Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR

FORM APPROVED
OMB No. 1004-0137
Expires: October 31, 202

BUR	EAU OF LAND MANAGEMEN'	5. Lease Serial No.	S. Lease Serial No. NMNM19452			
Do not use this t	form for proposals to drill or	to re-enter an	6. If Indian, Allottee	or Tribe Name		
SUBMIT IN	TRIPLICATE - Other instructions on pa	age 2	7. If Unit of CA/Agr	eement, Name and/or No.		
1. Type of Well Oil Well Gas W	Vell Other		8. Well Name and No	D. STONEWALL 28 FED COM/407H		
2. Name of Operator EOG RESOURG	CES INCORPORATED		9. API Well No.	30-025-52706		
		o. (include area code)	10. Field and Pool or	Exploratory Area		
		7000				
4. Location of Well (Footage, Sec., T., K SEC 28/T24S/R34E/NMP	R.,M., or Survey Description)		LEA/NM	1, State		
12. CHE	CK THE APPROPRIATE BOX(ES) TO I	NDICATE NATURE	OF NOTICE, REPORT OR OT	THER DATA		
TYPE OF SUBMISSION		TYP	E OF ACTION			
Notice of Intent		1	Production (Start/Resume) Reclamation	Water Shut-Off Well Integrity		
Subsequent Report			Recomplete Temporarily Abandon	Other		
Final Abandonment Notice	Convert to Injection Plu	ıg Back	Water Disposal			
completed. Final Abandonment No is ready for final inspection.) EOG respectfully requests an Stonewall 28 Fed Com 514H (Change name from Stonewall Change BHL from T-24-S, R-3 to T-24-S, R-34-E, Sec 33, 100 Change target formation to Se EOG requests approval to use Continued on page 3 additional	amendment to our approved APD for the FKA 407H) API #: 30-025-52706 28 Fed Com 407H to Stonewall 28 Fed 4-E, Sec 33, 100' FSL, 990' FEL, Lea 0' FSL, 1290' FEL, Lea Co., N.M. cond Bone Spring Sand. alternate casing designs listed in the Linformation	this well to reflect the distribution of the control of the contro	ation, have been completed and			
14. I hereby certify that the foregoing is STAR HARRELL / Ph: (432) 848-9	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Regulatory	Specialist			
——————————————————————————————————————	101	Title				
Signature (Electronic Submission	on)	Date	03/28/	2024		
	THE SPACE FOR FEI	DERAL OR STA	ATE OFICE USE			
Approved by KEITH P IMMATTY / Ph: (575) 988	FEOGRESURCES INCORPORATED BAGBY SKY LOBBY 2, HOUSTON, TX 777 (713) 8b. Phone No. (include area code) (713) 651-7000 RED HILLS/BONE SPRING, NORTH II. Country or Parish, State LEANM 12. CHECK THE APPROPRIATE BOX(ES) TO INDICATE NATURE OF NOTICE, REPORT OR OTHER DATA IBMISSION TYPE OF ACTION Acidize Deepen Acidize Deepen Production (Start/Resume) Water Shut-Off Casing Repair New Construction Recomplete Change Plans Plug and Abandon Plug Back Water Disposal set or Completed Operation: Clearly state all pertinent details, including estimated starting date of any proposed work and approximate duration thereo o deepen directionally or recomplete horizontally, give subsurface locations and measured and true vertical depths of all pertinent arkers and zone in involved operations. If the operation results in a multiple completion or recompletion in a new interval, a Form 3160-4 must be filed only after all requirements, including reclamation, have been completed and the operator has detennined that the it inspection.) Fed Com 514H (FKA 407H) API #: 30-025-52706 set from Stonewall 28 Fed Com 407H to Stonewall 28 Fed Com 514H. sta approval to use alternate casing designs listed in the Blanket Casing Design pages 3 additional information has the foregoing is true and correct. Name (Printed/Typed) Pric (432) 848-9161 Title Price (2000) API Well No. 30-025-52706 To Field and Pool or Exploratory Area RED HILLS/BONE SPIRING, NORTH III. Country or Parish, State LEANM 10. From T-24-S, R-34-E, Sec 33, 100° FSL, 1290° FEL, Lea Co., N.M. Regulatory Specialist Field Repulse of the Completed special stream of the provise of the provise of the page of the pa					
Conditions of approval, if any, are attack certify that the applicant holds legal or e	hed. Approval of this notice does not warra	ant or	RLSBAD	Date		

Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

(Form 3160-5, page 2)

Additional Information

Additional Remarks

(EOG BLM Variance 5a - Alternate Shallow Casing Designs.pdf) document. See Sundry ID #2782217.

Location of Well

0. SHL: TR B / 260 FNL / 1759 FEL / TWSP: 24S / RANGE: 34E / SECTION: 28 / LAT: 32.1950794 / LONG: -103.4720556 (TVD: 0 feet, MD: 0 feet) PPP: TR A / 100 FNL / 989 FEL / TWSP: 24S / RANGE: 34E / SECTION: 28 / LAT: 32.1955167 / LONG: -103.4695667 (TVD: 10206 feet, MD: 10266 feet) PPP: TR I / 2640 FNL / 990 FEL / TWSP: 24S / RANGE: 34E / SECTION: 28 / LAT: 32.1885386 / LONG: -103.4695561 (TVD: 10471 feet, MD: 12907 feet) BHL: TR P / 100 FSL / 990 FEL / TWSP: 24S / RANGE: 34E / SECTION: 33 / LAT: 32.1670453 / LONG: -103.469523 (TVD: 10471 feet, MD: 20726 feet)

DISTRICT I

1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-d161 Fax: (575) 393-0720

DISTRICT II

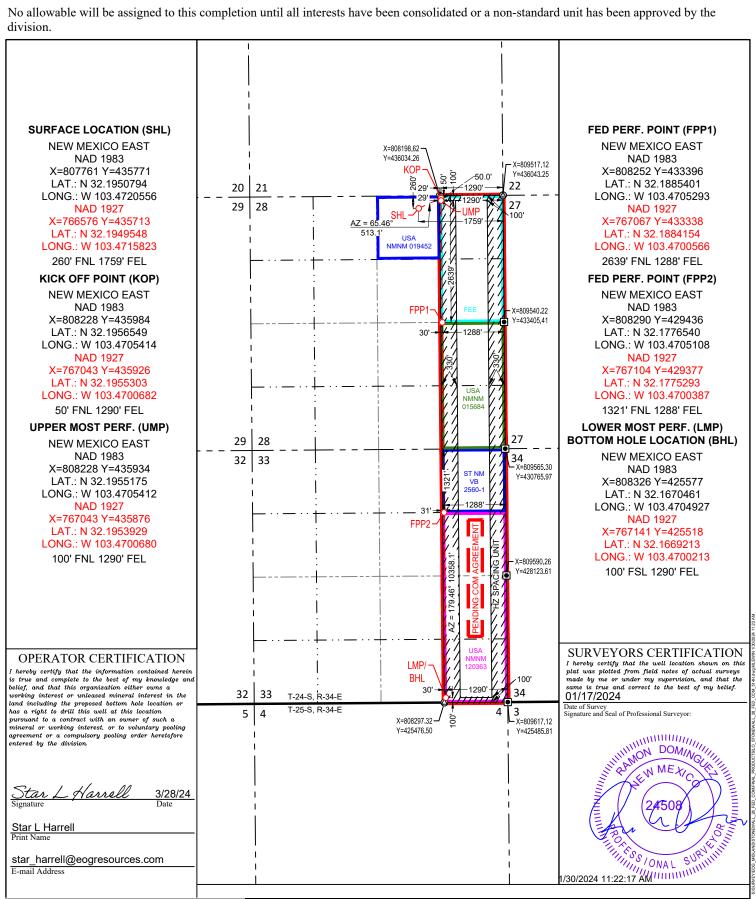
811 S. First St., Artesia, NM 88210
Phone: (575) 748-9720

DISTRICT III

1000 Rio Brazos Rd., Aztec, NM 87410
Phone: (505) 334-6178 Fax: (305) 334-6170

DISTRICT IV

2120 S. St. Francis Dr., Santa Fe, NM 87505
Phone: (505) 476-3460 Fax: (505) 476-3462


State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

1	API Number 30-025-52706			Pool Code 96434		Pool Name Red Hills; Bone Spring, North				
Property C 32147		Property Name Well Number STONEWALL 28 FED COM 514H								
OGRID No. 7377				Operator Name Elevation EOG RESOURCES, INC. 3491'						
					Surface Locat	ion				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County	
В	28	24-S	34-E	-	260'	NORTH	1759'	EAST	LEA	
		-	Bott	om Hole	Location If Diffe	erent From Surfac	e			
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County	
Р	33	24-S	34-E	34-E - 100' SOUTH 1290' EAST LE						
Dedicated Acres 320.00	Joint or	Infill	Consolidated Code Order No. PENDING COM AGREEMENT							

Revised Permit Information 01/11/2024:

Well Name: Stonewall 28 Fed Com 514H; FKA Stonewall 28 Fed Com 407H

Location: SHL: 260' FNL & 1759' FEL, Section 28, T-24-S, R-34-E, Lea Co., N.M.

BHL: 100' FSL & 1290' FEL, Section 33, T-24-S, R-34-E, Lea Co., N.M.

1. CASING PROGRAM:

Hole	Interval MD		Interva	al TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13-1/2"	0	1,210	0	1,210	10-3/4"	40.5#	J-55	STC
9-7/8"	0	5,182	0	5,160	8-5/8"	32#	J-55	BTC-SC
6-3/4"	0	21,206	0	10,982	5-1/2"	20#	P110-EC	DWC/C IS MS

Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

2. CEMENTING PROGRAM:

Depth	No. Sacks	Wt.	Yld Ft3/sk	Slurry Description
1,210'	320	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)
	140	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1,010')
5,160' 8-5/8"	320	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	140	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 4,150')
21,206' 5-1/2"	350	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC @ 4,660')
	750	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ 10530')

Additive	Purpose
Bentonite Gel	Lightweight/Lost circulation prevention
Calcium Chloride	Accelerator
Cello-flake	Lost circulation prevention
Sodium Metasilicate	Accelerator
MagOx	Expansive agent
Pre-Mag-M	Expansive agent
Sodium Chloride	Accelerator
FL-62	Fluid loss control
Halad-344	Fluid loss control
Halad-9	Fluid loss control
HR-601	Retarder
Microbond	Expansive Agent

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

3. MUD PROGRAM:

Depth (TVD)	Type	Weight (ppg)	Viscosity	Water Loss
0 – 1,210'	Fresh - Gel	8.6-8.8	28-34	N/c
1,210' – 5,160'	Brine	9.0-10.5	28-34	N/c
5,160' – 21,206'	Oil Base	8.8-9.5	58-68	N/c - 6

4. VARIANCE REQUESTS:

EOG requests the additional variance(s) in the attached document(s):

Variances requested include (supporting documents attached):

- BOP Break Testing for 5M Intermediate Intervals (EOG BLM Variance 3a_b)
- Offline Cementing for Surface and Intermediate Intervals (EOG BLM Variance 3a_b)
- Salt Interval Washout Annular Clearnace (EOG BLM Variance 4a)
- EOG requests approval to use alternate casing designs listed in the Blanket Casing Design (EOG BLM Variance 5a Alternate Shallow Casing Designs.pdf) document.

5. TUBING REQUIREMENTS

EOG respectively requests an exception to the following NMOCD rule:

• 19.15.16.10 Casing AND TUBING RQUIREMENTS: J (3): "The operator shall set tubing as near the bottom as practical and tubing perforations shall not be more than 250 feet above top of pay zone."

With horizontal flowing and gas lifted wells an end of tubing depth placed at or slightly above KOP is a conservative way to ensure the tubing stays clean from debris, plugging, and allows for fewer well interventions post offset completion. The deeper the tubulars are run into the curve, the higher the probability is that the tubing will become stuck in sand and or well debris as the well produces over time. An additional consideration for EOT placement during artificial lift installations is avoiding the high dog leg severity and inclinations found in the curve section of the wellbore to help improve reliability and performance. Dog leg severity and inclinations tend not to hamper gas lifted or flowing wells, but they do effect other forms of artificial lift like rod pump or ESP (electric submersible pump). Keeping the EOT above KOP is an industry best practice for those respective forms of artificial lift.

260' FNL Revised Wellbore 1759' FEL KB: 3516' GL: 3491'

Section 28

T-24-S, R-34-E API: 30-025-52706

GEOLOGIC NAME OF SURFACE FORMATION:

Permian

ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	1,092'
Tamarisk Anhydrite	1,186'
Top of Salt	1,347'
Base of Salt	5,063'
Lamar	5,349'
Bell Canyon	5,375'
Cherry Canyon	6,319'
Brushy Canyon	7,658'
Bone Spring Lime	9,198'
Leonard (Avalon) Shale	9,265'
1st Bone Spring Sand	10,163'
2nd Bone Spring Shale	10,373'
2nd Bone Spring Sand	10,631'
3rd Bone Spring Carb	11,171'
3rd Bone Spring Sand	11,741'
Wolfcamp	12,133'
TD	10,982'

ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0-400'	Fresh Water
Bell Canyon	5,375'	Oil
Cherry Canyon	6,319'	Oil
Brushy Canyon	7,658'	Oil
Leonard (Avalon) Shale	9,265'	Oil
1st Bone Spring Sand	10,163'	Oil
2nd Bone Spring Shale	10,373'	Oil
2nd Bone Spring Sand	10,631'	Oil

Midland

Lea County, NM (NAD 83 NME) Stonewall 28 Fed Com #514H

OH

Plan: Plan #0.2

Standard Planning Report

08 February, 2024

Database:

Map Zone:

Midland Company:

Lea County, NM (NAD 83 NME) Proiect:

PEDM

Stonewall 28 Fed Com Site:

Well: #514H Wellbore: ОН Plan #0.2 Design:

Local Co-ordinate Reference

TVD Reference: MD Reference:

North Reference:

Survey Calculation Method:

Well #514H

kb = 26' @ 3518.0usft kb = 26' @ 3518.0usft

Grid

Minimum Curvature

Lea County, NM (NAD 83 NME) Project

Map System: US State Plane 1983 North American Datum 1983 Geo Datum:

New Mexico Eastern Zone

System Datum:

Mean Sea Level

Stonewall 28 Fed Com Site

Site Position: Northing: 435,811.00 usft 32° 11' 42.907 N Latitude: Мар 804,872.00 usft 103° 28' 53.013 W From: Easting: Longitude:

Position Uncertainty: 0.0 usft Slot Radius: 13-3/16 "

Well #514H

435,771.00 usft 0.0 usft 32° 11' 42.283 N +N/-S **Well Position** Northing: Latitude:

0.0 usft 807,761.00 usft 103° 28' 19.399 W +E/-W Easting: Longitude: 0.0 usft 3,491.0 usft **Position Uncertainty** Wellhead Elevation: usft **Ground Level:**

0.46° **Grid Convergence:**

ОН Wellbore

Magnetics **Model Name** Sample Date Declination Dip Angle Field Strength (°) (°) (nT) IGRF2020 11/17/2022 6.33 59.84 47,337.80081960

Plan #0.2 Design

Audit Notes:

Version: Phase: **PLAN** Tie On Depth: 0.0

Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°) 0.0 0.0 0.0 176.83

Date 2/8/2024 Plan Survey Tool Program

Depth From Depth To

Survey (Wellbore) **Tool Name** Remarks (usft) (usft)

0.0 21,205.7 EOG MWD+IFR1 1 Plan #0.2 (OH)

MWD + IFR1

PEDM Database: Midland Company:

Lea County, NM (NAD 83 NME) Project:

Site:

#514H Well: Wellbore:

Design:

Stonewall 28 Fed Com

ОН Plan #0.2 Local Co-ordinate Reference

TVD Reference: MD Reference:

North Reference: **Survey Calculation Method:**

Well #514H

kb = 26' @ 3518.0usft kb = 26' @ 3518.0usft

Grid

lan Sections										
Measured Depth (usft)	Inclination (°)	Azimuth	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,539.8	4.80	65.48	1,539.5	4.2	9.1	2.00	2.00	0.00	65.48	
7,439.4	4.80	65.48	7,418.5	208.8	457.9	0.00	0.00	0.00	0.00	
7,679.2	0.00	0.00	7,658.0	213.0	467.0	2.00	-2.00	0.00	180.00	
10,525.7	0.00	0.00	10,504.5	213.0	467.0	0.00	0.00	0.00	0.00	KOP(Stonewall 28 Fe
10,746.2	26.46	180.00	10,717.2	163.0	467.0	12.00	12.00	81.65	180.00	FTP(Stonewall 28 Fe
11,275.7	90.00	179.43	10,981.9	-264.4	469.9	12.00	12.00	-0.11	-0.64	
13,386.3	90.00	179.43	10,982.0	-2,375.0	491.0	0.00	0.00	0.00	0.00	Fed Perf 1(Stonewall
17,346.5	90.00	179.47	10,982.0	-6,335.0	529.0	0.00	0.00	0.00	86.34	Fed Perf 2(Stonewall
21,205.7	90.00	179.46	10,982.0	-10,194.0	565.0	0.00	0.00	0.00	-102.29	PBHL(Stonewall 28 F

Database: PEDM

Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Stonewall 28 Fed Com

 Well:
 #514H

 Wellbore:
 OH

 Design:
 Plan #0.2

Local Co-ordinate Reference

TVD Reference: MD Reference:

