

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT Sundry Print Reports
07/10/2024

Well Name: CORRAL CANYON 17-8 Well Location: T25S / R29E / SEC 17 / County or Parish/State: EDDY /

FEDERAL SWSW / 32.124274 / -104.012915

Well Number: 122H Type of Well: CONVENTIONAL GAS Allottee or Tribe Name:

WELL

Lease Number: NMNM99147 Unit or CA Name: Unit or CA Number:

US Well Number: Operator: XTO ENERGY INCORPORATED

Notice of Intent

Sundry ID: 2791071

Type of Submission: Notice of Intent

Type of Action: APD Change

Date Sundry Submitted: 05/17/2024 Time Sundry Submitted: 09:03

Date proposed operation will begin: 05/31/2024

Procedure Description: XTO Permian Operating, LLC. respectfully requests approval to make the following changes to the approved APD. Changes to include LTP, Casing sizes, Cement, Proposed total Depth, and formation (Pool). FROM: TO: LTP: 2446' FSL & 1170' FWL OF SECTION 8-T25S-R29E 2546' FSL & 1170' FWL OF SECTION 8-T25S-R29E The proposed total depth is changing from 18047' MD; 10099' TVD (Purple Sage/Wolfcamp) to 18239' MD; 10125' TVD (Wolfcamp A). See attached Drilling Plan for updated cement and casing program. Attachments: C-102, Drilling Plan, Directional Plan, MBS, BOP Variance and Well Control Plan.

NOI Attachments

Procedure Description

Corral_17_8_122H___BLM_APD_Change_Sundry_Attachment_20240517090320.pdf

Page 1 of 2

eived by OCD: 7/10/2024 1:58:43 PM Well Name: CORRAL CANYON 17-8

FEDERAL

Well Location: T25S / R29E / SEC 17 / SWSW / 32.124274 / -104.012915

County or Parish/State: Page 2 of

Well Number: 122H

Type of Well: CONVENTIONAL GAS

Allottee or Tribe Name:

Lease Number: NMNM99147

Unit or CA Name:

Unit or CA Number:

Zip:

US Well Number:

Operator: XTO ENERGY INCORPORATED

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Signed on: MAY 17, 2024 09:03 AM **Operator Electronic Signature: MANISH SAINA**

Name: XTO ENERGY INCORPORATED

Title: Regulatory Analyst

Street Address: 22777 SPRINGWOODS VILLAGE PARKWAY

State:

City: SPRING State: TX

Phone: (720) 539-1673

Email address: MANISH.SAINI@EXXONMOBIL.COM

Field

Representative Name:

Street Address:

City:

Phone:

Email address:

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS BLM POC Title: Petroleum Engineer

BLM POC Phone: 5752342234 BLM POC Email Address: cwalls@blm.gov

Disposition: Approved Disposition Date: 07/09/2024

Signature: Chris Walls

Page 2 of 2

Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR

FORM APPROVED	
OMB No. 1004-0137	
Expires: October 31, 202	1

BURI	EAU OF LAND MANAGEMENT	5. Lease Serial No.	5. Lease Serial No.					
Do not use this t	IOTICES AND REPORTS ON W form for proposals to drill or to Use Form 3160-3 (APD) for suc	re-enter an	6. If Indian, Allottee or	Tribe Name				
SUBMIT IN	TRIPLICATE - Other instructions on pag	e 2	7. If Unit of CA/Agree	ment, Name and/or No.				
1. Type of Well Oil Well Gas W	Vell Other		8. Well Name and No.	8. Well Name and No.				
2. Name of Operator			9. API Well No.	9. API Well No.				
3a. Address	3b. Phone No.	(include area code)	10. Field and Pool or E	xploratory Area				
4. Location of Well (Footage, Sec., T.,R	R.,M., or Survey Description)		11. Country or Parish,	State				
12. CHE	CK THE APPROPRIATE BOX(ES) TO INI	DICATE NATURE OF N	UOTICE, REPORT OR OTH	ER DATA				
TYPE OF SUBMISSION	. ,		ACTION					
Notice of Intent	Acidize Deep	en	Production (Start/Resume) Reclamation	Water Shut-Off				
		· =	Recomplete	Well Integrity Other				
Subsequent Report		and Abandon	Temporarily Abandon	outer				
Final Abandonment Notice		=	Water Disposal					
is ready for final inspection.)	tices must be filed only after all requirement	s, including reclamation	have been completed and the	e operator has detennined that the site				
4. I hereby certify that the foregoing is	true and correct. Name (Printed/Typed)							
		Title						
Signature		Date						
	THE SPACE FOR FED	ERAL OR STATE	OFICE USE					
Approved by		Title		Note:				
	hed. Approval of this notice does not warran equitable title to those rights in the subject leduct operations thereon.	Date						
Fitle 18 U.S.C Section 1001 and Title 43	3 U.S.C Section 1212, make it a crime for ar	ny person knowingly and	willfully to make to any dep	partment or agency of the United States				

any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Instructions on page 2)

Released to Imaging: 7/18/2024 1:59:27 PM

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

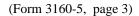
The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

(Form 3160-5, page 2)


Additional Information

Additional Remarks

Attachments: C-102, Drilling Plan, Directional Plan, MBS, BOP Variance and Well Control Plan.

Location of Well

0. SHL: SWSW / 494 FSL / 691 FWL / TWSP: 25S / RANGE: 29E / SECTION: 17 / LAT: 32.124274 / LONG: -104.012915 (TVD: 0 feet, MD: 0 feet) PPP: SWSW / 330 FSL / 1170 FWL / TWSP: 25S / RANGE: 29E / SECTION: 17 / LAT: 32.123805 / LONG: -104.011365 (TVD: 10099 feet, MD: 10500 feet) PPP: SWNW / 2648 FSL / 1173 FWL / TWSP: 25S / RANGE: 29E / SECTION: 17 / LAT: 32.130179 / LONG: -104.011394 (TVD: 10099 feet, MD: 13200 feet) BHL: NWSW / 2596 FSL / 1170 FWL / TWSP: 25S / RANGE: 29E / SECTION: 8 / LAT: 32.144611 / LONG: -104.011456 (TVD: 10099 feet, MD: 18047 feet)

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

122H/DWG\122H.dwg

FEDERAL

17-8

1

Eddy/Wells/-07

1

17

Can you

Corral

.03

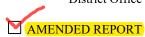
Eddy/.

Unit

Canyon

Corral

NM\013

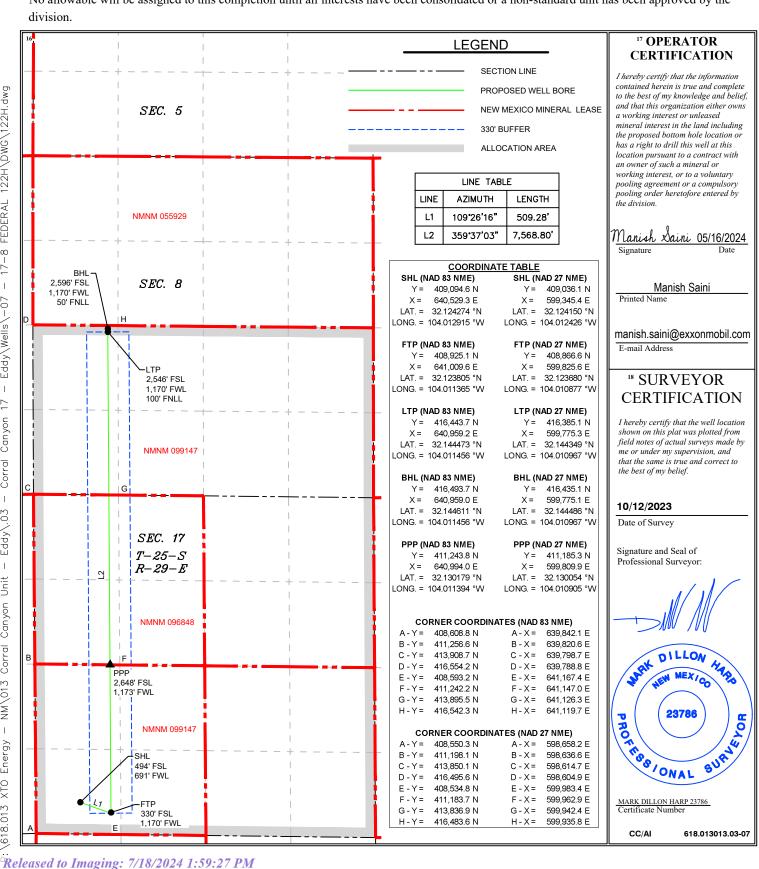

Energy

OTX

618.013

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office


WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Number	•	² Pool Code		
30-015-		98220	IP (GAS)	
⁴ Property Code		⁵ P	⁶ Well Number	
		CORRA	L 17-8 FED COM	122H
⁷ OGRID No.		⁸ O	perator Name	⁹ Elevation
005380		ХТО	ENERGY, INC	2,946'

¹⁰ Surface Location UL or lot no. Section Township Range North/South line Feet from the East/West line 25 S 29 E **SOUTH WEST EDDY** М 17 494 691 "Bottom Hole Location If Different From Surface UL or lot no. East/West line Section Feet from the County Township Range Lot Idn Feet from the North/South line

