European ubstances); EINECS - I g and New Chemical Si ; F - Fahrenheit; F - Bac	MA/MN/NJ/PA - al Abstracts Service; CERCLA - t - Code of Federal Regulations alled Products Regulations; DFG - Dangerous Substance Directive; Economic Community; EIN - European Inventory of Existing abstance Inventory; EPA - skuround (for Venezuela Biological
Summary of Chi SDS update: 02/1 Key / Legend ACGHH - Americ Australia; BOD - California/Massac Comprehensive H (US); CLP - Class Dentsche Forschu DSL - Domestic S European Invento Commercial Cher Euvironmental Pr Exposure Indices]	inges 0/2016 an Conferer Biochemics chusetts/Mi nvironment sification, L ingsgemeins substances I substances I vy of (Exist nical Substa otection Ag y; IARC - In	al Oxygen nnesota/N tal Respon abelling, r schaft; DC List; EC – ting Comn ances; EN gency; EU atemationa	Demand; C - Cels ew Jersey/Pennsyl ise, Compensation, and Packaging; CN DT - Department of European Commi- nercial Chemical S CS - Japan Existin - European Union al Agency for Rese	ius; CA - Canada; CAA vania*; CAS - Chemica and Liability Act; CFB I - China; CPR - Contre (Transportation; DSD - ssion; EEC - European ubstances); EINECS - I g and New Chemical St ; F - Fahrenheit; F - Baa arch on Cancer; IATA	MA/MN/NJ/PA - al Abstracts Service; CERCLA - t - Code of Federal Regulations alled Products Regulations; DFG - Dangerous Substance Directive; Economic Community; EIN - European Inventory of Existing abstance Inventory; EPA - ekground (for Venezuela Biological - International Air Transport
Summary of Chi SDS update: 02/1 Key / Legend ACGIH - Americ Australia; BOD - California/Massa Comprehensive H (US); CLP - Class Dentsche Forschu DSL - Domestie & European Invento Commercial Chet Euvironmental Pr Exposure Indices] Association; ICA/	inges 0/2016 an Conferer Blochemics chusetts/Mi nvironment sification, L ingsgemeins Substances 1 wical Substa otection Ag I ARC - In O - Internat	al Oxygen nnesota/N tal Respon abeiling, r schaft; DC List; EC – ting Comn ances; EN gency; EU atemationa ional Civi	Demand; C - Cels ew Jersey/Pennsyl ise, Compensation, and Packaging; CN DT - Department of European Commi- nercial Chemical S CS - Japan Existin - European Union al Agency for Resc I Aviation Organiz	ius; CA - Canada; CAA vania*; CAS - Chemice and Liability Act; CFB I - China; CPR - Contro (Transportation; DSD - ssion; EEC - European ubstances); EINECS - I g and New Chemical St ; F - Fahrenheit; F - Baa arch on Cancer; IATA ation; IDL - Ingredient	MA/MN/NJ/PA - al Abstracts Service; CERCLA - t - Code of Federal Regulations bled Products Regulations; DFG - Dangerous Substance Directive; Economic Community; EIN - European Inventory of Existing abstance Inventory; EPA - ekground (for Venezuela Biological - International Air Transport Disclosure List; IDLH -
Summary of Chi SDS update: 02/1 Key / Legend ACGIH - Amerie Australia; BOD - California/Massac Comprehensive H (US); CLP - Class Dentsche Forschu DSL - Domestie & European Invento Commercial Cher Environmental Pr Exposure Indices] Association; ICA4 Immediately Dan, Industrial Safety 4	inges 0/2016 an Conferer Biochemica chusetts/Mii nyironment sification, L ingsgemein: Substances I ry of (Exist nical Substa otection Ag I; IARC - In D - Internat gerous to Li and Health I	al Oxygen nnesota/N tal Respon .abefling, r schaft; EC – ting Comm ances; EN geney; EU tternationa ional Civi ife and He Law; IUCi	Demand; C - Cels ew Jersey/Pennsyl ise, Compensation, and Packaging; CN DT - Department of European Commi- nercial Chemical S CS - Japan Existin - European Union al Agency for Rese I Aviation