North Reference: Survey Calculation Method: Well #514H

kb = 26' @ 3518.0usft kb = 26' @ 3518.0usft

Grid

anned Survey									
Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
(usft)		(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
, ,	(°)		, ,	, ,	, ,	, ,	,	, ,	,
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
			,						
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	2.00	65.48	1,400.0	0.7	1.6	-0.6	2.00	2.00	0.00
1,500.0	4.00	65.48	1.499.8	2.9	6.3	-2.5	2.00	2.00	0.00
			,						
1,539.8	4.80	65.48	1,539.5	4.2	9.1	-3.7	2.00	2.00	0.00
1,600.0	4.80	65.48	1,599.5	6.3	13.7	-5.5	0.00	0.00	0.00
1,700.0	4.80	65.48	1,699.2	9.7	21.3	-8.5	0.00	0.00	0.00
1,800.0	4.80	65.48	1,798.8	13.2	28.9	-11.6	0.00	0.00	0.00
1,900.0	4.80	65.48	1,898.5	16.7	36.5	-14.6	0.00	0.00	0.00
2,000.0	4.80	65.48	1,998.1	20.1	44.1	-17.7	0.00	0.00	0.00
2,100.0	4.80	65.48	2,097.8	23.6	51.7	-20.7	0.00	0.00	0.00
2,200.0	4.80	65.48	2,197.4	27.1	59.3	-23.7	0.00	0.00	0.00
2,300.0	4.80	65.48	2,297.1	30.5	66.9	-26.8	0.00	0.00	0.00
2,400.0	4.80	65.48	2,396.7	34.0	74.6	-29.8	0.00	0.00	0.00
	4.80	65.48	2,496.4	37.5	82.2	-32.9	0.00		0.00
2,500.0			,					0.00	
2,600.0	4.80	65.48	2,596.0	40.9	89.8	-35.9	0.00	0.00	0.00
2,700.0	4.80	65.48	2,695.7	44.4	97.4	-39.0	0.00	0.00	0.00
2,800.0	4.80	65.48	2,795.3	47.9	105.0	-42.0	0.00	0.00	0.00
2,900.0	4.80	65.48	2,895.0	51.4	112.6	-45.0	0.00	0.00	0.00
			,						
3,000.0	4.80	65.48	2,994.6	54.8	120.2	-48.1	0.00	0.00	0.00
3,100.0	4.80	65.48	3,094.3	58.3	127.8	-51.1	0.00	0.00	0.00
3,200.0	4.80	65.48	3,193.9	61.8	135.4	-54.2	0.00	0.00	0.00
3,300.0	4.80	65.48	3,293.6	65.2	143.0	-57.2	0.00	0.00	0.00
0.400.0	4.00	05.40		00.7	450.0	20.0	0.00	0.00	0.00
3,400.0	4.80	65.48	3,393.2	68.7	150.6	-60.3	0.00	0.00	0.00
3,500.0	4.80	65.48	3,492.9	72.2	158.2	-63.3	0.00	0.00	0.00
3,600.0	4.80	65.48	3,592.5	75.6	165.8	-66.3	0.00	0.00	0.00
3,700.0	4.80	65.48	3,692.2	79.1	173.4	-69.4	0.00	0.00	0.00
3,800.0	4.80	65.48	3,791.8	82.6	181.0	-72.4	0.00	0.00	0.00
3,900.0	4.80	65.48	3,891.5	86.0	188.7	-75.5	0.00	0.00	0.00
4,000.0	4.80	65.48	3,991.1	89.5	196.3	-78.5	0.00	0.00	0.00
4,100.0	4.80	65.48	4,090.8	93.0	203.9	-81.6	0.00	0.00	0.00
4,200.0	4.80	65.48	4,190.4	96.5	211.5	-84.6	0.00	0.00	0.00
4,300.0	4.80	65.48	4,290.1	99.9	219.1	-87.6	0.00	0.00	0.00
4,300.0	4.00		- ,∠30.1	33.3		-07.0		0.00	
4,400.0	4.80	65.48	4,389.7	103.4	226.7	-90.7	0.00	0.00	0.00
4,500.0	4.80	65.48	4,489.4	106.9	234.3	-93.7	0.00	0.00	0.00
4,600.0	4.80	65.48	4,589.0	110.3	241.9	-96.8	0.00	0.00	0.00
	4.80					-90.8			
4,700.0		65.48	4,688.7	113.8	249.5		0.00	0.00	0.00
4,800.0	4.80	65.48	4,788.3	117.3	257.1	-102.9	0.00	0.00	0.00
4,900.0	4.80	65.48	4,888.0	120.7	264.7	-105.9	0.00	0.00	0.00
5,000.0	4.80	65.48	4,987.6	124.2	272.3	-108.9	0.00	0.00	0.00
5,100.0	4.80	65.48	5,087.3	127.7	279.9	-112.0	0.00	0.00	0.00

Database: PEDM

Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Stonewall 28 Fed Com

 Well:
 #514H

 Wellbore:
 OH

 Design:
 Plan #0.2

Local Co-ordinate Reference

TVD Reference: MD Reference:

North Reference:

Survey Calculation Method:

Well #514H

kb = 26' @ 3518.0usft kb = 26' @ 3518.0usft

Grid

nned Survey									
Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
5,200.0	4.80	65.48	5,186.9	131.1	287.5	-115.0	0.00	0.00	0.00
5,300.0	4.80	65.48	5,286.6	134.6	295.1	-118.1	0.00	0.00	0.00
5,400.0	4.80	65.48	5,386.2	138.1	302.7	-121.1	0.00	0.00	0.00
5,500.0	4.80	65.48	5,485.9	141.6	310.4	-124.2	0.00	0.00	0.00
5,600.0	4.80	65.48	5,585.5	145.0	318.0	-127.2	0.00	0.00	0.00
5,700.0	4.80	65.48	5,685.2	148.5	325.6	-130.2	0.00	0.00	0.00
5,800.0	4.80	65.48	5,784.8	152.0	333.2	-133.3	0.00	0.00	0.00
5,900.0	4.80	65.48	5,884.5	155.4	340.8	-136.3	0.00	0.00	0.00
6,000.0	4.80	65.48	5,984.1	158.9	348.4	-130.3	0.00	0.00	0.00
6,100.0	4.80	65.48	6,083.8	162.4	356.0	-142.4	0.00	0.00	0.00
	4.80	65.48			363.6	-145.5			
6,200.0			6,183.4	165.8		-145.5 -148.5	0.00	0.00	0.00
6,300.0	4.80	65.48	6,283.1	169.3	371.2		0.00	0.00	0.00
6,400.0	4.80	65.48	6,382.7	172.8	378.8	-151.5	0.00	0.00	0.00
6,500.0	4.80	65.48	6,482.4	176.2	386.4	-154.6	0.00	0.00	0.00
6,600.0	4.80	65.48	6,582.0	179.7	394.0	-157.6	0.00	0.00	0.00
6,700.0	4.80	65.48	6,681.7	183.2	401.6	-160.7	0.00	0.00	0.00
6,800.0	4.80	65.48	6,781.3	186.7	409.2	-163.7	0.00	0.00	0.00
6,900.0	4.80	65.48	6,881.0	190.1	416.8	-166.8	0.00	0.00	0.00
7,000.0	4.80	65.48	6,980.6	193.6	424.5	-169.8	0.00	0.00	0.00
7,100.0	4.80	65.48	7,080.3	197.1	432.1	-172.9	0.00	0.00	0.00
7,200.0	4.80	65.48	7,179.9	200.5	439.7	-175.9	0.00	0.00	0.00
7,300.0	4.80	65.48	7,279.6	204.0	447.3	-178.9	0.00	0.00	0.00
7,400.0	4.80	65.48	7,379.2	207.5	454.9	-182.0	0.00	0.00	0.00
7,439.4	4.80	65.48	7,418.5	208.8	457.9	-183.2	0.00	0.00	0.00
7,500.0	3.58	65.48	7,478.9	210.7	461.9	-184.8	2.00	-2.00	0.00
7,600.0	1.58	65.48	7,578.8	212.5	466.0	-186.4	2.00	-2.00	0.00
7,679.2	0.00	0.00	7,658.0	213.0	467.0	-186.8	2.00	-2.00	0.00
7,700.0	0.00	0.00	7,678.8	213.0	467.0	-186.8	0.00	0.00	0.00
7,800.0	0.00	0.00	7,778.8	213.0	467.0	-186.8	0.00	0.00	0.00
7,900.0	0.00	0.00	7,878.8	213.0	467.0	-186.8	0.00	0.00	0.00
8,000.0	0.00	0.00	7,978.8	213.0	467.0	-186.8	0.00	0.00	0.00
8,100.0	0.00	0.00	8,078.8	213.0	467.0	-186.8	0.00	0.00	0.00
8.200.0	0.00	0.00		213.0		-186.8	0.00	0.00	0.00
-,	0.00	0.00	8,178.8		467.0	-186.8 -186.8		0.00	
8,300.0 8,400.0	0.00		8,278.8	213.0	467.0 467.0	-186.8 -186.8	0.00		0.00
	0.00	0.00	8,378.8	213.0		-186.8 -186.8	0.00	0.00 0.00	0.00
8,500.0 8,600.0	0.00	0.00 0.00	8,478.8 8,578.8	213.0 213.0	467.0 467.0	-186.8 -186.8	0.00 0.00	0.00	0.00 0.00
8,700.0	0.00	0.00	8,678.8	213.0	467.0	-186.8	0.00	0.00	0.00
8,800.0	0.00	0.00	8,778.8	213.0	467.0	-186.8	0.00	0.00	0.00
8,900.0	0.00	0.00	8,878.8	213.0	467.0	-186.8	0.00	0.00	0.00
9,000.0	0.00	0.00	8,978.8	213.0	467.0	-186.8	0.00	0.00	0.00
9,100.0	0.00	0.00	9,078.8	213.0	467.0	-186.8	0.00	0.00	0.00
9,200.0	0.00	0.00	9,178.8	213.0	467.0	-186.8	0.00	0.00	0.00
9,300.0	0.00	0.00	9,278.8	213.0	467.0	-186.8	0.00	0.00	0.00
9,400.0	0.00	0.00	9,378.8	213.0	467.0	-186.8	0.00	0.00	0.00
9,500.0	0.00	0.00	9,478.8	213.0	467.0	-186.8	0.00	0.00	0.00
9,600.0	0.00	0.00	9,578.8	213.0	467.0	-186.8	0.00	0.00	0.00
9,700.0	0.00	0.00	9,678.8	213.0	467.0	-186.8	0.00	0.00	0.00
9,800.0	0.00	0.00	9,778.8	213.0	467.0	-186.8	0.00	0.00	0.00
9,900.0	0.00	0.00	9,878.8	213.0	467.0	-186.8	0.00	0.00	0.00
10,000.0	0.00	0.00	9,978.8	213.0	467.0	-186.8	0.00	0.00	0.00
10,100.0	0.00	0.00	10,078.8	213.0	467.0	-186.8	0.00	0.00	0.00
				213.0	467.0	-186.8	0.00	0.00	0.00

Database: PEDM

Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Stonewall 28 Fed Com

 Well:
 #514H

 Wellbore:
 OH

 Design:
 Plan #0.2

Local Co-ordinate Reference

TVD Reference: MD Reference:

North Reference: Survey Calculation Method: Well #514H

kb = 26' @ 3518.0usft kb = 26' @ 3518.0usft

Grid

nned Survey									
Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
10,300.0	0.00	0.00	10,278.8	213.0	467.0	-186.8	0.00	0.00	0.00
10,400.0	0.00	0.00	10,378.8	213.0	467.0	-186.8	0.00	0.00	0.00
10,500.0	0.00	0.00	10,478.8	213.0	467.0	-186.8	0.00	0.00	0.00
10,525.7	0.00	0.00	10,504.5	213.0	467.0	-186.8	0.00	0.00	0.00
10,020.1			10,004.0		407.0		0.00	0.00	0.00
10,550.0	2.91	180.00	10,528.8	212.4	467.0	-186.2	12.00	12.00	0.00
10,575.0	5.92	180.00	10,553.7	210.5	467.0	-184.3	12.00	12.00	0.00
10,600.0	8.92	180.00	10,578.5	207.2	467.0	-181.1	12.00	12.00	0.00
10,625.0	11.92	180.00	10,603.1	202.7	467.0	-176.6	12.00	12.00	0.00
10,650.0	14.92	180.00	10,627.4	196.9	467.0	-170.8	12.00	12.00	0.00
40.075.0		400.00	40.054.4						
10,675.0	17.92	180.00	10,651.4	189.8	467.0	-163.7	12.00	12.00	0.00
10,700.0	20.92	180.00	10,674.9	181.5	467.0	-155.4	12.00	12.00	0.00
10,725.0	23.92	180.00	10,698.0	172.0	467.0	-145.9	12.00	12.00	0.00
10,746.2	26.46	180.00	10,717.2	163.0	467.0	-136.9	12.00	12.00	0.00
10,750.0	26.92	179.99	10,720.6	161.3	467.0	-135.2	12.00	12.00	-0.30
10.775.0	29.92	179.92	10,742.6	149.4	467.0	-123.3	12.00	12.00	-0.26
10,773.0	32.92	179.87	10,742.0	136.4	467.0	-123.3	12.00	12.00	-0.22
10,800.0	35.92 35.92	179.82	10,783.9	122.2	467.0	-110.3 -96.2		12.00	-0.22 -0.19
							12.00		
10,850.0	38.92	179.78	10,804.4	107.0	467.1	-81.0	12.00	12.00	-0.16
10,875.0	41.92	179.75	10,823.5	90.8	467.2	-64.8	12.00	12.00	-0.14
10,900.0	44.92	179.71	10,841.6	73.6	467.3	-47.7	12.00	12.00	-0.13
10,925.0	47.92	179.69	10,858.8	55.5	467.4	-29.6	12.00	12.00	-0.11
10,950.0	50.92	179.66	10,875.1	36.6	467.5	-10.6	12.00	12.00	-0.10
10,975.0	53.92	179.64	10,890.3	16.7	467.6	9.2	12.00	12.00	-0.09
11,000.0	56.92	179.61	10,904.5	-3.8	467.7	29.7	12.00	12.00	-0.09
11,000.0	30.92	179.01	10,904.5	-3.0	407.7	29.1	12.00	12.00	-0.09
11,025.0	59.92	179.59	10,917.6	-25.1	467.9	51.0	12.00	12.00	-0.08
11,050.0	62.92	179.57	10,929.6	-47.1	468.0	72.9	12.00	12.00	-0.08
11,075.0	65.92	179.56	10,940.4	-69.6	468.2	95.4	12.00	12.00	-0.07
11,100.0	68.92	179.54	10,950.0	-92.7	468.4	118.5	12.00	12.00	-0.07
11,125.0	71.92	179.52	10,958.4	-116.3	468.6	142.0	12.00	12.00	-0.07
11,150.0	74.92	179.51	10,965.5	-140.2	468.8	165.9	12.00	12.00	-0.06
11,175.0	77.92	179.49	10,971.4	-164.5	469.0	190.2	12.00	12.00	-0.06
11,200.0	80.92	179.47	10,976.0	-189.1	469.2	214.8	12.00	12.00	-0.06
11,225.0	83.92	179.46	10,979.3	-213.9	469.5	239.5	12.00	12.00	-0.06
11,250.0	86.92	179.44	10,981.3	-238.8	469.7	264.4	12.00	12.00	-0.06
	90.00	179.43	10,981.9	-264.4	469.9	290.0	12.00	12.00	-0.06
11,275.7									
11,300.0	90.00	179.43	10,981.9	-288.8	470.2	314.3	0.00	0.00	0.00
11,400.0	90.00	179.43	10,982.0	-388.7	471.2	414.2	0.00	0.00	0.00
11,500.0	90.00	179.43	10,982.0	-488.7	472.2	514.1	0.00	0.00	0.00
11,600.0	90.00	179.43	10,982.0	-588.7	473.2	614.0	0.00	0.00	0.00
11,700.0	90.00	179.43	10,982.0	-688.7	474.2	713.9	0.00	0.00	0.00
11,800.0	90.00	179.43	10,982.0	-788.7	475.2	813.8	0.00	0.00	0.00
11,900.0	90.00	179.43	10,982.0	-888.7	476.2	913.7	0.00	0.00	0.00
12,000.0	90.00	179.43	10,982.0	-988.7	470.2	1,013.6	0.00	0.00	0.00
			,						
12,100.0	90.00	179.43	10,982.0	-1,088.7	478.2	1,113.5	0.00	0.00	0.00
12,200.0	90.00	179.43	10,982.0	-1,188.7	479.2	1,213.4	0.00	0.00	0.00
12,300.0	90.00	179.43	10,982.0	-1,288.7	480.2	1,313.3	0.00	0.00	0.00
12,400.0	90.00	179.43	10,982.0	-1,388.7	481.2	1,413.2	0.00	0.00	0.00
12,500.0	90.00	179.43	10,982.0	-1,488.7	482.2	1,513.1	0.00	0.00	0.00
12,600.0	90.00	179.43	10,982.0	-1,588.7	483.2	1,613.0	0.00	0.00	0.00
12,700.0	90.00	179.43	10,982.0	-1,688.7	484.2	1,712.9	0.00	0.00	0.00
12,800.0	90.00	179.43	10,982.0	-1,788.7	485.2	1,812.8	0.00	0.00	0.00
12,900.0	90.00	179.43	10,982.0	-1,888.7	486.1	1,912.7	0.00	0.00	0.00
13,000.0	90.00	179.43	10,982.0	-1,988.7	487.1	2,012.6	0.00	0.00	0.00

Database: PEDM

Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Stonewall 28 Fed Com Well: #514H

 Well:
 #514H

 Wellbore:
 OH

 Design:
 Plan #0.2

Local Co-ordinate Reference

TVD Reference: MD Reference:

North Reference: Survey Calculation Method: Well #514H

kb = 26' @ 3518.0usft kb = 26' @ 3518.0usft

Grid

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,100.0	90.00	179.43	10,982.0	-2,088.7	488.1	2,112.5	0.00	0.00	0.00
13,200.0	90.00	179.43	10,982.0	-2,188.7	489.1	2,212.4	0.00	0.00	0.00
13,300.0	90.00	179.43	10,982.0	-2,288.7	490.1	2,312.3	0.00	0.00	0.00
13,386.3	90.00	179.43	10,982.0	-2,375.0	491.0	2,398.5	0.00	0.00	0.00
13,400.0	90.00	179.43	10,982.0	-2,388.6	491.1	2,412.2	0.00	0.00	0.00
13,500.0	90.00	179.43	10,982.0	-2,488.6	492.1	2,512.1	0.00	0.00	0.00
13,600.0	90.00	179.43	10,982.0	-2,588.6	493.1	2,612.0	0.00	0.00	0.00
13,700.0	90.00	179.43	10,982.0	-2,688.6	494.1	2,711.9	0.00	0.00	0.00
13,800.0 13,900.0	90.00 90.00	179.43 179.43	10,982.0 10,982.0	-2,788.6 -2,888.6	495.1 496.1	2,811.8 2,911.7	0.00 0.00	0.00 0.00	0.00 0.00
14,000.0	90.00	179.44	10,982.0	-2,988.6	490.1	3,011.5	0.00	0.00	0.00
14,100.0	90.00	179.44	10,982.0	-3,088.6	498.1	3,111.4	0.00	0.00	0.00
14,200.0 14,300.0	90.00 90.00	179.44 179.44	10,982.0 10,982.0	-3,188.6 -3,288.6	499.1 500.0	3,211.3 3,311.2	0.00 0.00	0.00 0.00	0.00 0.00
14,400.0	90.00	179.44	10,982.0	-3,200.0 -3,388.6	500.0	3,411.1	0.00	0.00	0.00
14,500.0	90.00	179.44	10,982.0	-3,488.6	502.0	3,511.0	0.00	0.00	0.00
	90.00	179.44	10,982.0	-3,588.6	503.0		0.00	0.00	0.00
14,600.0 14,700.0	90.00	179.44	10,982.0	-3,588.6 -3,688.6	503.0	3,610.9 3,710.8	0.00	0.00	0.00
14,800.0	90.00	179.44	10,982.0	-3,788.6	504.9	3,810.7	0.00	0.00	0.00
14,900.0	90.00	179.45	10,982.0	-3,888.6	505.9	3,910.6	0.00	0.00	0.00
15,000.0	90.00	179.45	10,982.0	-3,988.6	506.8	4,010.5	0.00	0.00	0.00
15,100.0	90.00	179.45	10,982.0	-4,088.6	507.8	4,110.4	0.00	0.00	0.00
15,200.0	90.00	179.45	10,982.0	-4,188.6	508.8	4,210.3	0.00	0.00	0.00
15,300.0	90.00	179.45	10,982.0	-4,288.6	509.7	4,310.2	0.00	0.00	0.00
15,400.0	90.00	179.45	10,982.0	-4,388.6	510.7	4,410.1	0.00	0.00	0.00
15,500.0	90.00	179.45	10,982.0	-4,488.5	511.7	4,510.0	0.00	0.00	0.00
15,600.0	90.00	179.45	10,982.0	-4,588.5	512.6	4,609.9	0.00	0.00	0.00
15,700.0	90.00	179.45	10,982.0	-4,688.5	513.6	4,709.8	0.00	0.00	0.00
15,800.0	90.00	179.45	10,982.0	-4,788.5	514.5	4,809.7	0.00	0.00	0.00
15,900.0	90.00	179.46 179.46	10,982.0 10,982.0	-4,888.5	515.5 516.4	4,909.6	0.00 0.00	0.00	0.00 0.00
16,000.0	90.00			-4,988.5		5,009.5		0.00	
16,100.0	90.00	179.46	10,982.0	-5,088.5	517.4	5,109.4	0.00	0.00	0.00
16,200.0	90.00	179.46	10,982.0	-5,188.5	518.3	5,209.2	0.00	0.00	0.00
16,300.0 16,400.0	90.00 90.00	179.46 179.46	10,982.0 10,982.0	-5,288.5 -5,388.5	519.2 520.2	5,309.1 5,409.0	0.00 0.00	0.00 0.00	0.00 0.00
16,500.0	90.00	179.46	10,982.0	-5,488.5	520.2	5,508.9	0.00	0.00	0.00
16,600.0 16,700.0	90.00 90.00	179.46 179.46	10,982.0 10,982.0	-5,588.5 -5,688.5	522.1 523.0	5,608.8 5,708.7	0.00 0.00	0.00 0.00	0.00 0.00
16,700.0	90.00	179.46	10,982.0	-5,066.5 -5,788.5	523.0 523.9	5,808.6	0.00	0.00	0.00
16,900.0	90.00	179.47	10,982.0	-5,888.5	524.9	5,908.5	0.00	0.00	0.00
17,000.0	90.00	179.47	10,982.0	-5,988.5	525.8	6,008.4	0.00	0.00	0.00
17,100.0	90.00	179.47	10,982.0	-6,088.5	526.7	6,108.3	0.00	0.00	0.00
17,200.0	90.00	179.47	10,982.0	-6,188.5	527.6	6,208.2	0.00	0.00	0.00
17,300.0	90.00	179.47	10,982.0	-6,288.5	528.6	6,308.1	0.00	0.00	0.00
17,346.5	90.00	179.47	10,982.0	-6,335.0	529.0	6,354.6	0.00	0.00	0.00
17,400.0	90.00	179.47	10,982.0	-6,388.5	529.5	6,408.0	0.00	0.00	0.00
17,500.0	90.00	179.47	10,982.0	-6,488.5	530.4	6,507.9	0.00	0.00	0.00
17,600.0	90.00	179.47	10,982.0	-6,588.5	531.3	6,607.8	0.00	0.00	0.00
17,700.0	90.00	179.47	10,982.0	-6,688.5	532.3	6,707.7	0.00	0.00	0.00
17,800.0	90.00	179.47	10,982.0	-6,788.4	533.2	6,807.6	0.00	0.00	0.00
17,900.0	90.00	179.47	10,982.0	-6,888.4	534.1	6,907.4	0.00	0.00	0.00
18,000.0	90.00	179.47	10,982.0	-6,988.4	535.0	7,007.3	0.00	0.00	0.00
18,100.0	90.00	179.47	10,982.0	-7,088.4	536.0	7,107.2	0.00	0.00	0.00

Database: PEDM

Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Stonewall 28 Fed Com

 Well:
 #514H

 Wellbore:
 OH

 Design:
 Plan #0.2

Local Co-ordinate Reference

TVD Reference: MD Reference:

North Reference: Survey Calculation Method: Well #514H

kb = 26' @ 3518.0usft kb = 26' @ 3518.0usft

Grid

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
18,200.0	90.00	179.47	10,982.0	-7,188.4	536.9	7,207.1	0.00	0.00	0.00
18,300.0	90.00	179.47	10,982.0	-7,288.4	537.8	7,307.0	0.00	0.00	0.00
18,400.0	90.00	179.47	10,982.0	-7,388.4	538.7	7,406.9	0.00	0.00	0.00
18,500.0	90.00	179.47	10,982.0	-7,488.4	539.7	7,506.8	0.00	0.00	0.00
18,600.0	90.00	179.47	10,982.0	-7,588.4	540.6	7,606.7	0.00	0.00	0.00
18,700.0	90.00	179.47	10,982.0	-7,688.4	541.5	7,706.6	0.00	0.00	0.00
18,800.0	90.00	179.47	10,982.0	-7,788.4	542.5	7,806.5	0.00	0.00	0.00
18,900.0	90.00	179.47	10,982.0	-7,888.4	543.4	7,906.4	0.00	0.00	0.00
19,000.0	90.00	179.47	10,982.0	-7,988.4	544.3	8,006.3	0.00	0.00	0.00
19,100.0	90.00	179.47	10,982.0	-8,088.4	545.3	8,106.2	0.00	0.00	0.00
19,200.0	90.00	179.47	10,982.0	-8,188.4	546.2	8,206.1	0.00	0.00	0.00
19,300.0	90.00	179.47	10,982.0	-8,288.4	547.1	8,306.0	0.00	0.00	0.00
19,400.0	90.00	179.47	10,982.0	-8,388.4	548.0	8,405.9	0.00	0.00	0.00
19,500.0	90.00	179.46	10,982.0	-8,488.4	549.0	8,505.7	0.00	0.00	0.00
19,600.0	90.00	179.46	10,982.0	-8,588.4	549.9	8,605.6	0.00	0.00	0.00
19,700.0	90.00	179.46	10,982.0	-8,688.4	550.9	8,705.5	0.00	0.00	0.00
19,800.0	90.00	179.46	10,982.0	-8,788.4	551.8	8,805.4	0.00	0.00	0.00
19,900.0	90.00	179.46	10,982.0	-8,888.4	552.7	8,905.3	0.00	0.00	0.00
20,000.0	90.00	179.46	10,982.0	-8,988.4	553.7	9,005.2	0.00	0.00	0.00
20,100.0	90.00	179.46	10,982.0	-9,088.3	554.6	9,105.1	0.00	0.00	0.00
20,200.0	90.00	179.46	10,982.0	-9,188.3	555.5	9,205.0	0.00	0.00	0.00
20,300.0	90.00	179.46	10,982.0	-9,288.3	556.5	9,304.9	0.00	0.00	0.00
20,400.0	90.00	179.46	10,982.0	-9,388.3	557.4	9,404.8	0.00	0.00	0.00
20,500.0	90.00	179.46	10,982.0	-9,488.3	558.4	9,504.7	0.00	0.00	0.00
20,600.0	90.00	179.46	10,982.0	-9,588.3	559.3	9,604.6	0.00	0.00	0.00
20,700.0	90.00	179.46	10,982.0	-9,688.3	560.2	9,704.5	0.00	0.00	0.00
20,800.0	90.00	179.46	10,982.0	-9,788.3	561.2	9,804.4	0.00	0.00	0.00
20,900.0	90.00	179.46	10,982.0	-9,888.3	562.1	9,904.3	0.00	0.00	0.00
21,000.0	90.00	179.46	10,982.0	-9,988.3	563.1	10,004.2	0.00	0.00	0.00
21,100.0	90.00	179.46	10,982.0	-10,088.3	564.0	10,104.1	0.00	0.00	0.00

Database: PEDM Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Stonewall 28 Fed Com

 Well:
 #514H

 Wellbore:
 OH

 Design:
 Plan #0.2

Local Co-ordinate Reference

TVD Reference: MD Reference:

North Reference: Survey Calculation Method: Well #514H

kb = 26' @ 3518.0usft kb = 26' @ 3518.0usft

Grid

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
KOP(Stonewall 28 Fed (- plan hits target center - Point	0.00 er	0.00	10,504.5	213.0	467.0	435,984.00	808,228.00	32° 11' 44.354 N	103° 28' 13.944 W
FTP(Stonewall 28 Fed C - plan hits target center - Point	0.00 er	0.00	10,717.2	163.0	467.0	435,934.00	808,228.00	32° 11' 43.859 N	103° 28' 13.949 W
Fed Perf 1(Stonewall 28 - plan hits target center - Point	0.00 er	0.00	10,982.0	-2,375.0	491.0	433,396.00	808,252.00	32° 11' 18.744 N	103° 28' 13.907 W
Fed Perf 2(Stonewall 28 - plan hits target center - Point	0.00 er	0.00	10,982.0	-6,335.0	529.0	429,436.00	808,290.00	32° 10' 39.557 N	103° 28' 13.834 W
PBHL(Stonewall 28 Fed - plan hits target cente - Point	0.00 er	0.00	10,982.0	-10,194.0	565.0	425,577.00	808,326.00	32° 10' 1.369 N	103° 28' 13.775 W

1400

2100

3150

10500

10850

Azimuths to Grid North
True North: -0.46°
Magnetic North: 5.87°

Magnetic Field
Strength: 47337.8nT
Dip Angle: 59.84°
Date: 11/17/2022
Model: IGRF2020

To convert a Magnetic Direction to a Grid Direction, Add 5.87° To convert a Magnetic Direction to a True Direction, Add 6.33° East To convert a True Direction to a Grid Direction, Subtract 0.46°

Lea County, NM (NAD 83 NME)

Stonewall 28 Fed Com #514H

Plan #0.2

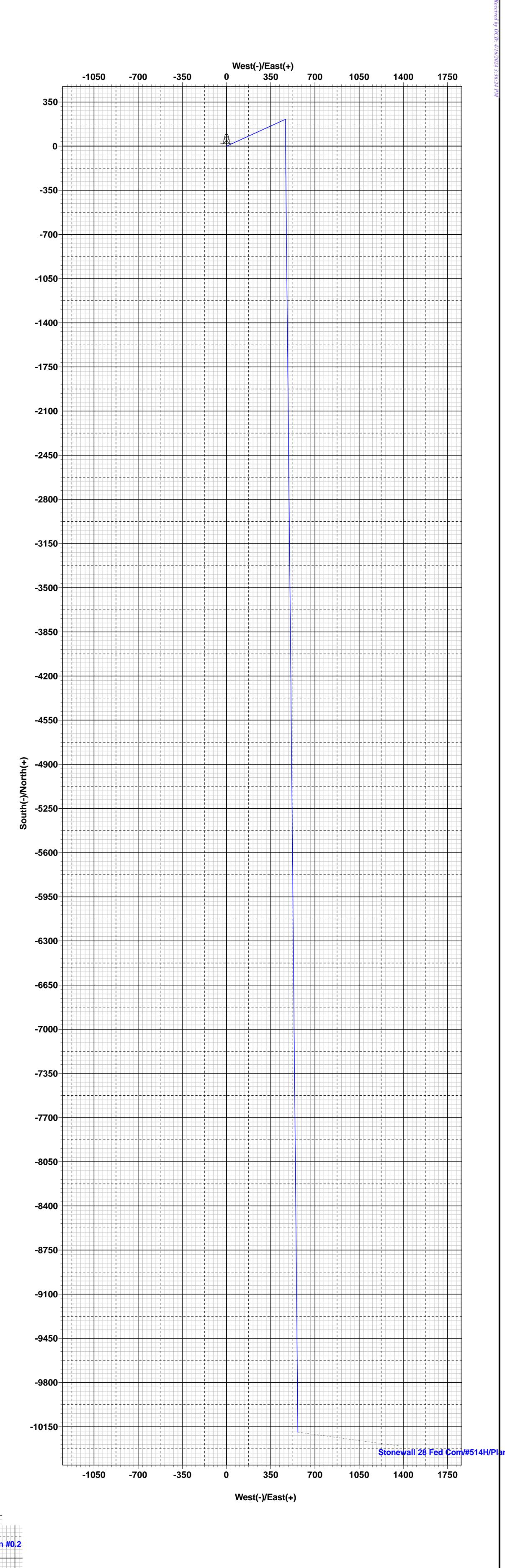
PROJECT DETAILS: Lea County, NM (NAD 83 NME)

Geodetic System: US State Plane 1983
Datum: North American Datum 1983
Ellipsoid: GRS 1980
Zone: New Mexico Eastern Zone
System Datum: Mean Sea Level

WELL DETAILS: #514H

3491.0

kb = 26' @ 3518.0usftNorthingEastingLatittude435771.00807761.0032° 11' 42.283 N


Longitude 103° 28' 19.399 W

						,	SECTIO	N DETAILS		
Sec	MD	Inc	Azi	TVD	+N/-S	+E/-W	Dleg	TFace	VSect	Target
1	0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.0	
2	1300.0	0.00	0.00	1300.0	0.0	0.0	0.00	0.00	0.0	
3	1539.8	4.80	65.48	1539.5	4.2	9.1	2.00	65.48	-3.7	
4	7439.4	4.80	65.48	7418.5	208.8	457.9	0.00	0.00	-183.2	
5	7679.2	0.00	0.00	7658.0	213.0	467.0	2.00	180.00	-186.8	
6	10525.7	0.00	0.00	10504.5	213.0	467.0	0.00	0.00	-186.8	KOP(Stonewall 28 Fed Com #407H)
7	10746.2	26.46	180.00	10717.2	163.0	467.0	12.00	180.00	-136.9	FTP(Stonewall 28 Fed Com #407H)
8	11275.7	90.00	179.43	10981.9	-264.4	469.9	12.00	-0.64	290.0	
9	13386.3	90.00	179.43	10982.0	-2375.0	491.0	0.00	0.00	2398.5	Fed Perf 1(Stonewall 28 Fed Com #407H)
10	17346.5	90.00	179.47	10982.0	-6335.0	529.0	0.00	86.34	6354.6	Fed Perf 2(Stonewall 28 Fed Com #407H)
11	21205.7	90.00	179.46	10982.0	-10194.0	565.0	0.00	-102.29	10209.6	PBHL(Stonewall 28 Fed Com #407H)

CASING DETAILS

No casing data is available

WELLBORE TARGET DETAILS (MAP CO-ORDINATES)									
Name	TVD	+N/-S	+E/-W	Northing	Easting				
KOP(Stonewall 28 Fed Com #407H)	10504.5	213.0	467.0	435984.00	808228.00				
FTP(Stonewall 28 Fed Com #407H)	10717.2	163.0	467.0	435934.00	808228.00				
Fed Perf 1(Stonewall 28 Fed Com #407H)	10982.0	-2375.0	491.0	433396.00	808252.00				
Fed Perf 2(Stonewall 28 Fed Com #407H)	10982.0	-6335.0	529.0	429436.00	808290.00				
PBHL(Stonewall 28 Fed Com #407H)	10982.0	-10194.0	565.0	425577.00	808326.00				

EOG BLANKET CASING DESIGN VARIANCE

EOG respectfully requests the drill plans in the attached document 'EOG Alternate Casing Designs – BLM APPROVED' be added to the COA's for this well. These designs have been approved by the BLM down to the TVDs listed below and will allow EOG to run alternate casing designs for this well if necessary.

