R	U.S. Department of the Interior		Sundry Print Report 07/25/2024
	BUREAU OF LAND MANAGEMENT		
	Well Name: SANDRA JEAN 23 FED COM	Well Location: T20S / R33E / SEC 23 / SWSE / 32.5519275 / -103.632085	County or Parish/State: LEA / NM
	Well Number: 503H	Type of Well: OIL WELL	Allottee or Tribe Name:
	Lease Number: NMNM29704	Unit or CA Name:	Unit or CA Number:
	US Well Number: 3002552640	Operator: AVANT OPERATING LLC	
- 1			

Notice of Intent

Sundry ID: 2801877

Type of Submission: Notice of Intent

Date Sundry Submitted: 07/18/2024

Date proposed operation will begin: 08/01/2024

Type of Action: APD Change Time Sundry Submitted: 09:31

Procedure Description: Avant Operating, LLC would like to request that the TVD to the Sandra Jean 23 Fed Com 503H be changed to 10,080'. Please see the attached updated documentation for this request. Thank you!

NOI Attachments

Procedure Description

5.5_in_20__P110HC_INT_SP_20240718213122.pdf

Avant_Natural_Resources_Sandra_Jean_23_Fed_Com_503H_No_Pricing_20240718213108.pdf

Sandra_Jean_23_Fed_Com_503H_Plan_0.1_Report_20240718213055.pdf

Sandra_Jean_23_Fed_Com_503H_WBS_Prelim_v2_20240718213043.pdf

 Received by OCD: 7255/024 2:41:93 FED COM
 Well Location: T20S / R33E / SEC 23 / SWSE / 32.5519275 / -103.632085
 County or Parish/State: LEAP 2 of NM

 Well Number: 503H
 Type of Well: OIL WELL
 Allottee or Tribe Name:

 Lease Number: NMNM29704
 Unit or CA Name:
 Unit or CA Number:

 US Well Number: 3002552640
 Operator: AVANT OPERATING LLC
 Vertice of the context of the context

Conditions of Approval

Additional

Sandra_Jean_23_Fed_Com_503H_Dr_COA_20240724100858.pdf

23_20_33_O_Sundry_ID_2801877_Sandra_Jean_23_Fed_Com_503H_Lea_NM29704_AVANT_OPERATING_LLC_13 _22fa_8_9_2023_LV_20240724100858.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: SARAH FERREYROS

Name: AVANT OPERATING LLC

Title: Director of Regulatory

Street Address: 1515 WYNKOOP

City: DENVER

State: CO

State:

Phone: (720) 854-9020

Email address: SARAH@AVANTNR.COM

Field

Representativ	ve Name:
Street Addres	ss:

City:

Phone:

Email address:

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS BLM POC Phone: 5752342234 Disposition: Approved Signature: Chris Walls Signed on: JUL 18, 2024 09:31 PM

Zip:

BLM POC Title: Petroleum Engineer BLM POC Email Address: cwalls@blm.gov

Disposition Date: 07/25/2024

Released to Imaging: 8/2/2024 2:25:28 PM

Received by OCD: 7/25/2024 2:11:03 PM

eceivea by OCD. 772372024	+ 2.11.03 F M			ruge 5 0j
	UNITED STAT DEPARTMENT OF THE UREAU OF LAND MAN	INTERIOR		FORM APPROVED OMB No. 1004-0137 spires: October 31, 2021
Do not use th	• •	ORTS ON WELLS to drill or to re-enter an APD) for such proposals	6. If Indian, Allottee	or Tribe Name
	IN TRIPLICATE - Other inst	ructions on page 2	7. If Unit of CA/Agr	eement, Name and/or No.
1. Type of Well			0.11/11/11/11/11	
Oil Well	as Well Other		8. Well Name and N	0.
2. Name of Operator			9. API Well No.	
3a. Address		3b. Phone No. <i>(include area code)</i>	e) 10. Field and Pool of	Exploratory Area
4. Location of Well (Footage, Sec.	T.,R.,M., or Survey Description	1)	11. Country or Parisl	n, State
12.	CHECK THE APPROPRIATE I	BOX(ES) TO INDICATE NATURE	OF NOTICE, REPORT OR OT	THER DATA
TYPE OF SUBMISSION		TYI	PE OF ACTION	
Notice of Intent	Acidize	Deepen Urgen Deepen Deepen	Production (Start/Resume)	Water Shut-Off
Subsequent Report	Casing Repair	New Construction	Recomplete	Other
Final Abandonment Notice	Convert to Injectio		Water Disposal	
the proposal is to deepen direc the Bond under which the wor completion of the involved op	tionally or recomplete horizonta k will be perfonned or provide t erations. If the operation results	Ily, give subsurface locations and m he Bond No. on file with BLM/BIA in a multiple completion or recomp	neasured and true vertical depths . Required subsequent reports m letion in a new interval, a Form	Fork and approximate duration thereof. If of all pertinent markers and zones. Attach ust be filed within 30 days following 3160-4 must be filed once testing has been the operator has detennined that the site

14. I hereby certify that the foregoing is true and correct. Name (<i>Printed/Typed</i>)			
	Fitle		
Signature	Date		
THE SPACE FOR FEDE	RAL OR STATE O	FICE USE	
Approved by			
	Title		Date
Conditions of approval, if any, are attached. Approval of this notice does not warrant of certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon.			
Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any any false, fictitious or fraudulent statements or representations as to any matter within		llfully to make to any d	epartment or agency of the United States

(Instructions on page 2)

Released to Imaging: 8/2/2024 2:25:28 PM

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

Additional Information

Location of Well

0. SHL: SWSE / 200 FSL / 2077 FEL / TWSP: 20S / RANGE: 33E / SECTION: 23 / LAT: 32.5519275 / LONG: -103.632085 (TVD: 0 feet, MD: 0 feet) PPP: SWSE / 100 FSL / 2178 FEL / TWSP: 20S / RANGE: 33E / SECTION: 23 / LAT: 32.5516528 / LONG: -103.6324124 (TVD: 10400 feet, MD: 10675 feet) BHL: NENE / 100 FNL / 2178 FEL / TWSP: 20S / RANGE: 33E / SECTION: 23 / LAT: 32.5656378 / LONG: -103.6324138 (TVD: 10400 feet, MD: 15335 feet)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Avant Operating LLC
LEASE NO.:	NMNM29704
LOCATION:	Section 23, T.20 S., R.33 E., NMPM
COUNTY:	Lea County, New Mexico 💌

WELL NAME & NO.:	Sandra Jean 23 Fed Com 503H
SURFACE HOLE FOOTAGE:	200'/S & 2077'/E
BOTTOM HOLE FOOTAGE	100'/N & 2178'/E
ATS/API ID:	3002552640
APD ID:	10400092829
Sundry ID:	2801877

COA

H2S	Yes		
Potash	R-111-P 🔽		
Cave/Karst Potential	Low		
Cave/Karst Potential	Critical		
Variance	C None	🖸 Flex Hose	C Other
Wellhead	Diverter	-	
Other	☑ 4 String	Capitan Reef Int 2	□WIPP
Other	Pilot Hole None	Open Annulus	
Cementing	Contingency Squeeze	Echo-Meter None	Primary Cement Squeeze None
Special Requirements	□ Water Disposal/Injection	COM	Unit Unit
Special Requirements	Batch Sundry		
Special Requirements Variance	□ Break Testing	✓ Offline Cementing	Casing Clearance

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Delaware** formation. As a result, the Hydrogen Sulfide area must meet **43 CFR part 3170 Subpart 3176** requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

Surface casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 1. The 20 inch surface casing shall be set at approximately 1660 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt when present, and below usable fresh water) and cemented to the surface. The surface hole shall be 24 inch in diameter.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>24 hours in the Potash Area</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 2. The minimum required fill of cement behind the **13-3/8** inch intermediate casing shall be set at approximately **3403 feet** is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, potash or capitan reef. Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

- In <u>R111 Potash Areas</u> if cement does not circulate to surface on the first two salt protection casing strings, the cement on the 3rd casing salt string must come to surface.
- In <u>Capitan Reef Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 3. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Operator shall provide method of verification.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, potash or capitan reef. Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.
- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **50 feet** on top of Capitan Reef top **or 500 feet** into the previous casing, whichever is greater. Operator shall provide method of verification.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, potash or capitan reef. Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be tested to **1500** psi. A Diverter system is approved as a variance to drill the **13-3/8** inch intermediate casing section in a **17-1/2** inch hole.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the **13-3/8** inch intermediate casing shoe shall be **3000 (3M)** psi.

c. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the **9-5/8** inch intermediate casing shoe shall be **5000 (5M)** psi.

Option 2:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be tested to **1500** psi. A Diverter system is approved as a variance to drill the **13-3/8** inch intermediate casing section in a **17-1/2** inch hole.
- b. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the 13-3/8 inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR part 3170 Subpart 3171

- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

Offline Cementing

Operator has been (**Approved**) to pump the proposed cement program offline in the **Intermediate(s) interval**.

Offline cementing should commence within 24 hours of landing the casing for the interval.