25 S 29 E 2,596 SOUTH 1,170 WEST **EDDY** Dedicated Acres Joint or Infill Consolidation Code Order No. 960

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the

Inten	t X	As Dril	led										
API #													
	rator Nar ENER	^{ne:} GY, INC				Property CORRA		Well Number 122H					
Kick (Off Point	(KOP)											
UL	Section	Township	Range	Lot	Feet	From	n N/S	Fee	t	Fron	n E/W	County	
Latitude Longitude NAD										NAD			
First -	Take Poin	7	Pango	Lot	Foot	Erom	N/C	Lega	•	Eron	o E /\A/	County	
М	M 17 25S 29E 330 South 1,170 West Eddy								Eddy				
Latitude Longitude NAD 32.123805 104.011365 83										NAD 83			
Last 1	ake Poin	t (LTP)											
UL L	Section 8	Township 25S	Range 29E	Lot	Feet 2,546	From N/S South	Fee 1,1		From Wes		Count		
Latitu 32.	^{ude} 144473	3			Longitu 104.0	^{ide} 011456					NAD 83		
		defining v infill well?	vell for th	e Hori	zontal Տր	oacing Uni	t? [
	ng Unit.	lease prov	ide API if	availat	ole, Opei	rator Nam	e and	well r	numbe	r for I	Definii	ng well fo	r Horizontal
Ope	rator Nar	ne:	1			Property	Name	2:					Well Number
													KZ 06/29/2018

Released to Imaging: 7/18/2024 1:59:27 PM

DRILLING PLAN: BLM COMPLIANCE (Supplement to BLM 3160-3)

XTO Energy Inc.
CORRAL 17 - 8 FED COM 122H
Projected TD: 18239' MD / 10125' TVD
SHL: 494' FSL & 691' FWL , Section 17, T25S, R29E
BHL: 2596' FSL & 1170' FWL , Section 8, T25S, R29E
Eddy County, NM

1. Geologic Name of Surface Formation

Quaternary

2. Estimated Tops of Geological Markers & Depths of Anticipated Fresh Water, Oil or Gas

Formation	Well Depth (TVD)	Water/Oil/Gas
Rustler	0'	Water
Top of Salt	579'	Water
Base of Salt	2667'	Water
Delaware	2867'	Water
Brushy Canyon	5359'	Water/Oil/Gas
Bone Spring	6575'	Water
1st Bone Spring	7352'	Water/Oil/Gas
2nd Bone Spring	7802'	Water/Oil/Gas
3rd Bone Spring	8630'	Water/Oil/Gas
Wolfcamp	9785'	Water/Oil/Gas
Wolfcamp X	9808'	Water/Oil/Gas
Wolfcamp Y	9885'	Water/Oil/Gas
Wolfcamp A	9925'	Water/Oil/Gas
Target/Land Curve	10125'	Water/Oil/Gas

^{***} Hydrocarbons @ Brushy Canyon

No other formations are expected to yield oil, gas or fresh water in measurable volumes. The surface fresh water sands will be protected by setting 9.625 inch casing @ 544' (35' above the salt) and circulating cement back to surface. The intermediate will isolate from the top of salt down to the next casing seat by setting 7.625 inch casing at 9345' and cemented to surface. A 6.75 inch curve and 6.75 inch lateral hole will be drilled to 18239 MD/TD and 5.5 inch production casing will be set at TD and cemented back up in the intermediate shoe (estimated TOC 9045 feet).

3. Casing Design

Hole Size	Depth	OD Csg	Weight	Grade	Collar	New/Used	SF Burst	SF Collapse	SF Tension
12.25	0' – 544'	9.625	40	J-55	ВТС	New	1.70	11.44	28.95
8.75	0' - 4000'	7.625	29.7	RY P-110	Flush Joint	New	2.65	2.86	2.01
8.75	4000' – 9345'	7.625	29.7	HC L-80	Flush Joint	New	1.93	2.45	2.56
6.75	0' – 9245'	5.5	20	RY P-110	Semi-Premium	New	1.26	2.10	2.41
6.75	9245' - 18239'	5.5	20	RY P-110	Semi-Flush	New	1.26	1.92	2.41

- XTO requests the option to utilize a spudder rig (Atlas Copco RD20 or Equivalent) to set and cement surface casing per this Sundry
- · XTO requests to not utilize centralizers in the curve and lateral
- · 7.625 Collapse analyzed using 50% evacuation based on regional experience.
- 5.5 Tension calculated using vertical hanging weight plus the lateral weight multiplied by a friction factor of 0.35
- Test on Casing will be limited to 70% burst of the casing or 1500 psi, whichever is less

^{***} Groundwater depth 40' (per NM State Engineers Office).

 \cdot XTO requests the option to use 5" BTC Float equipment for the the production casing

Wellhead:

- Permanent Wellhead Multibowl System

 A. Starting Head: 11" 10M top flange x 9-5/8" bottom

 B. Tubing Head: 11" 10M bottom flange x 7-1/16" 15M top flange
 - · Wellhead will be installed by manufacturer's representatives.
 - Manufacturer will monitor welding process to ensure appropriate temperature of seal.
 Operator will test the 7-5/8" casing per BLM Onshore Order 2

 - · Wellhead Manufacturer representative will not be present for BOP test plug installation

4. Cement Program

Surface Casing: 9.625, 40 New BTC, J-55 casing to be set at +/- 544'

Lead: 80 sxs EconoCem-HLTRRC (mixed at 10.5 ppg, 1.87 ft3/sx, 10.13 gal/sx water)

Tail: 130 sxs Class C + 2% CaCl (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water)

Top of Cement: Surface

Compressives: 12-hr = 900 psi 24 hr = 1500 psi

2nd Intermediate Casing: 7.625, 29.7 New casing to be set at +/- 9345'

st Stage

Optional Lead: 290 sxs Class C (mixed at 10.5 ppg, 2.77 ft3/sx, 15.59 gal/sx water)

TOC: Surface

Tail: 370 sxs Class C (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water)

TOC: Brushy Canyon @ 5359

Compressives: 12-hr = 900 psi 24 hr = 1150 psi

2nd Stage

Lead: 0 sxs Class C (mixed at 12.9 ppg, 2.16 ft3/sx, 9.61 gal/sx water) Tail: 600 sxs Class C (mixed at 14.8 ppg, 1.33 ft3/sx, 6.39 gal/sx water)

Top of Cement: 0

Compressives: 12-hr = 900 psi 24 hr = 1150 psi

XTO requests to pump a two stage cement job on the 7-5/8" intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brush Canyon (5359') and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. If cement is not visually confirmed to circulate to surface, the final cement top after the second stage job will be verified by Echo-meter. If necessary, a top out consisting of 1,500 sack of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (2.30 yld, 12.91 ppg) will be executed as a contingency. If cement is still unable to circulate to surface, another Echo-meter run will be performed for cement top verification.

XTO will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures.

XTO requests to pump an Optional Lead if well conditions dictate in an attempt to bring cement inside the first intermediate casing. If cement reaches the desired height, the BLM will be notified and the second stage bradenhead squeeze and subsequent TOC verification will be negated.

XTO requests the option to conduct the bradenhead squeeze and TOC verification offline as per standard approval from BLM when unplanned remediation is needed and batch drilling is approved. In the event the bradenhead is conducted, we will ensure the first stage cement job is cemented properly and the well is static with floats holding and no pressure on the csg annulus as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Production Casing: 5.5, 20 New Semi-Flush, RY P-110 casing to be set at +/- 18239'

Lead: 20 sxs NeoCem (mixed at 11.5 ppg, 2.69 ft3/sx, 15.00 gal/sx water) Top of Cement: 9045 feet
Tail: 620 sxs VersaCem (mixed at 13.2 ppg, 1.51 ft3/sx, 8.38 gal/sx water) Top of Cement: 9545 feet
Compressives: 12-hr = 800 psi 24 hr = 1500 psi

XTO requests the option to offline cement and remediate (if needed) surface and intermediate casing strings where batch drilling is approved and if unplanned remediation is needed. XTO will ensure well is static with no pressure on the csg annulus, as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed when applicable per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops. Offline cement operations will then be conducted after the rig is moved off the current well to the next well in the batch sequence.

5. Pressure Control Equipment

Once the permanent WH is installed on the 9.625 casing, the blow out preventer equipment (BOP) will consist of a 13-5/8" minimum 5M Hydril and a 13-5/8" minimum 10M Double Ram BOP. MASP should not exceed 3564 psi. In any instance where 10M BOP is required by BLM, XTO requests a variance to utilize 5M annular with 10M ram preventers (a common BOP configuration, which allows use of 10M rams in unlikely event that pressures exceed 5M).

All BOP testing will be done by an independent service company. Annular pressure tests will be limited to 50% of the rated working pressure. When nippling up on the 9.625, 10M bradenhead and flange, the BOP test will be limited to 10000 psi. When nippling up on the 7.625, the BOP will be tested to a minimum of 10000 psi. All BOP tests will include a low pressure test as per BLM regulations. The 10M BOP diagrams are attached. Blind rams will be functioned tested each trip, pipe rams will be functioned tested each week.

A variance is requested to allow use of a flex hose as the choke line from the BOP to the Choke Manifold. If this hose is used, a copy of the manufacturer's certification and pressure test chart will be kept on the rig. Attached is an example of a certification and pressure test chart. The manufacturer does not require anchors.

XTO requests a variance to be able to batch drill this well if necessary. In doing so, XTO will set casing and ensure that the well is cemented properly (unless approval is given for offline cementing) and the well is static. With floats holding, no pressure on the csg annulus, and the installation of a 10K TA cap as per Cactus recommendations, XTO will contact the BLM to skid the rig to drill the remaining wells on the pad. Once surface and both intermediate strings are all completed, XTO will begin drilling the production

hole on each of the wells.

A variance is requested to **ONLY** test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API standard 53 states, that for pad drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken. Based on discussions with the BLM on February 27th 2020, we will request permission to **ONLY** retest broken pressure seals if the following conditions are met: 1. After a full BOP test is conducted on the first well on the pad 2. When skidding to drill an intermediate section that does not penetrate into the Wolfcamp.