The designs and associated details listed are the "worst case scenario" boundaries for design safety factors. Location and lithology have NOT been accounted for in these designs. The specific well details will be based on the APD/Sundry package and the information listed in the COA.

The mud program will not change from the original design for this well. Summary of the mud programs for both shallow and deep targets are listed at the end of this document. If the target is changing, a sundry will be filed to update the casing design and mud/cement programs.

Cement volumes listed in this document are for reference only. The cement volumes for the specific well will be adjusted to ensure cement tops meet BLM requirements as listed in the COA and to allow bradenhead cementing when applicable.

This blanket document only applies to wells with three string designs outside of Potash and Capitan Reef boundaries.

Sh	Shallow Design Boundary Conditions										
Deepest Deepest Max Inc Max DI											
	MD (ft)	TVD (ft)	(deg)	(°/100usft)							
Surface	2030	2030	0	0							
Intermediate	7793	5650	40	8							
Production	28578	11225	90	25							

Shallow Design A

1. CASING PROGRAM

Hole	Interv	al MD	Interva	Interval TVD				
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,030	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,793	0	5,650	9-5/8"	40#	J-55	LTC
6-3/4"	0	28,578	0	11,225	5-1/2"	20#	P110-EC	DWC/C IS MS

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

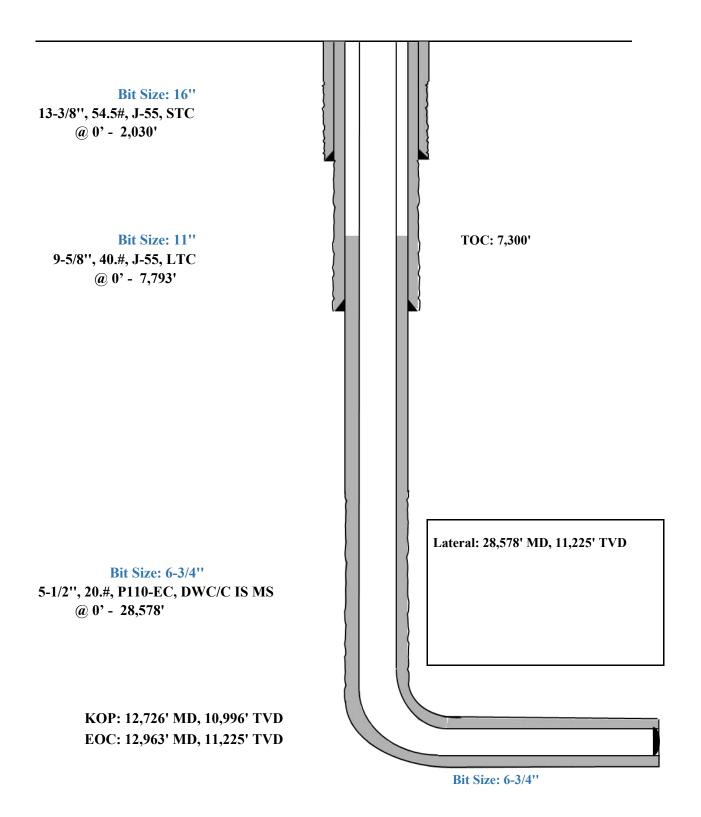
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

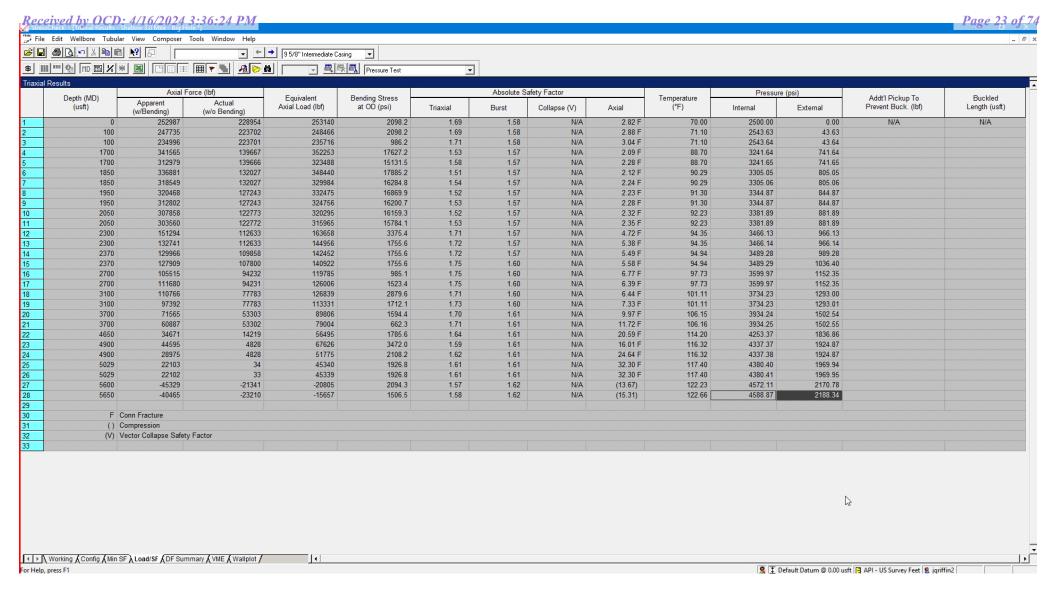
Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

2. CEMENTING PROGRAM:

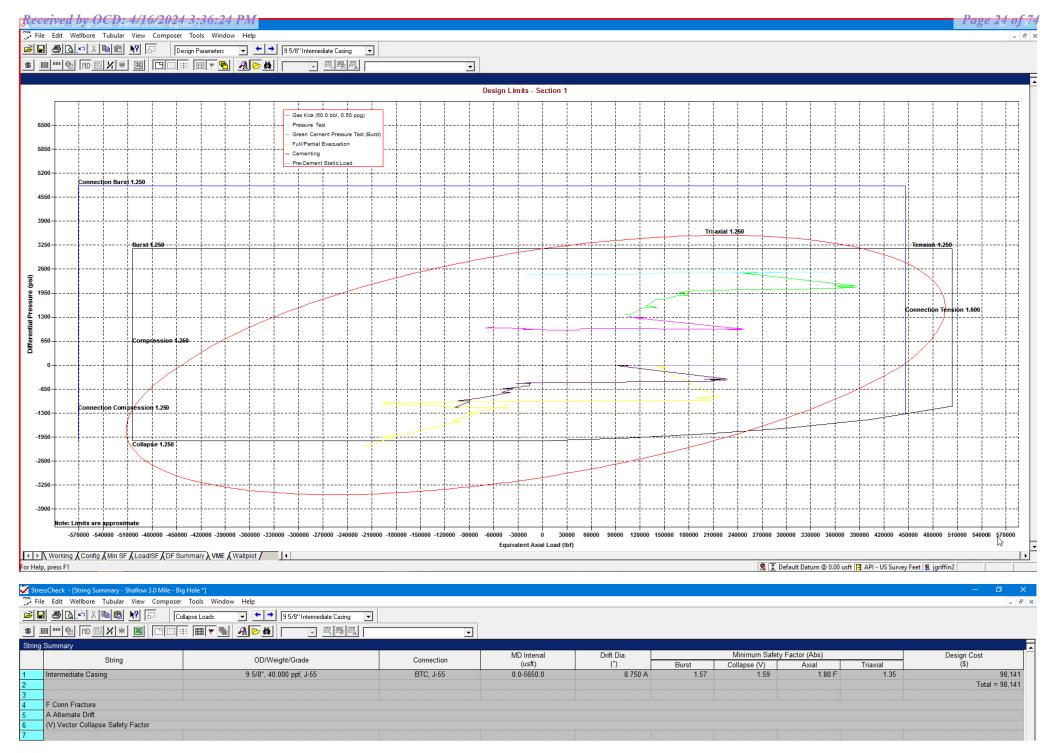

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidily Description
2,030'	570	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-
13-3/8''				Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium
				Metasilicate (TOC @ 1830')
7,793'	770	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @
9-5/8''				Surface)
	250	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6238')
28,578'	410	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC
5-1/2''				@ 7300')
	1110	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%
				NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @
				12730')

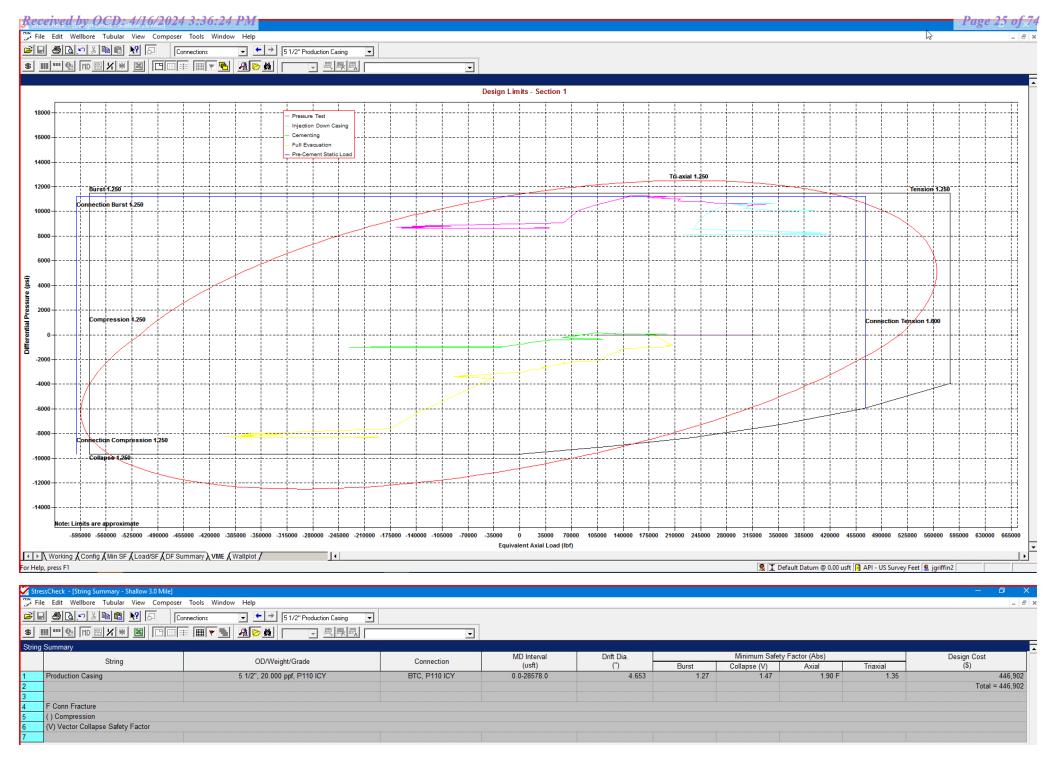


Shallow Design A

Proposed Wellbore

KB: 3558' GL: 3533'




9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

External Profile based off Pore Pressure: 2188 psi

^{*}Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 6 of 32

Shallow Design B

1. CASING PROGRAM

Hole	Interv	al MD	Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13-1/2"	0	2,030	0	2,030	10-3/4"	40.5#	J-55	STC
9-7/8"	0	7,793	0	5,650	8-5/8"	32#	J-55	BTC-SC
6-3/4"	0	28,578	0	11,225	5-1/2"	20#	P110-EC	DWC/C IS MS

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

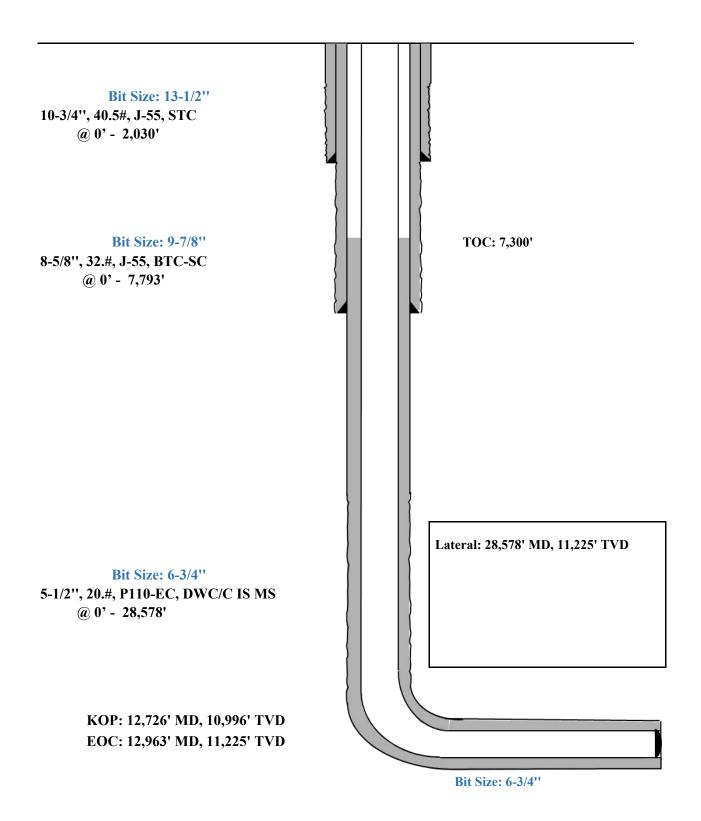
Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

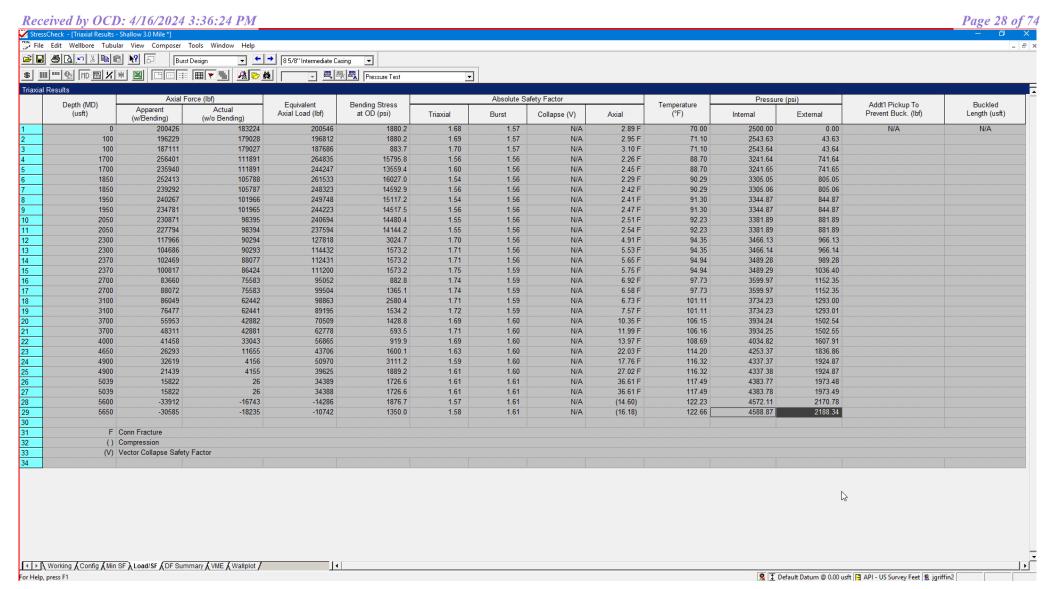
Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

2. CEMENTING PROGRAM:

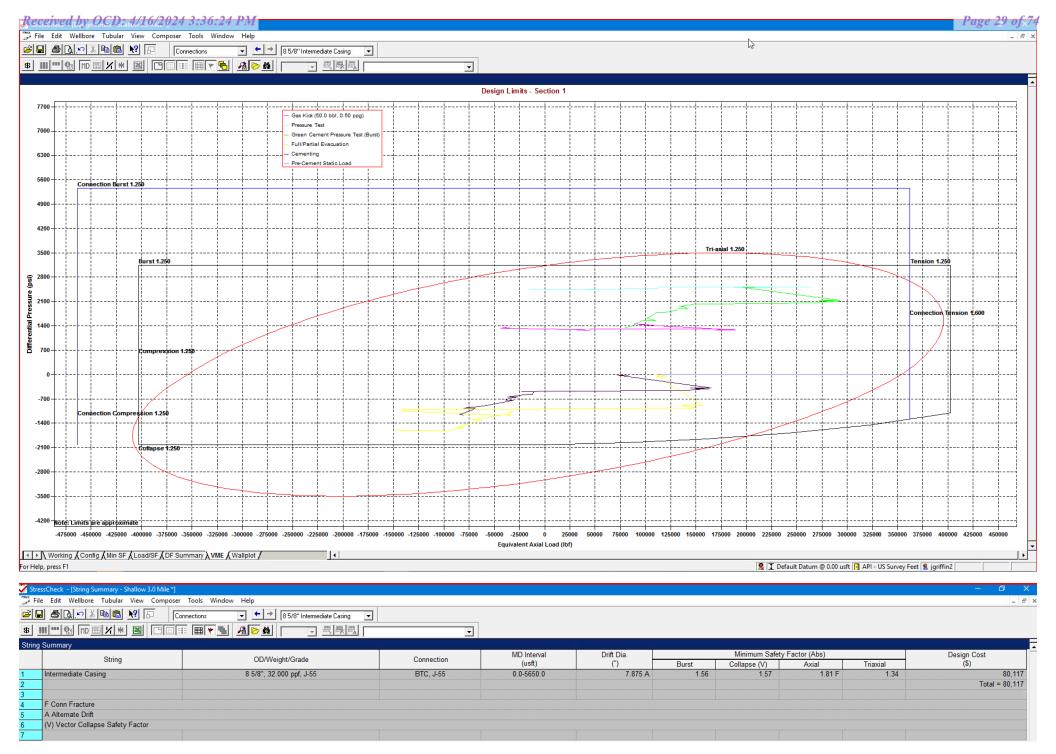

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidily Description
2,030'	530	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-
10-3/4''				Flake (TOC @ Surface)
	140	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium
				Metasilicate (TOC @ 1830')
7,793'	460	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @
8-5/8''				Surface)
	210	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6238')
28,578'	400	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC
5-1/2"				@ 7300')
	1110	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%
				NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @
				12730')