Notify the BLM 4hrs prior to cementing offline at Lea County: 575-689-5981.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report when present.
- A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL

- All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-

off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.
- C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Long Vo (LVO) 7/24/2024

Sandra Jean 23 Fed Com 503H

20	sur	face csg in a	24	inch hole.		Design I	Factors			Surface		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	94.00		j 55	btc	8.98	0.6	1.14	1,660	3	1.91	1.05	156,040
"B"				btc				0				0
	w/8.4#/	g mud, 30min Sfc Csg Test	t psig: 753	Tail Cmt	does not	circ to sfc.	Totals:	1,660				156,04
omparison o	f Proposed to Mi	nimum Required Cem	ent Volumes									
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
24	0.9599	1250	2221	#N/A	#N/A	10.00	1108	2M				1.50
13 3/8	casir	ng inside the	20			Design I	Factors		1	Int 1		
Segment	#/ft	Grade	20	Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weigh
"A"	54.50	Glaue	j 55	btc	4.60	0.61	1.2	3,403	1 1	2.43	1.02	
"B"	54.50] 00	DIG	4.00	0.01	1.4	0		2.40	1.02	0
5	w/8 /#/	g mud, 30min Sfc Csg Test	nsig: 426				Totals:	3,403				185,464
	w/0.4#/			led to achieve a top of	0	ft from su		1660				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
17 1/2	0.6946	1895	3404	2902	17	10.50	1125	2M				1.56
							sum of sx	<u>Σ CuFt</u>				Σ%exces
J V I OOI(S):												17
y stage % :	t yld > 1.35	#VALUE!	#VALUE!				1895	3404				
oy stage % :		#VALUE!	#VALUE!			Design Fac		3404		Int 2	P	
by stage % : class 'C' tail cm 9 5/8				Coupling	Body	<u>Design Fac</u> Collapse		3404	B@s	Int 2 a-B	a-C	
by stage % : class 'C' tail cm 9 5/8	casir	ng inside the		Coupling btc	Body 3.03		ctors		B@s 2		a-C 2.97	Weigh
by stage % : class 'C' tail cm 9 5/8 Segment	casir #/ft	ng inside the	13 3/8			Collapse	<u>ctors</u> Burst	Length	-	a-B		Weigh 160,000
by stage % : Class 'C' tail cm 9 5/8 Segment "A" "B" "C"	casir #/ft 40.00	ng inside the	13 3/8 j 55	btc	3.03	Collapse 1.47	ctors Burst 0.79	Length 4,000	2	a-B 1.43	2.97	Weigh 160,000
oy stage % : class 'C' tail cm 9 5/8 Segment "A" "B"	casir #/ft 40.00	ng inside the	13 3/8 j 55	btc	3.03	Collapse 1.47	ctors Burst 0.79	Length 4,000 1,202	2	a-B 1.43	2.97	Weigh 160,000 48,080 0 0
oy stage % : class 'C' tail cm 9 5/8 Segment "A" "B" "C"	casir #/ft 40.00 40.00	ng inside the	13 3/8 j 55 hcl 80	btc	3.03	Collapse 1.47	ctors Burst 0.79	Length 4,000 1,202 0	2	a-B 1.43	2.97	Weigh 160,000 48,080 0
Segment "A" "B" "C" "D"	casir #/ft 40.00 40.00 w/8.4#/	rg inside the Grade 'g mud, 30min Sfc Csg Test The cement	13 3/8 j 55 hcl 80 : psig: 1,020 volume(s) are intend	btc btc	3.03 19.09 0	Collapse 1.47 1.86 ft from su	ctors Burst 0.79 1.16 Totals: Inface or a	Length 4,000 1,202 0 0 5,202 3403	2	a-B 1.43	2.97 3.76	Weigh 160,000 48,080 0 0 208,080 overlap.
y stage % : class 'C' tail cm 9 5/8 Segment "A" "B" "C" "D" Hole	casir #/ft 40.00 40.00 w/8.4#/ Annular	ng inside the Grade 'g mud, 30min Sfc Csg Test The cement v 1 Stage	13 3/8 j 55 hcl 80 : psig: 1,020 volume(s) are intent 1 Stage	btc btc led to achieve a top of Min	3.03 19.09 0 1 Stage	Collapse 1.47 1.86 ft from su Drilling	ctors Burst 0.79 1.16 Totals: urface or a Calc	Length 4,000 1,202 0 5,202 3403 Req'd	2	a-B 1.43	2.97 3.76	Weigh 160,000 48,080 0 208,080 overlap. Min Dis
by stage % : class 'C' tail cm 9 5/8 Segment "A" "B" "C" "D" Hole Size	casir #/ft 40.00 40.00 w/8.4#/ Annular Volume	ng inside the Grade (g mud, 30min Sfc Csg Test The cement of 1 Stage Cmt Sx	13 3/8 j 55 hcl 80 r psig: 1,020 volume(s) are intenc 1 Stage CuFt Cmt	btc btc ded to achieve a top of Min Cu Ft	3.03 19.09 0 1 Stage % Excess	Collapse 1.47 1.86 ft from su Drilling Mud Wt	ctors Burst 0.79 1.16 Totals: Inface or a Calc MASP	Length 4,000 1,202 0 5,202 3403 Req'd BOPE	2	a-B 1.43	2.97 3.76	Weigh 160,000 48,080 0 208,080 overlap. Min Dis Hole-Cpl
by stage % : class 'C' tail cm 9 5/8 Segment "A" "B" "C" "D" Hole Size 12 1/4	casir #/ft 40.00 40.00 w/8.4#/ Annular Volume 0.3132	ng inside the Grade 'g mud, 30min Sfc Csg Test The cement v 1 Stage	13 3/8 j 55 hcl 80 : psig: 1,020 volume(s) are intent 1 Stage	btc btc led to achieve a top of Min	3.03 19.09 0 1 Stage	Collapse 1.47 1.86 ft from su Drilling	ctors Burst 0.79 1.16 Totals: urface or a Calc	Length 4,000 1,202 0 5,202 3403 Req'd	2	a-B 1.43	2.97 3.76	Weigh 160,000 48,080 0 208,080 overlap. Min Dis
by stage % : class 'C' tail cm 9 5/8 Segment "A" "B" "C" "D" Hole Size 12 1/4 class 'C' tail cm	casir #/ft 40.00 40.00 w/8.4#/ Annular Volume 0.3132 t yld > 1.35	ng inside the Grade (g mud, 30min Sfc Csg Test The cement of 1 Stage Cmt Sx	13 3/8 j 55 hcl 80 : psig: 1,020 volume(s) are intence 1 Stage CuFt Cmt 2000	btc btc ded to achieve a top of Min Cu Ft	3.03 19.09 0 1 Stage % Excess	Collapse 1.47 1.86 ft from su Drilling Mud Wt	ctors Burst 0.79 1.16 Totals: Inface or a Calc MASP	Length 4,000 1,202 0 5,202 3403 Req'd BOPE	2	a-B 1.43	2.97 3.76	Weigh 160,000 48,080 0 208,080 overlap. Min Dis Hole-Cpl
y stage % : class 'C' tail cm 9 5/8 Segment "A" "B" "C" "D" Hole Size 12 1/4 class 'C' tail cm	casir #/ft 40.00 40.00 w/8.4#/ Annular Volume 0.3132 t yld > 1.35 mem(s) for segment	rg inside the Grade 'g mud, 30min Sfc Csg Test The cement of Stage Cmt Sx 1125	13 3/8 j 55 hcl 80 : psig: 1,020 volume(s) are intence 1 Stage CuFt Cmt 2000	btc btc ded to achieve a top of Min Cu Ft	3.03 19.09 0 1 Stage % Excess	Collapse 1.47 1.86 ft from su Drilling Mud Wt	Ctors Burst 0.79 1.16 Totals: Inface or a Calc MASP 2757	Length 4,000 1,202 0 5,202 3403 Req'd BOPE	2	a-B 1.43	2.97 3.76	Weigh 160,000 48,080 0 208,080 overlap. Min Dis Hole-Cpl
9 5/8 Segment "A" "B" "C" "D" Hole Size 12 1/4 Lass 'C' tail cm	casir #/ft 40.00 40.00 w/8.4#/ Annular Volume 0.3132 tt yld > 1.35 memts) for segment casir #/ft	rg inside the Grade grade grad, 30min Sfc Csg Test The cement of Stage Cmt Sx 1125 nu(s): A, b, c, D = 0.99, p	13 3/8 j 55 hcl 80 : psig: 1,020 volume(s) are intend 1 Stage CuFt Cmt 2000 u, c, u All > 0.70,	btc btc ded to achieve a top of Min Cu Ft	3.03 19.09 0 1 Stage % Excess	Collapse 1.47 1.86 ft from su Drilling Mud Wt 8.40	Ctors Burst 0.79 1.16 Totals: Inface or a Calc MASP 2757	Length 4,000 1,202 0 5,202 3403 Req'd BOPE	2	a-B 1.43 2.09	2.97 3.76	Weigh 160,000 48,080 0 208,080 overlap. Min Dis Hole-Cpl