Organiz- alth; IMDG - Inter-	ius; CA - Canada; CA/i vania*; CAS - Chemica and Liability Act; CFB I - China; CPR - Contro (Transportation; DSD - ssion; EEC - European ubstances); EINECS - I g and New Chemical Si g F - Fahrenheit; F - Bat arch on Cancer; IATA ation; IDL - Ingredient national Maritime Dang Uniform Chemical Inf	MA/MN/NJ/PA - al Abstracts Service; CERCLA - t - Code of Federal Regulations bled Products Regulations; DFG - Dangerous Substance Directive; Economic Community; EIN - European Inventory of Existing abstance Inventory; EPA - ekground (for Venezuela Biological - International Air Transport Disclosure List; IDLH - gerous Goods; ISHL - Japan ormation Database; JP - Japan;
Summary of Chi SDS update: 02/1 Key / Legend ACGIH - Amerie Australia; BOD - California/Massac Comprehensive H (US); CLP - Class Deutsche Forschu DSL - Domestie S European Invento Commercial Cher Environmental Pr Exposure Indices] Association; ICA/ Immediately Danj Industrial Safety 4 Kow - Octanol/w	inges 0/2016 Biochemica chusetts/Mii nvironment sification, L ingsgemein: Substances I ry of (Exist mical Substa otection Ag I; IARC - In D - Internat gerous to Li gerous to Li and Health I ater partition	al Oxygen nnesota/N- tal Respon .abelling, r schaft; EC – ting Comm ances; EN- geney; EU tternationa ional Civi ife and He Law; IUCi n coefficic	Demand; C - Cels ew Jersey/Pennsyl use, Compensation, and Packaging; CN DT - Department of European Commi- mercial Chemical S CS - Japan Existin - European Union al Agency for Rese I Aviation Organiz- alth; IMDG - Inter- LID - International ant; KR KECI Ann	ius; CA - Canada; CA/i vania*; CAS - Chemice and Liability Act; CFB I - China; CPR - Contro (Transportation; DSD - ssion; EEC - European ubstances); EINECS - I g and New Chemical Si ; F - Fahrenheit; F - Bac arch on Cancer; IATA ation; IDL - Ingredient national Maritime Dan (Uniform Chemical Inf ex 1 - Korea Existing C	MA/MN/NJ/PA - al Abstracts Service; CERCLA - t - Code of Federal Regulations bled Products Regulations; DFG - Dangerous Substance Directive; Economic Community; EIN - European Inventory of Existing abstance Inventory; EPA - ekground (for Venezuela Biological - International Air Transport Disclosure List; IDLH - gerous Goods; ISHL - Japan ormation Database; JP - Japan; Themicals Inventory (KECI) / Korea
Summary of Chi SDS update: 02/1 Key / Legend ACGIH - Amerie Australia; BOD - California/Massac Comprehensive E (US); CLP - Clas: Deutsche Forschu DSL - Domestie S European Invento Commercial Chet Environmental Pr Exposure Indices] Association; ICA/ Immediately Danj Industrial Safety 4 Kow - Octanol/w; Existing Chemica	inges 0/2016 Biochemici chusetts/Mii nyironment sification, L ingsgemein: Substances 1 ry of (Exist mical Substa otection Ag I; IARC - In O - Internat gerous to Li gerous to Li nd Health 1 ster partition Is List (KEI	al Oxygen nnesota/N- tal Respon .abelling, r schaft; EC – ting Comm ances; EN- geney; EU tternationa tional Civi ife and He Law; IUCI n coefficie CL); KR K	Demand; C - Cels ew Jersey/Pennsyl use, Compensation, and Packaging; CN DT - Department of European Commi- mercial Chemical S CS - Japan Existin - European Union al Agency for Rese I Aviation Organiz- alth; IMDG - Inter LID - International ant; KR KECI Anne KECI Annex 2 - Ke	ius; CA - Canada; CA/i vania*; CAS - Chemice and Liability Act; CFB I - China; CPR - Contro (Transportation; DSD - ssion; EEC - European ubstances); EINECS - I g and New Chemical Si ; F - Fahrenheit; F - Bac arch on Cancer; IATA ation; IDL - Ingredient national Maritime Dan (Uniform Chemical Inf ex 1 - Korea Existing Corea Existing Corea	MA/MN/NJ/PA - al Abstracts Service; CERCLA - A - Code of Federal Regulations bled Products Regulations; DFG - Dangerous Substance Directive; Economic Community; EIN - European Inventory of Existing ubstance Inventory; EPA - ekground (for Venezuela Biological - International Air Transport Disclosure List; IDLH - gerous Goods; ISHL - Japan ormation Database; JP - Japan; Themicals Inventory (KECI) / Korea s Inventory (KECI) / Korea