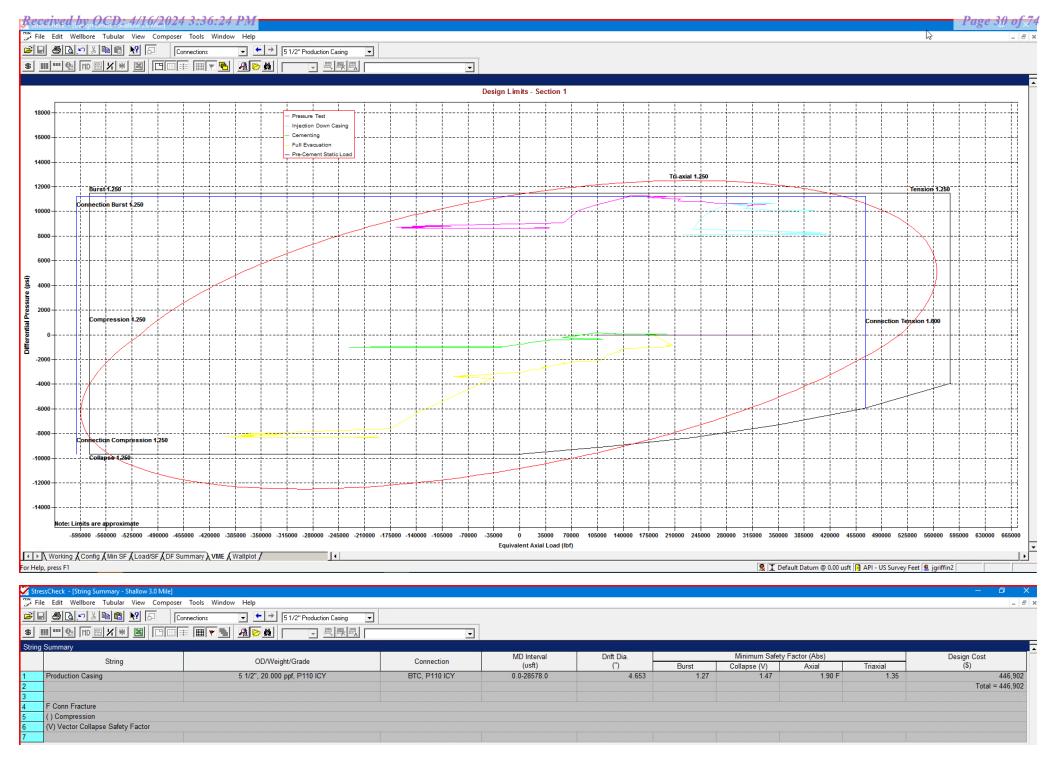


Shallow Design B

Proposed Wellbore

KB: 3558' GL: 3533'




8-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

External Profile based off Pore Pressure: 2188 psi

^{*}Modelling done with 8-5/8" 32# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 11 of 32

Shallow Design C

1. CASING PROGRAM

Hole	Interv	al MD	Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,030	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,793	0	5,650	9-5/8"	40#	J-55	LTC
7-7/8"	0	28,578	0	11,225	6"	24.5#	P110-EC	VAM Sprint-SF

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

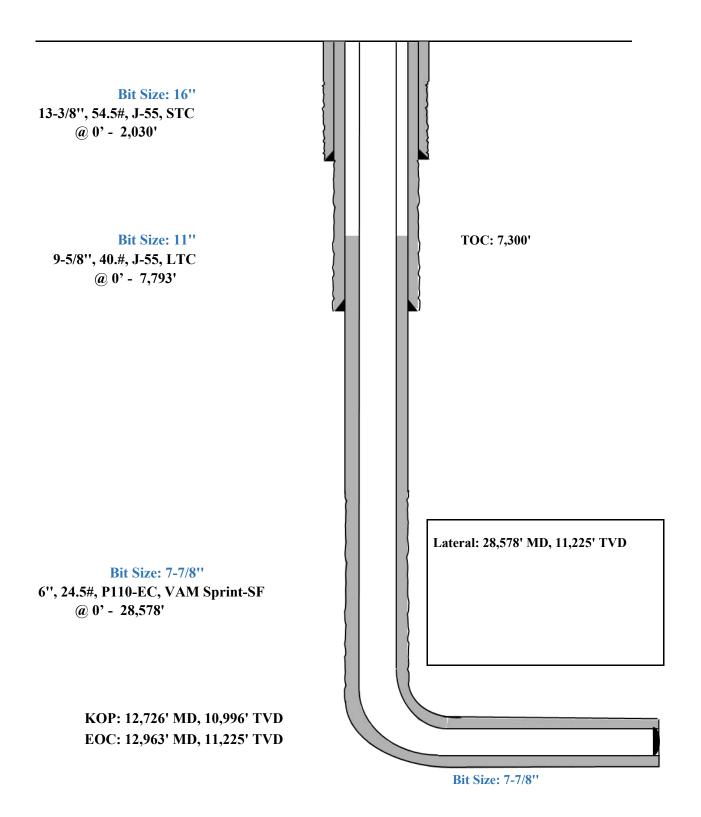
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

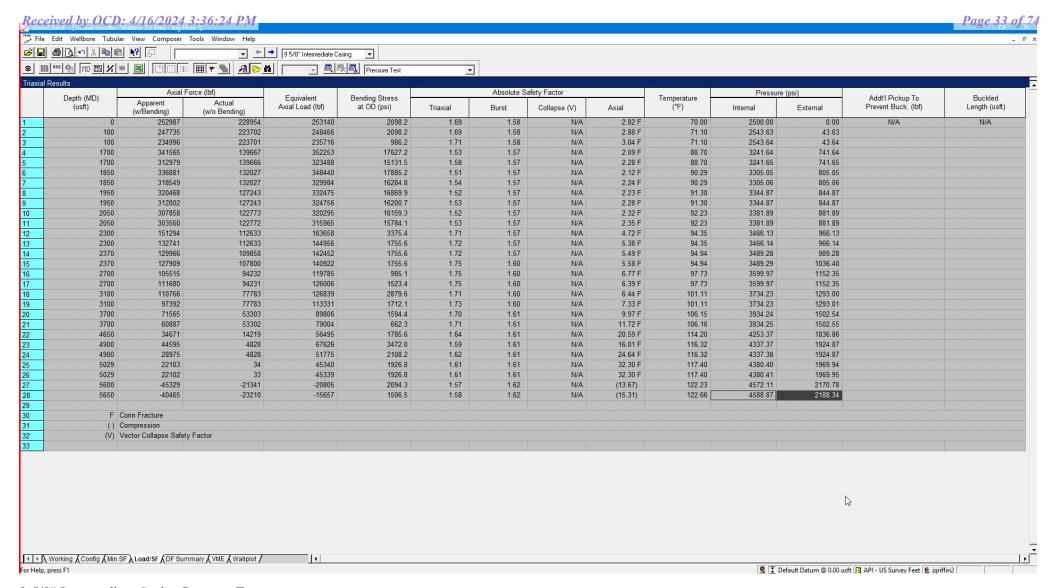
Variance is also requested to waive any centralizer requirements for the 6" casing in the 7-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 7-7/8" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

2. CEMENTING PROGRAM:

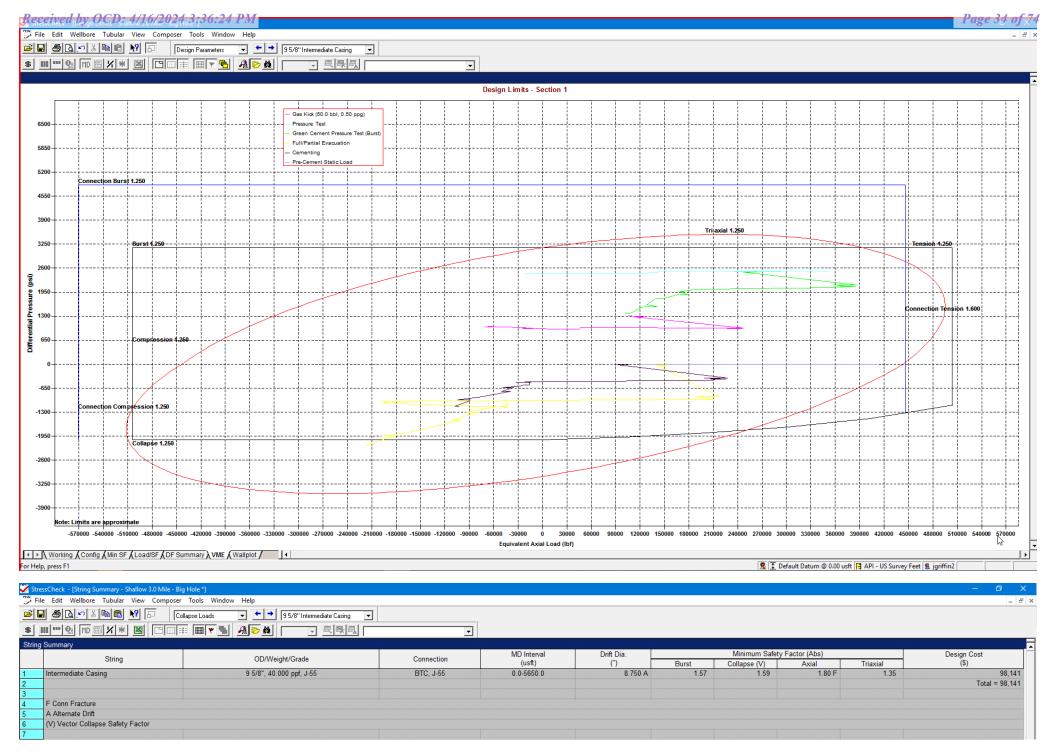

		Wt.	Yld	Slurry Description	
Depth	No. Sacks	ppg	Ft3/sk		
2,030'	570	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-	
13-3/8''				Flake (TOC @ Surface)	
	160	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium	
				Metasilicate (TOC @ 1830')	
7,793'	770	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @	
9-5/8''				Surface)	
	250	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6238')	
28,578'	650	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC	
6''				@ 7300')	
	1870	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%	
				NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @	
				12730')	

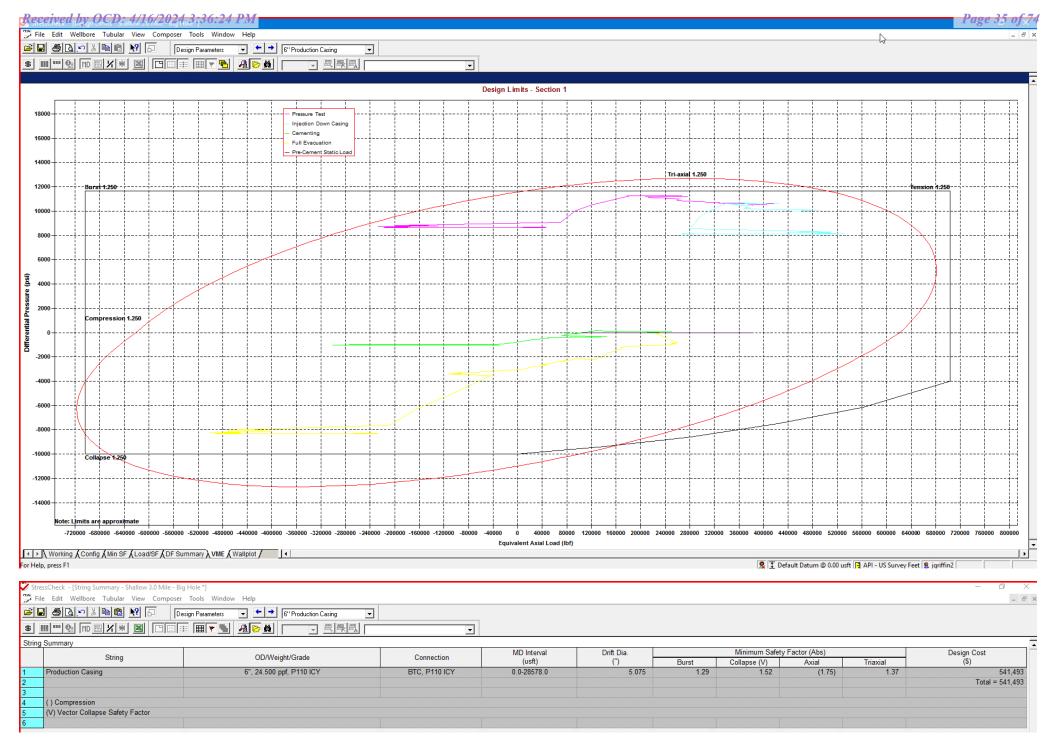


Shallow Design C

Proposed Wellbore

KB: 3558' GL: 3533'




9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

External Profile based off Pore Pressure: 2188 psi

^{*}Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Shallow Design D

4. CASING PROGRAM

Hole	Interval MD		Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,030	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,793	0	5,650	9-5/8"	40#	J-55	LTC
7-7/8"	0	12,626	0	10,896	6"	22.3#	P110-EC	DWC/C IS
6-3/4"	12,626	28,578	10,896	11,225	5-1/2"	20#	P110-EC	DWC/C IS MS

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

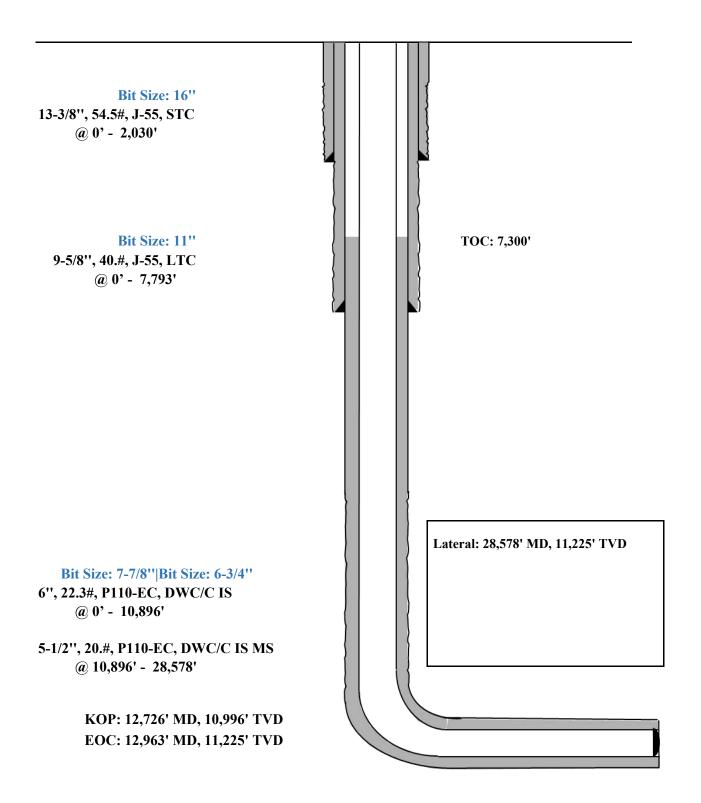
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

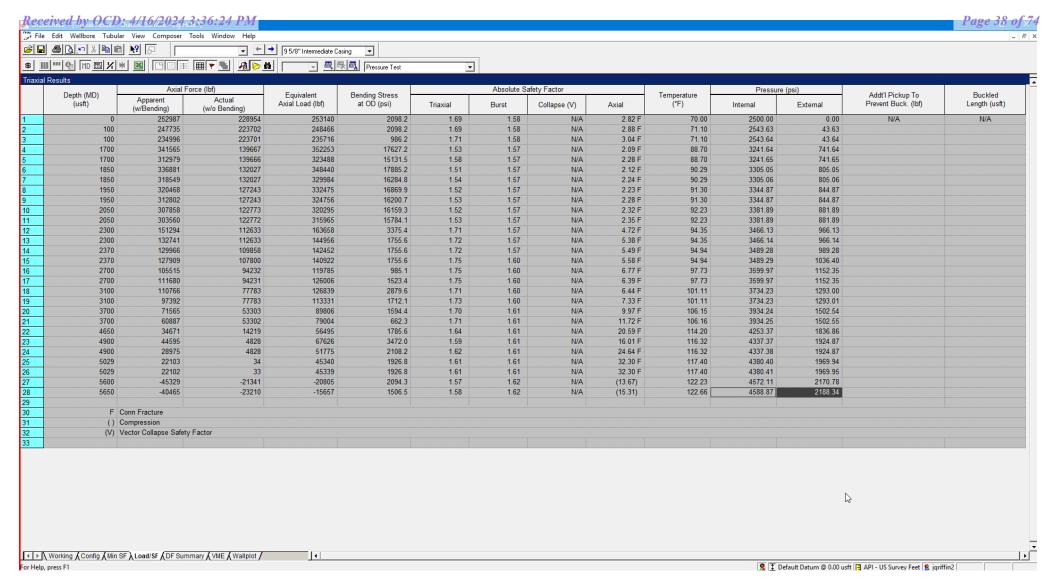
Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