y stage % : lass 'C' tail cm 9 5/8 Segment "A" "B" "C" "D" Hole Size 12 1/4 lass 'C' tail cm Units fract drau 5 1/2 Segment "A"	casir #/ft 40.00 40.00 w/8.4#/ Annular Volume 0.3132 tyld > 1.35 ment(s) for Segment casir	rg mud, 30min Sfc Csg Test The cement of 1 Stage Cmt Sx 1125 htt(s): A, B, C, D = 0.99, F ng inside the	13 3/8 j 55 hcl 80 : psig: 1,020 volume(s) are intend 1 Stage CuFt Cmt 2000 u, c, u All > 0.70,	btc btc ded to achieve a top of Min Cu Ft 1798	3.03 19.09 0 1 Stage % Excess 11	Collapse 1.47 1.86 ft from su Drilling Mud Wt 8.40 Design I	Ctors Burst 0.79 1.16 Totals: Inface or a Calc MASP 2757 Factors	Length 4,000 1,202 0 5,202 3403 Req'd BOPE 3M	23	a-B 1.43 2.09 Prod 1	2.97 3.76	Weigh 160,00 48,080 0 208,08 overlap. Min Dis Hole-Cp 0.81
y stage % : lass 'C' tail cm 9 5/8 Segment "A" "B" "C" "D" Hole Size 12 1/4 lass 'C' tail cm viss fract of ad size 1/4 Segment	casir #/ft 40.00 40.00 w/8.4#/ Annular Volume 0.3132 tt yld > 1.35 memts) for segment casir #/ft	rg mud, 30min Sfc Csg Test The cement of 1 Stage Cmt Sx 1125 htt(s): A, B, C, D = 0.99, F ng inside the	13 3/8 j 55 hcl 80 : psig: 1,020 volume(s) are intenc 1 Stage CuFt Cmt 2000 u, c, d All 20.70, 9 5/8	btc btc ded to achieve a top of Min Cu Ft 1798 Coupling	3.03 19.09 0 1 Stage % Excess 11 Joint	Collapse 1.47 1.86 ft from su Drilling Mud Wt 8.40 <u>Design I</u> Collapse	ctors Burst 0.79 1.16 Totals: Inface or a Calc MASP 2757 Factors Burst	Length 4,000 1,202 0 5,202 3403 Req'd BOPE 3M	2 3 B@s	a-B 1.43 2.09 Prod 1 a-B	2.97 3.76	Weigh 160,00 48,080 0 208,08 overlap. Min Dis Hole-Cp 0.81 Weigh 300,28 0
9 5/8 Segment "A" "B" "C" "D" Hole Size 12 1/4 Lass (' tail cm Size 5 1/2 Segment "A"	casir #/ft 40.00 40.00 w/8.4#/ Annular Volume 0.3132 tyld > 1.35 mem(s) tor segment casir #/ft 20.00	rg mud, 30min Sfc Csg Test The cement of 1 Stage Cmt Sx 1125 htt(s): A, B, C, D = 0.99, F ng inside the	13 3/8 j 55 hcl 80 r psig: 1,020 volume(s) are intent 1 Stage CuFt Cmt 2000 o, c, u All > 0.70, 9 5/8 p 110	btc btc ded to achieve a top of Min Cu Ft 1798 Coupling	3.03 19.09 0 1 Stage % Excess 11 Joint	Collapse 1.47 1.86 ft from su Drilling Mud Wt 8.40 <u>Design I</u> Collapse 2.45	Ctors Burst 0.79 1.16 Totals: Inface or a Calc MASP 2757 Factors Burst 2.54 Totals:	Length 4,000 1,202 0 5,202 3403 Req'd BOPE 3M	2 3 B@s	a-B 1.43 2.09 Prod 1 a-B	2.97 3.76	Weigh 160,00 48,080 0 208,08 overlap. Min Dis Hole-Cp 0.81 Weigh 300,28 0
9 5/8 Segment "A" "B" "C" "D" Hole Size 12 1/4 Iass 'C' tail cm unst riac or au 5 1/2 Segment "A" "B"	casir #/ft 40.00 40.00 w/8.4#/ Annular Volume 0.3132 tyld > 1.35 mem(s) tor segment casir #/ft 20.00	rg inside the Grade 'g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 1125 mt(s): A, B, C, D = 0.99, I Ig inside the Grade	13 3/8 j 55 hcl 80 r psig: 1,020 volume(s) are intent CuFI Cmt 2000 b, c, u Air > 0.70, 9 5/8 p 110 r psig: 2,218	btc btc ded to achieve a top of Min Cu Ft 1798 Coupling	3.03 19.09 0 1 Stage % Excess 11 Joint	Collapse 1.47 1.86 ft from su Drilling Mud Wt 8.40 <u>Design I</u> Collapse	Ctors Burst 0.79 1.16 Totals: Inface or a Calc MASP 2757 Factors Burst 2.54 Totals:	Length 4,000 1,202 0 5,202 3403 Req'd BOPE 3M	2 3 B@s	a-B 1.43 2.09 Prod 1 a-B	2.97 3.76 a-C 4.43	Weigh 160,00 48,080 0 208,08 overlap. Min Dis Hole-Cp 0.81 Weigh 300,28 0
y stage % : lass 'C' tail cm 9 5/8 Segment "A" "B" "C" "D" Hole Size 12 1/4 lass 'C' tail cm Size 12 1/4 lass 'C' tail cm 5 1/2 Segment "A"	casir #/ft 40.00 40.00 w/8.4#/ Annular Volume 0.3132 tyld > 1.35 mem(s) tor segment casir #/ft 20.00	rg inside the Grade 'g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 1125 mt(s): A, B, C, D = 0.99, I Ig inside the Grade	13 3/8 j 55 hcl 80 r psig: 1,020 volume(s) are intent CuFI Cmt 2000 b, c, u Air > 0.70, 9 5/8 p 110 r psig: 2,218	btc btc ded to achieve a top of Min Cu Ft 1798 Coupling intrepid-sp	3.03 19.09 0 1 Stage % Excess 11 Joint 3.18	Collapse 1.47 1.86 ft from su Drilling Mud Wt 8.40 <u>Design I</u> Collapse 2.45	Ctors Burst 0.79 1.16 Totals: Inface or a Calc MASP 2757 Factors Burst 2.54 Totals:	Length 4,000 1,202 0 5,202 3403 Req'd BOPE 3M Length 15,014 15,014 1659 Req'd	2 3 B@s	a-B 1.43 2.09 Prod 1 a-B	2.97 3.76 a-C 4.43	Weigh 160,00 48,080 0 208,08 overlap. Min Dis Hole-Cp 0.81 Weigh 300,28 0 300,28 overlap.
9 5/8 Segment "A" "B" "C" "D" Hole Size 12 1/4 Iass 'C' tail cm unst riac or au 5 1/2 Segment "A" "B"	casir #/ft 40.00 40.00 w/8.4#/ Annular Volume 0.3132 tyld > 1.35 merr(s) ror segmen casir #/ft 20.00 w/8.4#/	rg inside the Grade g mud, 30min Sfc Csg Test The cement of 1 Stage Cmt Sx 1125 mt(s): A, b, c, D = 0.99, f ng inside the Grade g mud, 30min Sfc Csg Test The cement of	13 3/8 j 55 hcl 80 sesig: 1,020 volume(s) are intend 1 Stage CuFt Cmt 2000 s, c, d All > 0.70, 9 5/8 p 110 sesig: 2,218 volume(s) are intend	btc btc ded to achieve a top of Min Cu Ft 1798 Coupling intrepid-sp	3.03 19.09 0 1 Stage % Excess 11 Joint 3.18 3543	Collapse 1.47 1.86 ft from su Drilling Mud Wt 8.40 Design I Collapse 2.45 ft from su	Ctors Burst 0.79 1.16 Totals: urface or a Calc MASP 2757 Factors Burst 2.54 Totals: urface or a	Length 4,000 1,202 0 5,202 3403 Req'd BOPE 3M Length 15,014 0 15,014 1659	2 3 B@s	a-B 1.43 2.09 Prod 1 a-B	2.97 3.76 a-C 4.43	Weigh 160,00 48,080 0 208,08 overlap. Min Dis Hole-Cp 0.81 Weigh 300,28 0 300,28
9 5/8 Segment "A" "B" "C" "D" Hole Size 12 1/4 lass 'C' tail cm size 12 1/4 ss 'C' tail cm urst ri ac Grad "A" "B" Hole	casir #/ft 40.00 40.00 w/8.4#/ Annular Volume 0.3132 ttyld > 1.35 merr(c) ror segment casir #/ft 20.00 w/8.4#/ Annular	rg mud, 30min Sfc Csg Test The cement of 1 Stage Cmt Sx 1125 mt(s): A, B, C, D = 0.99, f ng inside the Grade rg mud, 30min Sfc Csg Test The cement of 1 Stage	13 3/8 j 55 hcl 80 volume(s) are intend 1 Stage CuFt Cmt 2000 b, c, d All > 0.70, 9 5/8 p 110 : psig: 2,218 volume(s) are intend 1 Stage	btc btc ded to achieve a top of Min Cu Ft 1798 Coupling intrepid-sp ded to achieve a top of Min	3.03 19.09 0 1 Stage % Excess 11 Joint 3.18 3543 1 Stage	Collapse 1.47 1.86 ft from su Drilling Mud Wt 8.40 Design I Collapse 2.45 ft from su Drilling	ctors Burst 0.79 1.16 Totals: Inface or a Calc MASP 2757 Factors Burst 2.54 Totals: Inface or a Calc	Length 4,000 1,202 0 5,202 3403 Req'd BOPE 3M Length 15,014 15,014 1659 Req'd	2 3 B@s	a-B 1.43 2.09 Prod 1 a-B	2.97 3.76 a-C 4.43	Weigh 160,00 48,080 0 208,08 overlap. Min Dis Hole-Cp 0.81 Weigh 300,28 0 300,28 0 300,28 0 Min Dis