Summary of Chi SDS update: 02/1 Key / Legend ACGIH - Amerie Australia; BOD - California/Massac Comprehensive H (US); CLP - Class Dentsche Forschu DSL - Domestie S European Invento Commercial Cher Environmental Pr Exposure Indices] Association; ICA/ Inmediately Danj Industrial Safety 4 Kow - Octanol/wi Existing Chemica Existing Chemica	inges 0/2016 Biochemics chusetts/Mii nvironment sification, L ngsgemein: Substances 1 ry of (Exist nical Substa otection Ag cousto L ind Health 1 ater partition is List (KEI s List (KEI	al Oxygen nnesota/N- tal Respon .abelling, r schaft; DC List; EC – ling Comn ances; EN- igney; EU tternationa ional Civi ife and He Law; IUCL a coefficie CL); KR K	Demand; C - Cels ew Jersey/Pennsyl use, Compensation, and Packaging; CN DT - Department of European Commi- nercial Chemical S CS - Japan Existin - European Union al Agency for Rese I Aviation Organiz- alth; IMDG - Inter- LID - International ent; KR KECI Ann KECI Annex 2 - Ko- e Korea; LDS0/LC	ius; CA - Canada; CA/i vania*; CAS - Chemice , and Liability Act; CFR I - China; CPR - Contre (Transportation; DSD - ssion; EEC - European ubstances); EINECS - 1 g and New Chemical SS ; F - Fahrenheit; F - Bat arch on Cancer; IATA ation; IDL - Ingredient national Maritime Dan I Uniform Chemical Inf ex 1 - Korea Existing C orea Existing Chemical; 50 - Lethal Dose/ Letha	MA/MN/NJ/PA - al Abstracts Service; CERCLA - A - Code of Federal Regulations bled Products Regulations; DFG - Dangerous Substance Directive; Economic Community; EIN - European Inventory of Existing ubstance Inventory; EPA - ekground (for Venezuela Biological - International Air Transport Disclosure List; IDLH - gerous Goods; ISHL - Japan ormation Database; JP - Japan; Chemicals Inventory (KECI) / Korea s Inventory (KECI) / Korea s Inventori, KR REACH CCA
Summary of Chi SDS update: 02/1 Key / Legend ACGIH - Amerie Australia; BOD - California/Massac Comprehensive E (US); CLP - Clas: Dentsche Forschu DSL - Domestie S European Invento Commercial Cher Environmental Pr Exposure Indices] Association; ICA/ Inmediately Danj Industrial Safety 4 Kow - Octanol/wi Existing Chemica Existing Chemica	inges 0/2016 Biochemics chusetts/Mii nvironment sification, L ngsgemein: Substances I ry of (Exist nical Substa otection Ag cousto Li der partition is List (KEI s List (KEI on and Eva	al Oxygen nnesota/N- tal Respon .abelling, r schaft; EC – ling Comn ances; EN- iency; EU tternationa ional Civi ife and He Law; IUCL n coefficie CL); KR & CL), KR -	Demand; C - Cels ew Jersey/Pennsyl use, Compensation, and Packaging; CN DT - Department of European Commi- nercial Chemical S CS - Japan Existin - European Union al Agency for Rese I Aviation Organiz- alth; IMDG - Inter LID - International ent; KR KECI Ann KECI Annex 2 - Ko- Chemical Substan	ius; CA - Canada; CA/i vania*; CAS - Chemice and Liability Act; CFR I - China; CPR - Contre (Transportation; DSD - ssion; EEC - European ubstances); EINECS - I g and New Chemical SS ; F - Fahrenheit; F - Bat arch on Cancer; IATA ation; IDL - Ingredient national Maritime Dany Uniform Chemical Inf ex 1 - Korea Existing Corea Existing Chemical: 50 - Lethal Dose/ Letha ces Chemical Control A	MA/MN/NJ/PA - al Abstracts Service; CERCLA - A - Code of Federal Regulations bled Products Regulations; DFG - Dangerous Substance Directive; Economic Community; EIN - European Inventory of Existing ubstance Inventory; EPA - ekground (for Venezuela Biological - International Air Transport Disclosure List; 1DLH - gerous Goods; ISHL - Japan formation Database; JP - Japan; Chemicals Inventory (KECI) / Korea s Inventory (KECI) / Korea I Concentration; KR REACH CCA vet; LEL - Lower Explosive Limit;