5. CEMENTING PROGRAM:

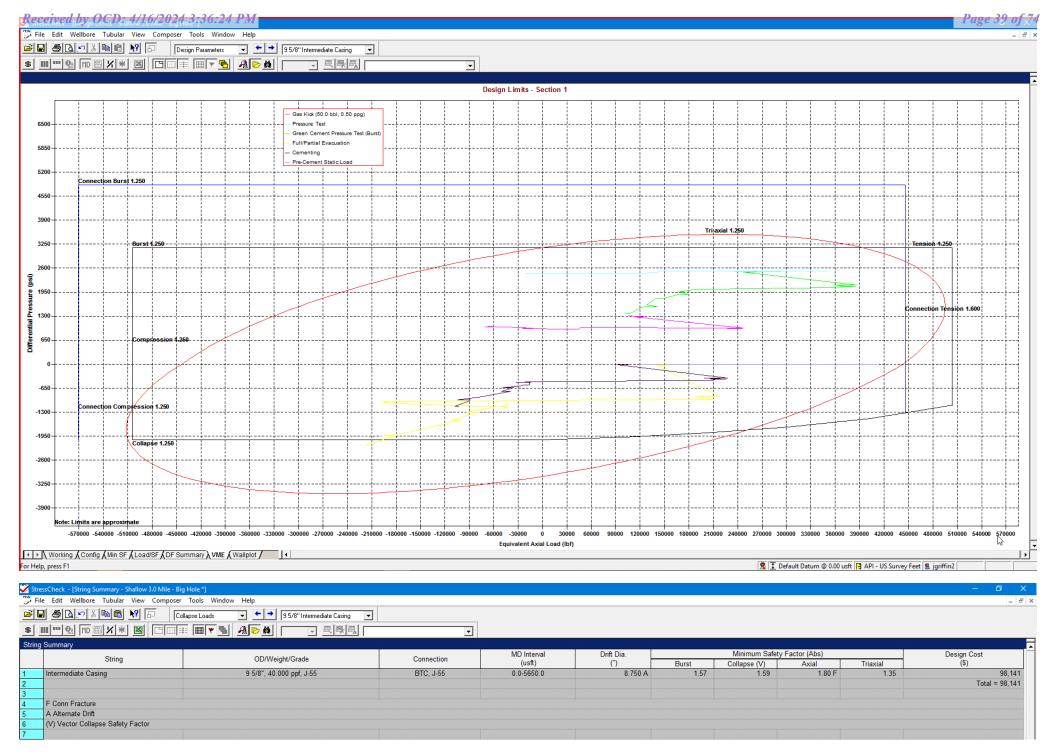

	NAGE VIII						
		Wt.	Yld	Slurry Description			
Depth	No. Sacks	ppg	Ft3/sk				
2,030'	570	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-			
13-3/8''				Flake (TOC @ Surface)			
	160	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium			
				Metasilicate (TOC @ 1830')			
7,793'	770	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @			
9-5/8''				Surface)			
	250	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6238')			
28,578'	650	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC			
6''				@ 7300')			
	1870	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%			
				NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @			
				12730')			

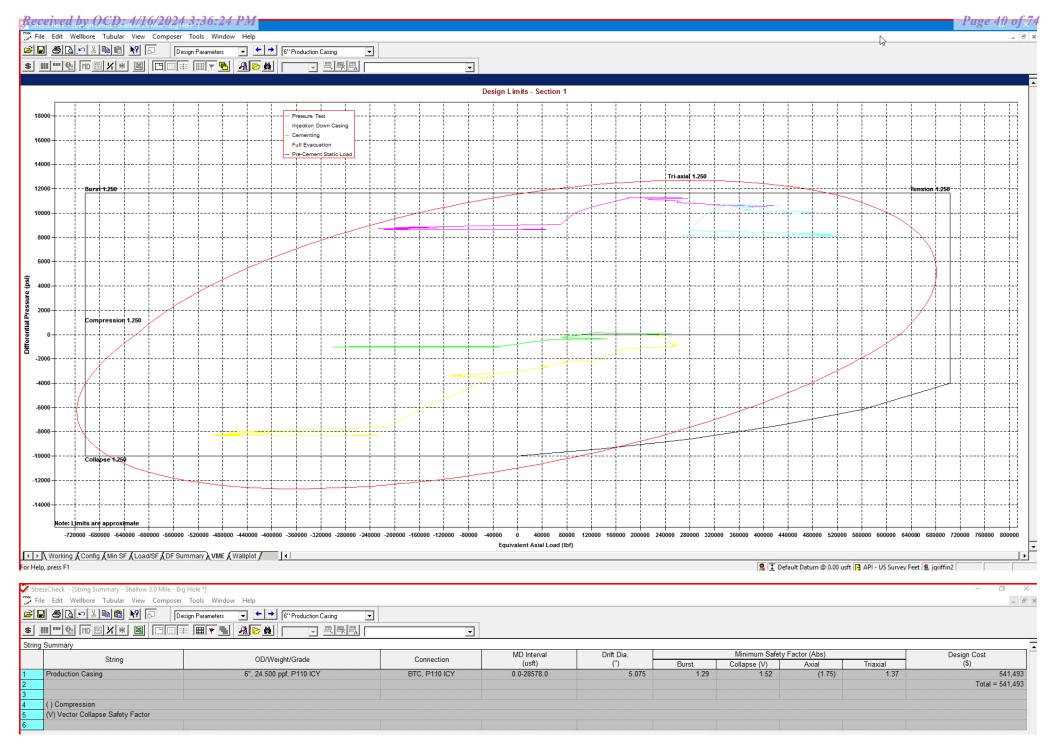


Shallow Design D

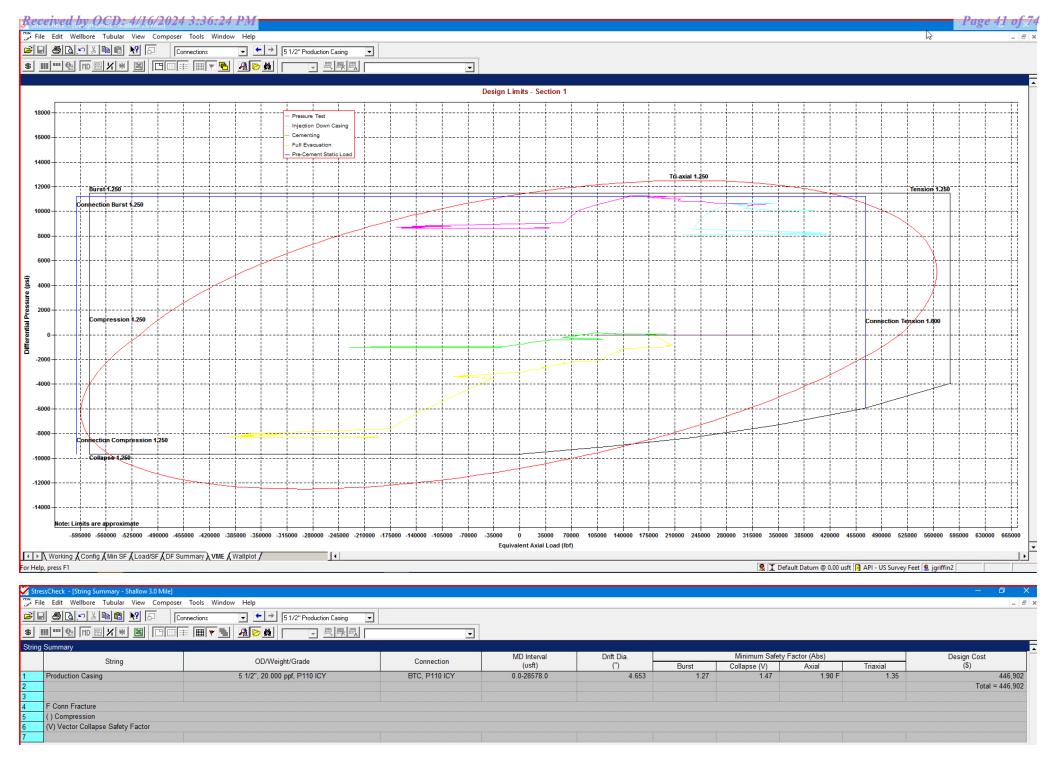
Proposed Wellbore

KB: 3558' GL: 3533'




9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi


External Profile based off Pore Pressure: 2188 psi

^{*}Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 22 of 32

MUD PROGRAM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal. The applicable depths and properties of the drilling fluid systems are as follows:

Measured Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0-2,030'	Fresh - Gel	8.6-8.8	28-34	N/c
2,030' – 7,793'	Brine	9-10.5	28-34	N/c
5,450' – 28,578' Lateral	Oil Base	8.8-9.5	58-68	N/c - 6

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

CEMENTING ADDITIVES:

Additive	Purpose
Bentonite Gel	Lightweight/Lost circulation prevention
Calcium Chloride	Accelerator
Cello-flake	Lost circulation prevention
Sodium Metasilicate	Accelerator
MagOx	Expansive agent
Pre-Mag-M	Expansive agent
Sodium Chloride	Accelerator
FL-62	Fluid loss control
Halad-344	Fluid loss control
Halad-9	Fluid loss control
HR-601	Retarder
Microbond	Expansive Agent

Cement integrity tests will be performed immediately following plug bump.

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

New Search »

New Search //					« Back to Previous List
					USC Metric
6/8/2015 10:04:37 AM	Ÿ.	2		3	
Mechanical Properties	Pipe	втс	LTC	STC	
Minimum Yield Strength	55,000		-		psi
Maximum Yield Strength	80,000				psi
Minimum Tensile Strength	75,000	=	_	-	psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	13.375	14.375	-	14.375	in.
Wall Thickness	0.380	= -	- 21	-	in.
Inside Diameter	12.615	12.615	-	12.615	in.
Standard Drift	12.459	12.459	-	12.459	in,
Alternate Drift	<u>-</u>	-	-		in.
Nominal Linear Weight, T&C	54.50	-		-	lbs/ft
Plain End Weight	52.79	,			lbs/ft
Performance	Pipe	втс	L TC	STC	
Minimum Collapse Pressure	1,130	1,130		1,130	psi
Minimum Internal Yield Pressure	2,740	2,740	æ0	2,740	psi
Minimum Pipe Body Yield Strength	853.00		-	-	1000 lbs
Joint Strength	-	909	. = G	514	1000 lbs
Reference Length	-	11,125	-	6,290	n
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss	_	4.81	-	3.50	in.
Minimum Make-Up Torque			 3	3,860	ft-lbs
Released to Imaging: 7/12/2024 1:55:30 PM Maximum Make-Up Torque P	age 24 of 32	_	_	6,430	ft-lbs

New Search »

					« Back to Previous List
					USC Metric
6/8/2015 10:23:27 AM			·		no. —
Mechanical Properties	Ptpe	втс	LTC	STC	
Minimum Yield Strength	55,000		= -	-	psi
Maximum Yield Strength	80,000	_	-	: = ::	psi
Minimum Tensile Strength	75,000			_	psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	9.625	10.625	10.625	10.625	in.
Wall Thickness	0.395	=	ET . N	. 	in.
Inside Diameter	8.835	8.835	8.835	8.835	in.
Standard Drift	8.679	8.679	8.679	8.679	in.
Alternate Drift	8.750	8.750	8.750	8.750	in.
Nominal Linear Weight, T&C	40.00	-	= 1	, - 2	lbs/ft
Plain End Weight	38.97	-	-		lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	2,570	2,570	2,570	2,570	psi
Minimum Internal Yield Pressure	3,950	3,950	3,950	3,950	psi
Minimum Pipe Body Yield Strength	630.00		÷		1000 lbs
Joint Strength		714	520	452	1000 lbs
Reference Length	-	11,898	8,665	7,529	п
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss	-	4.81	4.75	3.38	in.
Minimum Make-Up Torque	D 05 600	<u> </u>	3,900	3,390	ft-lbs
Released to Imaging: 7/12/2024 1:55:30 PM Maximum Make-Up Torque	Page 25 of 32	-	6,500	5,650	ft-lbs

Connection Data Sheet

OD (in.) WEIGHT (lbs./ft.) 5.500 Nominal: 20.00 WALL (in.) 0.361 GRADE VST P110EC API DRIFT (in.) 4.653 RBW% 87.5 CONNECTION
DWC/C-IS MS

Plain End: 19.83

PIPE PROF	PERTIES	
Outside Diameter	5.500	in.
Inside Diameter	4.778	in.
Nominal Area	5.828	sq.in.
Grade Type	API 5CT	
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Tensile Strength	135	ksi
Yield Strength	729	klb
Ultimate Strength	787	klb
Min. Internal Yield	14,360	psi
Collanse	12 090	nei

	CONNECTION PROPERTIES				
۱.	Connection Type	Semi-Prem	ium T&C		
۱.	Connection O.D. (nom)	6.115	in.		
۱.	Connection I.D. (nom)	4.778	in.		
	Make-Up Loss	4.125	in.		
si	Coupling Length	9.250	in.		
i	Critical Cross Section	5.828	sq.in.		
si	Tension Efficiency	100.0%	of pipe		
b	Compression Efficiency	100.0%	of pipe		
b	Internal Pressure Efficiency	100.0%	of pipe		
si	External Pressure Efficiency	100.0%	of pipe		
si					

CONNECTION PERFORMANCES					
Yield Strength	729	klb			
Parting Load	787	klb			
Compression Rating	729	klb			
Min. Internal Yield	14,360	psi			
External Pressure	12,090	psi			
Maximum Uniaxial Bend Rating	104.2	°/100 ft			
Reference String Length w 1.4 Design Factor	26,040	ft			

o 1	Min. Make-up torque	16,100	ft.lb
-11	Opti. Make-up torque	17,350	ft.lb
0 1	Max. Make-up torque	18,600	ft.lb
i I	Min. Shoulder Torque	1,610	ft.lb
i I	Max. Shoulder Torque	12,880	ft.lb
t I	Min. Delta Turn	-	Turns
t I	Max. Delta Turn	0.200	Turns
	Maximum Operational Torque	21,100	ft.lb
r	Maximum Torsional Value (MTV)	23,210	ft.lb

Need Help? Contact: tech.support@vam-usa.com
Reference Drawing: 8136PP Rev.01 & 8136BP Rev.01

Date: 12/03/2019 Time: 06:19:27 PM

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042

Phone: 713-479-3200 Fax: 713-479-3234

VAM® USA Sales E-mail: VAMUSAsales@vam-usa.com
Tech Support Email: tech.support@vam-usa.com

DWC Connection Data Sheet Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- 10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.
- 12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

PDF

10.750 40.50/0.350 J55

New Search »

« Back to Previous List

USC Metric

6/8/2015 10:14:05 AM

Mechanical Properties	Ptpe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000		-		psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Ptpe	втс	LTC	STC	
Outside Diameter	10.750	11.750	-	11.750	in.
Wall Thickness	0.350	-			in.
Inside Diameter	10.050	10.050		10.050	in.
Standard Drift	9.894	9.894	-	9.894	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	40.50		-	-	lbs/ft
Plain End Weight	38.91	-	-	-	lbs/ft
Performance	Ptpe	втс	LTC	STC	
Minimum Collapse Pressure	1,580	1,580	-	1,580	psi
Minimum Internal Yield Pressure	3,130	3,130	_	3,130	psi
Minimum Pipe Body Yield Strength	629.00	-	-	-	1000 lbs
Joint Strength	-	700	-	420	1000 lbs
Reference Length	-	11,522	-	6,915	ft
Make-Up Data	Ptpe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque				3,150	ft-lbs
Released to Imaging: 7/12/2024 1:55:30 PM Maximum Make-Up Torque	Page 28 of 32	-	-	5,250	ft-lbs

API 5CT, 10th Ed. Connection Data Sheet

O.D. (in)	WEIGHT	(lb/ft)	WALL (in)	GRADE	*API DRIFT (in)	RBW %
8.625	Nominal: Plain End:	32.00 31.13	0.352	J55	7.796	87.5

Material Properties (PE)					
Pipe					
Minimum Yield Strength:	55 ksi				
Maximum Yield Strength:	80 ksi				
Minimum Tensile Strength:	75 ksi				
Coupling					
Minimum Yield Strength:	55 ksi				
Maximum Yield Strength:	80 ksi				
Minimum Tensile Strength:	75 ksi				

Pipe Body Data (PE)					
Geometry					
Nominal ID:	7.92 inch				
Nominal Area:	9.149 in ²				
*Special/Alt. Drift:	7.875 inch				
Performance					
Pipe Body Yield Strength:	503 kips				
Collapse Resistance:	2,530 psi				
Internal Yield Pressure: (API Historical)	3,930 psi				

API Connection Data Coupling OD: 9.625"			
STC Perform	ance		
STC Internal Pressure:	3,930 psi		
STC Joint Strength:	372 kips		
LTC Performa	ance		
LTC Internal Pressure:	3,930 psi		
LTC Joint Strength:	417 kips		
SC-BTC Performance - Cplg OD = 9.125"			
BTC Internal Pressure:	3,930 psi		
BTC Joint Strength:	503 kips		

	API Connection Torque					
	5	STC Tor	que (ft-lb	s)		
Min:	2,793	Opti:	3,724	Max:	4,655	
	L	TC Tor	que (ft-lb	s)		
Min:	3,130	Opti:	4,174	Max:	5,217	
	BTC Torque (ft-lbs)					
follow API guidelines regarding positional make up						

*Alt. Drift will be used unless API Drift is specified on order.

**If above API connections do not suit your needs, VAM® premium connections are available up to 100% of pipe body ratings.