.

Performance Data Sheet

Issued on: 01.09.2023

OD Label	LM Label	Grade	Connection
5 1/2	20.00	P110HC	INTREPID-SP [®]

PIPE BODY PROPERTIES

Nominal OD	Nominal ID	Nominal WT	Nominal LM
5.500 inch	4.778 inch	0.361 inch	20.00 ppf
139,70 mm	121,36 mm	9,17 mm	29,76 kg/m
1	1		
Standard Drift	Minimal YS	Maximal YS	Minimal UTS
4.653 inch	110 ksi	140 ksi	125 ksi
118,19 mm	758 MPa	965 MPa	862 MPa

CONNECTION PROPERTIES & PERFORMANCES

1	Name	Туре	Coupling OD	Connection ID
	INTREPID-SP®	Semi-Premium T&C	6.300 inch 160,02 mm	4.778 inch 121,36 mm
	Coupling length	Tension efficiency	Compression Efficiency	Make-up loss
	9.449 inch	641 klb	641 klb	4.126 inch
6	240,00 mm	2 850 kN	2 850 kN	104,80 mm
		100 % PB	100 % PB	
	Burst	Collapse	Max. Bending	Max. Load on Coupling Face
	12 640 Psi	12 200 Psi	46°/100 ft	583 klb
	87,1 MPa	84,1 MPa	46 °/30 m	2 591 kN
	100 % PB	100 % PB		

FIELD TORQE VALUES

	[ft-lb]	[N·m]		[ft-lb]	[N·m]
Min. Make-Up Torque	12 400	16 80 0	Operational Torque	21 500	29 150
Opt. Make-Up Torque	13 800	18 700			
Max. Make-Up Torque	15 200	20 600	Yield Torque	23 900	32 400

The Performance Data Sheet contains general information that is correct at the time of issue. In the interests of continuous development, the Interpipe company reserves the right to change the format and contents of the Data Sheet at any time without warning and without incurring any obligations. For any questions regarding mentioned data, please mail to Yuriy.Kuratsapov@m.interpipe.biz

PROPOSAL#: 230609161704-D

CEMENT PROCEDURE & PROPOSAL

PREPARED FOR:

Mr. Braden Harris EMAIL: braden@avantnr.com PHONE NUMBER: 406-600-3310

Avant Natural Resources

Sandra Jean 23 Fed Com #503H

Lea County, NM Rig: H&P 460 API Number: 30-025-52640

Service Point

Odessa 1400 S JBS Parkway Odessa, TX 79766 432-701-8955

Technical Writer

Jonathan Smith jonathan@wtcementers.com 432-701-3719

WTC Representative

Jon Reynolds jon@wtcementers.com 432-257-1234

.Disclaimer Notice:

The ability of West Texas Cementers to complete this work is subject to the availability of the raw materials required to complete the job.

This information is presented in good faith, but no warranty is given by and West Texas Cementers LLC assumes no liability for advice or recommendations made concerning results to be obtained from the use of any product or service. The results given are estimates based on calculations produced by a computer model including various assumptions on the well, reservoir and treatment. The results depend on input data provided by the Operator and estimates as to unknown data and can be no more accurate than the model, the assumptions and such input data. The information presented is WTC LLC best estimate of the actual results that may be achieved and should be used for comparison purposes rather than absolute values. The quality of input data, and hence results, may be improved through the use of certain tests and procedures which West Texas Cementers LLC can assist in selecting. The Operator has superior knowledge of the well, the reservoir, the field and conditions affecting them. If the Operator is aware of any conditions whereby a neighboring well or wells might be affected by the teratment proposed herein it is the Operator's responsibility to notify the owner or owners of the well or wells accordingly. Prices quoted are estimates only and are good for 30 days from the date of issue. Actual charges may vary depending upon time, equipment, and material ultimately required to perform these services. Freedom from infringement of patents of West Texas

PRINTED 7/15/2024 19:42

VERSION: v0.29

Surface

PROPOSAL#: 230609161704-D

			WELL	INFORMATI	ON			
MUD			8.4# Spud I	Mud				
PREVIOUS P	30" 98.89# CSG to 120 PREVIOUS PIPE							
			24'' OH to 145	53				
OPEN HOLE								
CASING/INJ	ECTION		20'' 94# J-55/	BTC to 1453				
MD			1453					
TVD			1453					
EST BHST/BI	НСТ		92-F / 85-F	(0.8-F/100-F	T)			
NOTES S	itandby charges start a	fter WTC has bee	n on location fo	or more than 4-hr	s.			
				VOLUMES				
	FLUID NAME	LENGTH	OD	ID	XS	FACTOR	VOLUME	
		(ft)	(in.)	(in.)	(%)	(bbl/ft)	(bbl)	
	Lead	120	29.376	20		0.4497	54.0	
	Lead	1033	24	20	50%	0.2564	264.9	
	Tail	300	24	20	20%	0.2052	61.5	
	SHOE JOINT	40	20	19.124		0.3553	14.2	
				FLUIDS				
				SPACER				
				Fresh Water				
VOLUME			20-bbl					
				Lead				
	35% (Ch_Poz+65% Clas	s C+6% Gel+5%	SALT+0.25PPS Pc	ol-E-Flake+0.0050	GPS NoFoam V1A		
VOLUME	VOLUME			930-SX 319.7-bbls				
DENSITY			12.8-ppg					
YIELD			1.93-cf/sx					
MIX WATER			10.57-gps					
TOP OF CEN	1ENT		Surface					
EXCESS			50%					

Avant Natural Resources Sandra Jean 23 Fed Com #503H Lea County, NM Rig: H&P 460	Surface	AND CEMEN PROPERTY OF CONTRACT
		PROPOSAL#: 230609161704-D
	Tail	
	100% Class C+1% CaCl2+0.005GPS NoFoam V1A	
VOLUME	320-SX	75.8-bbls
DENSITY	14.8-ppg	
YIELD	1.33-cf/sx	
MIX WATER	6.34-gps	
TOP OF CEMENT	1153-ft	
EXCESS	20%	
	DISPLACEMENT	
	Displacement	
VOLUME	502-bbl	

A CEMERPORT A CEM
• Odessa, Texas

PROPOSAL#: 230609161704-D

			WELL	INFORMATI	ON			
MUD			10.5# Brine	9				
PREVIOUS	20" 94# CSG to 1453 PREVIOUS PIPE							
	г.		17.5'' OH to 3	403				
OPEN HOL	E							
CASING/IN	JECTION		13.375'' 54.5#	‡ J-55/BTC to 34	03			
MD			3403					
TVD			3403					
EST BHST/	внст		108-F / 96-	F (0.8-F/100-	FT)			
NOTES	Standby charges start a			-	-			
				VOLUMES				
	FLUID NAME	LENGTH	OD	ID	XS	FACTOR	VOLUME	
		(ft)	(in.)	(in.)	(%)	(bbl/ft)	(bbl)	
	Lead	1453	19.124	13.375		0.1815	263.7	
	Lead	1268	17.5	13.375	50%	0.1856	235.3	
	Tail	682	17.5	13.375	20%	0.1485	101.2	
	SHOE JOINT	40	13.375	12.615		0.1546	6.2	
				FLUIDS				
				SPACER				
				Fresh Water				
VOLUME			25-bbl					
				Lead				
	35% Ch. Pozd	-65% Class C+6%	رما <u>+</u> 5% ۱۲۲۵		5DDS Dol-F-Flake	+0.005GPS NoFoam V1	٨	
	55% CH_1 025		Gen 370 SALLING	.05% 11 1500 10.2.				
VOLUME			1450-SX				498.4-bbls	
DENSITY			12.8-ppg					
YIELD			1.93-cf/sx					
MIX WATE	R		10.57-gps					
TOP OF CE	MENT		Surface					
EXCESS			50%					

1st Intermediate

Avant Natural Resources Sandra Jean 23 Fed Com #503H Lea County, NM Rig: H&P 460	1st Intermediate	Standard Control Contr
		PROPOSAL#: 230609161704-D
	Tail	
	100% Class C+5% SALT+0.005GPS NoFoam V1A	
VOLUME	445-SX	107.8-bbls
DENSITY	14.8-ppg	
YIELD	1.36-cf/sx	
MIX WATER	6.51-gps	
TOP OF CEMENT	2721-ft	
EXCESS	20%	
	DISPLACEMENT	
	Displacement	
VOLUME	519.9-bbl	

PROPOSAL#: 230609161704-D

			WELL	INFORMATI	ON			
MUD			8.4# Fresh	Water				
PREVIOUS	13.375" 54.5# CSG to 3403 PREVIOUS PIPE							
OPEN HOL	F		12.25" OH to	5204				
	L							
CASING/IN	JECTION		9.625'' 40# J-5	55/L-80/HC/BTC	C to 5204			
MD			5204					
TVD			5200					
EST BHST/I	внст		122-F / 106	6-F (0.8-F/10	0-FT)			
NOTES	Standby charges start a			-	-			
				VOLUMES				
	FLUID NAME	LENGTH	OD	ID	XS	FACTOR	VOLUME	
		(ft)	(in.)	(in.)	(%)	(bbl/ft)	(bbl)	
	Lead	3403	12.615	9.625		0.0646	219.8	
	Lead	758	12.25	9.625	50%	0.0837	63.4	
	Tail	1043	12.25	9.625	20%	0.0669	69.8	
	SHOE JOINT	40	9.625	8.835		0.0758	3.0	
				FLUIDS				
				SPACER				
				Fresh Water				
VOLUME			25-bbl					
VOLONIE			23 001	Lead				
	25% Ch. Doz	LEEV Class CLEV			EDDS Dol E Elakou	-0.005GPS NoFoam V1/	A.	
	55% CII_P02		Gel+5% SALT+0	0.2% R-1500+0.23	DFF3 FUI-E-FIGKET		4	
VOLUME			825-SX				283.6-bbls	
DENSITY			12.8-ppg					
YIELD			1.93-cf/sx					
MIX WATE	R		10.57-gps					
TOP OF CE	MENT		Surface					
EXCESS			50%					

Avant Natural Resources Sandra Jean 23 Fed Com #503H Lea County, NM Rig: H&P 460	2nd Intermediate	ALS CEMENTE ALS CEMENTE CONTCOMENTE OCENTES
		PROPOSAL#: 230609161704-D
	Tail	
	100% Class C+5% SALT+0.005GPS NoFoam V1A	
VOLUME	300-SX	72.7-bbls
DENSITY	14.8-ppg	
YIELD	1.36-cf/sx	
MIX WATER	6.51-gps	
TOP OF CEMENT	4161-ft	
EXCESS	20%	
	DISPLACEMENT	
	Displacement	
VOLUME	391.5-bbl	