6. Proposed Mud Circulation System

INTERVAL	Hole Size	Mud Type	MW	Viscosity	Fluid Loss
INTERVAL	Hole Size	ivida i ype	(ppg)	(sec/qt)	(cc)
0' - 544'	12.25	FW/Native	8.5-9	35-40	NC
544' - 9345'	8.75	FW / Cut Brine / Direct Emulsion	9-9.5	30-32	NC
9345' - 18239'	6.75	ОВМ	11-11.5	50-60	NC - 20

The necessary mud products for weight addition and fluid loss control will be on location at all times.

Spud with fresh water/native mud. Drill out from under 9-5/8" surface casing with brine solution. Cut brine mud will be used while drilling through the salt formation. Use fibrous materials as needed to control seepage and lost circulation. Pump viscous sweeps as needed for hole cleaning. Pump speed will be recorded on a daily drilling report after mudding up. A Pason or Totco will be used to detect changes in loss or gain of mud volume. A mud test will be performed every 24 hours to determine: density, viscosity, strength, filtration and pH as necessary. Use available solids controls equipment to help keep mud weight down after mud up. Rig up solids control equipment to operate as a closed loop system.

7. Auxiliary Well Control and Monitoring Equipment

- A. A Kelly cock will be in the drill string at all times.
- B. A full opening drill pipe stabbing valve having appropriate connections will be on the rig floor at all times.
- C. H2S monitors will be on location when drilling below the 9.625 casing.

8. Logging, Coring and Testing Program

Open hole logging will not be done on this well.

9. Abnormal Pressures and Temperatures / Potential Hazards

None Anticipated. BHT of 165 to 185 F is anticipated. No H2S is expected but monitors will be in place to detect any H2S occurrences. Should these circumstances be encountered the operator and drilling contractor are prepared to take all necessary steps to ensure safety of all personnel and environment. Lost circulation could occur but is not expected to be a serious problem in this area and hole seepage will be compensated for by additions of small amounts of LCM in the drilling fluid. The maximum anticipated bottom hole pressure for this well is 5792 psi.

10. Anticipated Starting Date and Duration of Operations

Anticipated spud date will be after BLM approval. Move in operations and drilling is expected to take 40 days.

Well Plan Report - Corral 17-8 Fed Com 122H

 Measured Depth:
 18239.05 ft

 TVD RKB:
 10125.00 ft

Location

New Mexico East -Cartographic **Reference System: NAD 27** Northing: 409036.10 ft Easting: 599345.40 ft RKB: 2979.00 ft **Ground Level:** 2946.00 ft North Reference: Grid Convergence Angle: 0.17 Deg

Plan Sections Corral 17-8 Fed Com 122H

Measured			TVD			Build	Turn	Dogleg	
Depth	Inclination	Azimuth	RKB	Y Offset	X Offset	Rate	Rate	Rate	
(ft)	(Deg)	(Deg)	(ft)	(ft)	(ft)	(Deg/100ft)	(Deg/100ft)	(Deg/100ft) Target	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
1100.00	0.00	0.00	1100.00	0.00	0.00	0.00	0.00	0.00	
1937.08	16.74	151.30	1925.22	-106.50	58.32	2.00	0.00	2.00	
4599.49	16.74	151.30	4474.78	- 779.18	426.67	0.00	0.00	0.00	
5436.57	0.00	0.00	5300.00	- 885.68	484.99	- 2.00	0.00	2.00	
9545.37	0.00	0.00	9408.80	-885.68	484.99	0.00	0.00	0.00	
10670.37	90.00	359.62	10125.00	-169.50	480.20	8.00	0.00	8.00 122H F	TP
18189.04	90.00	359.62	10125.00	7349.00	429.90	0.00	0.00	0.00 122H L	TP
18239.05	90.00	359.62	10125.00	7399.01	429.57	0.00	0.00	0.00 122H B	зHL

Position Uncertainty Corral 17-8 Fed Com 122H

Measured TVD Highside Lateral Vertical Magnitude Semi- Semi- Tool major minor minor

Depth	Inclination	Azimuth	RKB	Error	Bias	Error	Bias	Error	Bias	of Bias	Error	Error	Azimuth	Used
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(°)	
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	XOM_R2OWSG MWD+IFR1+MS
100.000	0.000	0.000	100.000	0.358	0.000	0.179	0.000	2.300	0.000	0.000	0.358	0.179	90.000	XOM_R2OWSG MWD+IFR1+MS
200.000	0.000	0.000	200.000	0.717	0.000	0.538	0.000	2.309	0.000	0.000	0.717	0.538	90.000	XOM_R2OWSG MWD+IFR1+MS
300.000	0.000	0.000	300.000	1.075	0.000	0.896	0.000	2.324	0.000	0.000	1.075	0.896	90.000	XOM_R2OWSG MWD+IFR1+MS
400.000	0.000	0.000	400.000	1.434	0.000	1.255	0.000	2.345	0.000	0.000	1.434	1.255	90.000	XOM_R2OWSG MWD+IFR1+MS
500.000	0.000	0.000	500.000	1.792	0.000	1.613	0.000	2.371	0.000	0.000	1.792	1.613	90.000	XOM_R2OWSG MWD+IFR1+MS
600.000	0.000	0.000	600.000	2.151	0.000	1.972	0.000	2.403	0.000	0.000	2.151	1.972	90.000	XOM_R2OWSG MWD+IFR1+MS
700.000	0.000	0.000	700.000	2.509	0.000	2.330	0.000	2.439	0.000	0.000	2.509	2.330	90.000	XOM_R2OWSG MWD+IFR1+MS
800.000	0.000	0.000	800.000	2.868	0.000	2.689	0.000	2.479	0.000	0.000	2.868	2.689	90.000	XOM_R2OWSG MWD+IFR1+MS
900.000	0.000	0.000	900.000	3.226	0.000	3.047	0.000	2.524	0.000	0.000	3.226	3.047	90.000	XOM_R2OWSG MWD+IFR1+MS
1000.000	0.000	0.000	1000.000	3.585	0.000	3.405	0.000	2.573	0.000	0.000	3.585	3.405	90.000	XOM_R2OWSG MWD+IFR1+MS
1100.000	0.000	0.000	1100.000	3.943	0.000	3.764	0.000	2.625	0.000	0.000	3.943	3.764	90.000	XOM_R2OWSG MWD+IFR1+MS
1200.000	2.000	151.295	1199.980	4.242	0.000	4.147	-0.000	2.680	0.000	0.000	4.285	4.105	89.997	XOM_R2OWSG MWD+IFR1+MS
1300.000	4.000	151.295	1299.838	4.564	0.000	4.475	-0.000	2.737	0.000	0.000	4.616	4.433	89.891	XOM_R2OWSG MWD+IFR1+MS
1400.000	6.000	151.295	1399.452	4.886	0.000	4.808	-0.000	2.794	0.000	0.000	4.951	4.765	89.851	XOM_R2OWSG MWD+IFR1+MS
1500.000	8.000	151.295	1498.702	5.206	0.000	5.146	-0.000	2.852	0.000	0.000	5.290	5.102	90.000	XOM_R2OWSG MWD+IFR1+MS
1600.000	10.000	151.295	1597.465	5.524	0.000	5.489	-0.000	2.913	0.000	0.000	5.632	5.444	90.457	XOM_R2OWSG MWD+IFR1+MS
1700.000	12.000	151.295	1695.623	5.841	0.000	5.838	-0.000	2.975	0.000	0.000	5.978	5.791	91.349	XOM_R2OWSG MWD+IFR1+MS
1800.000	14.000	151.295	1793.055	6.156	0.000	6.195	-0.000	3.041	0.000	0.000	6.328	6.144	92.842	XOM_R2OWSG MWD+IFR1+MS