ALL INFORMATION IS PROVIDED BY VALLOUREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LIABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF; AND ON AN "AS IS" BASIS WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PURPOSE, ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TESTED. IN NO EVENT SHALL VALLOUREC OR ITS AFFILIATES BE RESPONSIBLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL LOSS OR DAMAGE (INCLUDING WITHOUT LIMITATION, LOSS OF USE, LOSS OF BARGAIN, LOSS OF REVENUE, PROFIT OR ANTICIPATED PROFIT) HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSES OR DAMAGES WERE FORESEEABLE OR VALLOUREC OR ITS AFFILIATES WERE ADVISED OF THE

Rev 3, 7/30/2021 POSSIBILITY OF SUCH DAMAGES. 10/21/2022 15:24

Issued on: 10 Feb. 2021 by Wesley Ott

Connection Data Sheet

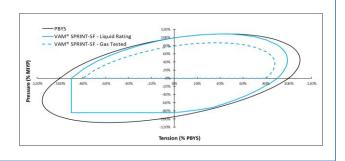
OD Weight (lb/ft) Wall Th. Grade API Drift: Connection
6 in. Nominal: 24.50 Plain End: 23.95

OD Weight (lb/ft) Wall Th. Grade API Drift: Connection

OD Weight (lb/ft) Wall Th. Grade API Drift: Connection

OD Weight (lb/ft) Wall Th. Grade API Drift: Connection

OD Weight (lb/ft) Wall Th. Grade API Drift: Connection


PI PE PROPERTI ES		
THETROTERIES		
Nominal OD	6.000	in.
Nominal ID	5.200	in.
Nominal Cross Section Area	7.037	sqin.
Grade Type	Hig	ıh Yield
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Ultimate Tensile Strength	135	ksi

CONNECTION PROPERTIES		
Connection Type	Integral	Semi-Flush
Connection OD (nom):	6.277	in.
Connection ID (nom):	5.146	in.
Make-Up Loss	5.386	in.
Critical Cross Section	6.417	sqin.
Tension Efficiency	91.0	% of pipe
Compression Efficiency	91.0	% of pipe
Internal Pressure Efficiency	100	% of pipe
External Pressure Efficiency	100	% of pipe

CONNECTION PERFORMANCES				
Tensile Yield Strength	801	klb		
Compression Resistance	801	klb		
Internal Yield Pressure	14,580	psi		
Collapse Resistance	12,500	psi		
Max. Structural Bending	83	°/100ft		
Max. Bending with ISO/API Sealability	30	°/100ft		

TORQUE VALUES				
Min. Make-up torque	21,750	ft.lb		
Opt. Make-up torque	24,250	ft.lb		
Max. Make-up torque	26,750	ft.lb		
Max. Torque with Sealability (MTS)	53,000	ft.lb		

VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements.

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com Do you need help on this product? - Remember no one knows VAM® like VAM®

uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

^{* 87.5%} RBW

Connection Data Sheet

 OD (in.)
 WEIGHT (lbs./ft.)
 WALL (in.)
 GRADE
 API DRIFT (in.)
 RBW%
 CONNECTION

 6.000
 Nominal: 22.30
 0.360
 VST P110EC
 5.155
 92.5
 DWC/C-IS

 Plain End: 21.70

PIPE PROPERTIES		
Nominal OD	6.000	in.
Nominal ID	5.280	in.
Nominal Area	6.379	sq.in.
Grade Type	API 5CT	
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Tensile Strength	135	ksi
Yield Strength	797	klb
Ultimate Strength	861	klb
Min. Internal Yield Pressure	13,880	psi
Collapse Pressure	9,800	psi

CONNECTION PERFORMANCE	ES	
Yield Strength	797	klb
Parting Load	861	klb
Compression Rating	797	klb
Min. Internal Yield	13,880	psi
External Pressure	9,800	psi
Maximum Uniaxial Bend Rating	47.7	°/100 ft
Reference String Length w 1.4 Design Factor	25,530	ft.

Need Help? Contact: <u>tech.support@vam-usa.com</u>
Reference Drawing: 8135PP Rev.02 & 8135BP Rev.02

Date: 07/30/2020 Time: 07:50:47 PM

CONNECTION PRO	OPERTIES	
Connection Type	Semi-Pren	nium T&C
Connection OD (nom)	6.650	in.
Connection ID (nom)	5.280	in.
Make-Up Loss	4.313	in.
Coupling Length	9.625	in.
Critical Cross Section	6.379	sq.in.
Tension Efficiency	100.0%	of pipe
Compression Efficiency	100.0%	of pipe
Internal Pressure Efficiency	100.0%	of pipe
External Pressure Efficiency	100.0%	of pipe

FIELD END TORQUE	VALUES	
Min. Make-up torque	17,000	ft.lb
Opti. Make-up torque	18,250	ft.lb
Max. Make-up torque	19,500	ft.lb
Min. Shoulder Torque	1,700	ft.lb
Max. Shoulder Torque	13,600	ft.lb
Min. Delta Turn	-	Turns
Max. Delta Turn	0.200	Turns
Maximum Operational Torque	24,200	ft.lb
Maximum Torsional Value (MTV)	26.620	ft.lb

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In one event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

VAM USA

2107 CityWest Boulevard Suite 1300

Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234

VAM® USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- 4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- 10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.
- 12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In one event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

Received by OCD: 4/16/2024 3:36:24 PM

Salt Section Annular Clearance Variance Request

Daniel Moose

Current Design (Salt Strings)

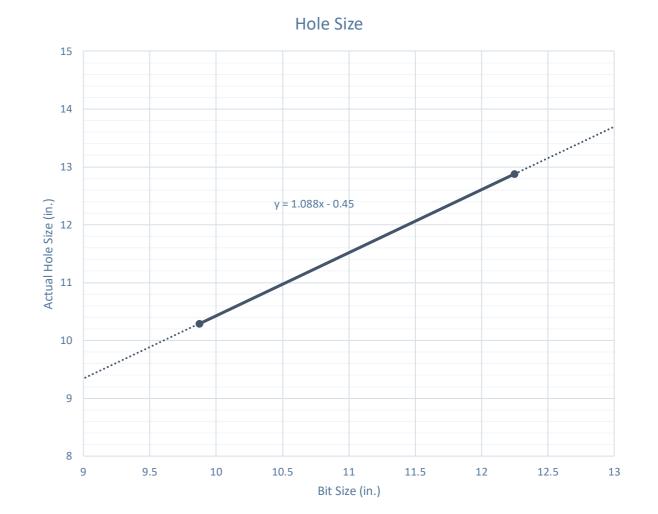
0.422" Annular clearance requirement

- Casing collars shall have a minimum clearance of 0.422 inches on all sides in the hole/casing annulus, with recognition that variances can be granted for justified exceptions.
- 12.25" Hole x 9.625"40# J55/HCK55 LTC Casing
 - 1.3125" Clearance to casing OD
 - 0.8125" Clearance to coupling OD
- 9.875" Hole x 8.75" 38.5# P110 Sprint-SF Casing
 - 0.5625" Clearance to casing OD
 - 0.433" Clearance to coupling OD

Annular Clearance Variance Request

EOG request permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Onshore Order #2 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues

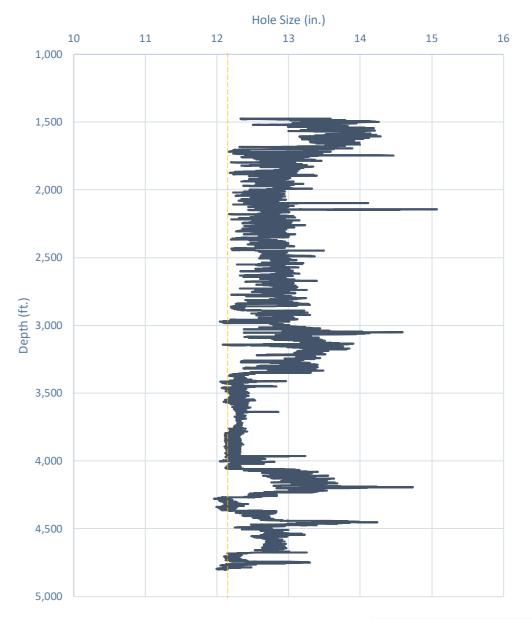

Volumetric Hole Size Calculation

Hole Size Calculations Off Cement Volumes

- Known volume of cement pumped
- Known volume of cement returned to surface
- Must not have had any losses
- Must have bumped plug

Average Hole Size

- 12.25" Hole
 - 12.88" Hole
 - 5.13% diameter increase
 - 10.52% area increase
 - 0.63" Average enlargement
 - 0.58" Median enlargement
 - 179 Well Count
- 9.875" Hole
 - 10.30" Hole
 - 4.24% diameter increase
 - 9.64% area increase
 - 0.42" Average enlargement
 - 0.46" Median enlargement
 - 11 Well Count

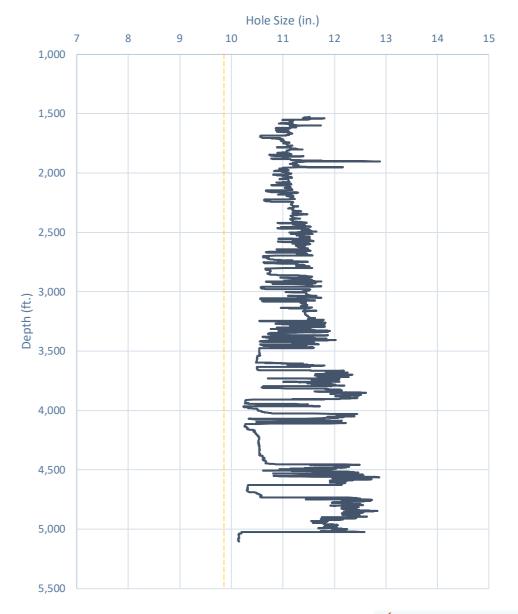


Modelo 10 Fed Com #501H

Caliper Hole Size (12.25")

Average Hole Size

- 12.25" Bit
 - 12.76" Hole
 - 4.14% diameter increase
 - 8.44% area increase
 - 0.51" Average enlargement
 - 0.52" Median enlargement
 - Brine



Caliper Hole Size (9.875")

Average Hole Size

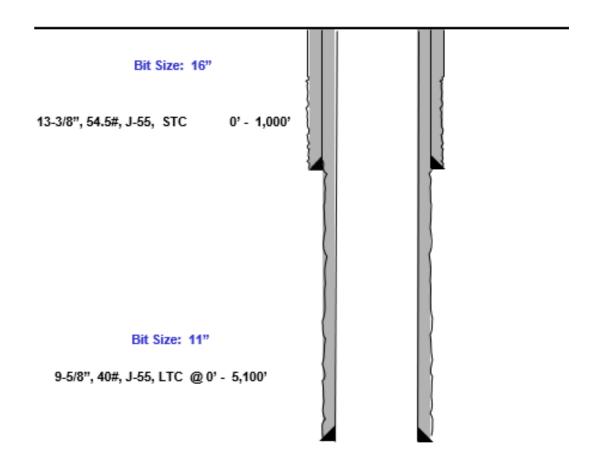
- 9.875" Hole
 - 11.21" Hole
 - 13.54% diameter increase
 - 28.92% area increase
 - 1.33" Average enlargement
 - 1.30" Median enlargement
 - EnerLite

Whirling Wind 11 Fed Com #744H

Design A

Proposed 11" Hole with 9.625" 40# J55/HCK55 LTC Casing

- 11" Bit + 0.52" Average hole enlargement = 11.52" Hole Size
 - 0.9475" Clearance to casing OD


$$=\frac{11.52-9.625}{2}$$

• 0.4475" Clearance to coupling OD

$$=\frac{11.52-10.625}{2}$$

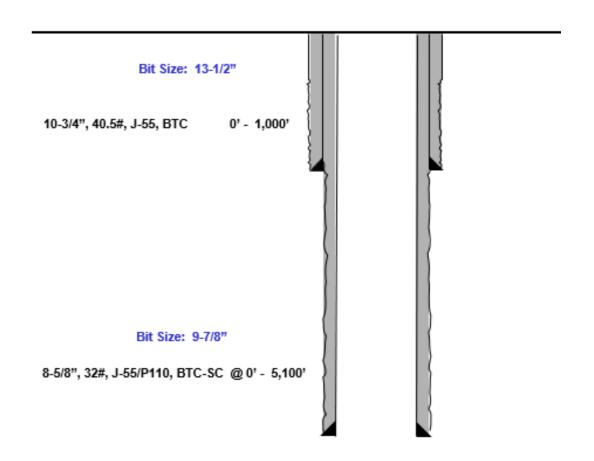
- Previous Shoe 13.375" 54.5# J55 STC
 - 0.995" Clearance to coupling OD (~1,200' overlap)

$$=\frac{12.615-10.625}{^{2}}$$

Design B

Proposed 9.875" Hole with 8.625" 32# J55/P110 BTC-SC Casing

- 9.875" Bit + 0.42" Average hole enlargement = 10.295" Hole Size
 - 0.835" Clearance to casing OD


$$=\frac{10.295-8.625}{2}$$

• 0.585" Clearance to coupling OD

$$=\frac{10.295-9.125}{2}$$

- Previous Shoe 10.75" 40.5# J55 STC
 - 0.4625" Clearance to coupling OD (~1,200' overlap)

$$=\frac{10.05-9.125}{2}$$

Received by OCD: 4/16/2024 3:36:24 PM

Page 60 of 74

Index

Released to Imaging: 7/12/2024 1:55:30 PM

Nom. Pipe Body Area

Casing Spec Sheets

PERFORMANCE DATA

API LTC 9.625 in 40.00 lbs/ft K55 HC Technical Data Sheet

Tubular Parameters					
Size	9.625	in	Minimum Yield	55	ksi
Nominal Weight	40.00	lbs/ft	Minimum Tensile	95	ksi
Grade	K55 HC		Yield Load	629	kips
PE Weight	38.94	lbs/ft	Tensile Load	1088	kips
Wall Thickness	0.395	in	Min. Internal Yield Pressure	3,950	psi
Nominal ID	8.835	in	Collapse Pressure	3600	psi
Drift Diameter	8 750	in			1

Connection Parameters				
Connection OD	10.625	in		
Coupling Length	10.500	in		
Threads Per Inch	8	tpi		
Standoff Thread Turns	3.50	turns		
Make-Up Loss	4.750	in		
Min. Internal Yield Pressure	3,950	psi		

11.454

Pipe Body and API Connections Performance Data

13.375 54.50/0.380 J55 PDF

New Search »

6/8/2015 10:04:37 AM					
Mechanical Properties	Ptpe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Ptpe	втс	LTC	STC	
Outside Diameter	13.375	14.375	-	14.375	in.
Wall Thickness	0.380	-	-	-	in.
Inside Diameter	12.615	12.615	-	12.615	in.
Standard Drift	12.459	12.459	-	12.459	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	54.50	-	-	-	lbs/ft
Plain End Weight	52.79	-	-	-	lbs/ft
Performance	P1pe	втс	LTC	STC	
Minimum Collapse Pressure	1,130	1,130	-	1,130	psi
Minimum Internal Yield Pressure	2,740	2,740	-	2,740	psi
Minimum Pipe Body Yield Strength	853.00	-	-	-	1000 lbs
Joint Strength	-	909	-	514	1000 lbs
Reference Length	-	11,125	-	6,290	ft
Make-Up Data	Ptpe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-	-	-	3,860	ff-lbs
Maximum Make-Up Torque	-	-	-	6,430	ft-lbs

5,250

ft-lbs

Casing Spec Sheets

Pipe Body and API Connections Performance Data

10.750 40.50/0.350 J55 PDF

New Search » « Back to Previous List USC Metric 6/8/2015 10:14:05 AM BTC STC Ptpe **Mechanical Properties** Minimum Yield Strength 55,000 psi Maximum Yield Strength 80,000 Minimum Tensile Strength 75,000 psi BTC LTC Pipe STC 11.750 Outside Diamete 10.750 11.750 in. Wall Thickness 0.350 Inside Diameter 10.050 10.050 10.050 Standard Drift 9.894 9.894 in. Alternate Drift in. 40.50 Nominal Linear Weight, T&C lbs/ft 38.91 lbs/ft Plain End Weight Performance Ptpe BTC STC Minimum Collapse Pressure psi Minimum Internal Yield Pressure 3,130 3.130 3.130 629.00 1000 lbs Minimum Pipe Body Yield Strength 700 420 Joint Strength 1000 lbs Reference Length 11,522 6,915 BTC STC Make-Up Data Ptpe 4.81 Make-Up Loss 3.50 in. Minimum Make-Up Torque 3,150 ft-lbs

			vallourec		
			API 5CT, 10th Ed. Connection Data Sheet		
O.D. (in)	WEIGHT (lb/ft)	WALL (in)	GRADE *API DRIFT (in) RBW %		

J55

0.352

Material Properties (PE)				
Pipe				
Minimum Yield Strength:	55 ksi			
Maximum Yield Strength:	80 ksi			
Minimum Tensile Strength:	75 ksi			
Coupling				
Minimum Yield Strength:	55 ksi			
Maximum Yield Strength:	80 ksi			
Minimum Tensile Strength:	75 ksi			

Nominal:

Plain End:

8.625

MADE IN USA

#Od

SLN

#0/M

7.875

DA

S2L2

S

8.625

VALLOUREC STAR

32.00

31.13

Pipe Body Data (PE)				
Geometry				
7.92 inch				
9.149 in ²				
7.875 inch				
Performance				
503 kips				
2,530 psi				
3,930 psi				

7.796

87.5

STC Performance					
psi					
kips					
LTC Performance					
psi					
kips					
9.125"					
psi					
kips					

API Connection Data

	API Connection Torque					
	STC Torque (ft-lbs)					
Min:	2,793	Opti:	3,724	Max:	4,655	
	LTC Torque (ft-lbs)					
Min:	3,130	Opti:	4,174	Max:	5,217	
DTC Towns (# lbs)						
BTC Torque (ft-lbs)						
follow API guidelines regarding positional make up						

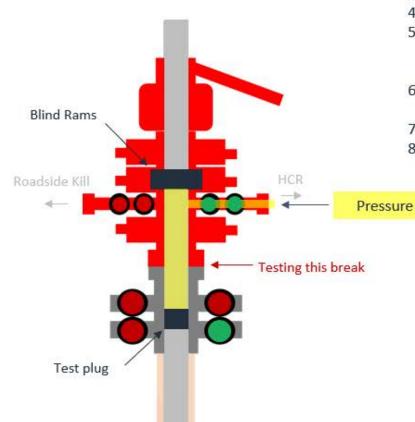
*Alt. Drift will be used unless API Drift is specified on order.