Production

PROPOSAL#: 230609161704-D

			WELL	INFORMATI	ON			
MUD		(9.5# OBM					
PREVIOUS	9.625" 40# CSG to 5204 REVIOUS PIPE							
OPEN HOL	_E	٤	3.75'' OH to 1	15015				
			5" 20# P_11	.0 HC Intrepid SI	P to 15015			
CASING/IN	NJECTION		J.J ZO# F-11		10 15015			
MD		:	15015					
TVD		:	10080					
EST BHST/	′ВНСТ		166-F / 166	6-F (0.85-F/1	00-FT)			
КОР		(9605					
NOTES	Standby charges start a	ifter WTC has beer	n on location fo	or more than 8-hr	S.			
				VOLUMES				
	FLUID NAME	LENGTH	OD	ID	XS	FACTOR	VOLUME	
		(ft)	(in.)	(in.)	(%)	(bbl/ft)	(bbl)	
	Lead	5204	8.835	5.5		0.0464	241.7	
	Lead	4401	8.75	5.5	50%	0.0675	297.0	
	Tail	5410	8.75	5.5	20%	0.0540	292.0	
	SHOE JOINT	80	5.5	4.778		0.0222	1.8	
				FLUIDS				
				SPACER				
	Wt. Spacer 37	7.53GPB Water+8	PB PolyScrub	4320+89.54PPB B	arite+1GPB Hole	Scrub 4311+1PPB R-130	00	
VOLUME			10-bbl					
DENSITY			LO-ppg					
				Lead				
	100% ProLiteCh+	5PPS Plexcrete ST	E+2% SMS+0.6		FL-24+3PPS Gilsc	nite+0.005GPS NoFoar	n V1A	
VOLUME		:	380-SX				539.1-bbls	
DENSITY		:	10.7-ppg					
YIELD	ELD			3.44-cf/sx				
MIX WATE	ER	2	21.64-gps					
TOP OF CE	EMENT	9	Surface					
EXCESS			50%					

Avant Natural Resources Sandra Jean 23 Fed Com #503H Lea County, NM Rig: H&P 460	Production	Solution of the second
		PROPOSAL#: 230609161704-D
	Tail	
50% Ch_Poz+50% Cl	ass H+5% SALT+0.05% RCKCAS-100+0.75% FR-5+0.5% FL-24-	+0.005GPS NoFoam V1A
VOLUME	1325-SX	295-bbls
DENSITY	14.5-ppg	
YIELD	1.25-cf/sx	
MIX WATER	5.74-gps	
TOP OF CEMENT	9605-ft	
EXCESS	20%	
	DISPLACEMENT	
	Fresh Water+ 0.25GPT Plexcide 24L+1GPT Corplex	
VOLUME	331.2-bbl	
DENSITY	8.34-ppg	

.

CHEMICAL DESCRIPTIONS						
CHEMICAL NAME	CODE	DESCRIPTION				
Ch_Poz	WTC237	Poz - Fly Ash, Extender				
Class H	WTC101	API Cement				
Class C	WTC100	API Cement				
Premium C	WTC270	API Cement				
ProLiteCh		Blended Based Cement				
Plexcrete SFA	WTC129	Cement Strength Enhancer				
Gel	WTC102	Extender				
Micro Crystal	WTC212	Cement Strength Enhancer				
Micro Shell	WTC209	Cement Strength Enhancer				
WTC1	WTC250	Extender				
Plexcrete STE	WTC127	Cement Strength Enhancer				
FAR-2	WTC260	Cement Strength Enhancer				
Gypsum	WTC111	Free Water Control, Extender				
CaCl2	WTC112	Accelerator				
SMS	WTC115	Free Water Control, Extender				
RCKCAS-100	WTC276	Free Water Control, Anti-Settling Agent				
SA-1	WTC264	Free Water Control, Extender				
R-33	WTC243	Lignosulfonate Retarder				
R-1300	WTC201	Low Temperature Retarder				
FR-5	WTC258	Lignosulfonate Retarder				
CRT-201	WTC278	Lignosulfonate Retarder				
C-37	WTC224	Dispersant, Friction Reducer				
FL-24	WTC277	Fluid Loss (polymers/copolymers - 300-F max)				
EC-10	WTC120	Expanding Agent				
Gas Bond	WTC126	Gas Migration Control (Hydrogen Generating)				
Gilsonite	WTC003	Premium Lost Circulation Material, Free Water Control				
Pol-E-Flake	WTC106	Lost Circulation Material				
Web Seal	WTC133	Premium Fiber Lost Circulation Material				
Zone Seal	WTC207	Premium Lost Circulation Material				
NoFoam V1A	WTC105	Liquid Defoamer				
Water		Fresh Water				
PolyScrub 4320	WTC232	Spacer Gelling Agent				
Barite	WTC116	Weighting Agent				
HoleScrub 4311	WTC281	Surfactant				
HoleScrub 4305	WTC213	Surfactant				
HoleScrub 4308	WTC215	Surfactant				
Soda Ash	WTC164	pH Control				
R-1300	WTC201	Low Temperature Retarder				
SuspendaCem 6302	WTC005	Free Water Control, Anti-Settling Agent				
Sugar	WTC119	Retarder				
Al-1, Acid Inhibitor	WTC015	Corrosion Inhibitor				
Plexcide 24L	WTC166	Biocide				
Corplex	WTC134	Corrosion Inhibitor				
Clay Max	WTC096	KCL Substitute				
Zone Seal	WTC207	Premium Lost Circulation Material				

Avant Operating, LLC

Lea Co., NM (NAD 83) Sandra Jean 23 Fed Com Pad 2 Sandra Jean 23 Fed Com 503H

OH

Plan: Plan 0.1

Standard Planning Report

17 July, 2024

Database: Company: Project: Site: Well: Wellbore: Design:	EDM 5000.16 Sin Avant Operating, I Lea Co., NM (NAI Sandra Jean 23 F Sandra Jean 23 F OH Plan 0.1	LLC D 83) Fed Com Pa	d 2	Local Co-ordin TVD Reference: MD Reference: North Reference Survey Calcula	e:	WELL @ 3658	lean 23 Fed Com 8.5usft (3658.5) 8.5usft (3658.5) vature	503H
Project	Lea Co., NM (NAD	83)						
Geo Datum:	US State Plane 198 North American Datu New Mexico Eastern	um 1983		System Datum:		Mean Sea Level	1	
Site	Sandra Jean 23 Fe	ed Com Pad	12					
Site Position: From: Position Uncertainty:	Lat/Long 0.		Northing: Easting: Slot Radius:	565,233.8 757,466.1 13-3/1	2 usft Longit			32.551928 -103.631891
Well	Sandra Jean 23 Fe	d Com 503	Н					
Well Position	+N/-S +E/-W	0.0 usft 0.0 usft	Northing: Easting:		5,233.38 usft 7,406.16 usft	Latitude: Longitude:		32.551928 -103.632085
Position Uncertainty		0.0 usft	Wellhead Elev	vation:	usft	Ground Level:		3,632.0 usft
Grid Convergence:		0.38 °						
Wellbore	OH							
Magnetics	Model Name	:	Sample Date	Declination (°)		Dip Angle (°)	Field St (n	-
	IGRF20	00	12/31/2004		8.62	60.74	49,61	13.83867380
Design	Plan 0.1							
Audit Notes:								
Version:			Phase:	PROTOTYPE	Tie On De	oth:	0.0	
Vertical Section:		Depth Fro (ແຮ	sft)	+N/-S (usft)	+E/-W (usft)		Direction (°)	
		0.	.0	0.0	0.0		359.62	
Plan Survey Tool Pro Depth From (usft)	Depth To	te 7/17/20		Tool Name	Rem	arks		
1 0.0	15,014.0 Plan	0.1 (OH)		B001Mb_MWD+HF OWSG MWD + HR				

Received by OCD: 7/25/2024 2:11:03 PM

Planning Report

Database:	EDM 5000.16 Single User Db	Local Co-ordinate Reference:	Well Sandra Jean 23 Fed Com 503H
Company:	Avant Operating, LLC	TVD Reference:	WELL @ 3658.5usft (3658.5)
Project:	Lea Co., NM (NAD 83)	MD Reference:	WELL @ 3658.5usft (3658.5)
Site:	Sandra Jean 23 Fed Com Pad 2	North Reference:	Grid
Well:	Sandra Jean 23 Fed Com 503H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan 0.1		

Plan Sections

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
										-
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
5,500.0	0.00	0.00	5,500.0	0.0	0.0	0.00	0.00	0.00	0.00	
5,697.4	3.95	204.15	5,697.2	-6.2	-2.8	2.00	2.00	0.00	204.15	
7,807.9	3.95	204.15	7,802.8	-138.8	-62.2	0.00	0.00	0.00	0.00	
8,005.3	0.00	0.00	8,000.0	-145.0	-65.0	2.00	-2.00	0.00	180.00	
9,607.9	0.00	0.00	9,602.5	-145.0	-65.0	0.00	0.00	0.00	0.00	
10,357.9	90.00	356.17	10,080.0	331.4	-96.9	12.00	12.00	0.00	356.17	
10,374.9	90.00	356.17	10,080.0	348.4	-98.0	0.00	0.00	0.00	0.00	
10,547.1	90.00	359.62	10,080.0	520.4	-104.3	2.00	0.00	2.00	90.00	
15,014.0	90.00	359.62	10,080.0	4,987.3	-134.2	0.00	0.00	0.00	0.00	Sandra Jean 503H