1900.000	16.000	151.295	1889.643	6.470	0.000	6.559 -	-0.000	3.111	0.000	0.000	6.682	6.503	95.169	XOM_R2OWSG MWD+IFR1+MS
1937.077	16.742	151.295	1925.216	6.586	0.000	6.696 -	-0.000	3.134	0.000	0.000	6.816	6.638	95.845	XOM_R2OWSG MWD+IFR1+MS
2000.000	16.742	151.295	1985.472	6.814	0.000	6.931 -	-0.000	3.188	0.000	0.000	7.040	6.868	98.434	XOM_R2OWSG MWD+IFR1+MS
2100.000	16.742	151.295	2081.234	7.180	0.000	7.312 -	-0.000	3.284	0.000	0.000	7.402	7.236	103.574	XOM_R2OWSG MWD+IFR1+MS
2200.000	16.742	151.295	2176.995	7.551	0.000	7.698 -	-0.000	3.385	0.000	0.000	7.772	7.606	109.151	XOM_R2OWSG MWD+IFR1+MS
2300.000	16.742	151.295	2272.757	7.927	0.000	8.089 -	-0.000	3.490	0.000	0.000	8.149	7.979	114.795	XOM_R2OWSG MWD+IFR1+MS
2400.000	16.742	151.295	2368.518	8.306	0.000	8.485 -	-0.000	3.599	0.000	0.000	8.533	8.352	120.106	XOM_R2OWSG MWD+IFR1+MS
2500.000	16.742	151.295	2464.279	8.688	0.000	8.884 -	-0.000	3.711	0.000	0.000	8.923	8.726	124.806	XOM_R2OWSG MWD+IFR1+MS
2600.000	16.742	151.295	2560.041	9.072	0.000	9.287 -	-0.000	3.827	0.000	0.000	9.319	9.100	128.794	XOM_R2OWSG MWD+IFR1+MS
2700.000	16.742	151.295	2655.802	9.459	0.000	9.693 -	-0.000	3.947	0.000	0.000	9.719	9.475	132.104	XOM_R2OWSG MWD+IFR1+MS
2800.000	16.742	151.295	2751.564	9.848	0.000	10.101 -	-0.000	4.069	0.000	0.000	10.122	9.852	134.830	XOM_R2OWSG MWD+IFR1+MS
2900.000	16.742	151.295	2847.325	10.239	0.000	10.511 -	-0.000	4.194	0.000	0.000	10.529	10.229	-42.924	XOM_R2OWSG MWD+IFR1+MS
3000.000	16.742	151.295	2943.086	10.632	0.000	10.924 -	-0.000	4.321	0.000	0.000	10.938	10.607	-41.061	XOM_R2OWSG MWD+IFR1+MS
3100.000	16.742	151.295	3038.848	11.026	0.000	11.338 -	-0.000	4.451	0.000	0.000	11.350	10.986	-39.502	XOM_R2OWSG MWD+IFR1+MS
3200.000	16.742	151.295	3134.609	11.421	0.000	11.753 -	-0.000	4.584	0.000	0.000	11.764	11.366	-38.185	XOM_R2OWSG MWD+IFR1+MS
3300.000	16.742	151.295	3230.370	11.818	0.000	12.170 -	-0.000	4.719	0.000	0.000	12.179	11.747	-37.062	XOM_R2OWSG MWD+IFR1+MS
3400.000	16.742	151.295	3326.132	12.215	0.000	12.589 -	-0.000	4.855	0.000	0.000	12.596	12.129	-36.096	XOM_R2OWSG MWD+IFR1+MS
3500.000	16.742	151.295	3421.893	12.614	0.000	13.008 -	-0.000	4.994	0.000	0.000	13.015	12.512	-35.257	XOM_R2OWSG MWD+IFR1+MS
3600.000	16.742	151.295	3517.655	13.013	0.000	13.429 -	-0.000	5.135	0.000	0.000	13.434	12.895	-34.522	XOM_R2OWSG MWD+IFR1+MS
3700.000	16.742	151.295	3613.416	13.414	0.000	13.850 -	-0.000	5.278	0.000	0.000	13.855	13.279	-33.875	XOM_R2OWSG MWD+IFR1+MS

3800.000	16.742	151.295	3709.177	13.815 0.000	14.273 -0.000	5.422 0.000	0.000	14.277	13.664	-33.301 XOM_R2OWSG MWD+IFR1+MS
3900.000	16.742	151.295	3804.939	14.216 0.000	14.696 -0.000	5.568 0.000	0.000	14.699	14.049	-32.788 XOM_R2OWSG MWD+IFR1+MS
4000.000	16.742	151.295	3900.700	14.618 0.000	15.120 -0.000	5.716 0.000	0.000	15.123	14.435	-32.328 XOM_R2OWSG MWD+IFR1+MS
4100.000	16.742	151.295	3996.462	15.021 0.000	15.544 -0.000	5.866 0.000	0.000	15.547	14.822	-31.912 XOM_R2OWSG MWD+IFR1+MS
4200.000	16.742	151.295	4092.223	15.425 0.000	15.970 -0.000	6.017 0.000	0.000	15.971	15.209	-31.535 XOM_R2OWSG MWD+IFR1+MS
4300.000	16.742	151.295	4187.984	15.828 0.000	16.395 -0.000	6.170 0.000	0.000	16.397	15.597	-31.191 XOM_R2OWSG MWD+IFR1+MS
4400.000	16.742	151.295	4283.746	16.233 0.000	16.822 -0.000	6.325 0.000	0.000	16.823	15.985	-30.877 XOM_R2OWSG MWD+IFR1+MS
4500.000	16.742	151.295	4379.507	16.637 0.000	17.248 -0.000	6.481 0.000	0.000	17.249	16.373	-30.589 XOM_R2OWSG MWD+IFR1+MS
4599.494	16.742	151.295	4474.784	17.040 0.000	17.673 -0.000	6.638 0.000	0.000	17.674	16.760	-30.325 XOM_R2OWSG MWD+IFR1+MS
4700.000	14.731	151.295	4571.518	17.478 0.000	18.097 -0.000	6.798 0.000	0.000	18.098	17.148	-30.089 XOM_R2OWSG MWD+IFR1+MS
4800.000	12.731	151.295	4668.655	17.886 0.000	18.508 -0.000	6.953 0.000	0.000	18.508	17.528	-29.893 XOM_R2OWSG MWD+IFR1+MS
4900.000	10.731	151.295	4766.561	18.266 0.000	18.906 -0.000	7.101 0.000	0.000	18.906	17.903	-29.729 XOM_R2OWSG MWD+IFR1+MS
5000.000	8.731	151.295	4865.117	18.617 0.000	19.292 -0.000	7.242 0.000	0.000	19.293	18.272	-29.591 XOM_R2OWSG MWD+IFR1+MS
5100.000	6.731	151.295	4964.203	18.937 0.000	19.666 -0.000	7.376 0.000	0.000	19.666	18.634	-29.476 XOM_R2OWSG MWD+IFR1+MS
5200.000	4.731	151.295	5063.698	19.227 0.000	20.027 -0.000	7.504 0.000	0.000	20.027	18.988	-29.381 XOM_R2OWSG MWD+IFR1+MS
5300.000	2.731	151.295	5163.481	19.486 0.000	20.376 -0.000	7.627 0.000	0.000	20.376	19.333	-29.303 XOM_R2OWSG MWD+IFR1+MS
5400.000	0.731	151.295	5263.430	19.714 0.000	20.712 -0.000	7.744 0.000	0.000	20.712	19.669	-29.241 XOM_R2OWSG MWD+IFR1+MS
5436.571	0.000	0.000	5300.000	20.040 0.000	20.583 0.000	7.786 0.000	0.000	20.827	19.786	-29.282 XOM_R2OWSG MWD+IFR1+MS
5500.000	0.000	0.000	5363.429	20.237 0.000	20.769 0.000	7.859 0.000	0.000	21.014	19.983	-29.461 XOM_R2OWSG MWD+IFR1+MS
5600.000	0.000	0.000	5463.429	20.549 0.000	21.065 0.000	7.975 0.000	0.000	21.311	20.294	-29.742 XOM_R2OWSG MWD+IFR1+MS

5700.000	0.000	0.000	5563.429	20.863 0.000	21.364	0.000	8.094 0.00	0.000	21.610	20.607	-30.023 XOM_R2OWSG MWD+IFR1+MS
5800.000	0.000	0.000	5663.429	21.178 0.000	21.663	0.000	8.216 0.00	0.000	21.911	20.921	-30.303 XOM_R2OWSG MWD+IFR1+MS
5900.000	0.000	0.000	5763.429	21.494 0.000	21.965	0.000	8.340 0.00	0.000	22.214	21.237	-30.583 XOM_R2OWSG MWD+IFR1+MS
6000.000	0.000	0.000	5863.429	21.812 0.000	22.268	0.000	8.466 0.00	0.000	22.518	21.554	-30.862 XOM_R2OWSG MWD+IFR1+MS
6100.000	0.000	0.000	5963.429	22.131 0.000	22.573	0.000	8.595 0.00	0.000	22.824	21.872	-31.140 XOM_R2OWSG MWD+IFR1+MS
6200.000	0.000	0.000	6063.429	22.451 0.000	22.880	0.000	8.727 0.00	0.000	23.132	22.191	-31.418 XOM_R2OWSG MWD+IFR1+MS
6300.000	0.000	0.000	6163.429	22.772 0.000	23.188	0.000	8.862 0.00	0.000	23.441	22.512	-31.694 XOM_R2OWSG MWD+IFR1+MS
6400.000	0.000	0.000	6263.429	23.094 0.000	23.497	0.000	8.999 0.00	0.000	23.751	22.833	-31.970 XOM_R2OWSG MWD+IFR1+MS
6500.000	0.000	0.000	6363.429	23.417 0.000	23.808	0.000	9.139 0.00	0.000	24.063	23.156	-32.245 XOM_R2OWSG MWD+IFR1+MS
6600.000	0.000	0.000	6463.429	23.742 0.000	24.120	0.000	9.282 0.00	0.000	24.376	23.479	-32.519 XOM_R2OWSG MWD+IFR1+MS
6700.000	0.000	0.000	6563.429	24.067 0.000	24.434	0.000	9.428 0.00	0.000	24.690	23.804	-32.792 XOM_R2OWSG MWD+IFR1+MS
6800.000	0.000	0.000	6663.429	24.393 0.000	24.748	0.000	9.576 0.00	0.000	25.006	24.129	-33.063 XOM_R2OWSG MWD+IFR1+MS
6900.000	0.000	0.000	6763.429	24.721 0.000	25.064	0.000	9.727 0.00	0.000	25.323	24.456	-33.334 XOM_R2OWSG MWD+IFR1+MS
7000.000	0.000	0.000	6863.429	25.049 0.000	25.381	0.000	9.882 0.00	0.000	25.641	24.783	-33.603 XOM_R2OWSG MWD+IFR1+MS
7100.000	0.000	0.000	6963.429	25.377 0.000	25.699	0.000	10.038 0.00	0.000	25.960	25.111	-33.872 XOM_R2OWSG MWD+IFR1+MS
7200.000	0.000	0.000	7063.429	25.707 0.000	26.018	0.000	10.198 0.00	0.000	26.280	25.439	-34.139 XOM_R2OWSG MWD+IFR1+MS
7300.000	0.000	0.000	7163.429	26.037 0.000	26.338	0.000	10.361 0.00	0.000	26.601	25.769	-34.405 XOM_R2OWSG MWD+IFR1+MS
7400.000	0.000	0.000	7263.429	26.369 0.000	26.659	0.000	10.527 0.00	0.000	26.923	26.099	-34.669 XOM_R2OWSG MWD+IFR1+MS
7500.000	0.000	0.000	7363.429	26.700 0.000	26.981	0.000	10.695 0.00	0.000	27.246	26.430	-34.933 XOM_R2OWSG MWD+IFR1+MS
7600.000	0.000	0.000	7463.429	27.033 0.000	27.304	0.000	10.867 0.00	0.000	27.570	26.762	-35.194 XOM_R2OWSG MWD+IFR1+MS