Summary of Chi SDS update: 02/1 Key / Legend ACGIH - Americ Australia; BOD - California/Massac Comprehensive H (US); CLP - Clas: Dentsche Forschu DSL - Domestic & Huropean Invento Commercial Cher Environmental Pr Exposure Indices] Association; ICA/ Immediately Dan, Industrial Safety 4 Kow - Octanol/w: Existing Chemica Existing Chemica Existing Chemica	inges 0/2016 an Conferent Biochemfer chusetts/Min isfication, L ingsgemein: Substances I ry of (Exist nical Substa otection Ag by IARC - In O - Internat gerous to Li and Health I ater partition Is List (KEC on and Eva t Value; LC	al Oxygen nnesota/N- tal Respon .abeiling, t schaft; DC List; EC – ing Comn ances; EN- ternetiona ional Civi ife and He Law; IUCi n coefficie CL); KR & luation of DLI - List (Demand; C - Cels ew Jersey/Pennsyl ssc, Compensation, and Packaging; CN DT - Department of European Commi- nercial Chemical S CS - Japan Existin - European Union al Ageney for Rese I Aviation Organiz- alth; IMDG - Inter LID - International ent; KR KECI Ann (ECI Annex 2 - Ko- chemical Substan Of Lists ¹⁴¹ - Chem	ius; CA - Canada; CA/i vania*; CAS - Chemice and Liability Act; CFR I - China; CPR - Contre (Transportation; DSD - ssion; EEC - European ubstances); EINECS - 1 g and New Chemical Sc ; F - Fahrenheit; F - Bai arch on Cancer; IATA ation; IDL - Ingredient national Maritime Dany Uniform Chemical Inf ex 1 - Korea Existing Corea Existing Chemical 50 - Lethal Dose/ Letha ces Chemical Control A ADVISOR's Regulator	MA/MN/NJ/PA - Il Abstracts Service; CERCLA - & - Code of Federal Regulations bled Products Regulations; DFG - Dangerous Substance Directive; Economic Community; EIN - European Inventory of Existing abstance Inventory; EPA - ekground (for Venezuela Biological - International Air Transport Disclosure List; IDLH - gerous Goods; ISHL - Japan formation Database; JP - Japan; Chemicals Inventory (KECI) / Korea s Inventory (KECI) / Korea I Concentration; KR REACH CCA ket; LEL - Lower Explosive Limit; y Database; MAK - Maximum
Summary of Chi SDS update: 02/1 Key / Legend ACGIH - Americ Australia; BOD - California/Massac Comprehensive H (US); CLP - Class Deutsche Forschu DSL - Domestic S European Invento Commercial Cher Environmental Pr Exposure Indices] Association; ICA/ Immediately Dan; Industrial Safety 4 Kow - Octanol/w Existing Chemica Existing Chemica Existing Chemica	inges 0/2016 an Conferent Biochemics chusetts/Min nvironment sification, L ingsgemeins Substances I ry of (Exist nical Substa otection Ag y; IARC - In O - Internat gerous to Li nud Health I ater partition Is List (KEC on and Eva t Value; LC lue in the W	al Oxygen nnesota/N- tal Respon .abeiling, a schaft; EC- ling Comn ances; EN4 gency; EU tternationa ional Civi ife and He Law; IUCI n coefficie CL); KR & CL), KR - Lhation of DLI - List (Votkplace;	Demand; C - Cels ew Jersey/Pennsyl ssc, Compensation, and Packaging; CN DT - Department of European Commi- nercial Chemical S CS - Japan Existin - European Union al Agency for Rese I Aviation Organiz- alth; IMDG - Inter- LID - International ant; KR KECI Ann KECI Annex 2 - Ko - Korea; LD50/LC