Received by OCD: 7/25/2024 2:11:03 PM

Planning Report

Database:	EDM 5000.16 Single User Db	Local Co-ordinate Reference:	Well Sandra Jean 23 Fed Com 503H
Company:	Avant Operating, LLC	TVD Reference:	WELL @ 3658.5usft (3658.5)
Project:	Lea Co., NM (NAD 83)	MD Reference:	WELL @ 3658.5usft (3658.5)
Site:	Sandra Jean 23 Fed Com Pad 2	North Reference:	Grid
Well:	Sandra Jean 23 Fed Com 503H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan 0.1		

Planned Survey

	easured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
	0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
	100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
	200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
	300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
	400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
	500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
	600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
	700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
	800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
	900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,428.0	0.00	0.00	1,428.0	0.0	0.0	0.0	0.00	0.00	0.00
R	RUSTLER									
	1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
	2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
	2,100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
	2,200.0	0.00	0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00
	2,300.0	0.00	0.00	2,300.0	0.0	0.0	0.0	0.00	0.00	0.00
	2,400.0	0.00	0.00	2,400.0	0.0	0.0	0.0	0.00	0.00	0.00
	2,500.0	0.00	0.00	2,500.0	0.0	0.0	0.0	0.00	0.00	0.00
	2,600.0	0.00	0.00	2,600.0	0.0	0.0	0.0	0.00	0.00	0.00
	2,700.0	0.00	0.00	2,700.0	0.0	0.0	0.0	0.00	0.00	0.00
	2,800.0	0.00	0.00	2,800.0	0.0	0.0	0.0	0.00	0.00	0.00
	2,900.0	0.00	0.00	2,900.0	0.0	0.0	0.0	0.00	0.00	0.00
	3,000.0	0.00	0.00	3,000.0	0.0	0.0	0.0	0.00	0.00	0.00
	3,100.0	0.00	0.00	3,100.0	0.0	0.0	0.0	0.00	0.00	0.00
	3,200.0	0.00	0.00	3,200.0	0.0	0.0	0.0	0.00	0.00	0.00
Y	ATES									
	3,300.0	0.00	0.00	3,300.0	0.0	0.0	0.0	0.00	0.00	0.00
	3,400.0	0.00	0.00	3,400.0	0.0	0.0	0.0	0.00	0.00	0.00
	3,500.0	0.00	0.00	3,500.0	0.0	0.0	0.0	0.00	0.00	0.00
	3,593.0	0.00	0.00	3,593.0	0.0	0.0	0.0	0.00	0.00	0.00
C	2 600 0		0.00	2 000 0	0.0	0.0	0.0	0.00	0.00	0.00
	3,600.0 3,700.0	0.00 0.00	0.00 0.00	3,600.0 3,700.0	0.0 0.0	0.0 0.0	0.0 0.0	0.00 0.00	0.00 0.00	0.00 0.00
	3,800.0	0.00	0.00	3,800.0	0.0	0.0	0.0	0.00	0.00	0.00
	3,900.0	0.00	0.00	3,900.0	0.0	0.0	0.0	0.00	0.00	0.00
	4,000.0	0.00	0.00	4,000.0	0.0	0.0	0.0	0.00	0.00	0.00
	4,100.0 4,200.0	0.00 0.00	0.00 0.00	4,100.0 4,200.0	0.0 0.0	0.0 0.0	0.0 0.0	0.00 0.00	0.00 0.00	0.00 0.00
	4,300.0	0.00	0.00	4,300.0	0.0	0.0	0.0	0.00	0.00	0.00
	4,400.0	0.00	0.00	4,400.0	0.0	0.0	0.0	0.00	0.00	0.00
	4,500.0	0.00	0.00	4,500.0	0.0	0.0	0.0	0.00	0.00	0.00
	4,600.0	0.00	0.00	4,600.0	0.0	0.0	0.0	0.00	0.00	0.00
	4,700.0	0.00	0.00	4,700.0	0.0	0.0	0.0	0.00	0.00	0.00
L										

7/17/2024 12:20:45PM

Database:	EDM 5000.16 Single User Db	Local Co-ordinate Reference:	Well Sandra Jean 23 Fed Com 503H
Company:	Avant Operating, LLC	TVD Reference:	WELL @ 3658.5usft (3658.5)
Project:	Lea Co., NM (NAD 83)	MD Reference:	WELL @ 3658.5usft (3658.5)
Site:	Sandra Jean 23 Fed Com Pad 2	North Reference:	Grid
Well:	Sandra Jean 23 Fed Com 503H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH		
Design:	Plan 0.1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
4,800.0	0.00	0.00	4,800.0	0.0	0.0	0.0	0.00	0.00	0.00
4,900.0	0.00	0.00	4,900.0	0.0	0.0	0.0	0.00	0.00	0.00
5,000.0	0.00	0.00	5,000.0	0.0	0.0	0.0	0.00	0.00	0.00
5,100.0	0.00	0.00	5,100.0	0.0	0.0	0.0	0.00	0.00	0.00
5,200.0	0.00	0.00	5,200.0	0.0	0.0	0.0	0.00	0.00	0.00
5,250.0	0.00	0.00	5,250.0	0.0	0.0	0.0	0.00	0.00	0.00
CHERRY CA									
5,260.0	0.00	0.00	5,260.0	0.0	0.0	0.0	0.00	0.00	0.00
DELAWARE 5,300.0	0.00	0.00	5,300.0	0.0	0.0	0.0	0.00	0.00	0.00
5,300.0 5,400.0	0.00	0.00	5,300.0 5,400.0	0.0	0.0	0.0	0.00	0.00	0.00
5,400.0	0.00	0.00	5,500.0	0.0	0.0	0.0	0.00	0.00	0.00
KOP - Start I		0.00	5,500.0	0.0	0.0	0.0	0.00	0.00	0.00
5,600.0	2.00	204.15	5,600.0	-1.6	-0.7	-1.6	2.00	2.00	0.00
5,600.0 5,697.4	3.95	204.15	5,600.0 5,697.2	-1.6 -6.2	-0.7 -2.8	-1.6	2.00	2.00	0.00
	5.95 hold at 5697.4 M		5,097.2	-0.2	-2.0	-0.2	2.00	2.00	0.00
5,700.0	3.95	204.15	5,699.8	-6.4	-2.9	-6.3	0.00	0.00	0.00
5,800.0	3.95	204.15	5,799.6	-12.6	-5.7	-12.6	0.00	0.00	0.00
5,900.0	3.95	204.15	5,899.4	-18.9	-8.5	-18.9	0.00	0.00	0.00
6,000.0	3.95	204.15	5,999.1	-25.2	-11.3	-25.1	0.00	0.00	0.00
6,100.0	3.95	204.15	6,098.9	-31.5	-14.1	-31.4	0.00	0.00	0.00
6,200.0	3.95	204.15	6,198.7	-37.8	-16.9	-37.7	0.00	0.00	0.00
6,300.0	3.95	204.15	6,298.4	-44.1	-19.8	-43.9	0.00	0.00	0.00
6,400.0	3.95	204.15	6,398.2	-50.3	-22.6	-50.2	0.00	0.00	0.00
6,500.0	3.95	204.15	6,497.9	-56.6	-25.4	-56.5	0.00	0.00	0.00
6,600.0	3.95	204.15	6,597.7	-62.9	-28.2	-62.7	0.00	0.00	0.00
6,700.0	3.95	204.15	6,697.5	-69.2	-31.0	-69.0	0.00	0.00	0.00
6,702.5	3.95	204.15	6,700.0	-69.4	-31.1	-69.1	0.00	0.00	0.00
BRUSHY CA									
6,800.0	3.95	204.15	6,797.2	-75.5	-33.8	-75.2	0.00	0.00	0.00
6,900.0	3.95	204.15	6,897.0	-81.8	-36.6	-81.5	0.00	0.00	0.00
7,000.0	3.95	204.15	6,996.8	-88.0	-39.5	-87.8	0.00	0.00	0.00
7,100.0	3.95	204.15	7,096.5	-94.3	-42.3	-94.0	0.00	0.00	0.00
7,200.0	3.95	204.15	7,196.3	-100.6	-45.1	-100.3	0.00	0.00	0.00
7,300.0	3.95	204.15	7,296.0	-106.9	-47.9	-106.6	0.00	0.00	0.00
7,400.0	3.95	204.15	7,395.8	-113.2	-50.7	-112.8	0.00	0.00	0.00
7,500.0	3.95	204.15	7,495.6	-119.5	-53.5	-119.1	0.00	0.00	0.00
7,600.0	3.95	204.15	7,595.3	-125.7	-56.4	-125.4	0.00	0.00	0.00
7,700.0	3.95	204.15	7,695.1	-132.0	-59.2	-131.6	0.00	0.00	0.00
7,807.9	3.95	204.15	7,802.8	-138.8	-62.2	-138.4	0.00	0.00	0.00
Start Drop -2	2.00								
7,900.0	2.11	204.15	7,894.7	-143.2	-64.2	-142.8	2.00	-2.00	0.00
8,005.3	0.00	0.00	8,000.0	-145.0	-65.0	-144.6	2.00	-2.00	0.00
	hold at 8005.3 M								
8,100.0	0.00	0.00	8,094.7	-145.0	-65.0	-144.6	0.00	0.00	0.00
8,200.0	0.00	0.00	8,194.7	-145.0	-65.0	-144.6	0.00	0.00	0.00
8,300.0	0.00	0.00	8,294.7	-145.0	-65.0	-144.6	0.00	0.00	0.00
8,326.3	0.00	0.00	8,321.0	-145.0	-65.0	-144.6	0.00	0.00	0.00
Top of BSGL		0.00	0.004.7	445.0	05.0	444.0	0.00	0.00	0.00
8,400.0	0.00	0.00	8,394.7	-145.0	-65.0	-144.6	0.00	0.00	0.00
8,500.0 8.600.0	0.00	0.00	8,494.7	-145.0	-65.0	-144.6	0.00	0.00	0.00
8,600.0 8,700.0	0.00 0.00	0.00 0.00	8,594.7 8,694.7	-145.0 -145.0	-65.0 -65.0	-144.6	0.00	0.00	0.00 0.00
67000	0.00	0.00	0.094.7	- 140.0	-00.0	-144.6	0.00	0.00	0.00

7/17/2024 12:20:45PM

.