7700.000	0.000	0.000	7563.429	27.366 0.000	27.628	0.000	11.041	0.000	0.000	27.895	27.094	-35.455	XOM_R2OWSG MWD+IFR1+MS
7800.000	0.000	0.000	7663.429	27.700 0.000	27.952	0.000	11.219	0.000	0.000	28.220	27.427	- 35.714	XOM_R2OWSG MWD+IFR1+MS
7900.000	0.000	0.000	7763.429	28.034 0.000	28.278	0.000	11.399	0.000	0.000	28.547	27.761	-35.972	XOM_R2OWSG MWD+IFR1+MS
8000.000	0.000	0.000	7863.429	28.369 0.000	28.604	0.000	11.583	0.000	0.000	28.874	28.095	-36.228	XOM_R2OWSG MWD+IFR1+MS
8100.000	0.000	0.000	7963.429	28.705 0.000	28.931	0.000	11.769	0.000	0.000	29.202	28.429	-36.482	XOM_R2OWSG MWD+IFR1+MS
8200.000	0.000	0.000	8063.429	29.041 0.000	29.259	0.000	11.958	0.000	0.000	29.531	28.765	-36.735	XOM_R2OWSG MWD+IFR1+MS
8300.000	0.000	0.000	8163.429	29.378 0.000	29.587	0.000	12.151	0.000	0.000	29.860	29.100	-36.987	XOM_R2OWSG MWD+IFR1+MS
8400.000	0.000	0.000	8263.429	29.715 0.000	29.917	0.000	12.346	0.000	0.000	30.190	29.436	-37.237	XOM_R2OWSG MWD+IFR1+MS
8500.000	0.000	0.000	8363.429	30.052 0.000	30.246	0.000	12.545	0.000	0.000	30.521	29.773	-37.485	XOM_R2OWSG MWD+IFR1+MS
8600.000	0.000	0.000	8463.429	30.390 0.000	30.577	0.000	12.747	0.000	0.000	30.853	30.110	-37.731	XOM_R2OWSG MWD+IFR1+MS
8700.000	0.000	0.000	8563.429	30.729 0.000	30.908	0.000	12.951	0.000	0.000	31.185	30.448	-37.976	XOM_R2OWSG MWD+IFR1+MS
8800.000	0.000	0.000	8663.429	31.068 0.000	31.240	0.000	13.159	0.000	0.000	31.517	30.786	-38.220	XOM_R2OWSG MWD+IFR1+MS
8900.000	0.000	0.000	8763.429	31.408 0.000	31.572	0.000	13.370	0.000	0.000	31.851	31.125	-38.461	XOM_R2OWSG MWD+IFR1+MS
9000.000	0.000	0.000	8863.429	31.747 0.000	31.905	0.000	13.584	0.000	0.000	32.185	31.464	-38.701	XOM_R2OWSG MWD+IFR1+MS
9100.000	0.000	0.000	8963.429	32.088 0.000	32.238	0.000	13.801	0.000	0.000	32.519	31.803	-38.939	XOM_R2OWSG MWD+IFR1+MS
9200.000	0.000	0.000	9063.429	32.428 0.000	32.572	0.000	14.021	0.000	0.000	32.854	32.143	- 39.176	XOM_R2OWSG MWD+IFR1+MS
9300.000	0.000	0.000	9163.429	32.769 0.000	32.906	0.000	14.244	0.000	0.000	33.189	32.483	-39.410	XOM_R2OWSG MWD+IFR1+MS
9400.000	0.000	0.000	9263.429	33.111 0.000	33.241	0.000	14.470	0.000	0.000	33.525	32.823	-39.643	XOM_R2OWSG MWD+IFR1+MS
9500.000	0.000	0.000	9363.429	33.453 0.000	33.577	0.000	14.700	0.000	0.000	33.862	33.164	-39.875	XOM_R2OWSG MWD+IFR1+MS
9545.373	0.000	0.000	9408.803	33.608 0.000	33.729	0.000	14.805	0.000	0.000	34.014	33.319	-39.979	XOM_R2OWSG MWD+IFR1+MS

9600.000	4.370	359.617	9463.377	33.492	0.000	33.915	0.000	14.930	0.000	0.000	34.196	33.502	-40.047	XOM_R2OWSG MWD+IFR1+MS
9700.000	12.370	359.617	9562.231	32.864	0.000	34.235	0.000	15.152	0.000	0.000	34.516	33.815	-39.823	XOM_R2OWSG MWD+IFR1+MS
9800.000	20.370	359.617	9658.099	31.710	0.000	34.535	0.000	15.360	0.000	0.000	34.813	34.095	-39.063	XOM_R2OWSG MWD+IFR1+MS
9900.000	28.370	359.617	9749.115	30.077	0.000	34.812	0.000	15.556	0.000	0.000	35.084	34.338	-37.675	XOM_R2OWSG MWD+IFR1+MS
10000.000	36.370	359.617	9833.507	28.035	0.000	35.066	0.000	15.742	0.000	0.000	35.326	34.542	-35.721	XOM_R2OWSG MWD+IFR1+MS
10100.000	44.370	359.617	9909.633	25.688	0.000	35.294	0.000	15.925	0.000	0.000	35.539	34.704	-33.348	XOM_R2OWSG MWD+IFR1+MS
10200.000	52.370	359.617	9976.011	23.182	0.000	35.497	0.000	16.110	0.000	0.000	35.724	34.828	-30.745	XOM_R2OWSG MWD+IFR1+MS
10300.000	60.370	359.617	10031.348	20.726	0.000	35.676	0.000	16.307	0.000	0.000	35.883	34.915	-28.098	XOM_R2OWSG MWD+IFR1+MS
10400.000	68.370	359.617	10074.569	18.605	0.000	35.830	0.000	16.522	0.000	0.000	36.017	34.972	-25.565	XOM_R2OWSG MWD+IFR1+MS
10500.000	76.370	359.617	10104.831	17.180	0.000	35.960	0.000	16.762	0.000	0.000	36.128	35.006	-23.261	XOM_R2OWSG MWD+IFR1+MS
10600.000	84.370	359.617	10121.545	16.794	0.000	36.067	0.000	17.029	0.000	0.000	36.216	35.028	-21.272	XOM_R2OWSG MWD+IFR1+MS
10670.373	90.000	359.617	10125.000	17.232	0.000	36.127	0.000	17.232	0.000	0.000	36.264	35.041	-20.117	XOM_R2OWSG MWD+IFR1+MS
10700.000	90.000	359.617	10125.000	17.321	0.000	36.150	0.000	17.321	0.000	0.000	36.282	35.047	-19.671	XOM_R2OWSG MWD+IFR1+MS
10800.000	90.000	359.617	10125.000	17.642	0.000	36.244	0.000	17.642	0.000	0.000	36.361	35.066	-17.975	XOM_R2OWSG MWD+IFR1+MS
10900.000	90.000	359.617	10125.000	17.991	0.000	36.360	0.000	17.991	0.000	0.000	36.461	35.086	-16.205	XOM_R2OWSG MWD+IFR1+MS
11000.000	90.000	359.617	10125.000	18.367	0.000	36.497	0.000	18.367	0.000	0.000	36.583	35.105	-14.446	XOM_R2OWSG MWD+IFR1+MS
11100.000	90.000	359.617	10125.000	18.768	0.000	36.655	0.000	18.768	0.000	0.000	36.727	35.123	-12.770	XOM_R2OWSG MWD+IFR1+MS
11200.000	90.000	359.617	10125.000	19.194	0.000	36.833	0.000	19.194	0.000	0.000	36.893	35.140	-11.219	XOM_R2OWSG MWD+IFR1+MS
11300.000	90.000	359.617	10125.000	19.641	0.000	37.031	0.000	19.641	0.000	0.000	37.081	35.157	-9.820	XOM_R2OWSG MWD+IFR1+MS
11400.000	90.000	359.617	10125.000	20.109	0.000	37.248	0.000	20.109	0.000	0.000	37.290	35.172	-8.578	XOM_R2OWSG MWD+IFR1+MS