Chemical Substan Of LIsts ^{1M} - Chem ; MEL - Maximum	ius; CA - Canada; CA/i vania*; CAS - Chemice , and Liability Act; CFB I - China; CPR - Contre (Transportation; DSD - ssion; EEC - European ubstances); EINECS - I g and New Chemical Sd ; F - Fahrenheit; F - Baa arch on Cancer; IATA ation; IDL - Ingredient national Maritime Dang Uniform Chemical Inf ex 1 - Korea Existing C orea Existing Chemical: 50 - Lethal Dose/ Letha ces Chemical Control A ADVISOR's Regulator Exposure Limits; MX	MA/MN/NJ/PA - al Abstracts Service; CERCLA - & - Code of Federal Regulations alled Products Regulations; DFG - Dangerous Substance Directive; Economic Community; EIN - European Inventory of Existing abstance Inventory; EPA - ekground (for Venezuela Biological - International Air Transport Disclosure List; IDLH - gerous Goods; ISHL - Japan ormation Database; JP - Japan; Themicals Inventory (KECI) / Korea s Inventory (KECI) / Korea I Concentration; KR REACH CCA wet; LEL - Lower Explosive Limit; y Database; MAK - Maximum - Mexico: Ne- Non-specific: NFPA
Summary of Chi SDS update: 02/1 Key / Legend ACGIH - Americ Australia; BOD - California/Massac Comprehensive H (US); CLP - Class Deutsche Forschu DSL - Domestic & European Invento Commercial Cher Environmental Pr Exposure Indices] Association; ICA4 Immediately Danj Industrial Safety 4 Kow - Octanol/wi Existing Chemica Existing Chemica - Korea Registrati LLV - Level Limi Concentration Va	inges 0/2016 an Conferent Biochemics chusetts/Min nvironment sification, L ingsgemeins cubstances I substances I substance	al Oxygen nnesota/N- tal Respon .abelling, r schaft; DC List; EC – ting Comn ances; EN- ances; EN- ternational comparison comparison ternational comparison ife and He Law; IUCI n coefficie CL); KR & CL), KR - luation of DLI - List (vorkplace; peney; NIC	Demand; C - Cels ew Jersey/Pennsyl ssc, Compensation, and Packaging; CN DT - Department of European Commi- nercial Chemical S CCS - Japan Existin - European Union al Agency for Rese I Aviation Organiz- alth; IMDG - Inter- LID - International art; KR KECI Ann KECI Annex 2 - Ke - Korea; LD50/LC Chemical Substan Of L1sts ^{1M} - Chem MEL - Maximum DSH - National Insi	ius; CA - Canada; CA/i vania*; CAS - Chemice , and Liability Act; CFB I - China; CPR - Contre (Transportation; DSD - ssion; EEC - European ubstances); EINECS - I g and New Chemical Si ; F - Fahrenheit; F - Bai arch on Cancer; IATA ation; IDL - Ingredient national Maritime Dany Uniform Chemical Inf ex 1 - Korea Existing Corea Existing Chemicals 50 - Lethal Dose/ Letha aces Chemical Control A ADVISOR's Regulator Exposure Limits; MX titute for Occupational S	MA/MN/NJ/PA - al Abstracts Service; CERCLA - & - Code of Federal Regulations alled Products Regulations; DFG - Dangerous Substance Directive; Economic Community; EIN - European Inventory of Existing abstance Inventory; EPA - ekground (for Venezuela Biological - International Air Transport Disclosure List; IDLH - gerous Goods; ISHL - Japan ormation Database; JP - Japan; Themicals Inventory (KECI) / Korea s Inventory (KECI) / Korea I Concentration; KR REACH CCA act; LEL - Lower Explosive Limit; y Database; MAK - Maximum - Mexico; Ne- Non-specific; NFPA Safety and Health; NJTSR - New