Database:	EDM 5000.16 Single User Db	Local Co-ordinate Reference:	Well Sandra Jean 23 Fed Com 503H
Company:	Avant Operating, LLC	TVD Reference:	WELL @ 3658.5usft (3658.5)
Project:	Lea Co., NM (NAD 83)	MD Reference:	WELL @ 3658.5usft (3658.5)
Site:	Sandra Jean 23 Fed Com Pad 2	North Reference:	Grid
Well:	Sandra Jean 23 Fed Com 503H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan 0.1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
8,800.0	0.00	0.00	8,794.7	-145.0	-65.0	-144.6	0.00	0.00	0.00
8,900.0	0.00	0.00	8,894.7	-145.0	-65.0	-144.6	0.00	0.00	0.00
9,000.0	0.00	0.00	8,994.7	-145.0	-65.0	-144.6	0.00	0.00	0.00
9,100.0	0.00	0.00	9,094.7	-145.0	-65.0	-144.6	0.00	0.00	0.00
9,200.0	0.00	0.00	9,194.7	-145.0	-65.0	-144.6	0.00	0.00	0.00
9,300.0	0.00	0.00	9,294.7	-145.0	-65.0	-144.6	0.00	0.00	0.00
9,400.0	0.00	0.00	9,394.7	-145.0	-65.0	-144.6	0.00	0.00	0.00
9,400.3	0.00	0.00	9,395.0	-145.0	-65.0	-144.6	0.00	0.00	0.00
Top of FBSG		0.00	0 404 7	145.0	65.0	144.6	0.00	0.00	0.00
9,500.0 9.607.9	0.00 0.00	0.00 0.00	9,494.7 9,602.5	-145.0 -145.0	-65.0 -65.0	-144.6 -144.6	0.00 0.00	0.00 0.00	0.00
-,		0.00	9,602.5	-145.0	-05.0	-144.0	0.00	0.00	0.00
KOP #2 - Sta	art Build 12.00								
9,625.0	2.06	356.17	9,619.7	-144.7	-65.0	-144.3	12.00	12.00	0.00
9,650.0	5.06	356.17	9,644.6	-143.1	-65.1	-142.7	12.00	12.00	0.00
9,675.0	8.06	356.17	9,669.5	-140.3	-65.3	-139.9	12.00	12.00	0.00
9,682.6	8.97	356.17	9,677.0	-139.2	-65.4	-138.7	12.00	12.00	0.00
Top of SBSC									
9,700.0	11.06	356.17	9,694.1	-136.2	-65.6	-135.7	12.00	12.00	0.00
9,725.0	14.06	356.17	9,718.5	-130.7	-66.0	-130.3	12.00	12.00	0.00
9,750.0	17.06	356.17	9,742.6	-124.0	-66.4	-123.6	12.00	12.00	0.00
9,775.0	20.06	356.17	9,766.3	-116.1	-66.9	-115.7	12.00	12.00	0.00
9,800.0	23.06	356.17	9,789.5	-106.9	-67.5	-106.5	12.00	12.00	0.00
9,825.0	26.06	356.17	9,812.3	-96.6	-68.2	-96.1	12.00	12.00	0.00
9,850.0	29.06	356.17	9,834.4	-85.0	-69.0	-84.6	12.00	12.00	0.00
9,875.0	32.06	356.17	9,856.0	-72.4	-69.9	-71.9	12.00	12.00	0.00
9,900.0	35.06	356.17	9,876.8	-58.6	-70.8	-58.1	12.00	12.00	0.00
9,925.0	38.06	356.17	9,896.9	-43.7	-71.8	-43.2	12.00	12.00	0.00
9,940.6	39.93	356.17	9,909.0	-33.9	-72.4	-33.4	12.00	12.00	0.00
Top of SBSG		000111	0,000.0	0010		0011	12100	12.00	0.00
9,950.0	41.06	356.17	9,916.1	-27.8	-72.8	-27.3	12.00	12.00	0.00
9,975.0	44.06	356.17	9,934.6	-11.0	-74.0	-10.5	12.00	12.00	0.00
9,978.6	44.49	356.17	9,937.1	-8.4	-74.1	-8.0	12.00	12.00	0.00
Sandra Jean		050.47	0.050.4	0.0	75.0	7.0	10.00	10.00	0.00
10,000.0	47.06	356.17	9,952.1	6.8 25 5	-75.2	7.3	12.00	12.00	0.00
10,025.0	50.06	356.17	9,968.6	25.5	-76.4	26.0	12.00	12.00	0.00
10,050.0	53.06	356.17	9,984.1	45.1	-77.7	45.6	12.00	12.00	0.00
10,075.0	56.06	356.17	9,998.6	65.4	-79.1	65.9	12.00	12.00	0.00
10,100.0	59.06	356.17	10,012.0	86.4	-80.5	87.0	12.00	12.00	0.00
10,125.0	62.06	356.17	10,024.3	108.2	-81.9	108.7	12.00	12.00	0.00
10,150.0	65.06	356.17	10,035.5	130.5	-83.4	131.0	12.00	12.00	0.00
10,175.0	68.06	356.17	10,045.4	153.4	-85.0	153.9	12.00	12.00	0.00
10,200.0	71.06	356.17	10,054.1	176.8	-86.5	177.3	12.00	12.00	0.00
10,225.0	74.06	356.17	10,061.6	200.5	-88.1	201.1	12.00	12.00	0.00
10,250.0	77.06	356.17	10,067.9	224.7	-89.7	225.3	12.00	12.00	0.00
10,275.0	80.06	356.17	10,072.8	249.1	-91.4	249.7	12.00	12.00	0.00
10,300.0	83.06	356.17	10.076.5	273.8	-93.0	274.4	12.00	12.00	0.00
10,300.0	83.06 86.06	356.17	- ,		-93.0 -94.7	274.4 299.3			
10,325.0		356.17	10,078.9	298.6	-94.7 -96.3	299.3 324.2	12.00	12.00	0.00
10,350.0	89.06 90.00	356.17	10,079.9 10,080.0	323.6 331.4	-96.3 -96.9	324.2 332.0	12.00 12.00	12.00 12.00	0.00 0.00
			10,060.0	331.4	-90.9	JJZ.0	12.00	12.00	0.00
Start 17.0 hc 10,374.9	old at 10357.9 ME 90.00	356.17	10,080.0	348.4	-98.0	349.0	0.00	0.00	0.00
,	90.00 DLS 2.00 TFO 90		10,000.0	340.4	-90.0	349.0	0.00	0.00	0.00
10,400.0	90.00	356.68	10,080.0	373.5	-99.6	374.1	2.00	0.00	2.00