11500.000	90.000	359.617	10125.000	20.596	0.000	37.485	0.000	20.596	0.000	0.000	37.520	35.187	-7.489	XOM_R2OWSG MWD+IFR1+MS
11600.000	90.000	359.617	10125.000	21.101	0.000	37.742	0.000	21.101	0.000	0.000	37.770	35.202	-6.541	XOM_R2OWSG MWD+IFR1+MS
11700.000	90.000	359.617	10125.000	21.623	0.000	38.017	0.000	21.623	0.000	0.000	38.040	35.216	-5.719	XOM_R2OWSG MWD+IFR1+MS
11800.000	90.000	359.617	10125.000	22.161	0.000	38.310	0.000	22.161	0.000	0.000	38.329	35.229	-5.009	XOM_R2OWSG MWD+IFR1+MS
11900.000	90.000	359.617	10125.000	22.712	0.000	38.621	0.000	22.712	0.000	0.000	38.637	35.243	-4.395	XOM_R2OWSG MWD+IFR1+MS
12000.000	90.000	359.617	10125.000	23.278	0.000	38.949	0.000	23.278	0.000	0.000	38.962	35.257	-3.864	XOM_R2OWSG MWD+IFR1+MS
12100.000	90.000	359.617	10125.000	23.855	0.000	39.295	0.000	23.855	0.000	0.000	39.305	35.271	-3.405	XOM_R2OWSG MWD+IFR1+MS
12200.000	90.000	359.617	10125.000	24.444	0.000	39.657	0.000	24.444	0.000	0.000	39.665	35.286	-3.006	XOM_R2OWSG MWD+IFR1+MS
12300.000	90.000	359.617	10125.000	25.044	0.000	40.035	0.000	25.044	0.000	0.000	40.042	35.300	-2.659	XOM_R2OWSG MWD+IFR1+MS
12400.000	90.000	359.617	10125.000	25.654	0.000	40.428	0.000	25.654	0.000	0.000	40.434	35.315	-2.356	XOM_R2OWSG MWD+IFR1+MS
12500.000	90.000	359.617	10125.000	26.273	0.000	40.837	0.000	26.273	0.000	0.000	40.842	35.331	-2.092	XOM_R2OWSG MWD+IFR1+MS
12600.000	90.000	359.617	10125.000	26.901	0.000	41.261	0.000	26.901	0.000	0.000	41.265	35.347	-1.860	XOM_R2OWSG MWD+IFR1+MS
12700.000	90.000	359.617	10125.000	27.537	0.000	41.699	0.000	27.537	0.000	0.000	41.702	35.364	-1.656	XOM_R2OWSG MWD+IFR1+MS
12800.000	90.000	359.617	10125.000	28.180	0.000	42.151	0.000	28.180	0.000	0.000	42.153	35.381	-1.477	XOM_R2OWSG MWD+IFR1+MS
12900.000	90.000	359.617	10125.000	28.831	0.000	42.616	0.000	28.831	0.000	0.000	42.618	35.398	-1.318	XOM_R2OWSG MWD+IFR1+MS
13000.000	90.000	359.617	10125.000	29.488	0.000	43.094	0.000	29.488	0.000	0.000	43.096	35.417	-1.178	XOM_R2OWSG MWD+IFR1+MS
13100.000	90.000	359.617	10125.000	30.151	0.000	43.585	0.000	30.151	0.000	0.000	43.586	35.435	-1.053	XOM_R2OWSG MWD+IFR1+MS
13200.000	90.000	359.617	10125.000	30.819	0.000	44.088	0.000	30.819	0.000	0.000	44.089	35.455	-0.942	XOM_R2OWSG MWD+IFR1+MS
13300.000	90.000	359.617	10125.000	31.494	0.000	44.602	0.000	31.494	0.000	0.000	44.603	35.475	-0.843	XOM_R2OWSG MWD+IFR1+MS
13400.000	90.000	359.617	10125.000	32.173	0.000	45.128	0.000	32.173	0.000	0.000	45.129	35.495	-0.755	XOM_R2OWSG MWD+IFR1+MS

13500.000	90.000	359.617	10125.000	32.857	0.000	45.665	0.000	32.857	0.000	0.000	45.665	35.517	-0.676	XOM_R2OWSG MWD+IFR1+MS
13600.000	90.000	359.617	10125.000	33.545	0.000	46.213	0.000	33.545	0.000	0.000	46.213	35.539	-0.605	XOM_R2OWSG MWD+IFR1+MS
13700.000	90.000	359.617	10125.000	34.237	0.000	46.770	0.000	34.237	0.000	0.000	46.770	35.561	-0.541	XOM_R2OWSG MWD+IFR1+MS
13800.000	90.000	359.617	10125.000	34.934	0.000	47.337	0.000	34.934	0.000	0.000	47.337	35.584	-0.484	XOM_R2OWSG MWD+IFR1+MS
13900.000	90.000	359.617	10125.000	35.634	0.000	47.914	0.000	35.634	0.000	0.000	47.914	35.608	-0.432	XOM_R2OWSG MWD+IFR1+MS
14000.000	90.000	359.617	10125.000	36.337	0.000	48.500	0.000	36.337	0.000	0.000	48.500	35.633	-0.386	XOM_R2OWSG MWD+IFR1+MS
14100.000	90.000	359.617	10125.000	37.044	0.000	49.095	0.000	37.044	0.000	0.000	49.095	35.658	-0.344	XOM_R2OWSG MWD+IFR1+MS
14200.000	90.000	359.617	10125.000	37.754	0.000	49.698	0.000	37.754	0.000	0.000	49.698	35.684	-0.306	XOM_R2OWSG MWD+IFR1+MS
14300.000	90.000	359.617	10125.000	38.466	0.000	50.310	0.000	38.466	0.000	0.000	50.310	35.710	-0.272	XOM_R2OWSG MWD+IFR1+MS
14400.000	90.000	359.617	10125.000	39.182	0.000	50.929	0.000	39.182	0.000	0.000	50.929	35.737	-0.241	XOM_R2OWSG MWD+IFR1+MS
14500.000	90.000	359.617	10125.000	39.900	0.000	51.556	0.000	39.900	0.000	0.000	51.556	35.765	-0.213	XOM_R2OWSG MWD+IFR1+MS
14600.000	90.000	359.617	10125.000	40.620	0.000	52.190	0.000	40.620	0.000	0.000	52.190	35.793	-0.187	XOM_R2OWSG MWD+IFR1+MS
14700.000	90.000	359.617	10125.000	41.343	0.000	52.831	0.000	41.343	0.000	0.000	52.832	35.822	-0.164	XOM_R2OWSG MWD+IFR1+MS
14800.000	90.000	359.617	10125.000	42.068	0.000	53.479	0.000	42.068	0.000	0.000	53.480	35.852	-0.143	XOM_R2OWSG MWD+IFR1+MS
14900.000	90.000	359.617	10125.000	42.796	0.000	54.134	0.000	42.796	0.000	0.000	54.134	35.882	-0.124	XOM_R2OWSG MWD+IFR1+MS
15000.000	90.000	359.617	10125.000	43.525	0.000	54.795	0.000	43.525	0.000	0.000	54.795	35.913	-0.107	XOM_R2OWSG MWD+IFR1+MS
15100.000	90.000	359.617	10125.000	44.256	0.000	55.462	0.000	44.256	0.000	0.000	55.463	35.945	-0.091	XOM_R2OWSG MWD+IFR1+MS
15200.000	90.000	359.617	10125.000	44.989	0.000	56.135	0.000	44.989	0.000	0.000	56.136	35.977	-0.077	XOM_R2OWSG MWD+IFR1+MS
15300.000	90.000	359.617	10125.000	45.723	0.000	56.814	0.000	45.723	0.000	0.000	56.814	36.010	-0.064	XOM_R2OWSG MWD+IFR1+MS
15400.000	90.000	359.617	10125.000	46.460	0.000	57.498	0.000	46.460	0.000	0.000	57.499	36.044	-0.053	XOM_R2OWSG MWD+IFR1+MS

15500.000	90.000	359.617	10125.000	47.198	0.000	58.187	0.000	47.198	0.000	0.000	58.188	36.078	-0.042	XOM_R2OWSG MWD+IFR1+MS
15600.000	90.000	359.617	10125.000	47.937	0.000	58.882	0.000	47.937	0.000	0.000	58.883	36.113	-0.032	XOM_R2OWSG MWD+IFR1+MS
15700.000	90.000	359.617	10125.000	48.678	0.000	59.581	0.000	48.678	0.000	0.000	59.582	36.148	-0.024	XOM_R2OWSG MWD+IFR1+MS
15800.000	90.000	359.617	10125.000	49.420	0.000	60.286	0.000	49.420	0.000	0.000	60.286	36.185	-0.016	XOM_R2OWSG MWD+IFR1+MS
15900.000	90.000	359.617	10125.000	50.163	0.000	60.994	0.000	50.163	0.000	0.000	60.995	36.221	-0.009	XOM_R2OWSG MWD+IFR1+MS
16000.000	90.000	359.617	10125.000	50.908	0.000	61.708	0.000	50.908	0.000	0.000	61.708	36.259	-0.003	XOM_R2OWSG MWD+IFR1+MS
16100.000	90.000	359.617	10125.000	51.654	0.000	62.425	0.000	51.654	0.000	0.000	62.426	36.297	0.003	XOM_R2OWSG MWD+IFR1+MS
16200.000	90.000	359.617	10125.000	52.401	0.000	63.147	0.000	52.401	0.000	0.000	63.148	36.336	0.008	XOM_R2OWSG MWD+IFR1+MS
16300.000	90.000	359.617	10125.000	53.149	0.000	63.872	0.000	53.149	0.000	0.000	63.873	36.375	0.013	XOM_R2OWSG MWD+IFR1+MS
16400.000	90.000	359.617	10125.000	53.898	0.000	64.602	0.000	53.898	0.000	0.000	64.603	36.415	0.017	XOM_R2OWSG MWD+IFR1+MS
16500.000	90.000	359.617	10125.000	54.648	0.000	65.335	0.000	54.648	0.000	0.000	65.336	36.455	0.021	XOM_R2OWSG MWD+IFR1+MS
16600.000	90.000	359.617	10125.000	55.399	0.000	66.072	0.000	55.399	0.000	0.000	66.073	36.497	0.024	XOM_R2OWSG MWD+IFR1+MS
16700.000	90.000	359.617	10125.000	56.151	0.000	66.812	0.000	56.151	0.000	0.000	66.813	36.538	0.027	XOM_R2OWSG MWD+IFR1+MS
16800.000	90.000	359.617	10125.000	56.904	0.000	67.555	0.000	56.904	0.000	0.000	67.557	36.581	0.029	XOM_R2OWSG MWD+IFR1+MS
16900.000	90.000	359.617	10125.000	57.658	0.000	68.302	0.000	57.658	0.000	0.000	68.304	36.624	0.031	XOM_R2OWSG MWD+IFR1+MS
17000.000	90.000	359.617	10125.000	58.412	0.000	69.052	0.000	58.412	0.000	0.000	69.054	36.668	0.033	XOM_R2OWSG MWD+IFR1+MS
17100.000	90.000	359.617	10125.000	59.168	0.000	69.805	0.000	59.168	0.000	0.000	69.807	36.712	0.035	XOM_R2OWSG MWD+IFR1+MS
17200.000	90.000	359.617	10125.000	59.924	0.000	70.561	0.000	59.924	0.000	0.000	70.563	36.757	0.036	XOM_R2OWSG MWD+IFR1+MS
17300.000	90.000	359.617	10125.000	60.681	0.000	71.320	0.000	60.681	0.000	0.000	71.322	36.802	0.037	XOM_R2OWSG MWD+IFR1+MS
17400.000	90.000	359.617	10125.000	61.438	0.000	72.082	0.000	61.438	0.000	0.000	72.083	36.849	0.038	XOM_R2OWSG MWD+IFR1+MS