Summary of Chi SDS update: 02/1 Key / Legend ACGIH - Amerie Australia; BOD - California/Massac Comprehensive E (US); CLP - Class Dentsche Forschu DSL - Domestie & European Inwento Commercial Cher Environmental Pr Exposure Indices] Association; ICA4 Immediately Dan; Industrial Safety 4 Kow - Octanol/w Existing Chemica Existing Chemica - Korea Registrati LLV - Level Limi Concentration Va - National Fire Pr Jersey Trade Secr	inges 0/2016 an Conferen Biochemica chusetts/Mii nvironment sification, L ingsgemein: Substances I ry of (Exist nical Substances I ry of (Exist nical Substances I ry of (Exist nical Substances I ry of (Exist nical Substances I gerous to Li and Health I ater partition Is List (KEC Is List (KEC) Is List	al Oxygen nnesota/N tal Respon .abelling, r schaft; DO List; EC iing Comn ances; EN ternations; EN ternations ional Civii ife and He Law; IUCi n coefficie CL); KR k CL), KR - luation of DLI - List ('ortsplace; teney; NIC ; Nq - Non n; NZ - Ne	Demand; C - Cels ew Jersey/Pennsyl see, Compensation, and Packaging; CN DT - Department of European Commi- nercial Chemical S CS - Japan Existin - European Union al Agency for Rese I Aviation Organiz- alth; IMDG - Inter- LID - International ent; KR KECI Annex 2 - Ke - Korea; LD50/LC Chemical Substan Of L1sts ^{1M} - Chem ; MEL - Maximum OSH - National Ins I-quantitative; NSI ew Zealand; OSH4	ius; CA - Canada; CA/i vania*; CAS - Chemica and Liability Act; CFB I - China; CPR - Contro (Transportation; DSD - ssion; EEC - European ubstances); EINECS - I g and New Chemical St ; F - Fahrenheit; F - Bat arch on Cancer; IATA ation; IDL - Ingredient national Maritime Dan Uniform Chemical Inf ex 1 - Korea Existing Corea Existing Chemicals 50 - Lethal Dose/ Letha ces Chemical Control A ADVISOR's Regulator Exposure Limits; MX titute for Occupational Safety	MA/MN/NJ/PA - al Abstracts Service; CERCLA - & - Code of Federal Regulations bled Products Regulations; DFG - Dangerous Substance Directive; Economic Community; EIN - European Inventory of Existing abstance Inventory; EPA - ekground (for Venezuela Biological - International Air Transport Diselosure List; IDLH - gerous Goods; ISHL - Japan ormation Database; JP - Japan; Chemicals Inventory (KECI) / Korea s Inventory (KECI) / Korea I Concentration; KR REACH CCA wet; LIEL - Lower Explosive Limit; y Database; MAK - Maximum - Mexico; Ne- Non-specific; NFPA Safety and Health; NJTSR - New tance List (Canada); NTP - and Health Administration; PEL-
Summary of Chi SDS update: 02/1 Key / Legend ACGIH - Amerie Australia; BOD - California/Massac Comprehensive E (US); CLP - Class Deutsche Forschu DSL - Domestie S European Invento Commercial Cher Environmental Pr Exposure Indices] Association; ICA/ Immediately Dan; Industrial Safety 4 Kow - Octanol/wi Existing Chemica Existing Chemica - Korea Registrati LLV - Level Limi Concentration Va - National Fire Pr Jersey Trade Seer National Toxicole	inges 0/2016 an Conferen Biochemica chusetts/Mii nvironment sification, L ingsgemein: Substances I ry of (Exist mical Substa otection Ag y; IARC - In D - Internat gerous to Li gerous to Li nod Health I atter partition Is List (KEG on and Eva t Value; LC lue in the W otection Ag et Registry; gy Program sure Limit;	al Oxygen nnesota/N tal Respon .abelling, t schaft; DC List; EC – ting Comm ances; EN geney; EU uternationa ional Civi ife and Hc Law; IUCI n coefficic CL); KR & CL) , KR - luation of DLI - List (vorkplace; geney; NIC ; Nq - Non n; NZ - Ne PH - Phili	Demand; C - Cels ew Jersey/Pennsyl ise, Compensation, and Packaging; CN DT - Department of European Commi- nereial Chemical S CS - Japan Existin - European Union al Agency for Resc I Aviation Organiz- alth; IMDG - Inter- LID - International ent; KR KECI Anna KECI Annex 2 - Ko- Chemical Substan Of LISts ^{1M} - Chem y MEL - Maximum DSH - National Insi- quantitative; NSI w Zealand; OSHA ppines; RCRA - R	ius; CA - Canada; CA/i vania*; CAS - Chemice and Liability Act; CFB I - China; CPR - Contre (Transportation; DSD - ssion; EEC - European ubstances); EINECS - I g and New Chemical Sb ; F - Fahrenheit; F - Baa arch on Cancer; IATA ation; IDL - Ingredient national Maritime Dan Uniform Chemical Inf ex 1 - Korea Existing Corea Existing Chemical: 50 - Lethal Dose/ Letha ces Chemical Control A ADVISOR's Regulator Exposure Limits; MX itute for Occupational Subs - Non-Domestie Subs - Occupational Safety csource Conservation a	MA/MN/NJ/PA - al Abstracts Service; CERCLA - A - Code of Federal Regulations bled Products Regulations; DFG - Dangerous Substance Directive; Economic Community; EIN - European Inventory of Existing abstance Inventory; EPA - ekground (for Venezuela Biological - International Air Transport Disclosure List; IDLH - gerous Goods; ISHL - Japan ormation Database; JP - Japan; chemicals Inventory (KECI) / Korea s Inventory (KECI) / Korea I Concentration; KR REACH CCA ket; LEL - Lower Explosive Limit; y Database; MAK - Maximum - Mexico; Ne- Non-specific; NFPA Safety and Health; NJTSR - New tance List (Canada); NTP - and Health Administration; PEL- nd Recovery Act; REACH-
Summary of Chi SDS update: 02/1 Key / Legend ACGHH - Amerie Australia; BOD - California/Massac Comprehensive E (US); CLP - Clas: Dentsche Forschu DSL - Domestie S European Invento Commereial Cher Environmental Pr Exposure Indices] Association; ICA/ Immediately Dan; Industrial Safety 4 Kow - Octanol/w Existing Chemica Existing Chemica - Korea Registrati LLV - Level Limi Concentration Va - National Fire Pr Jersey Trade Seer National Toxicolo Permissible Expoo	inges 0/2016 an Conferen Biochemica chusetts/Mii nvironment iification, L ingsgemein: Substances I ry of (Exist mical Substa otection Ag bi; IARC - In O - Internat gerous to Li substances I (; IARC - In O - Internat substances I (; IARC - In	al Oxygen nnesota/N- tal Respon .abelling, r schaft; DC List; EC ting Comm nnces; EN- geney; EU uternations ional Civi ife and Hc Law; IUCI n coefficic CL); KR & CL) , KR - luation of DLI - List (votkplace; geney; NIC (NQ - Non n; NZ - Ne PH - Phili horisation	Demand; C - Cels ew Jersey/Pennsyl ise, Compensation, and Packaging; CN DT - Department of European Commi- nereial Chemical S CS - Japan Existin - European Union al Agency for Resc I Aviation Organiz- alth; IMDG - Inter- LID - International ent; KR KECI Anne (ECI Annex 2 - Ko- Chemical Substan Of Lists ^{1M} - Chem y MEL - Maximum DSH - National Insi- quantitative; NSI ww Zealand; OSHA ppines; RCRA - R , and restriction of	ius; CA - Canada; CA/i vania*; CAS - Chemica and Liability Act; CFB I - China; CPR - Contro (Transportation; DSD - ssion; EEC - European ubstances); EINECS - I g and New Chemical Sb ; F - Fahrenheit; F - Baa arch on Cancer; IATA ation; IDL - Ingredient national Maritime Dan (Uniform Chemical Inf ex 1 - Korea Existing Corea Existing Chemical: 50 - Lethal Dose/ Letha ces Chemical Control A ADVISOR's Regulator Exposure Limits; MX - Non-Domestie Subsi - Occupational Safety essource Conservation a Chemicals; RID - Euro	MA/MN/NJ/PA - al Abstracts Service; CERCLA - & - Code of Federal Regulations bled Products Regulations; DFG - Dangerous Substance Directive; Economic Community; EIN - European Inventory of Existing abstance Inventory; EPA - ekground (for Venezuela Biological - International Air Transport Diselosure List; IDLH - gerous Goods; ISHL - Japan; Chemicals Inventory (KECI) / Korea s Inventory (KECI) / Korea I Concentration; KR REACH CCA wet; LIEL - Lower Explosive Limit; y Database; MAK - Maximum - Mexico; Ne- Non-specific; NFPA Safety and Health; NJTSR - New tance List (Canada); NTP - and Health Administration; PEL-