7/17/2024 12:20:45PM

Database:	EDM 5000.16 Single User Db	Local Co-ordinate Reference:	Well Sandra Jean 23 Fed Com 503H
Company:	Avant Operating, LLC	TVD Reference:	WELL @ 3658.5usft (3658.5)
Project:	Lea Co., NM (NAD 83)	MD Reference:	WELL @ 3658.5usft (3658.5)
Site:	Sandra Jean 23 Fed Com Pad 2	North Reference:	Grid
Well:	Sandra Jean 23 Fed Com 503H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan 0.1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,500.0	90.00	358.68	10,080.0	473.4	-103.6	474.0	2.00	0.00	2.0
10,547.1	90.00	359.62	10,080.0	520.4	-104.3	521.1	2.00	0.00	2.0
LP - Start 44	67.0 hold at 105	47.1 MD							
10,600.0	90.00	359.62	10,080.0	573.4	-104.7	574.0	0.00	0.00	0.0
10,700.0	90.00	359.62	10,080.0	673.4	-105.3	674.0	0.00	0.00	0.0
10,800.0	90.00	359.62	10,080.0	773.4	-106.0	774.0	0.00	0.00	0.0
10,900.0	90.00	359.62	10,080.0	873.4	-106.7	874.0	0.00	0.00	0.0
11,000.0	90.00	359.62	10,080.0	973.4	-107.3	974.0	0.00	0.00	0.0
11,100.0	90.00	359.62	10,080.0	1,073.4	-108.0	1,074.0	0.00	0.00	0.0
11,200.0	90.00	359.62	10,080.0	1,173.4	-108.7	1,174.0	0.00	0.00	0.0
11,300.0	90.00	359.62	10,080.0	1,273.3	-109.4	1,274.0	0.00	0.00	0.0
11,300.0	90.00 90.00	359.62	10,080.0	1,273.3	-109.4 -110.0	1,274.0	0.00	0.00	0.0
11,400.0	90.00	359.62	10,080.0	1,373.3	-110.0	1,374.0	0.00	0.00	0.0
11,600.0	90.00	359.62	10,080.0	1,473.3	-110.7	1,474.0	0.00	0.00	0.0
11,700.0	90.00	359.62	10,080.0	1,673.3	-112.0	1,674.0	0.00	0.00	0.0
11,800.0	90.00	359.62	10,080.0	1,773.3	-112.7	1,774.0	0.00	0.00	0.0
11,900.0	90.00	359.62	10,080.0	1,873.3	-113.4	1,874.0	0.00	0.00	0.0
12,000.0	90.00	359.62	10,080.0	1,973.3	-114.0	1,974.0	0.00	0.00	0.0
12,100.0 12,200.0	90.00 90.00	359.62 359.62	10,080.0 10,080.0	2,073.3 2,173.3	-114.7 -115.4	2,074.0 2,174.0	0.00 0.00	0.00 0.00	0.0 0.0
			,						
12,300.0	90.00	359.62	10,080.0	2,273.3	-116.0	2,274.0	0.00	0.00	0.0
12,400.0	90.00	359.62	10,080.0	2,373.3	-116.7	2,374.0	0.00	0.00	0.0
12,500.0	90.00	359.62	10,080.0	2,473.3	-117.4	2,474.0	0.00	0.00	0.0
12,600.0	90.00	359.62	10,080.0	2,573.3	-118.0	2,574.0	0.00	0.00	0.0
12,700.0	90.00	359.62	10,080.0	2,673.3	-118.7	2,674.0	0.00	0.00	0.0
12,800.0	90.00	359.62	10,080.0	2,773.3	-119.4	2,774.0	0.00	0.00	0.0
12,900.0	90.00	359.62	10,080.0	2,873.3	-120.0	2,874.0	0.00	0.00	0.0
13,000.0	90.00	359.62	10,080.0	2,973.3	-120.7	2,974.0	0.00	0.00	0.0
13,100.0	90.00	359.62	10,080.0	3,073.3	-121.4	3,074.0	0.00	0.00	0.0
13,200.0	90.00	359.62	10,080.0	3,173.3	-122.0	3,174.0	0.00	0.00	0.0
13,300.0	90.00	359.62	10,080.0	3,273.3	-122.7	3,274.0	0.00	0.00	0.0
13,400.0	90.00	359.62	10,080.0	3,373.3	-123.4	3,374.0	0.00	0.00	0.0
13,500.0	90.00	359.62	10,080.0	3,473.3	-124.0	3,474.0	0.00	0.00	0.0
13,600.0	90.00	359.62	10,080.0	3,573.3	-124.7	3,574.0	0.00	0.00	0.0
13,700.0	90.00	359.62	10,080.0	3,673.3	-125.4	3,674.0	0.00	0.00	0.0
13,800.0	90.00	359.62	10,080.0	3,773.3	-126.0	3,774.0	0.00	0.00	0.0
13,900.0	90.00	359.62	10,080.0	3,873.3	-126.7	3,874.0	0.00	0.00	0.0
14,000.0	90.00	359.62	10,080.0	3,973.3	-127.4	3,974.0	0.00	0.00	0.0
14,100.0	90.00	359.62	10,080.0	4,073.3	-128.0	4,074.0	0.00	0.00	0.0
14,200.0	90.00	359.62	10,080.0	4,173.3	-128.7	4,174.0	0.00	0.00	0.0
14.300.0	90.00	359.62	10,080.0	4,273.3	-129.4	4,274.0	0.00	0.00	0.0
14,400.0	90.00	359.62	10,080.0	4,373.3	-130.1	4,374.0	0.00	0.00	0.0
14,500.0	90.00	359.62	10,080.0	4,473.3	-130.7	4,474.0	0.00	0.00	0.0
14,600.0	90.00	359.62	10,080.0	4,573.3	-131.4	4,574.0	0.00	0.00	0.0
14,700.0	90.00	359.62	10,080.0	4,673.3	-132.1	4,674.0	0.00	0.00	0.0
14,800.0	90.00	359.62	10,080.0	4,773.3	-132.7	4,774.0	0.00	0.00	0.0
14,800.0 14,900.0	90.00	359.62	10,080.0	4,773.3	-132.7	4,774.0 4,874.0	0.00	0.00	0.0
14,900.0	90.00	359.62	10,080.0	4,973.3	-134.1	4,974.0	0.00	0.00	0.0
15,000.0	90.00	359.62	10,080.0	4,987.3	-134.2	4,988.1	0.00	0.00	0.0
	.0 - Sandra Jean		,	.,	101.E	.,000.1	0.00	0.00	0.0

Database: Company: Project: Site: Well: Wellbore: Design:	Avant O Lea Co. Sandra	00.16 Single U perating, LLC NM (NAD 83) Jean 23 Fed C Jean 23 Fed C	om Pad 2	Pad 2 TVD Reference MD Reference North Reference			WELL WELL Grid	@ 3658.5u	1 23 Fed Com 50 Isft (3658.5) Isft (3658.5) Isft (3658.5)	3H
Design Targets										
Target Name - hit/miss target - Shape	Dip An (°)	gle Dip Dir (°)	. TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	La	titude	Longitude
Sandra Jean 503H F - plan misses tar - Point		0.00 0.0 y 203.2usft at 9		-150.6 937.1 TVD,	-99.9 -8.4 N, -74.1 E	565,082.79 E)	757,306.3	D	32.551515	-103.632413
Sandra Jean 503H L - plan hits target - Point		0.00 0.0	00 10,080.0	4,987.3	-134.2	570,220.68	757,272.0	1	32.565638	-103.632414
Casing Points										
-	Measured Depth (usft)	Vertical Depth (usft)			Name		I	Casing Diameter (")	Hole Diameter (")	
		10,400).0 LP					5-1/2	5-1/2	2
Formations	-									
Ľ	asured Depth Jusft)	Vertical Depth (usft)		Name		Litholog	IJ	Dip (°)	Dip Direction (°)	
	1,428.0	1,428.0	RUSTLER							
	3,200.0	3,200.0	YATES							
	3,593.0	3,593.0	CAPITAN REEI	F						
	5,250.0		CHERRY CAN	YON						
	5,260.0		DELAWARE							
	6,702.5	6,700.0	BRUSHY CAN	YON						
	8,326.3		Top of BSGL							
	9,400.3	,	Top of FBSG S							
	9,682.6 9,940.6	,	Top of SBSG S Top of SBSG S							
	5,5 .0.0									
Plan Annotations										
D	asured epth usft)	Vertical Depth (usft)	Local +N/-S (usft)		·E/-W	Comment				
	5,500.0	5,500.0	0.0			KOP - Start Build 2.0	0			
	5,697.4	5,697.2	-6.2			Start 2110.5 hold at				
	7,807.9	7,802.8	-138.8			Start Drop -2.00				
	8,005.3	8,000.0	-145.0			Start 1602.5 hold at				
	9,607.9 0.357.9	9,602.5 10,080.0	-145.0 331.4			KOP #2 - Start Build Start 17.0 hold at 10				

-98.0

-104.3

-134.2

Turn - Start DLS 2.00 TFO 90.00

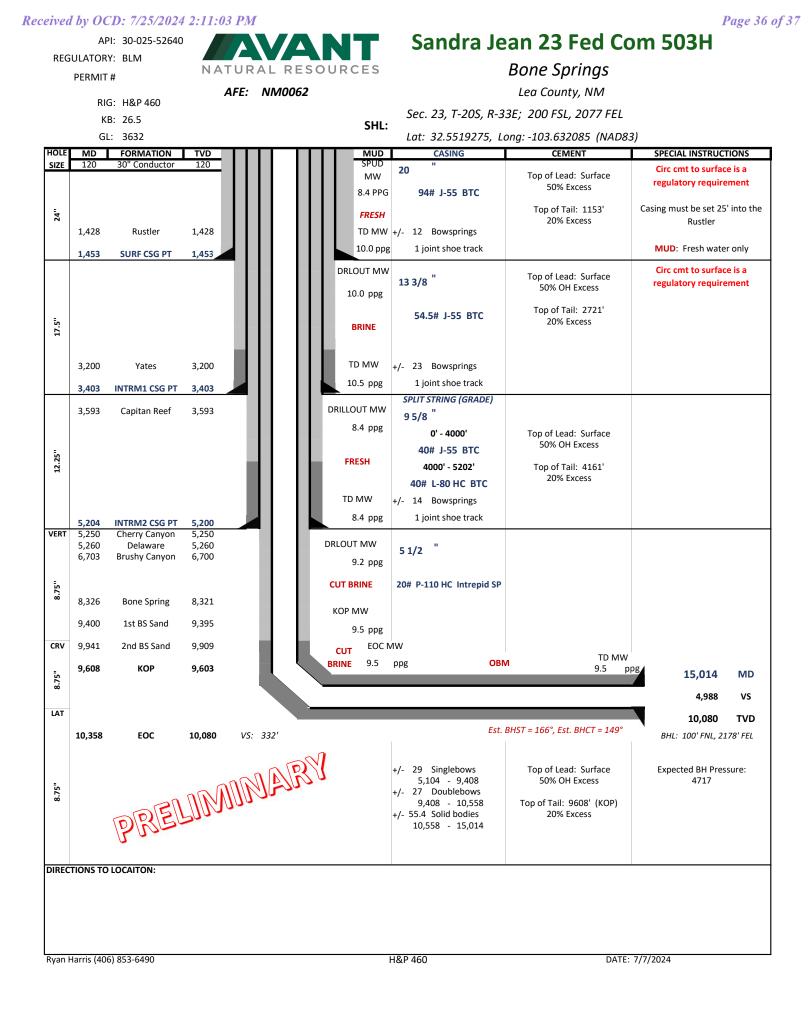
TD at 15014.0

LP - Start 4467.0 hold at 10547.1 MD

10,374.9

10,547.1

15,014.0


10,080.0 10,080.0

10,080.0

348.4

520.4

4,987.3

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
Avant Operating, LLC	330396
1515 Wynkoop Street	Action Number:
Denver, CO 80202	367410
	Action Type:
	[C-103] NOI Change of Plans (C-103A)
CONDITIONS	

Created Condition Condition By Date 8/2/2024 pkautz None

CONDITIONS

Page 37 of 37

Action 367410