17500.000	90.000	359.617	10125.000	62.196	0.000	72.846	0.000	62.196	0.000	0.000	72.848	36.895	0.038	XOM_R2OWSG MWD+IFR1+MS
17600.000	90.000	359.617	10125.000	62.955	0.000	73.613	0.000	62.955	0.000	0.000	73.615	36.943	0.039	XOM_R2OWSG MWD+IFR1+MS
17700.000	90.000	359.617	10125.000	63.715	0.000	74.383	0.000	63.715	0.000	0.000	74.384	36.990	0.039	XOM_R2OWSG MWD+IFR1+MS
17800.000	90.000	359.617	10125.000	64.475	0.000	75.154	0.000	64.475	0.000	0.000	75.156	37.039	0.039	XOM_R2OWSG MWD+IFR1+MS
17900.000	90.000	359.617	10125.000	65.235	0.000	75.929	0.000	65.235	0.000	0.000	75.930	37.088	0.039	XOM_R2OWSG MWD+IFR1+MS
18000.000	90.000	359.617	10125.000	65.997	0.000	76.705	0.000	65.997	0.000	0.000	76.707	37.138	0.039	XOM_R2OWSG MWD+IFR1+MS
18100.000	90.000	359.617	10125.000	66.759	0.000	77.484	0.000	66.759	0.000	0.000	77.486	37.188	0.038	XOM_R2OWSG MWD+IFR1+MS
18189.042	90.000	359.617	10125.000	67.437	0.000	78.179	0.000	67.437	0.000	0.000	78.181	37.233	0.038	XOM_R2OWSG MWD+IFR1+MS
18200.000	90.000	359.617	10125.000	67.521	0.000	78.264	0.000	67.521	0.000	0.000	78.266	37.239	0.038	XOM_R2OWSG MWD+IFR1+MS
18239.051	90.000	359.617	10125.000	67.819	0.000	78.569	0.000	67.819	0.000	0.000	78.571	37.259	0.038	XOM_R2OWSG MWD+IFR1+MS

Plan Targets	Corral 17-8 Fed Com 122H
i idii idigeta	0011di 17 0 1 0d 00111 12211

	Measured Depth	Grid Northing	Grid Easting	TVD MSL Target Shape
Target Name	(ft)	(ft)	(ft)	(ft)
122H FTP	10670.34	408866.60	599825.60	7146.00 CIRCLE
122H LTP	18189.04	416385.10	599775.30	7146.00 CIRCLE
122H BHL	18239.04	416435.10	599775.10	7146.00 CIRCLE

ALL DIMENSIONS APPROXIMAL:

CACTUS WELLHEAD LLC

20" x 9-5/8" x 7-5/8" x 5-1/2" MBU-T-CFL-R-DBLO Wellhead With 11" 10M x 7-1/16" 15M CTH-DBLHPS Tubing Head And 9-5/8", 7-5/8" & 5-1/2" Pin Bottom Mandrel Casing Hangers

	XTO ENERGY INDELAWARE BASI	_
DRAWN	VJK	31MAR2
APPRV		

DRAWING NO. HBE0000479

FORMATION CONTAINED HEREIN IS THE PROPERTY OF CACTUS WELLHEAD, LLC. REPRODUCTION, SCLOSURE, OR USE THEREOF IS PERMISSIBLE ONLY AS PROVIDED BY CONTRACT OR AS EXPRESSLY SUTHORIZED BY CACTUS WELLHEAD, LLC.

<u>Subject:</u> Request for a Variance Allowing break Testing of the Blowout Preventer Equipment (BOPE)

XTO Energy requests a variance to ONLY test broken pressure seals on the BOPE and function test BOP when skidding a drilling rig between multiple wells on a pad.

Background

Onshore Oil and Gas Order CFR Title 43 Part 3170, Drilling Operations, Sections III.A.2.i.iv.B states that the BOP test must be performed whenever any seal subject to test pressure is broken. The current interpretation of the Bureau of Land Management (BLM) requires a complete BOP test and not just a test of the affected component. CFR Title 43 Part 3170 states, "Some situation may exist either on a well-by-well basis or field-wide basis whereby it is commonly accepted practice to vary a particular minimum standard(s) established in this order. This situation can be resolved by requesting a variance...". XTO Energy feels the break testing the BOPE is such a situation. Therefore, as per CFR Title 43 Part 3170, XTO Energy submits this request for the variance.

Supporting Documentation

CFR Title 43 Part 3170 became effective on December 19, 1988 and has remained the standard for regulating BLM onshore drilling operations for over 30 years. During this time there have been significant changes in drilling technology. BLM continues to use the variance request process to allow for the use of modern technology and acceptable engineering practices that have arisen since CFR Title 43 Part 3170 was originally released. The XTO Energy drilling rig fleet has many modern upgrades that allow the intact BOP stack to be moved between well slots on a multi-well pad, as well as, wellhead designs that incorporate quick connects facilitating release of the BOP from the wellhead without breaking any BOP stack components apart. These technologies have been used extensively offshore, and other regulators, API, and many operators around the world have endorsed break testing as safe and reliable.

Figure 1: Winch System attached to BOP Stack

Figure 2: BOP Winch System

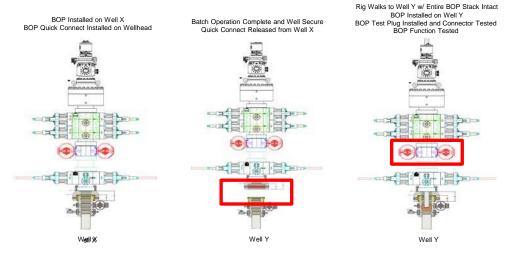
American Petroleum Institute (API) standards, specification and recommended practices are considered the industry standard and are consistently utilized and referenced by the industry. CFR Title 43 Part 3170recognizes API recommended Practices (RP) 53 in its original development. API Standard 53, *Well Control Equipment Systems for Drilling Wells* (Fifth Edition, December 2018, Annex C, Table C.4) recognizes break testing as an acceptable practice. Specifically, API Standard 53, Section 5.3.7.1 states "A pressure test of the pressure containing component shall be performed following the disconnection or repair, limited to the affected component." See Table C.4 below for reference.

2	API STANDARD	53			
T al	ole C.4—Initial Pressure Te	esting, Surface BOP Stacks			
	Pressure Test—Low	Pressure Test—	-High Pressure ^{ac}		
Component to be Pressure Tested	Pressure ^{ac} psig (MPa)	Change Out of Component, Elastomer, or Ring Gasket	No Change Out of Component, Elastomer, or Ring Gasket		
Annular preventer ^b	250 to 350 (1.72 to 2.41)	RWP of annular preventer	MASP or 70% annular RWP, whichever is lower.		
Fixed pipe, variable bore, blind, and BSR preventers ^{bd}	250 to 350 (1.72 to 2.41)	RWP of ram preventer or wellhead system, whichever is lower	ITP		
Choke and kill line and BOP side outlet valves below ram preventers (both sides)	250 to 350 (1.72 to 2.41)	RWP of side outlet valve or wellhead system, whichever is lower	ITP		
Choke manifold—upstream of chokes ^e	250 to 350 (1.72 to 2.41)	RWP of ram preventers or wellhead system, whichever is lower	ITP		
Choke manifold—downstream of chokese	250 to 350 (1.72 to 2.41)	RWP of valve(s), line(s), or N whichever is lower	MASP for the well program,		
Kelly, kelly valves, drill pipe safety valves, IBOPs	250 to 350 (1.72 to 2.41)	MASP for the well program			
b Annular(s) and VBR(s) shall be pre	during the evaluation period. The passure tested on the largest and sm	oressure shall not decrease below the allest OD drill pipe to be used in well	program.		
	from one wellhead to another within when the integrity of a pressure se	n the 21 days, pressure testing is req al is broken.	uired for pressure-containing an		
For surface offshore operations, the	ne ram BOPs shall be pressure tes land operations, the ram BOPs sha	ted with the ram locks engaged and all be pressure tested with the ram lo			

The Bureau of Safety and Environmental Enforcement (BSEE), Department of Interior, has also utilized the API standards, specification and best practices in the development of its offshore oil and gas regulations and incorporates them by reference within its regulations.