**If above API connections do not suit your needs, VAM® premium connections are available up to 100% of pipe body ratings.

ALL INFORMATION IS PROVIDED BY VALLOUREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LIABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF, AND ON AN "AS IS" BASIS WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCIDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PURPOSE, ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TISTED. IN NO EYENT PALL VALIDURES OR ITS AFFILIATES ARE RESONISIBLE FOR ANY INDIRECT, SPECIAL INCIDENTAL, PUNITYLE, EXEMPLAY OR CONSEQUENTIAL LOSS OR DAMAGES (INCLUDING WITHOUT WINITATION), LOSS OF USE, LOSS OF REARCHIN, LOSS OR REVENUE, PROFIT OR ANTICIPATED PROFIT) HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSES OR DAMAGES WERE FORESEABLE OR VALLOURCE OR ITS AFFILIATES WERE ADVISED OF THE

eog

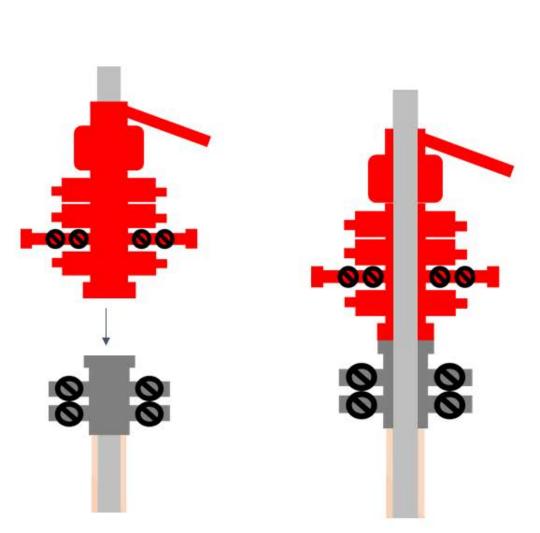
Maximum Make-Up Torque

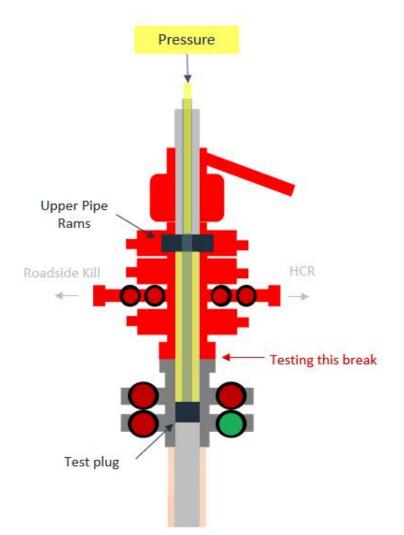


Break-test BOP & Offline Cementing:

EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards for well control equipment testing of ECFR Title 43 Part 3172.6(b)(9)(iv) to allow a testing schedule of the blow out preventer (BOP) and blow out prevention equipment (BOPE) along with Batch Drilling & Offline cement operations to include the following:

- Full BOPE test at first installation on the pad.
- Full BOPE test every 21 days.
- This test will be conducted for 5M rated hole intervals only.
- Each rig requesting the break-test variance is capable of picking up the BOP without damaging components using winches, following API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth edition, December 2018, Annex C. Table C.4) which recognizes break testing as an acceptable practice.
- Function tests will be performed on the following BOP elements:
 - Annular **à** during each full BOPE test
 - Upper Pipe Rams **à** On trip ins where FIT required
 - Blind Rams **à** Every trip
 - Lower Pipe Rams à during each full BOPE test
- Break testing BOP and BOPE coupled with batch drilling operations and option to offline cement and/or remediate (if needed) any surface or intermediate sections, according to attached offline cementing support documentation.
- After the well section is secured, the BOP will be disconnected from the wellhead and walked with the rig to another well on the pad.
- TA cap will also be installed per Wellhead vendor procedure and pressure inside the
 casing will be monitored via the valve on the TA cap as per standard batch drilling
 ops.


Break Test Diagram (HCR valve)



Steps

- 1. Set plug in wellhead (lower barrier)
- 2. Close Blind Rams (upper barrier)
- 3. Close roadside kill
- 4. Open HCR (pressure application)
- Open wellhead valves below test plug to ensure if leak past test plug, pressure won't be applied to wellbore
- Tie BOP testers high pressure line to main choke manifold crown valve
- 7. Pressure up to test break
- Bleed test pressure from BOP testing unit

Break Test Diagram (Test Joint)

Steps

- Set plug in with test joint wellhead (lower barrier)
- 2. Close Upper Pipe Rams (upper barrier)
- 3. Close roadside kill
- 4. Close HCR
- Open wellhead valves below test plug to ensure if leak past test plug, pressure won't be applied to wellbore
- Tie BOP testers high pressure line to top of test joint
- 7. Pressure up to test break
- Bleed test pressure from BOP testing unit

2/24/2022

Cement Program

1. No changes to the cement program will take place for offline cementing.

Summarized Operational Procedure for Intermediate Casing

- 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment back pressure valves.
 - a. Float equipment is equipped with two back pressure valves rated to a minimum of 5,000 psi.
- 2. Land production casing on mandrel hanger through BOP.
 - a. If casing is unable to be landed with a mandrel hanger, then the casing will be cemented online.
- 3. Break circulation and confirm no restrictions.
 - a. Ensure no blockage of float equipment and appropriate annular returns.
 - b. Perform flow check to confirm well is static.
- 4. Set pack-off
 - a. If utilizing a fluted/ported mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid, remove landing joint, and set annular packoff through BOP. Pressure test to 5,000 psi for 10 min.
 - b. If utilizing a solid mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid. Pressure test seals to 5,000 psi for 10 min. Remove landing joint through BOP.
- 5. After confirmation of both annular barriers and the two casing barriers, install TA plug and pressure test to 5,000 psi for 10 min. Notify the BLM with intent to proceed with nipple down and offline cementing.
 - a. Minimum 4 hrs notice.
- 6. With the well secured and BLM notified, nipple down BOP and secure on hydraulic carrier or cradle.
 - a. Note, if any of the barriers fail to test, the BOP stack will not be nippled down until after the cement job has concluded and both lead and tail slurry have reached 500 psi.
- 7. Skid/Walk rig off current well.
- 8. Confirm well is static before removing TA Plug.
 - a. Cementing operations will not proceed until well is under control. (If well is not static, notify BLM and proceed to kill)
 - b. Casing outlet valves will provide access to both the casing ID and annulus. Rig or third party pump truck will kill well prior to cementing.
 - c. Well control plan can be seen in Section B, Well Control Procedures.
 - d. If need be, rig can be moved back over well and BOP nippled back up for any further remediation.

2/24/2022

- e. Diagram for rig positioning relative to offline cementing can be seen in Figure 4.
- 9. Rig up return lines to take returns from wellhead to pits and rig choke.
 - a. Test all connections and lines from wellhead to choke manifold to 5,000 psi high for 10 min.
 - b. If either test fails, perform corrections and retest before proceeding.
 - c. Return line schematics can be seen in Figure 3.
- 10. Remove TA Plug from the casing.
- 11. Install offline cement tool.
 - a. Current offline cement tool schematics can be seen in Figure 1 (Cameron) and Figure 2 (Cactus).
- 12. Rig up cement head and cementing lines.
 - a. Pressure test cement lines against cement head to 80% of casing burst for 10 min.
- 13. Break circulation on well to confirm no restrictions.
 - a. If gas is present on circulation, well will be shut in and returns rerouted through gas buster.
 - b. Max anticipated time before circulating with cement truck is 6 hrs.
- 14. Pump cement job as per plan.
 - a. At plug bump, test casing to 0.22 psi/ft or 1500 psi, whichever is greater.
 - b. If plug does not bump on calculated, shut down and wait 8 hrs or 500 psi compressive strength, whichever is greater before testing casing.
- 15. Confirm well is static and floats are holding after cement job.
 - a. With floats holding and backside static:
 - i. Remove cement head.
 - b. If floats are leaking:
 - i. Shut-in well and WOC (Wait on Cement) until tail slurry reaches 500 psi compressive strength and the casing is static prior to removing cement head.
 - c. If there is flow on the backside:
 - i. Shut in well and WOC until tail slurry reaches 500 psi compressive strength. Ensure that the casing is static prior to removing cement head.
- 16. Remove offline cement tool.
- 17. Install night cap with pressure gauge for monitoring.
- 18. Test night cap to 5,000 psi for 10 min.

2/24/2022

Example Well Control Plan Content

A. Well Control Component Table

The table below, which covers the cementing of the <u>5M MASP (Maximum Allowable Surface Pressure) portion of the well</u>, outlines the well control component rating in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the BOP nippled up to the wellhead.

Intermediate hole section, 5M requirement

Component	RWP
Pack-off	10M
Casing Wellhead Valves	10M
Annular Wellhead Valves	5M
TA Plug	10M
Float Valves	5M
2" 1502 Lo-Torque Valves	15M

B. Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while circulating and cementing through the Offline Cement Adapter.

General Procedure While Circulating

- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 4. Confirm shut-in.
- 5. Notify tool pusher/company representative.

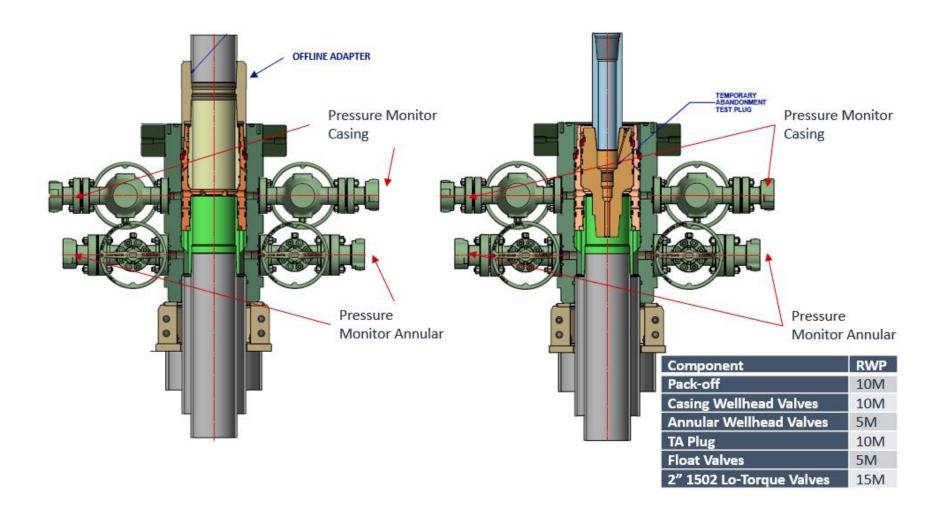
Page | 3

2/24/2022

- 6. Read and record the following:
 - a. SICP (Shut in Casing Pressure) and AP (Annular Pressure)
 - b. Pit gain
 - c. Time
 - d. Regroup and identify forward plan to continue circulating out kick via rig choke and mud/gas separator. Circulate and adjust mud density as needed to control well.

General Procedure While Cementing

- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 4. Confirm shut-in.
- 5. Notify tool pusher/company representative.
- 6. Open rig choke and begin pumping again taking returns through choke manifold and mud/gas separator.
- 7. Continue to place cement until plug bumps.
- 8. At plug bump close rig choke and cement head.
- 9. Read and record the following
 - a. SICP and AP
 - b. Pit gain
 - c. Time
 - d. Shut-in annulus valves on wellhead


General Procedure After Cementing

- 1. Sound alarm (alert crew).
- 2. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 3. Confirm shut-in.
- 4. Notify tool pusher/company representative.
- 5. Read and record the following:
 - a. SICP and AP
 - b. Pit gain
 - c. Time
 - d. Shut-in annulus valves on wellhead

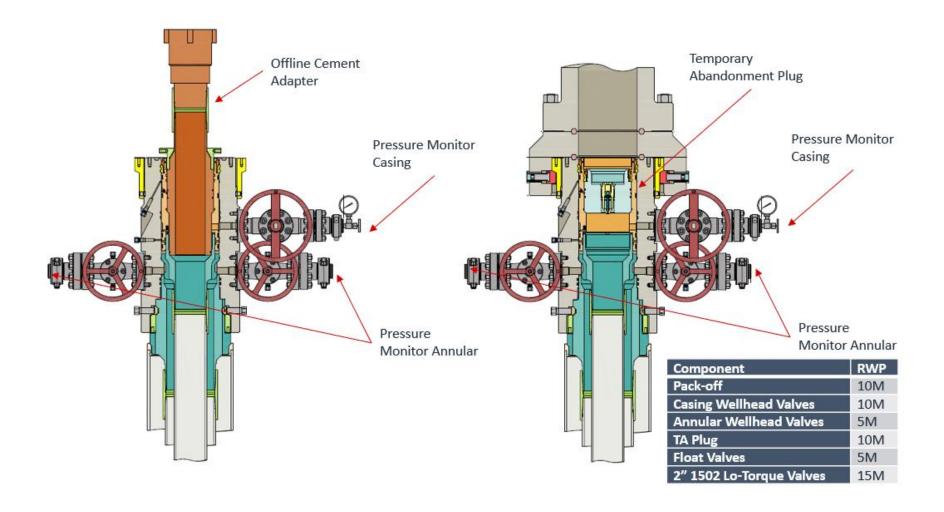
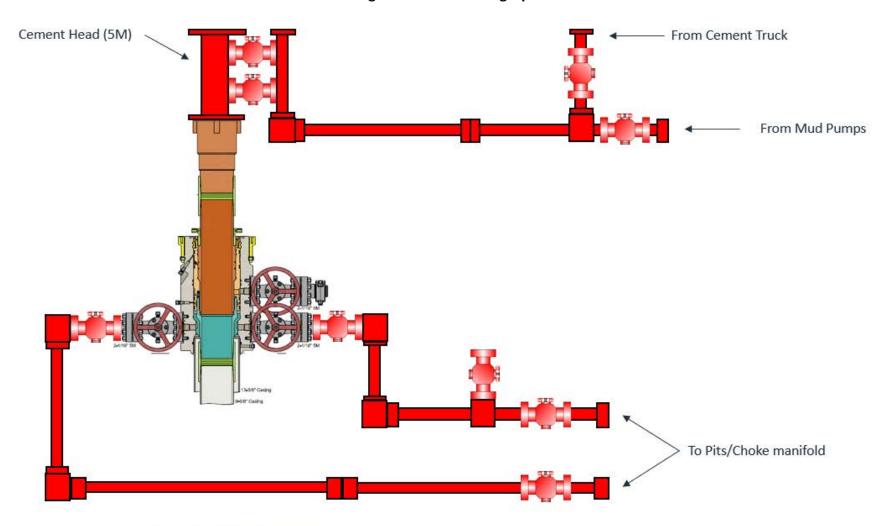

2/24/2022

Figure 1: Cameron TA Plug and Offline Adapter Schematic

2/24/2022

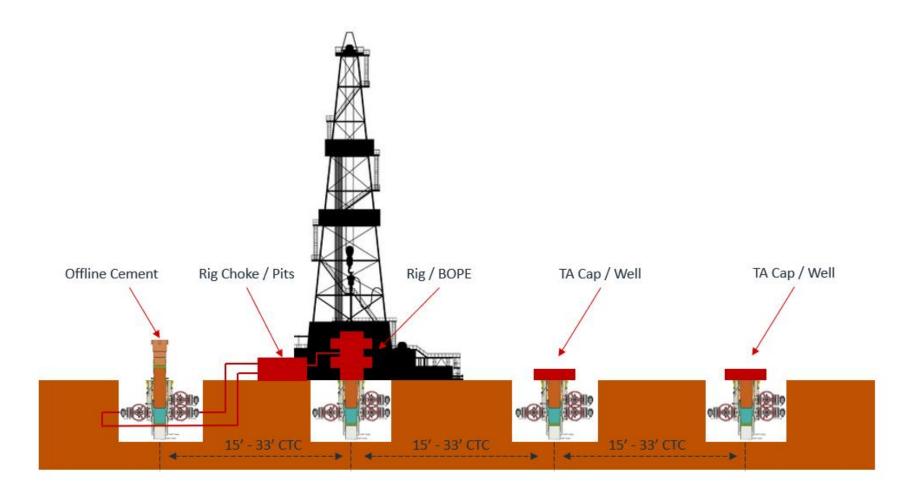
Figure 2: Cactus TA Plug and Offline Adapter Schematic



Page | 6

2/24/2022

Figure 3: Back Yard Rig Up


*** All Lines 10M rated working pressure

Page | 7

2/24/2022

Figure 4: Rig Placement Diagram

Page | 8

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 334151

CONDITIONS

Operator:	OGRID:
EOG RESOURCES INC	7377
5509 Champions Drive	Action Number:
Midland, TX 79706	334151
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By	Condition	Condition Date
pkautz	ALL PREVIOUS COA'S APPLY	7/12/2024