Page 8 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

Well Number: 111H

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Disposal type description:

Disposal location description: Contents (drill cuttings, mud, salts, and other chemicals) of the mud tanks will be hauled to R360s state approved (NM-01-0006) disposal site at Halfway

Waste type: SEWAGE

Waste content description: Grey water/ Human waste

Amount of waste: 5000 gallons

Waste disposal frequency : Weekly

Safe containment description: Human waste will be disposed of in chemical toilets and hauled to the Carlsbad wastewater treatment plant. Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Disposal type description:

Disposal location description: Human waste will be disposed of in chemical toilets and hauled to the Carlsbad wastewater treatment plant.

Waste type: GARBAGE

Waste content description: General trash/ garbage.

Amount of waste: 5000 pounds

Waste disposal frequency : Weekly

Safe containment description: Enclosed trash trailer.

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY Disposal type description:

Disposal location description: All trash will be placed in a portable trash cage. It will be hauled to the Eddy County landfill. There will be no trash burning.

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Released to Imaging: 7/12/2024 8:51:05 AM

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: SILVER 29-28 FED COM

Well Number: 111H

Page 94 of 95

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? Y

Description of cuttings location 8220 cubic ft of waste, stored in steel tanks. Hauled off to a commercial state approved facility. Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary

Are you requesting any Ancillary Facilities?: N

Ancillary Facilities

Comments:

Section 9 - Well Site

Well Site Layout Diagram:

9_LJS_Silver_SWNE_Well_Site_Layout_20230524093809.pdf

Comments: See rig layout diagram for depictions of the well pad, trash cage, access onto the location, parking, living facilities, and rig orientation.

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: SILVER 29-28 FED COM SWNE

Multiple Well Pad Number: 1

Recontouring

10b_LJS_Silver_SWNE_Recontour_Plats 20230524093826.pdf

10a_LJS_Silver_SWNE Interim Reclamation 20230524093826.pdf

Drainage/Erosion control construction: Drainage and erosion will be monitored to prevent compromising the well site integrity, and to protect the surrounding native topography.

Drainage/Erosion control reclamation: Drainage and erosion will be monitored to prevent compromising the well site integrity, and to protect the surrounding native topography.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 95 of 95

CONDITIONS

Action 164432

CONDITIONS

Operator:	OGRID:
Permian Resources Operating, LLC	372165
300 N. Marienfeld St Ste 1000	Action Number:
Midland, TX 79701	164432
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
ward.rikala	Notify OCD 24 hours prior to casing & cement	7/12/2024
ward.rikala	Will require a File As Drilled C-102 and a Directional Survey with the C-104	7/12/2024
ward.rikala	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string	7/12/2024
ward.rikala	Cement is required to circulate on both surface and intermediate1 strings of casing	7/12/2024
ward.rikala	If cement does not circulate on any string, a CBL is required for that string of casing	7/12/2024
ward.rikala	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system	7/12/2024