Break testing has been approved by the BLM in the past with other operators based on the detailed information provided in this document.

XTO Energy feels break testing and our current procedures meet the intent of CFR Title 43 Part 317 Oand often exceed it. There has been no evidence that break testing results in more components failing than seen on full BOP tests. XTO Energy's internal standards requires complete BOPE tests more often than that of CFR Title 43 Part 3170 (Every 21 days). In addition to function testing the annular, pipe rams and blind rams after

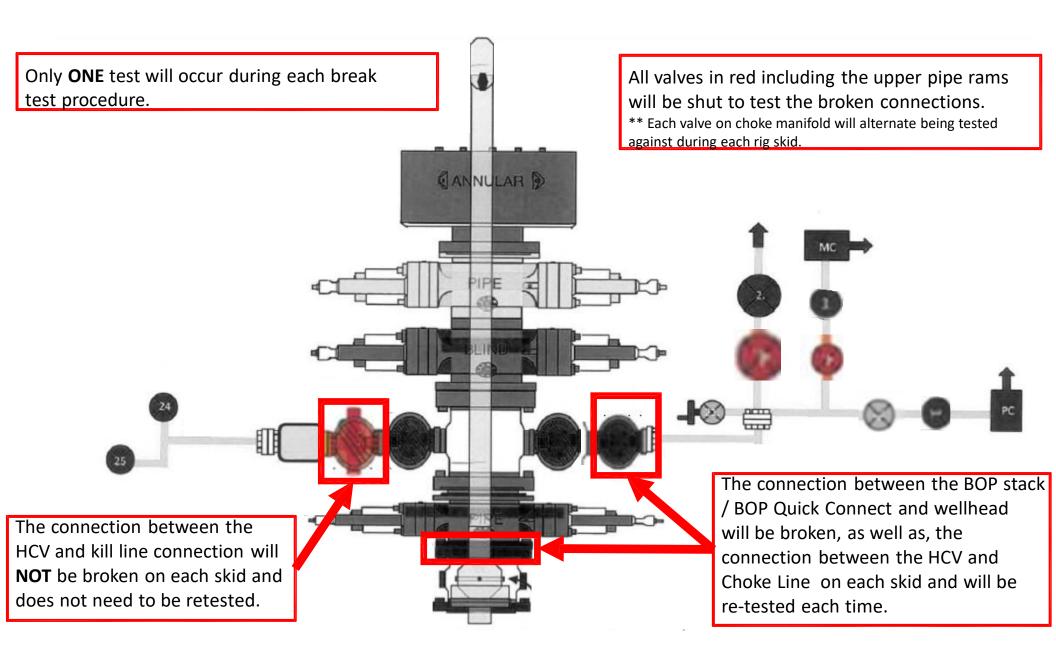

each BOP nipple up, XTO Energy performs a choke drill with the rig crew prior to drilling out every casing shoe. This is additional training for the rig crew that exceeds the requirements of the CFR Title 43 Part 3170.

Procedures

- XTO Energy will use this document for our break testing plan for New Mexico Delaware basin.
 The summary below will be referenced in the APD or Sundry Notice and receive approval prior
 to implementing this variance.
- 2. XTO Energy will perform BOP break testing on multi-wells pads where multiple intermediate sections can be drilled and cased within the 21-day BOP test window.
 - a. A full BOP test will be conducted on the first well on the pad.
 - b. The first intermediate hole section drilled on the pad will be the deepest. All of the remaining hole sections will be the same depth or shallower.
 - i. Our Lower WC targets set the intermediate casing shoe no deeper than the Wolfcamp B.
 - ii. Our Upper WC targets set the intermediate casing shoe shallower than the Wolfcamp B.
 - c. A Full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.
 - d. A full BOP test will be required prior to drilling any production hole.
- 3. After performing a complete BOP test on the first well, the intermediate hole section will be drilled and cased, two breaks would be made on the BOP equipment.
 - a. Between the HCV valve and choke line connection
 - b. Between the BOP quick connect and the wellhead
- 4. The BOP is then lifted and removed from the wellhead by a hydraulic system.
- 5. After skidding to the next well, the BOP is moved to the wellhead by the same hydraulic system and installed.
- 6. The connections mentioned in 3a and 3b will then be reconnected.
- 7. Install test plug into the wellhead using test joint or drill pipe.
- 8. A shell test is performed against the upper pipe rams testing the two breaks.
- 9. The shell test will consist of a 250 psi low test and a high test to the value submitted in the APD or Sundry (e.g. 5,000 psi or 10,000psi).
- 10. Function test will be performed on the following components: lower pipe rams, blind rams, and annular.

- 11. For a multi-well pad the same two breaks on the BOP would be made and on the next wells and steps 4 through 10 would be repeated.
- 12. A second break test would only be done if the intermediate hole section being drilled could not be completed within the 21 day BOP test window.

Note: Picture below highlights BOP components that will be tested during batch operations


Summary

A variance is requested to **ONLY** test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API Standard 53 states, that for pad drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken.

The BOP will be secured by a hydraulic carrier or cradle. The BLM will be contacted if a Well Control event occurs prior to the commencement of a BOPE Break Testing operation.

Based on discussions with the BLM on February 27th 2020 and the supporting documentation submitted to the BLM, we will request permission to ONLY retest broken pressure seals if the following conditions are met:

- 1. After a full BOP test is conducted on the first well on the pad.
- 2. The first intermediate hole section drilled on the pad will be the deepest. All of the remaining hole sections will be the same depth or shallower.
- 3. Full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.
- 4. Full BOP test will be required prior to drilling the production hole.

10,000 PSI Annular BOP Variance Request

XTO Energy/XTO Permian Op. request a variance to use a 5000 psi annular BOP with a 10,000 psi BOP stack. The component and compatibility tables along with the general well control plans demonstrate how the 5000 psi annular BOP will be protected from pressures that exceed its rated working pressure (RWP). The pressure at which the control of the wellbore is transferred from the annular preventer to another available preventer will not exceed 3500 psi (70% of the RWP of the 5000 psi annular BOPL).

1. Component and Preventer Compatibility Tables

The tables below outline the tubulars and the compatible preventers in use. This table, combined with the drilling fluid, documents that two barriers to flow will be maintained at all times.

	8-	1/2" Production Hole Se 10M psi Requiremen			
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP
Drillpipe	5.000" or	Annular	5M	Upper 3.5"-5.5" VBR	10M
	4.500"			Lower 3.5"-5.5" VBR	10M
HWDP	5.000" or	Annular	5M	Upper 3.5"-5.5" VBR	10M
	4.500"			Lower 3.5"-5.5" VBR	10M
Jars	6.500"	Annular	5M	-	-
DCs and MWD tools	6.500"-8.000"	Annular	5M	-	-
Mud Motor	6.750"-8.000"	Annular	5M	-	-
Production Casing	5-1/2"	Annular	5M	-	-
Open-Hole	-	Blind Rams	10M	-	-

2. Well Control Procedures

Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the BHA through the BOPs. At least one well control drill will be performed weekly per crew to demonstrate compliance with the procedure and well control plan. The well control drill will be recorded in the daily drilling log. The type of drill will be determined by the ongoing operations, but reasonable attempts will be made to vary the type of drill conducted (pit, trip, open hole, choke, etc.). This well control plan will be available for review by rig personnel in the XTO Energy/Permian Operating drilling supervisor's office on location and on the rig floor. All BOP equipment will be tested as per Onshore O&G Order No. 2 with the exception of the 5000 psi annular which will be tested to 70% of its RWP.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan

9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full-opening safety valve & close
- 3. Space out drill string
- 4. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Running Production Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full-opening safety valve and close
- 3. Space out string
- 4. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams (HCR & choke will already be in the closed position)
- 3. Confirm shut-in
- 4. Notify toolpusher/company representative
- 5. Read and record the following:
 - a. SICP
 - b. Pit gain
 - c. Time
- 6. Regroup and identify forward plan

General Procedures While Pulling BHA Through Stack

- 1. PRIOR to pulling last joint of drillpipe through stack:
 - a. Perform flow check. If flowing, continue to (b).
 - b. Sound alarm (alert crew)
 - c. Stab full-opening safety valve and close
 - d. Space out drill string with tool joint just beneath the upper variable bore rams
 - e. Shut-in using upper variable bore rams (HCR & choke will already be in the closed position)
 - f. Confirm shut-in
 - g. Notify toolpusher/company representative
 - h. Read and record the following:
 - i. SIDPP & SICP
 - ii. Pit gain
 - iii. Time
 - i. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combination immediately available:
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full-opening safety valve and close
 - c. Space out drill string with upset just beneath the upper variable bore rams
 - d. Shut-in using upper variable bore rams (HCR & choke will already be in the closed position)
 - e. Confirm shut-in
 - f. Notify toolpusher/company representative
 - g. Read and record the following:
 - i. SIDPP & SICP

- ii. Pit gain
- iii. Time
- h. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combination immediately available:
 - a. Sound alarm (alert crew)
 - b. If possible, pull string clear of the stack and follow "Open Hole" procedure.
 - c. If impossible to pull string clear of the stack:
 - d. Stab crossover, make up one joint/stand of drillpipe and full-opening safety valve and close
 - e. Space out drill string with tooljoint just beneath the upper variable bore ram
 - f. Shut-in using upper variable bore ram (HCR & choke will already be in the closed position)
 - g. Confirm shut-in
 - h. Notify toolpusher/company representative
 - i. Read and record the following:
 - i. SIDPP & SICP
 - ii. Pit gain
 - iii. Time
 - j. Regroup and identify forward plan

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 362853

CONDITIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	362853
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By		Condition Date
ward.rikala	None	7/18/2024